WO2016030920A1 - 回転電機の回転子 - Google Patents

回転電機の回転子 Download PDF

Info

Publication number
WO2016030920A1
WO2016030920A1 PCT/JP2014/004378 JP2014004378W WO2016030920A1 WO 2016030920 A1 WO2016030920 A1 WO 2016030920A1 JP 2014004378 W JP2014004378 W JP 2014004378W WO 2016030920 A1 WO2016030920 A1 WO 2016030920A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
rotor
cross
coil field
field
Prior art date
Application number
PCT/JP2014/004378
Other languages
English (en)
French (fr)
Inventor
将之 坂口
岡本 光泰
健二 前川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US15/323,327 priority Critical patent/US10581289B2/en
Priority to JP2016545083A priority patent/JP6316439B2/ja
Priority to CN201480081347.1A priority patent/CN106663978B/zh
Priority to EP14900912.8A priority patent/EP3179607B1/en
Priority to PCT/JP2014/004378 priority patent/WO2016030920A1/ja
Publication of WO2016030920A1 publication Critical patent/WO2016030920A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/18Windings for salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/16Synchronous generators
    • H02K19/22Synchronous generators having windings each turn of which co-operates alternately with poles of opposite polarity, e.g. heteropolar generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/30Windings characterised by the insulating material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/325Windings characterised by the shape, form or construction of the insulation for windings on salient poles, such as claw-shaped poles

Definitions

  • the present invention relates to a rotor of a rotating electrical machine mounted on a vehicle such as a passenger car, a truck, or a train, and more particularly to a winding structure of a rotor coil wound around a bobbin winding body.
  • coil wire cross points are arranged at 40 to 80 degrees in the circumferential direction so as not to overlap each other in the radial direction.
  • Patent Document 1 Further, the positions of the cross points of the coil wires are sequentially shifted over the entire circumference in the circumferential direction so as to be dispersed.
  • Patent Document 2
  • the coil field A is further wound around four rows and one stage, and then one turn is wound on the coil.
  • the cross point of each stage of the coil wire in the coil field A does not overlap in the radial direction, but the relationship between the cross point in the coil field A and the cross point in the mountain winding portion is Since nothing is set, if the cross points of the coil field A and the mountain winding portion are set at substantially the same position, the outer diameter at each cross point becomes large, and it is necessary to further change the wall thickness of the winding body portion. was there.
  • Patent Document 2 (A portion without a coil wire in the second layer of FIG. 2 in Patent Document 2 occurs in 1/8 turn.) Therefore, in Patent Document 2, in order to prevent the upper layer coil wire including the mountain winding portion from dropping. It was necessary to wrap tape etc. on all the layers where the cross point was shifted.
  • the present invention has been made to solve such problems, and it is possible to rotate a rotating electrical machine that can shift the cross-point position without changing the wall thickness of the winding drum and without using a tape or the like.
  • the purpose is to get a child.
  • a plurality of tapered claw-shaped magnetic poles are formed at equiangular pitches in the circumferential direction on the outer peripheral edge of the cylindrical base portion with the tapering direction aligned with the axial direction.
  • a pair of pole cores configured to engage the claw-shaped magnetic poles;
  • the first and second flange portions are formed in an annular shape with a U-shaped cross section extending from the both axial end portions of the cylindrical winding drum portion to the outer periphery in the radial direction, and the claw-shaped magnetic poles of the pair of pole cores
  • the coil field is wound around the outer periphery of the lower coil field so as to have a plurality of rows with a smaller number of columns than the lower coil field.
  • a rotor coil composed of a coiled coil field having a cross point formed by the coil wires of the adjacent stages in the radial direction,
  • the cross point in the coiled coil field and the cross point in the lower coil field are arranged so as to be offset from each other in the circumferential direction.
  • the balance can be suppressed without changing the thickness of the cross point portion of the winding drum portion or by reducing the change in the thickness. Since the entire body portion can be reduced in diameter, the insulation with the pole at the outer peripheral portion can be improved, and by reducing the diameter, the coil wire length can be shortened at the same number of turns, so that the magnetomotive force can be increased. Further, it is possible to eliminate the use of a tape or the like for the layer between the coil wires.
  • FIG. 8 is a sectional view taken along line VIII-VIII in FIG. 7. It is a perspective view of the rotor of the rotary electric machine which concerns on Embodiment 1 of this invention. It is sectional drawing which shows the principal part of the rotor of the rotary electric machine which concerns on Embodiment 2 of this invention.
  • FIG. 1 is a cross-sectional view showing a main part of a rotor of a rotating electrical machine according to Embodiment 1 of the present invention
  • FIG. 2 is a perspective view showing a bobbin applied to the rotor of the rotating electrical machine according to Embodiment 1 of the present invention
  • 3 is a perspective view for explaining a winding method of a rotor coil in the rotor of the rotating electrical machine according to the first embodiment of the present invention
  • FIGS. 4 to 6 are rotations according to the first embodiment of the present invention.
  • FIG. 7 is a cross-sectional view illustrating a winding state of the rotor coil in the rotor of the rotating electrical machine according to the first embodiment of the present invention.
  • 8 is a cross-sectional view taken along the line VIII-VIII in FIG. 7, and
  • FIG. 9 is a perspective view showing the rotor of the rotating electrical machine according to the first embodiment of the present invention.
  • the rotor 10 of the rotating electrical machine is provided so as to cover the rotor coil 11 and generate a magnetic flux by passing an electric current, and is generated by the rotor coil 11. It is comprised from a pair of pole core 12 in which a magnetic pole is formed with magnetic flux.
  • Each pole core 12 is made of iron, and a plurality of tapered claw-shaped magnetic poles 13 are formed at equiangular pitches in the circumferential direction on the outer peripheral edge of the cylindrical base portion 14 so that the tapering direction coincides with the axial direction. Yes.
  • a pair of pole cores 12 are fixed to a shaft (not shown) with the end faces of the base portion 14 abutting each other so as to engage with the claw-shaped magnetic poles 13.
  • a shaft insertion hole is formed at the axial center position of the base portion 14.
  • the bobbin 16 has first and second flange portions 18 and 19 extending radially outward from both axial end portions of the winding drum portion 17 to have a U-shaped cross section. It is comprised by the annular body. Further, when the tongue pieces 18a, 19a for insulation are provided at equiangular pitches in the circumferential direction on the outer peripheral ends of the first and second flange portions 18, 19, and the bobbin 16 is attached to the pair of pole cores 12, The tongue pieces 18 a and 19 a are bent along the inner peripheral wall surface of the claw-shaped magnetic pole 13 to prevent direct contact between the rotor coil 11 and the claw-shaped magnetic pole 13.
  • a pair of locking portions 21a and 21b are erected on the outer peripheral end of the first flange portion 18, and a groove 22 described later is provided from the outer peripheral end of the first flange portion 18 near the locking portion 21a to the winding drum portion 17.
  • the first flange portion 18 is recessed on the inner peripheral wall surface.
  • the bobbin 16 has a winding drum portion 17 attached to the base portion 14 and is sandwiched by the root portions 13a of the claw-shaped magnetic poles 13 from both sides (left and right in FIG. 1), and the claw-shaped magnetic poles 13 and the base portion 14 of the pair of pole cores 12 It is stored in a space composed of
  • the rotor coil 11 is configured by winding the coil wire 15 around the outer periphery of the winding drum portion 17 in multiple stages with the same number of rows in the axial direction of each stage.
  • the coil wire 15 is wound with a 12-row, 4-stage coil field A and a coil field B, which is a 4-stage mountain winding in which the number of rows in the axial direction is reduced.
  • the coil wire 15 is manufactured by coating an insulating coating such as polyimide resin on the surface of a core material such as copper having a circular cross section.
  • the coil wire 15 is fed out from the nozzle 23, and its tip is wound around a locking portion 21 a of a bobbin 16 mounted on a spindle (not shown) or the like, and is guided to the winding drum portion 17 through the groove 22.
  • the bobbin 16 is rotated while the coil wire 15 is fed out from the nozzle 23, and the coil wire 15 is wound around the winding body portion 17.
  • the nozzle 23 is moved in the axial direction of the bobbin 16, and the first stage of the coil wire 15 is wound around the winding body portion 17.
  • the first-stage coil wire 15 extends from the groove 22 to the winding drum portion 17 and then substantially 1 around the winding drum portion 17 while being in contact with the inner peripheral wall surface of the first flange portion 18.
  • one coil wire 15 is shifted to the second flange portion 19 side to make one turn around the winding drum portion 17 while being in contact with the coil wire 15 of the first turn, and similarly around the winding drum portion 17.
  • a gap S is formed between the coil wire 15 of the 12th turn of the first stage and the inner peripheral wall surface of the second flange portion 19.
  • the second stage of the coil wire 15 is wound around the first stage coil wire 15.
  • the coil wire 15 rides on the coil wire 15 of the twelfth turn and makes substantially one turn so as to contact the inner peripheral wall surface of the second flange portion 19.
  • one coil wire 15 is shifted to the first flange portion 18 side so as to be in contact with the coil wire 15 of the first round of the first stage and the eleventh round of the first stage.
  • about 12 turns around the winding drum portion 17 in contact with the coil wire 15 of the twelfth turn.
  • the winding process of the coil wire 15 is repeated, and the coil wire 15 is wound around the winding body portion 17 to a height equivalent to the height of the root portion 13a of the claw-shaped magnetic pole 13 to form the lower coil field A.
  • Cross points C 1-2 , C 2-3 , and C 3-4 when the coil wire 15 is shifted to each stage in the coil field A are 10 degrees in the circumferential direction of the bobbin 17 as shown in FIG. It is wound by shifting one by one. After that, when the coil field B is formed, the cross point portion of the coil field B rises to the next layer 180 degrees before the cross point of the coil field A so that the cross point portion of the coil field B is 180 degrees with respect to the cross point portion of the coil field A portion. Configured on the opposite side.
  • Cross points C 4 to 5 , C 5 to 6 , C 6 to 7 , and C 7 to 8 at the time of shifting the coil wire 15 to each stage in the coil field B are the circumferential directions of the bobbin 17 as shown in FIG. Are wound at an angle of 10 degrees. And the coil wire 15 extended from the nozzle 23 is cut
  • the coil field B is formed above the coil field A. Therefore, the coil wire 15 is utilized using the empty space between the outer periphery of the coil field A and the inner periphery of the claw-shaped magnetic pole 13 of the pole core 12. The number of turns can be increased. Thereby, the magnetomotive force of the rotor coil 11 is increased, and the output of the rotating electrical machine can be improved.
  • the coil field B is configured with a smaller number of columns than the number of columns of each stage of the coil field A, contact between the coil field A and the claw-shaped magnetic poles 13 of the pole core 12 is avoided. It can be arranged in an empty space.
  • the coil field B may be configured in a plurality of stages with a smaller number of columns than the number of columns in each stage of the coil field A.
  • the number of rows in each stage of the coil field B is mountain-wrapped so as to gradually decrease in the upper direction in accordance with the empty space shape between the coil field A and the claw-shaped magnetic pole 13 of the pole core 12.
  • the cross-point part is moved 180 degrees in the coil field A, a part where there is no coil is generated in the 180-degree part up to the previous cross-point part.
  • the coil cannot be aligned.
  • the cross-point portion can be moved anywhere in the final layer of the coil field A where the coil field B is not located above. Further, when moving to the coil field B, there is no problem even if the coil field B is moved.
  • a coil field A portion of 12 rows and 4 stages is wound around a winding drum portion 17 of a bobbin 16, and a coil field B portion is wound thereon. ing.
  • the coil wire 15 is wound in contact with the inner peripheral wall surface of the first flange portion 18 in the first turn, and then turns 12 times so as to be in contact with each other. It is wound so as to have a gap S between the coil wire 15 of the eye and the inner peripheral wall surface of the second flange portion 19.
  • the coil wire 15 is wound in contact with the inner peripheral wall surface of the second flange portion 19 in the first turn, and then turns 12 times so as to be in contact with each other. It is wound so as to have a clearance S between the inner peripheral wall surface of one flange portion 18.
  • the coil wire 15 of the first round of the second stage is wound in contact with the inner peripheral wall surface of the second flange portion 19, the coil wire 15 of the second round of the first stage is 1
  • the coil wire 15 of the 12th turn of the step is pressed toward the first flange portion 18 side, and the coil wire 15 of the 12th turn of the first step is brought into close contact with each other.
  • the contact state of the coil wire 15 wound in the first stage is ensured. Even when the coil wire 15 is wound on the third and fourth stages, the contact state of the coil wire 15 wound on the lower stage is similarly secured. That is, the aligned state of the coil wires 15 at each stage in the lower aligned winding portion A is ensured.
  • D is the diameter of the coil wire 15.
  • the coil wire 15 can be wound in a stable state, so that the occurrence of turbulence in the winding process is suppressed, and the coil wire 15 can be wound in an aligned state.
  • the number of turns of the coil wire 15 is increased, and the magnetomotive force generated in the rotor coil 11 can be increased.
  • FIG. 7 is a cross-sectional view showing a winding state of the rotor coil in the rotor of the rotary electric machine according to Embodiment 1 of the present invention.
  • 8 is a cross-sectional view taken along the line VIII-VIII in FIG. 7, and is a cross-sectional view passing through the cross points C 1 and 2 generated when the coil wire 15 is wound in the second stage.
  • the coil field A which is the lower aligned winding portion of the rotor coil 11, has the coil wire 15 wound around the winding body portion 17 of the bobbin 16 in 12 rows and 4 stages, as shown in FIG. 7.
  • the cross points C 1-2 , C 2-3 , and C 3-4 are configured to be shifted from each other by an angle of 10 degrees in the circumferential direction and not overlap in the radial direction.
  • the transition start position for shifting the coil wires 15 of the coil fields A and B in the axial direction by the arrangement pitch P is shifted in the circumferential direction for each stage.
  • the cross points C 1-2 , C 2-3 , and C 3-4 generated when the coil wire 15 is wound in the second, third, and fourth stages are dispersed in the circumferential direction, and the diameter The directions do not overlap each other.
  • the cross points C 4 to 5 , C 5 to 6 , C 6 to 7 , and C 7 to 8 are configured so that they are shifted from each other by an angle of 10 degrees in the circumferential direction and do not overlap in the radial direction.
  • the cross points C 4 to 5 and C 1 to 2 , the cross points C 5 to 6 and C 2 to 3 , and the cross points C 6 to 7 and C 3 to 4 are shifted by 180 degrees in the circumferential direction. It is configured.
  • the coil wire 15 When the coil wire 15 is wound around each stage (excluding the first stage), the coil wire 15 is shifted from the n1th turn to the arrangement pitch P branching direction and wound around the (n1 + 1) th turn. At this time, the top of the lower coil wire 15 is overcome.
  • the cross point C is a point where the coil wire 15 gets over the top of the lower coil wire 15.
  • the outer diameters of the coil fields A and B at the overlapping portion of the cross points C will increase.
  • the outer diameters of the coil fields A and B at the cross point C overlap portion increase.
  • the coil wire 15 positioned at the outermost diameter portion of the coil fields A and B in the overlapping portion of the cross points C is within the claw-shaped magnetic pole 13. Contacting the peripheral wall surface will damage the insulating coating of the coil wire 15.
  • the coil field is configured by dispersing the cross points C in the radial direction, there is an increase in the outer diameter of the coil field due to the formation of the cross points C.
  • a coil field having a uniform outer diameter is obtained by offsetting the winding body portion 17 by providing a change in thickness.
  • the coil field B cross point is shifted 180 degrees from the coil field A cross point, and a symmetrical coil shape can be obtained to obtain a well-balanced coil field. No need to change.
  • the number of steps of the coil fields A and B that can avoid contact between the coil wire 15 and the inner peripheral wall surface of the claw-shaped magnetic pole 13 can be increased.
  • a rotating electrical machine having a large number of turns of the coil wire 15 is obtained.
  • the type of the bobbin 16 is simplified, generation of burrs and the like can be suppressed.
  • the cross point C generated when the coil wire 15 is wound in the second stage is overlapped in the axial direction, but the overlap of the cross point C in the axial direction is the outer diameter of the coil fields A and B. Does not contribute to growth.
  • FIG. 9 is a perspective view showing the entire rotor.
  • An arrow 24 indicates the direction of deviation of the center of gravity of the rotor 10 excluding the coil field.
  • An arrow 25 indicates the direction of gravity center shift of the coil field.
  • the coil field A is formed in 12 rows and 4 rows and the coil field B is formed in 4 rows with fewer rows.
  • the number of columns / stages of B is not limited to this.
  • the position may be 180 degrees, but if there are many layers (upper parts) where the number of columns decreases with respect to the lower part (upper part), it is located at multiple positions such as four at 90 degrees. It may be shifted.
  • the cross points C of the coil wires 15 formed at each stage in the lower coil field A are illustrated as being configured to deviate in the circumferential direction within an angle range of 10 degrees.
  • an angle in the range of 3 to 10 degrees is preferable for the purpose of reducing the diameter and size of the rotating coil.
  • at least one of the circumferential shift angles may be 0 degrees, and the coil field A and the cross point of the coiled coil field B If the deviation in the circumferential direction is configured, a balance effect can be expected.
  • the pair of pole cores 12 are illustrated by integrally forming a cylindrical portion formed by mounting the winding drum portion 17 of the rotor coil 11 constituting the base portion 14.
  • the part may have a separate structure.
  • the rotor according to the present invention can be applied to rotating electrical machines such as an AC generator, an AC motor, and an AC generator motor mounted on vehicles such as passenger cars, trucks, and trains.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

 ボビン16の巻胴部17の外周に巻回された下部のコイルフィールドAと、この下部のコイルフィールドAの外周に巻回された山巻きのコイルフィールドBとからなる回転コイル11を有する回転電機の回転子10において、山巻きのコイルフィールドBにおけるクロスポイントCと、下部のコイルフィールドAのクロスポイントCとを、互いに円周方向にずらして配設することにより、ボビン16の巻胴部17の肉厚を変更することなく、またテープ等を使用しなくともクロスポイント位置をずらすことができる。

Description

回転電機の回転子
 この発明は、乗用車、トラック、電車等の車両に搭載される回転電機の回転子に関し、特にボビンの巻胴部に巻回される回転子コイルの巻回構造に関するものである。
 従来の回転電機の回転子コイルにおいては、コイル線のクロスポイントを円周方向へ40度~80度に配置し、互いに径方向に重ならないように構成している。(例えば特許文献1)
 また、コイル線のクロスポイントの位置を円周方向の全周に亘り順次ずらして、分散させるような構成にしている。(例えば特許文献2)
特許第4347219号公報 特公平5-72731号公報
 特許文献1の従来の回転子コイルにおいては、コイル線をボビンに7列4段に巻回してコイルフィールドAを構成した後、さらに4列1段巻回し、その上に1周巻回してコイルフィールド山巻き部を構成しているが、コイルフィールドAにおけるコイル線の各段のクロスポイントが径方向に重なることはないが、コイルフィールドAにおけるクロスポイントと山巻き部におけるクロスポイントとの関係が何ら設定されていないため、コイルフィールドAと山巻き部のクロスポイントが略同じ位置に設定されると、各クロスポイントにおける外径が大きくなるため、さらに該巻胴部の肉厚を変更する必要があった。また層が増えると肉厚の変更では吸収しきれないという問題があった。
 さらにまた、互いのクロスポイントがほぼ同じ位置で一方向に固まると、バランスが悪くなり、回転子として悪影響を生じさせる問題点があった。
 また特許文献2では、クロスポイントを全周に形成しているがクロスポイントを円周方向手前にずらしていく必要があり、その場合、下層のコイルフィールドにコイル線の無い箇所が発生する。例えばこの下層のコイルフィールドの外周に、複数列で多段の山巻き部を巻回する場合、下層のコイルフィールドのクロスポイントは特許文献2にあるように8等分してあり、1/8周コイルの無い箇所が発生する。(特許文献2の、第2図の2層目のようなコイル線の無い部分が1/8周に発生する。)そのため特許文献2では山巻き部を含む上層のコイル線の落ち込みを防ぐためにクロスポイントをずらした層全ての層にテープ等を巻く必要があった。
 この発明は、かかる問題点を解決するためになされたもので、該巻胴部の肉厚を変更することなく、またテープ等を使用しなくともクロスポイント位置をずらすことができる回転電機の回転子を得ることを目的としている。
 この発明に係る回転電機の回転子では、それぞれ先細り形状の爪状磁極がその先細り方向を軸方向に一致させて円柱状の基部の外周縁部に周方向に等角ピッチで複数形成されてなり、該爪状磁極をかみ合わせるように構成された一対のポールコアと、
第1および第2フランジ部が円筒状の巻胴部の軸方向の両端部から径方向の外周に延設された断面コ字状の環状に形成され、上記一対のポールコアの上記爪状磁極の根元部で挟持されて上記基部に装着されたボビンと、
 コイル線を上記ボビンの巻胴部の外周に、軸方向に複数列で多段に巻回され径方向に隣接する段の上記コイル線により形成されるクロスポイントを有する下部のコイルフィールドと、この下部のコイルフィールドの外周と上記爪状磁極の内周との空き空間に配設され、上記下部のコイルフィールドの列数よりも少ない列数で複数段有する如く上記下部のコイルフィールドの外周に巻回され径方向に隣接する段の上記コイル線により形成されるクロスポイントを有する山巻きのコイルフィールドとからなる回転子コイルとを備え、
上記山巻きのコイルフィールドにおけるクロスポイントと、上記下部のコイルフィールドのクロスポイントとが、互いに円周方向にずれて配設されていることを特徴とする。
 この発明に係る回転電機の回転子によれば、該巻胴部のクロスポイント部の肉厚を変更することなく、または、肉厚の変更を少なくして、バランスを抑制することができ、巻胴部全体を小径とすることができるため外周部でのポールとの絶縁性の向上ができ、小径となることで同ターン数においてコイル線長を短くできるため起磁力を大きくすることができる。また、コイル線間の層にテープ等を使用することをなくし得る。
この発明の実施の形態1に係る回転電機の回転子の要部を示す断面図である。 この発明の実施の形態1に係る回転電機の回転子に適用されるボビンを示す斜視図である。 この発明の実施の形態1に係る回転電機の回転子におけるボビンの回転子コイルの巻装状態を示す斜視図である。 この発明の実施の形態1に係る回転電機の回転子における回転子コイルの巻装方法を説明する斜視図である。 この発明の実施の形態1に係る回転電機の回転子における回転子コイルの巻装方法を説明する工程図である。 この発明の実施の形態1に係る回転電機の回転子における回転子コイルの巻装方法を説明する工程図である。 この発明の実施の形態1に係る回転電機の回転子における回転子コイルの巻装状態を示す断面図である。 図7のVIII-VIII線断面図である。 この発明の実施の形態1に係る回転電機の回転子の斜視図である。 この発明の実施の形態2に係る回転電機の回転子の要部を示す断面図である。
実施の形態1.
 図1はこの発明の実施の形態1に係る回転電機の回転子の要部を示す断面図、図2はこの発明の実施の形態1に係る回転電機の回転子に適用されるボビンを示す斜視図、図3はこの発明の実施の形態1に係る回転電機の回転子における回転子コイルの巻装方法を説明する斜視図、図4乃至図6はそれぞれこの発明の実施の形態1に係る回転電機の回転子における回転子コイルの巻装方法を説明する工程図、図7は、この発明の実施の形態1に係る回転電機の回転子における回転子コイルの巻装状態を示す断面図、図8は、図7のVIII-VIII線断面図、図9は、この発明の実施の形態1に係る回転電機の回転子を示す斜視図である。
 回転電機の回転子10は、図1に示されるように、電流を流して磁束を発生する回転子コイル11と、この回転子コイル11を覆うように設けられ、回転子コイル11で発生された磁束によって磁極が形成される一対のポールコア12とから構成される。
 各ポールコア12は、鉄製で、先細り形状の爪状磁極13がそれぞれその先細り方向を軸心方向に一致させて、円柱状の基部14の外周縁部に周方向に等角ピッチで複数形成されている。そして、一対のポールコア12が、爪状磁極13をかみ合わせるように対向させて基部14の端面同士を当接してシャフト(図示せず)に固着されている。なお、図示されていないが、シャフト挿通孔が基部14の軸心位置に穿設されている。
 ボビン16は、図2に示されるように、第1および第2フランジ部18、19が巻胴部17の軸方向の両端部から径方向の外方に延設されて、断面コ字状の環状体に構成されている。また、絶縁用の舌片18a、19aが、第1および第2フランジ部18、19の外周端に周方向に等角ピッチで設けられ、ボビン16が一対のポールコア12に装着された際に、舌片18a、19aが爪状磁極13の内周壁面に沿うように曲げられ、回転子コイル11と爪状磁極13との直接的な接触を防止している。さらに、一対の係止部21a、21bが第1フランジ部18の外周端に立設され、後述する溝22が係止部21aの近傍の第1フランジ部18の外周端から巻胴部17に至るように第1フランジ部18の内周壁面に凹設されている。
 このボビン16は、巻胴部17を基部14に装着し、両側(図1の左右)から爪状磁極13の根元部13aにより挟持されて、一対のポールコア12の爪状磁極13と基部14とから構成される空間内に収納されている。そして、回転子コイル11は、コイル線15を巻胴部17の外周に、各段の軸方向の列数を同じくして多段に巻回して構成されている。ここでは、コイル線15は12列4段のコイルフィールドAおよび軸方向の列数が減る4段の山巻きであるコイルフィールドBが巻回されている。
 ここで、回転子コイル11の巻装方法について説明する。
 コイル線15は、断面円形の銅等の芯材の表面にポリイミド樹脂等の絶縁被膜を被覆して作製されている。このコイル線15は、ノズル23から繰り出され、その先端をスピンドル(図示せず)等に装着されたボビン16の係止部21aに巻き付け、溝22内を通って巻胴部17に導かれる。
 そして、図3示されるように、ノズル23からコイル線15を繰り出しつつ、ボビン16を回転させて、コイル線15を巻胴部17に巻き付ける。この時、ノズル23をボビン16の軸方向に移動させ、コイル線15の1段目が巻胴部17に巻回される。この1段目のコイル線15は、図4示されるように、溝22から巻胴部17に延出した後、第1フランジ部18の内周壁面に接しながら巻胴部17周りに略1周し、ついでコイル線15の1本分第2フランジ部19側にシフトして1周目のコイル線15に接しながら巻胴部17周りに略1周し、同様にして巻胴部17周りに全12周している。この時、1段目の12周目のコイル線15と第2フランジ部19の内周壁面との間には、隙間Sが形成されている。
 続いて、コイル線15の2段目が1段目のコイル線15上に巻回される。まず、コイル線15は、図5示されるように、12周目のコイル線15上に乗り上げて、第2フランジ部19の内周壁面に接するように略1周する。そして、図6示されるように、コイル線15の1本分第1フランジ部18側にシフトして1段目の1周目のコイル線15に接しながら、かつ、1段目の11周目と12周目のコイル線15に接しながら巻胴部17周りに略1周し、同様にして巻胴部17周りに全12周している。
 このコイル線15の巻回工程を繰り返し行い、コイル線15が巻胴部17に爪状磁極13の根元部13a高さと同等の高さまで巻回され、下部のコイルフィールドAが構成される。このコイルフィールドAにおけるコイル線15の各段へのシフト時のクロスポイントC1~2、C2~3、C3~4は、図7に示すようにボビン17の円周方向に角度10度ずつ、ずらして巻回される。この後コイルフィールドBを構成するのにコイルフィールドAのクロスポイントより180度周方向手前で次の層へ上がることでコイルフィールドBのクロスポイント部はコイルフィールドA部のクロスポイント部に対し180度反対側に構成される。そこで、さらに9列1段巻回し、さらにそのうえに7列1段、さらにそのうえに4列1段、さらにその上に1周巻回して山巻きのコイルフィールドB部を構成している。このコイルフィールドBにおけるコイル線15の各段へのシフト時のクロスポイントC4~5、C5~6、C6~7、C7~8は図7に示すようにボビン17の円周方向に角度10度ずつ、ずらして巻回される。そして、ノズル23から延出するコイル線15を切断し、コイル線15の切断側を係止部21bに巻き付け、図3に示される回転子コイル11が得られる。
 この回転子10では、コイルフィールドAの上部に、コイルフィールドBを形成しているので、コイルフィールドA外周とポールコア12の爪状磁極13内周との間の空き空間を利用してコイル線15の巻回数を増やすことができる。これにより、回転子コイル11の起磁力が大きくなり、回転電機の出力を向上させることができる。
 また、コイルフィールドBは、コイルフィールドAの各段の列数より少ない列数で構成されているので、爪状磁極13との接触を避けてコイルフィールドAとポールコア12の爪状磁極13との間の空き空間に配設することができる。
 ここで、コイルフィールドBは、コイルフィールドAの各段の列数より少ない列数で複数段に構成すればよい。そして、コイルフィールドBの各段の列数は、コイルフィールドAとポールコア12の爪状磁極13との間の空き空間形状に合わせ、上段方向に漸次減少するように山巻きとしている。
 コイルフィールドAでクロスポイント部を180度移動させるとそれまでのクロスポイント部までの180度部にコイルがない箇所が発生するためその次の層において整列にまけなくなり、その上に巻かれる全てのコイルが整列に巻けなくなる。但しその次の層の軸方向の列の数が減るコイルフィールドBへ移る際にはクロスポイントを移動させることが可能となる。そのクロスポイント部はコイルフィールドBが上部にないコイルフィールドAの最終層のどこで移動させても問題ない。またコイルフィールドBに移る際にコイルフィールドBで移動させても問題ない。
 このように作製された回転子コイル11においては、図1に示されるように、ボビン16の巻胴部17に12列4段のコイルフィールドA部とその上にコイルフィールドB部が巻装されている。そして、下部のコイルフィールドA部では奇数段では、コイル線15は、1周目が第1フランジ部18の内周壁面に接して巻回され、以降互いに接するように全12周し、12周目のコイル線15と第2フランジ部19内周壁面との間に隙間Sを持つように巻回されている。一方、偶数段では、コイル線15は、1周目が第2フランジ部19の内周壁面に接して巻回され、以降互いに接するように全12周し、12周目のコイル線15と第1フランジ部18内周壁面との間に隙間Sを持つように巻回されている。そして、例えば、2段目の1周目のコイル線15が、第2フランジ部19の内周壁面に接して巻回されているので、2段目の1周目のコイル線15は、1段目の12周目のコイル線15を第1フランジ部18側に押圧し、1段目の12周のコイル線15を互いに密接させるように作用する。そこで、2段目に、コイル線15を2周目、3周目と順次巻回しても、1段目に巻回されているコイル線15の密着状態が確保される。なお、3段目および4段目にコイル線15を巻回する場合でも、同様に、下段に巻回されているコイル線15の密着状態が確保される。つまり、下部整列巻部Aにおける各段のコイル線15の整列状態が確保される。
 図1における隙間Sは、特許文献1に記載のようにD/4以上、かつ、D/2以下に設定することが望ましい(Dは、コイル線15の直径)。特に、隙間SをD/2と設定すれば、コイル線15を安定した状態に巻回できるので、巻回工程での巻き乱れの発生が抑制され、コイル線15を整列状態に巻回できる。その結果、外径が軸方向に関して揃ったコイルフィールドAを簡易に作製できるとともに、崩れの発生しにくいコイルフィールドAおよびBを実現できる。さらに、コイル線15の巻回数が多くなり、回転子コイル11で発生する起磁力を大きくすることができる。
 図7はこの発明の実施の形態1に係る回転電機の回転子における回転子コイルの巻装状態を示す断面図である。なお、図8は、図7のVIII-VIII線断面図で、コイル線15を2段目に巻回した際に発生するクロスポイントC1~2を通る断面図である。
 この図7では、回転子コイル11の下部整列巻部であるコイルフィールドAは、図7に示されるように、コイル線15がボビン16の巻胴部17に12列4段に巻装され、かつ、クロスポイントC1~2、C2~3、C3~4が互いに円周方向に角度10度ずつ、ずれて径方向に関して重ならないように構成されている。コイルフィールドA、Bのコイル線15を軸方向に配列ピッチP分移行させる移行開始位置が各段毎に周方向にずらされている。つまり、コイル線15を2段目、3段目および4段目に巻回する際に発生した各クロスポイントC1~2、C2~3、C3~4は周方向に分散され、径方向に関しては互いに重なっていない。
 また、コイルフィールドBにおいてもクロスポイントC4~5、C5~6、C6~7、C7~8は互いに円周方向に角度10度ずつずれて、径方向に関して重ならないように構成されている。しかも、クロスポイントC4~5とC1~2、クロスポイントC5~6とC2~3、クロスポイントC6~7とC3~4とは、各々円周方向に角度180度ずれて構成されている。
 なお、各段(1段目を除く)にコイル線15を巻回する場合、コイル線15は、n1周目から配列ピッチP分軸方向に移行して(n1+1)周目に巻回される際に、下段のコイル線15の頂部を乗り越えることになる。このクロスポイントCとは、コイル線15が下段のコイル線15の頂部を乗り越える点である。
 回転子コイル11においては、クロスポイントCが径方向に重なるようにコイルフィールドAおよびBを構成すると、クロスポイントCの重なり部分におけるコイルフィールドAおよびBの外径が大きくなってしまう。そして、クロスポイントCの重なりが多くなるほど、クロスポイントCの重なり部分におけるコイルフィールドAおよびBの外径が大きくなる。その結果、回転子コイルをポールコア12に装着して回転子を作製した場合、クロスポイントCの重なり部分におけるコイルフィールドAおよびBの最外径部に位置するコイル線15が爪状磁極13の内周壁面と接触し、コイル線15の絶縁被膜を損傷させてしまう。また、クロスポイントCの重なり部分におけるコイルフィールドA、Bの最外径部に位置するコイル線15と爪状磁極13の内周壁面との接触を回避させるには、コイルフィールドAおよびBの段数を少なくする必要があり、コイル線15の巻回数が少なくなってしまう。
 クロスポイントCを径方向に分散させてコイルフィールドは構成されているがクロスポイントCの形成に伴うコイルフィールドの外径の増大分は存在する。特許文献1では巻胴部17に厚みの変化を設けることで相殺し均一な外径を有するコイルフィールドを得るとしている。
これに対し、この発明では、コイルフィールドBのクロスポイントをコイルフィールドAのクロスポイントと180度ずらすことで対称の形状となりバランスのよいコイルフィールドを得ることができるため、巻胴部17の厚みを変化させる必要がなくなる。その結果、コイル線15と爪状磁極13の内周壁面との接触を回避できるコイルフィールドAおよびBの段数を増やすことができるので、コイル線15の絶縁被膜の損傷の発生を抑制して、コイル線15の巻回数の多い回転電機が得られる。また、ボビン16の型も簡単になるため、バリ等の発生の抑えることができる。
 また特許文献1のように巻胴部17に厚みの変化をつけるとしても、コイルフィールドAとコイルフィールドBのクロスポイント部を180度ずらしているので巻胴部17の厚みを変化させる量および範囲も小さくてすむ。
 なお、図8では、コイル線15を2段目に巻回した際に発生するクロスポイントCが軸方向に重なっているが、クロスポイントCの軸方向の重なりはコイルフィールドAおよびBの外径増大に関与しない。
 図9は回転子全体を示した斜視図である。矢印24はコイルフィールドを除く回転子10の重心ずれ方向を示している。矢印25はコイルフィールドの重心ずれ方向を示す。コイルフィールドAとBによって、クロスポイント位置を任意の位置にずらすことで、コイルフィールドの重心ずれ方向を制御し、意図的に矢印24を打ち消す方向にコイルフィールドの重心位置をずらし、重心位置ずれの少ない回転子10を得ることができるので、回転バランスを良好にでき、シャフトのたわみ、回転騒音、等の改善と、軸受の耐久性向上の効果が期待できる。
実施の形態2.
 なお、図1、図4、図5、図6ではコイルフィールドA部の奇数層と偶数層が同じ列数での説明をしているが、図10に示すように、奇数層の列数に対し偶数層の列数が1列少なくなる場合でも上記実施の形態1と同様の作用効果を奏するものである。
 また、上記各実施の形態では、説明の便宜上、コイルフィールドAが12列4段に形成され、コイルフィールドBがそれよりも少ない列で4段に形成されているものとしているが、コイルフィールドA、Bの列数・段数はこれに限定されるものではない。これに伴い、上述のように上部と下部のみの場合は180度位置でいいが層が多くなり下部に対する列数の減る層(上部)が多くある場合は90度位置で4箇所等複数個所にずらしてもよい。
 さらに、上記の各実施の形態では、下部のコイルフィールドAにおける各段に形成されるコイル線15のクロスポイントCは、互いに角度10度の範囲で円周方向にずれて構成したものを例示したが、回転コイルの小径化、および小型化の狙いでは、角度3度~10度の範囲が好ましい。また、コイルフィールドAおよびBにおける径方向の段数が少ない場合では、円周方向のずれ角度は、少なくとも何れか一方が0度でもよく、コイルフィールドAと山巻きコイルフィールドBのクロスポイントとの間で円周方向のずれを構成すれば、バランスの効果は期待できる。
 さらにまた、上記の各実施の形態では、一対のポールコア12は、基部14を構成する回転子コイル11の巻胴部17を装着してなる円筒部を一体形成したものを例示したが、この円筒部が別体構成のものでもよい。
 さらに、この発明による回転子は、例えば乗用車、トラック、電車等の車両に搭載される交流発電機、交流電動機、交流発電電動機等の回転電機に適用できる。
10 回転子
11 回転子コイル
12 ポールコア
13 爪状磁極
13a 根元部
14 基部
15 コイル線
16 ボビン
17 巻胴部
18 第1フランジ部
18a 舌片
19 第2フランジ部
19a 舌片
21a 係止片
21b 係止片
22 溝
23 ノズル
A 下部のコイルフィールド
B 上部(山巻き)のコイルフィールド
C クロスポイント
D コイル線外径
P 配列ピッチ
S 隙間

Claims (6)

  1.  それぞれ先細り形状の爪状磁極がその先細り方向を軸方向に一致させて円柱状の基部の外周縁部に周方向に等角ピッチで複数形成されてなり、該爪状磁極をかみ合わせるように構成された一対のポールコアと、
    第1および第2フランジ部が円筒状の巻胴部の軸方向の両端部から径方向の外周に延設された断面コ字状の環状に形成され、上記一対のポールコアの上記爪状磁極の根元部で挟持されて上記基部に装着されたボビンと、
     コイル線を上記ボビンの巻胴部の外周に、軸方向に複数列で多段に巻回され径方向に隣接する段の上記コイル線により形成されるクロスポイントを有する下部のコイルフィールドと、この下部のコイルフィールドの外周と上記爪状磁極の内周との空き空間に配設され、上記下部のコイルフィールドの列数よりも少ない列数で複数段有する如く上記下部のコイルフィールドの外周に巻回され径方向に隣接する段の上記コイル線により形成されるクロスポイントを有する山巻きのコイルフィールドとからなる回転子コイルとを備え、  
    上記山巻きのコイルフィールドにおけるクロスポイントと、上記下部のコイルフィールドのクロスポイントとが、互いに円周方向にずれて配設されていることを特徴とする回転電機の回転子。
  2.  上記山巻きのクロスポイントと上記下部のクロスポイントとは、上記ボビンの円周方向へ180度対称位置に配設されていることを特徴とする請求項1に記載の回転電機の回転子。
  3.  上記下部のコイルフィールドにおける各段に形成されるコイル線のクロスポイントは、互いに角度3度~10度の範囲で円周方向にずれて構成されていることを特徴とする請求項1または2に記載の回転電機の回転子。
  4.  上記山巻きのコイルフィールドにおける各段に形成されるコイル線のクロスポイントは、互いに角度3度~10度の範囲で円周方向にずれて構成されていることを特徴とする請求項1から3のいずれかに記載の回転電機の回転子。
  5.  上記ボビンの巻胴部は、全周に亘り均一な肉厚で構成されていることを特徴とする請求項1から4のいずれかに記載の回転電機の回転子。
  6.  上記山巻きのコイルフィールドは、上記下部のコイルフィールドの段数と同じ複数段で構成されていることを特徴とする請求項1から5のいずれかに記載の回転電機の回転子。
PCT/JP2014/004378 2014-08-26 2014-08-26 回転電機の回転子 WO2016030920A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/323,327 US10581289B2 (en) 2014-08-26 2014-08-26 Rotating electric machine rotor
JP2016545083A JP6316439B2 (ja) 2014-08-26 2014-08-26 回転電機の回転子
CN201480081347.1A CN106663978B (zh) 2014-08-26 2014-08-26 旋转电机的转子
EP14900912.8A EP3179607B1 (en) 2014-08-26 2014-08-26 Rotating electric machine rotor
PCT/JP2014/004378 WO2016030920A1 (ja) 2014-08-26 2014-08-26 回転電機の回転子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/004378 WO2016030920A1 (ja) 2014-08-26 2014-08-26 回転電機の回転子

Publications (1)

Publication Number Publication Date
WO2016030920A1 true WO2016030920A1 (ja) 2016-03-03

Family

ID=55398869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004378 WO2016030920A1 (ja) 2014-08-26 2014-08-26 回転電機の回転子

Country Status (5)

Country Link
US (1) US10581289B2 (ja)
EP (1) EP3179607B1 (ja)
JP (1) JP6316439B2 (ja)
CN (1) CN106663978B (ja)
WO (1) WO2016030920A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10110080B2 (en) * 2015-11-30 2018-10-23 Caterpillar Inc. Coil and stator assembly of a rotary electric machine
WO2021067713A1 (en) * 2019-10-03 2021-04-08 Magna International Inc. Wound-field synchronous machines and control
JP7214895B2 (ja) * 2019-12-09 2023-01-30 株式会社東芝 回転電機の電機子巻線および回転電機

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61254049A (ja) * 1985-05-03 1986-11-11 Nippon Denso Co Ltd コイルの巻線装置
JPH0572731B2 (ja) * 1984-03-16 1993-10-12 Fujikura Kk
JP4347219B2 (ja) * 2002-10-22 2009-10-21 三菱電機株式会社 回転電機の回転子

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3598581B2 (ja) * 1995-05-19 2004-12-08 株式会社デンソー 発電機の回転子コイルおよびその製造方法
US7038347B2 (en) * 2004-05-03 2006-05-02 Visteon Global Technologies, Inc. Optimized alternator bobbin
US7994684B2 (en) * 2006-09-01 2011-08-09 Mitsubishi Electric Corporation Automotive alternating-current generator
US20080061651A1 (en) * 2006-09-13 2008-03-13 York Michael T Bobbin for a dynamoelectric machine and method
JP4837074B2 (ja) * 2009-06-23 2011-12-14 三菱電機株式会社 回転電機
JP4903247B2 (ja) * 2009-07-23 2012-03-28 三菱電機株式会社 巻線用ボビン及び回転電機
EP2752972B1 (en) * 2011-09-01 2018-06-06 Mitsubishi Electric Corporation Winding, winding method, and rotating electrical machine for vehicle
CN102420486A (zh) * 2011-12-23 2012-04-18 宁波韵升股份有限公司 车辆用交流发电机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0572731B2 (ja) * 1984-03-16 1993-10-12 Fujikura Kk
JPS61254049A (ja) * 1985-05-03 1986-11-11 Nippon Denso Co Ltd コイルの巻線装置
JP4347219B2 (ja) * 2002-10-22 2009-10-21 三菱電機株式会社 回転電機の回転子

Also Published As

Publication number Publication date
CN106663978B (zh) 2018-10-16
US10581289B2 (en) 2020-03-03
EP3179607A1 (en) 2017-06-14
JP6316439B2 (ja) 2018-04-25
CN106663978A (zh) 2017-05-10
US20170163113A1 (en) 2017-06-08
JPWO2016030920A1 (ja) 2017-04-27
EP3179607B1 (en) 2019-07-10
EP3179607A4 (en) 2018-04-04

Similar Documents

Publication Publication Date Title
JP4347219B2 (ja) 回転電機の回転子
JP5693793B2 (ja) 回転電機
JP4782011B2 (ja) 回転電機のステータ
US9287744B2 (en) Winding structure, rotating electric machine, and rotating electric machine manufacturing method
JP6351866B2 (ja) 回転電機
CN103683615A (zh) 发夹连接装置和包括其的发夹绕组电机
JP6203785B2 (ja) 8の字状の連結コイルを有する電動機とその製造方法
JP4106375B2 (ja) 回転電機の固定子
JP5332347B2 (ja) 回転電機のコイル組立体用のコイル線材
WO2016072480A1 (ja) 回転電機の固定子
JP2016152730A (ja) 3相交流電動機
JP6316439B2 (ja) 回転電機の回転子
JPWO2018185902A1 (ja) 回転電機
JP4541977B2 (ja) 電機子及びブラシレスモータ
JP2015107029A (ja) 電機子及び回転電機
US9825498B2 (en) Armature and armature manufacturing method
JP6253709B2 (ja) 回転電機の回転子
JP2009148084A (ja) 電機子
CN109428423A (zh) 定子及其制造方法、马达及其制造方法、绕线方法
JP5924703B2 (ja) 車両用回転電機の固定子
JP2011182579A (ja) 回転電機
JP2008086059A (ja) 回転電機および回転電機の製造方法
WO2017056548A1 (ja) 電動機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14900912

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016545083

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15323327

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014900912

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014900912

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE