KR20120115559A - 촉매의 제조 방법 및 촉매 - Google Patents

촉매의 제조 방법 및 촉매 Download PDF

Info

Publication number
KR20120115559A
KR20120115559A KR1020127022733A KR20127022733A KR20120115559A KR 20120115559 A KR20120115559 A KR 20120115559A KR 1020127022733 A KR1020127022733 A KR 1020127022733A KR 20127022733 A KR20127022733 A KR 20127022733A KR 20120115559 A KR20120115559 A KR 20120115559A
Authority
KR
South Korea
Prior art keywords
metal
carbon
catalyst
containing support
catalytically active
Prior art date
Application number
KR1020127022733A
Other languages
English (en)
Inventor
클라우디아 케르너
엑케하르트 슈바브
바스티안 에발트
Original Assignee
바스프 에스이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 바스프 에스이 filed Critical 바스프 에스이
Publication of KR20120115559A publication Critical patent/KR20120115559A/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/923Compounds thereof with non-metallic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0209Impregnation involving a reaction between the support and a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/648Vanadium, niobium or tantalum or polonium
    • B01J23/6482Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6522Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6525Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6527Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8906Iron and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0242Coating followed by impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

본 발명은 촉매 활성 물질 및 탄소 함유 지지체를 포함하는 촉매를 제조하는 공정으로서, 여기서 탄소 함유 지지체는 제1 단계에서 금속 염 용액으로 함침되고, 이어서 금속 염 용액으로 함침된 탄소 함유 지지체는 비활성 대기 중에서 1500℃ 이상의 온도로 가열되어 금속 탄화물 층을 형성하게 되며, 그리고 최종적으로 촉매 활성 물질은 그 금속 탄화물 층이 제공된 탄소 함유 지지체에 도포되는 것인 공정에 관한 것이다. 추가로, 본 발명은 상기 공정에 의해 제조되는, 탄소 함유 지지체 및 촉매 활성 물질을 포함하는 촉매로서, 탄소 함유 지지체는 금속 탄화물 층을 보유하며, 촉매 활성 물질은 그 금속 탄화물 층이 제공된 탄소 함유 지지체에 도포되는 것인 촉매를 제공한다.

Description

촉매의 제조 방법 및 촉매{PROCESS FOR PRODUCING A CATALYST AND CATALYST}
본 발명은 촉매의 제조 공정(방법)에 관한 것으로, 여기서 촉매는 촉매 활성 물질(catalytically active material) 및 개질된 탄소 함유 지지체(modified carbon-comprising support)를 포함한다. 추가로, 본 발명은 개질된 탄소 함유 지지체 및 촉매 활성 물질을 포함하는 촉매에 관한 것이다.
촉매 활성 물질 및 탄소 함유 지지체를 포함하는 촉매가, 예를 들면 전기화학 반응용 불균일 촉매로서 사용된다. 전기화학 반응용 촉매 활성 물질로서는 보통 백금족의 금속 또는 백금족의 금속의 합금이 사용된다. 사용된 합금화 성분은 일반적으로 전이 금속, 예를 들면 니켈, 코발트, 바나듐, 철, 티탄, 구리, 루테늄, 팔라듐 등이고, 각각의 경우 개별적으로 존재하거나 하나 이상의 추가 금속과의 조합으로 존재한다. 그러한 촉매는 특히 연료 전지에 사용된다. 촉매는 애노드 면 및 캐소드 면 상에 둘 다 사용될 수 있다. 구체적으로 캐소드 면 상에, 또한 부식 안정한 활성 캐소드 촉매를 사용하는 것이 필요하다. 합금 촉매는 일반적으로 활성 캐소드 촉매로서 사용된다.
고 촉매 표면적을 얻기 위해서, 촉매는 보통 지지되어 있다. 전기화학 용도의 경우, 사용된 지지체는 전기 전도성이어야 한다. 탄소, 예를 들면 전도성 카본 블랙의 형태로 존재하는 탄소는 보통 지지체로서 사용된다. 사용된 탄소 지지체는 보통 촉매 활성 물질의 입자의 미세한 분산을 허용하는 고 비표면적을 가지며, 그 입자는 보통 나노입자로서 존재한다. BET 표면적은 일반적으로 100 m2/g 이상이다. 그러나, 이러한 탄소 지지체, 예를 들면 약 250 m2/g의 BET 표면적을 갖는 Vulcan XC72 또는 약 850 m2/g의 BET 표면적을 갖는 Ketjen Black EC-300J은 이들이 매우 빠르게 부식한다는 단점을 갖는다. 탄소 함유 지지체의 부식은, 예를 들면 그 지지체를 물의 존재 하에, 예를 들면 질소의 습기 있는 스트림에서 또는 수성 전해질 용액에서, 필요하다면, 상승된 온도에서 1V 이상의 전위로 처리함으로써 비교될 수 있다. 여기서, 탄소가 이산화탄소로 전환되고 이 형성된 이산화탄소가 측정될 수 있다. 온도가 높으면 높을수록 그리고 전위가 높으면 높을수록, 탄소 함유 지지체 부식이 더욱더 급속히 부식된다. 따라서, 예를 들면 1.1 V의 전위에서 Vulcan XC72의 경우, 탄소의 약 60%는 15 시간 후 이산화탄소로의 산화에 의해 부식되어 없어진다. 보다 작은 비표면적을 갖는 카본 블랙, 예를 들면 약 60 m2/g의 BET 표면적을 갖는 DenkaBlack에서, 지지체의 부식 안정성은 카본 블랙 내의 흑연 비율이 보다 높기 때문에 보다 높다. 그 부식은 1.1V에서 15 시간 후에 단지 8%만의 탄소 손실에 해당한다. 더 낮은 표면적을 갖는 탄소 지지체 상의 촉매 입자는 보통 다소 더 크고 그러므로, 서로 보다 밀접하게 된다. 그러나, 이는 빈번히 성능상 감소를 유발하는데, 왜냐하면 지지체에 도포된 촉매 활성 물질의 양 중 단지 적은 부분만이 촉매적으로 이용될 수 있기 때문이다.
보다 낮은 BET 표면적을 갖는 탄소 지지체의 사용과는 별도로, 탄소 함유 지지체에 대하여 표면 처리를 실시하는 것은 또한 공지되어 있으며, 예를 들면 W0 2006/002228로부터 공지되어 있다. 표면 처리의 결과로서, 그 탄소에는 금속 탄화물 층이 제공된다. 금속 탄화물 층을 생성하는데 사용된 금속은, 예를 들면 티탄, 텅스텐 또는 몰리브덴이다. 이어서, 그 금속 탄화물 층에는 촉매 활성 물질이 침착된다.
금속 탄화물 층을 생성하기 위해서, 우선 탄소 함유 지지체의 표면에 금속 염 용액이 도포되고, 이어서 그 용액이 금속으로 환원된다. 이어서, 지지체는 가열되어 그 금속을 금속 탄화물로 전환시키게 된다. 가열하여 금속 탄화물 층을 형성시키는 것은 850 내지 1100℃의 범위에 있는 온도에서 실시한다. 그러나, WO-A 2006/002228에 기술된 바와 같이 생성된 그 탄화물 층은 충분히 안정하지 못하여 부식 안정성에서의 만족스러운 개선을 유도하지 못한다.
그 탄소 함유 지지체의 부식은 촉매 활성 물질의 입자의 탈착을 유발하여 성능상의 감소를 야기한다. 게다가, 그 촉매 입자는 또한 소결될 수도 있는데, 이는 촉매 활성 표면적을 유의적으로 감소시키게 된다.
본 발명의 목적은 전기화학 반응용 캐소드 촉매로서 사용될 때 부식 안정성인 촉매가 생성되는 촉매의 제조 공정을 제공한다. 특히, 촉매 입자가 지지체 상에서 단지 약간만 변하는 방식으로, 즉 거의 소결되지 않아 지지체로부터 탈착되지 않는 방식으로 촉매 입자가 그 표면적과 상호작용하는 촉매가 제공된다.
그 목적은 촉매 활성 물질 및 탄소 함유 지지체를 포함하는 촉매를 제조하는 공정으로서, 다음의 단계:
(a) 탄소 함유 지지체를 금속 염 용액으로 함침시키는 단계,
(b) 금속 염 용액으로 함침된 탄소 함유 지지체를 1200℃ 이상의 온도로 가열하여 금속 탄화물 층을 형성시키는 단계,
(c) 금속 탄화물 층이 제공된 탄소 함유 지지체에 촉매 활성 물질을 도포하는 단계
를 포함하는 공정에 의해 달성된다.
금속 염 용액으로 함침된 탄소 함유 지지체를 1200℃ 이상의 온도로 가열하는 결과로서, 안정한 금속 탄화물 층이 형성된다. 지지체 상의 금속 탄화물 층에 기인하여, 탄소는 표면 상에 결합되고 지지체를 둘러싸는 산소와 반응을 더 이상 수행하지 않는다. 탄소 함유 지지체의 부식은 이러한 방식으로 감소될 수 있거나 심지어는 완전 회피될 수 있다. 추가 이점은 촉매의 촉매 활성 표면이 금속 탄화물 층의 형성에 의해 유의적으로 변하지 않고 이로써 일정하게 높은 촉매 활성 및 장기간 안정성이 달성된다는 점이다. 게다가, 촉매 활성 물질의 손실은 금속 탄화물 층에 의해 방지될 수 있으므로, 촉매의 활성은 손실된 촉매 활성 물질에 의해 감소되지 않게 된다. 촉매 활성 물질이 지지체로부터 탈착되지 않는다는 사실은 금속 탄화물 층의 결과로서 지지체에 보다 우수하게 부착되는 촉매 활성 물질의 입자와 관련된다. 촉매 입자가 극히 적게 소결되고 지지체로부터 탈착되지 않는다는 사실에 기인하여, 촉매 입자의 촉매 표면적은 장시간에 걸쳐 안정하게 유지되고 전극의 성능은 높게 유지된다. 게다가, 산화물 상이 아니라 단지 탄화물 상만이 X-선 회절 패턴으로 관찰될 수 있다.
촉매 활성 물질의 개선된 접착력은 예를 들면 투과 전자 현미경법으로 검사할 수 있다. 따라서, 문헌[Journal of Power Sources, 2008, 185, pages 734-739]에 따르면, 전기화학 처리 전 및 후에 동일 위치에서 전극촉매(electrocatalyst)의 이미지를 생성하고 그러한 처리로 야기된 촉매에서의 변화를 관찰하는 것이 가능하다. 이러한 방식으로, 예를 들면 순수 탄소 지지된 촉매의 경우 촉매 활성 물질의 입자의 소결 또는 탈착을 검사하는 것이 가능하지만, 본 발명에 따른 촉매의 경우 동일 조건 하에서 어떠한 변화도 거의 일어나지 않는다.
본 발명의 촉매에 적합한 탄소 함유 지지체는 카본 블랙인 것이 바람직하다. 이 카본 블랙은 해당 기술 분야의 당업자에게 공지된 임의의 공정에 의해 제조될 수 있다. 보통 사용된 카본 블랙은, 예를 들면 퍼니스 블랙, 플레임 블랙, 아세틸렌 블랙 또는 해당 기술 분야의 당업자에게 공지된 임의의 다른 카본 블랙이다. 흑연화 탄소, 특히 저 표면적을 갖는 탄소의 사용이 특히 바람직하다. 본 발명의 목적상, 저 표면적은 250 m2/g 이하, 보다 바람직하게는 100 m2/g 이하의 BET 표면적을 의미한다. 지지체로서 사용될 수 있는 적합한 탄소는 예를 들면 72 m2/g의 BET 표면적을 갖는 SKW 카본, 53 m2/g의 BET 표면적을 갖는 DenkaBlack 또는 약 30 m2/g의 BET 표면적을 갖는 XMB206 또는 AT325(Evonik Degussa GmbH)이다. 본 발명에 따르면, 그 적당한 탄소 지지체에는 금속 탄화물 층이 도포된다.
사용된 촉매 활성 물질은, 예를 들면 백금족의 금속, 전이 금속, 이들 금속의 합금 또는 백금족의 하나 이상의 금속을 포함하는 합금을 포함한다. 촉매 활성 물질은 백금 및 팔라듐 및 이들 금속의 합금 및 이들 금속 중 하나 이상을 포함하는 합금 중에서 선택되는 것이 바람직하다. 촉매 활성 물질은 백금 또는 백금 함유 합금인 것이 매우 특히 바람직하다. 적당한 합금화 금속은 예를 들면 니켈, 코발트, 철, 바나듐, 티탄, 루테늄 및 구리, 특히 니켈 및 코발트이다. 백금족 중 하나 이상의 금속을 포함하는 적당한 합금은 예를 들면 PtNi, PtFe, PtV, PtCr, PtTi, PtCu, PtPd, PtRu, PdNi, PdFe, PdCr, PdTi, PdCu 및 PdRu로 이루어진 군으로부터 선택된다. 백금-니켈 합금 또는 백금-코발트 합금이 특히 바람직하다. 촉매 활성 물질로서 합금이 사용될 때, 그 합금내 백금족의 금속의 비율은 25 내지 85 원자%의 범위, 보다 바람직하게는 40 내지 80 원자%의 범위, 훨씬 더 바람직하게는 50 내지 80 원자%의 범위, 특히 60 내지 80 원자%의 범위에 있는 것이 바람직하다.
언급된 합금과는 별도로, 또한 2가지 초과의 상이한 금속을 포함하는 합금, 예를 들면 3원 합금 시스템을 사용하는 것도 가능하다. 또한, 추가 성분은 예를 들면 금속 산화물의 경우 1 중량% 이하의 비율로 포함되는 것이 가능하다.
본 발명의 촉매를 제조하기 위해서, 탄소 함유 지지체는 제1 단계에서 금속 염 용액으로 함침된다. 탄소 함유 지지체를 금속 염 용액으로 함침시키기 위해서, 예를 들면 금속 염 용액 중에 탄소 함유 지지체를 분산시키고, 이어서 그 분산액을 농축시키는 것이 가능하다.
그 함침의 결과로서, 금속 염 용액은 탄소 함유 지지체의 소공 내로 침투한다. 또한, 그 금속 탄화물 층의 외부 표면 상에는 금속 염 층이 형성된다.
탄소에서 금속 탄화물로의 완전 전환은 사용된 탄소의 유리한 기본 구조, 예를 들면 카본 블랙이 이로부터 생성된 촉매의 성능 또는 촉매의 공정성이 너무 크게 영향을 받을 정도로 손실되는 위험을 수반하기 때문에, 그 표면은 금속 탄화물로 전환되는 것이 바람직하다.
지지체의 전체 탄소가 반응하여 금속 탄화물을 형성하는 것을 방지하고 금속 탄화물 층이 단지 지지체의 표면 상에만 형성되는 것을 방지하기 위해서, 탄소 함유 지지체를 함침시키기 위한 금속 염 용액은 화학양론적 이하의 양으로 첨가되는 것이 바람직하다. 본 발명의 목적상, 화학양론적 이하는 금속과 탄소의 합을 기초로 하여 금속 99 중량% 이하가 사용된다는 것을 의미한다. 금속의 비율은 보통 5 내지 75 중량%, 바람직하게는 20 내지 50 중량%이고, 각각의 경우는 금속과 탄소의 합을 기초로 한다.
탄소 함유 지지체 상에 안정한 금속 탄화물 층을 얻기 위해서, 금속 염 용액의 금속은 텅스텐, 몰리브덴, 티탄, 바나듐 또는 지르코늄, 바람직하게는 텅스텐 또는 몰리브덴이다. 상응하는 금속 염 용액을 사용하는 결과로서, 탄소 함유 지지체 상에 형성된 금속 탄화물 층은 텅스텐 탄화물 층 또는 몰리브덴 탄화물 층이다. 게다가, 그 층은 또한 2 이상의 금속으로 된 혼성 탄화물을 포함할 수도 있다. 또한, 금속 탄화물 층은 제2 금속에 의해 도핑될 수 있다. 금속 탄화물 층의 이점은 탄소 함유 지지체의 유리한 구조적 특성, 전도도 및 표면 특성이 실질적으로 보유되고 부식 저항성이 유의적으로 개선된다는 점이다. 탄소 함유 지지체의 특성의 보유성은 지지체의 표면 상에 있는 탄화물 함량에 따라 좌우된다.
탄소 함유 지지체가 함침되는 금속 염 용액으로서는, 예를 들면 텅스텐산염 용액, 예를 들면 텅스텐산암모늄 용액을 사용하는 것이 가능하다.
금속 탄화물 층을 생성하기 위해서, 제2 단계에서, 금속 염 용액으로 함침된 탄소 함유 지지체는 비활성 대기 중에서 1200℃ 이상의 온도로 가열된다. 비활성 대기는 대기가 지지체의 탄소 또는 금속 염과 반응할 수 있는 임의 물질을 포함하지 않는다는 것을 의미한다. 적당한 대기는, 예를 들면 희가스 대기 또는 질소 대기이다. 비활성 대기는 질소 대기인 것이 바람직하다.
금속 염 용액으로 함침된 탄소 함유 지지체가 가열되는 온도는 1200℃ 이상, 바람직하게는 1300℃ 이상, 특히 1500℃ 이상이다.
탄소 함유 지지체 상에서 충분히 안정한 금속 탄화물 층을 형성하기 위해서, 금속 염 용액으로 함침된 탄소 함유 지지체는 금속 염 용액으로 함침된 탄소 함유 지지체가 가열되는 온도에서 30 분 이상, 바람직하게는 1 시간 이상, 특히 2 시간 이상 동안 유지된다. 그 열 처리는 1500℃의 온도에서 2 시간 동안 수행하는 것이 특히 바람직하다. 이는 결과적으로 탄소 함유 지지체의 표면 상에 형성된 탄소 함유 지지체의 부식 안정성을 유의적으로 개선시키는 금속 탄화물 층을 생성하게 된다.
금속 탄화물 층의 형성 후, 금속 탄화물 층이 제공된 탄소 함유 지지체는 냉각되고, 촉매 활성 물질이 도포된다. 촉매 활성 물질의 도포는 해당 기술 분야의 당업자에게 공지된 임의의 방법으로 수행할 수 있다. 촉매 활성 물질의 도포는, 예를 들면 용액 중에서 침착에 의해 수행할 수 있다. 이러한 목적을 위해, 예를 들면 촉매 활성 물질을 포함하는 금속 화합물을 용액 중에 용해시키는 것이 가능하다. 금속은 공유 결합될 수 있거나, 이온 결합될 수 있거나, 착화에 의해 결합될 수 있다. 게다가, 또한 금속은 환원적으로 침착되거나, 전구체로서 침착되거나 상응하는 히드록사이드를 침전시키는 알칼리에 의해 침착되는 것이 가능하다. 백금족의 금속을 침착시키는 추가 가능한 방식으로는 금속을 포함하는 용액에 의한 함침(초기 습윤(incipient wetness)), 화학적 증착(CVD) 또는 물리적 증착(PVD) 공정 및 또한 금속을 침착시킬 수 있는 해당 기술 분야의 당업자에게 공지된 모든 추가 공정이 있다. 백금족의 금속의 염을 우선 침전시키는 것이 바람직하다. 침전을 수행한 후, 건조 및 열 처리를 수행하여 촉매를 생성한다.
촉매 활성 물질이 침전에 의해 도포될 때, 예를 들면 환원성 침전, 예컨대 에탄올 중에서 또는 NaBH4에 의해 백금 니트레이트로부터 백금의 환원성 침전을 수행하는 것이 가능하다. 대안으로서, H2/N2 가스 혼합물 중에서, 예를 들면 금속 탄화물 층이 제공된 탄소 함유 지지체와 혼합된 백금 아세틸아세토네이트의 분해 및 환원이 또한 가능하다. 에탄올에 의한 환원성 침전을 수행하는 것이 바람직하다.
팔라듐 또는 백금족의 금속을 포함하는 합금이 촉매 활성 물질로서 백금 대신에 사용될 때, 촉매 활성 물질이 유사하게 도포된다.
본 발명의 공정에 의해 제조된 촉매는 탄소 함유 지지체 및 촉매 활성 물질을 포함하고, 탄소 함유 지지체는 금속 탄화물 층을 가지며, 촉매 활성 물질은 금속 탄화물이 제공된 탄소 함유 지지체에 도포된다. 상기 언급된 바와 같이, 탄소 지지체의 부식 및 이에 따른 촉매 활성 물질의 탈착 및 손실은 금속 탄화물 층에 의해 유의적으로 감소될 수 있다.
금속 탄화물 층이 제공된 탄소 함유 지지체의 비표면적 및 또한 BET 표면적은 원래 상태로 사용된 탄소 함유 지지체에 따라 좌우된다. 250 m2/g 이하의 BET 표면적을 갖는 탄소 함유 지지체가 바람직하다. 100 m2/g 이하의 BET 표면적을 갖는 탄소 함유 지지체가 특히 바람직하다.
예를 들면, 전기화학 반응용 불균일 촉매로서 본 발명의 촉매를 사용하기 위해서, 촉매 활성 물질은 백금족의 금속 또는 백금족 중 하나 이상의 금속을 포함하는 합금인 것이 바람직하다. 적합한 백금족의 금속으로는 특히 백금 및 팔라듐이 있다. 또한, 백금 및 팔라듐을 혼합물로서 사용하여 촉매 활성 물질을 형성시키는 것이 가능하다.
촉매 활성 물질이 백금족 중 하나 이상의 금속을 포함하는 합금일 때, 이 합금은 PtNi, PtFe, PtV, PtCr, PtTi, PtCu, PtPd, PtRu, PdNi, PdFe, PdCr, PdTi, PdCu 및 PdRu로 이루어진 군으로부터 선택되는 것이 바람직하다.
부식의 감소를 달성하기 위해서, 촉매의 금속 탄화물 층은 텅스텐, 티탄, 몰리브덴, 지르코늄, 니오븀, 바나듐, 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것이 바람직하다. 금속 탄화물 층의 금속은 텅스텐인 것이 바람직하다.
본 발명의 촉매는 연료 전지에서 전극촉매로서 사용하기에 특히 적합하다. 여기서, 그 촉매는 캐소드 촉매로서 특히 적합하다.
실시예
전극촉매의 부식에서는 일반적으로 2가지 상이 식별된다: 제1 상은 촉매 활성 물질, 예를 들면 백금의 소결을 나타내는 상이고, 제2 상은 탄소 부식으로서 특히 비교적 낮은 전위에서 발생하는 촉매 활성 물질의 소결 및 보다 높은 전위에서, 예를 들면 약 1 V 이상에서 발생하는 탄소 부식을 나타내는 상이다. 탄소 부식은 다량의 탄소가 연료 전지의 작동에서 1.5 V 이하의 전위 피크에서 심지어는 짧은 시간에서도 부식될 수 있기 때문에 중요하다. 탄소 부식의 결과로서, 첫째 성능의 감소를 유발할 수 있는 전극 구조에서의 변화가 존재하고 둘째 촉매 활성 물질의 입자의 결합이 또한 상실될 수도 있으며, 이의 결과로서 상응하는 촉매 활성 입자는 더 이상 촉매 반응에 이용가능하지 않고, 심지어는 시스템으로부터 배출될 수 있으며, 이는 성능의 감소를 야기할 뿐만 아니라, 특히 귀금속이 사용될 때, 큰 비용 요인이 될 수 있다.
부식 안정한 지지체의 예비선택하기 위해서, 가속화 노화 시험(accelerated aging test)이 수행될 수 있다. 따라서, 예를 들면 촉매 대신에 지지체만이 캐소드 면 상에 사용되고 습도화된 질소 스트림이 공기 스트림 대신에 담체 가스로서 도입되는 연료 전지 배열에서 지지체의 부식 안정성을 시험하는 것이 가능하다. 1V 이상, 예를 들면 1.1V 또는 1.2V의 전압이 인가되고, 탄소 지지체의 산화에 의해 형성되고 가스의 스트림으로 수행되는 CO2가 측정되어 지지체의 탄소 손실로 전환된다. 그 측정은 보통 상승된 온도에서, 예를 들면 180℃에서 수행되고, 왜냐하면 문헌[J. Power Sources, 2008, page 444]에 따르면, 부식 속도가 그러한 경우에 실온에서보다 약 104 크기(four orders of magnitude) 더 빠르기 때문이다.
실시예 1:
DenkaBlack 카본 블랙의 표면을 개질시키기 위해서, 헵타텅스텐산암모늄 22 g을 H2O 580 g 중에 용해시키고, 여기에 DenkaBlack 카본 블랙 15 g을 첨가하였다. 이 혼합물을 Ultra-Turrax에 의해 8000 rpm으로 30 분 동안 균질화하였다. 이 카본 블랙 현탄액을 회전식 증발기에서 농축하고, 400℃에서 1 시간 동안의 중간 온도 단계를 이용하여 1500℃에서 6 시간 동안 질소 하에 관형 퍼니스에서 가열하였다.
텅스텐 하중은 47%이었다. XRD에서, 2가지 텅스텐 탄화물 상이 관찰되었다: WC는 약 40 nm의 입자 크기를 보유하고, W2C는 약 23 nm의 입자 크기를 보유하였다. 이러한 방식으로 생성된 표면 개질된 탄소 지지체는 이후 WC/Denka라고 칭하였다.
백금 촉매를 제조하기 위해서, 그러한 방식으로 생성된 지지체 7.0 g을 H2O 500 ml 중에 분산시키고, Ultra-Turrax에 의해 8000 rpm으로 15 분 동안 균질화하였다. 백금 니트레이트 5.13 g을 H2O 1OO ml 중에 용해시키고, 서서히 지지체 분산액에 첨가하였다. 이어서, 그 혼합물에 H2O 200 ml 및 에탄올 800 ml를 첨가하고, 이 혼합물을 6 시간 동안 환류시켰다. 밤새 냉각한 후, 현탁액을 여과하고, 고체를 열수 2 L로 질산염 없게 세척하고, 감압 하에 건조시켰다. 백금 하중은 29.8%이었고, XRD에서 평균 미소결정(crystallite) 크기가 3.4 nm이었다.
실시예 2:
카본 블랙 C2(AT325, Evonik Degussa GmbH)의 표면을 개질시키기 위해서, 헵타텅스텐산암모늄 5.9 g을 H2O 580 g에 용해시키고, 여기에 카본 블랙 C2 16 g을 첨가하였다. 그 전체를 Ultra-Turrax에 의해 8000 rpm으로 30 분 동안 균질화하였다. 그 카본 블랙 현탁액을 회전식 증발기에서 농축하고, 400℃에서 1 시간 동안의 중간 온도 단계를 이용하여 1500℃에서 6 시간 동안 질소 하에 관형 퍼니스에서 가열하였다.
텅스텐 하중은 16%이었다. XRD에서, 하나의 텅스텐 탄화물 상이 관찰되었다: WC는 약 65 nm의 미소결정 크기를 보유하였다.
백금 촉매를 제조하기 위해서, 이러한 방식으로 제조된 지지체 10.5 g을 H2O 500 ml 중에 용해시키고, Ultra-Turrax에 의해 8000 rpm으로 15 분 동안 균질화하였다. 백금 니트레이트 7.77 g을 H2O 100 ml에 용해시키고, 그 지지체 현탁액에 서서히 첨가하였다. 이어서, 그 혼합물에 H2O 500 ml 및 에탄올 450 ml을 첨가하고, 이 혼합물을 6 시간 동안 환류시켰다. 밤새 냉각시킨 후, 현탁액을 여과시키고, 고체를 열수 2 L로 질산염 없게 세척하고, 감압 하에 건조시켰다. 백금 하중은 28.4%이었고, XRD에서 평균 미소결정 크기는 3.1 nm이었다.
비교예 1:
카본 블랙 C1(XMB206, Evonik Degussa GmbH) 7.0 g을 H20 500 ml 중에 현탁시키고, Ultra-Turrax에 의해 8000 rpm으로 15 분 동안 균질화하였다. 백금 니트레이트 5.13 g을 H2O 100 ml 중에 용해시키고, 그 카본 블랙 현탁액에 서서히 첨가하였다. 이어서, 그 혼합물에 H2O 200 ml 및 에탄올 800 ml를 첨가하고, 이 혼합물을 6 시간 동안 환류시켰다. 밤새 냉각한 후, 현탁액을 여과하고, 고체를 열수 2L로 질산염 없게 세척하고, 감압 하에 건조시켰다. 백금 하중은 27.1%이었고, XRD에서 평균 미소결정 크기는 3.4 nm이었다.
비교예 2:
제조는 비교예 1에서 기술된 방법과 유사한 방식으로 수행하였고, 단 카본 블랙 지지체를 예외로 하였다. 카본 블랙 C1 대신에 카본 블랙 C2를 사용하였다. 백금 하중은 27.4%이었고, XRD에서 평균 미소결정 크기는 3.1 nm이었다.
비교예 3:
표면의 개질은 실시예 2에서 기술된 방법과 유사한 방식으로 수행하였지만, 탄화 단계는 400℃에서 1 시간 동안의 중간 온도 단계를 이용하여 850℃의 온도에서 6 시간 동안(WO 2006/002228과 유사함) 수행하였다. 텅스텐 하중은 7%이었다. 계산된 값은 20%이었으며, 즉 텅스텐은 정량적으로 침착될 수 없었다. 텅스텐 탄화물 상이 XRD에서 관찰되지 않았고, 단지 H2WO4ㆍH2O만이 관찰되었다.
(실시예 2와 유사한) 이러한 방식으로 제조된 백금 촉매는 백금 하중 28.9% 및 평균 미소결정 크기 3.4 nm를 보유하였다.
비교예 3 * :
제조는 WO 2006/002228에 기술된 방법과 유사한 방식으로 수행하였다. 이러한 목적을 위해서, Vulcan XC72 8 g을 H2O 1000 g 중에 현탁시키고, Ultra-Turrax에 의해 8000 rpm으로 30 분 동안 균질화하였다. 텅스텐산암모늄 3.2 g을 H2O 200 ml 중에 용해시키고, 그 현탁액에 서서히 첨가하였다. 추가 H2O 750 ml를 그 혼합물에 첨가하고, 이 혼합물을 4 시간 동안 환류시켰다. 이어서, NaBH4 30.4 g을 물 100 ml 중에 용해시키고, 이것을 그 혼합물에 강력하게 가스를 발생시키면서 1 시간에 걸쳐 적가하고, 이 혼합물을 추가 20 분 동안 환류시켰다. 이 반응 혼합물을 여과하고, 고체를 H2O 2L로 세척하였다. 여전히 축축한 필터 케이크상을 관형 퍼니스에서 우선 100℃에서 1 시간 동안 이어서 900℃에서 1 시간 동안 가열하였다.
이러한 방식으로 제조된 지지체 상에서 백금 촉매를 제조하였다. 백금 하중은 28.2%이었고, XRD에서 평균 미소결정 크기는 2.0 nm이었다. 단지 미량의 텅스텐이 검출될 수 있었다(0.05%).
비교예 4:
제조는 비교예 1에서 기술된 방법과 유사한 방식으로 수행하였고, 단 카본 블랙 지지체를 예외로 하였다. 카본 블랙 C1 대신에 카본 블랙 XC72를 사용하였다. 백금 하중은 27.7%이었고, XRD에서의 평균 미소결정 크기는 1.9 nm이었다.
비교예 5:
제조는 비교예 1에서 기술된 방법과 유사한 방식으로 수행하였고, 단 카본 블랙 지지체를 예외로 하였다. 카본 블랙 C1 대신에 DenkaBlack 카본 블랙을 사용하였다. 백금 하중은 27.7%이었고, XRD에서 평균 미소결정 크기는 3.7 nm이었다.
4가지 상이한 탄소 지지체의 경우 질량 손실은 하기 표 1에 나타내었다.
탄소 지지체의 질량 손실
1.2V에서 시간
질량 손실, C%
C1 C2 WC/Denka DenkaBlack
1h 1 18 2 7
5h 6 26 8 33
15h 22 28 21 73
카본 블랙 C1은 XMB206(Evonik Degussa GmbH)이고, 카본 블랙 C2는 AT325(Evonik Deggusa GmbH)이며, WC/Denka는 실시예 1에서 기술된 바와 같이 제조되는 표면-개질된 탄소 지지체이었다.
샘플 C1 및 WC/Denka의 부식 속도는 유의적으로 상이하지 않다는 것을 확인할 수 있었다. 따라서, 각각의 지지체를 포함하는 촉매들 간의 관찰된 차이는 단지 촉매 입자와 지지체 간의 상호작용으로부터만 발생하였다.
전극촉매의 성능상 감소는 또한 가속화 노화 시험에 의해 평가할 수도 있었다. 따라서, 예를 들면, 산소의 환원(캐소드 반응)에 대하여 촉매 활성은 전위 사이클 전후에 측정할 수 있었다. 성능의 감소를 측정하기 위해서, 0.5 내지 1.3 V의 150회 전위 사이클을 산소-포화 전해질 중에서 50 mV/s의 속도로 수행하였다. 결과를 하기 표 2에 나타내었다. 표 2에서, WC/Denka는 DenkaBlack 카본 블랙 상의 텅스텐 탄화물이었고, WC/C1은 카본 블랙 C1 상의 텅스텐 탄화물이었으며, WC/C2는 카본 블랙 C2 상의 텅스텐 탄화물이었다.
150회 사이클 후 활성의 감소
샘플, 각 경우 지지체 상의 Pt 30% 150회 사이클후 활성 감소(%)
실시예 1 50% WC/Denka -5%
비교예 1 C1 -32%
비교예 2 C2 -48%
비교예 3 20% WC/C2(850℃) -48%
비교예 3*(WO 2006/002228에 따른 것) 20% WC/C2(900℃) -49%
실시예 2 20% WC/C2(1500℃) -22%
비교예 4 Vulcan XC72 -74%
비교예 5 미처리된 DenkaBlack -50%
촉매 활성 물질을 사용하는 촉매와 그렇지 않은 촉매, 예를 들면 C1과 WC/Denka의 시험을 비교에 의하면, 각 지지체를 사용하는 촉매는 순수 지지체의 대략 동등한 큰 부식에도 불구하고 유의적인 차이를 나타낸다는 것을 보여 주었다.
순수 탄소 지지체의 경우, 즉 텅스텐 탄화물 층을 포함하지 않는 지지체의 경우, 촉매가 도포되지 않을 때 순수 카본 부식 및 촉매가 도포될 때 성능상 감소에 대한 결과들은 상관 관계가 있으므로, 동일한 열화 메카니즘이 추정될 수 있었다.
실시예 1 및 실시예 2로부터 알 수 있는 바와 같이, 금속 탄화물 층의 도포는 또한 성능상 감소에 영향을 나타내었다. 금속 탄화물이 지지체에 보다 많이 도포되면 될수록, 성능상 감소가 더욱 더 낮아졌다. 게다가, 금속 탄화물 층을 생성하기 위한 공지된 방법, 예를 들면 WO-A 2006/002228로부터 유래된 방법은 그 지지체의 내식성을 개선시키기에 충분하지 못하다는 점을 또한 확인할 수 있었다. 이는 비교예 2 및 3 또는 3*으로부터 이해할 수 있었다.
도면은 각각의 경우 선행 기술에 따른 촉매 및 본 발명에 따른 촉매를 전기화학 공정에 대한 노출 전후에 도시하는 투과 전자 현미경 사진을 나타낸 것들이다.
도 1은 전기화학 공정에 대한 노출 전에 비교예 1에 따른 촉매를 도시한 것이다.
도 2는 전기화학 공정에 대한 노출 후에 비교예 1에 따른 촉매를 도시한 것이다.
도 3은 전기화학 공정에 대한 노출 전에 실시예 1에 따른 촉매를 도시한 것이다.
도 4는 전기화학 공정에 대한 노출 후에 실시예 1에 따른 촉매를 도시한 것이다.
도면에서, 미코팅된 지지체는 참조 번호(1)로 표시하고, 탄화물로 코팅된 지지체는 참조 번호(3)으로 표시하고, 백금 입자는 참조 번호(2)로 표시하였다.
동일 촉매 영역을 전기화학 공정 전후에 검사하는 투과 전자 현미경 사진(TEM)은 실시예 1 및 비교예 1의 촉매의 경우에 취하였다. 전기화학 공정에 대한 노출은 1V/s의 증가에서 0.4 내지 1.4V의 3600회 전위 사이클에 의해 달성되었다.
TEM로부터 알 수 있는 바와 같이, 전극촉매들은 동일 지지체 안정성에도 불구하고 유의적으로 상이하였다. 전기화학 공정에 대한 노출 전의 도 1에 그리고 전기화학 공정에 대한 노출 후의 도 2에 도시된, 비교예 1에 따른 순수 탄소 지지체 상에서, 백금 입자(2)는 지지체(1)로부터 탈착되고, 그러므로 촉매 반응을 상실하게 된다. 대조적으로, 실시예 1에 따른 탄화물 층을 보유하는 지지체(3)의 경우, 지지체에 대한 백금 입자(2)의 결합은 보유된다는 것을 이해할 수 있었다. 이는 도 3 및 4에서 이해할 수 있으며, 여기서 도 3은 전기화학 공정에 대한 노출 전 실시예 1의 촉매를 도시한 것이고, 도 4는 전기화학 공정에 대한 노출 후 실시예 1의 촉매를 도시한 것이다.
탄소 지지체로부터 백금의 탈착의 결과로서, 전극촉매의 성능상 유의적인 감소는 매우 큰 내식성 지지체 상에서도 예상될 수 있다. 이를 반반하기 위해서, 지지체에 대한 백금 입자의 개선된 접착력이 필요하다. 이는 탄화물 층에 의한 탄소 표면의 본 발명에 따른 개질에 의해 이루어진다.

Claims (16)

  1. 촉매 활성 물질 및 탄소 함유 지지체를 포함하는 촉매를 제조하는 방법으로서,
    다음의 단계:
    (a) 탄소 함유 지지체를 금속 염 용액으로 함침시키는 단계,
    (b) 금속 염 용액으로 함침된 탄소 함유 지지체를 1200℃ 이상의 온도로 가열하여 금속 탄화물 층을 형성시키는 단계,
    (c) 금속 탄화물 층이 제공된 탄소 함유 지지체에 촉매 활성 물질을 도포하는 단계
    를 포함하는 방법.
  2. 제1항에 있어서, 탄소 함유 지지체를 함침시키기 위한 금속 염 용액은 화학앙론 이하(substoichiometric)의 양으로 첨가하는 것인 방법.
  3. 제1항 또는 제2항에 있어서, 금속 염 용액의 금속은 텅스텐 또는 몰리브덴 또는 이들 금속 중 하나 이상을 포함하는 혼합물 또는 합금인 것인 방법.
  4. 제1항 내지 제3항 중 어느 하나의 항에 있어서, 금속 염 용액은 텅스테산염 용액인 것인 방법.
  5. 제1항 내지 제4항 중 어느 하나의 항에 있어서, 단계(b)에서 가열은 비활성 대기 중에서 수행하는 것인 방법.
  6. 제1항 내지 제5항 중 어느 하나의 항에 있어서, 촉매 활성 금속은 백금족의 금속 또는 백금족 중 하나 이상의 금속을 포함하는 합금인 것인 방법.
  7. 제6항에 있어서, 백금족 중 하나 이상의 금속을 포함하는 합금은 PtNi, PtFe, PtV, PtCr, PtTi, PtCu, PtPd, PtRu, PdNi, PdFe, PdCr, PdTi, PdCu 및 PdRu로 이루어진 군으로부터 선택되는 것인 방법.
  8. 제6항에 있어서, 백금족의 금속은 백금 또는 팔라듐인 것인 방법.
  9. 제1항 내지 제8항 중 어느 하나의 항에 있어서, 촉매 활성 물질은 금속 탄화물 층이 제공된 탄소 함유 지지체에 환원성 침전 또는 H2/N2 가스 혼합물 중의 분해 및 환원에 의해 도포되는 것인 방법.
  10. 제1항 내지 제9항 중 어느 하나의 항에 있어서, 탄소 함유 지지체는 250 m2/g 이하의 BET 표면적을 갖는 것인 방법.
  11. 제1항 내지 제10항 중 어느 하나의 항에 따른 방법에 의해 제조된 촉매로서, 촉매는 탄소 함유 지지체 및 촉매 활성 물질을 포함하고, 탄소 함유 지지체는 금속 탄화물 층을 보유하며, 촉매 활성 물질은 금속 탄화물 층이 제공된 탄소 함유 지지체에 도포되는 것인 촉매.
  12. 제11항에 있어서, 탄소 함유 지지체는 250 m2/g 이하의 BET 표면적을 갖는 것인 촉매.
  13. 제11항 또는 제12항에 있어서, 촉매 활성 물질은 백금족의 금속 또는 백금족 중 하나 이상의 금속을 포함하는 합금인 것인 촉매.
  14. 제13항에 있어서, 백금족 중 하나 이상의 금속을 포함하는 합금은 PtNi, PtFe, PtV, PtCr, PtTi, PtCu, PtPd, PtRu, PdNi, PdFe, PdCr, PdTi, PdCu 및 PdRu로 이루어진 군으로부터 선택되는 것인 촉매.
  15. 제11항 내지 제14항 중 어느 하나의 항에 있어서, 금속 탄화물 층의 금속은 텅스텐 및/또는 몰리브덴을 포함하는 것인 촉매.
  16. 연료 전지에서 전극촉매(electrocatalyst)로서 제11항 내지 제15항 중 어느 하나의 항에 따른 촉매의 용도.
KR1020127022733A 2010-02-05 2011-02-03 촉매의 제조 방법 및 촉매 KR20120115559A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP10152811.5 2010-02-05
EP10152811 2010-02-05

Publications (1)

Publication Number Publication Date
KR20120115559A true KR20120115559A (ko) 2012-10-18

Family

ID=44355023

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020127022733A KR20120115559A (ko) 2010-02-05 2011-02-03 촉매의 제조 방법 및 촉매

Country Status (5)

Country Link
EP (1) EP2531295A4 (ko)
JP (1) JP2013518710A (ko)
KR (1) KR20120115559A (ko)
CN (1) CN102762297B (ko)
WO (1) WO2011095943A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200023925A (ko) 2018-08-27 2020-03-06 울산과학기술원 금속-공기 전지용 전극촉매 및 이의 제조방법

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112010005552T5 (de) 2010-05-10 2013-03-28 Utc Power Corporation Trägerkatalysator
US9153823B2 (en) 2011-11-14 2015-10-06 Audi Ag Carbide stabilized catalyst structures and method of making
EP2687483A1 (en) 2012-07-16 2014-01-22 Basf Se Graphene containing nitrogen and optionally iron and/or cobalt
JP6598159B2 (ja) * 2014-03-20 2019-10-30 国立大学法人九州大学 燃料電池用電極材料およびその製造方法、並びに燃料電池用電極、膜電極接合体及び固体高分子形燃料電池
CN105723551B (zh) * 2014-08-28 2018-08-31 恩亿凯嘉股份有限公司 电极用催化剂、气体扩散电极形成用组合物、气体扩散电极、膜电极组件、燃料电池堆
KR101679185B1 (ko) * 2015-02-05 2016-12-06 부산대학교 산학협력단 연료 전지용 애노드 전극 및 이를 포함하는 연료 전지용 막-전극 어셈블리
WO2016157897A1 (ja) * 2015-03-31 2016-10-06 エヌ・イー ケムキャット株式会社 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、燃料電池スタック、電極用触媒の製造方法、及び、複合粒子
GB2550146A (en) * 2016-05-10 2017-11-15 The Argen Corp Metal alloy for dental Prosthesis
DE102016111981A1 (de) * 2016-06-30 2018-01-04 Volkswagen Ag Verfahren zur Herstellung eines geträgerten Katalysatormaterials für eine Brennstoffzelle
CN109686982A (zh) * 2019-01-29 2019-04-26 冯良荣 一种制备负载型碳氮化物的方法
KR102268466B1 (ko) * 2019-09-27 2021-06-24 한국과학기술원 완전 분산과 환원된 금속 상태를 갖는 고내구성 금속 앙상블 촉매
KR102391273B1 (ko) * 2020-06-23 2022-04-27 한국과학기술원 백금 단일 원자 촉매 및 이의 제조 방법
CN111957322A (zh) * 2020-07-29 2020-11-20 广东工业大学 一种Ni-Ru/AC双金属催化剂及制备与在木质素降解中的应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH633497A5 (de) * 1977-03-30 1982-12-15 Kernforschungsanlage Juelich Verfahren zur reduktion von reduzierbaren schadstoffen in waessrigen loesungen.
JP2003117398A (ja) * 2001-10-12 2003-04-22 Toyota Motor Corp Wc担持触媒及びその製造方法
CN1169621C (zh) * 2002-04-10 2004-10-06 中国科学院大连化学物理研究所 一种过渡金属碳化物催化剂的制备方法及其催化性能
US20050282061A1 (en) * 2004-06-22 2005-12-22 Campbell Stephen A Catalyst support for an electrochemical fuel cell
KR100825688B1 (ko) * 2006-04-04 2008-04-29 학교법인 포항공과대학교 나노다공성 텅스텐 카바이드 촉매 및 그의 제조방법
JP5122178B2 (ja) * 2007-04-27 2013-01-16 勝 市川 水素化/脱水素化反応用担持触媒、その製造方法、およびその触媒を用いた水素貯蔵/供給方法
CN101108347B (zh) * 2007-08-07 2010-09-29 北京交通大学 质子交换膜燃料电池用碳化钨/铂复合催化材料的制备方法
CN101229512A (zh) * 2007-10-09 2008-07-30 新源动力股份有限公司 一种提高燃料电池催化剂稳定性的方法
CN101342493A (zh) * 2008-08-15 2009-01-14 哈尔滨工业大学 直接醇类燃料电池阳极催化剂载体碳化钨及Pt-Ni-Pb/WC催化剂的制备方法
CN101362093B (zh) * 2008-09-25 2010-10-13 华南师范大学 燃料电池碳载铂复合催化剂及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200023925A (ko) 2018-08-27 2020-03-06 울산과학기술원 금속-공기 전지용 전극촉매 및 이의 제조방법

Also Published As

Publication number Publication date
CN102762297B (zh) 2015-06-10
JP2013518710A (ja) 2013-05-23
CN102762297A (zh) 2012-10-31
WO2011095943A1 (en) 2011-08-11
EP2531295A1 (en) 2012-12-12
EP2531295A4 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
KR20120115559A (ko) 촉매의 제조 방법 및 촉매
EP2917952B1 (en) Method for producing a catalyst for fuel cells
EP2638963B1 (en) Carbon catalyst and process for production thereof, and electrode and battery each equipped with same
US8709964B2 (en) Process for producing a carbon-comprising support
JP4401059B2 (ja) 燃料電池用のアノード触媒を調製するプロセスおよびそのプロセスを用いて調製されたアノード触媒
JP5822834B2 (ja) 燃料電池用の金属酸化物ドーピングを有する触媒
CN105377428B (zh) 燃料电池用电极催化剂、及使催化剂活化的方法
Molina-García et al. Effect of catalyst carbon supports on the oxygen reduction reaction in alkaline media: a comparative study
US9397348B2 (en) Catalyst
US20110195347A1 (en) Process for producing a catalyst and catalyst
KR20140002628A (ko) 탄소-함유 지지체의 제조 방법
JP2018507097A (ja) 改質剤を含む炭素担持触媒及び炭素担持触媒の製造方法
US11998903B2 (en) Method for producing catalysts with nanoparticles of platinum and its alloys with metals
Zignani et al. Investigation of PtNi/C as methanol tolerant electrocatalyst for the oxygen reduction reaction
Wu et al. Carbon supported PdO with improved activity and stability for oxygen reduction reaction in alkaline solution
Delacôte et al. Aqueous-based synthesis of ruthenium–selenium catalyst for oxygen reduction reaction
JP2011014475A (ja) 燃料電池用電極触媒、並びにその製造方法及び固体高分子型燃料電池
Güldür et al. Carbon supported Pt-based ternary catalysts for oxygen reduction in PEM fuel cells
JPWO2019097631A1 (ja) カソード、膜電極接合体及び電池
Jung et al. Development of Highly Active and Stable Catalyst Supports and Platinum–Free Catalysts for PEM Fuel Cell
JP2019212611A (ja) カソード、膜電極接合体及び電池
JP2020161273A (ja) 電極材料の製造方法
JP2007194138A (ja) 微粒子担持カーボン粒子およびその製造方法、ならびに固体電解質型燃料電池用電極

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid