WO2016013586A1 - 湿式塗装ブース循環水の処理方法及び処理装置 - Google Patents

湿式塗装ブース循環水の処理方法及び処理装置 Download PDF

Info

Publication number
WO2016013586A1
WO2016013586A1 PCT/JP2015/070856 JP2015070856W WO2016013586A1 WO 2016013586 A1 WO2016013586 A1 WO 2016013586A1 JP 2015070856 W JP2015070856 W JP 2015070856W WO 2016013586 A1 WO2016013586 A1 WO 2016013586A1
Authority
WO
WIPO (PCT)
Prior art keywords
circulating water
water
phenolic resin
alkaline solution
aluminum salt
Prior art date
Application number
PCT/JP2015/070856
Other languages
English (en)
French (fr)
Inventor
恒行 吉田
正弘 堀内
努 吉川
雄太 有元
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014149506A external-priority patent/JP5681828B1/ja
Priority claimed from JP2015017142A external-priority patent/JP2016140805A/ja
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to EP15825584.4A priority Critical patent/EP3173383B1/en
Priority to BR112017000481-0A priority patent/BR112017000481B1/pt
Priority to US15/324,567 priority patent/US20170197852A1/en
Priority to CN201580039593.5A priority patent/CN106536422B/zh
Priority to MYPI2017700062A priority patent/MY182003A/en
Priority to ES15825584T priority patent/ES2802201T3/es
Publication of WO2016013586A1 publication Critical patent/WO2016013586A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B14/00Arrangements for collecting, re-using or eliminating excess spraying material
    • B05B14/40Arrangements for collecting, re-using or eliminating excess spraying material for use in spray booths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B14/00Arrangements for collecting, re-using or eliminating excess spraying material
    • B05B14/40Arrangements for collecting, re-using or eliminating excess spraying material for use in spray booths
    • B05B14/46Arrangements for collecting, re-using or eliminating excess spraying material for use in spray booths by washing the air charged with excess material
    • B05B14/462Arrangements for collecting, re-using or eliminating excess spraying material for use in spray booths by washing the air charged with excess material and separating the excess material from the washing liquid, e.g. for recovery
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/14Paint wastes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the present invention relates to a wet paint booth circulating water treatment method and a processing apparatus that perform efficient agglomeration treatment by accurately controlling the pH of the circulating water in the agglomeration treatment of the paint in the wet paint booth circulating water containing the paint.
  • Spray painting is performed in the painting process of automobiles, electrical equipment, metal products, etc.
  • a large amount of overspray paint (excess paint) that does not adhere to the object is generated.
  • the amount of surplus paint generated can reach as much as 50% to 60% of the paint used, excluding electrostatic paint with high coating efficiency. Therefore, it is necessary to remove and recover excess paint from the environment of the painting process.
  • a wet painting booth by washing with water is usually employed, and the washing water is circulated. At that time, in order to prevent the paint from remaining and accumulating in the circulating water, the surplus paint in the circulating water is agglomerated and separated.
  • Patent Document 1 Method of adding phenolic resin and cationic polymer to wet coating booth circulating water at a predetermined ratio
  • Patent Document 2 A method of adding a treatment agent containing a phenolic resin, an inorganic polyvalent metal salt, a water-soluble polymer flocculant, an inorganic alkali and water to the wet paint booth circulating water
  • Patent Document 3 Method of adding phenolic resin, sulfuric acid band, ettringite, etc. in combination to wet paint booth circulating water.
  • Patent Document 1 describes that the pH of the coagulation treatment system is preferably about 6.0 to 8.5 from the viewpoint of the effect of the equipment corrosion and the pH of the cationic polymer.
  • the pH is adjusted to 6.7 to 6.8.
  • the effect characteristic of the pH range in Patent Document 1 is unknown.
  • a pH adjusting agent such as HCl or NaOH is added separately from the phenolic resin and the cationic polymer for pH adjustment.
  • an alkaline solution of a phenolic resin and a cationic polymer cannot sufficiently agglomerate the coating components.
  • the treatment agent described in Patent Document 2 is a combination of a phenolic resin and an inorganic polyvalent metal salt.
  • a mixture of an alkali solution of a phenolic resin dissolved in an alkali and sodium aluminate is used.
  • Patent Document 2 describes that the pH of this treatment agent is alkaline.
  • Patent Document 2 describes that, from the viewpoint of wastewater treatment, the treated water should be neutral at a pH of 5.5 to 8.5.
  • dilute sulfuric acid is separately added to adjust the pH to 7.
  • Patent Document 2 does not add a phenolic resin and an inorganic polyvalent metal salt separately.
  • Patent Document 2 does not have a technical idea that an alkaline solution of an alkaline phenolic resin and an acidic inorganic polyvalent metal salt are used so that a pH adjusting agent is not required.
  • Patent Document 3 does not describe the pH of the circulating water system at all, and does not discuss the relationship between pH conditions and effect characteristics.
  • Paints used in the painting process are roughly classified into solvent-based paints using only organic solvents such as thinner as solvents and water-based paints using water.
  • Solvent-based paints are superior to water-based paints in terms of weather resistance, chipping resistance, and the like, and are often used particularly in clear clear coatings for automobiles. Because water-based paints use water as a solvent (some solvents may be used in combination), they are not flammable, safe and sanitary, and have the advantage of no pollution caused by organic solvents. In recent years, the range of application has been expanded.
  • Solvent-based paints and water-based paints have the following problems.
  • Solvent paint Excess paint particles taken into the circulating water are highly sticky, so that they adhere to various facilities and cause severe stains, or agglomerate into large clumps and easily clog.
  • Water-based paint Since water-based paints are inherently dissolved or uniformly dispersed in water, paint components accumulate and concentrate in booth circulating water in proportion to the amount used. As a result of the concentration of the paint components, foaming substances such as surfactants in the paint are concentrated and bubbles are generated. Furthermore, the increase in the concentration of suspension and viscosity in the circulating water stabilizes the generated foam, leading to severe foaming, which may make it impossible to operate a stable painting booth.
  • the wet coating booth circulating water agglomerate be excellent in both the non-adhesive effect on the solvent-based paint and the foam suppression effect on the aqueous paint.
  • the pH of the circulating water is important in order to fully exert the effect of the added flocculating agent.
  • sulfuric acid and caustic soda are generally used as acids and alkalis for adjusting the pH of the circulating water in the wet paint booth because they are inexpensive.
  • Patent Documents 1 to 3 propose a method in which an alkaline solution or an acidic aluminum salt of a phenolic resin is added to wet coating booth circulating water to perform an agglomeration treatment.
  • a pH adjuster such as sulfuric acid, hydrochloric acid, or caustic soda is separately required, and in Patent Document 3, pH conditions are not considered at all.
  • Patent Document 4 an acidic or neutral main treatment agent and an alkaline pH adjuster are maintained in the circulating water of the coating booth, and the ratio of the addition amount of the main treatment agent and the addition amount of the pH adjuster is maintained within a predetermined range.
  • a method for controlling the addition so that the pH adjuster is added when the pH value of the circulating water is equal to or lower than the predetermined value and the addition of the pH adjuster is stopped when the pH value of the circulating water exceeds the predetermined value.
  • Patent document 4 when the continuous addition time of a pH adjuster exceeds a predetermined value, an abnormal display is given to inform that the measurement accuracy of the pH meter has decreased due to adhesion of paint scum or generated salt to the pH meter.
  • the method of Patent Document 4 does not prevent a decrease in measurement accuracy due to contamination of the pH meter.
  • Patent Documents 2 and 3 suggest the combined use of a phenolic resin and an acidic aluminum salt such as a sulfuric acid band, but no investigation has been made on the relationship between the treatment pH and the effect characteristics, and an excellent aggregating effect is obtained. It cannot be obtained with certainty.
  • Patent Document 2 it is essential to use a phenolic resin and an inorganic polyvalent metal salt such as a sulfuric acid band as one agent, and these are not added separately.
  • Patent Document 3 there is no description about process pH.
  • Patent Documents 1 and 2 which describe pH conditions, pH adjustment is performed separately using a pH adjusting agent.
  • PH control is usually performed by adding acid or alkali to the circulating water based on the measured value of the pH meter provided in the circulating water pit.
  • the pH meter sensor in the circulating water pit is contaminated by paint or paint sludge, and the measurement accuracy decreases.
  • the present invention provides a wet paint booth circulating water treatment method and treatment apparatus for efficiently coagulating the circulating water by accurately adjusting the pH of the paint in the wet paint booth circulating water containing the paint. With the goal.
  • the present invention eliminates the need for a pH adjuster, suppresses the type of drug used, the amount of drug used, adjusts the circulating water to an optimum pH condition, and obtains a high coagulation effect.
  • An object is to provide a processing apparatus.
  • the present inventor accurately adjusted the pH by using an alkaline solution of an alkaline phenolic resin as an aggregating agent that also serves as an alkaline agent, and further using an acidic acidic aluminum salt as an aggregating agent that also serves as an acid agent. And it discovered that pH control could be performed industrially advantageously.
  • the inventor added an alkali solution of a phenolic resin and an acidic aluminum salt in advance without adding them as one agent, and added them separately, and the aggregating treatment agent serving as an alkaline agent for the alkaline solution of the alkaline phenolic resin.
  • the acidic acidic aluminum salt is used as an aggregating treatment agent that also serves as an acid agent, and these are adjusted within the range of the amount of addition that can obtain the aggregating effect, and the amount of addition is adjusted according to the pH fluctuation of the circulating water.
  • a pH adjusting agent is unnecessary and the pH is adjusted to the optimum pH and a high coagulation treatment effect can be obtained.
  • an alkaline solution of a phenolic resin or an acidic aluminum salt itself is used as a pH adjuster for circulating water.
  • the present inventor measured the pH of the circulating water intermittently in a measuring tank provided separately from the circulating water pit, and when the pH was not measured, the pH meter was washed with clear water. It has been found that accuracy can be improved and accurate pH control can be performed.
  • the gist of the present invention is as follows.
  • a method of adjusting the pH of the circulating water to 6.5 to 8.0 in treating the paint in the circulating water by adding an alkaline solution of a phenolic resin to the wet paint booth circulating water containing the paint A treatment method for circulating water in a wet paint booth, characterized in that when the pH of the circulating water reaches a predetermined value of 8.0 or less, the addition amount of the alkaline solution of the phenolic resin is increased. .
  • the pH of the circulating water is adjusted to 6.5 to 8.0 without using another alkaline agent and using an alkaline solution of the phenolic resin as an alkaline agent.
  • Wet painting booth circulating water treatment method wet painting booth circulating water treatment method.
  • the method further comprises adding an acidic aluminum salt to the circulating water, and when the pH of the circulating water reaches a predetermined value of 6.5 or more, A method for treating circulating water in a wet paint booth characterized by increasing the amount of acidic aluminum salt added.
  • the pH of the circulating water is 6.8 or more and 8.0 or less
  • the addition amount of the alkaline solution of the phenolic resin is increased, and when the pH of the circulating water is 6.5 or more and 7.2 or less.
  • a method of coagulating the paint in the circulating water by adding an alkaline solution of a phenolic resin and an acidic aluminum salt to the wet paint booth circulating water containing the paint, wherein the alkali of the phenolic resin is added to the circulating water.
  • a method for treating circulating water in a wet paint booth comprising separately adding a solution and an acidic aluminum salt to adjust the pH of the circulating water to 6.5 to 8.0.
  • the alkaline solution of the phenolic resin is used as an alkali agent
  • the acidic aluminum salt is used as an acid agent
  • the pH of the circulating water is adjusted to 6.5 without adding another pH adjuster.
  • the acidic aluminum salt is one or two selected from the group consisting of a sulfate band, aluminum chloride, polyaluminum chloride, basic aluminum chloride, and aluminum nitrate.
  • an alkaline solution of the phenolic resin, an alkaline solution of the phenolic resin and an acidic aluminum salt, or an alkaline solution of the phenolic resin, an acidic aluminum salt, and a cationic polymer A processing method for circulating water in a wet paint booth, characterized by further adding a polymer flocculating agent to the circulated water after the addition to perform the flocculation treatment.
  • the introduction of circulating water into the measuring tank by the step and the introduction of clarified water into the measuring tank by the clarified water introducing means are alternately performed, and the pH measurement is performed by the pH meter during the period of introducing the circulating water by the circulating water introducing means.
  • Wet coating characterized by performing Over the scan circulating water treatment equipment.
  • the measurement tank has a storage part for storing the introduced water and an overflow part for overflowing the stored water from the storage part.
  • the wet paint booth circulating water treatment device wherein the circulating water introducing means and the clarified water introducing means are respectively provided to introduce the circulating water or the clarified water into the storage section. .
  • control means controls the chemical injection based on a measured value by a pH meter after a predetermined time has elapsed after the introduction of the circulating water by the circulating water introduction means.
  • control means stops the introduction of the clarified water after introducing the clarified water into the measurement tank by the clarified water introducing means, and then a predetermined time has elapsed.
  • a treatment apparatus for circulating water in a wet coating booth characterized in that introduction of circulating water by the circulating water introducing means is started later.
  • the pH of the circulating water can be precisely adjusted to perform an efficient agglomeration treatment.
  • an alkaline solution of an alkaline phenolic resin is used as an aggregating agent that also serves as an alkali agent, and further, an acidic acidic aluminum salt is used as an aggregating agent that also serves as an acid agent. These are added and controlled in accordance with the pH fluctuation of the circulating water.
  • these agents are safe alkalis or acids. Even if these agents are added more than the minimum necessary amount, the treatment effect does not deteriorate. According to the present invention, without using dangerous acids and alkalis conventionally used for pH adjustment, in addition to the minimum necessary amount for these agents to exert their effects, these agents are also used for pH adjustment. By using it, the pH can be adjusted accurately and industrially advantageously.
  • the pH of the wet paint booth circulating water is optimal for the coagulation treatment after reducing the type of chemical and the amount of the chemical used without using a pH adjuster.
  • a high aggregation treatment effect can be obtained. For this reason, the processing cost can be reduced, and workability is also improved by not using acid and alkali.
  • the pH of the circulating water is intermittently measured in a measuring tank provided separately from the circulating water pit, and the pH meter is washed with clear water when the pH is not measured.
  • the measurement accuracy of the pH meter can be increased.
  • the time lag of pH measurement can be suppressed and accurate pH control can be performed.
  • FIG. 6 It is a typical block diagram which shows an example of embodiment of the processing apparatus of the wet coating booth circulating water of this invention. 6 is a graph showing changes over time in the pH of circulating water in Example 1 and Comparative Example 1. It is a schematic diagram which shows the experimental apparatus used in the Example.
  • the first aspect of the method for treating wet paint booth circulating water according to the present invention is to add an alkaline solution of a phenolic resin to wet paint booth circulating water containing a paint to treat the paint in the circulating water.
  • the pH of the aqueous solution is adjusted to 6.5 to 8.0, and when the pH of the circulating water reaches a predetermined value of 8.0 or less, the addition amount of the alkaline solution of the phenolic resin is increased. It is characterized by making it.
  • an acidic aluminum salt is further added to the wet painting booth circulating water, and the added amount of the acidic aluminum salt is increased when the pH of the circulating water reaches a predetermined value of 6.5 or more.
  • an alkaline solution of phenolic resin and an acidic aluminum salt are added to the wet paint booth circulating water containing a water-based paint and / or a solvent-based paint.
  • the water-based paint is an anion, and by lowering the pH, the degree of anion is lowered and the agglomeration is likely to occur, and the activity of the anionic surfactant is lowered, so that bubbles are hardly formed.
  • the alkaline solution of the phenolic resin alkaline solution is anionic. However, when neutralized by charge, the affinity with mainly hydrophobic (nonionic) substances is increased, and nonionic surfactants and paint resins are used. Affinity increases.
  • the alkaline solution of the phenolic resin is also acidic and weakly anionic, so that the necessary amount of the cationic polymer for charge neutralization can be reduced.
  • the acidic aluminum salt is a cation in the neutral to acidic side region. Therefore, it is a paint that is an anion, and hydrophilic turbidity and SS content (mainly anion) generated by hydrolysis, oxidative decomposition, and biodegradation of the paint. ) Can be aggregated by charge neutralization, and charge neutralization of an alkaline solution of a phenolic resin can also be performed.
  • the aggregating treatment is preferably performed in a neutral to acidic region. Since the alkaline solution of the phenolic resin is alkaline and the acidic aluminum salt is acidic, it is possible to adjust the pH using these.
  • an alkaline solution of an alkaline phenolic resin is used as an aggregating agent that also serves as an alkaline agent
  • an acidic acidic aluminum salt is used as an aggregating agent that also serves as an acid agent.
  • these are adjusted within the range of the amount of addition that can obtain a coagulation effect
  • the pH of the circulating water is adjusted to 6.5 to 8.0 by adjusting the amount of addition according to the pH fluctuation of the circulating water.
  • it is adjusted to 6.8 to 7.2. In this way, it is possible to adjust the pH to the optimum pH while eliminating the need for a pH adjusting agent.
  • the alkaline solution of the phenolic resin and the acidic aluminum salt are separately added to the wet coating booth circulating water separately without making a single agent.
  • an alkaline solution of an alkaline phenolic resin is used as an aggregating agent that also serves as an alkali agent
  • an acidic acidic aluminum salt is used as an aggregating agent that also serves as an acid agent.
  • the amount of these agents is adjusted within the range of the amount of addition capable of obtaining a coagulation effect, and the pH of the circulating water is adjusted to 6.5 to 8.0, preferably 6 according to the pH fluctuation of the circulating water. Adjust to 8 to 7.2. As a result, the pH is adjusted to the optimum pH without using a pH adjuster.
  • an alkaline solution of a phenolic resin and an acidic aluminum salt are used in combination, an alkaline solution of a phenolic resin is used as an alkaline agent, no other alkaline agent is added, and an acidic aluminum salt is used as an acidic agent.
  • the wet paint booth circulating water of the present invention is exemplified by adjusting the pH of the circulating water to 6.5 to 8.0 by controlling the addition amount of these without using any other acid agent. A processing method will be described. In the present invention, other alkali agents and acid agents may be used in combination.
  • No drug is required, and the type of drug and the amount of drug used can be reduced to reduce the labor of drug management and drug injection control.
  • it is possible to reduce the processing cost, and furthermore, by eliminating the use of dangerous chemicals such as acids and alkalis, workability is improved, which is very advantageous industrially.
  • the phenolic resin in the alkaline solution of phenolic resin is a condensate of phenols such as monohydric phenols such as phenol, cresol, xylenol and aldehydes such as formaldehyde or a modified product thereof, and is a phenol before crosslinking and curing. Based resins. Specific examples include the following.
  • the phenolic resin may be either a novolak type or a resol type.
  • a phenol resin may be used individually by 1 type, and may be used in combination of 2 or more type.
  • sodium hydroxide (NaOH) and / or potassium hydroxide (NaH) is used as the alkali of the alkaline solution of the phenol resin.
  • the alkali solution of the phenolic resin preferably has an alkali concentration of 1 to 25% by weight and a phenolic resin concentration of 1 to 50% by weight.
  • the phenolic resin may be dissolved by heating to about 70 to 80 ° C.
  • the alkaline solution of the phenolic resin is usually alkaline with a pH of about 10 to 13.
  • acidic aluminum salt basic aluminum chloride, sulfuric acid band (aluminum sulfate), aluminum chloride, polyaluminum chloride, aluminum nitrate and the like can be used. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • the pH of the wet coating booth circulating water is adjusted to 6.5 to 8.0, preferably 6.8 to 7.2, as the pH range where the coagulation effect by the alkaline solution of phenolic resin and acidic aluminum salt is the highest.
  • an alkaline solution of phenolic resin and acidic aluminum can be used without using a pH adjuster such as an acid agent such as inorganic acid or organic acid such as sulfuric acid or hydrochloric acid, or an alkali agent such as sodium hydroxide, potassium hydroxide or ammonia. It is preferable to adjust the pH by controlling the amount of salt added.
  • the pH of the circulating water fluctuates and reaches a predetermined value of pH 8.0 or less
  • the addition amount of the alkaline solution of the alkaline phenolic resin is increased from the set value so that the pH is 6.5 or more, preferably 6.8 or more.
  • the acidic acidic aluminum salt addition amount is increased from the set value within the following addition amount range to reduce the pH to 8.0 or less. , Preferably 7.2 or less.
  • pH such as an acid agent such as sulfuric acid or an alkali agent such as sodium hydroxide is separately provided.
  • the pH can be adjusted to the optimum pH without requiring the addition of a regulator.
  • the addition amount of the alkaline solution or acidic aluminum salt of the phenolic resin is returned to the set value.
  • the pH of the circulating water is less than 6.5, preferably less than 6.8
  • the amount of the phenolic resin alkaline solution added may be increased.
  • the amount of the phenolic resin alkaline solution added may be increased when the pH of the circulating water is 6.8 or more and 8.0 or less.
  • the amount of acidic aluminum salt added may be increased when the pH of the circulating water exceeds 8.0, preferably above 7.2. In order to further suppress the pH fluctuation, the amount of acidic aluminum salt added may be increased when the pH of the circulating water is 6.5 or more and 7.2 or less.
  • the amount of phenolic resin alkaline solution added depends on the properties of the wet paint booth circulating water, the type of paint in the wet paint booth circulating water, and the paint content. (Resin solid content) is preferably 1 mg / L or more, particularly preferably 5 mg / L or more.
  • the addition amount of the alkaline solution of the phenolic resin is preferably 0.1% by weight or more, particularly 0.5% by weight or more as an active ingredient amount with respect to the paint (solid content) in the circulating water.
  • the amount of the phenolic resin alkali solution added to the wet coating booth circulating water is preferably 1000 mg / L or less, particularly 1 to 200 mg / L, especially 5 to 200 mg / L as the amount of active ingredient.
  • the amount of the phenolic resin alkaline solution added is preferably 100% by weight or less, particularly preferably 0.5 to 10% by weight, based on the amount of the active ingredient in the paint in the circulating water.
  • the addition amount of the phenolic resin may temporarily exceed the above upper limit.
  • the amount of acidic aluminum salt added varies depending on the nature of the wet paint booth circulating water, the type and amount of phenolic resin alkaline solution used, and whether or not a cationic polymer is used in combination.
  • the amount of the active ingredient is preferably 1 to 1000 mg / L, more preferably 1 to 200 mg / L, and particularly preferably about 5 to 200 mg / L.
  • the addition amount of the acidic aluminum salt is preferably about 0.1 to 100% by weight, particularly 0.5 to 50% by weight, particularly about 2.0 to 20% by weight as an active ingredient amount with respect to the paint in the circulating water. .
  • the addition amount of the acidic aluminum salt is not less than the above lower limit, the effect of improving the aggregation, non-tackiness, and foaming suppression effects by adding the acidic aluminum salt can be sufficiently obtained. Even if the addition amount of the acidic aluminum salt exceeds the above upper limit, the improvement corresponding to the addition amount cannot be obtained, which is not preferable in terms of the chemical cost and the increase in the amount of aggregated sludge generated.
  • the addition amount of the acidic aluminum salt may temporarily exceed the above upper limit.
  • a cationic polymer may be further used in addition to the alkaline solution of the phenolic resin and the acidic aluminum salt.
  • Examples of the cationic polymer include dimethyl diallyl ammonium chloride, alkylamine / epichlorohydrin condensate, polyethyleneimine, alkylene dichloride / polyalkylene polyamine condensate, dicyandichloride / polyalkylene polyamine condensate, DMA (dimethylaminoethyl methacrylate), DADMAC ( Examples thereof generally called organic coagulants having a weight average molecular weight of 1,000 to 1,000,000, preferably 5,000 to 300,000, such as diallyldimethylammonium chloride).
  • the cationic polymer is not limited to these.
  • cationic polymer one kind may be used alone, or two or more kinds may be mixed and used.
  • the amount of cationic polymer added varies depending on the properties of the wet paint booth circulating water, the type and amount of the phenolic resin alkaline solution used, the amount of acidic aluminum salt added, etc.
  • the amount of the active ingredient is preferably 5 to 100 mg / L, more preferably 5 to 50 mg / L, and particularly preferably 10 to 30 mg / L with respect to the circulating water in the painting booth.
  • the addition amount of the cationic polymer is preferably about 0.01 to 10% by weight, particularly 0.05 to 5% by weight, especially about 0.5 to 2% by weight as an active ingredient based on the paint in the circulating water. .
  • the addition amount of the cationic polymer is equal to or more than the above lower limit, it is possible to sufficiently obtain the effect of improving the aggregation, non-tackiness, and foaming suppression effects by adding the cationic polymer. Even if the addition amount of the cationic polymer exceeds the above upper limit, an improvement in the effect commensurate with the addition amount cannot be obtained.
  • the amount of the cationic polymer added is excessively large, electric repulsion between particles due to excess cations occurs, resulting in poor aggregation.
  • the amount of cationic polymer added is large, it is not preferable in terms of the chemical cost and the increase in the amount of aggregated sludge generated.
  • ⁇ Aggregation treatment by adding chemicals> There is no particular limitation on the method of adding an alkaline solution of phenolic resin and an acidic aluminum salt to the wet coating booth circulating water, and a cationic polymer used as necessary. These agents may be intermittently added to the circulating water system once or twice a day, or may be added continuously. Desirably, the alkaline solution of the phenolic resin for the coagulation treatment, the acidic aluminum salt and the cationic polymer are continuously metered by a pump. About the alkaline solution and acidic aluminum salt of the phenol resin which also serve as a pH adjuster, it is preferable to perform chemical injection control based on the measured value of the pH of the wet coating booth circulating water.
  • the locations where the phenolic resin alkaline solution, acidic aluminum salt, and cationic polymer are added there are no particular restrictions on the locations where the phenolic resin alkaline solution, acidic aluminum salt, and cationic polymer are added, and they may be added to any location of the circulating water.
  • the alkaline solution and acidic aluminum salt of the phenol resin as the flocculant to the circulating pipe of the circulating water between the circulating water pit and the wet coating booth.
  • the alkaline solution of phenol resin and acidic aluminum salt as a pH adjuster to the circulating water pit. You may add to the separation tank inlet side of the return of circulating water.
  • the alkaline solution of the phenolic resin, the acidic aluminum salt, and the cationic polymer used as necessary may be added simultaneously to the same place, or may be added separately to different places.
  • a cationic polymer may be added before the separator.
  • At least the alkaline solution of the phenolic resin and the acidic aluminum salt added for pH adjustment are added separately without mixing and forming one agent.
  • Adding an alkali solution of phenolic resin and an acidic aluminum salt separately means adding them without making them into one agent, and they may be added separately to the same place at the same time.
  • the cationic polymer may be added separately from the alkaline solution of the phenolic resin and the acidic aluminum salt or may be added in advance to the acidic aluminum salt.
  • the alkaline solution of the phenolic resin and the chemical aluminum salt injection means work in conjunction with a pH meter for measuring the pH of the wet paint booth circulating water.
  • the pH measurement of the circulating water with a pH meter may be performed at any location.
  • the pH of the circulating water at the circulating water pit or the circulating pump outlet may be measured.
  • the pH is measured in a measurement tank provided separately from the circulating water pit by the wet coating booth circulating water treatment apparatus of the present invention described later.
  • the agglomerated sludge separated and recovered by such a method is subjected to incineration or landfill treatment after gravity dehydration or after dehydration by a normal method.
  • an alkaline solution of phenolic resin and an acidic aluminum salt are used for each application also as a pH adjuster, and the amount of generated sludge is reduced by reducing the required amount of chemicals by adjusting to an optimum pH.
  • the sludge disposal cost can be reduced.
  • the weight average molecular weight is usually 100 after the flocculation treatment in which the alkaline solution of phenolic resin and acidic aluminum salt or the alkaline solution of phenolic resin, acidic aluminum salt and cationic polymer are added.
  • the floc can be coarsened by adding a polymer flocculant composed of more than 10,000, preferably 5 million or more water-soluble polymers.
  • polymer flocculant one or more known anionic polymer flocculants, cationic polymer flocculants, amphoteric polymer flocculants and the like can be used.
  • the amount of addition is suitably determined in a range of 0.1 to 10% by weight, preferably 0.5 to 2% by weight, based on the excess paint so that a good coagulation effect can be obtained. do it.
  • the wet paint booth circulating water treatment method of the present invention is used for wet paint booth circulating water containing water-based paint, wet painting booth circulating water containing solvent-based paint, and wet coating booth circulating water containing water-based paint and solvent-based paint. Can be applied effectively.
  • wet paint booth circulating water treatment method of the present invention it is preferable to implement the wet paint booth circulating water treatment method of the present invention by the wet paint booth circulating water treatment apparatus of the present invention described below.
  • FIG. 1 is a schematic configuration diagram showing an example of an embodiment of a wet paint booth circulating water treatment apparatus according to the present invention.
  • 1 is a wet painting booth
  • 2 is a circulating water pit
  • 3 is a measuring tank
  • 4 is a sludge recovery device
  • 5 is a recovered sludge storage tank
  • 6 is a control device.
  • the control method of the control device 6 is, for example, feedback type ON / OFF control or PID control.
  • Circulating water in the circulating water pit 2 is extracted by the circulation pump P and is supplied to the wet coating booth 1 through the pipe 10.
  • a circulation pipe 12 for uniformly stirring the circulating water in the circulating water pit 1 is branched from the pipe 10.
  • a part of the circulating water extracted by the circulation pump P is sprinkled from above the liquid level of the circulating water pit 2 through the pipe 12.
  • pipes 13 and 14 Connected to the pipe 10 are pipes 13 and 14 for quantitatively injecting an alkaline solution of phenolic resin as a flocculant and an acidic aluminum salt into the circulating water.
  • the wet paint booth circulating water fed to the wet paint booth 1 from the pipe 10 and collecting excess paint in the wet paint booth 1 is circulated to the circulating water pit 2 through the pipe 11 and the pipe 12.
  • phenolic resin alkaline solution addition means 21 and acidic aluminum salt addition means 22 for adding a pH-adjusted phenolic resin alkaline solution and acidic aluminum salt to the circulating water in the pit, respectively.
  • These chemical addition means are composed of a chemical storage tank, a chemical injection pump, a chemical injection pipe, etc. (not shown), and the addition amount is controlled by the control device 6.
  • the chemical injection control may be an operation control of the chemical injection pump, or may be opening / closing or opening degree control of the chemical injection valve.
  • the inside of the measuring tank 3 is divided into a storage part 32 and an overflow part 33 by an overflow wall 31.
  • the reservoir 32 is provided with a pH meter 34 and a water level meter (level switch) 35 for preventing malfunction of the pH meter 34 (measurement is performed when there is no circulating water in the measurement tank 3). ing.
  • the measured value of the pH meter 34 and the detection signal of the water level meter 35 are input to the control device 6.
  • the overflow wall 31 is provided with a V-shaped notch near the center of the upper edge.
  • the stored water in the storage part 32 overflows from this cut part, passes through the overflow part 33, is drained from the drain port 36 provided on the side surface of the measurement tank 3 on the overflow part 33 side, and is circulated from the piping 16 to the circulating water pit. 2 is sent.
  • a part of the circulating water is introduced from the circulating water introduction pipe 14 branched from the pipe 12, and clarified water such as industrial water is introduced from the clarified water introduction pipe 15.
  • the introduction pipes 14 and 15 are provided with opening / closing valves 14A and 15A.
  • the valves 14A and 15A are controlled to be opened and closed by the control device 6.
  • a pH sensor cleaning means 37 of a pH meter 34 is provided at the tip of the clarified water introduction pipe 15.
  • the cleaning means 37 for example, one equipped with a plurality of cleaning nozzles for ejecting clarified water from the clarified water introduction pipe 15 at a high pressure can be used.
  • An air nozzle for spraying air is provided, and the pH sensor can be cleaned by bubbling with air together with spraying of clear water.
  • the storage unit 32 In the storage part 32 of the measuring tank 3, a pH meter 34 and a water level meter 35 are installed at appropriate intervals.
  • the storage unit 32 only needs to have a capacity that allows the pH meter 34 to be cleaned by the cleaning unit 37.
  • the overflow part 33 should just be a magnitude
  • the storage unit 32 may have a water storage amount of about 5 to 10 L.
  • the storage section 32 is introduced by introducing the circulating water from the circulating water introduction pipe 14 at a high flow rate of about 5 to 50 L / min, preferably about 10 to 20 L / min.
  • the water stored inside can be pushed out in a short time, and the inside of the storage part 32 can be filled with the newly introduced circulating water.
  • clear water such as industrial water is introduced from the clear water introduction pipe 15.
  • Circulating water in the circulating water pit 2 is extracted from the pipe 17, and after the polymer flocculant is added from the pipe 18, the sludge collecting device 4 performs agglomeration and separation treatment.
  • the agglomerated separated water of the sludge recovery device 4 is returned to the circulating water pit 2 through the pipe 19.
  • Aggregated sludge is fed from the pipe 20 to the recovered sludge storage tank 5.
  • the opening / closing control of the opening / closing valves 14A and 15A by the signal from the controller 6 introduces circulating water from the circulating water introduction pipe 14 to the measuring tank 3 and clarified water.
  • the introduction of clear water such as industrial water from the introduction pipe 15 is performed alternately.
  • the pH measurement and pH adjustment process of the circulating water and the pH meter cleaning and standby process are repeated in the following procedure.
  • the opening / closing valve 14A is opened by the output signal from the control device 6 (the opening / closing valve 15A is closed), and the circulating water is introduced into the measuring tank 3 through the circulating water introduction pipe 14. Since the storage section 32 of the measuring tank 3 has a small capacity, the water in the storage section 32 is replaced with the circulating water in a short time by introducing the circulating water from the circulating water introduction pipe 14 at a high flow rate, and the storage section 32. The inside can be filled with circulating water. The water pushed out from the storage part 32 is returned to the circulating water pit 2 through the overflow wall 31, the overflow part 33, the drain port 36 and the pipe 16.
  • a detection signal is input to the control device 6.
  • the control device 6 Upon receiving this signal, the control device 6 outputs a measurement signal to the pH meter 34, and the pH meter 34 performs pH measurement.
  • the time from the start of circulating water to the start of measurement by the pH meter 34 is usually about 1 to 5 minutes.
  • the measured value of the pH meter 34 is input to the control device 6. Based on the input measured value, a chemical injection signal is output from the control device 6 to the alkaline solution adding means 21 or the acidic aluminum salt adding means 22 of the phenol resin, and the pH of the circulating water is adjusted. When the measured value is lower than the set value, a chemical injection signal is output to the phenolic resin alkaline solution adding means 21. When the measured value is higher than the set value, a chemical injection signal is output to the acidic aluminum salt addition means 22.
  • the pH measurement by the pH meter 34 may be performed continuously or intermittently.
  • the time for performing the pH measurement and pH adjustment step is not particularly limited. If the time for performing the pH measurement and the pH adjustment process is excessively short, accurate pH adjustment cannot be performed. If the time is excessively long, the measurement accuracy decreases due to contamination of the pH meter 34.
  • the time for one pH measurement and pH adjustment step is preferably about 5 to 60 minutes, particularly about 10 to 30 minutes, including the time from the start of introduction of circulating water to the start of measurement by the pH meter 34.
  • the maximum operation time of the chemical injection pump of phenolic resin alkaline solution adding means 21 and acidic aluminum salt adding means 22 Is set in the control device 6, and it is preferable to perform timer control so that these chemicals are not added beyond the maximum operating time.
  • the open / close valve 15A is closed to stop the introduction of the clear water, and the process proceeds to the next measurement standby step.
  • the cleaning time of the pH sensor of the pH meter 34 by introducing clarified water is usually about 1 to 5 minutes.
  • the storage unit 32 is filled with the clarified water and waits for a predetermined time. By performing this standby process, the time lag of the pH measurement in the next pH measurement and pH adjustment process can be prevented.
  • the alkaline solution or acidic aluminum salt of the phenolic resin added to the circulating water pit 2 from the alkaline solution adding means 21 or acidic aluminum salt adding means 22 for adjusting the pH of the circulating water is the capacity of the circulating water pit. Therefore, the entire pit 2 is not immediately reached, and the pH of the circulating water in the pit may not always be uniform.
  • the pH of the circulating water in the circulating water pit 2 may locally fluctuate due to the gradual elution of the alkali component and acid component of the added chemical from the sludge accumulated in the circulating water pit 2.
  • the circulating water in the circulating water pit 2 is circulated by the circulation pump P and the circulation pipe 12 during the standby process and is made uniform.
  • a measurement value that sufficiently reflects the pH value of the circulating water in the system can be obtained.
  • Accurate pH adjustment can be performed based on the value.
  • the standby step after the pH meter cleaning step is preferably 10 to 50 minutes, particularly about 20 to 30 minutes.
  • the process proceeds to the pH measurement and pH adjustment process described above, and thereafter, the pH measurement and pH adjustment process and the pH meter cleaning and standby process are repeated.
  • FIG. 1 shows an example of an embodiment of a wet paint booth circulating water treatment apparatus of the present invention, and the wet paint booth circulating water treatment apparatus of the present invention is not limited to that shown in FIG.
  • pH adjustment is performed using an alkaline solution of a phenolic resin and an acidic aluminum salt as a pH adjusting agent, but a general-purpose alkaline agent may be used instead of the alkaline solution of the phenolic resin, and acidic aluminum is used.
  • a general-purpose acid agent may be used in place of the salt.
  • a cationic polymer may be added.
  • phenol resin “Chrystuck B-310” manufactured by Kurita Kogyo Co., Ltd. (phenolic resin (novolac type phenol / formaldehyde polycondensate) in NaOH aqueous solution, phenolic resin concentration: 32 wt%, NaOH concentration: 5 wt%, pH: 12) (hereinafter referred to as “B-310”)
  • Acidic aluminum salt sulfuric acid band aqueous solution (Al 2 (SO 4 ) 3 concentration: 27 wt%) (hereinafter referred to as “Al 2 (SO 4 ) 3 ”)
  • sulfuric acid 10% by weight sulfuric acid aqueous solution (hereinafter referred to as “sulfuric acid”)
  • Cationic polymer “Christak B-450” manufactured by Kurita Kogyo Co., Ltd. (alkylamine epichlorohydrin condensate, weight average molecular weight: 100,000) (hereinafter referred to as “B-450”)
  • the “stock solution” of the treatment chemical refers to the above chemical solution (aqueous solution) itself.
  • Example 1 The wet coating booth circulating water treatment apparatus shown in FIG. 1 was used to treat the wet coating booth circulating water under the following conditions.
  • the paint was collected by the wet paint booth circulating water under the following conditions.
  • the conditions in the measuring tank 3 are as follows.
  • the chemical injection pump of the phenolic resin alkaline solution addition means 21 is referred to as “B-310 pump”
  • the chemical injection pump of the acidic aluminum salt addition means 22 is referred to as “Al 2 (SO 4 ) 3 pump”.
  • Capacity of the storage part 32 of the measuring tank 3 5L Introduction flow rate of industrial water into the measuring tank 3: 10L / min Industrial water introduction time (pH meter washing time): 2 minutes Standby time: 28 minutes Flow rate of circulating water introduced into the measuring tank 3: 10 L / min Circulating water introduction time: 30 minutes Time from the start of circulating water introduction to pH measurement: 2 minutes pH set value: 6.8 to 7.2 Chemical injection control condition: B-310 pump ON when pH 6.8 is below, OFF at pH 7.0. When pH 7.2 is exceeded, Al 2 (SO 4 ) 3 pump is ON, and pH 7.0 is OFF.
  • B-310 pump flow rate 0.1 g / min (in stock solution conversion) Al 2 (SO 4 ) 3 pump flow rate: 0.1 g / min (stock solution conversion)
  • B-310 pump maximum operating time 100 minutes
  • Al 2 (SO 4 ) 3 pump maximum operating time 100 minutes
  • Circulating water was introduced into the measuring tank 3, and pH measurement and pH adjustment were performed by the pH meter 34 two minutes after the start of introduction.
  • the time for pH measurement and pH adjustment is 28 minutes, and the circulating water introduction time into the measuring tank 3 is 30 minutes in total.
  • B-310 or Al 2 (SO 4 ) 3 was added as necessary according to the above chemical injection control conditions.
  • the working water was introduced into the measuring tank 2 for 2 minutes to wash the pH meter 34, and then waited for 28 minutes while filling the working water.
  • the pH measurement and pH adjustment step were performed again, and the pH measurement and pH adjustment step and the pH meter cleaning and standby step were repeated alternately.
  • Table 2 shows the amounts of B-310 and Al 2 (SO 4 ) 3 used for adjusting the pH during 12 hours of operation (dose amount from the B-310 pump and Al 2 (SO 4 ) 3 pump). .
  • Example 1 In Example 1, the operation was performed in the same manner except that the introduction of the working water was not performed and the circulating water was constantly introduced into the measuring tank 3 at 10 L / min to perform pH measurement and pH adjustment.
  • the time-dependent change of the pH measurement value was as shown in Table 1 and FIG. Table 2 shows the amounts of B-310 and Al 2 (SO 4 ) 3 used to adjust the pH.
  • Example 1 In Example 1 and Comparative Example 1, when the pH of the pH standard solution (pH 6.81) was measured with the pH meter 34 before and after the operation for 12 hours, the results shown in Table 3 were obtained. In Comparative Example 1, the measurement accuracy decreased due to contamination of the pH meter. In Example 1, it was confirmed that the measurement accuracy of the pH meter was sufficiently maintained by washing the pH meter.
  • pH standard solution pH 6.81
  • Example 2 In Example 1, the treatment was performed in the same manner except that the chemical injection control conditions were as follows. As a result, stable and reliable pH adjustment could be performed as well.
  • Examples 3 and 4, Comparative Examples 2 to 4 To a 500 ml bottle, 300 mL of tap water, 0.6 mL of water-based paint (water-based paint for automobile bodies: silver metallic (acrylic)), and the amount of chemicals shown in Table 4 were added (however, Comparative Example 2) Then, the drug was not added.) The cap was capped and shaken at 60 times / 30 seconds. Thereafter, the entire amount was opened in a beaker, and the pH and colloidal equivalent of the treatment solution (using a Mutage PCD (Particle Charge Detector) meter) were measured, and then the following foaming test, turbidity measurement, and secondary aggregation test were performed.
  • a Mutage PCD Particle Charge Detector
  • the treatment liquid in the graduated cylinder was bubbled with an air balloon at an air amount of 1.5 L / min, and the following foaming properties and defoaming properties were confirmed.
  • the treatment liquid is Whatman No. Filtered using 41 filter paper (particle retention 20-25 microns).
  • the turbidity of the obtained filtrate was measured with a turbidimeter.
  • the colloid equivalent of treated water has a great influence on the treatment effect, so the experiment was conducted in consideration of the colloid equivalent as much as possible.
  • Table 4 shows that the turbidity of the filtrate is low in Examples 3 and 4 using a sulfuric acid band, and the treatment liquid is clear. In the foaming test, foaming is much in Comparative Example 2 without treatment, but Examples 3 and 4 and Comparative Examples 3 and 4 are almost the same.
  • Example 5 Comparative Examples 5 to 8
  • Example 6 Comparative Examples 9 to 12
  • the test was performed using the experimental apparatus shown in FIG.
  • This experimental apparatus is configured to circulate the circulating water in the circulating water tank 41 having a retained water volume of 50 L by a pump P and to flow down on the water curtain plate 42 on which the paint on the upper part of the circulating water tank is sprayed.
  • 43 is a paint spraying device
  • 51 is a circulation pipe
  • 52 is a discharge pipe for discharging the circulating water to the outside of the system
  • 53 is an exhaust pipe
  • V 1 and V 2 are valves
  • F is an exhaust fan.
  • Example 3 As in Example 3, measurement of pH and charge of the treatment liquid, foaming test, measurement of filtrate turbidity, and secondary aggregation test were performed.
  • the addition amount of the cationic polymer flocculant in the secondary aggregation test was 13 mg / L as the active ingredient concentration.
  • the most important evaluation item for treatment is that the treated sludge is not sticky.
  • the aqueous paint treatment primary aggregation is possible (low filtrate turbidity is low) and foam is difficult to form.
  • Example 6 and Comparative Example 11 using a sulfuric acid band and the treatment liquid is clear.
  • foaming is large in the case of no treatment in Comparative Example 9, but it is almost the same in Example 6 and Comparative Examples 10-12.
  • Example 6 and Comparative Examples 10 to 12 the tackiness removability of the solvent-based paint was equivalent.
  • Example 6 instead of the water-based paint, a 1: 1 mixture of a water-based paint (for automobile body painting: white (acrylic)) and a water-based intermediate paint (for automobile body painting: white (polyester)) was used. Except that the amount of drug added was the amount shown in Table 7 (however, no drug was added in Comparative Example 13), the same agglomeration treatment was performed and the same evaluation was performed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

 塗料を含む湿式塗装ブース循環水中の塗料の凝集処理に当たり、該循環水を的確にpH制御して効率的な凝集処理を行う。塗料を含む湿式塗装ブース循環水に、フェノール系樹脂のアルカリ溶液を添加して該循環水中の塗料を処理するにあたり、該循環水のpHを6.5~8.0に調整する方法であって、該循環水のpHが8.0以下の所定の値になった場合に、該フェノール系樹脂のアルカリ溶液の添加量を増加させる湿式塗装ブース循環水の処理方法。更に酸性アルミニウム塩を添加する方法であって、循環水のpHが6.5以上の所定の値にあった場合に酸性アルミニウム塩の添加量を増加させる。

Description

湿式塗装ブース循環水の処理方法及び処理装置
 本発明は、塗料を含む湿式塗装ブース循環水中の塗料の凝集処理に当たり、該循環水を的確にpH制御して効率的な凝集処理を行う湿式塗装ブース循環水の処理方法及び処理装置に関する。
 自動車、電気機器、金属製品などの塗装工程ではスプレー塗装が行なわれている。スプレー塗装では、被塗物に塗着しないオーバースプレーペイント(余剰塗料)が多量に発生する。余剰塗料の発生量は、塗着効率の高い静電塗装を除けば使用塗料の50%から60%程度にも達する。したがって、塗装工程の環境から余剰塗料を除去、回収する必要がある。余剰塗料の捕集には、通常、水洗による湿式塗装ブースが採用されており、水洗水は循環使用される。その際、循環水中に塗料が残留して蓄積することを防止するため、循環水中の余剰塗料を凝集分離することが行われている。
 従来、湿式塗装ブース循環水中の余剰塗料の凝集処理方法として、次のような提案がなされている。
(1) 湿式塗装ブース循環水に、フェノール系樹脂とカチオン系ポリマーを所定の割合で添加する方法(特許文献1)
(2) 湿式塗装ブース循環水に、フェノール系樹脂、無機多価金属塩、水溶性高分子凝集剤、無機アルカリ及び水を含む処理剤を添加する方法(特許文献2)
(3) 湿式塗装ブース循環水に、フェノール系樹脂、硫酸バンド及びエトリンガイト等を組み合わせて添加する方法(特許文献3)
 特許文献1には、設備の腐食、及びカチオン系ポリマーのpHに関する効果特性の観点から、凝集処理系のpHを6.0~8.5程度とすることが好ましいことが記載されている。特許文献1の実施例ではpH6.7~6.8に調整している。特許文献1におけるpH範囲の効果特性は不明である。特許文献1では、pH調整のために、フェノール系樹脂やカチオン系ポリマーとは別にHClやNaOH等のpH調整剤を添加している。後掲の比較例に示すように、フェノール系樹脂のアルカリ溶液とカチオン系ポリマーでは、塗料成分を十分に凝集処理しえない。
 特許文献2に記載される処理剤は、フェノール系樹脂及び無機多価金属塩等を一剤化したものである。特許文献2の実施例ではアルカリに溶解したフェノール系樹脂のアルカリ溶液とアルミン酸ソーダ等の混合物を用いている。特許文献2には、この処理剤のpHはアルカリ性であると記載されている。特許文献2には、排水処理の観点から、処理水はpH5.5~8.5の中性にするのがよいと記載されている。特許文献2の実施例では、別途希硫酸を添加してpH7に調整している。特許文献2においても、前記pH範囲の効果特性は不明である。特許文献2は、フェノール系樹脂と無機多価金属塩とを別々に添加するものではない。特許文献2には、アルカリ性のフェノール系樹脂のアルカリ溶液と酸性の無機多価金属塩を用いて、pH調整剤を不要とするという技術思想は存在しない。
 特許文献3には、循環水系のpHについて全く記載がなく、pH条件と効果特性との関係について何ら検討されていない。
 塗装工程で用いられる塗料は大別して、溶剤としてシンナーなどの有機溶剤のみを用いた溶剤系塗料と、水を用いた水性塗料とがある。溶剤系塗料は、水性塗料に比べ、耐候性や耐チッピング性などに優れており、特に自動車用の上塗りクリアー塗装においては多く使われている。水性塗料は、水を溶媒とするため(一部溶剤を併用する場合もある)、引火性がなく、安全かつ衛生的であり、有機溶剤による公害発生の恐れがないなどの利点を有することから、近年はその応用範囲が拡大されつつある。
 溶剤系塗料、水性塗料には、それぞれ、次のような課題がある。
 溶剤系塗料:循環水中に取り込まれた余剰塗料の粒子の粘着性が高いため、諸設備に付着して激しい汚れを生じたり、凝集して大きな固まりになって目詰まりを生じやすい。
 水性塗料:水性塗料は本来、水に溶解あるいは均一に分散する性質のものであるため、塗料成分が使用量に比例してブース循環水に蓄積濃縮する。塗料成分が濃縮する結果、塗料中の界面活性剤などの発泡性物質が濃縮されて泡が発生する。さらに循環水中の懸濁物濃度や粘性の上昇によって、発生した泡が安定化し、激しい発泡に至り、安定な塗装ブースの運転ができなくなることがある。
 このようなことから、湿式塗装ブース循環水の凝集処理に際しては、溶剤系塗料に対する不粘着化効果と、水性塗料に対する泡立ち抑制効果との双方に優れることが望まれる。
 いずれの塗料の凝集処理においても、添加した凝集剤の効果を十分に発揮させるためには、循環水のpHが重要となる。
 従来、湿式塗装ブース循環水のpH調整のための酸、アルカリとしては、安価であることから、硫酸や苛性ソーダが一般的に用いられている。
 前述の通り、特許文献1~3には、フェノール系樹脂のアルカリ溶液又は酸性アルミニウム塩を湿式塗装ブース循環水に添加して凝集処理する方法が提案されている。特許文献1,2では、別途硫酸又は塩酸や苛性ソーダといったpH調整剤を必要とし、特許文献3では、pH条件について全く考慮されていない。
 特許文献4には、塗装ブースの循環水に酸性又は中性の主処理剤とアルカリ性のpH調整剤とを、主処理剤の添加量とpH調整剤の添加量との比を所定範囲に維持しつつ、循環水のpH値が所定値以下のときにpH調整剤を添加し、循環水のpH値が所定値を超えたときにpH調整剤の添加を停止するように添加制御する方法が記載されている。特許文献4では、pH調整剤の連続添加時間が所定値を超えたときに異常表示することで、塗料粕や生成塩がpH計に付着してpH計の測定精度が低下したことを知らせる。特許文献4の方法は、pH計の汚染による測定精度の低下を防止するものではない。
特許第4069799号公報 特開2005-103361号公報 特開2012-187482号公報 特開平11-57599号公報
 特許文献1のフェノール系樹脂とカチオン系ポリマーの併用では、十分な凝集処理効果が得られない。
 特許文献2,3には、フェノール系樹脂と硫酸バンド等の酸性アルミニウム塩の併用が示唆されているが、処理pHと効果特性との関係についての検討はなされておらず、優れた凝集効果を確実に得ることができるものではない。
 特許文献2は、フェノール系樹脂と硫酸バンド等の無機多価金属塩とを一剤化して用いることを必須とし、これらを別々に添加するものではない。
 特許文献3では、処理pHについて何らの記載がない。pH条件について記載のある特許文献1,2では、別途pH調整剤を用いてpH調整を行っている。
 湿式塗装ブース循環水の凝集処理にあっては、用いる凝集処理剤に応じて、最も高い凝集効果が得られる最適pH範囲が存在する。
 実機循環水のpHは、塗料、シンナー、洗浄剤、その分解物など、様々な要因で変動することから、都度最適pHにコントロールする必要がある。特許文献1,2のように、別途pH調整剤を添加する方法では、必要とする薬剤の種類が増える上に、硫酸やNaOHなどの劇物を使用することになるため、コスト面でも作業面でも好ましくない。
 湿式塗装ブース循環水の凝集処理に、フェノール系樹脂のアルカリ溶液と酸性アルミニウム塩を併用する場合、これらの剤は、塗料の不粘着、凝集、泡成分の吸着による発泡防止、スラッジを浮上させるなどの効果を得るための必要量が添加される。湿式塗装ブース循環水の凝集処理では、pH7付近にpH調整することで最も優れた凝集効果が得られる。このため、従来においては、これらの剤を効果的に使用するために、別途酸やアルカリを用いて手動または自動で循環水のpH調整を行っている。このpH調整には、一般に安価であることから硫酸や苛性ソーダが用いられる。酸やアルカリは危険物である。凝集剤としてのフェノール系樹脂のアルカリ溶液や酸性アルミニウム塩とは別にこれらの酸やアルカリを用いると、循環水の処理に使用する薬剤の種類が増え、薬剤管理、薬注制御が煩雑になる。
 pH制御は、通常、循環水ピットに設けたpH計の測定値に基づいて、循環水に酸又はアルカリを添加することで行われる。湿式塗装ブース循環水系では、以下の理由によりpHを所望の一定の範囲に自動的に制御して維持することが困難であった。
(1)塗料や塗料スラッジにより、循環水ピット内のpH計のセンサーが汚染され、測定精度が低下してしまう。
(2)循環水は大型のピットを介して循環されるため、このような大型のピットに酸、アルカリを添加しても直ちにはpH計の測定値に反映されない。ピット内に堆積したスラッジから酸、アルカリ分などが少しずつ溶出することでも、pH計の測定値に誤差が生じ易い。このため、酸、アルカリ添加によるpH変化が、pH計の測定値に遅れて現れるタイムラグが大きい。
 本発明は、塗料を含む湿式塗装ブース循環水中の塗料の凝集処理に当たり、該循環水を的確にpH調整して効率的に凝集処理する湿式塗装ブース循環水の処理方法及び処理装置を提供することを目的とする。
 本発明は、pH調整剤を不要とし、使用薬剤の種類、薬剤使用量を抑えた上で、循環水を最適pH条件にpH調整し、高い凝集効果を得る湿式塗装ブース循環水の処理方法及び処理装置を提供することを目的とする。
 本発明者は、アルカリ性のフェノール系樹脂のアルカリ溶液をアルカリ剤を兼ねる凝集処理剤として、更には、酸性の酸性アルミニウム塩を酸剤を兼ねる凝集処理剤として用いてpH調整することにより、的確にかつ工業的に有利にpH制御を行うことができることを見出した。
 本発明者は、フェノール系樹脂のアルカリ溶液と酸性アルミニウム塩とを予め混合して一剤化することなく、それぞれ別々に添加し、アルカリ性のフェノール系樹脂のアルカリ溶液をアルカリ剤を兼ねる凝集処理剤として、また、酸性の酸性アルミニウム塩を酸剤を兼ねる凝集処理剤として用い、これらを、凝集効果を得ることができる添加量の範囲で、循環水のpH変動に応じて、各々添加量を調整して循環水のpHを6.5~8.0に調整することで、pH調整剤を不要とした上で、最適pHにpH調整し、高い凝集処理効果を得ることができることを見出した。
 従来法では、フェノール系樹脂のアルカリ溶液や酸性アルミニウム塩そのものを循環水のpH調整剤とする技術思想は存在しない。
 また、本発明者は、循環水のpH測定を、循環水ピットとは別に設けた計測槽で間欠的に行い、pHの非測定時にはpH計を清澄水で洗浄することにより、pH計の測定精度を上げ、的確なpH制御を行えることを見出した。
 本発明は以下を要旨とする。
[1] 塗料を含む湿式塗装ブース循環水に、フェノール系樹脂のアルカリ溶液を添加して該循環水中の塗料を処理するにあたり、該循環水のpHを6.5~8.0に調整する方法であって、該循環水のpHが8.0以下の所定の値になった場合に、該フェノール系樹脂のアルカリ溶液の添加量を増加させることを特徴とする湿式塗装ブース循環水の処理方法。
[2] [1]において、前記フェノール系樹脂のアルカリ溶液をアルカリ剤として用い、他のアルカリ剤を添加せずに、前記循環水のpHを6.5~8.0に調整することを特徴とする湿式塗装ブース循環水の処理方法。
[3] [1]又は[2]において、前記循環水に、更に酸性アルミニウム塩を添加する方法であって、該循環水のpHが6.5以上の所定の値になった場合に、該酸性アルミニウム塩の添加量を増加させることを特徴とする湿式塗装ブース循環水の処理方法。
[4] [3]において、前記酸性アルミニウム塩を酸剤として用い、他の酸剤を添加せずに前記循環水のpHを6.5~8.0に調整することを特徴とする湿式塗装ブース循環水の処理方法。
[5] 塗料を含む湿式塗装ブース循環水に、フェノール系樹脂のアルカリ溶液と酸性アルミニウム塩を添加して処理するにあたり、該循環水のpHを6.5~8.0に調整する方法であって、該循環水のpHが6.8以上8.0以下のときに、該フェノール系樹脂のアルカリ溶液の添加量を増加させ、該循環水のpHが6.5以上7.2以下のときに該酸性アルミニウム塩の添加量を増加させることを特徴とする湿式塗装ブース循環水の処理方法。
[6] 塗料を含む湿式塗装ブース循環水に、フェノール系樹脂のアルカリ溶液と酸性アルミニウム塩を添加して該循環水中の塗料を凝集処理する方法であって、該循環水にフェノール系樹脂のアルカリ溶液と酸性アルミニウム塩とを別々に添加して、該循環水のpHを6.5~8.0に調整することを特徴とする湿式塗装ブース循環水の処理方法。
[7] [6]において、前記フェノール系樹脂のアルカリ溶液をアルカリ剤として、前記酸性アルミニウム塩を酸剤としてそれぞれ用い、他のpH調整剤を添加せずに前記循環水のpHを6.5~8.0に調整することを特徴とする湿式塗装ブース循環水の処理方法。
[8] [6]又は[7]において、前記循環水のpHが6.5未満の場合に前記フェノール系樹脂のアルカリ溶液の添加量を増加させ、前記循環水のpHが8.0を超える場合に前記酸性アルミニウム塩の添加量を増加させることを特徴とする湿式塗装ブース循環水の処理方法。
[9] [3]ないし[8]のいずれかにおいて、前記酸性アルミニウム塩が、硫酸バンド、塩化アルミニウム、ポリ塩化アルミニウム、塩基性塩化アルミニウム、及び硝酸アルミニウムよりなる群から選ばれる1種又は2種以上であることを特徴とする湿式塗装ブース循環水の処理方法。
[10] [1]ないし[9]のいずれかにおいて、前記循環水に更にカチオン系ポリマーを添加することを特徴とする湿式塗装ブース循環水の処理方法。
[11] [1]ないし[10]のいずれかにおいて、前記フェノール系樹脂のアルカリ溶液、或いはフェノール系樹脂のアルカリ溶液と酸性アルミニウム塩、或いはフェノール系樹脂のアルカリ溶液と酸性アルミニウム塩とカチオン系ポリマー添加後の循環水に、更に高分子凝集処理剤を添加して凝集処理することを特徴とする湿式塗装ブース循環水の処理方法。
[12] 湿式塗装ブースとの間で塗料を含む湿式塗装ブース循環水が循環する循環水ピットと、該循環水のpHを測定するpH測定手段と、該pHの測定値に基づいて、該循環水に処理薬剤を添加する薬剤添加手段とを有する湿式塗装ブース循環水の処理装置において、pH計を備えた計測槽と、該計測槽に該循環水の一部を導入する循環水導入手段と、該計測槽に清澄水を導入する清澄水導入手段と、該循環水導入手段及び清澄水導入手段並びに前記薬剤添加手段を制御する制御手段とを備え、該制御手段は、該循環水導入手段による計測槽への循環水の導入と、該清澄水導入手段による計測槽への清澄水の導入とを交互に行い、該循環水導入手段による循環水導入期間中に、前記pH計によるpH測定を行うことを特徴とする湿式塗装ブース循環水の処理装置。
[13] [12]において、前記計測槽は、導入水が貯留される貯留部と、該貯留部から貯留水を溢流させる溢流部とを有しており、前記pH計は、該貯留部に設けられており、前記循環水導入手段及び清澄水導入手段はそれぞれ循環水又は清澄水を該貯留部に導入するように設けられていることを特徴とする湿式塗装ブース循環水の処理装置。
[14] [12]又は[13]において、前記制御手段は、前記循環水導入手段による循環水の導入開始後、所定時間経過後のpH計による測定値に基づいて薬注を制御することを特徴とする湿式塗装ブース循環水の処理装置。
[15] [12]ないし[14]のいずれかにおいて、前記清澄水導入手段により前記計測槽に導入された清澄水により、前記pH計を洗浄する手段を有することを特徴とする湿式塗装ブース循環水の処理装置。
[16] [12]ないし[15]のいずれかにおいて、前記制御手段は、前記清澄水導入手段により、前記計測槽に清澄水を導入した後、清澄水の導入を停止し、その後所定時間経過後に、前記循環水導入手段による循環水の導入を開始することを特徴とする湿式塗装ブース循環水の処理装置。
[17] [1]ないし[11]のいずれかにおいて、[12]ないし[16]のいずれかに記載の湿式塗装ブース循環水の処理装置を用いて、前記処理薬剤として前記フェノール系樹脂のアルカリ溶液、或いは前記フェノール系樹脂のアルカリ溶液と酸性アルミニウム塩を添加することを特徴とする湿式塗装ブース循環水の処理方法。
 本発明の湿式塗装ブース循環水の処理方法によれば、塗料を含む湿式塗装ブース循環水中の塗料の凝集処理に当たり、該循環水を的確にpH調整して効率的な凝集処理を行える。
 本発明の湿式塗装ブース循環水の処理方法では、アルカリ性のフェノール系樹脂のアルカリ溶液をアルカリ剤を兼ねる凝集処理剤として、更には、酸性の酸性アルミニウム塩を酸剤を兼ねる凝集処理剤として用い、これらを循環水のpH変動に応じて添加制御する。
 これらの剤は安全なアルカリ又は酸である。これらの剤は、最低必要量以上添加しても、処理効果は悪化しない。本発明によれば、従来、pH調整に使用されている危険な酸やアルカリを用いず、これらの剤が効果を発揮するための最低必要量に加え、これらの剤をpH調整のためにも使用することで、的確かつ工業的に有利にpH調整を行える。
 本発明の湿式塗装ブース循環水の処理方法によれば、pH調整剤を用いることなく、薬剤の種類、薬剤使用量を低減した上で、湿式塗装ブース循環水のpHを凝集処理に最適なpH条件に調整して、高い凝集処理効果を得ることができる。このため、処理コストの低減が可能となると共に、酸、アルカリを不使用とすることで、作業性も改善される。
 本発明の湿式塗装ブース循環水の処理装置によれば、循環水のpH測定を、循環水ピットとは別に設けた計測槽で間欠的に行い、pHの非測定時にはpH計を清澄水で洗浄することによりpH計の測定精度を上げることができる。間欠的なpH測定の間に所定の待機時間を設けることで、pH測定のタイムラグを抑え、的確なpH制御を行える。
本発明の湿式塗装ブース循環水の処理装置の実施の形態の一例を示す模式的な構成図である。 実施例1と比較例1における循環水のpHの経時変化を示すグラフである。 実施例で用いた実験装置を示す模式図である。
 以下に本発明の実施の形態を詳細に説明する。
 以下に本発明の実施の形態を詳細に説明する。
[湿式塗装ブース循環水の処理方法]
 本発明の湿式塗装ブース循環水の処理方法の第1態様は、塗料を含む湿式塗装ブース循環水に、フェノール系樹脂のアルカリ溶液を添加して該循環水中の塗料を処理するにあたり、該循環水のpHを6.5~8.0に調整する方法であって、該循環水のpHが8.0以下の所定の値になった場合に、該フェノール系樹脂のアルカリ溶液の添加量を増加させることを特徴とする。好ましくは、更に酸性アルミニウム塩を湿式塗装ブース循環水に添加し、該循環水のpHが6.5以上の所定の値になった場合に、該酸性アルミニウム塩の添加量を増加させる。
 本発明の湿式塗装ブース循環水の処理方法の第2態様は、水性塗料及び/又は溶剤系塗料を含む湿式塗装ブース循環水に、フェノール系樹脂のアルカリ溶液と酸性アルミニウム塩を添加して該循環水中の塗料を凝集処理する方法であって、該循環水にフェノール系樹脂のアルカリ溶液と酸性アルミニウム塩とを別々に添加して、該循環水のpHを6.5~8.0に調整することを特徴とする。
<作用機構>
 水性塗料はアニオンであり、pHを下げることで、アニオン度が下がり、凝集しやすく、また、アニオン界面活性剤の活性が落ち、泡が立ちにくくなる。
 フェノール系樹脂のアルカリ溶液のアルカリ溶液は、アニオン性であるが、荷電中和すると、主に疎水性(非イオン性)の物質との親和性が高くなり、ノニオン界面活性剤や塗料樹脂との親和性が高くなる。フェノール系樹脂のアルカリ溶液も酸性でアニオン性が弱くなり、荷電中和のためのカチオン性ポリマーの必要量を低減できる。
 酸性アルミニウム塩は、中性~酸性側領域ではカチオンであるため、アニオンである塗料や、塗料が加水分解、酸化分解、生分解されることで生じた親水性の濁度やSS分(主としてアニオン)を荷電中和して凝集させると共に、フェノール系樹脂のアルカリ溶液の荷電中和も行うことができる。
 フェノール系樹脂のアルカリ溶液を用いて凝集処理する場合、特にフェノール系樹脂のアルカリ溶液と酸性アルミニウム塩を組み合わせて凝集処理する場合、中性~酸性領域で凝集処理することが好ましい。フェノール系樹脂のアルカリ溶液はアルカリ性であり、酸性アルミニウム塩は酸性であることから、これらを用いてpH調整することが可能である。
 本発明の第1態様では、アルカリ性のフェノール系樹脂のアルカリ溶液をアルカリ剤を兼ねる凝集処理剤として、更には、酸性の酸性アルミニウム塩を酸剤を兼ねる凝集処理剤として用いる。第1態様では、これらを、凝集効果を得ることができる添加量の範囲で、循環水のpH変動に応じて、各々添加量を調整して循環水のpHを6.5~8.0、好ましくは6.8~7.2に調整する。このようにすることでpH調整剤を不要とした上で、最適pHにpH調整することを可能とする。
 pH調整剤として用いるフェノール系樹脂のアルカリ溶液と酸性アルミニウム塩を混合して一剤化したものでは、変化しやすい循環水のpH変動には対応できず、別途pH調整剤が必要となる。従って、pH調整のためのフェノール系樹脂のアルカリ溶液と酸性アルミニウム塩は、予め混合して一剤化することなく、それぞれ別々に湿式塗装ブース循環水に添加される。
 本発明の第2態様では、フェノール系樹脂のアルカリ溶液と酸性アルミニウム塩とを予め混合して一剤化することなく、それぞれ別々に湿式塗装ブース循環水に添加する。本発明の第2態様では、アルカリ性のフェノール系樹脂のアルカリ溶液をアルカリ剤を兼ねる凝集処理剤として用い、酸性の酸性アルミニウム塩を酸剤を兼ねる凝集処理剤として用いる。これらの剤を、凝集効果を得ることができる添加量の範囲で、循環水のpH変動に応じて、各々添加量を調整して循環水のpHを6.5~8.0、好ましくは6.8~7.2に調整する。これにより、pH調整剤を不要とした上で、最適pHにpH調整する。
 以下においては、フェノール系樹脂のアルカリ溶液と酸性アルミニウム塩とを併用し、フェノール系樹脂のアルカリ溶液をアルカリ剤として用い、他のアルカリ剤を添加せずに、また、酸性アルミニウム塩を酸剤として用い、他の酸剤を添加せずに、これらの添加量を制御して、循環水のpHを6.5~8.0に調整する場合を例示して本発明の湿式塗装ブース循環水の処理方法を説明する。本発明では、他のアルカリ剤や酸剤を併用してもよい。
 フェノール系樹脂のアルカリ溶液をアルカリ剤として用いて他のアルカリ剤を使用せずに、また、酸性アルミニウム塩を酸剤として用いて他の酸剤を使用せずに処理を行うことにより、pH調整剤が不要となり、薬剤の種類、薬剤使用量を低減して薬剤管理や薬注制御の手間を軽減することができる。また、処理コストの低減が可能となり、更には、酸、アルカリといった危険な薬剤を不使用とすることで、作業性も改善されるため、工業的に非常に有利である。
<フェノール系樹脂のアルカリ溶液>
 フェノール系樹脂のアルカリ溶液のフェノール系樹脂としては、フェノール、クレゾール、キシレノール等の一価フェノール等のフェノール類とホルムアルデヒド等のアルデヒドとの縮合物或いはその変性物であって、架橋硬化する前のフェノール系樹脂が挙げられる。具体的には次のものが挙げられる。フェノール系樹脂は、ノボラック型又はレゾール型のいずれでもよい。フェノール系樹脂は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 1)フェノールとホルムアルデヒドとの縮合物
 2)クレゾールとホルムアルデヒドとの縮合物
 3)キシレノールとホルムアルデヒドとの縮合物
 4)上記1)~3)のフェノール系樹脂をアルキル化して得られるアルキル変性フェノール系樹脂
 5)ポリビニルフェノール
 フェノール系樹脂のアルカリ溶液のアルカリとしては、通常、水酸化ナトリウム(NaOH)及び/又は水酸化カリウム(NaH)が用いられる。フェノール系樹脂のアルカリ溶液は、アルカリ濃度1~25重量%、フェノール系樹脂濃度1~50重量%であることが好ましい。フェノール系樹脂のアルカリ溶液のフェノール系樹脂濃度を高くする場合、70~80℃程度に加温してフェノール系樹脂を溶解させてもよい。
 フェノール系樹脂のアルカリ溶液は、通常pH10~13程度のアルカリ性である。
<酸性アルミニウム塩>
 酸性アルミニウム塩としては、塩基性塩化アルミニウム、硫酸バンド(硫酸アルミニウム)、塩化アルミニウム、ポリ塩化アルミニウム、硝酸アルミニウムなどを用いることができる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
<各薬剤の添加量>
 フェノール系樹脂のアルカリ溶液及び酸性アルミニウム塩の添加量は、以下の範囲において、湿式塗装ブース循環水のpH変動に応じて各々添加量を調整する。
 フェノール系樹脂のアルカリ溶液及び酸性アルミニウム塩による凝集効果が最も高いpH領域として、湿式塗装ブース循環水のpHを6.5~8.0、好ましくは6.8~7.2に調整する。その際に、硫酸、塩酸等の無機酸や有機酸等の酸剤、水酸化ナトリウム、水酸化カリウム、アンモニア等のアルカリ剤といったpH調整剤を用いることなく、フェノール系樹脂のアルカリ溶液と酸性アルミニウム塩の添加量の制御によりpH調整することが好ましい。
 具体的には、凝集処理のためのフェノール系樹脂のアルカリ溶液及び酸性アルミニウム塩の添加量を予め設定しておき、循環水のpHが変動し、pH8.0以下の所定の値になった場合には、以下の添加量範囲内でアルカリ性のフェノール系樹脂のアルカリ溶液の添加量を設定値より増やしてpHを6.5以上、好ましくは6.8以上とする。循環水のpHが変動し、pH6.5以上の所定の値となった場合には、以下の添加量範囲内で酸性の酸性アルミニウム塩の添加量を設定値より増やしてpHを8.0以下、好ましくは7.2以下とする。このように、循環水のpHの変動に対応して、フェノール系樹脂のアルカリ溶液及び酸性アルミニウム塩の添加量を調整することにより、別途硫酸等の酸剤や水酸化ナトリウム等のアルカリ剤といったpH調整剤の添加を必要とすることなく、最適pHにpH調整することができる。
 フェノール系樹脂のアルカリ溶液又は酸性アルミニウム塩の添加量の増加でpHが上記好適範囲となった場合には、フェノール系樹脂のアルカリ溶液又は酸性アルミニウム塩の添加量を設定値に戻す。
 湿式塗装ブース循環水のpHを6.5~8.0、好ましくは6.8~7.2に調整する観点からは、循環水のpHが6.5未満、好ましくは6.8未満の場合にフェノール系樹脂のアルカリ溶液の添加量を増やしてもよい。よりpH変動を小さく抑えるために、循環水のpHが6.8以上8.0以下のときにフェノール系樹脂のアルカリ溶液の添加量を増加させてもよい。
 同様に、酸性アルミニウム塩の添加量は、循環水のpHが8.0を超える場合、好ましくは7.2を超える場合に増やしてもよい。よりpH変動を小さく抑えるために、循環水のpHが6.5以上7.2以下のときに酸性アルミニウム塩の添加量を増加させてもよい。
(フェノール系樹脂のアルカリ溶液の添加量)
 フェノール系樹脂のアルカリ溶液の添加量は、湿式塗装ブース循環水の性状、湿式塗装ブース循環水中の塗料の種類や塗料含有量などによっても異なるが、湿式塗装ブース循環水に対して、有効成分量(樹脂固形分量)として1mg/L以上、特に5mg/L以上とすることが好ましい。フェノール系樹脂のアルカリ溶液の添加量は、循環水中の塗料(固形分)に対して有効成分量として0.1重量%以上、特に0.5重量%以上とすることが好ましい。
 フェノール系樹脂のアルカリ溶液の添加量がこの割合以上であると十分な凝集効果、不粘着化効果、発泡抑制効果を得ることができる。
 フェノール系樹脂のアルカリ溶液の添加量が過度に多くても、添加量に見合う効果の向上は得られず、薬剤コスト、凝集汚泥発生量の増加等の面で好ましくない。
 湿式塗装ブース循環水に対するフェノール系樹脂のアルカリ溶液の添加量は有効成分量として1000mg/L以下、特に1~200mg/L、とりわけ5~200mg/Lとすることが好ましい。フェノール系樹脂のアルカリ溶液の添加量は、循環水中の塗料に対して有効成分量として100重量%以下、特に0.5~10重量%とすることが好ましい。
 pH調整のためにフェノール系樹脂のアルカリ溶液の添加量を増加させる場合、フェノール系樹脂の添加量が一時的に上記上限を超えてもよい。
(酸性アルミニウム塩の添加量)
 酸性アルミニウム塩の添加量は、湿式塗装ブース循環水の性状、用いるフェノール系樹脂のアルカリ溶液の種類や添加量、カチオン系ポリマーの併用の有無等によっても異なるが、湿式塗装ブース循環水に対して有効成分量として1~1000mg/L、特に1~200mg/L、とりわけ5~200mg/L程度とすることが好ましい。酸性アルミニウム塩の添加量は、循環水中の塗料に対して有効成分量として0.1~100重量%、特に0.5~50重量%、とりわけ2.0~20重量%程度とすることが好ましい。
 酸性アルミニウム塩の添加量が上記下限以上であると、酸性アルミニウム塩を添加することによる凝集、不粘着化、発泡抑制効果の向上効果を十分に得ることができる。酸性アルミニウム塩の添加量が上記上限を超えても、添加量に見合う効果の向上は得られず、薬剤コスト、凝集汚泥発生量の増加等の面で好ましくない。
 pH調整のために、酸性アルミニウム塩の添加量を増加させる場合、酸性アルミニウム塩の添加量が一時的に上記上限を超えてもよい。
<カチオン系ポリマー>
 本発明においては、フェノール系樹脂のアルカリ溶液と酸性アルミニウム塩とに加えて、更にカチオン系ポリマーを用いてもよい。カチオン系ポリマーを併用することにより、より一層良好な凝集、不粘着化、発泡抑制効果を得ることができる。
 カチオン系ポリマーとしては、ジメチルジアリルアンモニウムクロライド、アルキルアミン・エピクロルヒドリン縮合物、ポリエチレンイミン、アルキレンジクロライド・ポリアルキレンポリアミン縮合物、ジシアンジクロライド・ポリアルキレンポリアミン縮合物、DMA(ジメチルアミノエチルメタクリレート)、DADMAC(ジアリルジメチルアンモニウムクロライド)等の、重量平均分子量が1000~100万、好ましくは5000~30万の、一般に有機凝結剤と言われるものが挙げられる。カチオン系ポリマーは何らこれらに限定されるものではない。
 カチオン系ポリマーは、1種を単独で用いても良く、2種以上を混合して用いても良い。
 カチオン系ポリマーを併用する場合、カチオン系ポリマーの添加量は、湿式塗装ブース循環水の性状、用いるフェノール系樹脂のアルカリ溶液の種類や添加量、酸性アルミニウム塩の添加量等によっても異なるが、湿式塗装ブース循環水に対して有効成分量として5~100mg/L、特に5~50mg/L、とりわけ10~30mg/L程度とすることが好ましい。カチオン系ポリマーの添加量は、循環水中の塗料に対して有効成分量として0.01~10重量%、特に0.05~5重量%、とりわけ0.5~2重量%程度とすることが好ましい。
 カチオン系ポリマー添加量が上記下限以上であると、カチオン系ポリマーを添加することによる凝集、不粘着化、発泡抑制効果の向上効果を十分に得ることができる。カチオン系ポリマー添加量が上記上限を超えても、添加量に見合う効果の向上は得られない。カチオン系ポリマー添加量が過度に多いと、過剰カチオンによる粒子同士の電気的反撥が起き、凝集不良を引き起こす。カチオン系ポリマー添加量が多いと薬剤コスト、凝集汚泥発生量の増加等の面でも好ましくない。
<薬剤添加による凝集処理>
 湿式塗装ブース循環水に、フェノール系樹脂のアルカリ溶液及び酸性アルミニウム塩、更に必要に応じて用いられるカチオン系ポリマーを添加する方法は特に制限はない。これらの剤は、循環水系に1日に1~2回程度の頻度で間欠的に添加しても良く、連続添加であっても良い。望ましくは、凝集処理のためのフェノール系樹脂のアルカリ溶液及び酸性アルミニウム塩やカチオン系ポリマーについては、ポンプにより連続的に定量注入とする。pH調整剤を兼ねるフェノール系樹脂のアルカリ溶液及び酸性アルミニウム塩については、湿式塗装ブース循環水のpHの測定値に基づいて、薬注制御することが好ましい。
 フェノール系樹脂のアルカリ溶液、酸性アルミニウム塩、及びカチオン系ポリマーの添加箇所は特に制限はなく、循環水のどのような箇所に添加しても良い。通常の場合、凝集剤としてのフェノール系樹脂のアルカリ溶液及び酸性アルミニウム塩は、循環水ピットと湿式塗装ブースとの循環水の循環配管に添加することが好ましい。pH調整剤としてのフェノール系樹脂のアルカリ溶液及び酸性アルミニウム塩は、循環水ピットに添加することが好ましい。循環水の戻りの分離槽入口側に添加してもよい。
 フェノール系樹脂と酸性アルミニウム塩、必要に応じて用いられるカチオン系ポリマーとの添加順序には特に制限はない。フェノール系樹脂のアルカリ溶液、酸性アルミニウム塩、必要に応じて用いられるカチオン系ポリマーは同時に同じ場所に添加して良いし、別々の場所に別々に添加してもよい。浮上分離装置や遠心分離機で凝集スラッジの分離を行う場合には、カチオン系ポリマーを分離装置の前に添加することがある。
 本発明において、少なくともpH調整のために添加されるフェノール系樹脂のアルカリ溶液及び酸性アルミニウム塩は、混合して一剤化することなく別々に添加する。フェノール系樹脂のアルカリ溶液と酸性アルミニウム塩を別々に添加するということは、一剤化することなく、各々添加することを意味し、別々に同じ場所に同時期に添加してもよい。
 カチオン系ポリマーについては、フェノール系樹脂のアルカリ溶液及び酸性アルミニウム塩とは別々に添加しても、酸性アルミニウム塩に予め混合して添加してもよい。
 pH調整剤としての機能を担うため、フェノール系樹脂のアルカリ溶液及び酸性アルミニウム塩の薬注手段は、湿式塗装ブース循環水のpHを測定するpH計と連動するものであることが好ましい。この場合、pH計による循環水のpH測定は、いずれの箇所で行ってもよい。例えば、循環水ピットや循環ポンプ出口における循環水のpHを測定してもよい。好ましくは、後述の本発明の湿式塗装ブース循環水の処理装置により、循環水ピットとは別に設けられた計測槽でpHを測定する。
 フェノール系樹脂のアルカリ溶液と酸性アルミニウム塩、或いはフェノール系樹脂のアルカリ溶液と酸性アルミニウム塩とカチオン系ポリマーの添加により、循環水中の塗料は速やかに不溶化、凝集してフロックを生成する。凝集により生成したフロックの分離回収には、浮上分離、ウェッジワイヤ、ロータリースクリーン、バースクリーン、サイクロン、遠心分離機、濾過装置などによる方法を採用することができる。
 このような方法で分離回収された凝集汚泥は、重力脱水後、或いは通常の方法で脱水後、焼却、埋立処理される。本発明によれば、フェノール系樹脂のアルカリ溶液と酸性アルミニウム塩とをそれぞれpH調整剤を兼ねる用途で用い、最適なpHに調整することによる薬剤の必要添加量の低減で、発生汚泥量を低減して、汚泥処分費を低減することができる。
 本発明における凝集処理では、フェノール系樹脂のアルカリ溶液と酸性アルミニウム塩或いはフェノール系樹脂のアルカリ溶液と酸性アルミニウム塩とカチオン系ポリマーとを添加する凝集処理後に、更に、重量平均分子量が、通常、100万超、好ましくは500万以上の水溶性高分子よりなる高分子凝集剤を添加してフロックの粗大化を図ることもできる。
 高分子凝集剤としては、公知のアニオン系高分子凝集剤、カチオン系高分子凝集剤、両性高分子凝集剤などの1種又は2種以上を用いることができる。
 高分子凝集剤を用いる場合、その添加量は、余剰塗料に対して0.1~10重量%、好ましくは0.5~2重量%の範囲で、良好な凝集効果が得られるように適宜決定すればよい。
 本発明の湿式塗装ブース循環水の処理方法は、水性塗料を含む湿式塗装ブース循環水、溶剤系塗料を含む湿式塗装ブース循環水、水性塗料及び溶剤系塗料を含む湿式塗装ブース循環水の処理に効果的に適用することができる。
 本発明の湿式塗装ブース循環水の処理方法は、以下に説明する本発明の湿式塗装ブース循環水の処理装置により実施することが好ましい。
[湿式塗装ブース循環水の処理装置]
 図1を参照して本発明の湿式塗装ブース循環水の処理装置について説明する。
 図1は本発明の湿式塗装ブース循環水の処理装置の実施の形態の一例を示す模式的な構成図である。1は湿式塗装ブース、2は循環水ピット、3は計測槽、4はスラッジ回収装置、5は回収スラッジ貯槽、6は制御装置である。制御装置6の制御方式は、例えばフィードバック方式のON/OFF制御又はPID制御である。
 循環水ピット2内の循環水は循環ポンプPにより抜き出され、配管10を経て湿式塗装ブース1に送給される。配管10から、循環水ピット1内の循環水を均一撹拌するための循環配管12が分岐している。循環ポンプPで抜き出された循環水の一部は、配管12を経て循環水ピット2の液面上方から散水される。配管10には、循環水に凝集剤としてのフェノール系樹脂のアルカリ溶液と酸性アルミニウム塩を定量注入するための配管13,14が接続されている。
 配管10より湿式塗装ブース1に送給され、湿式塗装ブース1内で余剰塗料を捕集した湿式塗装ブース循環水は、配管11、配管12を経て循環水ピット2に循環される。
 循環水ピット2には、ピット内の循環水にpH調整のためのフェノール系樹脂のアルカリ溶液、酸性アルミニウム塩をそれぞれ添加するためのフェノール系樹脂のアルカリ溶液添加手段21と酸性アルミニウム塩添加手段22が設けられている。これらの薬剤添加手段は、図示しない薬剤貯槽と薬注ポンプ、薬注配管等から構成され、制御装置6により添加量が制御される。薬注制御は、薬注ポンプの作動制御であってもよく、薬注バルブの開閉又は開度制御であってもよい。
 計測槽3内は、溢流壁31により貯留部32と溢流部33とに仕切られている。貯留部32には、pH計34と、pH計34の誤作動(計測槽3内に循環水が存在しないときに計測が行われる。)防止のための水位計(レベルスイッチ)35が設けられている。pH計34の測定値と水位計35の検知信号は制御装置6に入力される。
 溢流壁31にはその上端辺縁部の中央付近に、V字型の切り込みが設けられている。この切り込み部から貯留部32内の貯留水が溢流し、溢流部33を経て、計測槽3の溢流部33側の側面に設けられた排水口36から排水され、配管16より循環水ピット2に送給される。
 計測槽3の貯留部32には、配管12から分岐する循環水導入配管14より循環水の一部が導入されると共に、清澄水導入配管15より工水等の清澄水が導入される。各導入配管14,15には開閉バルブ14A,15Aが設けられている。バルブ14A,15Aは制御装置6でその開閉が制御される。
 清澄水導入配管15の先端にはpH計34のpHセンサ洗浄手段37が設けられている。洗浄手段37としては、例えば、清澄水導入配管15からの清澄水を高圧で噴出させる洗浄ノズルを複数本取り付けたものなどを用いることができる。空気の噴き付けを行うエアノズルを設け、清澄水の噴き付けと共に、空気によるバブリングでpHセンサの洗浄を行うこともできる。
 計測槽3の貯留部32には、pH計34と水位計35が適度な間隔で設置されている。貯留部32は、洗浄手段37によりpH計34を洗浄することができる程度の容量であればよい。溢流部33は、溢流水が排水口36から円滑に排水される程度の大きさであればよい。例えば、貯留部32は貯水量として5~10L程度でよい。このような小容量の貯留部32であれば、例えば、循環水導入配管14から5~50L/min、好ましくは10~20L/min程度の高流速で循環水を導入させることにより、貯留部32内に貯留されている水を短時間で押し出し、貯留部32内を新たに導入された循環水で満たすことができる。清澄水導入配管15から工水等の清澄水を導入する場合も同様である。
 循環水ピット2内の循環水は、配管17より抜き出され、配管18より高分子凝集剤が添加された後スラッジ回収装置4にて凝集分離処理される。スラッジ回収装置4の凝集分離水は配管19より循環水ピット2に返送される。凝集スラッジは、配管20より回収スラッジ貯槽5に送給される。
 本発明の湿式塗装ブース循環水の処理装置では、制御装置6からの信号による開閉バルブ14A,15Aの開閉制御で、計測槽3への循環水導入配管14からの循環水の導入と、清澄水導入配管15からの工水等の清澄水の導入とが交互に行われる。本発明では、以下の手順で循環水のpH測定及びpH調整工程と、pH計の洗浄及び待機工程とが繰り返し行われる。
<pH測定及びpH調整工程>
 制御装置6からの出力信号で開閉バルブ14Aを開とし(開閉バルブ15Aは閉)、循環水を循環水導入配管14を経て計測槽3に導入する。計測槽3の貯留部32は小容量であるため、循環水導入配管14からの循環水を高流速で導入することで、貯留部32内の水を短時間で循環水に置き換え、貯留部32内を循環水で満たすことができる。貯留部32から押し出された水は溢流壁31、溢流部33、排水口36、配管16を経て循環水ピット2に返送される。
 循環水の導入で貯留部32内が循環水で満たされ、水位計35が循環水の水位が上ったことを検知すると、その検知信号が制御装置6に入力される。この信号を受けて、制御装置6からpH計34に計測信号が出力され、pH計34でpH測定が行われる。循環水の導入開始から、pH計34による計測開始までの時間は通常1~5分程度である。
 pH計34の測定値は、制御装置6に入力される。入力された測定値に基づいて、制御装置6からフェノール系樹脂のアルカリ溶液添加手段21又は酸性アルミニウム塩添加手段22に薬注信号が出力され、循環水のpH調整が行われる。測定値が、設定値よりも低い場合にはフェノール系樹脂のアルカリ溶液添加手段21に薬注信号が出力される。測定値が設定値よりも高い場合には酸性アルミニウム塩添加手段22に薬注信号が出力される。
 pH計34によるpH測定は、連続的に行ってもよく間欠的に行ってもよい。
 pH測定及びpH調整工程を行う時間は特に制限はない。pH測定及びpH調整工程を行う時間が過度に短いと的確なpH調整を行うことができず、過度に長いと、pH計34の汚染で、測定精度が低下してくる。1回のpH測定及びpH調整工程の時間は、循環水の導入開始からpH計34による計測開始までの時間も含めて5~60分、特に10~30分程度とすることが好ましい。
 pH計34の誤作動によるフェノール系樹脂のアルカリ溶液及び酸性アルミニウム塩の過剰添加を防止するために、フェノール系樹脂のアルカリ溶液添加手段21及び酸性アルミニウム塩添加手段22の薬注ポンプの最大稼動時間を制御装置6に設定し、最大稼動時間を超えてこれらの薬剤が添加されないようにタイマー制御することが好ましい。
<pH計の洗浄及び待機工程>
 pH測定及びpH調整工程後は、制御装置6からの出力信号で開閉バルブ14Aを閉、開閉バルブ15Aを開とし、循環水の導入を停止すると共に、工水等の清澄水を清澄水導入配管15を経て計測槽3に導入する。清澄水導入配管15からの清澄水は、洗浄手段37の噴出ノズルからpH計34のpHセンサに向けて噴出され、pHセンサの洗浄が行われる。
 清澄水の導入による洗浄時も、貯留部32が小容量であるため、清澄水を5~50L/min、好ましくは10~20L/min程度の高流速で導入することにより、貯留部32内の循環水を比較的短時間で清澄水に置き換え、貯留部32内を清澄水で満たすことができる。貯留部32から押し出された循環水は溢流壁31、溢流部33、排水口36、配管16を経て循環水ピット2に送給される。
 清澄水の導入で貯留部32内が清澄水で満たされた後は、開閉バルブ15Aを閉として清澄水の導入を停止し、次の測定待機工程に移行する。
 清澄水の導入によるpH計34のpHセンサの洗浄時間は、通常1~5分程度である。
 清澄水の導入及びpH計34の洗浄後は、貯留部32に清澄水を満たした状態で所定時間待機する。この待機工程を行うことにより、次のpH測定及びpH調整工程におけるpH測定のタイムラグを防止することができる。
 循環水のpH調整のためにフェノール系樹脂のアルカリ溶液添加手段21又は酸性アルミニウム塩添加手段22から循環水ピット2に添加されたフェノール系樹脂のアルカリ溶液又は酸性アルミニウム塩は、循環水ピットの容量が大きいために、直ちにはピット2内全体には行きわたらず、ピット内の循環水のpHは必ずしも均一ではない場合がある。循環水ピット2内に堆積したスラッジから、添加した薬剤のアルカリ成分や酸成分が徐々に溶出することで、循環水ピット2内の循環水のpHが局部的に変動する場合もある。
 清澄水によるpH計34の洗浄後、待機工程を設けずに、次のpH測定とpH調整工程に移行すると、このような循環水ピット2内でのpHの不均一性や変動が測定pH値に影響し、正しい測定値を得ることができない。
 上記の待機工程を行うことにより、この待機工程中に、循環水ピット2内の循環水が循環ポンプP及び循環配管12で循環されて均一化される。この結果、pHの不均一性や局部的な変動が解消され、次のpH測定及びpH調整工程において、系内の循環水のpH値を十分に反映した測定値を得ることができ、この測定値に基づいて的確なpH調整を行える。
 待機工程に要する時間は、過度に短いと待機工程を設けることによる上記効果を十分に得ることができず、過度に長いと、相対的にpH測定及びpH調整工程の時間が短くなるため好ましくない。pH計の洗浄工程後の待機工程は、10~50分、特に20~30分程度とすることが好ましい。
 待機工程後は、前述のpH測定及びpH調整工程に移行し、以降、pH測定及びpH調整工程とpH計の洗浄及び待機工程とを繰り返し行う。
 図1は本発明の湿式塗装ブース循環水の処理装置の実施の形態の一例を示すものであって、本発明の湿式塗装ブース循環水の処理装置は何ら図1に示されるものに限定されない。
 図1では、pH調整剤としてフェノール系樹脂のアルカリ溶液及び酸性アルミニウム塩を用いてpH調整を行っているが、フェノール系樹脂のアルカリ溶液の代りに汎用のアルカリ剤を用いてもよく、酸性アルミニウム塩の代りに汎用の酸剤を用いてもよい。また各薬剤の添加箇所についても特に制限はない。更にカチオン系ポリマーの添加を行ってもよい。
 以下に実施例を挙げて本発明をより具体的に説明する。
[使用薬剤]
 処理薬剤として以下のものを用いた。
 フェノール系樹脂のアルカリ溶液:栗田工業(株)製「クリスタックB-310」(フェノール系樹脂(ノボラック型フェノール・ホルムアルデヒド重縮合物)のNaOH水溶液、フェノール系樹脂濃度:32重量%、NaOH濃度:5重量%、pH:12)(以下、「B-310」と記載する。)
 酸性アルミニウム塩:硫酸バンド水溶液(Al(SO濃度:27重量%)(以下「Al(SO」と記載する。)
 酸:10重量%硫酸水溶液(以下「硫酸」と記載する。)
 カチオン系ポリマー:栗田工業(株)製「クリスタックB-450」(アルキルアミンエピクロルヒドリン縮合物、重量平均分子量:10万)(以下「B-450」と記載する。)
 以下において、処理薬剤の「原液」とは上記薬液(水溶液)そのものをさす。
[実施例1]
 図1に示す湿式塗装ブース循環水の処理装置により、以下の条件で湿式塗装ブース循環水の処理を行った。
 湿式塗装ブース循環水による塗料の捕集は以下の条件で行った。
 塗料(自動車ボデー水性ベース)供給量:4g/min
 循環水:自動車組立工場循環水と水道水の混合水
 循環水ピット2の保有水量:800L
 循環水量(配管11の流量):100L/min
 配管14からのAl(SO定量添加量:0.12g/min(原液換算)
 配管13からのB-310定量添加量:0.16g/min(原液換算)
 計測槽3における条件は次の通りである。
 以下において、フェノール系樹脂のアルカリ溶液添加手段21の薬注ポンプを「B-310ポンプ」と称し、酸性アルミニウム塩添加手段22の薬注ポンプを「Al(SOポンプ」と称す。
 計測槽3の貯留部32の容量:5L
 計測槽3への工水の導入流量:10L/min
 工水導入時間(pH計の洗浄時間):2分
 待機時間:28分
 計測槽3への循環水の導入流量:10L/min
 循環水導入時間:30分
 循環水導入開始後pH測定を行うまでの時間:2分
 pH設定値:6.8~7.2
 薬注制御条件:pH6.8を下回った場合にB-310ポンプON、pH7.0でOFF。pH7.2を超える場合にAl(SOポンプON、pH7.0でOFF。
 B-310ポンプ流量:0.1g/min(原液換算)
 Al(SOポンプ流量:0.1g/min(原液換算)
 B-310ポンプ最大稼動時間:100分
 Al(SOポンプ最大稼動時間:100分
 計測槽3に循環水を導入し、導入開始から2分後に、pH計34によるpH測定とpH調整を行った。pH測定とpH調整の時間は28分で、計測槽3への循環水導入時間は合計で30分である。
 pH測定及びpH調整工程では、上記の薬注制御条件の通り、必要に応じてB-310又はAl(SOを添加した。
 pH測定及びpH調整工程後は、計測槽3に工水を2分間導入してpH計34の洗浄を行い、その後工水を満たしたまま28分待機した。pH計の洗浄及び待機工程後は、再びpH測定及びpH調整工程を行い、pH測定及びpH調整工程とpH計の洗浄及び待機工程とを交互に繰り返した。
 このときのpH計34の測定値の経時変化を表1及び図2に示す。
 12時間の運転中に、pH調整に要したB-310及びAl(SO使用量(B-310ポンプ及びAl(SOポンプからの薬注量)を表2に示す。
[比較例1]
 実施例1において、工水の導入を行わず、循環水を常時10L/minで計測槽3に導入してpH測定及びpH調整を行ったこと以外は同様にして運転を行った。pH測定値の経時変化は表1及び図2に示す通りであった。pH調整に要したB-310及びAl(SO使用量は表2に示す通りであった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1,2より、本発明によれば、pH変動を抑えて、少ない薬注量で安定かつ確実なpH調整を行えることが分かる。
 実施例1及び比較例1において、12時間の運転の前後で、pH計34によるpH標準液(pH6.81)のpH測定を行ったところ、表3に示す結果が得られた。比較例1ではpH計の汚染で測定精度が低下したのに対して、実施例1ではpH計の洗浄でpH計の測定精度が十分に維持されていることが確認された。
Figure JPOXMLDOC01-appb-T000003
[実施例2]
 実施例1において、薬注制御条件を以下の通りとしたこと以外は同様にして処理を行った。その結果、同様に安定かつ確実なpH調整を行うことができた。
 薬注制御条件:pH6.9を下回った場合にB-310ポンプON、pH7.0でOFF。pH7.1を超える場合にAl(SOポンプON、pH7.0でOFF。
[実施例3,4、比較例2~4]
 500ml容のボトルに水道水300mLと、水性塗料(自動車ボデー用水性塗料:シルバーメタリック(アクリル系))0.6mLと、表4に示す薬剤を表4に示す量添加して(ただし、比較例2では薬剤無添加)蓋をし、60回/30秒で振とうした。その後、ビーカーに全量あけ、処理液のpHとコロイド当量(ミューテック社製PCD(Particle Charge Detector)計による)を測定した後、以下の発泡試験、濁度測定、二次凝集試験を行った。
 表4に示す薬剤添加量は、いずれも製品量(原液量)としての添加量である。表5~7においても同様である。
<発泡試験>
 処理液300mLを1Lのメスシリンダーに入れ、バブリング試験を実施した。
 バブリング試験では、散気球を用いて、1.5L/分の空気量でメスシリンダー内の処理液をバブリングし、以下の発泡性と消泡性を確認した。
(発泡性)
 バブリングを開始し2分後の泡量(mL)を測定した。
 2分以内に泡量700mLを超える場合は、700mLを超えるまでの秒数を記録した。この秒数は大きい程発泡抑制効果に優れる。
(消泡性)
 バブリング後2分間静置し、残った泡量(mL)を測定した。
 2分以内に泡が消える場合は、泡が消えるまでの秒数を記録した。この秒数は小さい程消泡性に優れる。
<濁度測定>
 処理液をワットマンNo.41濾紙(粒子保持能20~25ミクロン)を用いて濾過した。得られた濾液の濁度を濁度計により測定した。
<二次凝集試験>
 処理液に対して、1重量%のカチオン性高分子凝集剤(アクリルアミドと2(アクリロイルオキシ)エチルトリメチルアンモニウムクロライドとの共重合物(重量平均分子量800万))溶液を1mL(有効成分濃度として13mg/L)添加し、フロックの状態を確認した。下記基準で評価した。
(凝集効果)
  ○:良好なフロックが形成され凝集性に優れる。
  ×:フロックが形成されず凝集効果が得られない。
 結果を表4に示す。
 水性塗料の凝集処理では、塗料の一次凝集ができること(濾液の濁度が低いこと)および泡が立ちにくいことが最も重要な評価項目となる。
Figure JPOXMLDOC01-appb-T000004
 水性塗料の処理では、処理水のコロイド当量が処理効果に及ぼす影響が大きいので、実験はできる限りコロイド当量がほぼ同じになるよう考慮して試験を行った。
 表4より、濾液濁度は、硫酸バンドを使用した実施例3,4で低く処理液が清澄であることがわかる。発泡試験では、比較例2の、無処理では発泡が多いが、実施例3,4、比較例3,4はほぼ同等である。
 これらの結果から、pH7付近に調整することで、薬剤の必要添加量が低減され、かつ、硫酸バンドを併用することで、硫酸のような危険物を使用することなく、かつ、濾液濁度を低減することができることが分かる。
[実施例5、比較例5~8]
 水性塗料の代りに中塗り塗料(自動車ボデー塗装用:グレー(ポリエステル系))を用い、薬剤添加量を表5に示す通りとしたこと以外(比較例5では薬剤添加せず)は、実施例3と同様に凝集処理を行い、同様に評価試験を行った。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5より、中塗り塗料では、濾液濁度は、硫酸バンドを使用した実施例5と比較例7が低く処理液が清澄であることがわかる。発泡試験では、比較例5の無処理では発泡が多いが、実施例5、比較例6~8ともほぼ同等であるものの、pH7付近に調整することで、薬剤の必要添加量が低減される。本塗料の場合は、実施例5のとおりB-450(カチオン系ポリマー)を使用せずとも、良好に処理できる。硫酸バンドを併用することで、硫酸のような危険物を使用することなく、かつ、濁度を低減することができる。
[実施例6、比較例9~12]
 図3に示す実験装置を用いて試験を実施した。この実験装置は、保有水量50Lの循環水槽41内の循環水をポンプPで循環して、循環水槽上部の塗料が噴霧される水幕板42上に流下させるように構成されている。43は塗料噴霧装置、51は循環配管、52は、循環水を系外へ排出するための排出配管、53は排気配管、V,Vはバルブ、Fは排気ファンである。
 水道水50Lと、水性塗料(自動車ボデー塗装用:シルバーメタリック(アクリル系))100mLを混合し、表6に示す薬剤を表6に示す量入れ(ただし、比較例9では薬剤添加せず)、装置を稼動させた。次に、溶剤系塗料(自動車ボデークリア溶剤系塗料)を2g/分で30分間スプレーし、その後装置を停止した。
 循環水槽の水面に浮上した処理スラッジの粘着性を指触にて調べ、下記基準で評価した。
(評価基準)
  ○ :粘着なし
  × :粘着あり
 実施例3におけると同様に、処理液のpHと荷電の測定、発泡試験、濾液濁度の測定、二次凝集試験を行った。二次凝集試験におけるカチオン性高分子凝集剤の添加量は有効成分濃度として13mg/Lとした。
 結果を表6に示す。
 溶剤系塗料では処理スラッジの粘着性がないことが処理の最も重要な評価項目である。水性塗料処理では一次凝集が可能であること(濾液濁度が低いこと)および泡が立ちにくいことが処理の最も重要な評価項目である。
Figure JPOXMLDOC01-appb-T000006
 表6より、濾液濁度では、硫酸バンドを使用した実施例6と比較例11が低く処理液が清澄であることがわかる。発泡試験では、比較例9の無処理では発泡が多いが、実施例6、比較例10~12ともほぼ同等である。実施例6、比較例10~12とも溶剤系塗料の粘着性除去性は同等の効果であった。
 これらの結果から、硫酸バンドを併用して最適pHに調整することでさらに薬剤の必要添加量を低減できることがわかる。
[実施例7,8、比較例13~15]
 実施例6において、水性塗料の代りに、水性塗料(自動車ボデー塗装用:白(アクリル系))と水性中塗り塗料(自動車ボデー塗装用:白(ポリエステル系))の1:1混合物を用い、薬剤添加量を表7に示す量としたこと以外(ただし、比較例13では薬剤添加せず)は、同様に凝集処理を行い、同様の評価を行った。
 結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 表7より、濾液濁度では、硫酸バンドを使用した実施例7,8が低く処理液が清澄であることがわかる。発泡試験では、比較例13の無処理では発泡は多いが、実施例7,8、比較例14,15ともほぼ同等であり、溶剤系塗料の粘着性除去性も同等の効果であった。
 これらの結果から、硫酸バンドを併用して最適pHに調整することでさらに薬剤の必要添加量を低減できることがわかる。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2014年7月23日付で出願された日本特許出願2014-149506、及び2015年1月30日付で出願された日本特許出願2015-17142に基づいており、その全体が引用により援用される。
 1 湿式塗装ブース
 2 循環水ピット
 3 計測槽
 4 スラッジ回収装置
 5 回収スラッジ貯槽
 6 制御装置
 21 フェノール系樹脂のアルカリ溶液添加手段
 22 酸性アルミニウム塩添加手段
 31 溢流壁
 32 貯留部
 33 溢流部
 34 pH計
 35 水位計
 41 循環水槽
 42 水幕板
 43 塗料噴霧装置

Claims (17)

  1.  塗料を含む湿式塗装ブース循環水に、フェノール系樹脂のアルカリ溶液を添加して該循環水中の塗料を処理するにあたり、該循環水のpHを6.5~8.0に調整する方法であって、
     該循環水のpHが8.0以下の所定の値になった場合に、該フェノール系樹脂のアルカリ溶液の添加量を増加させることを特徴とする湿式塗装ブース循環水の処理方法。
  2.  請求項1において、前記フェノール系樹脂のアルカリ溶液をアルカリ剤として用い、他のアルカリ剤を添加せずに、前記循環水のpHを6.5~8.0に調整することを特徴とする湿式塗装ブース循環水の処理方法。
  3.  請求項1又は2において、前記循環水に、更に酸性アルミニウム塩を添加する方法であって、該循環水のpHが6.5以上の所定の値になった場合に、該酸性アルミニウム塩の添加量を増加させることを特徴とする湿式塗装ブース循環水の処理方法。
  4.  請求項3において、前記酸性アルミニウム塩を酸剤として用い、他の酸剤を添加せずに前記循環水のpHを6.5~8.0に調整することを特徴とする湿式塗装ブース循環水の処理方法。
  5.  塗料を含む湿式塗装ブース循環水に、フェノール系樹脂のアルカリ溶液と酸性アルミニウム塩を添加して処理するにあたり、該循環水のpHを6.5~8.0に調整する方法であって、
     該循環水のpHが6.8以上8.0以下のときに、該フェノール系樹脂のアルカリ溶液の添加量を増加させ、該循環水のpHが6.5以上7.2以下のときに該酸性アルミニウム塩の添加量を増加させることを特徴とする湿式塗装ブース循環水の処理方法。
  6.  塗料を含む湿式塗装ブース循環水に、フェノール系樹脂のアルカリ溶液と酸性アルミニウム塩を添加して該循環水中の塗料を凝集処理する方法であって、
     該循環水にフェノール系樹脂のアルカリ溶液と酸性アルミニウム塩とを別々に添加して、該循環水のpHを6.5~8.0に調整することを特徴とする湿式塗装ブース循環水の処理方法。
  7.  請求項6において、前記フェノール系樹脂のアルカリ溶液をアルカリ剤として、前記酸性アルミニウム塩を酸剤としてそれぞれ用い、他のpH調整剤を添加せずに前記循環水のpHを6.5~8.0に調整することを特徴とする湿式塗装ブース循環水の処理方法。
  8.  請求項6又は7において、前記循環水のpHが6.5未満の場合に前記フェノール系樹脂のアルカリ溶液の添加量を増加させ、前記循環水のpHが8.0を超える場合に前記酸性アルミニウム塩の添加量を増加させることを特徴とする湿式塗装ブース循環水の処理方法。
  9.  請求項3ないし8のいずれか1項において、前記酸性アルミニウム塩が、硫酸バンド、塩化アルミニウム、ポリ塩化アルミニウム、塩基性塩化アルミニウム、及び硝酸アルミニウムよりなる群から選ばれる1種又は2種以上であることを特徴とする湿式塗装ブース循環水の処理方法。
  10.  請求項1ないし9のいずれか1項において、前記循環水に更にカチオン系ポリマーを添加することを特徴とする湿式塗装ブース循環水の処理方法。
  11.  請求項1ないし10のいずれか1項において、前記フェノール系樹脂のアルカリ溶液、或いはフェノール系樹脂のアルカリ溶液と酸性アルミニウム塩、或いはフェノール系樹脂のアルカリ溶液と酸性アルミニウム塩とカチオン系ポリマー添加後の循環水に、更に高分子凝集処理剤を添加して凝集処理することを特徴とする湿式塗装ブース循環水の処理方法。
  12.  湿式塗装ブースとの間で塗料を含む湿式塗装ブース循環水が循環する循環水ピットと、該循環水のpHを測定するpH測定手段と、該pHの測定値に基づいて、該循環水に処理薬剤を添加する薬剤添加手段とを有する湿式塗装ブース循環水の処理装置において、
     pH計を備えた計測槽と、
     該計測槽に該循環水の一部を導入する循環水導入手段と、
     該計測槽に清澄水を導入する清澄水導入手段と、
     該循環水導入手段及び清澄水導入手段並びに前記薬剤添加手段を制御する制御手段と
    を備え、
     該制御手段は、該循環水導入手段による計測槽への循環水の導入と、該清澄水導入手段による計測槽への清澄水の導入とを交互に行い、該循環水導入手段による循環水導入期間中に、前記pH計によるpH測定を行うことを特徴とする湿式塗装ブース循環水の処理装置。
  13.  請求項12において、前記計測槽は、導入水が貯留される貯留部と、該貯留部から貯留水を溢流させる溢流部とを有しており、
     前記pH計は、該貯留部に設けられており、
     前記循環水導入手段及び清澄水導入手段はそれぞれ循環水又は清澄水を該貯留部に導入するように設けられていることを特徴とする湿式塗装ブース循環水の処理装置。
  14.  請求項12又は13において、前記制御手段は、前記循環水導入手段による循環水の導入開始後、所定時間経過後のpH計による測定値に基づいて薬注を制御することを特徴とする湿式塗装ブース循環水の処理装置。
  15.  請求項12ないし14のいずれか1項において、前記清澄水導入手段により前記計測槽に導入された清澄水により、前記pH計を洗浄する手段を有することを特徴とする湿式塗装ブース循環水の処理装置。
  16.  請求項12ないし15のいずれか1項において、前記制御手段は、前記清澄水導入手段により、前記計測槽に清澄水を導入した後、清澄水の導入を停止し、その後所定時間経過後に、前記循環水導入手段による循環水の導入を開始することを特徴とする湿式塗装ブース循環水の処理装置。
  17.  請求項1ないし11のいずれか1項において、請求項12ないし16のいずれか1項に記載の湿式塗装ブース循環水の処理装置を用いて、前記処理薬剤として前記フェノール系樹脂のアルカリ溶液、或いは前記フェノール系樹脂のアルカリ溶液と酸性アルミニウム塩を添加することを特徴とする湿式塗装ブース循環水の処理方法。
PCT/JP2015/070856 2014-07-23 2015-07-22 湿式塗装ブース循環水の処理方法及び処理装置 WO2016013586A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP15825584.4A EP3173383B1 (en) 2014-07-23 2015-07-22 Treatment method for circulating water of wet type coating booth
BR112017000481-0A BR112017000481B1 (pt) 2014-07-23 2015-07-22 Método de tratamento e sistema de tratamento de água de circulação que circula através de cabine em pintura do tipo úmido
US15/324,567 US20170197852A1 (en) 2014-07-23 2015-07-22 Method and system for treating circulating water circulating through wet paint booth
CN201580039593.5A CN106536422B (zh) 2014-07-23 2015-07-22 湿式涂装室循环水的处理方法及处理装置
MYPI2017700062A MY182003A (en) 2014-07-23 2015-07-22 Method for treating circulating water circulating through wet paint booth
ES15825584T ES2802201T3 (es) 2014-07-23 2015-07-22 Método de tratamiento para hacer circular agua de cabina de recubrimiento de tipo húmedo

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014149506A JP5681828B1 (ja) 2014-07-23 2014-07-23 湿式塗装ブース循環水の処理方法
JP2014-149506 2014-07-23
JP2015017142A JP2016140805A (ja) 2015-01-30 2015-01-30 湿式塗装ブース循環水の処理方法及び処理装置
JP2015-017142 2015-01-30

Publications (1)

Publication Number Publication Date
WO2016013586A1 true WO2016013586A1 (ja) 2016-01-28

Family

ID=55163110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070856 WO2016013586A1 (ja) 2014-07-23 2015-07-22 湿式塗装ブース循環水の処理方法及び処理装置

Country Status (7)

Country Link
US (1) US20170197852A1 (ja)
EP (1) EP3173383B1 (ja)
CN (1) CN106536422B (ja)
BR (1) BR112017000481B1 (ja)
ES (1) ES2802201T3 (ja)
MY (1) MY182003A (ja)
WO (1) WO2016013586A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6233549B1 (ja) * 2016-03-31 2017-11-22 栗田工業株式会社 湿式塗装ブース循環水の不粘着化処理剤及び湿式塗装ブース循環水の不粘着化処理方法
EP3519361A4 (en) * 2016-10-03 2020-06-24 SmartWash Solutions, LLC WATER CONTROL SYSTEM FOR INDUSTRIAL FOOD PROCESSING
JP2020142177A (ja) * 2019-03-05 2020-09-10 栗田工業株式会社 湿式塗装ブース循環水の処理装置および処理方法
US11465915B2 (en) 2014-10-06 2022-10-11 Smartwash Solutions Llc System for controlling water used for industrial food processing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6642616B2 (ja) * 2018-04-23 2020-02-05 栗田工業株式会社 湿式塗装ブース循環水の処理方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054088A (ja) * 1991-06-25 1993-01-14 Konica Corp 非銀塩感光材料の水洗疲労液の処理方法及び処理装置
JPH05146786A (ja) * 1991-11-19 1993-06-15 Toyota Motor Corp 塗装ブース被処理水の浄化処理方法
JPH09243588A (ja) * 1996-03-08 1997-09-19 Matsushita Electric Ind Co Ltd pHセンサ及びイオン水生成器
JP2005152865A (ja) * 2003-11-28 2005-06-16 Hakuto Co Ltd 塗料滓沈降剤、塗料滓沈降剤を含有する塗装ブース循環水処理剤およびこれらを用いた塗装ブース循環水の処理方法
JP2005238085A (ja) * 2004-02-26 2005-09-08 Keiichiro Asaoka 凝集剤及びその凝集剤からなる土壌浸食防止剤
JP2006231265A (ja) * 2005-02-28 2006-09-07 Toshiba Hokuto Electronics Corp 廃酸による汚水処理方法
JP2008173562A (ja) * 2007-01-18 2008-07-31 Hakuto Co Ltd ブース循環水の処理方法
JP2009022852A (ja) * 2007-07-18 2009-02-05 Kurita Water Ind Ltd 湿式塗装ブース循環水の処理方法
JP2011194306A (ja) * 2010-03-18 2011-10-06 Kurita Water Ind Ltd 湿式塗装ブース循環水の処理方法
JP2012187482A (ja) * 2011-03-09 2012-10-04 Kurita Water Ind Ltd 湿式塗装ブース循環水の処理方法
JP2013132601A (ja) * 2011-12-27 2013-07-08 Dowa Metaltech Kk フッ素含有排水の処理方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005103361A (ja) * 2003-09-29 2005-04-21 Neos Co Ltd 塗料ミスト処理剤及び処理方法
IL160384A (en) * 2004-02-12 2007-10-31 Edward Brook-Levinson Sewage treatment method and system
JP4697131B2 (ja) * 2006-12-15 2011-06-08 栗田工業株式会社 湿式塗装ブース循環水処理剤及び湿式塗装ブース循環水の処理方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054088A (ja) * 1991-06-25 1993-01-14 Konica Corp 非銀塩感光材料の水洗疲労液の処理方法及び処理装置
JPH05146786A (ja) * 1991-11-19 1993-06-15 Toyota Motor Corp 塗装ブース被処理水の浄化処理方法
JPH09243588A (ja) * 1996-03-08 1997-09-19 Matsushita Electric Ind Co Ltd pHセンサ及びイオン水生成器
JP2005152865A (ja) * 2003-11-28 2005-06-16 Hakuto Co Ltd 塗料滓沈降剤、塗料滓沈降剤を含有する塗装ブース循環水処理剤およびこれらを用いた塗装ブース循環水の処理方法
JP2005238085A (ja) * 2004-02-26 2005-09-08 Keiichiro Asaoka 凝集剤及びその凝集剤からなる土壌浸食防止剤
JP2006231265A (ja) * 2005-02-28 2006-09-07 Toshiba Hokuto Electronics Corp 廃酸による汚水処理方法
JP2008173562A (ja) * 2007-01-18 2008-07-31 Hakuto Co Ltd ブース循環水の処理方法
JP2009022852A (ja) * 2007-07-18 2009-02-05 Kurita Water Ind Ltd 湿式塗装ブース循環水の処理方法
JP2011194306A (ja) * 2010-03-18 2011-10-06 Kurita Water Ind Ltd 湿式塗装ブース循環水の処理方法
JP2012187482A (ja) * 2011-03-09 2012-10-04 Kurita Water Ind Ltd 湿式塗装ブース循環水の処理方法
JP2013132601A (ja) * 2011-12-27 2013-07-08 Dowa Metaltech Kk フッ素含有排水の処理方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11465915B2 (en) 2014-10-06 2022-10-11 Smartwash Solutions Llc System for controlling water used for industrial food processing
JP6233549B1 (ja) * 2016-03-31 2017-11-22 栗田工業株式会社 湿式塗装ブース循環水の不粘着化処理剤及び湿式塗装ブース循環水の不粘着化処理方法
EP3519361A4 (en) * 2016-10-03 2020-06-24 SmartWash Solutions, LLC WATER CONTROL SYSTEM FOR INDUSTRIAL FOOD PROCESSING
US11390537B2 (en) 2016-10-03 2022-07-19 Smartwash Solutions, Llc System for controlling water used for industrial food processing
AU2017338763B2 (en) * 2016-10-03 2022-09-22 Smartwash Solutions, Llc System for controlling water used for industrial food processing
JP2020142177A (ja) * 2019-03-05 2020-09-10 栗田工業株式会社 湿式塗装ブース循環水の処理装置および処理方法

Also Published As

Publication number Publication date
EP3173383A1 (en) 2017-05-31
EP3173383A4 (en) 2018-01-24
BR112017000481B1 (pt) 2021-11-03
US20170197852A1 (en) 2017-07-13
ES2802201T3 (es) 2021-01-15
BR112017000481A2 (pt) 2017-11-07
CN106536422B (zh) 2021-04-09
EP3173383B1 (en) 2020-06-03
CN106536422A (zh) 2017-03-22
MY182003A (en) 2021-01-18

Similar Documents

Publication Publication Date Title
WO2016013586A1 (ja) 湿式塗装ブース循環水の処理方法及び処理装置
JP2008173562A (ja) ブース循環水の処理方法
JP2009022852A (ja) 湿式塗装ブース循環水の処理方法
KR960013929B1 (ko) 멜라민 포름알데하이드를 사용하는 도료 분무 작업시의 폐기물의 탈착 방법
EP3190092A1 (en) Agent for treating circulation water in wet painting booth and method for treating circulation water in wet painting booth
EP3121152B1 (en) Wet paint booth circulating water treatment agent
JP2016140805A (ja) 湿式塗装ブース循環水の処理方法及び処理装置
JP5681828B1 (ja) 湿式塗装ブース循環水の処理方法
JP4069799B2 (ja) 湿式塗装ブース循環水の処理方法
JP6288361B2 (ja) 湿式塗装ブース循環水の処理装置
JP6102318B2 (ja) 湿式塗装ブース循環水の処理方法
WO2016035400A1 (ja) o/w型エマルションの油水分離方法及びo/w型エマルション用油水分離剤
JP6642624B2 (ja) 湿式塗装ブース循環水処理薬剤の薬注制御方法および制御装置
US20130075341A1 (en) Method for clarifying industrial wastewater
JP6645536B2 (ja) 湿式塗装ブース循環水処理薬剤の薬注制御方法および制御装置
JPH0665397B2 (ja) 水系塗料を含む系からの固形分の改良された除去方法
JP2023000946A (ja) 湿式塗装ブース循環水の処理装置および処理方法
JP2015221404A (ja) 塗料廃液の処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15825584

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15324567

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015825584

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015825584

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017000481

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017000481

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170110