WO2016031251A1 - 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、燃料電池スタック - Google Patents

電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、燃料電池スタック Download PDF

Info

Publication number
WO2016031251A1
WO2016031251A1 PCT/JP2015/004320 JP2015004320W WO2016031251A1 WO 2016031251 A1 WO2016031251 A1 WO 2016031251A1 JP 2015004320 W JP2015004320 W JP 2015004320W WO 2016031251 A1 WO2016031251 A1 WO 2016031251A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
catalyst
core
electrode catalyst
shell
Prior art date
Application number
PCT/JP2015/004320
Other languages
English (en)
French (fr)
Inventor
聖祟 永森
智照 水崎
中村 葉子
五十嵐 寛
安宏 関
Original Assignee
エヌ・イー ケムキャット株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エヌ・イー ケムキャット株式会社 filed Critical エヌ・イー ケムキャット株式会社
Priority to DK15835698.0T priority Critical patent/DK3051614T3/en
Priority to KR1020167011317A priority patent/KR101786408B1/ko
Priority to US15/102,438 priority patent/US9893365B2/en
Priority to CA2929051A priority patent/CA2929051C/en
Priority to KR1020177022282A priority patent/KR102023260B1/ko
Priority to KR1020177022283A priority patent/KR102023261B1/ko
Priority to EP15835698.0A priority patent/EP3051614B1/en
Priority to CN201580002582.XA priority patent/CN105723551B/zh
Publication of WO2016031251A1 publication Critical patent/WO2016031251A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an electrode catalyst. More specifically, the present invention relates to an electrode catalyst suitably used for a gas diffusion electrode, and relates to an electrode catalyst suitably used for a gas diffusion electrode of a fuel cell. The present invention also relates to a composition for forming a gas diffusion electrode, a membrane / electrode assembly, and a fuel cell stack comprising the electrode catalyst particles.
  • PEFC polymer electrolyte fuel cell
  • a noble metal catalyst composed of noble metal particles of a platinum group element such as platinum (Pt) is used.
  • Pt platinum group element
  • a “Pt-supported carbon catalyst” in which Pt fine particles are supported on conductive carbon powder (hereinafter referred to as “Pt / C catalyst” if necessary) is known (for example, Pt / C catalyst having a Pt loading of 50 wt% manufactured by NE CHEMCAT, trade name: “NE-F50”, etc.).
  • the ratio of the cost occupied by the noble metal catalyst such as Pt is large in the manufacturing cost of PEFC, which is a problem for reducing the cost of PEFC and popularizing PEFC.
  • research and development of a low noble metalization technology or a de noble metalization technology of a catalyst has been advanced.
  • Patent Document 1 discloses a particle composite material (core-shell catalyst particle) having a configuration in which palladium (Pd) or a Pd alloy (corresponding to a core part) is covered with an atomic thin layer of Pt atoms (corresponding to a shell part). Is disclosed.
  • this patent document 1 describes, as an example, core-shell catalyst particles in which the core part is a layer made of Pd particles and the shell part is made of Pt. Further, a configuration including a metal element other than the core Pt group as a constituent element has been studied. On the contrary, a configuration in which a metal element other than the Pt group is included in the shell portion as a constituent element has been proposed. For example, as a configuration including tungsten (W) as a constituent element of the core portion, a configuration having a core portion made of W alone, a W alloy, and a W oxide has been proposed (for example, Patent Documents 2 to 9). Further, as a configuration including W as a constituent element of the shell portion, a configuration having a shell portion made of W alone, a W alloy, and a W oxide has been proposed (for example, Patent Document 10).
  • W tungsten
  • Patent Documents 2 to 5 disclose configurations having a core portion containing W oxide.
  • particles that are an alloy of a reduction product (WO 2-y , 0 ⁇ y ⁇ 2) with a core part of WO 2 and a shell part of WO 2 are supported on a carbon support.
  • Patent Document 2 A synthesis example of the catalyst having the structure is disclosed (Patent Document 2, Example 8).
  • Patent Document 3 discloses platinum-metal oxide composite particles having W oxide (such as sodium tungsten oxide) as a core portion and Pt as a shell portion.
  • Patent Document 4 a metal oxide particle composed of two or more solid solutions selected from a single element of W or a group of metal elements containing W is used as a base particle (core part), and a single group of Pt or a group of metal elements including Pt is used.
  • Catalyst particles having a structure in which two or more selected solid solutions are metal coating layers (shell portions) have been proposed.
  • Patent Document 5 proposes a catalyst particle having a structure in which W oxide is used as a base particle (core part) and one or more metals such as Pt (shell part) covering at least a part of the surface of the base particle. Yes.
  • Patent Documents 6 to 9 disclose a structure having a core portion containing W alone or a W alloy (W solid solution).
  • Patent Document 6 discloses catalyst particles having W alone, an alloy of W and a metal selected from another group of metals, a mixture thereof as an inner core (core part), and Pt or Pt alloy as an outer shell part.
  • a core particle (core part) made of a metal atom other than Pt or an alloy of a metal atom other than Pt (core part), and a metal particle having a shell layer (shell part) made of Pt on the surface of the core particle are electrically conductive carriers.
  • a Pt-containing catalyst having a structure supported on the catalyst is disclosed.
  • Patent Document 7 discloses a core particle (core part) having a face-centered cubic crystal structure made of W alone or a W alloy as a material, and a shell layer (shell) having a face-centered cubic crystal structure made of a metal such as Pt. Part) is disclosed.
  • Patent Document 9 discloses core-shell type fine particles having a core particle (core part) made of W alone or a W alloy as a material and a shell layer (shell part) made of a metal such as Pt.
  • Patent Document 11 a catalyst in which Pt or a Pt alloy is supported on W carbide particles has been proposed as an electrode catalyst for a fuel cell (Patent Document 11).
  • Patent Document 11 W carbide particles (particles of a mixture of WC and W 2 C or particles made of WC) are generated on the conductive carbon to modify the surface of the conductive carbon.
  • a catalyst having Pt particles supported on the particles is disclosed.
  • Patent Document 12 discloses a catalyst in which Pt particles are supported on particles mainly composed of WC. However, a configuration in which catalyst particles are supported on a conductive carbon support has not been studied.
  • Non-Patent Document 1 discloses a catalyst in which Pt particles are supported on particles containing W 2 C as a main component.
  • a configuration in which catalyst particles are supported on a conductive carbon support has not been studied.
  • a structure intended to improve the catalytic activity as well as the amount of Pt has been proposed (for example, Patent Documents). 13).
  • Patent Document 13 includes a center particle (core part) containing a Pd alloy, an outermost layer (shell part) containing Pt, and an intermediate layer made of only Pd alone between the center particle and the outermost layer.
  • Fuel cell electrode catalyst fine particles having a child core-shell structure have been proposed.
  • the present invention relates to an electrode catalyst for a fuel cell comprising a conductive carrier and catalyst particles having a core-shell structure supported on the carrier, and for an electrode having a core portion containing a W compound (particularly W carbide) as a main constituent.
  • Patent Document 2 in which a structure having a core portion containing W oxide is disclosed, a reduction product (WO 2-y , 0) having a core portion of WO 2 and a shell portion of WO 2 on a carbon support.
  • Patent Document 2 a reduction product having a core portion of WO 2 and a shell portion of WO 2 on a carbon support.
  • Patent Document 2 a catalyst having a structure in which particles that are an alloy of ⁇ y ⁇ 2) and Pd are supported
  • the catalytic activity of this example is Pd on a carbon support. It is shown that the improvement is made with respect to the comparative example (Patent Document 2, Comparative Example 2) in which particles are supported (Patent Document 2, FIG. 11).
  • Patent Document 2 Comparative Example 2 in which particles are supported
  • FIG. 11 it is unclear whether the configuration of this example is an effective configuration from the viewpoint of obtaining catalytic activity at a level that can withstand practical use and a sufficient durability as compared with a conventional Pt / C catalyst.
  • Patent Documents 3 to 5 which disclose other configurations having a core portion containing W oxide, do not describe examples corresponding to catalysts having a core portion containing W oxide. The activity and durability have not been demonstrated. That is, Patent Document 3 does not describe an example. Further, Patent Document 4 and Patent Document 5 do not describe examples of catalysts having a structure using conductive carbon as a carrier. Further, when the configuration of the example is expressed as “shell part / core part”, the example is “Pt / CeO 2 ”, “reduced and deposited Pt simple substance and Ru simple substance / CeO 2 ”, “reduced and precipitated Pt. “Simple substance and Ru simple substance / CeO 2 .ZrO 2 solid solution”, and only the result of the toxic substance purification performance evaluation test.
  • Patent Documents 6 to 9 which disclose a structure having a core portion containing W alone or a W alloy (W solid solution) have a core portion containing W alone or a W alloy (W solid solution).
  • W solid solution a structure having a core portion containing W alone or a W alloy (W solid solution).
  • Patent Document 7 the performance evaluation is described as an example, and only the configuration of “Pt / Ru” (Patent Document 7, Example 1) is expressed by “shell part / core part”.
  • Patent Document 8 and Patent Document 9 an example of synthesizing “W core fine particles (fine particles of W simple substance)” is described, but there is no description of an example in which a shell portion is formed and used as a catalyst.
  • What is described as an example and evaluated for performance is only the configuration of “Pt / Ru” and “Pt / Ni” when expressed as “shell part / core part” (paragraph [0111] of Patent Document 8, Example 1 and Example 2 of Patent Document 9).
  • Patent Document 11 in which a catalyst in which Pt or a Pt alloy is supported on W carbide particles is proposed, W carbide particles are generated on the conductive carbon by surface modification of the conductive carbon.
  • a catalyst in which Pt particles are supported on the particles is disclosed (Patent Document 11, Example 1, Example 2).
  • the configuration of the example (“Example 1” and “Example 2” in Patent Document 11) is expressed as “shell part / core part”, Pt / (mixture of WC and W 2 C), Pt / (Particles made of WC).
  • the durability of the catalyst (the degree of deterioration of the initial performance) is estimated by an accelerated deterioration test.
  • Patent Document 12 in which a catalyst in which Pt or a Pt alloy is supported on W carbide particles is proposed, an example of a configuration in which catalyst particles are supported on a conductive carbon carrier is not described. Improvement of CO poisoning resistance and anode catalyst by using Pt particles supported on WC synthesized via specific precursor compounds such as W 2 N and WS 2 (Patent Document 12, Examples 1 to 6) It is shown that the activity is improved. However, it is unclear whether the configuration of this example is an effective configuration from the viewpoint of obtaining catalytic activity at a level that can withstand practical use as compared with a conventional Pt / C catalyst, or from the viewpoint of obtaining sufficient durability.
  • Non-Patent Document 1 in which a catalyst in which Pt or a Pt alloy is supported on W carbide particles is proposed, an example of a configuration in which catalyst particles are supported on a conductive carbon support is not described.
  • An example of a catalyst having a structure in which Pt particles are supported on W 2 C is disclosed.
  • this example discloses that catalytic activity such as ECSA is improved as compared with a catalyst having a structure in which alloy particles of Pt and Ru are supported on a carbon support.
  • the configuration of this example is an effective configuration from the viewpoint of obtaining catalytic activity at a level that can withstand practical use as compared with a conventional Pt / C catalyst, or from the viewpoint of obtaining sufficient durability.
  • the present invention has been made in view of such technical circumstances, and has a catalytic activity and durability that can withstand practical use and contributes to cost reduction compared to conventional Pt / C catalysts.
  • An object of the present invention is to provide an electrode catalyst that can be used.
  • Another object of the present invention is to provide a gas diffusion electrode forming composition, a gas diffusion electrode, a membrane / electrode assembly (MEA), and a fuel cell stack, each including the electrode catalyst.
  • the present inventors have endured practical use in comparison with conventional Pt / C catalysts in terms of catalytic activity and durability when adopting a W-based material as a constituent material of the core part in order to reduce the amount of Pt used.
  • the inventors of the present invention are effective in a configuration including a core portion including at least W carbide and a two-layer shell portion.
  • the present inventors have found that it is effective to provide a shell portion (a configuration that is neither disclosed nor suggested in the prior art) and have completed the present invention. More specifically, the present invention includes the following technical matters.
  • the present invention (N1) a conductive carrier; Catalyst particles supported on the carrier; Contains The catalyst particles have a core part formed on the carrier, a first shell part formed on the core part, and a second shell part formed on the first shell part. And
  • the core portion includes a W compound containing at least W carbide,
  • the first shell portion includes Pd alone,
  • the second shell part contains Pt alone,
  • An electrode catalyst is provided.
  • the electrode catalyst of the present invention has a catalyst activity and durability at a level that can withstand practical use compared to the conventional Pt / C catalyst. And contribute to cost reduction.
  • the “W carbide” indicates a form in which a tungsten (W) atom and a carbon (C) atom exist as a compound having a bond.
  • W tungsten
  • C carbon
  • This W carbide can be confirmed by X-ray diffraction (XRD). That is, it can be confirmed by irradiating the W carbide with X-rays (Cu—K ⁇ rays) and observing the diffraction spectrum to give a characteristic peak to the W carbide.
  • WC is, for example, a feature of 31.513 °, 35.639 °, 48.300 °, 64.016 °, 65.790 °, etc. as a 2 ⁇ ( ⁇ 0.3 °) peak of X-ray diffraction. Giving a positive peak.
  • WC 1-x is, for example, 36.977 °, 42.887 °, 62.027 °, 74.198 °, 78.227 ° as a peak of 2 ⁇ ( ⁇ 0.3 °) of X-ray diffraction. And so on.
  • W 2 C is, for example, 24.5 ( ⁇ 0.3 °) peak of X-ray diffraction, 34.535 °, 38.066 °, 39.592 °, 52.332 °, 61.879 °, etc.
  • the characteristic peak is given.
  • Patent Document 13 discloses a configuration in which an intermediate layer made of only Pd is disposed between a core portion (a central particle including a Pd alloy) and a shell portion (an outermost layer including Pt). . It is disclosed that the arrangement of the intermediate layer made of only Pd is intended to stabilize the covering state of the shell portion (the outermost layer including Pt). More specifically, the lattice constant of Pd (3.89 angstroms) is closer to the lattice constant of Pt (3.92 angstroms), and platinum atoms in the shell portion (outermost layer including Pt) can be present more stably. That is disclosed.
  • Patent Document 13 suggests that the affinity between the core portion and the intermediate layer made of only Pd is also configured in consideration of the lattice constants of the constituent materials. That is, it is set as the structure which contains Pd which is a common component in an intermediate
  • the electrode catalyst particles of the present invention have the advantage that the effects of the present invention can be obtained by adopting a configuration that does not include a common component in the core portion and the first shell portion.
  • the lattice constants of WC (2.90 angstroms and 2.83 angstroms) are different from the lattice constants of Pd and Pt.
  • the configuration of the electrode catalyst if necessary, “the configuration of the catalyst particles supported on the support (main constituent material) / the configuration of the conductive support (main It is written " More specifically, it is expressed as “shell configuration / core configuration / support configuration”.
  • configuration of second shell portion / configuration of first shell portion / configuration of core portion / configuration of carrier is expressed as “configuration of second shell portion / configuration of first shell portion / configuration of core portion / configuration of carrier”.
  • configuration of the electrode catalyst is a configuration having “a second shell portion made of Pt, a first shell portion made of Pd, a core portion mainly composed of W carbide, and a carrier made of conductive carbon”, Pt / Pd / WC / C ”.
  • the core portion may further contain a W oxide as long as the effects of the present invention are obtained.
  • the composition of the constituent components of the core particles serving as the raw material of the electrode catalyst of the present invention satisfies the condition of the formula (4) described later.
  • W may be further included in the core portion within the range where the effects of the present invention are obtained.
  • the present invention also provides: (N4) The ratio R1 Pt (atom%) of simple Pt and the ratio R1 Pd (atom%) of single Pd in the analysis region near the surface measured by X-ray photoelectron spectroscopy (XPS)
  • the electrode catalyst according to any one of (N1) to (N3), which satisfies the condition (1). 0.60 ⁇ (R1 Pt / R1 Pd ) ⁇ 6.00 (1)
  • the electrode catalyst By configuring the electrode catalyst so that the above (R1 Pt / R1 Pd ) is 0.60 or more, the ratio of the portion made of simple Pt having high catalytic activity on the surface of the electrode catalyst is increased. The effect can be obtained more reliably.
  • (R1 Pt / R1 Pd ) is 6.00 or less, the content of simple Pt contained in the second shell portion can be reduced, and thus the effect of the present invention can be achieved. It will be obtained more reliably.
  • (R1 Pt / R1 Pd ) is 0.60 from the viewpoint of more reliably improving the catalytic activity (particularly, the initial Pt mass activity described later) compared to conventional Pt / C. As mentioned above, it is preferable that it is less than 1.15.
  • durability (particularly, the value of “ECSA after evaluation test” / “initial ECSA before evaluation test” in durability evaluation described later) in the durability evaluation described later is more reliable than conventional Pt / C.
  • R1 Pt / R1 Pd is preferably 1.15 or more and 6.00 or less.
  • R1 Pt atom% of the Pt simple substance
  • R1 Pd atom% of the Pd simple substance
  • XPS is measured under the following conditions (A1) to (A6).
  • A2) Photoelectron extraction accuracy: ⁇ 75 ° C. (see FIG. 3 described later)
  • this invention provides the catalyst for electrodes as described in (N4) whose (N5) said R1 Pt is 35 atom% or more.
  • R1 Pt is 35 to 48 atm% from the viewpoint of more reliably improving the catalytic activity (particularly, the initial Pt mass activity described later) as compared with conventional Pt / C. preferable.
  • R1 Pt is preferably 40 atm% or more, and more preferably 50 atm% or more.
  • this invention provides the catalyst for electrodes as described in (N4) or (N5) whose (N6) said R1 Pd is 60 atom% or less.
  • unit on the surface of the electrode catalyst reduces, and it becomes possible to suppress the elution of Pd more reliably. Therefore, the effect of the present invention can be obtained more reliably, for example, the durability (in particular, the value of “ECSA after evaluation test” / “initial ECSA before evaluation test” in durability evaluation described later) is further improved. become.
  • R1 Pd is more preferably 36 atom% or less, and even more preferably 26 atom% or less.
  • the present invention also provides: (N7) The ratio R1 W of W derived from the W compound in the analysis region near the surface measured by X-ray photoelectron spectroscopy (XPS) is 30 atom% or less, of (N4) to (N6)
  • the electrode catalyst according to any one of the above is provided. Thereby, the part which a core part exposes on the surface of the electrode catalyst reduces, and the surface area of the 2nd shell part and 1st shell part which contributes to promotion of an electrode reaction can be increased. Therefore, the effect of the present invention can be obtained more reliably.
  • the present invention also provides: (N8) The Pt loading rate L Pt (wt%) and the Pd loading rate L Pd (wt%) measured by ICP emission analysis satisfy the condition of the following formula (2).
  • the electrode catalyst according to any one of (N1) to (N7) is provided.
  • the average value of the crystallite size of the catalyst particles measured by (N9) powder X-ray diffraction (XRD) is preferably 3 to 22.0 nm.
  • the average value of the crystallite size is less than 3 nm, it becomes difficult to form particles serving as the core portion on the support, and the first shell portion and the second shell portion are included, and the condition of the formula (1) is satisfied.
  • the average value of the crystallite size exceeds 22.0 nm, it becomes extremely difficult to form particles that become the core portion on the carrier in a highly dispersed state, and the catalyst particles satisfy the condition of formula (1). Tends to be difficult to form on the support.
  • the first shell portion is made of Pt
  • the second shell portion is made of Pd
  • the first shell portion is composed of one or two Pt atomic layers
  • Pt (111 ) Plane peak is not seen
  • the average value calculated from the peak of the Pd (111) plane of the second shell portion is taken as the average value of the crystallite size of the catalyst particles.
  • the present invention also provides: (N10) a core particle forming step of forming core particles containing W carbide and W oxide on the carrier; A first shell portion forming step of forming the first shell portion on at least a part of the surface of the core particles obtained through the core particle forming step; A second shell part forming step of forming the second shell part on at least a part of the surface of the particles obtained through the first shell part forming step; Adjusted through About particles obtained through the core particle forming step, The W carbide ratio R0 WC (atom%) and the W oxide ratio R0 WO (atom%) in the analysis region near the surface measured by X-ray photoelectron spectroscopy (XPS) are expressed by the following formula (3): )
  • the electrode catalyst according to any one of (N1) to (N10) is provided.
  • R0 WC / (R0 WC + R0 WO ) ⁇ 0.25 (4) Further, from the same viewpoint, R0 WC / (R0 WC + R0 WO ) is preferably 0.30 or more, more preferably 0.40 or more, further preferably 0.50 or more, More preferably, it is 0.70 or more.
  • the present invention provides (N12) Provided is a gas diffusion electrode forming composition containing the electrode catalyst described in any one of (N1) to (N11) above. Since the composition for forming a gas diffusion electrode of the present invention contains the electrode catalyst of the present invention, it has a catalyst activity (polarization characteristics) and durability that can withstand practical use compared to the conventional Pt / C catalyst. It is possible to easily manufacture a gas diffusion electrode that can contribute to cost reduction.
  • the present invention also provides: (N13)
  • the electrode catalyst described in any one of (N1) to (N11) described above is contained or formed using the gas diffusion electrode forming composition described in (N12) above.
  • a gas diffusion electrode is provided.
  • the gas diffusion electrode of the present invention includes the electrode catalyst of the present invention. Or the gas diffusion electrode of this invention is formed using the composition for gas diffusion electrode formation of this invention. Therefore, as compared with the conventional Pt / C catalyst, the catalyst activity (polarization characteristics) and durability that can withstand practical use can be easily obtained, and the structure can contribute to cost reduction.
  • the present invention provides (N14) A membrane / electrode assembly (MEA) including the gas diffusion electrode described in (N13) above is provided. Since the membrane-electrode assembly (MEA) of the present invention includes the gas diffusion electrode of the present invention, it has battery characteristics and durability at a level that can withstand practical use, compared to a conventional Pt / C catalyst. And it becomes easy to set it as the structure which can contribute to cost reduction.
  • MEA membrane / electrode assembly
  • the present invention also provides: (N15) A fuel cell stack characterized by including the membrane-electrode assembly (MEA) described in (N14) above. Since the fuel cell stack of the present invention includes the membrane-electrode assembly (MEA) of the present invention, it has battery characteristics and durability that can withstand practical use compared to the conventional Pt / C catalyst. And it becomes easy to set it as the structure which can contribute to cost reduction.
  • MEA membrane-electrode assembly
  • the present invention compared with the conventional Pt / C catalyst, it has the catalyst activity and durability of the level which can be used practically, and the catalyst for electrodes which can contribute to cost reduction is provided.
  • the present invention also provides a gas diffusion electrode forming composition, a gas diffusion electrode, a membrane / electrode assembly (MEA), and a fuel cell stack comprising such an electrode catalyst.
  • FIG. 1 is a schematic cross-sectional view showing a preferred embodiment of the electrode catalyst (core-shell catalyst) of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing another preferred embodiment of the electrode catalyst (core-shell catalyst) of the present invention.
  • the electrode catalyst 10 of the present invention includes a carrier 2 and catalyst particles 3 having a so-called “core-shell structure” formed on the carrier 2.
  • the catalyst particle 3 includes a so-called “core shell” including a core portion 4 formed on the carrier 2 and a shell portion 7 (first shell portion 5 and second shell portion 6) formed on the core portion 4. Structure ".
  • the electrode catalyst 10 has a structure in which the core part 4 is a core (core) on the carrier 2 and the surface of the core part 4 is covered with the first shell part 5 and the second shell part 6 being the shell part 7. have.
  • the constituent elements (chemical composition) of the core portion, the constituent elements (chemical composition) of the first shell portion 5 and the second shell portion 6 are different.
  • the electrode catalyst only needs to have a shell portion formed on at least a part of the surface of the core portion.
  • the electrode catalyst 10 is preferably in a state in which substantially the entire surface of the core portion 4 is covered by the shell portion 7. .
  • the electrode catalyst 1 is covered with a part of the surface of the core part 4 and the surface of the core part 4 is partially exposed within the range in which the effect of the present invention can be obtained ( For example, a state in which a part 4s of the surface of the core portion 4 shown in FIG.
  • the shell part 7a and the shell part 7b may be partially formed on part of the surface of the core part 4 as in the electrode catalyst 10A shown in FIG.
  • the second shell portion 6a covers a substantially entire surface of the first shell portion 5a.
  • a part of the surface of the first shell portion 5b is covered and the surface of the first shell portion 5b is partially exposed (for example, 2 may be a state in which a part 5s of the surface of the first shell portion 5b shown in FIG. 2 is exposed.
  • the electrode catalyst of the present invention may be in a state where the electrode catalyst 10 shown in FIG. 1 and the electrode catalyst 10A shown in FIG.
  • the shell portion 7a and the shell portion 7b may be mixed with respect to the same core portion 4 as shown in FIG. .
  • only the shell portion 7 a may be formed on the same core portion 4, and only the shell portion 7 b is formed on the same core portion 4. May be in a state where any of the states is formed (not shown).
  • the electrode catalyst 1 includes, on the support 2, in addition to at least one of the electrode catalyst 10 and the electrode catalyst 10A described above, A state in which “particles of only the core part 4 not coated with the core” are supported (not shown) may be included. Further, within the range where the effects of the present invention can be obtained, the electrode catalyst 1 is composed of only the constituent elements of the shell portion 7 in addition to at least one of the electrode catalyst 10 and the electrode catalyst 10A. A state in which the “particles” are supported without being in contact with the core portion 4 may be included (not shown).
  • the electrode catalyst 1 includes a core not covered with the shell portion 7 in addition to at least one of the electrode catalyst 10 and the electrode catalyst 10A.
  • a state in which the “particles of only the portion 4” and “particles composed only of the constituent elements of the shell portion 7” are independently supported may be included.
  • a preferable range is suitably set by the design concept of the catalyst for electrodes.
  • Pt constituting the second shell portion 6 it is preferably a layer composed of one atom (one atomic layer).
  • the thickness of the second shell portion 6 is equivalent to twice the diameter of one atom of the metal element (when approximating a sphere) when the metal element constituting the second shell portion 6 is one kind. It is preferable that the thickness be
  • a layer composed of one atom one atom formed by juxtaposing two or more types of atoms on the surface of the core portion 4.
  • the thickness corresponding to the layer) is preferable.
  • the thickness is preferably 1 to 5 nm, and more preferably 2 to 10 nm.
  • the “average particle diameter” refers to an average value of the diameters of particles composed of an arbitrary number of particle groups, as observed with an electron micrograph.
  • the thickness of the first shell portion 5 is preferably equal to or less than the thickness of the second shell portion 6. This is preferable because the amount of Pd used can be reduced and the amount of Pd eluted when used as an electrode catalyst can be reduced.
  • the carrier 2 is not particularly limited as long as it can carry a composite composed of the core part 4, the first shell part 5, and the second shell part 6 and has a large surface area. Furthermore, it is preferable that the support
  • Carrier 2 is glassy carbon (GC), fine carbon, carbon black, graphite, carbon fiber, activated carbon, pulverized product of activated carbon, carbon nanofiber, carbon nanotube, etc., or glass or ceramics material such as oxide. It can be adopted as appropriate.
  • a carbon-based material is preferable from the viewpoint of the adsorptivity with the core portion 4 and the BET specific surface area of the carrier 2.
  • conductive carbon is preferable, and as the conductive carbon, conductive carbon black is particularly preferable. Examples of the conductive carbon black include trade names “Ketjen Black EC300J”, “Ketjen Black EC600”, “Carbon EPC” and the like (manufactured by Lion Chemical Co., Ltd.).
  • the core portion 4 has a configuration including a W compound including at least W carbide. Further, from the viewpoint of obtaining the effect of the present invention more reliably, it is preferable that the composition is composed of a W compound containing at least a W carbide.
  • the W compound may further contain a W oxide as another component of the W carbide.
  • the component is preferably W alone.
  • the W compound further includes a W oxide as another component of the W carbide
  • the core portion 4 is obtained by X-ray photoelectron spectroscopy (XPS) from the viewpoint of obtaining sufficient conductivity more reliably.
  • XPS X-ray photoelectron spectroscopy
  • the W carbide ratio R0 WC (atom%) and the W oxide ratio R0 WO (atom%) in the analysis region in the vicinity of the surface satisfy the condition of the following formula (3).
  • R0 WC / (R0 WC + R0 WO ) further satisfy the condition of the following formula (4).
  • R0 WC / (R0 WC + R0 WO ) ⁇ 0.25 (4) Further, from the same viewpoint, R0 WC / (R0 WC + R0 WO ) is preferably 0.30 or more, more preferably 0.40 or more, further preferably 0.50 or more, More preferably, it is 0.70 or more.
  • the first shell portion 5 includes Pd alone. From the viewpoints of obtaining the effects of the present invention more reliably and ease of manufacture, the first shell portion 5 is preferably composed of Pd alone as a main component (50 wt% or more), and is composed of Pd alone. More preferably.
  • the second shell portion 6 includes a single Pt. From the viewpoints of obtaining the effects of the present invention more reliably and ease of manufacture, the second shell portion 6 is preferably composed of Pt alone as a main component (50 wt% or more), and is composed of Pt alone. More preferably.
  • the electrode catalyst 10 and the electrode catalyst 10A satisfy the following conditions from the viewpoint of more reliably obtaining the effects of the present invention. That is, the electrode catalyst 10 and the electrode catalyst 10A are composed of a Pt simple substance ratio R1 Pt (atom%) and a Pd simple substance ratio R1 in the analysis region near the surface measured by X-ray photoelectron spectroscopy (XPS). Pd (atom%) preferably satisfies the condition of the following formula (1). 0.60 ⁇ (R1 Pt / R1 Pd ) ⁇ 6.00 (1)
  • the surface of these electrode catalysts has a portion made of a single element of Pt having high catalytic activity.
  • the ratio increases, and the effects of the present invention can be obtained more reliably.
  • the electrode catalyst so that the above (R1 Pt / R1 Pd ) is 6.00 or less, the content of simple Pt contained in the second shell portion can be reduced, and thus the effect of the present invention can be achieved. It will be obtained more reliably.
  • R1 Pt / R1 Pd is preferably 0.60 or more and less than 1.15.
  • the durability of the electrode catalyst 10 and the electrode catalyst 10A compared to the conventional Pt / C is preferably 1.15 or more and 6.00 or less from the viewpoint of more reliably improving the value of (R).
  • the electrode catalyst 10 and the electrode catalyst 10A have R1 Pt of 35 atom% or more. Compared to conventional Pt / C, R1 Pt is 35 to 48 atm% from the viewpoint of more reliably improving the catalytic activity of the electrode catalyst 10 and the electrode catalyst 10A (particularly, the initial Pt mass activity described later). It is preferable that
  • R1 Pt is preferably 40 atm% or more, and more preferably 50 atm% or more.
  • R1 Pd is preferably 60 atom% or less.
  • R1 Pd is more preferably 36 atom% or less, and even more preferably 26 atom% or less.
  • the ratio R1 W of W derived from the W compound in the analysis region near the surface measured by XPS is 30 atom% or less.
  • the Pt loading rate L Pt (wt%) and the Pd loading rate L Pd (wt%) measured by ICP emission analysis satisfy the condition of the following formula (2). L Pt / L Pd ⁇ 0.30 (2)
  • X-ray photoelectron spectroscopy is carried out under the following analysis conditions (A1) to (A5).
  • A1 X-ray source: Monochromatic AlK ⁇
  • A3) Charging correction: R1s peak energy is corrected to 284.8 eV
  • Analysis area 200 ⁇ m, (A5) Chamber pressure during analysis: about 1 ⁇ 10 ⁇ 6 Pa
  • the photoelectron extraction accuracy ⁇ of (A2) is, as shown in FIG. 3, the X-ray emitted from the X-ray source 32 is irradiated to the sample set on the sample stage 34 and is emitted from the sample.
  • the angle ⁇ when the photoelectron is received by the spectroscope 36 corresponds to the angle between the light receiving axis of the spectrometer 36 and the surface of the sample layer of the sample stage 34.
  • the method for producing electrode catalyst 10 (10A) includes a “core particle forming step” in which core particles containing W carbide and W oxide are formed on a support, and the surface of the core particles obtained through the core particle forming step.
  • the first shell part 5 (5a, 5b) is formed on at least a part of the first shell part forming step, and the second shell part is formed on at least a part of the surface of the particles obtained through the first shell part forming step.
  • the electrode catalyst 10 (10A) includes catalyst particles 3 (3a) that are catalyst components of the electrode catalyst, that is, the core portion 4, the first shell portion 5 (5a, 5b), and the second shell portion 6 (6a, 6b). ) Are sequentially supported on the carrier 2.
  • the method for producing the electrode catalyst 10 (10A) is not particularly limited as long as the catalyst particles 3 (3a) as the catalyst component can be supported on the carrier 2.
  • an impregnation method in which a solution containing a catalyst component is brought into contact with the support 2 and the support component 2 is impregnated with the catalyst component
  • a liquid phase reduction method in which a reducing agent is added to the solution containing the catalyst component
  • underpotential deposition UPD
  • electrochemical deposition methods chemical reduction methods, reduction deposition methods using adsorbed hydrogen, alloy catalyst surface leaching methods, displacement plating methods, sputtering methods, vacuum deposition methods and the like can be exemplified.
  • the raw materials, the blending ratio of the raw materials, and the reaction of the synthesis reaction are preferably performed by combining the above-described known methods so as to satisfy the condition of the formula (5) described above. It is preferable to adjust conditions and the like.
  • the above-described conditions are satisfied so that at least one of the conditions of the formulas (1) to (3) described above is satisfied. It is preferable to adjust the raw materials, their blending ratio, synthesis reaction conditions, etc. by combining known methods.
  • a treatment for reducing the W oxide present on the surface of the core particles is performed. You may give it. For example, a reduction treatment of the surface of the core particle or a W oxide removal treatment with an acid may be performed.
  • the electrode catalyst 10 and the electrode catalyst 10A are configured so as to satisfy preferable conditions such as the conditions represented by the above formulas (1) to (5), for example, the chemical composition of the product (catalyst)
  • the structure and structure are analyzed using various known analytical methods, and the analysis results obtained are fed back to the manufacturing process to prepare the raw materials to be selected, the mixing ratio of the raw materials, the synthesis reaction to be selected, the reaction conditions for the synthesis reaction, etc. ⁇ How to change.
  • FIG. 4 shows a gas diffusion electrode forming composition containing the electrode catalyst of the present invention, a gas diffusion electrode produced using this gas diffusion electrode forming composition, and a membrane / electrode assembly comprising this gas diffusion electrode
  • FIG. 2 is a schematic diagram showing a preferred embodiment of a fuel cell stack including a MEMBRANE ELECTRODE ASSEMBLY (hereinafter abbreviated as “MEA” as necessary).
  • the fuel cell stack 40 shown in FIG. 4 has a configuration in which the MEA 42 is a unit cell and a plurality of the unit cells are stacked.
  • the fuel cell stack 40 includes an anode 43 (negative electrode) that is a gas diffusion electrode, a cathode 44 (positive electrode) that is a gas diffusion electrode, and an electrolyte membrane 45 disposed between these electrodes. have.
  • the fuel cell stack 40 has a configuration in which the MEA 42 is sandwiched between a separator 46 and a separator 48.
  • the gas diffusion electrode forming composition, the anode 43 and the cathode 44, and the MEA 42, which are members of the fuel cell stack 40 including the electrode catalyst of the present invention, will be described.
  • the electrode catalyst of the present invention can be used as a so-called catalyst ink component to form the gas diffusion electrode forming composition of the present invention.
  • the gas diffusion electrode forming composition of the present invention is characterized by containing the electrode catalyst of the present invention.
  • the composition for forming a gas diffusion electrode contains the electrode catalyst and an ionomer solution as main components.
  • the composition of the ionomer solution is not particularly limited.
  • the ionomer solution may contain a polymer electrolyte having hydrogen ion conductivity, water, and alcohol.
  • the polymer electrolyte contained in the ionomer solution is not particularly limited.
  • the polymer electrolyte can be exemplified by a perfluorocarbon resin having a known sulfonic acid group or carboxylic acid group.
  • a perfluorocarbon resin having a known sulfonic acid group or carboxylic acid group.
  • polymer electrolytes having hydrogen ion conductivity Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.) It can be illustrated.
  • the composition for forming a gas diffusion electrode can be prepared by mixing, crushing, and stirring an electrode catalyst and an ionomer solution.
  • the composition for forming a gas diffusion electrode can be prepared using a pulverizing mixer such as a ball mill or an ultrasonic disperser.
  • the pulverization conditions and the stirring conditions when operating the pulverization mixer can be appropriately set according to the mode of the gas diffusion electrode forming composition.
  • Each composition of the electrode catalyst, water, alcohol, and polymer electrolyte having hydrogen ion conductivity contained in the gas diffusion electrode forming composition has a good dispersion state of the electrode catalyst, and the electrode catalyst is gas-diffused. It is appropriately set so that the entire catalyst layer of the electrode can be widely spread and the power generation performance of the fuel cell can be improved.
  • the anode 43 which is a gas diffusion electrode, has a configuration including a gas diffusion layer 43a and a catalyst layer 43b formed on the surface of the gas diffusion layer 43a on the electrolyte membrane 45 side.
  • the cathode 44 has a gas diffusion layer (not shown) and a catalyst layer (not shown) formed on the surface of the gas diffusion layer on the electrolyte membrane 45 side.
  • the electrode catalyst of the present invention may be contained in at least one of the anode 43 and the cathode 44.
  • the gas diffusion electrode of this invention can be used as an anode and can also be used as a cathode.
  • the catalyst layer 43b is a layer in the anode 43 where a chemical reaction is performed in which the hydrogen gas sent from the gas diffusion layer 43a is dissociated into hydrogen ions by the action of the electrode catalyst 10 contained in the catalyst layer 43b. Further, the catalyst layer 43b is formed of the electrode catalyst 10 in which, in the cathode 44, the catalyst layer 43b contains air (oxygen gas) sent from the gas diffusion layer 43a and hydrogen ions that have moved through the electrolyte membrane from the anode. It is a layer in which a chemical reaction that binds by action takes place.
  • the catalyst layer 43b is formed using the gas diffusion electrode forming composition.
  • the catalyst layer 43b preferably has a large surface area so that the reaction between the electrode catalyst 10 and the hydrogen gas or air (oxygen gas) sent from the gas diffusion layer 43a can be sufficiently performed.
  • the catalyst layer 43b is preferably formed so as to have a uniform thickness throughout. The thickness of the catalyst layer 43b may be appropriately adjusted and is not limited, but is preferably 2 to 200 ⁇ m.
  • the gas diffusion layer provided in the anode 43 serving as the gas diffusion electrode and the cathode 44 serving as the gas diffusion electrode is introduced into the gas flow path formed between the separator 46 and the anode 43 from the outside of the fuel cell stack 40.
  • This is a layer provided for diffusing the hydrogen gas and the air (oxygen gas) introduced into the gas flow path formed between the separator 48 and the cathode 44 into each catalyst layer.
  • the gas diffusion layer has a role of supporting the catalyst layer and immobilizing it on the surface of the gas diffusion electrode.
  • the gas diffusion layer has a function / structure that allows hydrogen gas or air (oxygen gas) to pass through well and reach the catalyst layer. For this reason, it is preferable that the gas diffusion layer has water repellency.
  • the gas diffusion layer has a water repellent component such as polyethylene terephthalate (PTFE).
  • the member which can be used for the gas diffusion layer is not particularly limited, and a known member used for the gas diffusion layer of the fuel cell electrode can be used.
  • a known member used for the gas diffusion layer of the fuel cell electrode can be used.
  • carbon paper, carbon paper as a main raw material, and carbon powder, ion-exchanged water as optional components, and a secondary material made of polyethylene terephthalate dispersion as a binder are applied to carbon paper.
  • the anode 43 that is a gas diffusion electrode and the cathode 44 that is a gas diffusion electrode may include an intermediate layer (not shown) between the gas diffusion layer and the catalyst layer.
  • the gas diffusion electrode of this invention should just be manufactured so that the electrode catalyst of this invention may become a structural component of a catalyst layer, and a manufacturing method is not specifically limited, A well-known manufacturing method is employable.
  • the gas diffusion electrode is formed by applying a gas diffusion electrode forming composition containing an electrode catalyst, a polymer electrolyte having hydrogen ion conductivity, and an ionomer to the gas diffusion layer, and You may manufacture through the process of drying the gas diffusion layer with which the composition was apply
  • An MEA 42 that is a preferred embodiment of the MEA of the present invention shown in FIG. 4 has a configuration including an anode 43, a cathode 44, and an electrolyte membrane 45.
  • the MEA 42 has a configuration in which at least one of an anode and a cathode includes a gas diffusion electrode containing the electrode catalyst of the present invention.
  • the MEA 42 can be manufactured by laminating the anode 43, the electrolyte 300, and the cathode 44 in this order, and then press-bonding them.
  • a fuel cell stack 40 which is a preferred embodiment of the fuel cell stack of the present invention shown in FIG. 4 has a configuration in which a separator 46 is disposed outside the anode 43 of the MEA 42 and a separator 48 is disposed outside the cathode 44.
  • One unit cell single cell
  • this unit cell single cell
  • two or more units are integrated (not shown).
  • the fuel cell system is completed by attaching and assembling peripheral devices to the fuel cell stack 40.
  • This Pt / Pd / W / C powder is prepared by preparing a mixed solution of the following Pd / W / C powder, potassium chloroplatinate, and water, and adding a reducing agent to the Pt / Pd / W / C powder. It was obtained by reducing the ions.
  • Pd / W / C powder in which a first shell portion made of Pd is formed on W / C “Pd / W / C” powder in which a first shell portion made of Pd is formed on W of the following “W / C” powder particles ⁇ trade name “NE-F02W00-AA”, NE CHEMCAT Made) ⁇ .
  • This Pd / W / C powder was prepared by preparing a mixed solution of the following W / C powder, sodium tetrachloropalladium (II) and water, and adding a reducing agent to the palladium in the liquid obtained. It can be obtained by reducing ions.
  • This W / C powder is a powder containing a commercially available carbon black powder (specific surface area of 750 to 850 m 2 / g), a commercially available tungstate, and a commercially available water-soluble polymer (carbon source) in a reducing atmosphere. It was prepared by heat treatment. From the XRD analysis results, it was confirmed that the core particles of the W / C powder were composed of the following W carbide and W oxide. That is, the W carbide was WC, W 2 C, WC 1-x (0 ⁇ x ⁇ 1), and the W oxide was WO 3 .
  • the Pt loading rate L Pt (wt%), the Pd loading rate L Pd (wt%), and the W loading rate L W (wt%) were measured by the following methods.
  • the electrode catalyst of Example 1 was immersed in aqua regia to dissolve the metal. Next, insoluble component carbon was removed from the aqua regia. Next, aqua regia without carbon was analyzed by ICP. The results of ICP analysis are shown in Table 1.
  • the first shell made of Pd was formed on at least a part of the surface of the core part particles made of W carbide and W oxide.
  • a catalyst particle having a core-shell structure in which a second shell portion layer made of Pt is formed on at least a part of the first shell portion layer is supported on a conductive carbon carrier. (See FIG. 1 and FIG. 2).
  • Example 2 to Example 5 XPS analysis results (R1 Pt , R1 Pd , R1 W ) on the surface of the electrode catalyst shown in Table 1, ICP analysis results (L Pt , L Pd , L W ) for the entire catalyst particles, XPS analysis on the surface of the core particles Example 2 to Example using the same preparation conditions and the same raw materials except that the amount of raw materials charged, reaction conditions, etc. were finely adjusted to have the result ⁇ R0 WC / (R0 WC + R0 WO ) ⁇ 5 electrode catalysts were prepared. XPS analysis and ICP analysis were also performed under the same conditions as in Example 1.
  • Pd / W / C powder in which a first shell portion made of Pd is formed on W / C “Pd / W / C” powder in which a first shell portion made of Pd is formed on W of the following “W / C” powder particles ⁇ trade name “NE-G02W00-AA”, NE CHEMCAT Made) ⁇ .
  • This Pd / W / C powder was prepared by preparing a mixed solution of the following W / C powder, sodium tetrachloropalladium (II) and water, and adding a reducing agent to the palladium in the liquid obtained. It can be obtained by reducing ions.
  • the W / C powder is a powder containing a commercially available carbon black powder (specific surface area 200 to 300 m 2 / g), a commercially available tungstate salt, and a commercially available water-soluble polymer (carbon source) in a reducing atmosphere. It was prepared by heat treatment. From the XRD analysis results, it was confirmed that the core particles of the W / C powder were composed of the following W carbide and W oxide. That is, the W carbide was WC, W 2 C, WC 1-x (0 ⁇ x ⁇ 1), and the W oxide was WO 3 .
  • the electrode catalyst of Example 6 was subjected to XPS analysis, ICP analysis, and core particle XPS analysis of the surface of the electrode catalyst under the same conditions as those of the electrode catalyst of Example 1.
  • Example 7 to 11 XPS analysis results (R1 Pt , R1 Pd , R1 W ) of the surface of the electrode catalyst shown in Table 2, ICP analysis results (L Pt , L Pd , L W ) of the entire catalyst particles, XPS analysis of the surface of the core particles Example 7 to Example using the same preparation conditions and the same raw materials except that the amount of raw materials charged, reaction conditions, etc. were finely adjusted to have the result ⁇ R0 WC / (R0 WC + R0 WO ) ⁇ Eleven electrode catalysts were prepared. XPS analysis and ICP analysis were also performed under the same conditions as in Example 1.
  • the electrode catalysts of Examples 7 to 11 as a result of confirming the STEM-HAADF image and the EDS elementary mapping image, it was found that at least a part of the surface of the core particle composed of W carbide and W oxide was present.
  • the catalyst particles having a core-shell structure in which the first shell layer made of Pd is formed and the second shell layer made of Pt is formed on at least a part of the first shell layer are conductive carbon. It was confirmed that the structure supported on the carrier (see FIGS. 1 and 2) was provided.
  • Pd / W / C powder in which a first shell portion made of Pd is formed on W / C “Pd / W / C” powder in which a first shell portion made of Pd is formed on W of the following “W / C” powder particles ⁇ trade name “NE-G02W00-DB”, NE CHEMCAT Made) ⁇ .
  • This Pd / W / C powder was prepared by preparing a mixed solution of the following W / C powder, sodium tetrachloropalladium (II) and water, and adding a reducing agent to the palladium in the liquid obtained. It can be obtained by reducing ions.
  • W / C powder [Core particle supported carbon “W / C” powder] W / C powder ⁇ trade name “NE-G00W00-B”, manufactured by NE CHEMCAT) ⁇ in which core particles composed of W carbide and W oxide were supported on carbon black powder was prepared.
  • This W / C powder is obtained by heat-treating a powder containing a commercially available carbon black powder (specific surface area 200 to 300 m 2 / g) and a commercially available tungstate salt in a reducing atmosphere containing a hydrocarbon gas (carbon source). Adjusted. From the XRD analysis results, it was confirmed that the core particles of this W / C powder were composed of the following W simple substance, W carbide, and W oxide.
  • the W carbide was WC
  • the W oxide was WO 3
  • the electrode catalyst of Example 12 was subjected to XPS analysis and ICP analysis under the same conditions as the electrode catalyst of Example 1. The results are shown in Table 3.
  • the electrode catalyst of Example 12 was confirmed to have a configuration (see FIGS. 1 and 2).
  • Example 13 to Example 21 XPS analysis results (R1 Pt , R1 Pd , R1 W ) on the surface of the electrode catalyst shown in Table 3, ICP analysis results (L Pt , L Pd , L W ) on the entire catalyst particle, XPS analysis on the surface of the core particle Example 13 to Example using the same preparation conditions and the same raw materials except that the amount of raw materials and the reaction conditions were finely adjusted to have the result ⁇ R0 WC / (R0 WC + R0 WO ) ⁇ 21 electrode catalysts were prepared. XPS analysis and ICP analysis were also performed under the same conditions as in Example 12.
  • the electrode catalysts of Examples 13 to 21 as a result of confirming the STEM-HAADF image and the EDS elementary mapping image, it was found that at least a part of the surface of the core particle composed of W carbide and W oxide was present.
  • the catalyst particles having the core-shell structure in which the first shell layer made of Pd is formed and the second shell layer made of Pt is formed on at least a part of the first shell layer are conductive carbon. It was confirmed that the structure supported on the carrier (see FIGS. 1 and 2) was provided.
  • Pd / W / C powder in which a first shell portion made of Pd is formed on W / C “Pd / W / C” powder in which the first shell portion made of Pd is formed on W of the following “W / C” powder particles ⁇ trade name “NE-G02W00-CB”, NE CHEMCAT Made) ⁇ .
  • This Pd / W / C powder was prepared by preparing a mixed solution of the following W / C powder, sodium tetrachloropalladium (II) and water, and adding the same to Examples 1 to 21. It can be obtained by reducing palladium ions in a liquid obtained by adding a different reducing agent.
  • W / C powder [Core particle supported carbon “W / C” powder] W / C powder ⁇ trade name “NE-G00W00-B”, manufactured by NE CHEMCAT) ⁇ in which core particles composed of W carbide and W oxide were supported on carbon black powder was prepared.
  • This W / C powder is obtained by heat-treating a powder containing a commercially available carbon black powder (specific surface area 200 to 300 m 2 / g) and a commercially available tungstate salt in a reducing atmosphere containing a hydrocarbon gas (carbon source). Adjusted. From the XRD analysis results, it was confirmed that the core particles of this W / C powder were composed of the following W simple substance, W carbide, and W oxide.
  • the W carbide was WC
  • the W oxide was WO 3
  • the electrode catalyst of Example 22 was subjected to XPS analysis and ICP analysis under the same conditions as the electrode catalyst of Example 1. The results are shown in Table 3.
  • the electrode catalyst of Example 22 was confirmed to have a configuration (see FIGS. 1 and 2).
  • a Pt / C catalyst (trade name: “NE-F50”) manufactured by NE CHEMCAT with a Pt loading of 50 wt% was prepared.
  • This catalyst uses the same carrier as the electrode catalyst of Example 1 as a raw material.
  • XPS analysis and ICP analysis were performed under the same conditions as those of the electrode catalyst of Example 1. The results are shown in Table 1.
  • the STEM-HAADF image and the EDS elementary mapping image were confirmed, and as a result, a Pt shell layer was formed on at least a part of the surface of the Pd core particle. It was confirmed that the catalyst particles having the core-shell structure were supported on a conductive carbon support.
  • the W / C powder is a powder containing a commercially available carbon black powder (specific surface area 200 to 300 m 2 / g), a commercially available tungstate salt, and a commercially available water-soluble polymer (carbon source) in a reducing atmosphere. It was prepared by heat treatment. From the XRD analysis results, it was confirmed that the core particles of the W / C powder were composed of the following W carbide and W oxide. That is, the W carbide was WC, W 2 C, WC 1-x (0 ⁇ x ⁇ 1), and the W oxide was WO 3 .
  • the electrode catalyst of Comparative Example 4 was subjected to XPS analysis, ICP analysis, and core particle XPS analysis of the surface of the electrode catalyst under the same conditions as the electrode catalyst of Example 1.
  • the electrode catalyst of Comparative Example 5 As a result of confirming the STEM-HAADF image and the EDS elementary mapping image, a shell part layer made of Pt was formed on at least a part of the surface of the core part particle made of Pd. It was confirmed that the catalyst particles having the core-shell structure were supported on a conductive carbon support.
  • composition was applied to the entire electrode surface of the rotating disk electrode WE to form a coating film.
  • the coating film made of this gas diffusion electrode forming composition was dried at a temperature of 23 ° C. and a humidity of 50% RH for 2.5 hours to form a catalyst layer CL on the surface of the rotating disk electrode WE.
  • FIG. 5 is a schematic diagram showing a schematic configuration of a rotating disk electrode measuring apparatus 50 used for the rotating disk electrode method (RDE method).
  • the rotating disk electrode measuring device 50 mainly includes a measuring cell 51, a reference electrode RE, a counter electrode CE, and a rotating disk electrode WE. Furthermore, when evaluating a catalyst, electrolyte solution ES is put into the measurement cell 51.
  • the measurement cell 51 has a substantially cylindrical shape having an opening on the upper surface, and a fixing member 52 for the rotating disk electrode WE that also serves as a lid capable of gas sealing is disposed in the opening.
  • a gas sealable opening for fixing the electrode main body portion of the rotating disk electrode WE while being inserted into the measurement cell 51 is provided at the center of the fixing member 52.
  • a substantially L-shaped Lugin tube 53 is arranged next to the measurement cell 51.
  • one end portion of the Luggin tube 53 has a Luggin capillary structure, and is inserted into the measurement cell 51, so that the electrolyte ES of the measurement cell 51 also enters the Luggin tube 53.
  • the other end of the Lugin tube 53 has an opening, and the reference electrode RE is inserted into the Lugin tube 53 through the opening.
  • “Model HSV110” manufactured by Hokuto Denko Co., Ltd. was used as the rotating disk electrode measuring device 50.
  • an Ag / AgCl saturated electrode is used as the reference electrode RE
  • a Pt mesh with Pt black is used as the counter electrode CE
  • an electrode having a diameter of 5.0 mm ⁇ and an area of 19.6 mm 2 is used as the rotating disk electrode WE.
  • CV measurement was performed for 3 cycles in the “triangular wave potential sweep mode” in which the potential (vsRHE) of the rotating disk electrode WE was set to the measurement start potential +119 mV, +50 mV to 1200 mV, and the scanning speed was 20 mV / sec.
  • the rotational speed of the rotating disk electrode WE was 1600 rpm.
  • the rotating disk electrode was rotated 10 times in “triangular wave potential sweep mode” with a scanning potential of 135 to 1085 mV vs RHE and a scanning speed of 10 mV / sec.
  • CV measurement was performed under the condition that the rotational speed of WE was 1600 rpm.
  • the current value at the potential of the rotating disk electrode WE + 900 mV vs RHE was recorded.
  • the rotational speed of the rotating disk electrode WE was set to 400 rpm, 625 rpm, 900 rpm, 1225 rpm, 2025 rpm, 2500 rpm, and 3025 rpm, respectively, and oxygen reduction (ORR) current measurement was performed for each cycle.
  • ORR oxygen reduction
  • Table 1 shows the results obtained for Examples 1 to 5, Comparative Example 1 and Comparative Example 2.
  • Table 2 shows the results obtained for Examples 6 to 11, Comparative Example 3 and Comparative Example 4.
  • Table 3 shows the results obtained for Examples 12 to 22 and Comparative Examples 3 to 5.
  • V-1) [Initial ECSA measurement]
  • I Potential sweep process The potential (vsRHE) of the rotating disk electrode WE with respect to the reference electrode RE was swept in a so-called "rectangular wave potential sweep mode" shown in FIG. More specifically, potential sweeping was performed for 6 cycles, with the operations shown in (A) to (D) below as one cycle.
  • A Potential at start of sweep: +600 mV
  • B Sweep from +600 mV to +1000 mV
  • C Hold potential at +1000 mV for 3 seconds
  • D Sweep from +1000 mV to +600 mV
  • E Hold potential at +600 mV 3 seconds.
  • the ECSA value obtained in the last “(ii) CV measurement” (the ECSA value after the potential sweep process in which the total number of potential sweeps is 12420 cycles) was obtained.
  • the retention ratio (%) of ESCA was calculated by dividing the ECSA value based on the hydrogen desorption wave obtained in the last “(ii) CV measurement” by the “initial ECSA value”.
  • Table 1 shows the results obtained for Examples 1 to 5, Comparative Example 1 and Comparative Example 2.
  • Table 2 shows the results obtained for Examples 6 to 11, Comparative Example 3 and Comparative Example 4.
  • Table 3 shows the results obtained for Examples 12 to 22 and Comparative Examples 3 to 5.
  • Table 1 the relative initial ECSA values of Examples 1 to 5 and Comparative Example 2 when the initial ECSA value of Comparative Example 1 (Pt / C catalyst) is 1.00 are shown. Indicated. Furthermore, in Table 1, when the value of the ESCA maintenance rate of Comparative Example 1 (Pt / C catalyst) is 1.00, the relative ESCA maintenance rates of Examples 1 to 5 and Comparative Example 2 The value is shown. In Table 2, the initial ECSA values of Examples 6 to 11 and Comparative Example 4 when the initial ECSA value of Comparative Example 3 (Pt / C catalyst) is 1.00 are shown. Indicated.
  • Comparative value X The relative values of Comparative Example 4 and Comparative Example 5 (hereinafter referred to as “relative value X”) are shown. Further, for Example 16 and Comparative Example 5, a part of the electrolyte ES in the measurement cell 51 immediately after measuring the initial ECSA value and the ECSA value immediately after measuring the potential sweep frequency of 12420 cycles were obtained. A part of the electrolytic solution ES in the measurement cell 51 was collected and subjected to ICP analysis, whereby the amount of Pd eluted from the electrode catalyst of Example 16 and Comparative Example 5 was measured. Table 4 shows the obtained results. In Table 4, the relative value of the Pd elution amount of Example 16 when the Pd elution amount of Comparative Example 5 (Pt / Pd / C catalyst) is 1.00 is shown.
  • the electrode catalysts of Examples 1 to 22 are the electrode catalysts of Comparative Examples 1 and 3 (conventional Pt / C catalyst). Compared to the above, it has a Pt mass activity substantially equal to or higher than that, and the initial ECSA value is substantially equal to or higher than that, and has a catalytic activity that can withstand practical use. It became clear.
  • the electrode catalyst of Examples 12 to 22 (R1 Pt / R1 Pd is 0.60 or more and less than 1.15) is 2 in comparison with the electrode catalyst of Comparative Example 3 (conventional Pt / C catalyst).
  • the electrode catalysts of Examples 12 to 22 have a “relative value X” value of about 1.4 times to about 2.times. Compared with the electrode catalyst of Comparative Example 3. It has been revealed that it has maintained a sufficiently high level, which is three times, and has durability that can withstand practical use. Furthermore, in Table 1, when compared with Comparative Example 2 (Pt / Pd / C catalyst), the electrode catalysts of Examples 1 to 5 have the same ESCA retention rate, and Pt / Pd / C. It became clear that it has the same level of durability as the catalyst.
  • the electrode catalyst it was shown that the “relative value X” was more remarkable. Furthermore, in Table 3, when compared with Comparative Example 5 (Pt / Pd / C catalyst), the electrode catalysts of Examples 12 to 22 have a “relative value X” equal to or greater than Pt / Pd. It became clear that it has the same level of durability as the / C catalyst. Further, from the results shown in Table 4, the electrode catalyst of Example 16 (Pt / Pd / W / C catalyst) having W carbide and W oxide as constituents of the core particles is more comparative example 5 (Pt / It was shown that the Pd elution amount can be reduced to about 1 ⁇ 2 than (Pd / C catalyst).
  • the electrode catalyst of this example has a catalytic activity and durability that can withstand practical use, as compared with a conventional Pt / C catalyst. Furthermore, since the electrode catalyst of this example uses a tungsten compound as the core material, it has been clarified that the amount of platinum used can be reduced and the cost can be reduced.
  • the electrode catalyst of the present invention has a catalytic activity and durability that can withstand practical use, and can contribute to cost reduction as compared with a conventional Pt / C catalyst. Accordingly, the present invention is an electrode catalyst that can be applied not only to the electric equipment industry such as fuel cells, fuel cell vehicles, and portable mobiles, but also to energy farms, cogeneration systems, etc. Contribute to development.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)

Abstract

 従来のPt/C触媒と比較し、実用に耐えうる水準の触媒活性、耐久性を有し、かつ、低コスト化に寄与できる電極用触媒の提供。電極用触媒は、担体と担体上に担持される触媒粒子を有する。触媒粒子はコア部と、コア部上に形成される第1シェル部、当該第1シェル部上に形成される第2シェル部を有する。コア部はW炭化物を少なくとも含むW化合物を含み、第1シェル部はPd単体を含み、第2シェル部はPt単体を含む。

Description

電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、燃料電池スタック
 本発明は、電極用触媒に関する。より詳しくは、ガス拡散電極に好適に使用される電極用触媒に関し、燃料電池のガス拡散電極により好適に使用される電極用触媒に関する。
 また本発明は、上記電極用触媒粒子を含む、ガス拡散電極形成用組成物、膜・電極接合体、及び、燃料電池スタックに関する。
 固体高分子形燃料電池(Polymer Electrolyte Fuel Cell:以下、必要に応じて「PEFC」という)は、燃料電池自動車、家庭用コジェネレーションシステムの電源としての研究開発が行われている。
 PEFCのガス拡散電極に使用される触媒には、白金(Pt)等の白金族元素の貴金属粒子からなる貴金属触媒が用いられている。
 例えば、典型的な従来の触媒としては、導電性カーボン粉末上にPt微粒子を担持させた「Pt担持カーボン触媒」(以下、必要に応じ「Pt/C触媒」という)が知られている(例えば、N.E.CHEMCAT社製のPt担持率50wt%のPt/C触媒、商品名:「NE-F50」など)。
 PEFCの製造コストの中でPt等の貴金属触媒が占めるコストの割合は大きく、PEFCの低コスト化、PEFCの普及に向けた課題になっている。
 この課題を解決するために、触媒の低貴金属化技術、又は、脱貴金属化技術の研究開発が進められている。
 これらの研究開発の中で、白金の使用量を低減するため、従来、非白金元素からなるコア部とPtからなるシェル部から形成されるコアシェル構造を有する触媒粒子(以下、必要に応じ「コアシェル触媒粒子」という)が検討されており、多数の報告がなされている。
 例えば、特許文献1には、パラジウム(Pd)又はPd合金(コア部に相当)がPt原子の原子的薄層(シェル部に相当)によって被覆された構成を有する粒子複合材(コアシェル触媒粒子)が開示されている。更に、この特許文献1には、実施例としてコア部がPd粒子で、シェル部がPtからなる層であるコアシェル触媒粒子が記載されている。
 更に、コア部Pt族以外の金属元素を構成元素として含む構成も検討されている。また、これとは逆に、シェル部に、Pt族以外の金属元素を構成元素として含む構成も提案されている。
 例えば、タングステン(W)をコア部の構成元素として含む構成としては、W単体、W合金、W酸化物からなるコア部を有する構成が提案されている(例えば、特許文献2~9)。
 更に、Wをシェル部の構成元素として含む構成としては、W単体、W合金、W酸化物からなるシェル部を有する構成が提案されている(例えば、特許文献10)。
 より詳細には、特許文献2~特許文献5には、W酸化物を含むコア部を有する構成が開示されている。
 特許文献2においては、炭素担体上に、コア部がWO2、シェル部がWO2の還元生成物(WO2-y、0<y≦2)とPdとの合金である粒子を担持させた構成の触媒の合成例が開示されている(特許文献2、実施例8)。
 特許文献3には、W酸化物(酸化タングステンナトリウムなど)をコア部、Ptなどをシェル部とする白金-金属酸化物複合粒子が開示されている。
 特許文献4には、W単体またはWを含む一群の金属元素から選択される2以上の固溶体からなる金属酸化物粒子を基粒子(コア部)とし、Pt単体またはPtを含む一群の金属元素から選択される2以上の固溶体を金属被覆層(シェル部)とする構成の触媒粒子が提案されている。
 特許文献5には、W酸化物を基粒子(コア部)とし、基粒子の表面の少なくとも一部を被覆する一種以上のPtなどの金属(シェル部)とする構成の触媒粒子が提案されている。
 また、特許文献6~特許文献9には、W単体、又はW合金(W固溶体)を含むコア部を有する構成が開示されている。
 特許文献6には、W単体、Wと他の一群の金属から選ばれる金属との合金、それらの混合物を内部コア(コア部)、PtやPt合金などを外部シェル部とする触媒粒子が開示されている。
 特許文献7には、Pt以外の金属原子又はPt以外の金属原子による合金からなるコア粒子(コア部)、コア粒子の表面にPtからなるシェル層(シェル部)とする金属粒子が導電性担体に担持された構成のPt含有触媒が開示されている。Wは、コア部、シェル部の両方の構成材料として開示されている(特許文献7、段落番号0020、段落番号0021)。
 特許文献8には、W単体、或いは、W合金を材料とする面心立方結晶構造を有するコア粒子(コア部)、Ptなどの金属を材料とする面心立方結晶構造を有するシェル層(シェル部)とするコアシェル型微粒子が開示されている。
 特許文献9には、W単体、或いは、W合金を材料とするコア粒子(コア部)、Ptなどの金属を材料とするシェル層(シェル部)とするコアシェル型微粒子が開示されている。
 また、コアシェル構造を有する触媒粒子に該当するかについては不明確であるが、燃料電池用の電極触媒として、W炭化物の粒子にPt又はPt合金を担持した触媒も提案されている(特許文献11~12、非特許文献1)。
 特許文献11には、導電性カーボン上に、当該導電性カーボンの表面改質にW炭化物の粒子(WCとW2Cの混合物の粒子、又は、WCからなる粒子)を生成させ、更に、この粒子上にPt粒子を担持させた触媒が開示されている。
 特許文献12には、WCを主成分とする粒子上にPt粒子を担持させた触媒が開示されている。ただし、導電性カーボン担体上に触媒粒子を担持させた構成は検討されていない。
 非特許文献1には、W2Cを主成分とする粒子上にPt粒子を担持させた触媒が開示されている。ただし、導電性カーボン担体上に触媒粒子を担持させた構成は検討されていない。
 更に、非Pt元素からなるコア部とPtからなるシェル部から形成されるコアシェル構造を有する触媒粒子において、Pt量の低減とともに触媒活性の向上も意図した構成も提案されている(例えば、特許文献13)。
 例えば、特許文献13には、Pd合金を含む中心粒子(コア部)と、Ptを含む最外層(シェル部)と、中心粒子と最外層との間にPd単体のみからなる中間層を設けた子コアシェル構造を有する燃料電池用電極触媒微粒子が提案されている。
 なお、本件特許出願人は、上記文献公知発明が記載された刊行物として、以下の刊行物を提示する。
米国特許出願公開第2007/31722号公報 特開2012-143753号公報 特表2008-545604号公報 特開2005-125282号公報 特開2003-080077号公報 特表2010-501345号公報 特開2011-072981号公報 特開2012-041581号公報 特開2013-163137号公報 特開2012-216292号公報 特表2013-518710号公報 特開2008-021610号公報 WO2010/011170号公報
Angew.Chem.Int.Ed.2005,44,6557-6560
 しかしながら、導電性の担体上と当該担体上に担持されたコアシェル構造を有する触媒粒子を含む燃料電池用電極触媒に関し、W化合物(特にW炭化物)を主な構成成分として含むコア部を有する電極用触媒について着目して上述の従来技術をみた場合、Pt使用量の低減に加えて、従来のPt/C触媒と比較し、実用に耐えうる水準の触媒活性及び耐久性を得るための構成の検討、並びに、実施例によるその実証が十分になされておらず、未だ改善の余地があることを本発明者らは見出した。
 すなわち、W酸化物を含むコア部を有する構成が開示されている特許文献2においては、炭素担体上に、コア部がWO2、シェル部がWO2の還元生成物(WO2-y、0<y≦2)とPdとの合金である粒子を担持させた構成の触媒の実施例の記載があり(特許文献2、実施例8)、この実施例の触媒活性が、炭素担体上にPd粒子を担持させた比較例(特許文献2、比較例2)に対して向上することが示されている(特許文献2、図11)。しかしながら、この実施例の構成が、従来のPt/C触媒と比較し、実用に耐えうる水準の触媒活性を得る観点や、更に十分な耐久性を得る観点で有効な構成なのか不明である。
 また、その他のW酸化物を含むコア部を有する構成が開示されている特許文献3~特許文献5おいてはW酸化物を含むコア部を有する触媒に相当する実施例の記載がなく、触媒活性、耐久性の実証がなされていない。
 すなわち、特許文献3には実施例の記載がない。また、特許文献4及び特許文献5には、導電性カーボンを担体とする構成の触媒の実施例の記載がない。更に、実施例の構成を「シェル部/コア部」で表記すると、実施例は、「Pt/CeO2」、「還元析出させたPt単体とRu単体/CeO2」、「還元析出させたPt単体とRu単体/CeO2・ZrO2固溶体」であり、有毒物質の浄化性能評価試験結果のみである。
 また、W単体、又はW合金(W固溶体)を含むコア部を有する構成が開示されている特許文献6~特許文献9には、W単体、又はW合金(W固溶体)を含むコア部を有する触媒に相当する実施例の記載がなく、触媒活性、耐久性の実証がなされていない。
 特許文献6については、実施例として記載され性能評価されているのは、「シェル部/コア部」で表記すると、「Pt/Ag」(特許文献6、実施例1、実施例4)、「Pt/Au」(特許文献6、実施例2、実施例3)の構成のみである。性能評価についても「RDE(回転リングディスク電極)による電気化学的試験において、高い比活性が得られる」とだけ記載されておりどの程度の活性向上があるか詳細は不明である。
 特許文献7については、実施例として記載され性能評価されているのは、「シェル部/コア部」で表記すると、「Pt/Ru」(特許文献7、実施例1)の構成のみである。
 特許文献8及び特許文献9については、「Wコア微粒子(W単体の微粒子)」を合成した例は記載されているが、これにシェル部を形成し触媒とした実施例の記載はない。実施例として記載され性能評価されているのは、「シェル部/コア部」で表記すると、「Pt/Ru」、「Pt/Ni」の構成のみである(特許文献8の段落[0111]、特許文献9の実施例1及び実施例2)。
 また、W炭化物の粒子にPt又はPt合金を担持した触媒が提案されている特許文献11については、導電性カーボン上に、当該導電性カーボンの表面改質によりW炭化物の粒子を生成させ、更に、この粒子上にPt粒子を担持させた触媒が開示されている(特許文献11、例1、例2)。
 具体的には、実施例(特許文献11では「例1」、「例2」)の構成を「シェル部/コア部」で表記すると、Pt/(WCとW2Cとの混合物)、Pt/(WCからなる粒子)である。
 触媒の耐久性(初期性能の低下の度合い)を加速劣化試験によって推定している。具体的には、カソードの酸素還元反応に関する触媒活性について、0.5~1.3Vの間の150電位サイクルを酸素飽和電解質中で50mV/sの速度で実施し、性能の低下を測定して、従来のPt/C触媒に比較して性能低下が改善されることが開示されている。
 しかしながら、触媒活性(Pt質量活性など)の数値については実施例、比較例ともに開示されておらず、実用に耐えうる水準の触媒活性を得る観点や、更に十分な耐久性を同時に得る観点で有効な構成なのか不明である。また、特許文献11に開示された実施例の触媒粒子がコアシェル構造を有しているか不明である。
 また、W炭化物の粒子にPt又はPt合金を担持した触媒が提案されている特許文献12については、導電性カーボン担体上に触媒粒子を担持させた構成の実施例は記載されていない。W2N、WS2等の特定の前駆化合物を経由して合成されたWCにPt粒子を担持した触媒(特許文献12、実施例1~6)により、耐CO被毒性の改善と、アノード触媒活性の向上がみられることが示されている。しかしながら、この例の構成が、従来のPt/C触媒と比較し、実用に耐えうる水準の触媒活性を得る観点や、更に十分な耐久性を得る観点で有効な構成なのか不明である。
 更に、W炭化物の粒子にPt又はPt合金を担持した触媒が提案されている非特許文献1については、導電性カーボン担体上に触媒粒子を担持させた構成の実施例は記載されていない。Pt粒子をW2C上に担持した構成の触媒の例が開示されている。更に、この例が、PtとRuとの合金粒子をカーボン担体上に担持した構成の触媒に比較して、ECSAなどの触媒活性が向上することが開示されている。しかしながら、この例の構成が、従来のPt/C触媒と比較し、実用に耐えうる水準の触媒活性を得る観点や、更に十分な耐久性を得る観点で有効な構成なのか不明である。
 本発明は、かかる技術的事情に鑑みてなされたものであって、従来のPt/C触媒と比較し、実用に耐えうる水準の触媒活性、耐久性を有し、かつ、低コスト化に寄与できる電極用触媒を提供することを目的とする。
 また、本発明は、上記電極用触媒を含む、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体(MEA)、及び、燃料電池スタックを提供することを目的とする。
 本件発明者等は、Pt使用量の低減を意図してコア部の構成材料としてW系材料を採用する場合について、触媒活性と耐久性についても従来のPt/C触媒と比較し、実用に耐えうる水準の結果を得ることのできる構成について鋭意検討を行った。
 その結果、本発明者らは、少なくともW炭化物を含むコア部、2層のシェル部からなる構成が有効で、より詳しくは、コア部とPt単体を含むシェル部との間にPd単体を含むシェル部を設ける構成(従来技術に開示も示唆もされていない構成)とすることが有効であることを見出し、本発明を完成するに至った。
 より具体的には、本発明は、以下の技術的事項から構成される。
 すなわち、本発明は、
 (N1)導電性を有する担体と、
 前記担体上に担持される触媒粒子と、
を含んでおり、
 前記触媒粒子が、前記担体上に形成されるコア部と、前記コア部上に形成される第1シェル部と、前記第1シェル部上に形成される第2シェル部と、を有しており、
 前記コア部にはW炭化物を少なくとも含むW化合物が含まれており、
 前記第1シェル部にはPd単体が含まれており、
 前記第2シェル部にはPt単体が含まれている、
電極用触媒を提供する。
 詳細なメカニズムは十分に解明されていないが、上記の構成とすることにより、本発明の電極用触媒は、従来のPt/C触媒と比較し、実用に耐えうる水準の触媒活性、耐久性を有し、かつ、低コスト化に寄与できる。
 ここで、本発明において、「W炭化物」とは、タングステン(W)原子と炭素(C)原子が、結合を持って化合物として存在する形態であるものを示す。例えば、WC、WC1-x(0<x<1)、W2C、W3C等が挙げられる。
 このW炭化物はX線回折(XRD)で確認することができる。即ち、W炭化物に対してX線(Cu-Kα線)を照射し、回折スペクトルを観察することによって、W炭化物に特徴的なピークを与えることで確認することができる。
 例えば、WCは、例えば、X線回折の2θ(±0.3゜)のピークとして、31.513゜、35.639゜、48.300゜、64.016゜、65.790゜等の特徴的ピークを与えるものである。
 例えば、WC1-xは、例えば、X線回折の2θ(±0.3゜)のピークとして、36.977゜、42.887゜、62.027゜、74.198゜、78.227゜等の特徴的ピークを与えるものである。
 例えば、W2Cは、例えば、X線回折の2θ(±0.3゜)のピークとして、34.535゜、38.066゜、39.592゜、52.332゜、61.879゜等の特徴的ピークを与えるものである。
 なお、特許文献13では、Pd単体のみからなる中間層が、コア部(Pd合金を含む中心粒子)と、シェル部(Ptを含む最外層)との間に配置された構成が開示されている。
 このPd単体のみからなる中間層を配置するのは、シェル部(Ptを含む最外層)の被覆状態を安定化させる働きを意図していることが開示されている。より詳しくは、Pdの格子定数(3.89オングストローム)が、Ptの格子定数(3.92オングストローム)により近く、シェル部(Ptを含む最外層)の白金原子をより安定に存在させることができるということが開示されている。
 ただし、特許文献13では、コア部と、Pd単体のみからなる中間層との親和性も互いの構成材料の格子定数を考慮して構成されていることが示唆される。すなわち、中間層(単体Pdからなる層)と、コア部(Pd合金を含む中心粒子)とに共通成分であるPdを含む構成としている。このことは、例えば、特許文献13の実施例1の触媒を製造する際に、コア部の表面の銅を電気化学的に除去し、当該コア部の表面近傍の層の化学組成を略Pdからなる層とした後にPd単体のみからなる中間層を形成していることからも支持される。
 これに対して、本発明の電極用触媒粒子は、コア部と第1シェル部とにおいて、互いに共通する構成成分を含まない構成を敢えて採用することにより、本発明の効果が得られることを本発明者らが見出し、完成するに至ったものである。
 例えば、WCの格子定数(2.90オングストローム,2.83オングストローム)は、Pdの格子定数、Ptの格子定数とは異なるものである。
 なお、本明細書において、電極用触媒の構成を説明する際に、必要に応じて、「担体上に担持される触媒粒子の構成(主な構成材料)/導電性を有する担体の構成(主な構成材料)」と表記する。より詳しくは、「シェル部の構成/コア部の構成/担体の構成」と表記する。更により詳しくは、「第2シェル部の構成/第1シェル部の構成/コア部の構成/担体の構成」と表記する。例えば、電極用触媒の構成が、「Ptからなる第2シェル部、Pdからなる第1シェル部、W炭化物を主成分とするコア部、導電性カーボンからなる担体」を有する構成の場合、「Pt/Pd/WC/C」と表記する。
 また、(N2)本発明の電極用触媒においては、本発明の効果が得られる範囲で、コア部には、W酸化物が更に含まれていてもよい。
 ただし、十分な導電性を確保する観点から、本発明の電極触媒の原料(コア部の原料)となるコア粒子の構成成分の組成は後述する式(4)の条件を満たしていることが好ましい。
 更に、(N3)本発明の電極用触媒においては、本発明の効果が得られる範囲で、コア部には、W単体が更に含まれていてもよい。
 また、本発明は、
 (N4)X線光電子分光分析法(XPS)により測定される表面近傍の分析領域における、Pt単体の割合R1Pt(atom%)と、Pd単体の割合R1Pd(atom%)とが、下記式(1)の条件を満たしている、(N1)~(N3)のうちのいずれか1に記載の電極用触媒を提供する。
0.60≦(R1Pt/R1Pd)≦6.00・・・(1)
 上記(R1Pt/R1Pd)が0.60以上となるように電極用触媒を構成することにより、電極用触媒の表面において触媒活性の高いPt単体からなる部分の割合が増えて、本発明の効果がより確実に得られるようになる。また、上記(R1Pt/R1Pd)が6.00以下となるように電極用触媒を構成することにより、第2シェル部に含まれるPt単体の含有量を低減できるため、本発明の効果がより確実に得られるようになる。
 なお、本発明において、従来のPt/Cに比較して、触媒活性(特に、後述の初期のPt質量活性)をより確実に向上させる観点からは、(R1Pt/R1Pd)は0.60以上、1.15未満であることが好ましい。
 更に、本発明において、従来のPt/Cに比較して、耐久性(特に、後述の耐久性評価における「評価試験後のECSA」/「評価試験前の初期のECSA」の値)をより確実に向上させる観点からは、(R1Pt/R1Pd)は1.15以上、6.00以下であることが好ましい。
 ここで、本発明においては、XPSでPt単体の割合R1Pt(atom%)と、Pd単体の割合R1Pd(atom%)とを算出する際には、これら2つの成分と、後述のW化合物に由来するWの割合R1Wとを合わせた3つの成分の合計が100%となる条件で算出される数値とする。すなわち、電極用触媒の表面近傍の分析領域において、Pt単体、Pd単体及びW化合物の他に検出される炭素の割合(atom%)は計算から外した数値となる。
 なお、本発明において、XPSは、以下の(A1)~(A6)条件で測定される。
(A1)X線源:単色化AlKα
(A2)光電子取出確度:θ=75℃(後述する図3を参照)
(A3)帯電補正:R1sピークエネルギーを284.8eVとして補正
(A4)分析領域:200μm
(A5)分析時のチャンバ圧力:約1×10-6Pa
 また、本発明は、(N5)前記R1Ptが35atom%以上である、(N4)に記載の電極用触媒を提供する。これにより、電極用触媒の表面において触媒活性の高いPt単体からなる部分の割合が増えて、本発明の効果がより確実に得られるようになる。
 なお、本発明において、従来のPt/Cに比較して、触媒活性(特に、後述の初期のPt質量活性)をより確実に向上させる観点からは、R1Ptは35~48atm%であることが好ましい。
 更に、本発明において、従来のPt/Cに比較して、耐久性(特に、後述の耐久性評価における「評価試験後のECSA」/「評価試験前の初期のECSA」の値)をより確実に向上させる観点からは、R1Ptは40atm%以上であることが好ましく、50atm%以上であることがより好ましい。
 また、本発明は、(N6)前記R1Pdが60atom%以下である、(N4)又は(N5)に記載の電極用触媒を提供する。これにより、電極用触媒の表面においてPd単体からなる部分の割合が減り、Pdの溶出がより確実に抑制できるようになる。そのため、耐久性(特に、後述の耐久性評価における「評価試験後のECSA」/「評価試験前の初期のECSA」の値)がより向上するなど、本発明の効果がより確実に得られるようになる。同様の観点から、R1Pdは36atom%以下であることがより好ましく、26atom%以下であることが更にこのましい。
 また、本発明は、
 (N7)X線光電子分光分析法(XPS)により測定される表面近傍の分析領域における前記W化合物に由来するWの割合R1Wが30atom%以下である、(N4)~(N6)のうちのいずれか1に記載の電極用触媒を提供する。
 これにより、電極用触媒の表面でコア部の露出する部分が減少し、電極反応の促進に寄与する第2シェル部、第1シェル部の表面積を増やすことができる。そのため、本発明の効果がより確実に得られるようになる。
 また、本発明は、
 (N8)ICP発光分析により測定されるPt担持率LPt(wt%)と、Pd担持率LPd(wt%)とが下記式(2)の条件を満たしている、
(N1)~(N7)のうちのいずれか1に記載の電極用触媒を提供する。
 LPt/LPd≧0.30・・・(2)
 上記(3)式をさらに満たすように電極用触媒を構成することにより、第2シェル部のPtの使用量を低減することにより、第1シェル部のPdの使用量も低減できることになり、より低コスト化に寄与することができるようになる。

 また、本発明においては、(N9)粉末X線回折(XRD)により測定される前記触媒粒子の結晶子サイズの平均値が3~22.0nmであることが好ましい。
 結晶子サイズの平均値が3nm未満であると、担体上にコア部となる粒子を形成することが困難になり、第1シェル部及び第2シェル部を有しかつ式(1)の条件を満たすように担体上に触媒粒子を形成することが困難となる傾向が大きくなる。
 更に、結晶子サイズの平均値が22.0nmを超えると、担体上にコア部となる粒子を高分散状態で形成することが極めて困難になり、式(1)の条件を満たすように触媒粒子を担体上に形成することが困難になる傾向が大きくなる。
 なお、本発明においては、第1シェル部がPtからなり、第2シェル部がPdからなり、かつ、第1シェル部がPt原子層で1層~2層となる場合、XRDによってPt(111)面のピークがみえないので、第2シェル部のPd(111)面のピークから算出した平均値を触媒粒子の結晶子サイズの平均値としている。
 また、本発明は、
(N10)W炭化物と、W酸化物とを含むコア粒子を前記担体上に形成するコア粒子形成工程と、
 前記コア粒子形成工程を経て得られる前記コア粒子の表面の少なくとも一部に前記第1シェル部を形成する第1シェル部形成工程と、
 前記第1シェル部形成工程を経て得られる粒子の表面の少なくとも一部に前記第2シェル部を形成する第2シェル部形成工程と、
を経て調整され、
 前記コア粒子形成工程を経て得られる粒子について、
 X線光電子分光分析法(XPS)により測定される表面近傍の分析領域における前記W炭化物の割合R0WC(atom%)と、前記W酸化物の割合R0WO(atom%)とが下記式(3)の条件を満たしている、
(N1)~(N10)のうちのいずれか1項に記載の電極用触媒を提供する。
R0WC/(R0WC+R0WO)≧0.10・・・(3)
 原料となるコア粒子の構成成分の組成をこのように調整することにより、W炭化物の割合が増加し、最終的に得られる本発明の電極用触媒のコア部の導電性をより十分に確保できる。
 同様の観点から、本発明においては、(N10)の場合、(N11)R0WC/(R0WC+R0WO)は下記式(4)の条件を更に満たしていることが好ましい。
R0WC/(R0WC+R0WO)≧0.25・・・(4)
 更に、同様の観点から、R0WC/(R0WC+R0WO)は0.30以上であることが好ましく、0.40以上であることがより好ましく、0.50以上であることが更に好ましく、0.70以上であることが更に好ましい。
 さらに、本発明は、
 (N12)上述の(N1)~(N11)いずれか1に記載の電極用触媒が含有されている、ガス拡散電極形成用組成物を提供する。
 本発明のガス拡散電極形成用組成物は、本発明の電極用触媒を含んでいるため、従来のPt/C触媒と比較し、実用に耐えうる水準の触媒活性(分極特性)、耐久性を有し、かつ、低コスト化に寄与できるガス拡散電極を容易に製造することができる。
 また、本発明は、
 (N13)上述の(N1)~(N11)いずれか1に記載の電極用触媒が含有されている、又は、上述の(N12)に記載のガス拡散電極形成用組成物を使用して形成されている、ガス拡散電極を提供する。
 本発明のガス拡散電極は、本発明の電極用触媒を含んで構成されている。或いは、本発明のガス拡散電極は、本発明のガス拡散電極形成用組成物を使用して形成されている。そのため、従来のPt/C触媒と比較し、実用に耐えうる水準の触媒活性(分極特性)、耐久性を有し、かつ、低コスト化に寄与できる構成とすることが容易となる。
 さらに、本発明は、
 (N14)上述の(N13)記載のガス拡散電極が含まれている、膜・電極接合体(MEA)を提供する。
 本発明の膜・電極接合体(MEA)は、本発明のガス拡散電極を含んでいるため、従来のPt/C触媒と比較し、実用に耐えうる水準の電池特性、耐久性を有し、かつ、低コスト化に寄与できる構成とすることが容易となる。
 また、本発明は、
 (N15)上述の(N14)記載の膜・電極接合体(MEA)が含まれていることを特徴とする燃料電池スタックを提供する。
 本発明の燃料電池スタックによれば、本発明の膜・電極接合体(MEA)を含んでいるため、従来のPt/C触媒と比較し、実用に耐えうる水準の電池特性、耐久性を有し、かつ、低コスト化に寄与できる構成とすることが容易となる。
 本発明によれば、従来のPt/C触媒と比較し、実用に耐えうる水準の触媒活性、耐久性を有し、かつ、低コスト化に寄与できる電極用触媒が提供される。
 また、本発明によれば、かかる電極用触媒を含む、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体(MEA)、燃料電池スタックが提供される。
本発明の電極用触媒(コアシェル触媒)の好適な一形態を示す模式断面図である。 本発明の電極用触媒(コアシェル触媒)の別の好適な一形態を示す模式断面図である。 本発明におけるX線光電子分光分析法(XPS)の分析条件を説明するためのXPS装置の概略構成を示す模式図である。 本発明の燃料電池スタックの好適な一実施形態を示す模式図である。 実施例で用いた回転ディスク電極を備えた回転ディスク電極測定装置の概略構成を示す模式図である。 実施例において参照電極REに対して回転ディスク電極WEの電位(vsRHE)を掃引する「矩形波の電位掃引モード」を示すグラフである。
 以下、適宜図面を参照しながら、本発明の好適な実施形態について詳細に説明する。
<電極用触媒>
 図1は、本発明の電極用触媒(コアシェル触媒)の好適な一形態を示す模式断面図である。また、図2は、本発明の電極用触媒(コアシェル触媒)の別の好適な一形態を示す模式断面図である。
 図1に示されるように、本発明の電極用触媒10は、担体2と、担体2上に形成されるいわゆる「コアシェル構造」を有する触媒粒子3を含んでいる。
 更に、触媒粒子3は、担体2上に形成されるコア部4と、コア部4上に形成されるシェル部7(第1シェル部5及び第2シェル部6)とを含む、いわゆる「コアシェル構造」を有する。
 すなわち、電極用触媒10は、担体2にコア部4を核(コア)とし、第1シェル部5および第2シェル部6がシェル部7となってコア部4の表面を被覆している構造を有している。
 また、コア部の構成元素(化学組成)と、第1シェル部5と、第2シェル部6との構成元素(化学組成)は異なる構成となっている。
 本発明においては、電極用触媒は、コア部の表面の少なくとも一部の上にシェル部が形成されていればよい。
 例えば、本発明の効果をより確実に得る観点からは、図1に示すように、電極用触媒10は、シェル部7によってコア部4の表面の略全域が被覆された状態であることが好ましい。
 また、図2に示すように、本発明の効果を得られる範囲において、電極用触媒1は、コア部4の表面の一部が被覆され、コア部4の表面が部分的に露出した状態(例えば、図2に示すコア部4の表面の一部4sが露出した状態)であってもよい。別の表現をすれば、図2に示す電極用触媒10Aのように、コア部4の表面の一部の上にシェル部7a、シェル部7bが部分的に形成されていてもよい。
 更に、この場合、図2に示すように、第2シェル部6aによって第1シェル部5aの表面の略全域が被覆された状態であることが好ましい。
 また、図2に示すように、本発明の効果を得られる範囲において、第1シェル部5bの表面の一部が被覆され、第1シェル部5bの表面が部分的に露出した状態(例えば、図2に示す第1シェル部5bの表面の一部5sが露出した状態)であってもよい。
 更に、本発明の電極触媒は、本発明の効果を得られる範囲において、図1に示した電極用触媒10と、図2に示した電極用触媒10Aとが混在した状態であってもよい。
 更に、本発明においては、本発明の効果を得られる範囲において、図2に示したように、同一のコア部4に対し、シェル部7aとシェル部7bとが混在した状態であってもよい。また、本発明においては、本発明の効果を得られる範囲において、同一のコア部4に対しシェル部7aのみが形成された状態であってもよく、同一のコア部4に対しシェル部7bのみが形成された状態であってもよい(何れの状態も図示せず)。
 また、本発明の効果を得られる範囲において、電極用触媒1には、担体2上に、上述の電極用触媒10および電極用触媒10Aのうちのの少なくとも1種に加えて、「シェル部7に被覆されていないコア部4のみの粒子」が担持された状態が含まれていてもよい(図示せず)。
 更に、本発明の効果を得られる範囲において、電極用触媒1には、上述の電極用触媒10および電極用触媒10Aのうちのの少なくとも1種に加えて「シェル部7の構成元素のみからなる粒子」がコア部4に接触していない状態で担持された状態が含まれていてもよい(図示せず)。
 また、本発明の効果を得られる範囲において、電極用触媒1には、上述の電極用触媒10および電極用触媒10Aのうちのの少なくとも1種に加えて「シェル部7に被覆されていないコア部4のみの粒子」と、「シェル部7の構成元素のみからなる粒子」とが、それぞれ独立に担持された状態が含まれていてもよい。
 第1シェル部5と第2シェル部6の厚さについては、電極用触媒の設計思想によって好ましい範囲が適宜設定される。
 例えば、第2シェル部6を構成するPtの使用量を最小限にすることを意図している場合には、1原子で構成される層(1原子層)であることが好ましく、この場合には、第2シェル部6の厚さは、当該第2シェル部6を構成する金属元素が1種類の場合には、この金属元素の1原子の直径(球形近似した場合)の2倍に相当する厚さであることが好ましい。
 また、当該第2シェル部6を構成する金属元素が2種類以上の場合には、1原子で構成される層(2種類以上の原子がコア部4の表面に並置されて形成される1原子層)に相当する厚さであることが好ましい。
 また、例えば、第2シェル部6の厚さをより大きくすることにより耐久性の向上を図る場合には、1~5nmが好ましく、2~10nmがより好ましい。
 なお、本発明において「平均粒子径」とは、電子顕微鏡写真観察による、任意の数粒子群からなる粒子の直径の平均値のことをいう。
 第1シェル部5の厚さは、第2シェル部6の厚さ以下であることが好ましい。これにより、Pdの使用量を低減でき、電極触媒として使用される場合のPdの溶出量も低減できるので好ましい。
 担体2は、コア部4と第1シェル部5と第2シェル部6とからなる複合体を担持することができ、かつ表面積の大きいものであれば特に制限されない。
 さらに、担体2は、電極用触媒1を含んだガス拡散電極形成用組成物中で良好な分散性を有し、優れた導電性を有するものであることが好ましい。
 担体2は、グラッシーカーボン(GC)、ファインカーボン、カーボンブラック、黒鉛、炭素繊維、活性炭、活性炭の粉砕物、カーボンナノファイバー、カーボンナノチューブ等の炭素系材料や酸化物等のガラス系あるいはセラミックス系材料などから適宜採択することができる。
 これらの中で、コア部4との吸着性及び担体2が有するBET比表面積の観点から、炭素系材料が好ましい。
 更に、炭素系材料としては、導電性カーボンが好ましく、特に、導電性カーボンとしては、導電性カーボンブラックが好ましい。
 導電性カーボンブラックとしては、商品名「ケッチェンブラックEC300J」、「ケッチェンブラックEC600」、「カーボンEPC」等(ライオン化学株式会社製)を例示することができる。
 コア部4は、W炭化物を少なくとも含むW化合物を含む構成を有している。また、本発明の効果をより確実に得る観点からは、W炭化物を少なくとも含むW化合物から構成されていることが好ましい。W化合物としてはW炭化物の他の成分としてはW酸化物が更に含まれていてもよい。また、W化合物以外の成分が含まれる場合には、その成分としてはW単体であることが好ましい。
 更に、W化合物としてはW炭化物の他の成分としてはW酸化物が更に含まれる場合、コア部4は、十分な導電性をより確実に得る観点から、X線光電子分光分析法(XPS)により測定される表面近傍の分析領域におけるW炭化物の割合R0WC(atom%)と、W酸化物の割合R0WO(atom%)とが下記式(3)の条件を満たしている、ことが好ましい。
R0WC/(R0WC+R0WO)≧0.10・・・(3)
 同様の観点から、この場合、R0WC/(R0WC+R0WO)は下記式(4)の条件を更に満たしていることが好ましい。
R0WC/(R0WC+R0WO)≧0.25・・・(4)
 更に、同様の観点から、R0WC/(R0WC+R0WO)は0.30以上であることが好ましく、0.40以上であることがより好ましく、0.50以上であることが更に好ましく、0.70以上であることが更に好ましい。
 第1シェル部5は、Pd単体が含まれている。本発明の効果をより確実に得る観点、製造容易性などの観点から、第1シェル部5は、Pd単体を主成分(50wt%以上)として構成されていることが好ましく、Pd単体から構成されていることがより好ましい。
 第2シェル部6は、Pt単体が含まれている。本発明の効果をより確実に得る観点、製造容易性などの観点から、第2シェル部6は、Pt単体を主成分(50wt%以上)として構成されていることが好ましく、Pt単体から構成されていることがより好ましい。
 また、電極用触媒10及び電極用触媒10Aは、本発明の効果をより確実に得る観点から以下の条件を満たしていることが好ましい。
 すなわち、電極用触媒10及び電極用触媒10Aは、X線光電子分光分析法(XPS)により測定される表面近傍の分析領域における、Pt単体の割合R1Pt(atom%)と、Pd単体の割合R1Pd(atom%)とが、下記式(1)の条件を満たしていることが好ましい。
0.60≦(R1Pt/R1Pd)≦6.00・・・(1)
 上記(R1Pt/R1Pd)が0.60以上となるように電極用触媒10及び電極用触媒10Aを構成することにより、これらの電極用触媒の表面において触媒活性の高いPt単体からなる部分の割合が増えて、本発明の効果がより確実に得られるようになる。また、上記(R1Pt/R1Pd)が6.00以下となるように電極用触媒を構成することにより、第2シェル部に含まれるPt単体の含有量を低減できるため、本発明の効果がより確実に得られるようになる。
 なお、従来のPt/Cに比較して、電極用触媒10及び電極用触媒10Aの触媒活性(特に、後述の初期のPt質量活性)をより確実に向上させる観点からは、(R1Pt/R1Pd)は0.60以上、1.15未満であることが好ましい。
 更に、従来のPt/Cに比較して、電極用触媒10及び電極用触媒10Aの耐久性(特に、後述の耐久性評価における「評価試験後のECSA」/「評価試験前の初期のECSA」の値)をより確実に向上させる観点からは、(R1Pt/R1Pd)は1.15以上、6.00以下であることが好ましい。
 この場合、電極用触媒10及び電極用触媒10Aは、R1Ptが35atom%以上であることが好ましい。従来のPt/Cに比較して、電極用触媒10及び電極用触媒10Aの触媒活性(特に、後述の初期のPt質量活性)をより確実に向上させる観点からは、R1Ptは35~48atm%であることが好ましい。
 更に、従来のPt/Cに比較して、電極用触媒10及び電極用触媒10Aの耐久性(特に、後述の耐久性評価における「評価試験後のECSA」/「評価試験前の初期のECSA」の値)をより確実に向上させる観点からは、R1Ptは40atm%以上であることが好ましく、50atm%以上であることがより好ましい。
 また、この場合、R1Pdが60atom%以下であることが好ましい。電極用触媒10及び電極用触媒10Aの耐久性(特に、後述の耐久性評価における「評価試験後のECSA」/「評価試験前の初期のECSA」の値)をより確実に向上させる観点からは、R1Pdは36atom%以下であることがより好ましく、26atom%以下であることが更にこのましい。
 更にこの場合、XPSにより測定される表面近傍の分析領域におけるW化合物に由来するWの割合R1Wが30atom%以下であることが好ましい。
 またこの場合、ICP発光分析により測定されるPt担持率LPt(wt%)と、Pd担持率LPd(wt%)とが下記式(2)の条件を満たしている、ことが好ましい。
Pt/LPd≧0.30・・・(2)
 X線光電子分光分析法(XPS)は、以下の分析条件(A1)~(A5)で実施しされるものとする。
(A1)X線源:単色化AlKα
(A2)光電子取出確度:θ=75℃
(A3)帯電補正:R1sピークエネルギーを284.8eVとして補正
(A4)分析領域:200μm、
(A5)分析時チャンバ圧力:約1×10-6Pa
 ここで、(A2)の光電子取出確度θは、図3に示すように、エックス線源32から放射されたX線が、試料ステージ34上にセットされた試料へ照射され、当該試料から放射される光電子を分光器36で受光するときの角度θである。すなわち、光電子取出確度θは、分光器36の受光軸と試料ステージ34の試料の層の面との角度に該当する。
<電極用触媒の製造方法>
 電極用触媒10(10A)の製造方法は、W炭化物と、W酸化物とを含むコア粒子を担体上に形成する「コア粒子形成工程」と、コア粒子形成工程を経て得られるコア粒子の表面の少なくとも一部に第1シェル部5(5a、5b)を形成する「第1シェル部形成工程」と、第1シェル部形成工程を経て得られる粒子の表面の少なくとも一部に第2シェル部6(6a、6b)を形成する「第2シェル部形成工程」とを含む構成を有する。
 電極用触媒10(10A)は、電極用触媒の触媒成分である触媒粒子3(3a)、すなわち、コア部4、第1シェル部5(5a、5b)、第2シェル部6(6a、6b)を担体2に順次担持させることより製造される。
 電極用触媒10(10A)の製造方法は、担体2に触媒成分である触媒粒子3(3a)を担持させることができる方法であれば、特に制限されるものではない。
 例えば、担体2に触媒成分を含有する溶液を接触させ、担体2に触媒成分を含浸させる含浸法、触媒成分を含有する溶液に還元剤を投入して行う液相還元法、アンダーポテンシャル析出(UPD)法等の電気化学的析出法、化学還元法、吸着水素による還元析出法、合金触媒の表面浸出法、置換めっき法、スパッタリング法、真空蒸着法等を採用した製造方法を例示することができる。
 ただし、「コア粒子形成工程」においては、好ましくは先に述べた式(5)の条件を満たすように、上述の公知の手法を組み合わせるなどして、原料、原料の配合比、合成反応の反応条件などを調整することが好ましい。
 また、「第1シェル部形成工程」、「第2シェル部形成工程」においても、好ましくは先に述べた式(1)~(3)の条件のうちの少なくとも1つを満たすように、上述の公知の手法を組み合わせるなどして、原料、その配合比、合成反応条件などを調整することが好ましい。
 更に、「コア粒子形成工程」を経て得られるコア粒子について、「第1シェル部形成工程」で第1シェル部を形成する前に、コア粒子の表面に存在するW酸化物を低減する処理を施してもよい。例えば、コア粒子の表面の還元処理や、酸によるW酸化物除去処理などをしてもよい。
 なお、電極用触媒10及び電極用触媒10Aを上述した式(1)~(5)で示した条件などの好ましい条件を満たすように構成する方法としては、例えば、生成物(触媒)の化学組成や構造を各種の公知の分析手法を用いて分析し、得られる分析結果を製造プロセスにフィードバックし、選択する原料、その原料の配合比、選択する合成反応、その合成反応の反応条件などを調製・変更する方法などがあげられる。
<燃料電池セルの構造>
 図4は本発明の電極用触媒を含むガス拡散電極形成用組成物、このガス拡散電極形成用組成物を用いて製造されたガス拡散電極、このガス拡散電極を備えた膜・電極接合体(Membrane Electrode Assembly:以下、必要に応じて「MEA」と略する)、及びこのMEAを備えた燃料電池スタックの好適な一実施形態を示す模式図である。
 図4に示された燃料電池スタック40は、MEA42を一単位セルとし、この一単位セルを複数積み重ねた構成を有している。
 更に、燃料電池スタック40は、ガス拡散電極であるアノード43(負極)と、ガス拡散電極であるカソード44(正極)と、これらの電極の間に配置される電解質膜45と、を備えたMEA42を有している。
 また、燃料電池スタック40は、このMEA42がセパレータ46及びセパレータ48により挟持された構成を有している。
 以下、本発明の電極用触媒を含む燃料電池スタック40の部材である、ガス拡散電極形成用組成物、ガス拡散電極であるアノード43及びカソード44、並びにMEA42について説明する。
<ガス拡散電極形成用組成物>
 本発明の電極用触媒をいわゆる触媒インク成分として用い、本発明のガス拡散電極形成用組成物とすることができる。
 本発明のガス拡散電極形成用組成物は、本発明の電極用触媒が含有されていることを特徴とする。
 ガス拡散電極形成用組成物は上記電極用触媒とイオノマー溶液を主要成分とする。イオノマー溶液の組成は特に限定されない。例えば、イオノマー溶液には、水素イオン伝導性を有する高分子電解質と水とアルコールとが含有されていてもよい。
 イオノマー溶液に含有される高分子電解質は、特に制限されるものではない。例えば、高分子電解質は、公知のスルホン酸基、カルボン酸基を有するパーフルオロカーボン樹脂を例示することができる。容易に入手可能な水素イオン伝導性を有する高分子電解質としては、ナフィオン(登録商標、デュポン社製)、アシプレックス(登録商標、旭化成株式会社製)、フレミオン(登録商標、旭硝子株式会社製)を例示することができる。
 ガス拡散電極形成用組成物は、電極用触媒、イオノマー溶液を混合し、粉砕、撹拌することにより作製することができる。
 ガス拡散電極形成用組成物の作製は、ボールミル、超音波分散機等の粉砕混合機を使用して調製することができる。粉砕混合機を操作する際の粉砕条件及び撹拌条件は、ガス拡散電極形成用組成物の態様に応じて適宜設定することができる。
 ガス拡散電極形成用組成物に含まれる電極用触媒、水、アルコール、水素イオン伝導性を有する高分子電解質の各組成は、電極用触媒の分散状態が良好であり、かつ電極用触媒をガス拡散電極の触媒層全体に広く行き渡らせることができ、燃料電池が備える発電性能を向上させることができるように適宜設定される。
<ガス拡散電極>
 ガス拡散電極であるアノード43は、ガス拡散層43aと、ガス拡散層43aの電解質膜45側の面に形成された触媒層43bとを備えた構成を有している。
 カソード44もアノード43と同様にガス拡散層(図示せず)と、ガス拡散層の電解質膜45側の面に形成された触媒層(図示せず)とを備えた構成を有している。
 本発明の電極用触媒は、アノード43及びカソード44のうちの少なくとも一方の触媒層に含有されていればよい。
 なお、本発明のガス拡散電極は、アノードとして用いることができ、カソードとしても用いることができる。
(電極用触媒層)
 触媒層43bは、アノード43において、ガス拡散層43aから送られた水素ガスが触媒層43bに含まれている電極用触媒10の作用により水素イオンに解離する化学反応が行われる層である。また、触媒層43bは、カソード44において、ガス拡散層43aから送られた空気(酸素ガス)とアノードから電解質膜中を移動してきた水素イオンが触媒層43bに含まれている電極用触媒10の作用により結合する化学反応が行われる層である。
 触媒層43bは、上記ガス拡散電極形成用組成物を用いて形成されている。触媒層43bは、電極用触媒10とガス拡散層43aから送られた水素ガス又は空気(酸素ガス)との反応を十分に行わせることができるように大きい表面積を有していることが好ましい。また、触媒層43bは、全体に亘って均一な厚みを有するように形成されていることが好ましい。触媒層43bの厚みは、適宜調整すればよく、制限されるものではないが、2~200μmであることが好ましい。
(ガス拡散層)
 ガス拡散電極であるアノード43、ガス拡散電極であるカソード44が備えているガス拡散層は、燃料電池スタック40の外部より、セパレータ46とアノード43との間に形成されているガス流路に導入される水素ガス、セパレータ48とカソード44との間に形成されているガス流路に導入される空気(酸素ガス)をそれぞれの触媒層に拡散するために設けられている層である。
 また、ガス拡散層は、触媒層を支持して、ガス拡散電極の表面に固定化する役割を有している。
 ガス拡散層は、水素ガス又は空気(酸素ガス)を良好に通過させて触媒層に到達させる機能・構造を有している。このため、ガス拡散層は撥水性を有していることが好ましい。例えば、ガス拡散層は、ポリエチレンテレフタレート(PTFE)等の撥水成分を有している。
 ガス拡散層に用いることができる部材は、特に制限されるものではなく、燃料電池用電極のガス拡散層に用いられている公知の部材を用いることができる。例えば、カーボンペーパー、カーボンペーパーを主原料とし、その任意成分としてカーボン粉末、イオン交換水、バインダーとしてポリエチレンテレフタレートディスパージョンからなる副原料をカーボンペーパーに塗布したものが挙げられる。
 ガス拡散電極であるアノード43、ガス拡散電極であるカソード44は、ガス拡散層、触媒層との間に中間層(図示せず)を備えていてもよい。
(ガス拡散電極の製造方法)
 ガス拡散電極の製造方法について説明する。本発明のガス拡散電極は本発明の電極用触媒を触媒層の構成成分となるように製造されていればよく、製造方法は特に限定されず公知の製造方法を採用することができる。
 例えば、ガス拡散電極は、電極用触媒と水素イオン伝導性を有する高分子電解質と、イオノマーとを含有するガス拡散電極形成用組成物をガス拡散層に塗布する工程と、このガス拡散電極形成用組成物が塗布されたガス拡散層を乾燥させ、触媒層を形成させる工程とを経て製造してもよい。
<膜・電極接合体(MEA)>
 図4に示す本発明のMEAの好適な一実施形態であるMEA42は、アノード43と、カソード44と、電解質膜45とを備えた構成を有している。MEA42は、アノード及びカソードのうちの少なくとも一方に本発明の電極用触媒が含有されたガス拡散電極を備えた構成を有している。
 MEA42は、アノード43、電解質300及びカソード44をこの順序により積層した後、圧着することにより製造することができる。
<燃料電池スタック>
 図4に示す本発明の燃料電池スタックの好適な一実施形態である燃料電池スタック40は、MEA42のアノード43の外側にセパレータ46が配置され、カソード44の外側にセパレータ48が配置された構成を一単位セル(単電池)とし、この一単位セル(単電池)を1個のみとする構成、又は、2個以上集積させた構成(図示せず)を有している。
 なお、燃料電池スタック40に周辺機器を取り付け、組み立てることにより、燃料電池システムが完成する。
 以下、実施例により本発明を更に具体的に説明するが、本発明は、以下の実施例に限定されるものではない。
(I)実施例及び比較例の電極用触媒の準備
(実施例1)
<電極用触媒の製造>
[Pd/W/C上にPtからなる第2シェル部を形成した「Pt/Pd/W/C」粉末]
 下記の「Pd/W/C」粉末の粒子のPd上にPtからなる第2シェル部が形成された「Pt/Pd/W/C」粉末{商品名「NE-F12W10-AAA」、N.E.CHEMCAT社製)}を実施例1の電極触媒として製造した。
 このPt/Pd/W/C粉末は、下記のPd/W/C粉末と、塩化白金酸カリウムと、水との混合液を調製し、これに還元剤を添加して得られる液中でPtイオンを還元処理することにより得られた。
[W/C上にPdからなる第1シェル部を形成した「Pd/W/C」粉末]
 下記の「W/C」粉末の粒子のW上にPdからなる第1シェル部が形成された「Pd/W/C」粉末{商品名「NE-F02W00-AA」、N.E.CHEMCAT社製)}を用意した。
 このPd/W/C粉末は、下記のW/C粉末と、テトラクロロパラジウム(II)酸ナトリウムと、水との混合液を調製し、これに還元剤を添加して得られる液中でパラジウムイオンを還元処理することにより得られる。
[コア粒子担持カーボン「W/C」粉末]
 W炭化物とW酸化物とからなるコア粒子がカーボンブラック粉末上に担持されたW/C粉末{商品名「NE-F00W00-A」、N.E.CHEMCAT社製)}を用意した。
 なお、後述するようにこのW/C粉末は、XPS分析の結果、W炭化物とW酸化物とを表1に示す比[R0WC/(R0WC+R0WO)]で含んでいることを確認した。
 このW/C粉末は、市販のカーボンブラック粉末(比表面積750~850m2/g)と、市販のタングステン酸塩と、市販の水溶性ポリマー(炭素源)とを含む粉末を、還元雰囲気下で熱処理して調整したものである。
 また、XRD分析結果より、このW/C粉末のコア粒子は以下のW炭化物とW酸化物から構成されていることが確認された。すなわち、W炭化物は、WC、W2C、WC1-x(0<x<1)であり、W酸化物はWO3であった。
<X線光電子分光分析(XPS:X-ray photoelectron spectroscopy)による電極用触媒の表面分析>
 実施例1の電極用触媒についてXPSによる表面分析を実施し、Pt単体の割合R1Pt(atom%)と、Pd単体の割合R1Pd(atom%)と、W化合物(上述のW炭化物とW酸化物)に由来するWの割合R1W(atom%)を測定した。
 具体的には、XPS装置として「Quantera SXM」(アルバック・ファイ社製)を使用し、以下の分析条件で実施した。
(A1)X線源:単色化AlKα
(A2)光電子取出確度:θ=75℃(図3参照)
(A3)帯電補正:R1sピークエネルギーを284.8eVとして補正
(A4)分析領域:200μm
(A5)分析時のチャンバ圧力:約1×10-6Pa
(A6)測定深さ(脱出深さ):約5nm以下
 分析結果を表1に示す。なお、表1に示すPt単体の割合R1Pt(atom%)、Pd単体の割合R1Pd(atom%)、および、W化合物に由来するWの割合R1W(atom%)、については、これらの3成分で100%となるように算出した。すなわち、電極用触媒の表面近傍の分析領域において、Pt単体、Pd単体及びW化合物の他に検出される炭素の割合(atom%)は計算から外した数値となる。
<担持率の測定(ICP分析)>
 実施例1の電極用触媒について、Pt担持率LPt(wt%)と、Pd担持率LPd(wt%)、Wの担持率LW(wt%)を以下の方法で測定した。
 実施例1の電極用触媒を王水に浸し、金属を溶解させた。次に、王水から不溶成分のカーボンを除去した。次に、カーボンを除いた王水をICP分析した。
 ICP分析の結果を表1に示す。
<X線光電子分光分析(XPS:X-ray photoelectron spectroscopy)によるコア粒子の表面分析>
 実施例1の電極用触媒の原料となったコア粒子についてXPSによる表面分析を実施し、W炭化物の割合R0WC(atom%)と、W酸化物の割合R0WO(atom%)とを測定した。
 具体的には、XPS装置として「Quantera SXM」(アルバック・ファイ社製)を使用し、上述の触媒粒子のXPS分析と同一の分析条件(A1)~(A6)で実施した。
 分析結果を表1に示す。
<電極用触媒の表面観察・構造観察>
 実施例1の電極用触媒について、STEM-HAADF 像、EDS elemental mapping 像を確認した結果、W炭化物とW酸化物とからなるコア部の粒子の表面の少なくとも一部に、Pdからなる第1シェル部の層が形成され、更に、第1シェル部の層の少なくとも一部にPtからなる第2シェル部の層が形成されたコアシェル構造を有する触媒粒子が導電性カーボン担体に担持されている構成(図1、図2参照)を有していることが確認できた。
(実施例2~実施例5)
 表1に示した電極用触媒の表面のXPS分析結果(R1Pt、R1Pd、R1W)、触媒粒子全体のICP分析結果(LPt、LPd、LW)、コア粒子の表面のXPS分析結果{R0WC/(R0WC+R0WO)}を有するように原料の仕込み量、反応条件等を微調整したこと以外は同様の調製条件、同一の原料を使用して、実施例2~実施例5の電極用触媒を製造した。
 また、XPS分析、ICP分析も実施例1と同一の条件で実施した。
 更に、実施例2~5の電極用触媒についても、STEM-HAADF 像、EDS elemental mapping 像を確認した結果、W炭化物とW酸化物とからなるコア部の粒子の表面の少なくとも一部に、Pdからなる第1シェル部の層が形成され、更に、第1シェル部の層の少なくとも一部にPtからなる第2シェル部の層が形成されたコアシェル構造を有する触媒粒子が導電性カーボン担体に担持されている構成(図1、図2参照)を有していることが確認できた。
(実施例6)
<電極用触媒の製造>
[Pd/W/C上にPtからなる第2シェル部を形成した「Pt/Pd/W/C」粉末]
 下記の「Pd/W/C」粉末の粒子のPd上にPtからなる第2シェル部が形成された「Pt/Pd/W/C」粉末{商品名「NE-G12W10-AAA」、N.E.CHEMCAT社製)}を実施例6の電極触媒として製造した。
 このPt/Pd/W/C粉末は、下記のPd/W/C粉末と、塩化白金酸カリウムと、水との混合液を調製し、これに還元剤を添加して得られる液中でPtイオンを還元処理することにより得られた。
[W/C上にPdからなる第1シェル部を形成した「Pd/W/C」粉末]
 下記の「W/C」粉末の粒子のW上にPdからなる第1シェル部が形成された「Pd/W/C」粉末{商品名「NE-G02W00-AA」、N.E.CHEMCAT社製)}を用意した。
 このPd/W/C粉末は、下記のW/C粉末と、テトラクロロパラジウム(II)酸ナトリウムと、水との混合液を調製し、これに還元剤を添加して得られる液中でパラジウムイオンを還元処理することにより得られる。
[コア粒子担持カーボン「W/C」粉末]
 W炭化物とW酸化物とからなるコア粒子がカーボンブラック粉末上に担持されたW/C粉末{商品名「NE-G00W00-A」、N.E.CHEMCAT社製)}を用意した。
 なお、後述するようにこのW/C粉末は、XPS分析の結果、W炭化物とW酸化物とを表2に示す比[R0WC/(R0WC+R0WO)]で含んでいることを確認した。
 このW/C粉末は、市販のカーボンブラック粉末(比表面積200~300m2/g)と、市販のタングステン酸塩と、市販の水溶性ポリマー(炭素源)とを含む粉末を、還元雰囲気下で熱処理して調整したものである。
 また、XRD分析結果より、このW/C粉末のコア粒子は以下のW炭化物とW酸化物から構成されていることが確認された。すなわち、W炭化物は、WC、W2C、WC1-x(0<x<1)であり、W酸化物はWO3であった。
 実施例6の電極用触媒について、実施例1の電極用触媒と同一の条件で、電極用触媒の表面のXPS分析、ICP分析、コア粒子のXPS分析を行った。それぞれの分析結果を表2に示す。
 次に、実施例6の電極用触媒についても、STEM-HAADF 像、EDS elemental mapping 像を確認した結果、W炭化物とW酸化物とからなるコア部の粒子の表面の少なくとも一部に、Pdからなる第1シェル部の層が形成され、更に、第1シェル部の層の少なくとも一部にPtからなる第2シェル部の層が形成されたコアシェル構造を有する触媒粒子が導電性カーボン担体に担持されている構成(図1、図2参照)を有していることが確認できた。
(実施例7~実施例11)
 表2に示した電極用触媒の表面のXPS分析結果(R1Pt、R1Pd、R1W)、触媒粒子全体のICP分析結果(LPt、LPd、LW)、コア粒子の表面のXPS分析結果{R0WC/(R0WC+R0WO)}を有するように原料の仕込み量、反応条件等を微調整したこと以外は同様の調製条件、同一の原料を使用して、実施例7~実施例11の電極用触媒を製造した。
 また、XPS分析、ICP分析も実施例1と同一の条件で実施した。
 更に、実施例7~実施例11の電極用触媒についても、STEM-HAADF 像、EDS elemental mapping 像を確認した結果、W炭化物とW酸化物とからなるコア部の粒子の表面の少なくとも一部に、Pdからなる第1シェル部の層が形成され、更に、第1シェル部の層の少なくとも一部にPtからなる第2シェル部の層が形成されたコアシェル構造を有する触媒粒子が導電性カーボン担体に担持されている構成(図1、図2参照)を有していることが確認できた。
(実施例12)
<電極用触媒の製造>
[Pd/W/C上にPtからなる第2シェル部を形成した「Pt/Pd/W/C」粉末]
 下記の「Pd/W/C」粉末の粒子のPd上にPtからなる第2シェル部が形成された「Pt/Pd/W/C」粉末{商品名「NE-G12W09-ADB」、N.E.CHEMCAT社製)}を実施例12の電極触媒として用意した。
 このPt/Pd/W/C粉末は、下記のPd/W/C粉末と、塩化白金酸カリウムと、水との混合液を調製し、これに還元剤を添加して得られる液中でPtイオンを還元処理することにより得られる。
[W/C上にPdからなる第1シェル部を形成した「Pd/W/C」粉末]
 下記の「W/C」粉末の粒子のW上にPdからなる第1シェル部が形成された「Pd/W/C」粉末{商品名「NE-G02W00-DB」、N.E.CHEMCAT社製)}を用意した。
 このPd/W/C粉末は、下記のW/C粉末と、テトラクロロパラジウム(II)酸ナトリウムと、水との混合液を調製し、これに還元剤を添加して得られる液中でパラジウムイオンを還元処理することにより得られる。
[コア粒子担持カーボン「W/C」粉末]
 W炭化物とW酸化物とからなるコア粒子がカーボンブラック粉末上に担持されたW/C粉末{商品名「NE-G00W00-B」、N.E.CHEMCAT社製)}を用意した。
 このW/C粉末は、市販のカーボンブラック粉末(比表面積200~300m2/g)と、市販のタングステン酸塩とを含む粉末を、炭化水素ガス(炭素源)を含む還元雰囲気下で熱処理して調整したものである。
 また、XRD分析結果より、このW/C粉末のコア粒子は以下のW単体と、W炭化物と、W酸化物とから構成されていることが確認された。ここで、W炭化物はWCであり、W酸化物はWO3であった。
 この実施例12の電極用触媒についても実施例1の電極触媒と同一の条件でXPS分析、ICP分析を実施した。その結果を表3に示す。
 また、実施例12の電極用触媒についても、STEM-HAADF 像、EDS elemental mapping 像を確認した結果、構成(図1、図2参照)を有していることが確認できた。
(実施例13~実施例21)
 表3に示した電極用触媒の表面のXPS分析結果(R1Pt、R1Pd、R1W)、触媒粒子全体のICP分析結果(LPt、LPd、LW)、コア粒子の表面のXPS分析結果{R0WC/(R0WC+R0WO)}を有するように原料の仕込み量、反応条件等を微調整したこと以外は同様の調製条件、同一の原料を使用して、実施例13~実施例21の電極用触媒を製造した。
 また、XPS分析、ICP分析も実施例12と同一の条件で実施した。
 更に、実施例13~実施例21の電極用触媒についても、STEM-HAADF 像、EDS elemental mapping 像を確認した結果、W炭化物とW酸化物とからなるコア部の粒子の表面の少なくとも一部に、Pdからなる第1シェル部の層が形成され、更に、第1シェル部の層の少なくとも一部にPtからなる第2シェル部の層が形成されたコアシェル構造を有する触媒粒子が導電性カーボン担体に担持されている構成(図1、図2参照)を有していることが確認できた。
(実施例22)
<電極用触媒の製造>
[Pd/W/C上にPtからなる第2シェル部を形成した「Pt/Pd/W/C」粉末]
 下記の「Pd/W/C」粉末の粒子のPd上にPtからなる第2シェル部が形成された「Pt/Pd/W/C」粉末{商品名「NE-G12W09-ACB」、N.E.CHEMCAT社製)}を実施例22の電極触媒として用意した。
 このPt/Pd/W/C粉末は、下記のPd/W/C粉末と、塩化白金酸カリウムと、水との混合液を調製し、これに還元剤を添加して得られる液中でPtイオンを還元処理することにより得られる。
[W/C上にPdからなる第1シェル部を形成した「Pd/W/C」粉末]
 下記の「W/C」粉末の粒子のW上にPdからなる第1シェル部が形成された「Pd/W/C」粉末{商品名「NE-G02W00-CB」、N.E.CHEMCAT社製)}を用意した。
 このPd/W/C粉末は、下記のW/C粉末と、テトラクロロパラジウム(II)酸ナトリウムと、水との混合液を調製し、これに実施例1~実施例21で添加した還元剤とは異なる還元剤を添加して得られる液中でパラジウムイオンを還元処理することにより得られる。
[コア粒子担持カーボン「W/C」粉末]
 W炭化物とW酸化物とからなるコア粒子がカーボンブラック粉末上に担持されたW/C粉末{商品名「NE-G00W00-B」、N.E.CHEMCAT社製)}を用意した。
 このW/C粉末は、市販のカーボンブラック粉末(比表面積200~300m2/g)と、市販のタングステン酸塩とを含む粉末を、炭化水素ガス(炭素源)を含む還元雰囲気下で熱処理して調整したものである。
 また、XRD分析結果より、このW/C粉末のコア粒子は以下のW単体と、W炭化物と、W酸化物とから構成されていることが確認された。ここで、W炭化物はWCであり、W酸化物はWO3であった。
 この実施例22の電極用触媒についても実施例1の電極触媒と同一の条件でXPS分析、ICP分析を実施した。その結果を表3に示す。
 また、実施例22の電極用触媒についても、STEM-HAADF 像、EDS elemental mapping 像を確認した結果、構成(図1、図2参照)を有していることが確認できた。
(比較例1)
 Pt/C触媒として、N.E.CHEMCAT社製のPt担持率50wt%のPt/C触媒(商品名:「NE-F50」)を用意した。この触媒は、実施例1の電極用触媒と同一の担体を原料とするものである。
 この比較例1の電極用触媒についても実施例1の電極触媒と同一の条件でXPS分析、ICP分析を実施した。その結果を表1に示す。
(比較例2)
<電極用触媒の製造>
[Pd/C上にPtからなるシェル部を形成した「Pt/Pd/C」粉末]
 下記の「Pd/C」粉末の粒子のPd上にPtからなるシェル部が形成された「Pt/Pd/C」粉末{商品名「NE-F01215-BC」、N.E.CHEMCAT社製)}を比較例2の電極触媒として用意した。
 このPt/Pd/C粉末は、下記のPd/C粉末と、塩化白金酸カリウムと、水との混合液を調製し、これに還元剤を添加して得られる液中でPtイオンを還元処理することにより得られる。
[コア粒子担持カーボン「Pd/C」粉末]
 Pdからなるコア粒子がカーボンブラック粉末上に担持されたPd/C粉末{商品名「NE-F00200-C」、N.E.CHEMCAT社製)}を用意した。
 このPd/C粉末は、市販のカーボンブラック粉末(比表面積750~850m2/g)と、テトラクロロパラジウム(II)酸ナトリウムと、水との混合液を調製し、これに還元剤を添加して得られる液中でパラジウムイオンを還元処理することにより得られる。
 この比較例2の電極用触媒についても実施例1の電極触媒と同一の条件でXPS分析、ICP分析を実施した。その結果を表1に示す。
 また、実施例12の電極用触媒についても、STEM-HAADF 像、EDS elemental mapping 像を確認した結果、Pdからなるコア部の粒子の表面の少なくとも1部に、Ptからなるシェル部の層が形成されたコアシェル構造を有する触媒粒子が導電性カーボン担体に担持されている構成を有していることが確認できた。
(比較例3)
 Pt/C触媒として、N.E.CHEMCAT社製のPt担持率30wt%のPt/C触媒(商品名:「NE-G30」)を用意した。
 この触媒は、実施例6~22の電極用触媒と同一の担体を原料とするものである。
(比較例4)
<電極用触媒の製造>
[W/C上にPtからなるシェル部を形成した「Pt/W/C」粉末]
 下記の「W/C」粉末の粒子のW上にPdからなる第1シェル部が形成された「Pd/W/C」粉末{商品名「NE-G01W10-AA」、N.E.CHEMCAT社製)}を比較例4の電極触媒として用意した。
 このPt/W/C粉末は、下記のW/C粉末と、塩化白金酸カリウムと、水との混合液を調製し、これに還元剤を添加して得られる液中でPtイオンを還元処理することにより得られる。
[コア粒子担持カーボン「W/C」粉末]
 W炭化物とW酸化物とからなるコア粒子がカーボンブラック粉末上に担持されたW/C粉末{商品名「NE-G00W00-A」、N.E.CHEMCAT社製)}を用意した。
 なお、後述するようにこのW/C粉末は、XPS分析の結果、W炭化物とW酸化物とを表1に示す比[R0WC/(R0WC+R0WO)]で含んでいることを確認した。
 このW/C粉末は、市販のカーボンブラック粉末(比表面積200~300m2/g)と、市販のタングステン酸塩と、市販の水溶性ポリマー(炭素源)とを含む粉末を、還元雰囲気下で熱処理して調整したものである。
 また、XRD分析結果より、このW/C粉末のコア粒子は以下のW炭化物とW酸化物から構成されていることが確認された。すなわち、W炭化物は、WC、W2C、WC1-x(0<x<1)であり、W酸化物はWO3であった。
 比較例4の電極用触媒について、実施例1の電極用触媒と同一の条件で、電極用触媒の表面のXPS分析、ICP分析、コア粒子のXPS分析を行った。それぞれの分析結果を表2及び表3に示す。
 次に、比較例4の電極用触媒についても、STEM-HAADF 像、EDS elemental mapping 像を確認した結果、W炭化物とW酸化物とからなるコア部の粒子の表面の少なくとも一部に、Ptからなるシェル部の層が形成されたコアシェル構造を有する触媒粒子が導電性カーボン担体に担持されている構成を有していることが確認できた。
(比較例5)
<電極用触媒の製造>
[Pd/C上にPtからなるシェル部を形成した「Pt/Pd/C」粉末]
 下記の「Pd/C」粉末の粒子のPd上にPtからなるシェル部が形成された「Pt/Pd/C」粉末{商品名「NE-G01215-BC」、N.E.CHEMCAT社製)}を比較例5の電極触媒として用意した。
 このPt/Pd/C粉末は、下記のPd/C粉末と、塩化白金酸カリウムと、水との混合液を調製し、これに還元剤を添加して得られる液中でPtイオンを還元処理することにより得られる。
[コア粒子担持カーボン「Pd/C」粉末]
 Pdからなるコア粒子がカーボンブラック粉末上に担持されたPd/C粉末{商品名「NE-G00200-D」、N.E.CHEMCAT社製)}を用意した。
 このPd/C粉末は、市販のカーボンブラック粉末(比表面積200~300m2/g)と、テトラクロロパラジウム(II)酸ナトリウムと、水との混合液を調製し、これに還元剤を添加して得られる液中でパラジウムイオンを還元処理することにより得られる。
 この比較例5の電極用触媒についても実施例1の電極触媒と同一の条件でXPS分析、ICP分析を実施した。その結果を表3に示す。
 また、比較例5の電極用触媒についても、STEM-HAADF 像、EDS elemental mapping 像を確認した結果、Pdからなるコア部の粒子の表面の少なくとも1部に、Ptからなるシェル部の層が形成されたコアシェル構造を有する触媒粒子が導電性カーボン担体に担持されている構成を有していることが確認できた。
(II)ガス拡散電極形成用組成物の製造
 実施例1~実施例22、比較例1~比較例5の電極用触媒の粉末を約8.0mg秤取り、超純水2.5mLとともにサンプル瓶に入れて超音波を照射しながら混合して電極用触媒のスラリー(懸濁液)を作製した。
 次に、別の容器に超純水10.0mLと10wt%ナフィオン(登録商標)分散水溶液((株)ワコーケミカル製、商品名「DE1020CS」)20μLを混合して、ナフィオン-超純水溶液を作製した。
 このナフィオン-超純水溶液2.5mLを電極用触媒のスラリー(懸濁液)が入ったサンプル瓶に投入し、室温にて15分間、超音波を照射し、十分に撹拌して、ガス拡散電極形成用組成物とした。
(III)評価試験用の電極への触媒層の形成
 後述する回転ディスク電極法(RDE法)による電極触媒の評価試験の準備として、回転ディスク電極WE(図5参照)の電極面上に、実施例1の電極用触媒の粉末を含む触媒層CL(図5参照)、実施例2の電極用触媒の粉末を含む触媒層CL(図5参照)、比較例1の電極用触媒の粉末を含む触媒層CL(図5参照)、比較例2の電極用触媒の粉末を含む触媒層CL(図5参照)を以下の手順で形成した。
 すなわち、ガス拡散電極形成用組成物を10μL分取して、回転ディスク電極WEの清浄な表面に滴下した。その後、回転ディスク電極WEの電極面全体に当該組成物を塗布し、塗布膜を形成した。このガス拡散電極形成用組成物からなる塗布膜を温度23℃、湿度50%RHにて、2.5時間乾燥処理し、回転ディスク電極WEの表面に触媒層CLを形成した。
(IV)電極用触媒の触媒活性の評価試験
 次に、実施例1~実施例22の電極触媒を含む触媒層CLが形成された回転ディスク電極WEと、比較例1~比較例5の電極触媒を含む触媒層CLが形成された回転ディスク電極WEとを使用し、触媒活性の評価試験、耐久性の評価試験を以下の手順で実施した。
 また、回転ディスク電極法(RDE法)により、以下の手順で+0.9V(vsRHE)での白金質量活性(Mass Act、mA/g-Pt)を測定した。
[回転ディスク電極測定装置の構成]
 図5は、回転ディスク電極法(RDE法)に用いる回転ディスク電極測定装置50の概略構成を示す模式図である。
 図5に示すように、回転ディスク電極測定装置50は、主として、測定セル51と、参照電極REと、対極CEと、回転ディスク電極WEとから構成されている。更に、触媒の評価を実施する場合には、測定セル51中に電解液ESが入れられる。
 測定セル51は上面に開口部を有する略円柱状の形状を有しており、開口部には、ガスシール可能な蓋を兼ねた回転ディスク電極WEの固定部材52が配置されている。固定部材52の中央部には回転ディスク電極WEの電極本体部分を測定セル51内に挿入しつつ固定するためのガスシール可能な開口部が設けられている。
 測定セル51の隣には、略L字状のルギン管53が配置されている。更にルギン管53の一方の先端部分はルギン毛細管の構造を有し、測定セル51の内部に挿入されており、測定セル51の電解液ESがルギン管53内部にも入るように構成されている。ルギン管53の他方に先端には開口部があり、当該開口部から参照電極REがルギン管53内に挿入される構成となっている。
 なお、回転ディスク電極測定装置50としては、北斗電工株式会社製「モデルHSV110」を使用した。また、参照電極REとしてはAg/AgCl飽和電極、対極CEとしてはPt黒付Ptメッシュ、回転ディスク電極WEとしてはグラッシーカーボン社製、径5.0mmφ、面積19.6mm2の電極をそれぞれ使用した。更に、電解液ESとして0.1MのHCl04を用いた。
[回転ディスク電極WEのクリーニング]
 図5に示すように、上記回転ディスク電極測定装置50内において、HClO4電解液ES中に回転ディスク電極WEを浸した後、測定セル51の側面に連結されたガス導入管54からアルゴンガスを測定セル51中に導入することにより、アルゴンガスで電解液ES中の酸素を30分以上パージした。
 その後、参照電極REに対する回転ディスク電極WEの電位(vsRHE)を、+85mV~+1085mV、走査速度50mv/secとする、いわゆる「三角波の電位掃引モード」で20サイクル、掃引した。
[初期の電気化学表面積(ECSA)の評価]
 次に、参照電極REに対する回転ディスク電極WEの電位(vsRHE)を、図6に示すいわゆる「矩形波の電位掃引モード」で掃引した。
 より詳しくは、以下(A)~(D)で示す操作を1サイクルとした電位掃引を6サイクル行った。
 (A)掃引開始時の電位:+600mV、(B)+600mVから+1000mVへの掃引、(C)+1000mVでの電位保持3秒、(D)+1000mVから+600mVへの掃引、(E)+600mVでの電位保持3秒。
 次に、回転ディスク電極WEの電位(vsRHE)を、測定開始の電位+119mV、+50mV~1200mV、走査速度20mV/secとする「三角波の電位掃引モード」にて3サイクル、CV測定を行った。なお、回転ディスク電極WEの回転速度は1600rpmとした。
 次に、酸素ガスで測定セル51の電解液ESを15分以上バブリングした後、走査電位を135~1085mV vsRHE、走査速度10mV/secの「三角波の電位掃引モード」にて10サイクル、回転ディスク電極WEの回転速度を1600rpmの条件でCV測定を行った。
 回転ディスク電極WEの電位+900mV vsRHEにおける電流値を記録した。
 さらに、回転ディスク電極WEの回転速度をそれぞれ400rpm、625rpm、900rpm、1225rpm、2025rpm、2500rpm、3025rpmに設定して、1サイクルごとに酸素還元(ORR)電流測定を行った。
 CV測定から得られた結果を利用して、Pt質量活性(Mass Act)(mA/ μg-Pt@0.9V)を算出した。
 実施例1~実施例5、比較例1及び比較例2について得られた結果を表1に示す。
 実施例6~実施例11、比較例3及び比較例4について得られた結果を表2に示す。
 実施例12~実施例22、比較例3~比較例5について得られた結果を表3に示す。
 なお、表1においては、比較例1(Pt/C触媒)のPt質量活性(Mass Act)を1.00とした場合における、実施例1~実施例5、比較例2のPt質量活性(Mass Act)の相対値を示した。
 また、表2においては、比較例3(Pt/C触媒)のPt質量活性(Mass Act)を1.00とした場合における、実施例6~実施例11、比較例4のPt質量活性(Mass Act)の相対値を示した。
 更に、表3においては、比較例3(Pt/C触媒)のPt質量活性(Mass Act)を1.00とした場合における、実施例12~実施例22、比較例4及び比較例5のPt質量活性(Mass Act)の相対値を示した。
(V)電極用触媒の耐久性の評価試験
 触媒活性の評価試験に使用したものとは別の実施例1~実施例22の電極触媒を含む触媒層CLが形成された回転ディスク電極WEと、比較例1~比較例5の電極触媒を含む触媒層CLが形成された回転ディスク電極WEとをそれぞれ用意し、RDE法により、以下の手順でECSAの測定を行い、耐久性の評価を行った。
[クリーニング]
 先に述べた触媒活性の評価試験で実施したクリーニングと同一の電気化学的処理を行った。
(V-1)[初期のECSAの測定]
(i)電位掃引処理
 参照電極REに対する回転ディスク電極WEの電位(vsRHE)を、図6に示すいわゆる「矩形波の電位掃引モード」で掃引した。
 より詳しくは、以下(A)~(D)で示す操作を1サイクルとした電位掃引を6サイクル行った。
 (A)掃引開始時の電位:+600mV、(B)+600mVから+1000mVへの掃引、(C)+1000mVでの電位保持3秒、(D)+1000mVから+600mVへの掃引、(E)+600mVでの電位保持3秒。
(ii)CV測定
 次に、回転ディスク電極WEの電位(vsRHE)を、測定開始の電位+119mV、+50mV~1200mV、走査速度50mV/secとする「三角波の電位掃引モード」にて2サイクル、CV測定を行った。なお、回転ディスク電極WEの回転速度は1600rpmとした。
 2サイクル目のCV測定結果から、水素脱着波に基づく初期のECSAの値を算出した。結果を表1に示す。
(V-2)[電位掃引回数12420サイクル後のECSAの測定]
 初期のECSAの測定に引き続き、上述の「(i)電位掃引処理」を、電位掃引回数を12サイクルとしたこと以外は同一の条件で実施した。次に、上述の「(ii)CV測定」を同一の条件で実施した。
 このようにして、電位掃引回数を順次変化させて「(i)電位掃引処理」を実施し、その都度上述の「(ii)CV測定」を同一の条件で実施した。電位掃引回数は、22、40、80、160、300、600、800、1000、1000、8400サイクルと順次変化させた。
 これにより、最後の「(ii)CV測定」において得られるECSAの値(電位掃引回数が合計12420サイクルとなる電位掃引処理を施された後のECSAの値)を求めた。
 また、この最後の「(ii)CV測定」において得られる水素脱着波に基づくECSAの値を「初期のECSAの値」で除すことにより、ESCAの維持率(%)を算出した。
 実施例1~実施例5、比較例1及び比較例2について得られた結果を表1に示す。
 実施例6~実施例11、比較例3及び比較例4について得られた結果を表2に示す。
 実施例12~実施例22、比較例3~比較例5について得られた結果を表3に示す。
 なお、表1においては、比較例1(Pt/C触媒)の初期のECSAの値を1.00とした場合における、実施例1~実施例5、比較例2の初期のECSAの相対値を示した。更に、表1においては、比較例1(Pt/C触媒)のESCAの維持率の値を1.00とした場合における、実施例1~実施例5、比較例2のESCAの維持率の相対値を示した。
 また、表2においては、比較例3(Pt/C触媒)の初期のECSAの値を1.00とした場合における、実施例6~実施例11、比較例4の初期のECSAの相対値を示した。更に、表2においては、比較例3(Pt/C触媒)のESCAの維持率の値を1.00とした場合における、実施例6~実施例11、比較例2のESCAの維持率の相対値を示した。
 更に、表3においては、実施例12~実施例22、比較例3~比較例5のそれぞれについて、初期のECSAの値を示した。また、表3においては、比較例3(Pt/C触媒)の初期のECSAの値を1.00とした場合における、実施例12~実施例22、比較例4及び比較例5の初期のECSAの相対値を示した。更に、表3においては、電位掃引回数12420サイクル後のECSAの測定値について、比較例3(Pt/C触媒)で得られた値を1.00とした場合における、実施例12~実施例22、比較例4及び比較例5の相対値(以下、「相対値X」という)を示した。
 また、実施例16と比較例5については、初期のECSAの値を測定した直後の測定セル51中の電解液ESの一部と、電位掃引回数12420サイクル後のECSAの値を測定した直後の測定セル51中の電解液ESの一部とをそれぞれ採取し、ICP分析を行うことにより、実施例16と比較例5の電極用触媒から溶出するPdの量を測定した。得られた結果を表4に示す。なお、表4においては、比較例5(Pt/Pd/C触媒)のPd溶出量を1.00とした場合における、実施例16のPd溶出量の相対値を示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1~表3に示したPt質量活性(Mass Act)の結果から、実施例1~実施例22の電極用触媒は、比較例1及び比較例3の電極触媒(従来のPt/C触媒)と比較し、略同等かそれ以上のPt質量活性を有しており、かつ、初期のECSAの値も略同等かそれ以上であり、実用に耐えうる水準の触媒活性を有していることが明らかとなった。
 特に、実施例12~実施例22の電極用触媒(R1Pt/R1Pdが0.60以上1.15未満)は、比較例3の電極触媒(従来のPt/C触媒)と比較し、2倍~約5倍のPt質量活性を有しており、かつ、初期のECSAの値も約1.8倍~約2.7倍であり、優れた触媒活性を有していることが明らかとなった。
 また、表1~表2に示した初期のECSAの値、電位掃引回数12420サイクル後のECSAの測定値から得られる「ESCAの維持率の相対値」の結果から、実施例1~実施例11の電極用触媒(R1Pt/R1Pdが1.15~6.00)は、比較例1及び比較例3の電極用触媒(Pt/C触媒)と比較し、電位掃引回数12420サイクル後のECSAの値及びECSAの維持率が同等以上(約1倍~約1.4倍)であり、実用に耐えうる水準の耐久性を有していることが明らかとなった。
 また、表3に示した結果から、実施例12~実施例22の電極用触媒は、比較例3の電極触媒と比較し、「相対値X」の値が約1.4倍~約2.3倍となる十分に高い水準を維持しており、実用に耐えうる水準の耐久性を有していることが明らかとなった。
 更に、表1において、実施例1~実施例5の電極用触媒は、比較例2(Pt/Pd/C触媒)との対比した場合、ESCAの維持率が同等であり、Pt/Pd/C触媒と同水準の優れた耐久性を有していることが明らかとなった。
 また、表2において、実施例6~実施例11の電極用触媒は、比較例4(Pt/W/C)との対比した場合、ESCAの維持率が約5倍以上であることが明らかとなった。このことから、実施例6~実施例11の電極用触媒のように第1シェル部としてPd単体を含む層が存在する構成とすると、比較例4のように第1シェル部としてPd単体を含む層が存在しない構成に比較して耐久性が向上することが示された。第1シェル部としてのPd単体を含む層の存在により耐久性が向上する傾向は、表3において、実施例12~実施例22の電極用触媒と、比較例4(Pt/W/C)の電極触媒について、「相対値X」を比較するとより顕著であることが示された。
 更に、表3において、実施例12~実施例22の電極用触媒は、比較例5(Pt/Pd/C触媒)との対比した場合、「相対値X」が同等以上であり、Pt/Pd/C触媒と同水準の優れた耐久性を有していることが明らかとなった。
 また、表4に示した結果から、W炭化物、W酸化物をコア粒子の構成要素とする実施例16の電極用触媒(Pt/Pd/W/C触媒)の方が比較例5(Pt/Pd/C触媒)よりもPd溶出量が約1/2に低減できることが示された。
 以上の結果から、本実施例の電極用触媒は、従来のPt/C触媒と比較し、実用に耐えうる水準の触媒活性、耐久性を有していることが明らかとなった。更に、本実施例の電極用触媒は、コア部の材料をタングステン化合物としているため、白金使用量を削減でき、低コスト化に寄与できることが明らかとなった。
 本発明の電極用触媒は、従来のPt/C触媒と比較し、実用に耐えうる水準の触媒活性、耐久性を有し、かつ、低コスト化に寄与できる。
 従って、本発明は、燃料電池、燃料電池自動車、携帯モバイル等の電機機器産業のみならず、エネファーム、コジェネレーションシステム等に適用することができる電極用触媒であり、エネルギー産業、環境技術関連の発達に寄与する。
 2・・・担体、
 3・・・触媒粒子、
 4・・・コア部、
 5・・・第1シェル部、
 6・・・第2シェル部、
 7・・・シェル部、
 10、10A・・・電極用触媒、
 40・・・燃料電池スタック40、
 42・・・MEA、
 43・・・アノード、
 43a・・・ガス拡散層、
 43b・・・触媒層、
 44・・・カソード、
 45・・・電解質膜、
 46・・・セパレータ、
 48・・・セパレータ、
 50・・・回転ディスク電極測定装置、
 51・・・測定セル、
 52・・・固定部材、
 53・・・ルギン管、
 CE・・・対極、
 CL・・・触媒層、
 ES・・・電解液、
 RE・・・参照電極、
 WE・・・回転ディスク電極。

Claims (15)

  1.  導電性を有する担体と、
     前記担体上に担持される触媒粒子と、
    を含んでおり、
     前記触媒粒子が、前記担体上に形成されるコア部と、前記コア部上に形成される第1シェル部と、前記第1シェル部上に形成される第2シェル部と、を有しており、
     前記コア部にはW炭化物を少なくとも含むW化合物が含まれており、
     前記第1シェル部にはPd単体が含まれており、
     前記第2シェル部にはPt単体が含まれている、
    電極用触媒。
  2.  前記コア部には、W酸化物が更に含まれている請求項1に記載の電極用触媒。
  3.  前記コア部には、W単体が更に含まれている請求項1又は2に記載の電極用触媒。
  4.  X線光電子分光分析法(XPS)により測定される表面近傍の分析領域における、Pt単体の割合R1Pt(atom%)と、Pd単体の割合R1Pd(atom%)とが、下記式(1)の条件を満たしている、
    請求項1~3のうちのいずれか1項に記載の電極用触媒。
    0.60≦(R1Pt/R1Pd)≦6.00・・・(1)
  5.  前記R1Ptが35atom%以上である、
    請求項4に記載の電極用触媒。
  6.  前記R1Pdが60atom%以下である、
    請求項4又は5に記載の電極用触媒。
  7.  X線光電子分光分析法(XPS)により測定される表面近傍の分析領域における前記W化合物に由来するWの割合R1Wが30atom%以下である、
    請求項4~6のうちのいずれか1項に記載の電極用触媒。
  8.  ICP発光分析により測定されるPt担持率LPt(wt%)と、Pd担持率LPd(wt%)とが下記式(2)の条件を満たしている、
    請求項1~7のうちのいずれか1項に記載の電極用触媒。
    Pt/LPd≧0.3・・・(2)
  9.  粉末X線回折(XRD)により測定される前記触媒粒子の結晶子サイズの平均値が3~22.0nmである、
    請求項1~8のうちのいずれか1項に記載の電極用触媒。
  10.  W炭化物と、W酸化物とを含むコア粒子を前記担体上に形成するコア粒子形成工程と、
     前記コア粒子形成工程を経て得られる前記コア粒子の表面の少なくとも一部に前記第1シェル部を形成する第1シェル部形成工程と、
     前記第1シェル部形成工程を経て得られる粒子の表面の少なくとも一部に前記第2シェル部を形成する第2シェル部形成工程と、
    を経て調整され、
     前記コア粒子形成工程を経て得られる粒子について、
     X線光電子分光分析法(XPS)により測定される表面近傍の分析領域における前記W炭化物の割合R0WC(atom%)と、前記W酸化物の割合R0WO(atom%)とが下記式(3)の条件を満たしている、
    請求項1~10のうちのいずれか1項に記載の電極用触媒。
    R0WC/(R0WC+R0WO)≧0.10・・・(3)
  11.  前記コア粒子形成工程を経て得られる粒子について、
     X線光電子分光分析法(XPS)により測定される表面近傍の分析領域における前記W炭化物の割合R0WC(atom%)と、前記W酸化物の割合R0WO(atom%)とが下記式(4)の条件を更に満たしている、
    請求項10に記載の電極用触媒。
    R0WC/(R0WC+R0WO)≧0.25・・・(4)
  12.  請求項1~11のうちのいずれか1項に記載の電極用触媒が含有されている、
    ガス拡散電極形成用組成物。
  13.  請求項1~11のうちのいずれか1項に記載の電極用触媒が含有されている、又は、請求項12に記載のガス拡散電極形成用組成物を使用して形成されている、
    ガス拡散電極。
  14.  請求項13記載のガス拡散電極が含まれている、膜・電極接合体(MEA)。
  15.  請求項14記載の膜・電極接合体(MEA)が含まれている、燃料電池スタック。
PCT/JP2015/004320 2014-08-28 2015-08-27 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、燃料電池スタック WO2016031251A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DK15835698.0T DK3051614T3 (en) 2014-08-28 2015-08-27 ELECTRODE CATALYST, COMPOSITION FOR GAS DIFFUSION ELECTRODE, GAS DIFFUSION ELECTRODE, MEMBRANE ELECTRODE UNIT AND FUEL CELL STACK
KR1020167011317A KR101786408B1 (ko) 2014-08-28 2015-08-27 전극용 촉매, 가스확산 전극 형성용 조성물, 가스확산 전극, 막-전극 접합체, 연료전지 스택
US15/102,438 US9893365B2 (en) 2014-08-28 2015-08-27 Electrode catalyst, composition for forming gas diffusion electrode, gas diffusion elelctrode, membrane-electrode assembly, and fuel cell stack
CA2929051A CA2929051C (en) 2014-08-28 2015-08-27 An electrode catalyst
KR1020177022282A KR102023260B1 (ko) 2014-08-28 2015-08-27 전극용 촉매, 가스확산 전극 형성용 조성물, 가스확산 전극, 막-전극 접합체, 연료전지 스택
KR1020177022283A KR102023261B1 (ko) 2014-08-28 2015-08-27 전극용 촉매, 가스확산 전극 형성용 조성물, 가스확산 전극, 막-전극 접합체, 연료전지 스택
EP15835698.0A EP3051614B1 (en) 2014-08-28 2015-08-27 Catalyst for electrode, composition for forming gas diffusion electrode, gas diffusion electrode, membrane electrode assembly, and fuel cell stack
CN201580002582.XA CN105723551B (zh) 2014-08-28 2015-08-27 电极用催化剂、气体扩散电极形成用组合物、气体扩散电极、膜电极组件、燃料电池堆

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-174564 2014-08-28
JP2014174564 2014-08-28

Publications (1)

Publication Number Publication Date
WO2016031251A1 true WO2016031251A1 (ja) 2016-03-03

Family

ID=55399164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004320 WO2016031251A1 (ja) 2014-08-28 2015-08-27 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、燃料電池スタック

Country Status (8)

Country Link
US (1) US9893365B2 (ja)
EP (1) EP3051614B1 (ja)
JP (1) JP5887453B1 (ja)
KR (3) KR102023260B1 (ja)
CN (1) CN105723551B (ja)
CA (1) CA2929051C (ja)
DK (1) DK3051614T3 (ja)
WO (1) WO2016031251A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159524A1 (ja) * 2017-03-01 2018-09-07 エヌ・イー ケムキャット株式会社 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、燃料電池スタック
WO2018180675A1 (ja) * 2017-03-28 2018-10-04 エヌ・イー ケムキャット株式会社 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、燃料電池スタック
WO2018180676A1 (ja) * 2017-03-28 2018-10-04 エヌ・イー ケムキャット株式会社 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、燃料電池スタック

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9893365B2 (en) * 2014-08-28 2018-02-13 N.E. Chemcat Corporation Electrode catalyst, composition for forming gas diffusion electrode, gas diffusion elelctrode, membrane-electrode assembly, and fuel cell stack
JP7008686B2 (ja) * 2017-02-28 2022-02-10 エヌ・イーケムキャット株式会社 核水添反応用触媒
KR102191155B1 (ko) * 2017-09-27 2020-12-15 주식회사 엘지화학 연료전지용 촉매의 제조방법
KR102463420B1 (ko) 2017-11-02 2022-11-03 현대자동차주식회사 고분자 전해질 연료전지용 전극의 제조방법 및 이에 의해 제조된 전극
CN107890863A (zh) * 2017-11-02 2018-04-10 西安交通大学 一种具有纳米核壳结构的复合催化剂及其制备方法
DE102021206220A1 (de) * 2021-06-17 2022-12-22 Robert Bosch Gesellschaft mit beschränkter Haftung Zellverbund zum kontrollierten Leiten reaktiver Fluide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008021610A (ja) * 2006-07-14 2008-01-31 Mitsubishi Chemicals Corp Pefc型燃料電池及び触媒
JP2008545604A (ja) * 2005-05-19 2008-12-18 ブルックヘヴン サイエンス アソシエイツ 還元型白金の酸化による酸素の還元用の電極触媒と溶解速度
JP2012041581A (ja) * 2010-08-17 2012-03-01 Sony Corp コアシェル型微粒子及びこれを用いた機能デバイス
JP2012143753A (ja) * 2011-01-13 2012-08-02 Samsung Electronics Co Ltd 活性粒子含有触媒、その製造方法、該触媒を含んだ燃料電池、該活性粒子を含有するリチウム空気電池用電極、及び該電極を含んだリチウム空気電池

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4035654B2 (ja) 2001-06-29 2008-01-23 株式会社デンソー 触媒粒子およびその製造方法
JP2005125282A (ja) 2003-10-27 2005-05-19 Denso Corp 触媒粒子およびその製造方法
US7855021B2 (en) 2004-12-22 2010-12-21 Brookhaven Science Associates, Llc Electrocatalysts having platium monolayers on palladium, palladium alloy, and gold alloy core-shell nanoparticles, and uses thereof
US7422994B2 (en) * 2005-01-05 2008-09-09 Symyx Technologies, Inc. Platinum-copper-tungsten fuel cell catalyst
EP2059361B1 (en) 2006-08-30 2020-02-26 Umicore AG & Co. KG Core/shell-type catalyst particles comprising ceramic core materials
US8295330B2 (en) 2008-07-22 2012-10-23 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for communication signal processing based on mixed parametric and non-parametric estimation of impairment correlations
JP5482095B2 (ja) 2008-10-30 2014-04-23 ソニー株式会社 白金含有触媒を含有する電極及びその製造方法、並びに、電気化学デバイス
CN101572316B (zh) * 2009-06-06 2011-09-07 西北师范大学 用于低温燃料电池的修饰型催化剂及其制备方法
KR20120115559A (ko) * 2010-02-05 2012-10-18 바스프 에스이 촉매의 제조 방법 및 촉매
CA2776367C (en) * 2010-07-21 2013-12-17 Toyota Jidosha Kabushiki Kaisha Fuel cell electrocatalytic particle and method for producing the same
JP5502793B2 (ja) 2011-03-31 2014-05-28 トヨタ自動車株式会社 高耐久性燃料電池触媒とその製造方法
KR101349068B1 (ko) * 2011-12-12 2014-01-10 기아자동차주식회사 연료전지용 코어-쉘 타입의 담지촉매 제조방법
JP2013163137A (ja) 2012-02-09 2013-08-22 Sony Corp コア・シェル型触媒、電極及び燃料電池
WO2014065777A1 (en) * 2012-10-22 2014-05-01 United Technologies Corporation Platinum alloy nano catalyst with a non-platinum core
CN103818906B (zh) * 2014-01-29 2016-08-17 浙江工业大学 碳阻超细纳米碳化钨材料及其制备方法和应用
US9893365B2 (en) * 2014-08-28 2018-02-13 N.E. Chemcat Corporation Electrode catalyst, composition for forming gas diffusion electrode, gas diffusion elelctrode, membrane-electrode assembly, and fuel cell stack

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008545604A (ja) * 2005-05-19 2008-12-18 ブルックヘヴン サイエンス アソシエイツ 還元型白金の酸化による酸素の還元用の電極触媒と溶解速度
JP2008021610A (ja) * 2006-07-14 2008-01-31 Mitsubishi Chemicals Corp Pefc型燃料電池及び触媒
JP2012041581A (ja) * 2010-08-17 2012-03-01 Sony Corp コアシェル型微粒子及びこれを用いた機能デバイス
JP2012143753A (ja) * 2011-01-13 2012-08-02 Samsung Electronics Co Ltd 活性粒子含有触媒、その製造方法、該触媒を含んだ燃料電池、該活性粒子を含有するリチウム空気電池用電極、及び該電極を含んだリチウム空気電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3051614A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159524A1 (ja) * 2017-03-01 2018-09-07 エヌ・イー ケムキャット株式会社 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、燃料電池スタック
WO2018180675A1 (ja) * 2017-03-28 2018-10-04 エヌ・イー ケムキャット株式会社 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、燃料電池スタック
WO2018180676A1 (ja) * 2017-03-28 2018-10-04 エヌ・イー ケムキャット株式会社 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、燃料電池スタック

Also Published As

Publication number Publication date
KR102023261B1 (ko) 2019-09-19
US20160322644A1 (en) 2016-11-03
CA2929051C (en) 2016-12-13
KR20170095406A (ko) 2017-08-22
KR20160057485A (ko) 2016-05-23
KR20170095407A (ko) 2017-08-22
CA2929051A1 (en) 2016-03-03
US9893365B2 (en) 2018-02-13
EP3051614A4 (en) 2016-10-12
JP2016051706A (ja) 2016-04-11
EP3051614A1 (en) 2016-08-03
DK3051614T3 (en) 2017-07-17
KR101786408B1 (ko) 2017-10-17
CN105723551B (zh) 2018-08-31
CN105723551A (zh) 2016-06-29
JP5887453B1 (ja) 2016-03-16
EP3051614B1 (en) 2017-05-10
KR102023260B1 (ko) 2019-09-19

Similar Documents

Publication Publication Date Title
JP5887453B1 (ja) 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、燃料電池スタック
JP5846673B2 (ja) 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、燃料電池スタック
JP5846670B2 (ja) 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、燃料電池スタック
JP6009112B1 (ja) 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、燃料電池スタック、電極用触媒の製造方法、及び、複合粒子
WO2017150009A1 (ja) 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、燃料電池スタック
WO2017150010A1 (ja) 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、燃料電池スタック
JP6946112B2 (ja) 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、燃料電池スタック
WO2018159524A1 (ja) 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、燃料電池スタック
WO2018180675A1 (ja) 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、燃料電池スタック
WO2018180676A1 (ja) 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、燃料電池スタック
JP2020074259A (ja) 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、燃料電池スタック
JP2020074260A (ja) 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、燃料電池スタック
JP2017157551A (ja) 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、燃料電池スタック

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2015835698

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015835698

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835698

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2929051

Country of ref document: CA

Ref document number: 20167011317

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15102438

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE