WO2016034101A2 - 车载式检查系统 - Google Patents

车载式检查系统 Download PDF

Info

Publication number
WO2016034101A2
WO2016034101A2 PCT/CN2015/088732 CN2015088732W WO2016034101A2 WO 2016034101 A2 WO2016034101 A2 WO 2016034101A2 CN 2015088732 W CN2015088732 W CN 2015088732W WO 2016034101 A2 WO2016034101 A2 WO 2016034101A2
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
emitting device
vehicle
inspection system
ray
Prior art date
Application number
PCT/CN2015/088732
Other languages
English (en)
French (fr)
Other versions
WO2016034101A3 (zh
Inventor
康克军
顾菁宇
陈志强
李荐民
李元景
李玉兰
王东宇
Original Assignee
清华大学
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学, 同方威视技术股份有限公司 filed Critical 清华大学
Priority to MX2016009995A priority Critical patent/MX360055B/es
Publication of WO2016034101A2 publication Critical patent/WO2016034101A2/zh
Publication of WO2016034101A3 publication Critical patent/WO2016034101A3/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • G01V5/232Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays having relative motion between the source, detector and object other than by conveyor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays

Definitions

  • the invention relates to a vehicle-mounted inspection system.
  • the vehicle-mounted inspection system makes it easy to carry out safety inspections of goods and vehicles.
  • Radiation imaging technology emits a penetrating ray from a radiation source, illuminates the object to be inspected, and uses a radiation-sensitive detector element to obtain a ray that penetrates the object or a ray scattered by the object, and then performs photoelectric conversion and modulating.
  • a non-destructive safety inspection technique that converts numbers to obtain a perspective or scatter image of an angle of an object.
  • a radiation imaging device is equipped with a set of radiation sources and a set of detectors located on either side of the object.
  • the ray source emits rays from one side of the object to the detector, and only obtains a fluoroscopic image of the object in one direction, which in this direction causes superimposition on the image of the object.
  • This superposition may be superimposed in the same direction of a single object. It is also possible that a plurality of objects are superimposed in the same direction, so that it is difficult to accurately acquire the real information of the object to be inspected.
  • new techniques such as computed tomography (CT) scanning, single-source source dual-view, fixed dual-source dual-view, and backscattering have been developed in the field of radiation imaging.
  • CT computed tomography
  • Computed tomography (CT) technology is widely used in industrial non-destructive testing industry and medical industry, but its electromechanical equipment is complex, installation requirements are high, and the cost is high. It requires multi-angle and high-precision relative displacement of the imaging device and the object to be inspected. Long time, it is difficult to achieve on-board movement, and it is impossible to carry out maneuvering, fast and economical safety inspection of large objects.
  • the single-source dual-view technique uses a ray source and two mutually angled collimators to form two ray sectors with small angles. The ray penetrates from one side of the object to the detector to obtain a side of the object. With two angles of perspective images, it is difficult to completely solve the problem of object overlap.
  • Backscattering technology is mainly used to obtain image information in shallow layers of objects, and it is impossible to obtain perspective images of large and heavy objects.
  • An object of the present invention is to provide a vehicle-mounted inspection system, and an example of the vehicle-mounted inspection system Such as simple structure, low cost and high inspection efficiency.
  • the present invention provides a vehicle-mounted inspection system including: a chassis; a swing mechanism disposed on the chassis; and a first unit for emitting radiation coupled to the swing mechanism a radiation emitting device; a first detecting device coupled to the rotating mechanism for receiving radiation emitted by the first radiation emitting device; and a second radiation emitting device coupled to the rotating mechanism for emitting radiation, wherein
  • the slewing mechanism is capable of substantially rotating the first ray emitting device, the first detecting device, and the second ray emitting device about a vertical axis between the retracted position and the operative position.
  • the vehicle-mounted inspection system further includes: a first lifting mechanism connected to the swing mechanism for raising and lowering the first detecting device.
  • the vehicle-mounted inspection system further includes: a second lifting mechanism connected to the swing mechanism for raising and lowering the second radiation emitting device.
  • the slewing mechanism includes a rotating member, and a driving member that drives the rotating member to rotate about a vertical axis, and the first ray emitting device, the first detecting device, and the second ray emitting device are coupled to the rotating member.
  • the second radiation emitting device comprises a second radiation source boom, and a second radiation source disposed on the second radiation source boom, the second radiation source boom being raised by the second lifting mechanism, And the rotary mechanism is rotated to the working position to enter the working state.
  • the first detecting device comprises a transverse detector boom and a vertical detector boom, and a plurality of detectors disposed on the transverse detector arm and the vertical detector arm, in operation,
  • the transverse detector boom and the vertical detector boom are generally inverted L-shaped.
  • the transverse detector boom is raised by the first lifting mechanism and is rotated by the turning mechanism to the working position to enter the working state.
  • the vehicle-mounted inspection system further includes: a second detecting device disposed on the ground for receiving radiation emitted by the second radiation emitting device.
  • the second detecting means comprises a flat type detector.
  • the vehicle-mounted inspection system further includes: a cabin disposed on the chassis and located on a front side of the swing mechanism, and in the retracted position, the first detecting device and the second radiation emitting device are placed in the cabin On top, and in the lateral direction of the chassis, the first detecting means and the second ray emitting means are spaced apart.
  • the vehicle-mounted inspection system includes a plurality of radiation emitting devices and a plurality of detecting devices, thereby obtaining perspective images of a plurality of angles of the object to be inspected.
  • FIG. 1A is a plan view showing a state in which a vehicle-mounted inspection system according to an embodiment of the present invention is in a scanning state.
  • Fig. 1B is a plan view showing the vehicle-mounted inspection system in a scanning state according to an embodiment of the present invention, showing the specific structure of each component.
  • FIG. 2 is a front elevational view of a first image forming apparatus in a scanning state of a vehicle-mounted inspection system according to an embodiment of the present invention.
  • FIG 3 is a front elevational view of a top view imaging apparatus in a scanning state of a vehicle-mounted multi-check system according to an embodiment of the present invention.
  • Fig. 4 is a front elevational view showing the transport state of the vehicle-mounted inspection system according to the embodiment of the present invention.
  • Fig. 5 is a plan view showing the transport state of the vehicle-mounted inspection system according to the embodiment of the present invention.
  • a vehicle-mounted inspection system includes: a chassis 1011; a swing mechanism 105 disposed on the chassis 1011; and a radiation ray connected to the swing mechanism 105 a ray emitting device that emits radiation from one side of the object to be inspected to the other side of the object to be inspected; and is coupled to the slewing mechanism 105 for receiving radiation emitted by the first ray emitting device a first detecting device; and a second ray emitting device connected to the slewing mechanism 105 for emitting radiation, the second ray emitting device emitting radiation from above to below, the slewing mechanism 105 being capable of substantially making A ray emitting device, a first detecting device, and a second ray emitting device are rotated about a vertical axis between a retracted position and a working position.
  • the chassis 1011 may be a chassis of the vehicle 101, or a separate chassis, with a vehicle drag, and the vehicle 101 It
  • the first radiation emitting device includes a first radiation source 102, a first collimator 103
  • the second radiation emitting device includes a second radiation source boom 112, and a second radiation source boom
  • the first detecting device includes a first transverse detector boom 106, a first vertical detector boom 107, and a plurality of first detectors 108 disposed on the lateral detector boom 106 and the vertical detector boom 107.
  • the source of radiation may be an X-ray source, a gamma ray source, a neutron ray source, or the like.
  • the first imaging device is constituted by the first radiation emitting device and the first detecting device for obtaining a side view image of the object to be inspected.
  • the swing mechanism 105 includes a rotating member, and a driving member that drives the rotating member to rotate about a vertical axis, and the first radiation emitting device, the first detecting device, and the second radiation emitting device are coupled to the rotating member.
  • the slewing mechanism 105 may include an inner ring gear coupled to the rotating member, and the inner ring gear is rotated by the motor and the pinion, thereby rotating the rotating member.
  • the vehicle-mounted inspection system further includes: a first lifting mechanism 104 connected to the swing mechanism 105 for lifting and lowering the first detecting device, and a connection with the swing mechanism 105.
  • the second lifting mechanism 111 of the second radiation emitting device is raised and lowered.
  • the first transverse detector boom is raised by the first lifting mechanism 104 and is rotated by the turning mechanism 105 to the working position to enter the operating state.
  • the second source arm 112 is raised by the second lifting mechanism 111 and rotated by the turning mechanism 105 to the working position to enter the working state.
  • the first transverse detector boom and the first vertical detector boom are substantially inverted L-shaped.
  • the object to be inspected passes between the first radiation emitting device and the first vertical detector arm for inspection.
  • the lifting mechanism can be a hydraulic cylinder, a screw nut mechanism, or other suitable mechanism.
  • embodiments of the present invention may not provide a lifting mechanism.
  • the vehicle-mounted inspection system further includes: a second detecting device disposed on the ground for receiving radiation emitted by the second radiation emitting device.
  • the second detecting means comprises a second detector 113, such as a flat type detector.
  • the second ray emitting device and the second detecting device constitute a second imaging device for obtaining a bird's-eye view image of the object to be inspected.
  • the object to be inspected passes between the second radiation emitting device and the second detecting device, that is, from The second ray emitting device passes under the second detecting device.
  • the vehicle-mounted inspection system further includes: a cabin disposed on the chassis 1011 and located on the front side of the swing mechanism 105. In the retracted position, the first detecting device and the second radiation emitting device are placed in the cabin. On the top, and in the lateral direction of the chassis 1011, the first detecting means and the second radiation emitting means are spaced apart.
  • the vehicle-mounted inspection system further includes an equipment compartment 114, an operation cabin 115, and an image processing apparatus 116, according to an example of the present invention.
  • the first ray source 102, the first collimator 103 and the equipment compartment 114 are connected to the slewing mechanism 105 on one side of the slewing mechanism 105, the first elevating mechanism 104, the first traverse detector arm 106, and the first vertical detector
  • the boom 107 is mounted on the other side of the swing mechanism 105 and is coupled to the swing mechanism 105.
  • the swivel mechanism 105 is then rotated to the right to the working position (or other particular angle) and finally, the first vertical detector boom 107 is opened downwardly to the working position, approximately 90° to the ground.
  • the first collimator 103, the first transverse detector arm 106, and the first vertical detector arm 107 form a gantry structure, and the first radiation source 102 emits radiation through the first collimation.
  • the device 103 is collimated to form a fan beam of a certain angle from left to right, incident on the side of the object to be inspected, and after the beam penetrates the object, the first transverse detector arm 106 and the first vertical detector arm 107
  • the first detector 108 receives the attenuated ray signal to obtain side fluoroscopic image information of the object, and the relative displacement of the object and the first imaging device along the longitudinal direction of the vehicle, thereby obtaining the side fluoroscopic image information of the entire length of the object. .
  • the second lifting mechanism 111 is mounted on the swing mechanism 105, the upper end of the second lifting mechanism 111 is coupled to the second source bracket 112, and the second source 109 and the second collimator 110 are mounted to the second source bracket 112. on.
  • the second imaging device is unfolded in such a manner that the second elevating mechanism 111 is raised to the working height with the second radiation source 109, the revolving mechanism 105 is rotated to the right, and the second radiation source 109 reaches above the object to be inspected.
  • the center of the second source 109 can be located above the left side of the scanning channel rather than the center of the channel.
  • the second source 109 emits radiation through the second collimator 110 to form a top-down angle.
  • the fan beam is substantially perpendicularly incident on the top of the object to be inspected, and after the beam penetrates the object, it is incident on the second detector 113 temporarily installed on the ground, and the second detector 113 receives the attenuated ray signal to obtain the top view image information of the object.
  • the object and the second imaging device are continuously displaced relative to each other along the traveling direction of the vehicle, thereby obtaining fluoroscopic image information of the entire length of the object.
  • the second detector 113 can be a flat type detector with a slope, so that the goods can be easily and safely passed, can withstand the heavy weight of the goods without being damaged, and can be installed and retracted conveniently and quickly.
  • An auxiliary device of the first radiation source 102 and the second radiation source 109 is installed in the equipment compartment 114.
  • An image processing device 116 is installed in the operating cabin 115, which is a workplace for the staff to perform daily operations and analyze images.
  • the operating cabin can also be placed in a space outside the vehicle-mounted system for data transmission via wired or wireless communication with the vehicle.
  • the bulkhead of the operating cabin 115 has a certain thickness of lead (or other shielding material) as a radiation shield to ensure that the radiation dose level in the operating cabin 115 meets legal requirements.
  • the lateral center of gravity of the entire vehicle-mounted inspection system is near the central axis of the chassis, and the longitudinal center of gravity of the entire vehicle-mounted inspection system is on the rear axle; after deployment, the detector arm of the first imaging device and the radiation of the second imaging device The source is suspended from the chassis, so a corresponding proportion of the counterweight is installed in the equipment compartment to ensure that the center of gravity is still near the axis of the chassis and on the rear axle.
  • the workflow of the inspection system of the present invention is as follows: the transportation tool 101 arrives at a designated work place, performs equipment wiring, powering up, and warms up, as described above, the first imaging device, the second imaging device, and other viewing angle imaging devices (if other The viewing angle imaging device) is deployed in position while forming a multi-view (n ⁇ 2) imaging zone. After the object to be inspected enters the inspection area, it first enters the first imaging area, and slowly passes under the gantry formed by the first collimator 103, the first horizontal detector arm 106, and the first vertical detector arm 107.
  • a ray source 102 emits a ray, passes through the side of the object and reaches the first detector 108 to obtain a first image of the object; the object passes through the first imaging zone and reaches the second imaging zone, and the second ray source 109 emits rays, passing through the top of the object.
  • a second detector 113 is reached to obtain a second image of the object. After the object completely passes through the multi-view imaging area, the detector acquires the complete first, second and other view information of the object, and after data processing and image reconstruction by the image processing device 116, the scan can be performed in one scan. A multi-view ray fluoroscopic image of the object is obtained.
  • the beaming and sampling are performed by the interval working mode.
  • the first radiation source is out of the beam
  • the first trigger signal is simultaneously emitted
  • the first detector performs sampling when receiving the first trigger signal, and simultaneously interlocks the second
  • the radiation source cannot be beamed out
  • the second detector prohibits sampling, so that the first detector receives only the attenuation signal of the radiation of the first radiation source through the object to be inspected; similarly, the second imaging device works in a similar manner.
  • the two sets of imaging devices are separated from each other by sampling and sampling, that is, working together without interfering with each other. When there are multiple sets of imaging devices, the principle of operation is the same. Two or more sets of imaging devices can work independently or simultaneously. For example, the first source and the second source alternately exit the bundle.
  • the image data obtained by the multiple viewing angles are processed relatively independently, and the multi-angle image information is obtained, and the second and first equal-view image information are respectively displayed on the two displays, and the contours and perspectives of the closed objects at different angles are conveniently and clearly seen. Figure to further interpret the nature of the object.
  • Multiple sets of imaging devices can simultaneously scan an image from multiple viewing angles, or can selectively image from one or more viewing angles using one or more of the imaging devices.
  • a system in accordance with an embodiment of the present invention has two device states, one is a transport state and the other is a scan state.
  • scanning objects pass through the gantry, and multiple sets of imaging devices can work simultaneously or partially.
  • multiple sets of radiation sources emit radiation from the side, top or other viewing angles of the object.
  • Multiple sets of detectors are emitted from the other side, bottom or bottom according to the beam source respectively.
  • the directional signal is received in other directions, and image reconstruction is performed to obtain ray perspective views of multiple directions and angles, so that only one scan is required to obtain a complete multi-view fluoroscopic image.
  • system according to the invention may further comprise a third ray emitting device and a third detecting device, which may be on the opposite side of the first ray emitting device, ie inside the first vertical detector jib 107, or The upper and lower sides or the left and right sides of the first radiation emitting device may also be on the left and right or front and rear of the second radiation emitting device.

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

一种车载式检査系统,该车载式检査系统包括:底盘(1011);设置在底盘(1011)上的回转机构(105);与所述回转机构(105)连接的、用于发射射线的第一射线发射装置;与所述回转机构(105)连接的、用于接收第一射线发射装置发射的射线的第一探测装置;以及与所述回转机构(105)连接的、用于发射射线的第二射线发射装置,其中所述回转机构(105)能够大致使第一射线发射装置、第一探测装置、第二射线发射装置围绕竖直轴线在收回位置和工作位置之间转动。通过在一辆运输工具(101)上安装多套成像装置,在一次扫描过程中获得物体多角度透视图像。

Description

车载式检查系统 技术领域
本发明涉及一种车载式检查系统。
背景技术
车载式检查系统能够方便地对货物和车辆进行安全检查。辐射成像技术是由射线源发出具有穿透能力的射线,照射到被检物体上,利用对射线敏感的探测器元件获取穿透物体后的射线或经物体散射的射线,再进行光电转换和模数转换,从而获得物体的某个角度的透视或散射图像的一种无损安全检查技术。一般情况下,辐射成像装置配备一套射线源和一套探测器,分别位于物体的两侧。射线源发出射线从物体的一侧穿透物体到达探测器,只能获取物体一个方向的透视图像,在这个方向上会造成物体图像上的叠加,这种叠加可能是单一物体的同方向叠加,也可能是多个物体的同方向叠加,从而难以准确获取被检物体的真实信息。为了解决这个问题,在辐射成像领域分别开发了计算机断层(CT)扫描、单射线源双视角、固定式双源双视角(dual radiation source dual-view)、背散射等新技术。计算机断层扫描(CT)技术在工业无损检测行业和医疗行业应用广泛,但是它的机电设备复杂、安装要求高、造价昂贵,需要成像装置和被检物体有多角度、高精度的相对位移,检测时间较长,难以实现车载移动,无法对大型物体进行机动、快速、经济的安全检查。单源双视角技术是使用一个射线源和两个互成角度的准直器,形成两个有小角度夹角的射线扇面,射线从物体的一侧穿透到达探测器,获得物体一个侧面、两个角度的透视图像,很难完全解决物体重叠问题。背散射技术主要用于获取物体浅层的图像信息,无法获取大型、厚重物体的透视图像。
发明内容
本发明的目的是提供一种车载式检查系统,该车载式检查系统例 如结构简单、成本较低、检查效率高。
根据本发明的一方面,本发明提供了一种车载式检查系统,该车载式检查系统包括:底盘;设置在底盘上的回转机构;与所述回转机构连接的、用于发射射线的第一射线发射装置;与所述回转机构连接的、用于接收第一射线发射装置发射的射线的第一探测装置;以及与所述回转机构连接的、用于发射射线的第二射线发射装置,其中所述回转机构能够大致使第一射线发射装置、第一探测装置、第二射线发射装置围绕竖直轴线在收回位置和工作位置之间转动。
根据本发明的一方面,所述车载式检查系统还包括:与所述回转机构连接的、用于升降第一探测装置的第一升降机构。
根据本发明的一方面,所述车载式检查系统还包括:与所述回转机构连接的、用于升降第二射线发射装置的第二升降机构。
根据本发明的一方面,所述回转机构包括旋转部件,以及驱动旋转部件围绕竖直轴线转动的驱动部件,第一射线发射装置、第一探测装置、第二射线发射装置与旋转部件连接。
根据本发明的一方面,第二射线发射装置包括第二射线源臂架,以及设置在第二射线源臂架上的第二射线源,第二射线源臂架通过第二升降机构升起,并由回转机构转动到工作位置,而进入工作状态。
根据本发明的一方面,第一探测装置包括横探测器臂架和竖探测器臂架,以及设置在横探测器臂架和竖探测器臂架上的多个探测器,在工作状态下,横探测器臂架和竖探测器臂架大致成倒L形。
根据本发明的一方面,横探测器臂架由第一升降机构升起,并且由回转机构转动到工作位置,而进入工作状态。
根据本发明的一方面,所述车载式检查系统还包括:设置在地面的用于接收第二射线发射装置发射的射线的第二探测装置。
根据本发明的一方面,第二探测装置包括平板型探测器。
根据本发明的一方面,所述的车载式检查系统还包括:设置在底盘上、并且位于回转机构的前侧的舱室,在收回位置,第一探测装置、第二射线发射装置放置在舱室的顶部上,并且在底盘的横向方向上,第一探测装置和第二射线发射装置间隔开。
根据本发明的实施例的车载式检查系统包括多个射线发射装置和多个探测装置,由此获得被检物体的多个角度的透视图像。
附图说明
图1A为本发明的实施例的车载式检查系统处于扫描状态的俯视图。
图1B为本发明的实施例的车载式检查系统处于扫描状态的俯视图,其中示出了各部件的具体结构。
图2为本发明的实施例的车载式检查系统处于扫描状态的第一成像装置的正视图。
图3为本发明的实施例的车载式多查系统处于扫描状态的俯视成像装置的正视图。
图4为本发明的实施例的车载式查系统的运输状态的正视图。
图5为本发明的实施例的车载式查系统运输状态的俯视图。
具体实施方式
下面结合说明书附图来说明本发明的具体实施方式。
参见图1A至5所示,根据本发明的实施例的车载式检查系统,包括:底盘1011;设置在底盘1011上的回转机构105;与所述回转机构105连接的、用于发射射线的第一射线发射装置,所述第一射线发射装置从被检查物的一侧向被检查物的另一侧发射射线;与所述回转机构105连接的、用于接收第一射线发射装置发射的射线的第一探测装置;以及与所述回转机构105连接的、用于发射射线的第二射线发射装置,所述第二射线发射装置从上向下发射射线,所述回转机构105能够大致使第一射线发射装置、第一探测装置、第二射线发射装置围绕竖直轴线在收回位置和工作位置之间转动。底盘1011可以是运输工具101的底盘,或单独的底盘,并有车辆拖动,运输工具101 可以是底盘车或拖车。
参见图1A至5所示,第一射线发射装置包括第一射线源102、第一准直器103,第二射线发射装置包括第二射线源臂架112,以及设置在第二射线源臂架上的第二射线源109、第二准直器110。第一探测装置包括第一横探测器臂架106、第一竖探测器臂架107、以及设置在横探测器臂架106和竖探测器臂架107上的多个第一探测器108。射线源可以是X射线源、伽马射线源、中子射线源等。由第一射线发射装置、第一探测装置构成第一成像装置,用于获得被检物体的侧视图像。
参见图1A至5所示,所述回转机构105包括旋转部件,以及驱动旋转部件围绕竖直轴线转动的驱动部件,第一射线发射装置、第一探测装置、第二射线发射装置与旋转部件连接。所述回转机构105可以包括与旋转部件连接的内齿圈,通过电机和小齿轮带动内齿圈转动,由此使旋转部件转动。
参见图1A至5所示,所述车载式检查系统还包括:与所述回转机构105连接的、用于升降第一探测装置的第一升降机构104以及与所述回转机构105连接的、用于升降第二射线发射装置的第二升降机构111。在本实施例中,第一横探测器臂架由第一升降机构104升起,并且由回转机构105转动到工作位置,而进入工作状态。第二射线源臂架112通过第二升降机构111升起,并由回转机构105转动到工作位置,而进入工作状态。在工作状态下,第一横探测器臂架和第一竖探测器臂架大致成倒L形。被检物体从第一射线发射装置和第一竖探测器臂架之间穿过来进行检查。升降机构可以是液压缸、螺杆螺母机构、或其它合适的机构。
作为选择,本发明的实施例可以不设置升降机构。
如图3所示,车载式检查系统还包括:设置在地面的用于接收第二射线发射装置发射的射线的第二探测装置。第二探测装置包括第二探测器113,例如平板型探测器。第二射线发射装置和第二探测装置构成第二成像装置,用于获得被检查物体的俯视透视图像。在工作状态,被检查物体从第二射线发射装置和第二探测装置之间通过,即从 第二射线发射装置下方、第二探测装置上方通过。
如图3所示,所述车载式检查系统还包括:设置在底盘1011上、并且位于回转机构105的前侧的舱室,在收回位置,第一探测装置、第二射线发射装置放置在舱室的顶部上,并且在底盘1011的横向方向上,第一探测装置和第二射线发射装置间隔开。
参见图1A至5所示,根据本发明的示例,车载式检查系统还包括:设备舱114、操作舱115、图像处理设备116。
第一射线源102、第一准直器103和设备舱114在回转机构105的一侧并与回转机构105连接,第一升降机构104、第一横探测器臂架106、第一竖探测器臂架107安装在回转机构105的另一侧并与回转机构105连接。设备到达工作现场,第一成像装置的展开顺序是:第一升降机构104升起,带着处于折叠状态的第一横探测器臂架106、第一竖探测器臂架107升到工作高度,然后回转机构105向右旋转到工作位置(或者其他特定角度),最后,第一竖探测器臂架107向下打开到工作位置,与地面成大致90°。第一成像装置完全展开后,第一准直器103、第一横探测器臂架106、第一竖探测器臂架107形成一个龙门结构,第一射线源102发出射线,经过第一准直器103准直,形成一个从左到右的一定张角的扇形射线束,入射被检物体侧面,射线穿透物体后,第一横探测器臂架106、第一竖探测器臂架107里的第一探测器108接收经过衰减的射线信号,获得物体的侧视透视图像信息,物体与第一成像装置沿着运输工具长度方向不断的相对位移,从而获得物体全长的侧视透视图像信息。
第二升降机构111安装在回转机构105上,第二升降机构111的上端与第二射线源臂架112连接,第二射线源109和第二准直器110安装在第二射线源臂架112上。第二成像装置的展开顺序是:第二升降机构111带着第二射线源109升起到工作高度,回转机构105向右侧旋转,第二射线源109到达被检物体上方。为避免穿透物品顶端的射线射到运输工具101或操作舱115上,第二射线源109的中心可位于扫描通道的左侧上方,而不是通道的中央。扫描时,第二射线源109发出射线,经过第二准直器110,形成一个至上而下的一定角度 的扇形射线束,大致垂直入射被检物体顶部,射线穿透物体后,射到临时安装在地面的第二探测器113,第二探测器113接收经过衰减的射线信号,获得物体的俯视图像信息,物体与第二成像装置沿着运输工具行进方向不断相对位移,从而获得物体全长的透视图像信息。
第二探测器113可以为带斜坡的平板型探测器,使货物可方便、安全地通过,能承受大重量的货物碾压而不会损坏,还可以方便快捷的安装和收回。
设备舱114里安装第一射线源102、第二射线源109的附属设备。操作舱115里安装图像处理设备116,为工作人员日常操作、分析图像的工作场所。操作舱也可置于车载式系统以外的空间,与车上通过有线或无线通讯实现数据传输。操作舱115的舱壁有一定厚度的铅(或其它屏蔽材料)作为射线防护,保证操作舱115内的射线剂量水平满足法律法规要求。
行驶状态时,整个车载式检查系统的横向重心在底盘中轴线附近,整个车载式检查系统的纵向重心在后轴上;展开后,第一成像装置的探测器臂架和第二成像装置的射线源均外悬于底盘,因此在设备舱加装相应比例的配重,保证重心仍在底盘轴线附近和后轴上。无论是在成像装置收回的行驶状态,还是成像装置展开的工作状态均满足动态和静态的稳定性要求。
本发明检查系统的工作流程如下:运输工具101到达指定工作地点,进行设备接线、上电和预热,如前所述将第一成像装置、第二成像装置及其它视角成像装置(如果包括其它视角成像装置)展开到位,同时形成多视角(n≥2)成像区。被检物体进入检查区域后,首先进入第一成像区,从第一准直器103、第一横探测器臂架106、第一竖探测器臂架107形成的龙门下缓缓穿过,第一射线源102发出射线,经过物体侧面后到达第一探测器108,得到物体的第一图像;物体经过第一成像区后到达第二成像区,第二射线源109发出射线,穿过物体顶部到达第二探测器113,得到物体的第二图像。在物体完全通过多视角成像区后,探测器获取到物体完整的第一、第二及其它视图信息,经过图像处理设备116的数据处理和图像重建,即可在一次扫描 后得到物体的多视角射线透视图像。
为避免不同射线源与探测器之间的散射干扰,采用间隔工作方式进行出束和采样。在一个完整的第一成像与第二成像工作周期内,当第一射线源出束时,同时发出第一触发信号,第一探测器接收到第一触发信号时进行采样,同时联锁第二射线源不能出束、第二探测器禁止采样,保证第一探测器仅接收到第一射线源的射线经过被检物体的衰减信号;同理,第二成像装置的工作方式与之类似。两套成像装置出束和采样相互间隔,即协同工作,又不相互干扰。当具有多套成像装置时,工作原理与此相同。两套或多套成像装置可独立工作,也可以同时工作。例如,第一射线源和第二射线源交替出束。
多视角获得的图像数据分别相对独立进行处理,获得多角度的图像信息,分别在两个显示器上显示第二和第一等视角图像信息,方便、清晰的看出封闭物体不同角度的轮廓和透视图,进一步判读物体的性质。
多套成像装置可以从多个视角同时扫描成像,也可以有选择地使用其中的一个或一些成像装置从一个视角或多个视角进行成像。
根据本发明的实施例的系统有两种设备状态,一种是运输状态,一种是扫描状态。当需要运输时,所有射线源臂架、升降装置收回、探测器臂架折叠,切换到运输状态,外形尺寸完全满足道路运输要求;到达检测现场时,展开所有臂架和升降装置,转换到扫描状态。扫描时,物体从龙门架内穿过,多套成像装置可同时工作也可部分工作。为避免不必要的散射对图像质量造成影响,同时工作时,多套射线源从物体侧面、顶部或其它视角间隔发出射线,多套探测器根据射线源出束信号分别从另一侧面、底部或其它方向接收射线信号,并进行图像重建,获取多个方向、角度的射线透视图,从而只需要进行一次扫描,即可获得完整的多视角透视图像。
此外,根据本发明的系统还可以包括第三射线发射装置和第三探测装置,第三射线发射装置可以在第一射线发射装置的对侧即第一竖探测器臂架107的内侧,也可以在第一射线发射装置的上下同侧或左右同侧,还可以在第二射线发射装置的左右或前后。
通过在一辆运输工具上安装多套成像装置,完成在一次扫描过程中获得物体多角度透视图像,减少了由于物体透视图像在第一或第二方向的重叠造成的误判,方便、快捷、真实地反应了物体的透视影像,提高了检查质量和检查效率,结构简单,经济实用,集成度高,机动灵活。

Claims (10)

  1. 一种车载式检查系统,包括:
    底盘;
    设置在底盘上的回转机构;
    与所述回转机构连接的、用于发射射线的第一射线发射装置,所述第一射线发射装置从被检查物的一侧向被检查物的另一侧发射射线;
    与所述回转机构连接的、用于接收第一射线发射装置发射的射线的第一探测装置;以及
    与所述回转机构连接的、用于发射射线的第二射线发射装置,所述第二射线发射装置从上向下发射射线,
    其中所述回转机构能够大致使第一射线发射装置、第一探测装置、第二射线发射装置围绕竖直轴线在收回位置和工作位置之间转动。
  2. 根据权利要求1所述的车载式检查系统,还包括:
    与所述回转机构连接的、用于升降第一探测装置的第一升降机构。
  3. 根据权利要求1或2所述的车载式检查系统,还包括:
    与所述回转机构连接的、用于升降第二射线发射装置的第二升降机构。
  4. 根据权利要求1所述的车载式检查系统,其中:
    所述回转机构包括旋转部件,以及驱动旋转部件围绕竖直轴线转动的驱动部件,
    第一射线发射装置、第一探测装置、第二射线发射装置与旋转部件连接。
  5. 根据权利要求3所述的车载式检查系统,其中:
    第二射线发射装置包括第二射线源臂架,以及设置在第二射线源臂架上的第二射线源,
    第二射线源臂架通过第二升降机构升起,并由回转机构转动到工作位置,而进入工作状态。
  6. 根据权利要求2所述的车载式检查系统,其中:
    第一探测装置包括横探测器臂架和竖探测器臂架,以及设置在横探测器臂架和竖探测器臂架上的多个探测器,在工作状态下,横探测器臂架和竖探测器臂架大致成倒L形。
  7. 根据权利要求6所述的车载式检查系统,其中:
    横探测器臂架由第一升降机构升起,并且由回转机构转动到工作位置,而进入工作状态。
  8. 根据权利要求1所述的车载式检查系统,还包括:
    设置在地面的用于接收第二射线发射装置发射的射线的第二探测装置。
  9. 根据权利要求1所述的车载式检查系统,其中:
    第二探测装置包括平板型探测器。
  10. 根据权利要求1所述的车载式检查系统,还包括:
    设置在底盘上、并且位于回转机构的前侧的舱室,
    在收回位置,第一探测装置、第二射线发射装置放置在舱室的顶部上,并且在底盘的横向方向上,第一探测装置和第二射线发射装置间隔开。
PCT/CN2015/088732 2014-09-02 2015-09-01 车载式检查系统 WO2016034101A2 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
MX2016009995A MX360055B (es) 2014-09-02 2015-09-01 Sistema de inspeccion montado en vehiculo.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410443085.0A CN105445294B (zh) 2014-09-02 2014-09-02 车载式检查系统
CN201410443085.0 2014-09-02

Publications (2)

Publication Number Publication Date
WO2016034101A2 true WO2016034101A2 (zh) 2016-03-10
WO2016034101A3 WO2016034101A3 (zh) 2016-04-28

Family

ID=54150235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/088732 WO2016034101A2 (zh) 2014-09-02 2015-09-01 车载式检查系统

Country Status (8)

Country Link
US (1) US9897716B2 (zh)
EP (1) EP2993495B1 (zh)
CN (1) CN105445294B (zh)
CA (1) CA2902952C (zh)
HK (1) HK1222906A1 (zh)
MX (1) MX360055B (zh)
PL (1) PL2993495T3 (zh)
WO (1) WO2016034101A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109581528A (zh) * 2018-11-21 2019-04-05 南京森林警察学院 一种毒品高效探测装置
EP4206751A1 (en) * 2021-12-30 2023-07-05 Nuctech (Beijing) Company Limited Mobile radiation inspection apparatus and mobile radiation inspection system

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105438255B (zh) * 2015-12-29 2018-12-21 同方威视技术股份有限公司 一种转向助力系统及车载检查设备
CN106230088B (zh) * 2016-07-22 2019-02-15 清华大学 车载式检查系统及其电源系统、控制方法和电源控制器
CN106290422B (zh) * 2016-08-25 2020-09-08 北京华力兴科技发展有限责任公司 一种用于车辆安全检查的成像装置及其方法
WO2018036265A1 (zh) * 2016-08-25 2018-03-01 北京华力兴科技发展有限责任公司 一种用于车辆安全检查的成像装置及其方法
CN106290420B (zh) * 2016-08-31 2019-11-12 同方威视技术股份有限公司 可移动式物品检查系统及检查方法
CN106420032B (zh) 2016-08-31 2019-07-26 苏州西脉新诚生物科技有限公司 一种多脚扣合骨螺钉
CN106772650A (zh) * 2016-12-26 2017-05-31 同方威视技术股份有限公司 移动式排爆透射成像装置
CN109154791B (zh) * 2017-02-24 2021-08-20 京瓷办公信息系统株式会社 移动体的往复机构、清扫机构、光扫描装置及图像形成装置
KR102257665B1 (ko) * 2017-08-18 2021-05-31 후지 덴키 가부시키가이샤 X선 검사 시스템 및 x선 수상 장치
CN107991323A (zh) * 2017-11-21 2018-05-04 同方威视技术股份有限公司 车载式辐射检查系统
CN107765320A (zh) * 2017-11-24 2018-03-06 同方威视技术股份有限公司 检查系统
CN108227027B (zh) * 2017-12-29 2020-12-01 同方威视技术股份有限公司 车载背散射检查系统
CN109828310B (zh) * 2018-12-28 2024-05-03 同方威视技术股份有限公司 安检设备和安检方法
CN109521481A (zh) * 2019-01-04 2019-03-26 同方威视技术股份有限公司 检查装置
CN109521483B (zh) * 2019-01-04 2024-05-14 同方威视科技(北京)有限公司 检查设备
CN109799249B (zh) * 2019-02-27 2024-02-23 中国工程物理研究院机械制造工艺研究所 一种车载ct无损检测系统
CN110261927A (zh) * 2019-07-12 2019-09-20 北京华力兴科技发展有限责任公司 射线检测系统
CN113022608A (zh) * 2021-04-01 2021-06-25 中车四方车辆有限公司 车载式dr检查室
CN112946770B (zh) * 2021-05-17 2021-08-10 同方威视技术股份有限公司 扫描检查设备以及扫描检查系统
CN115097536B (zh) * 2021-07-07 2024-05-14 同方威视技术股份有限公司 检查系统和方法
CN113252713B (zh) * 2021-07-13 2021-10-08 同方威视技术股份有限公司 臂架、移动式辐射探测设备、验收系统和安检方法
CN114167509A (zh) * 2021-12-30 2022-03-11 同方威视科技(北京)有限公司 移动式检查设备和移动式检查方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7963695B2 (en) * 2002-07-23 2011-06-21 Rapiscan Systems, Inc. Rotatable boom cargo scanning system
JP2008298509A (ja) 2007-05-30 2008-12-11 Ihi Corp モバイル放射線検査装置
CN101329285A (zh) 2007-06-20 2008-12-24 沈阳华德汽车贸易有限公司 一种钴-60集装箱的车载检查系统
CN101344597A (zh) * 2007-07-11 2009-01-14 宋世鹏 一种车载物探测装置
CN101936925A (zh) * 2009-06-30 2011-01-05 同方威视技术股份有限公司 半挂车车载式集装箱检测系统
WO2011014445A1 (en) * 2009-07-29 2011-02-03 American Science And Engineering, Inc. Top-down x-ray inspection trailer
US8824632B2 (en) * 2009-07-29 2014-09-02 American Science And Engineering, Inc. Backscatter X-ray inspection van with top-down imaging
US20110186739A1 (en) * 2010-02-04 2011-08-04 L-3 Communications Security and Detection Systems Inc. Mobile tomographic cargo inspection system
JP5475575B2 (ja) 2010-07-06 2014-04-16 株式会社Ihi検査計測 X線検査用車両搬送装置
CN102556185A (zh) * 2010-12-31 2012-07-11 同方威视技术股份有限公司 半挂车自行系统、车载式辐射检测系统及其使用方法
US8971487B2 (en) * 2011-07-26 2015-03-03 American Science And Engineering, Inc. Stowable arcuate detector array
JP2013064619A (ja) 2011-09-16 2013-04-11 Ihi Inspection & Instrumentation Co Ltd 貨物多視角検査装置と方法
CN204086172U (zh) * 2014-09-02 2015-01-07 清华大学 车载式检查系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109581528A (zh) * 2018-11-21 2019-04-05 南京森林警察学院 一种毒品高效探测装置
EP4206751A1 (en) * 2021-12-30 2023-07-05 Nuctech (Beijing) Company Limited Mobile radiation inspection apparatus and mobile radiation inspection system

Also Published As

Publication number Publication date
US9897716B2 (en) 2018-02-20
CN105445294A (zh) 2016-03-30
WO2016034101A3 (zh) 2016-04-28
MX360055B (es) 2018-10-19
MX2016009995A (es) 2017-04-27
CA2902952C (en) 2017-10-17
CA2902952A1 (en) 2016-03-02
CN105445294B (zh) 2019-02-22
PL2993495T3 (pl) 2019-11-29
US20160061989A1 (en) 2016-03-03
EP2993495A1 (en) 2016-03-09
HK1222906A1 (zh) 2017-07-14
EP2993495B1 (en) 2019-06-19

Similar Documents

Publication Publication Date Title
WO2016034101A2 (zh) 车载式检查系统
US11550077B2 (en) Portable vehicle inspection portal with accompanying workstation
EP1635169B1 (en) Self contained mobile x-ray inspection system and method
US7322745B2 (en) Single boom cargo scanning system
US7369643B2 (en) Single boom cargo scanning system
US6843599B2 (en) Self-contained, portable inspection system and method
US9223049B2 (en) Cargo scanning system with boom structure
EP2433152B1 (en) Compact mobile cargo scanning system
JP6401603B2 (ja) X線透視イメージングシステム
EP2263427B1 (en) Rotatable boom cargo scanning system
WO2016095774A1 (zh) 拖挂式多视角物品检查系统及其使用方法
CN204086172U (zh) 车载式检查系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15838813

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/009995

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15838813

Country of ref document: EP

Kind code of ref document: A2