WO2016031096A1 - 光素子、終端器、波長可変レーザ装置及び光素子の製造方法 - Google Patents
光素子、終端器、波長可変レーザ装置及び光素子の製造方法 Download PDFInfo
- Publication number
- WO2016031096A1 WO2016031096A1 PCT/JP2015/000740 JP2015000740W WO2016031096A1 WO 2016031096 A1 WO2016031096 A1 WO 2016031096A1 JP 2015000740 W JP2015000740 W JP 2015000740W WO 2016031096 A1 WO2016031096 A1 WO 2016031096A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical waveguide
- optical
- curved
- terminator
- waveguide
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4439—Auxiliary devices
- G02B6/4471—Terminating devices ; Cable clamps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/1028—Coupling to elements in the cavity, e.g. coupling to waveguides adjacent the active region, e.g. forward coupled [DFC] structures
- H01S5/1032—Coupling to elements comprising an optical axis that is not aligned with the optical axis of the active region
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/122—Basic optical elements, e.g. light-guiding paths
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/241—Light guide terminations
- G02B6/243—Light guide terminations as light absorbers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4204—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
- G02B6/4206—Optical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4287—Optical modules with tapping or launching means through the surface of the waveguide
- G02B6/4289—Optical modules with tapping or launching means through the surface of the waveguide by inducing bending, microbending or macrobending, to the light guide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/14—External cavity lasers
- H01S5/141—External cavity lasers using a wavelength selective device, e.g. a grating or etalon
- H01S5/142—External cavity lasers using a wavelength selective device, e.g. a grating or etalon which comprises an additional resonator
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/12004—Combinations of two or more optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/12007—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/1028—Coupling to elements in the cavity, e.g. coupling to waveguides adjacent the active region, e.g. forward coupled [DFC] structures
Definitions
- the present invention relates to an optical element, a terminator, a wavelength tunable laser device, and an optical element manufacturing method.
- One is when the exit end of the optical waveguide coincides with the end face of the optical device.
- the reflection light at the emission end is reduced by applying an antireflection coating to the end face.
- a method for realizing a low reflection structure by arranging optical waveguides is also known.
- the light reflected from the end face can be reduced by arranging the optical waveguide obliquely rather than perpendicularly to the end face.
- the refractive index of the cladding and the equivalent refractive index of the optical waveguide can be made closer by forming the end of the optical waveguide into a tapered shape. Thereby, the Fresnel reflection in an edge part can be suppressed and reflected light can be reduced.
- This method is effective when the refractive index difference between the core (optical waveguide) and the clad is small, such as a silica optical waveguide.
- a terminator for terminating the optical waveguide inside the optical device.
- OTDR Optical Time Domain Reflexometer
- an optical fiber having a terminator is connected to the end of the optical fiber to be measured, and the intensity change of the return light measured at the end of the optical fiber to be measured is reduced.
- Patent Document 1 As a result, it is possible to accurately detect breakage or bending near the end of the optical fiber to be measured.
- the inventor has found that the above-described method in the case where the end of the optical waveguide is located inside the optical device has the following problems.
- the refractive index of the core and the refractive index of the cladding are significantly different as in a silicon optical waveguide, it is difficult to sufficiently suppress the reflected light even if the end portion of the optical waveguide is tapered.
- the Fresnel reflection can be sufficiently suppressed if the width of the optical waveguide is gradually narrowed to be, for example, about several nm.
- the width of the optical waveguide can only be reduced to about 100 nm. Therefore, a structure capable of low reflection of the silicon optical waveguide is required regardless of the width of the silicon optical waveguide.
- the present invention has been made in view of the above circumstances, and an object of the present invention is to realize an optical element capable of suppressing the reflected light at the end of the optical waveguide regardless of the width of the optical waveguide.
- An optical element according to one embodiment of the present invention is formed on a substrate, and an optical waveguide through which light propagates, and input light that is formed on the substrate and connected to one end of the optical waveguide, and is input from the optical waveguide. And a terminator that attenuates the input light by propagating the input light through the curved optical waveguide.
- a terminator includes a curved optical waveguide having a curvature that is formed to be connected to one end of an optical waveguide and causes bending loss in input light input from the optical waveguide.
- the input light is attenuated by propagating through the curved optical waveguide.
- a wavelength tunable laser device includes a laser oscillation unit that outputs laser light from an end surface, and a wavelength adjustment unit that adjusts the wavelength of the laser light, and the wavelength adjustment unit includes the laser oscillation A mirror constituting a laser resonator with the end face of the part, a ring resonator inserted in the laser resonator and having a variable effective refractive index with respect to the laser light, the end face of the wavelength adjusting part, A first optical waveguide connecting the mirror and the ring resonator and an open end of the first optical waveguide are formed, and bending loss occurs in input light input from the first optical waveguide.
- a terminator that attenuates the input light by propagating the input light through the curved optical waveguide, and the curvature of the curved optical waveguide includes the ring resonator. Composing light It is smaller than the curvature of the waveguide.
- An optical element manufacturing method includes a curved optical waveguide having a curvature that generates a bending loss in input light input from the optical waveguide by forming an optical waveguide through which light propagates on a substrate. Then, a terminator for attenuating the input light by propagating the input light through the curved optical waveguide is formed on the substrate so as to be connected to one end of the optical waveguide.
- the present invention it is possible to realize an optical element capable of suppressing the reflected light at the end of the optical waveguide regardless of the width of the optical waveguide.
- FIG. 3 is a top view of a main part of the optical device according to the first embodiment.
- FIG. 6 is a top view of relevant parts of an optical device according to a second embodiment.
- FIG. 6 is a top view of the main part of an optical device according to a third embodiment.
- FIG. 6 is a top view of the main part of an optical device according to a fourth embodiment.
- FIG. 10 is a top view of a main part of an optical device according to a fifth embodiment.
- FIG. 10 is a top view schematically showing a configuration of an optical functional integrated unit according to a sixth embodiment.
- FIG. 10 is a top view schematically showing a configuration of a photonics element according to a sixth exemplary embodiment.
- An optical device having a low reflection structure includes an optical waveguide through which light propagates and a terminator connected to the optical waveguide and terminating light incident from the optical waveguide.
- Terminators according to the following embodiments are configured to include one or a plurality of curved optical waveguides.
- the curved optical waveguide of the terminator is formed to have a curvature that causes bending loss in the propagating light. As a result, the light incident on the terminator from the optical waveguide is bent and lost to the outside when passing through the curved optical waveguide of the terminator, and the light intensity is reduced. Therefore, the light intensity becomes weaker as it goes through the curved optical waveguide of the terminator, and as a result, the input light can be terminated.
- FIG. 1 is a top view of main parts of the optical device 100 according to the first embodiment.
- an optical waveguide 7 made of silicon is formed on a substrate 6.
- the terminator 1 is connected to the end 7 ⁇ / b> A of the optical waveguide 7.
- the terminator 1 has a direction perpendicular to the waveguide direction of the optical waveguide 7 and a direction perpendicular to the main surface of the substrate 6 (that is, a direction perpendicular to the paper surface of FIG. 1).
- An example in which a spiral optical waveguide that is a spiral optical waveguide having a central axis is used is shown.
- the spiral optical waveguide is made of, for example, silicon.
- the outer end 1 ⁇ / b> A of the terminator 1 is connected to the end 7 ⁇ / b> A of the optical waveguide 7 with a small curvature so as to prevent bending loss as much as possible for the light incident from the optical waveguide 7.
- the curvature of the terminator 1 gradually increases. Therefore, as light incident from the terminator 1 propagates through the terminator 1, the bending loss of light gradually increases and the light attenuates.
- the optical waveguide 7 and the terminator 1 may be embedded with a clad having a smaller refractive index than that of the optical waveguide 7 and the terminator 1.
- the cladding is not shown for simplification of the drawing.
- a low-reflection optical waveguide terminator can be provided even in a silicon optical waveguide having a high refractive index difference by a simple layout in which the terminator is configured by a curved optical waveguide. Further, since the light that has reached the end of the optical waveguide 7 is terminated by entering the terminator 1, the width of the optical waveguide 7 does not contribute to the termination of the light. Therefore, according to this configuration, it is possible to provide an optical element that can suppress the reflected light at the end of the optical waveguide regardless of the width of the optical waveguide.
- the light leaking from the terminator 1 is evenly scattered in all directions. Therefore, in the optical device 100, the intensity of scattered light in a specific direction does not increase, and the influence of scattered light on other elements mounted on the optical device 100 can be suppressed.
- the terminator 1 is a spiral optical waveguide whose curvature gradually increases, the curvature of the spiral optical waveguide is small in the vicinity of the outer end 1A. Thereby, the optical waveguide 7 and the terminator 1 are smoothly connected. As a result, backscattering when light enters the terminator 1 from the optical waveguide 7 can be suppressed, and return light to the optical waveguide 7 can be reduced.
- the terminator Furthermore, it is only necessary to configure the terminator with a curved optical waveguide that can be manufactured in the same manner as a normal optical waveguide, so there is no need to use a special process or the like. Therefore, a desired antireflection structure can be realized without increasing the manufacturing cost. Thereby, the characteristic of the optical device which requires termination
- FIG. 2 is a top view of main parts of the optical device 200 according to the second embodiment.
- the optical device 200 is obtained by replacing the terminator 1 of the optical device 100 with a terminator 2.
- the terminator 2 is a direction perpendicular to the waveguide direction of the optical waveguide 7 and a direction perpendicular to the main surface of the substrate 6 (that is, a direction perpendicular to the paper surface of FIG. 2). ) Is the central axis, and an example of an elliptical spiral optical waveguide which is an elliptical curved optical waveguide whose major axis is the waveguide direction of the optical waveguide 7 is shown.
- the terminator 2 is connected to the end 7A of the optical waveguide 7 with a small curvature so that bending loss is not generated as much as possible from the light incident from the optical waveguide 7.
- the curvature of the terminator 2 gradually increases. Therefore, as the light incident from the optical waveguide 7 propagates through the terminator 2, the light bending loss gradually increases and the light attenuates.
- the terminator 2 has a large curvature in the vicinity where it intersects the major axis, resulting in a large bending loss.
- the tangential direction of the terminator 2 is substantially perpendicular to the waveguide direction of the optical waveguide 7. That is, the terminator 2 has an elliptical shape in which the waveguide direction of the optical waveguide 7 has a major axis, so that light leaking from the terminator 2 into the waveguide direction of the optical waveguide 7 can be suppressed.
- the direction of the major axis of the terminator 2 is merely an example, and can be an arbitrary direction. That is, by constituting the terminator 2 with an elliptical spiral optical waveguide, light leaking in the major axis direction of the elliptical spiral optical waveguide can be suppressed.
- the curvature of the elliptical spiral optical waveguide is small in the vicinity of the outer end 2A.
- the optical waveguide 7 and the terminator 2 are smoothly connected.
- backscattering when light enters the terminator 2 from the optical waveguide 7 can be suppressed, and the return light to the optical waveguide 7 can be reduced.
- the terminator 2 can make the intensity of leaking light unevenly distributed. Therefore, for example, when elements that are desired to prevent incidence of light other than desired light, such as a light receiving element, are integrated inside the optical device 200, these elements are arranged in a direction that can suppress leakage light from the terminator 2. In this case, it is possible to prevent leakage light from entering from the terminator 2.
- FIG. 3 is a top view of main parts of the optical device 300 according to the third embodiment.
- the optical device 300 is obtained by replacing the terminator 1 of the optical device 100 with the terminator 3 and adding an introduction optical waveguide 30.
- the terminator 3 has a direction perpendicular to the waveguide direction of the optical waveguide 7 and a direction perpendicular to the main surface of the substrate 6 (that is, a direction perpendicular to the paper surface of FIG. 3). ) As a central axis.
- the outer end 3 ⁇ / b> A of the terminator 3 and the end 7 ⁇ / b> A of the optical waveguide 7 are connected by an introduction optical waveguide 30.
- the connection portion between the introduction portion optical waveguide 30 and the end portion 7A of the optical waveguide 7 is formed to have a small curvature, preferably smaller than the bent portion of the terminator 3, in order to avoid backscattering described later. Also, it is desirable that the entire introduction portion optical waveguide 30 has a smaller curvature than the bent portion of the terminator 3.
- the rectangular spiral optical waveguide of the terminator 3 is provided with straight portions 31 and bent portions 32 that are curved optical waveguides alternately toward the inner end portion 3B.
- the light input to the terminator 3 causes a bending loss each time it passes through the bent portion 32 and gradually attenuates. Thereby, the terminator 3 can terminate the input light in the same manner as the terminator 1.
- the quadrangular spiral shape has been described.
- the quadrangular shape may be a square or a rectangle, and the corners of the quadrangle may not be a right angle.
- the shape is not limited to a quadrangle, and may be a triangle or an arbitrary polygon having five or more corners.
- the end portion 7A of the optical waveguide 7 and the outer end portion 3A of the terminator 3 are connected with low loss by the introduction portion optical waveguide 30 having a small curvature. As a result, backscattering when light enters the terminator 3 from the optical waveguide 7 can be suppressed, and return light to the optical waveguide 7 can be reduced.
- FIG. 4 is a top view of main parts of an optical device 400 according to the fourth embodiment.
- the optical device 400 is obtained by replacing the terminator 1 of the optical device 100 with the terminator 4 and adding an introduction optical waveguide 40.
- the outer end 4A of the terminator 4 and the end 7A of the optical waveguide 7 are connected via an introduction optical waveguide 40 that is a curved optical waveguide.
- the connection portion between the introduction portion optical waveguide 40 and the end portion 7A of the optical waveguide 7 is formed to have a small curvature, preferably smaller than the curved portion of the terminator 4, in order to avoid backscattering described later. Also, it is desirable that the entire introduction portion optical waveguide 40 has a smaller curvature than the curved portion of the terminator 4.
- the terminator 4 has a central axis in a direction perpendicular to the waveguide direction of the optical waveguide 7 and a direction perpendicular to the main surface of the substrate 6 (that is, a direction perpendicular to the paper surface of FIG. 4).
- a curved portion 41 which is a curved optical waveguide that bends the path of input light counterclockwise, a direction perpendicular to the waveguide direction of the optical waveguide 7, and a direction perpendicular to the main surface of the substrate 6 (that is, Curved portions 42, which are curved optical waveguides that bend the path of the input light clockwise with the central axis in the direction perpendicular to the sheet of FIG. 4 as the central axis, are provided so as to repeat alternately.
- the terminator 4 When the light input to the terminator 4 propagates toward the inner end 4B, a bending loss occurs every time it passes through the curved portion 41 and the curved portion 42, and gradually attenuates. Thereby, the terminator 4 can terminate the input light in the same manner as the terminator 1.
- the curved portion 41 and the curved portion 42 are semi-circular optical waveguides, but the curved portion 41 and the curved portion 42 may be a superior arc-shaped or inferior arc-shaped optical waveguide. Moreover, the curve part 41 and the curve part 42 do not necessarily need to be alternately repeated, and there may be a part where the curve part 41 or the curve part 42 continues. Moreover, the curvatures of the curved portions need not all be the same, and curved portions having different curvatures may be mixed.
- the end portion 7A of the optical waveguide 7 and the terminator 4 are connected by the introduction portion optical waveguide 40 with low loss. As a result, backscattering when light enters the terminator 4 from the optical waveguide 7 can be suppressed, and the return light to the optical waveguide 7 can be reduced.
- FIG. 5 is a top view of the main part of an optical device 500 according to the fifth embodiment.
- the optical device 500 is obtained by replacing the terminator 4 of the optical device 400 with a terminator 5.
- the terminator 5 has a bent portion 51, a straight portion 52, and a bent portion 53.
- the bent portion 51 which is a curved optical waveguide is a direction perpendicular to the waveguide direction of the optical waveguide 7 and a direction perpendicular to the main surface of the substrate 6 (that is, a direction perpendicular to the paper surface of FIG. 5). Is the central axis, and the path of the input light is bent counterclockwise.
- the bent portion 53 which is a curved optical waveguide is a direction perpendicular to the waveguide direction of the optical waveguide 7 and a direction perpendicular to the main surface of the substrate 6 (that is, a direction perpendicular to the paper surface of FIG. 5).
- the path of the input light is bent clockwise around the center axis.
- the bent portions 51 and the bent portions 53 are arranged so as to be alternately repeated with the straight portions 52 interposed therebetween.
- the outer end 5 ⁇ / b> A of the terminator 5 and the end 7 ⁇ / b> A of the optical waveguide 7 are connected by the introduction optical waveguide 40.
- the connection portion between the introduction portion optical waveguide 40 and the end portion 7A of the optical waveguide 7 is formed to have a small curvature, preferably smaller than the bent portion of the terminator 5, in order to avoid backscattering described later. Also, it is desirable that the entire introduction portion optical waveguide 40 has a smaller curvature than the bent portion of the terminator 4.
- the terminator 5 When the light input to the terminator 5 propagates toward the inner end portion 5B, a bending loss occurs every time it passes through the bent portion 51 and the bent portion 53, and gradually attenuates. Thereby, the terminator 5 can terminate the input light in the same manner as the terminator 1.
- the bent portion 51, the straight portion 52, and the bent portion 53 are not necessarily arranged repeatedly in this order. For example, there may be a portion where each of the bent portion 51, the straight portion 52, and the bent portion 53 is continuous. There may be a portion where the bent portion 51 and the bent portion 53 are continuous.
- the curvatures of the bent portions need not all be the same, and bent portions having different curvatures may be mixed.
- the bending angles of the bent portions are not necessarily the same, and bent portions having different curvatures may be mixed.
- FIG. 6 is a top view schematically showing a configuration of the optical functional integrated unit 600 according to the sixth embodiment.
- the optical functional integrated unit 600 includes a semiconductor optical amplifier 8, a photonics element 9, and a mounting substrate 10.
- the semiconductor optical amplifier 8 and the photonics element 9 are mounted on the mounting substrate 10 with their optical waveguides aligned. At this time, the semiconductor optical amplifier 8 and the photonics element 9 are mounted at an interval of sub ⁇ m (1 ⁇ m or less). In FIG. 6, a visible gap is displayed between the semiconductor optical amplifier 8 and the photonics element 9 for the sake of simplicity. The same applies to the following drawings.
- the semiconductor optical amplifier 8 is an example of an active optical element that outputs light, and is, for example, a semiconductor laser diode.
- the semiconductor optical amplifier 8 has an active layer formed on a semiconductor substrate, and the active layer is buried with a cladding layer.
- An antireflective coating 85 is formed at the end of the active layer on the end face 84 side.
- the antireflective coating 85 is formed as an antireflective coating for air or refractive index matching gel.
- a contact layer, an electrode, etc. are formed on the clad layer, they are omitted in this embodiment.
- FIG. 7 is a top view schematically showing the configuration of the photonics element 9.
- the photonics element 9 is an example of a passive optical element configured using silicon (Si), and is an external resonator having a wavelength variable function in the present embodiment.
- the photonics element 9 can be manufactured by a Si process such as a CMOS (Complementary / Metal / Oxide / Semiconductor) process.
- the photonics element 9 includes two ring resonators 91 and 92, a loop mirror 93, electrodes 94 and 95, silicon waveguides 96A to 96C, an antireflection coating 98, and terminators T1 to T5 formed on a substrate 90.
- the ring resonators 91 and 92 are also referred to as first and second ring resonators, respectively.
- the antireflective coating 98 is also referred to as a second antireflective film.
- the electrodes 94 and 95 are also referred to as first and second electrodes, respectively.
- the substrate 90 is formed of, for example, a silicon substrate or an SOI (Silicon on insulator) substrate.
- the silicon waveguides 96A to 96C are constituted by thin wire waveguides or rib (Rib) waveguides.
- the silicon waveguide 96A optically connects the end face 97 and the ring resonator 91.
- the silicon waveguide 96B optically connects between the ring resonator 91 and the ring resonator 92.
- the silicon waveguide 96 ⁇ / b> C optically connects the ring resonator 92 and the loop mirror 93.
- a non-reflective coating 98 is formed on the end of the silicon waveguide 96 ⁇ / b> A on the end surface 97 side.
- the antireflective coating 98 is formed as an antireflective coating for air.
- An electrode 94 is formed on a part of the ring resonator 91.
- An electrode 95 is formed on a part of the ring resonator 92.
- the ring resonator 91 and the ring resonator 92 are slightly different in diameter.
- the terminators T1 to T5 are terminators configured by circular and concentric spiral optical waveguides.
- the terminator T1 is connected to the open end of the silicon waveguide 96A.
- the terminator T2 is connected to the open end of the silicon waveguide 96B on the side close to the ring resonator 91.
- the terminator T3 is connected to the open end of the silicon waveguide 96B on the side close to the ring resonator 92.
- the terminator T4 is connected to the open end of the silicon waveguide 96C on the side close to the ring resonator 92.
- the terminator T5 is connected to the open end of the silicon waveguide 96C on the side close to the loop mirror 93. As described above, the open ends of the silicon waveguides 96A to 96C are terminated by connecting any one of the terminators T1 to T5.
- the ring resonators 91 and 92, the loop mirror 93, and the silicon waveguides 96A to 96C are buried with a cladding layer.
- the clad layer is omitted in order to explain the structure of the photonics element 9.
- the light emitted from the end face 84 side of the active layer of the semiconductor optical amplifier 8 passes through the non-reflective coating 98 and enters the silicon waveguide 96A.
- the incident light is folded back by the loop mirror 93 via the ring resonator 91, the silicon waveguide 96B, the ring resonator 92, and the silicon waveguide 96C.
- the ring resonator 91 and the ring resonator 92 have slightly different diameters. Therefore, the wavelength at which the peak of the ring resonator 91 coincides with the peak of the ring resonator 92 is only one in a wide wavelength variable range. Therefore, resonance occurs at the wavelength selected by the ring resonator between the loop mirror 93 and the end face 84 of the semiconductor optical amplifier 8, and the optical functional integrated unit 600 oscillates.
- the laser light is emitted as laser light 601.
- the optical path length of the ring resonator 91 can be changed by applying a voltage to the electrode 94 to change the effective refractive index of the ring resonator 91.
- the optical path length of the ring resonator 92 can be changed by applying a voltage to the electrode 95 to change the effective refractive index of the ring resonator 92.
- the oscillation wavelength of the optical functional integrated unit 600 can be changed by applying a voltage to the electrodes 94 and 29. That is, the optical function integrated unit 600 can function as a wavelength tunable laser.
- the open ends of the silicon waveguides 96A to 96C are terminated by connecting any one of the terminators T1 to T5. Therefore, light emitted from the open end of the silicon waveguide is attenuated by scattering due to bending loss in the terminators T1 to T5 without being reflected back into the silicon waveguide. As a result, a non-reflective termination can be realized and the wavelength accuracy of the wavelength tunable laser can be improved.
- the terminator 1 according to the first embodiment is used as the terminators T1 to T5, but this is not an exemplification. Any of the terminators 2 to 5 can be applied as the terminators T1 to T5.
- the terminators T1 to T5 need not all be the same terminator, and the terminators 1 to 5 can be used in combination.
- the vortex direction and the number of turns of the spiral optical waveguide in the above-described embodiment are merely examples, and the vortex can be in any direction and can have any number of turns.
- the curved portion, the bent portion, and the straight portion in the terminator in the above-described embodiment can each have an arbitrary number.
- Substrate 7 Optical waveguide 7A
- Semiconductor optical amplifier 9 Photonics element 10 Mounting substrate 30, 40 Introducing optical waveguide 31, 52 Linear portion 32, 51 Bent portion 41, 42 Curved portion 84 End face 85
- Non-reflective coating 90
- Anti-reflective coating 100, 200, 300, 400, 500
- Optical device 600 Optical function integrated unit 601 Laser light T1 to T5 Terminator
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optical Integrated Circuits (AREA)
- Optical Couplings Of Light Guides (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
実施の形態1にかかる低反射構造の光デバイス100について説明する。図1は、実施の形態1にかかる光デバイス100の要部上面図である。光デバイス100には、基板6上に、シリコンからなる光導波路7が形成される。光導波路7の端部7Aには、終端器1が接続される。
実施の形態2にかかる低反射構造の光デバイス200について説明する。図2は、実施の形態2にかかる光デバイス200の要部上面図である。光デバイス200は、光デバイス100の終端器1を終端器2に置換したものである。
実施の形態3にかかる低反射構造の光デバイス300について説明する。図3は、実施の形態3にかかる光デバイス300の要部上面図である。光デバイス300は、光デバイス100の終端器1を終端器3に置換し、導入部光導波路30を追加したものである。
実施の形態4にかかる低反射構造の光デバイス400について説明する。図4は、実施の形態4にかかる光デバイス400の要部上面図である。光デバイス400は、光デバイス100の終端器1を終端器4に置換し、導入部光導波路40を追加したものである。
実施の形態5にかかる低反射構造の光デバイス500について説明する。図5は、実施の形態5にかかる光デバイス500の要部上面図である。光デバイス500は、光デバイス400の終端器4を終端器5に置換したものである。
実施の形態6にかかる光機能集積ユニット600について説明する。図6は、実施の形態6にかかる光機能集積ユニット600の構成を模式的に示す上面図である。本実施の形態では、光機能集積ユニット600が波長可変レーザとして構成される例について説明する。光機能集積ユニット600は、半導体光増幅器8、フォトニクス素子9、実装基板10を有する。
なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。例えば、上記では、光導波路の材料としてシリコンを用いる場合について説明したが、これは例示に過ぎず、他の半導体材料やSiO2など、光が伝搬可能な他の材料を用いても、同様の機能を有する終端器、光素子を実現できることは言うまでもない。
1A、2A、3A、4A、5A 外側端部
1B、2B、3B、4B、5B 内側端部
6 基板
7 光導波路
7A 端部
8 半導体光増幅器
9 フォトニクス素子
10 実装基板
30、40 導入部光導波路
31、52 直線部
32、51 屈曲部
41、42 曲線部
84 端面
85 無反射コーティング
90 基板
91、92 リング共振器
93 ループミラー
94 電極
96A~96C シリコン導波路
97 端面
98 無反射コーティング
100、200、300、400、500 光デバイス
600 光機能集積ユニット
601 レーザ光
T1~T5 終端器
Claims (16)
- 基板上に形成され、光が伝搬する光導波路と、
前記基板上に前記光導波路の一端と接続されて形成され、前記光導波路から入力される入力光に曲げ損失を生じさせる曲率の曲線光導波路を有し、前記入力光が前記曲線光導波路を伝搬することで、前記入力光が減衰する終端器と、を備える、
光素子。 - 前記曲線光導波路は、曲率が連続的に変化する、
請求項1に記載の光素子。 - 前記曲線光導波路は、曲率が連続的に大きくなる、
請求項2に記載の光素子。 - 前記曲線光導波路は、前記基板の主面に対して垂直な方向を中心軸とする同心かつ円形の渦巻光導波路として構成され、
前記光導波路は、前記渦巻光導波路の外周側の端部と接続される、
請求項3に記載の光素子。 - 前記曲線光導波路は、前記基板の主面に対して垂直な方向を中心軸とする同心かつ楕円形の渦巻光導波路として構成され、
前記光導波路は、前記渦巻光導波路の外周側の端部と接続される、
請求項2に記載の光素子。 - 前記終端器は、
前記基板の主面に対して垂直な方向を中心軸として同一方向に曲がる、複数の前記曲線光導波路と、
前記複数の曲線光導波路との間を連結する複数の直線光導波路と、を有し、
前記複数の前記曲線光導波路と前記複数の曲線光導波路とが連結されることで、前記基板の主面に対して垂直な方向を中心軸とする同心かつ多角形の渦巻光導波路が構成され、
前記光導波路は、前記渦巻光導波路の外周側の端部と接続される、
請求項1に記載の光素子。 - 前記終端器は、
縦続接続される複数の前記曲線光導波路を有し、
前記複数の前記曲線光導波路は、前記基板の主面に対して垂直な方向を中心軸として時計回り方向に曲がるものと、前記基板の主面に対して垂直な方向を中心軸として反時計回り方向に曲がるものと、を含む、
請求項1に記載の光素子。 - 前記曲線光導波路は、前記光導波路から遠いものほど、大きな曲率を有する、
含む、
請求項7に記載の光素子。 - 前記終端器は、
前記複数の曲線光導波路のそれぞれの間の一部又は全部に挿入される1又は複数の直線導波路を有する、
請求項7又は8に記載の光素子。 - 前記終端器と前記光導波路との間に挿入される導入部光導波路を更に備え、
前記光導波路と前記導入部光導波路との接続部が前記曲線光導波路よりも小さな曲率となるように、前記光導波路と前記導入部光導波路とが接続される、
請求項6乃至9のいずれか一項に記載の光素子。 - 前記導入部光導波路に含まれる曲線部は、前記曲線光導波路のよりも小さな曲率を有する、
請求項10に記載の光素子。 - 前記光導波路及び前記曲線光導波路は、前記基板上の同じ層に形成される、
請求項1乃至11のいずれか一項に記載の光素子。 - 前記光導波路及び前記曲線光導波路はシリコンからなる、
請求項1乃至12のいずれか一項に記載の光素子。 - 光導波路の一端と接続されて形成され、前記光導波路から入力される入力光に曲げ損失を生じさせる曲率の曲線光導波路を有し、前記入力光が前記曲線光導波路を伝搬することで、前記入力光が減衰する、
終端器。 - 端面からレーザ光を出力するレーザ発振部と、
前記レーザ光の波長を調整する波長調整部と、を備え、
前記波長調整部は、
前記レーザ発振部の前記端面との間でレーザ共振器を構成するミラーと、
前記レーザ共振器に挿入され、前記レーザ光に対する実行屈折率が可変であるリング共振器と、
前記前記波長調整部の前記端面、前記ミラー及び前記リング共振器を連結する第1の光導波路と、
前記第1の光導波路の開放端と接続されて形成され、前記第1の光導波路から入力される入力光に曲げ損失を生じさせる曲率の曲線光導波路を有し、前記入力光が前記曲線光導波路を伝搬することで、前記入力光が減衰する終端器と、を備え、
前記曲線光導波路の曲率は、前記リング共振器を構成する光導波路の曲率よりも小さい、
波長可変レーザ装置。 - 光が伝搬する光導波路を、基板上に形成し、
前記光導波路から入力される入力光に曲げ損失を生じさせる曲率の曲線光導波路を有し、前記入力光が前記曲線光導波路を伝搬することで、前記入力光が減衰する終端器を、前記光導波路の一端と接続するように前記基板上に形成する、
光素子の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016544904A JPWO2016031096A1 (ja) | 2014-08-27 | 2015-02-18 | 光素子、終端器、波長可変レーザ装置及び光素子の製造方法 |
CN201580046051.0A CN106662708A (zh) | 2014-08-27 | 2015-02-18 | 光设备、终接器、波长可调谐激光设备以及用于制造光设备的方法 |
US15/506,553 US10031310B2 (en) | 2014-08-27 | 2015-02-18 | Optical device, terminator, wavelength-tunable laser device, and method for manufacturing optical device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-172733 | 2014-08-27 | ||
JP2014172733 | 2014-08-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016031096A1 true WO2016031096A1 (ja) | 2016-03-03 |
Family
ID=55399022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/000740 WO2016031096A1 (ja) | 2014-08-27 | 2015-02-18 | 光素子、終端器、波長可変レーザ装置及び光素子の製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10031310B2 (ja) |
JP (1) | JPWO2016031096A1 (ja) |
CN (1) | CN106662708A (ja) |
WO (1) | WO2016031096A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018041885A (ja) * | 2016-09-09 | 2018-03-15 | 日本電気株式会社 | モジュール、モジュールの製造装置、およびモジュールの製造方法 |
JP2019175886A (ja) * | 2018-03-26 | 2019-10-10 | ファナック株式会社 | ファイバレーザ装置 |
JP2021039277A (ja) * | 2019-09-04 | 2021-03-11 | 株式会社デンソー | 光導波路終端素子およびそれを用いた光フィルタ |
JP7205011B1 (ja) * | 2022-06-08 | 2023-01-16 | 三菱電機株式会社 | 光終端器、光波長フィルタ及び外部共振器型レーザ光源 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109524033B (zh) * | 2018-12-06 | 2021-06-08 | 西安电子科技大学 | 面向动态随机存储器和非易失性存储器混合主存的光网络 |
CN111352187B (zh) * | 2018-12-21 | 2022-05-20 | 中兴光电子技术有限公司 | 一种波导终结器、光通信器件及光终结的方法 |
US11048042B2 (en) * | 2019-04-01 | 2021-06-29 | Lumentum Operations Llc | Curved waveguide configuration to suppress mode conversion |
KR20210150225A (ko) * | 2020-06-03 | 2021-12-10 | 삼성전자주식회사 | 파장 가변 레이저 광원 및 이를 포함하는 광 조향 장치 |
US20220196913A1 (en) * | 2020-12-21 | 2022-06-23 | Unm Rainforest Innovations | Ring-Geometry Photodetector Designs For High-Sensitivity And High-Speed Detection Of Optical Signals For Fiber Optic And Integrated Optoelectronic Devices |
US20240126013A1 (en) * | 2022-10-13 | 2024-04-18 | Globalfoundries U.S. Inc. | Structure with polarization device with light absorber with at least a hook shape |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005070469A (ja) * | 2003-08-26 | 2005-03-17 | Nippon Telegr & Teleph Corp <Ntt> | 光導波路 |
WO2005096462A1 (ja) * | 2004-03-31 | 2005-10-13 | Nec Corporation | 波長可変レーザ |
JP2006520489A (ja) * | 2003-03-15 | 2006-09-07 | キネテイツク・リミテツド | 中空コアの導波路を含む可変光減衰器 |
JP2009175176A (ja) * | 2008-01-21 | 2009-08-06 | Japan Aviation Electronics Industry Ltd | 光デバイス |
JP2011232574A (ja) * | 2010-04-28 | 2011-11-17 | Denso Corp | 光導波路型センサ及びその製造方法 |
JP2012048036A (ja) * | 2010-08-27 | 2012-03-08 | Fujikura Ltd | 光導波路素子 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06265729A (ja) * | 1993-03-16 | 1994-09-22 | Hitachi Cable Ltd | 光減衰器 |
JPH11305052A (ja) * | 1998-04-22 | 1999-11-05 | Ando Electric Co Ltd | 光ファイバ無反射終端器およびその製造方法 |
WO2002033464A1 (en) * | 2000-10-18 | 2002-04-25 | Amherst Holding Co. | Low reflection optical fiber terminators |
JP2005077973A (ja) * | 2003-09-03 | 2005-03-24 | Hitachi Metals Ltd | 可変光減衰器 |
JP2008020226A (ja) | 2006-07-11 | 2008-01-31 | Mitsubishi Cable Ind Ltd | Otdr測定装置、otdr測定に用いられる終端器及びotdr測定方法 |
JP4948185B2 (ja) * | 2007-01-19 | 2012-06-06 | 古河電気工業株式会社 | 平面光波回路 |
WO2012111689A1 (ja) * | 2011-02-18 | 2012-08-23 | 独立行政法人産業技術総合研究所 | 光ゲートスイッチ |
US10408725B2 (en) * | 2011-10-01 | 2019-09-10 | Lawrence Livermore National Security, Llc | Substrate-integrated hollow waveguide sensors |
US8958665B2 (en) * | 2012-11-13 | 2015-02-17 | Infinera Corporation | Scattering device on an arrayed waveguide grating |
-
2015
- 2015-02-18 WO PCT/JP2015/000740 patent/WO2016031096A1/ja active Application Filing
- 2015-02-18 JP JP2016544904A patent/JPWO2016031096A1/ja active Pending
- 2015-02-18 CN CN201580046051.0A patent/CN106662708A/zh active Pending
- 2015-02-18 US US15/506,553 patent/US10031310B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006520489A (ja) * | 2003-03-15 | 2006-09-07 | キネテイツク・リミテツド | 中空コアの導波路を含む可変光減衰器 |
JP2005070469A (ja) * | 2003-08-26 | 2005-03-17 | Nippon Telegr & Teleph Corp <Ntt> | 光導波路 |
WO2005096462A1 (ja) * | 2004-03-31 | 2005-10-13 | Nec Corporation | 波長可変レーザ |
JP2009175176A (ja) * | 2008-01-21 | 2009-08-06 | Japan Aviation Electronics Industry Ltd | 光デバイス |
JP2011232574A (ja) * | 2010-04-28 | 2011-11-17 | Denso Corp | 光導波路型センサ及びその製造方法 |
JP2012048036A (ja) * | 2010-08-27 | 2012-03-08 | Fujikura Ltd | 光導波路素子 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018041885A (ja) * | 2016-09-09 | 2018-03-15 | 日本電気株式会社 | モジュール、モジュールの製造装置、およびモジュールの製造方法 |
JP2019175886A (ja) * | 2018-03-26 | 2019-10-10 | ファナック株式会社 | ファイバレーザ装置 |
JP2021039277A (ja) * | 2019-09-04 | 2021-03-11 | 株式会社デンソー | 光導波路終端素子およびそれを用いた光フィルタ |
JP7379962B2 (ja) | 2019-09-04 | 2023-11-15 | 株式会社デンソー | 光導波路終端素子およびそれを用いた光フィルタ |
JP7205011B1 (ja) * | 2022-06-08 | 2023-01-16 | 三菱電機株式会社 | 光終端器、光波長フィルタ及び外部共振器型レーザ光源 |
WO2023238294A1 (ja) * | 2022-06-08 | 2023-12-14 | 三菱電機株式会社 | 光終端器、光波長フィルタ及び外部共振器型レーザ光源 |
Also Published As
Publication number | Publication date |
---|---|
US20170254976A1 (en) | 2017-09-07 |
US10031310B2 (en) | 2018-07-24 |
CN106662708A (zh) | 2017-05-10 |
JPWO2016031096A1 (ja) | 2017-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016031096A1 (ja) | 光素子、終端器、波長可変レーザ装置及び光素子の製造方法 | |
US11156789B2 (en) | Surface coupled laser and laser optical interposer | |
US9244231B2 (en) | Optical device having a substrate and a laser unit that emits light into the substrate | |
US20180180818A1 (en) | Optical Edge Coupler with Controllable Mode Field for Photonic Chip | |
US9465163B2 (en) | High-order-mode filter for semiconductor waveguides | |
CN109564326B (zh) | 具有绝热弯曲部的单模波导 | |
JP6687060B2 (ja) | 光導波路、それを用いた光部品および波長可変レーザ | |
US20160306117A1 (en) | Tapered polymer waveguide | |
US20150117817A1 (en) | Optical device for redirecting incident electromagnetic wave | |
JP2012083446A (ja) | 光学変換素子 | |
WO2017179352A1 (ja) | 光学モジュール | |
US10649147B2 (en) | Optical module | |
JP2006337550A (ja) | 光結合器 | |
JP4948185B2 (ja) | 平面光波回路 | |
JP2011145216A (ja) | 活線検出装置 | |
JP2016151651A (ja) | 光ファイバ及び光伝送システム | |
JP2010085564A (ja) | 光導波路回路及び光回路装置 | |
JP2016212414A (ja) | 導波路用結合回路 | |
JP2021012334A (ja) | 光変調器および光学測定装置 | |
JP2005062704A (ja) | 光モジュール、光減衰装置、光送受信モジュール並びに光導波部材 | |
WO2020184358A1 (ja) | レンズ部材、導光部材、及びレーザ装置 | |
JP2005250270A (ja) | スターカプラおよび光集積回路 | |
WO2023223432A1 (ja) | モードフィールド変換光回路 | |
JP6478907B2 (ja) | 端面光結合型シリコン光集積回路 | |
US20130343704A1 (en) | Compact mode-size transition using a focusing reflector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15835732 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016544904 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15506553 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15835732 Country of ref document: EP Kind code of ref document: A1 |