WO2016029582A1 - 一种低温烟气脱硝的催化剂成型工艺 - Google Patents

一种低温烟气脱硝的催化剂成型工艺 Download PDF

Info

Publication number
WO2016029582A1
WO2016029582A1 PCT/CN2014/092860 CN2014092860W WO2016029582A1 WO 2016029582 A1 WO2016029582 A1 WO 2016029582A1 CN 2014092860 W CN2014092860 W CN 2014092860W WO 2016029582 A1 WO2016029582 A1 WO 2016029582A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
powder
catalyst
deionized water
flue gas
Prior art date
Application number
PCT/CN2014/092860
Other languages
English (en)
French (fr)
Inventor
李俊华
黄旭
彭悦
关立军
王子腾
郝吉明
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2016029582A1 publication Critical patent/WO2016029582A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum

Definitions

  • the invention relates to the technical field of nitrogen oxides control in environmental protection, in particular to a catalyst forming process for low-temperature flue gas denitration.
  • NO X emission sources for power plants and industrial stationary boiler emissions with NH 3 reducing agent selective catalytic reduction (SCR) is the most studied, the most widely used and most effective smoke removal of NO X technology.
  • the most mature catalysts currently used are V 2 O 5 /TiO 2 or catalysts modified on the basis of V 2 O 5 /TiO 2 , the main advantages of which are high activity and high sulfur resistance, but such catalysts are operated. Higher activity is achieved at temperatures above 350 °C.
  • the flue gas ⁇ 250 °C
  • most of the engineering feasibility is low-temperature and low-dust, but the SCR denitration device of this arrangement is adopted.
  • Heat sources, such as the use of natural gas to reheat the flue gas have a huge additional energy consumption and are expensive to operate.
  • a catalyst forming process for low temperature flue gas denitration comprises the following steps:
  • Step 1 Add ammonium metavanadate powder and kapok in deionized water to form a white suspension, add monoethanolamine to the suspension, continue stirring, and heat at 80 °C until all ammonium metavanadate is dissolved. Solution 1;
  • Step two the lactic acid solution is added dropwise to a mixture of silica sol (30 wt%) and aluminum sol (30 wt%) into a solution 2;
  • Step 3 adding titanium white powder, tianjing powder, PEO, CMC, stearic acid and fiber to the kneader for stirring and mixing uniformly to obtain a milky white mixed powder;
  • Step 5 The wet mass is extruded by an extruder, and dried and calcined to obtain a finished catalyst.
  • the ammonium metavanadate powder in the first step is 1 to 6 parts
  • the kapok is 5 parts
  • the deionized water is 6 to 10 parts
  • the monoethanolamine is 1 part
  • the lactic acid solution in the second step 1 part
  • both silica sol and aluminum sol are 0-8 parts
  • the titanium white powder is 70.5 parts to 88 parts
  • the field green powder is 0 to 3 parts
  • the PEO is 0 to 7 parts
  • the CMC is 0 to 3 parts
  • stearic acid is 0 to 2 parts
  • fiber is 0 to 2.5 parts
  • deionized water is 100 parts in the fourth step.
  • the dough was subjected to extrusion molding using a hydraulic extruder to obtain a honeycomb catalyst, which was dried at 60 ° C for 14 days, and calcined at 600 ° C for 48 hours to finally obtain a honeycomb catalyst.
  • the ammonium metavanadate powder in the step 1 is 1 to 6 parts, the kapok is 5 parts, the deionized water is 10 to 15 parts, the monoethanolamine is 1 part, and the lactic acid solution in the second step is used.
  • both silica sol and aluminum sol are 0-8 parts
  • the titanium white powder is 70.5 parts to 88 parts
  • the field green powder is 0 to 3 parts
  • the PEO is 0 to 7 parts
  • the CMC is 0 to 3 parts
  • stearic acid is 0 to 2 parts
  • fiber is 0 to 2.5 parts
  • deionized water is 25 parts in the fourth step.
  • the strand is then extruded using a strip extruder, A strip type catalyst was obtained, which was dried at 100 ° C for 12 h, and calcined at 500 ° C for 5 hours to finally obtain a strip type catalyst.
  • the catalyst of the invention has little change to the traditional vanadium-tungsten-titanium catalyst system, and the production process has almost no change, but the activity is obviously improved, which is suitable for the catalyst manufacturer to quickly invest in mass production.
  • the invention adopts a set of formulas, can realize the extrusion of the strip type and the honeycomb catalyst with a slight adjustment, can be applied to various flue gas conditions, and has wide application prospects.
  • Step 1 240 g of ammonium metavanadate powder and 190 g of kapok were added to 300-400 ml of deionized water solution for 10 minutes to form a white suspension, and 50 g of monoethanolamine was added to the suspension to continue stirring. Heating to ° ammonium metavanadate under °C conditions to dissolve into solution 1.
  • Step 3 2940 g of titanium white powder, 0 g of phthalocyanine powder, 280 g of PEO, 112 g of CMC, 80 g of stearic acid, and 100 g of fiber (length 3-6 mm) were added to a kneader, stirred and uniformly mixed to obtain a milky white mixed powder.
  • Step 4 Add solution 1 and solution 2 and 4000 ml of deionized water to the mixed powder obtained in the third step, respectively, and stir to obtain a wet mass.
  • Step 6 Extrusion of the mass using a hydraulic extruder to obtain a honeycomb catalyst.
  • Step 7 The extruded honeycomb catalyst was dried at 60 ° C for 14 days.
  • Step 8 The dried honeycomb catalyst was calcined in a tunnel kiln at 600 ° C for 48 hours to obtain a honeycomb catalyst.
  • Step 1 240 g of ammonium metavanadate powder and 190 g of kapok were added to 300-400 ml of deionized water solution for 10 minutes to form a white suspension, and 50 g of monoethanolamine was added to the suspension to continue stirring. Heating to ° ammonium metavanadate under °C conditions to dissolve into solution 1.
  • Step 3 2880 g of titanium dioxide powder, 60 g of phthalocyanine powder, 280 g of PEO, 112 g of CMC, 80 g of stearic acid, and 100 g of fiber (length: 3-6 mm) were added to a kneader, stirred and uniformly mixed to obtain a milky white mixed powder.
  • Step 4 Add solution 1 and solution 2 and 4000 ml of deionized water to the mixed powder obtained in the third step, respectively, and stir to obtain a wet mass.
  • Step 6 Extrusion of the mass using a hydraulic extruder to obtain a honeycomb catalyst.
  • Step 7 The extruded honeycomb catalyst was dried at 60 ° C for 14 days.
  • a honeycomb catalyst forming process for low-temperature flue gas denitration the steps are as follows:
  • Step 1 240 g of ammonium metavanadate powder and 190 g of kapok were added to 300-400 ml of deionized water solution for 10 minutes to form a white suspension, and 50 g of monoethanolamine was added to the suspension to continue stirring. Heating to ° ammonium metavanadate under °C conditions to dissolve into solution 1.
  • Step 3 adding 2820 g of titanium dioxide, 120 g of phthalocyanine powder, 280 g of PEO, 112 g of CMC, 80 g of stearic acid, and 100 g of fiber (length 3-6 mm) to a kneader, stirring and mixing uniformly, and obtaining Milky white mixed powder.
  • Step 4 Add solution 1 and solution 2 and 4000 ml of deionized water to the mixed powder obtained in the third step, respectively, and stir to obtain a wet mass.
  • Step 6 Extrusion of the mass using a hydraulic extruder to obtain a honeycomb catalyst.
  • Step 8 The dried honeycomb catalyst was calcined in a tunnel kiln at 600 ° C for 48 hours to obtain a honeycomb catalyst.
  • honeycomb catalyst activity test results are shown in Table 1.
  • Table 1 shows the activity test results of the honeycomb denitration catalyst under the conditions of low temperature conditions (150-200 ° C).
  • Reaction conditions temperature 150 ° C - 200 ° C, space velocity 12,000 h -1 , NO content 500 ppm, NH 3 content 500 ppm, SO 2 content 200 ppm, H 2 O content 5%, N 2 is a balance gas.
  • Step 1 6 g of ammonium metavanadate powder and 5 g of kapok were added to 6-8 ml of deionized water solution for 10 minutes to form a white suspension, and 1 ml of monoethanolamine was added to the suspension to continue stirring. Heating to ° ammonium metavanadate under °C conditions to dissolve into solution 1.
  • Step 3 70.5 g of titanium white powder, 3 g of phthalocyanine powder, 7 g of PEO, 3 g of CMC, 2 g of stearic acid, and 2.5 g of fiber were added to a kneader, stirred and uniformly mixed to obtain a milky white mixed powder.
  • Step 6 The dough is extruded using a strip extruder to obtain a strip catalyst.
  • Step 7 The extruded strip catalyst was dried at 100 ° C for 12 h.
  • a strip type catalyst forming process for low temperature flue gas denitration the steps are as follows:
  • Step 1 6 g of ammonium metavanadate powder and 5 g of kapok were added to 6-8 ml of deionized water solution for 10 minutes to form a white suspension, and 1 ml of monoethanolamine was added to the suspension to continue stirring. Heating to ° ammonium metavanadate under °C conditions to dissolve into solution 1.
  • Step 3 73 g of titanium white powder, 3 g of phthalocyanine powder, 7 g of PEO, 3 g of CMC, 2 g of stearic acid, and 2.5 g of fiber were placed in a kneader, stirred and uniformly mixed to obtain a milky white mixed powder.
  • Step 4 Add solution 1 and solution 2 and 25 ml of deionized water to step 3 respectively to obtain a mixed powder, and stir to obtain a wet mass.
  • Step 7 The extruded strip catalyst was dried at 100 ° C for 12 h.
  • Step 8 The bar type catalyst was obtained by calcining the dried strip catalyst at 500 ° C for 5 hours in a muffle furnace.
  • a strip type catalyst forming process for low temperature flue gas denitration the steps are as follows:
  • Step 1 6 g of ammonium metavanadate powder and 5 g of kapok were added to 6-8 ml of deionized water solution for 10 minutes to form a white suspension, and 1 ml of monoethanolamine was added to the suspension to continue stirring. Heating to ° ammonium metavanadate under °C conditions to dissolve into solution 1.
  • Step 2 1 g of a lactic acid solution was added dropwise to a solution of 9 g of a silica sol (30 wt%) and 9 g of an aluminum sol (30 wt%) to form a solution 2.
  • Step 3 72.5 g of titanium dioxide powder, 1 g of phthalocyanine powder, 7 g of PEO, 3 g of CMC, 2 g of stearic acid, and 2.5 g of fiber were added to a kneader, stirred and uniformly mixed to obtain a milky white mixed powder.
  • Step 4 Add solution 1 and solution 2 and 25 ml of deionized water to step 3 respectively to obtain a mixed powder, and stir to obtain a wet mass.
  • Step 6 The dough is extruded using a strip extruder to obtain a strip catalyst.
  • Step 7 The extruded strip catalyst was dried at 100 ° C for 12 h.
  • Step 8 The bar type catalyst was obtained by calcining the dried strip catalyst at 500 ° C for 5 hours in a muffle furnace.
  • Table 2 shows the activity detection results of the strip type denitration catalyst under the conditions of low temperature conditions (150-200 ° C).
  • Reaction conditions temperature 150 ° C - 200 ° C, space velocity 6,000 h -1 , NO content 500 ppm, NH 3 content 500 ppm, SO 2 content 200 ppm, H 2 O content 5%, N 2 is a balance gas.
  • the denitration catalyst prepared by the method of the present invention has good denitration efficiency under low temperature conditions (150-200 ° C).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

一种低温烟气脱硝的催化剂成型工艺,将偏钒酸铵粉体和木棉加入去离子水中搅拌形成白色悬浊液,再加入单乙醇胺并加热至偏钒酸铵全部溶解,成为溶液1;将乳酸溶液滴加至硅溶胶和铝溶胶的混合液中成为溶液2;将钛白粉、田菁粉、PEO、CMC、硬脂酸和纤维加搅拌混合均匀得到乳白色混合粉体;将溶液1、溶液2和去离子水加入到该混合粉体中搅拌得到湿料团;用挤出机对湿料团进行挤出成型,干燥煅烧得到催化剂,本发明对传统的钒钨钛催化剂体系中的活性组分改动不大,生产工艺做出一定改动,但活性明显提高,一套配方,稍作调整即可实现条型和蜂窝催化剂的挤出,可以广泛应用于具有低温、复杂烟气条件的垃圾焚烧等工业炉窑以及低温布置的燃煤电厂烟气脱硝。

Description

一种低温烟气脱硝的催化剂成型工艺 技术领域
本发明涉及环境保护中的氮氧化物控制技术领域,特别涉及一种低温烟气脱硝的催化剂成型工艺。
背景技术
针对发电厂及工业锅炉等固定排放源所排放的NOX,以NH3为还原剂的选择性催化还原技术(SCR)是目前研究最多、应用最广,也是最有效的烟气NOX脱除技术。目前使用最为成熟的催化剂是V2O5/TiO2或者在V2O5/TiO2基础上进行改性的催化剂,其主要优点表现在高活性和高抗硫性能,但此类催化剂在操作温度高于350℃时才具有较高活性。就大量工业炉窑,由于排放烟气温度较低(<250℃),比如垃圾电厂来说,工程上切实可行的多为低温低尘方式,但此种布置方式的SCR脱硝装置,由于要采用热源,如使用天然气对烟气再加热,其额外能源消耗巨大,运行费用十分昂贵。
综上所述,系统开展低温SCR催化剂配方研究及考察低温下抗水硫性能变得十分重要。此外,催化剂实现工业化应用还必须将这些活性组分与合适的助剂相搭配来实现不同形状的(蜂窝、条型)催化剂制备,从而使催化剂获得较小的床层阻力、较大的比表面积和较高的机械强度与热稳定性。因此需要对催化剂的制备过程进行研究,筛选合适的粘结剂和确定最佳用量,优化成型过程中的一些工艺参数,使最后制备出来的催化剂活性组分分布均匀、孔道丰富、活性高、使用寿命长。
发明内容
为了克服上述现有技术的缺点,本发明的目的在于提供一种低温烟气脱硝的催化剂成型工艺,适用于低温(200℃以下)、高水(20%-40%)、高硫(1000ppm)、高氯(500ppm)烟气条件,可以广泛应用于具有低温、复杂 烟气条件的垃圾焚烧等工业炉窑以及低温布置的燃煤电厂烟气脱硝。
为了实现上述目的,本发明采用的技术方案是:
一种低温烟气脱硝的催化剂成型工艺,包括如下步骤:
步骤一:将偏钒酸铵粉体和木棉加入去离子水中搅拌,形成白色悬浊液,向悬浊液中加入单乙醇胺继续搅拌并在80℃条件下加热至偏钒酸铵全部溶解,成为溶液1;
步骤二:将乳酸溶液滴加至硅溶胶(30wt%)和铝溶胶(30wt%)的混合液中成为溶液2;
步骤三:将钛白粉、田菁粉、PEO、CMC、硬脂酸以及纤维加入到捏合机中进行搅拌混合均匀,得到乳白色混合粉体;
步骤四:将溶液1、溶液2和去离子水加入到步骤三得到混合粉体中,搅拌得到湿料团;
步骤五:使用挤出机对湿料团进行挤出成型,并干燥、煅烧得到催化剂成品。
优选地,以质量份数计,所述步骤一中偏钒酸铵粉体为1~6份,木棉5份,去离子水6~10份,单乙醇胺1份,所述步骤二中乳酸溶液为1份,硅溶胶和铝溶胶均为0~8份,所述步骤三中钛白粉为70.5份~88份,田菁粉为0~3份,PEO为0~7份,CMC为0~3份,硬脂酸为0~2份,纤维为0~2.5份,所述步骤四中去离子水为100份。然后使用液压挤出机对料团进行挤出成型,得到蜂窝催化剂,干燥条件为60℃下干燥14天,煅烧条件为600℃下煅烧48小时,最终得到蜂窝催化剂。
优选地,以质量份数计,所述步骤一中偏钒酸铵粉体为1~6份,木棉5份,去离子水10~15份,单乙醇胺1份,所述步骤二中乳酸溶液为1份,硅溶胶和铝溶胶均为0~8份,所述步骤三中钛白粉为70.5份~88份,田菁粉为0~3份,PEO为0~7份,CMC为0~3份,硬脂酸为0~2份,纤维为0~2.5份,所述步骤四中去离子水为25份。然后使用条型挤出机对料团进行挤出成型, 得到条型催化剂,干燥条件为100℃下干燥12h,煅烧条件为500℃下煅烧5小时,最终得到条型催化剂。
与现有技术相比,本发明的有益效果是:
1.本发明的催化剂对传统的钒钨钛催化剂体系改动不大,生产工艺几乎没有变化,但活性明显提高,适合于催化剂厂家迅速投入大规模生产。
2.本发明使用一套配方,稍作调整即可实现条型和蜂窝催化剂的挤出,可适用于多种烟气条件,应用前景广泛。
具体实施方式
下面结合实施例详细说明本发明的实施方式。
实施例一
一种低温烟气脱硝的蜂窝催化剂成型工艺,步骤如下:
步骤一:将240g的偏钒酸铵粉体和190g木棉加入到300~400ml的去离子水溶液中搅拌10分钟,形成白色悬浊液,向悬浊液中加入50g的单乙醇胺继续搅拌并在80℃条件下加热至偏钒酸铵全部溶解,成为溶液1。
步骤二:将40g的乳酸溶液滴加至360g的硅溶胶(30wt%)和360g铝溶胶(30wt%)混合形成的溶液中成为溶液2。
步骤三:将2940g钛白粉、0g田菁粉、280gPEO、112g CMC、80g硬脂酸、100g纤维(长度3-6mm)加入到捏合机中进行搅拌混合均匀,得到乳白色混合粉体。
步骤四:将溶液1和溶液2和4000ml去离子水分别加入到步骤三得到的混合粉体中,搅拌得到湿料团。
步骤六:使用液压挤出机对料团进行挤出成型,得到蜂窝催化剂。
步骤七:将挤出的蜂窝催化剂在60℃条件下干燥14天。
步骤八:将烘干的蜂窝催化剂在600℃在隧道窑中煅烧48小时后得到蜂窝催化剂。
催化剂活性测试结果如表1所示。
实施例二
一种低温烟气脱硝的蜂窝催化剂成型工艺,步骤如下:
步骤一:将240g的偏钒酸铵粉体和190g木棉加入到300~400ml的去离子水溶液中搅拌10分钟,形成白色悬浊液,向悬浊液中加入50g的单乙醇胺继续搅拌并在80℃条件下加热至偏钒酸铵全部溶解,成为溶液1。
步骤二:将40g的乳酸溶液滴加至360g的硅溶胶(30wt%)和360g铝溶胶(30wt%)混合形成的溶液中成为溶液2。
步骤三:将2880g钛白粉、60g田菁粉、280g PEO、112g CMC、80g硬脂酸、100g纤维(长度3-6mm)加入到捏合机中进行搅拌混合均匀,得到乳白色混合粉体。
步骤四:将溶液1和溶液2和4000ml去离子水分别加入到步骤三得到的混合粉体中,搅拌得到湿料团。
步骤六:使用液压挤出机对料团进行挤出成型,得到蜂窝催化剂。
步骤七:将挤出的蜂窝催化剂在60℃条件下干燥14天。
步骤八:将烘干的蜂窝催化剂在600℃在隧道窑中煅烧48小时后得到蜂窝催化剂。
催化剂活性测试结果如表1所示。
实施例三
一种低温烟气脱硝的蜂窝催化剂成型工艺,步骤如下:
步骤一:将240g的偏钒酸铵粉体和190g木棉加入到300~400ml的去离子水溶液中搅拌10分钟,形成白色悬浊液,向悬浊液中加入50g的单乙醇胺继续搅拌并在80℃条件下加热至偏钒酸铵全部溶解,成为溶液1。
步骤二:将40g的乳酸溶液滴加至360g的硅溶胶(30wt%)和360g铝溶胶(30wt%)混合形成的溶液中成为溶液2。
步骤三:将2820g钛白粉、120g田菁粉、280g PEO、112g CMC、80g硬脂酸、100g纤维(长度3-6mm)加入到捏合机中进行搅拌混合均匀,得到 乳白色混合粉体。
步骤四:将溶液1和溶液2和4000ml去离子水分别加入到步骤三得到的混合粉体中,搅拌得到湿料团。
步骤六:使用液压挤出机对料团进行挤出成型,得到蜂窝催化剂。
步骤七:将挤出的蜂窝催化剂在60℃条件下干燥14天。
步骤八:将烘干的蜂窝催化剂在600℃在隧道窑中煅烧48小时后得到蜂窝催化剂。
蜂窝催化剂活性测试结果如表1所示。
表1为在低温条件(150-200℃)下条件的蜂窝脱硝催化剂的活性检测结果
催化剂 150℃脱硝效率(%) 170℃脱硝效率(%) 200℃脱硝效率(%)
实施例一 54 76 91
实施例二 52 77 89
实施例三 57 74 90
反应条件:温度150℃-200℃,空速12,000h-1,NO含量500ppm,NH3含量500ppm,SO2含量200ppm,H2O含量5%,N2为平衡气。
实施例四
一种低温烟气脱硝的条型催化剂成型工艺,步骤如下:
步骤一:将6g的偏钒酸铵粉体和5g木棉加入到的6-8ml去离子水溶液中搅拌10分钟,形成白色悬浊液,向悬浊液中加入1ml的单乙醇胺继续搅拌并在80℃条件下加热至偏钒酸铵全部溶解,成为溶液1。
步骤二:将1g的乳酸溶液滴加至9g的硅溶胶(30wt%)和9g铝溶胶(30wt%)混合形成的溶液中成为溶液2。
步骤三:将70.5g钛白粉、3g田菁粉、7g PEO、3g CMC、2g硬脂酸、2.5g纤维加入到捏合机中进行搅拌混合均匀,得到乳白色混合粉体。
步骤四:将溶液1和溶液2和25ml去离子水分别加入到步骤三得到混 合粉体中,搅拌得到湿料团。
步骤六:使用条型挤出机对料团进行挤出成型,得到条型催化剂。
步骤七:将挤出的条型催化剂在100℃条件下干燥12h。
步骤八:将烘干的条型催化剂在500℃在马弗炉中煅烧5小时后得到条型催化剂。
实施例五
一种低温烟气脱硝的条型催化剂成型工艺,步骤如下:
步骤一:将6g的偏钒酸铵粉体和5g木棉加入到的6-8ml去离子水溶液中搅拌10分钟,形成白色悬浊液,向悬浊液中加入1ml的单乙醇胺继续搅拌并在80℃条件下加热至偏钒酸铵全部溶解,成为溶液1。
步骤二:将1g的乳酸溶液滴加至9g的硅溶胶(30wt%)溶液中成为溶液2。
步骤三:将73g钛白粉、3g田菁粉、7g PEO、3g CMC、2g硬脂酸、2.5g纤维加入到捏合机中进行搅拌混合均匀,得到乳白色混合粉体。
步骤四:将溶液1和溶液2和25ml去离子水分别加入到步骤三得到混合粉体中,搅拌得到湿料团。
步骤六:使用条型挤出机对料团进行挤出成型,得到条型催化剂。
步骤七:将挤出的条型催化剂在100℃条件下干燥12h。
步骤八:将烘干的条型催化剂在500℃在马弗炉中煅烧5小时后得到条型催化剂。
实施例六
一种低温烟气脱硝的条型催化剂成型工艺,步骤如下:
步骤一:将6g的偏钒酸铵粉体和5g木棉加入到的6-8ml去离子水溶液中搅拌10分钟,形成白色悬浊液,向悬浊液中加入1ml的单乙醇胺继续搅拌并在80℃条件下加热至偏钒酸铵全部溶解,成为溶液1。
步骤二:将1g的乳酸溶液滴加至9g的硅溶胶(30wt%)和9g铝溶胶(30wt%)混合形成的溶液中成为溶液2。
步骤三:将72.5g钛白粉、1g田菁粉、7g PEO、3g CMC、2g硬脂酸、2.5g纤维加入到捏合机中进行搅拌混合均匀,得到乳白色混合粉体。
步骤四:将溶液1和溶液2和25ml去离子水分别加入到步骤三得到混合粉体中,搅拌得到湿料团。
步骤六:使用条型挤出机对料团进行挤出成型,得到条型催化剂。
步骤七:将挤出的条型催化剂在100℃条件下干燥12h。
步骤八:将烘干的条型催化剂在500℃在马弗炉中煅烧5小时后得到条型催化剂。
条型催化剂活性测试结果如表2所示。
表2为在低温条件(150-200℃)下条件的条型脱硝催化剂的活性检测结果
催化剂 150℃脱硝效率(%) 170℃脱硝效率(%) 200℃脱硝效率(%)
实施例四 66 88 95
实施例五 67 90 97
实施例六 71 92 96
反应条件:温度150℃-200℃,空速6,000h-1,NO含量500ppm,NH3含量500ppm,SO2含量200ppm,H2O含量5%,N2为平衡气。
由上表可知,在低温条件(150-200℃)下,根据本发明方法制备的脱硝催化剂具有良好的脱硝效率。

Claims (10)

  1. 一种低温烟气脱硝的催化剂成型工艺,其特征在于,包括如下步骤:
    步骤一:将偏钒酸铵粉体和木棉加入去离子水中搅拌,形成白色悬浊液,向悬浊液中加入单乙醇胺继续搅拌并在80℃条件下加热至偏钒酸铵全部溶解,成为溶液1;
    步骤二:将乳酸溶液滴加至硅溶胶(30wt%)和铝溶胶(30wt%)的混合液中成为溶液2;
    步骤三:将钛白粉、田菁粉、PEO、CMC、硬脂酸以及纤维加入到捏合机中进行搅拌混合均匀,得到乳白色混合粉体;
    步骤四:将溶液1、溶液2和去离子水加入到步骤三得到混合粉体中,搅拌得到湿料团;
    步骤五:使用挤出机对湿料团进行挤出成型,并干燥、煅烧得到催化剂成品。
  2. 根据权利要求1所述低温烟气脱硝的催化剂成型工艺,其特征在于,以质量份数计,所述步骤一中偏钒酸铵粉体为1~6份,木棉5份,去离子水6~10份,单乙醇胺1份,所述步骤二中乳酸溶液为1份,硅溶胶和铝溶胶均为0~8份,所述步骤三中钛白粉为70.5份~88份,田菁粉为0~3份,PEO为0~7份,CMC为0~3份,硬脂酸为0~2份,纤维为0~2.5份,所述步骤四中去离子水为100份。
  3. 根据权利要求1所述低温烟气脱硝的催化剂成型工艺,其特征在于,所述步骤一中偏钒酸铵粉体为240g,木棉190g,去离子水300~400ml,单乙醇胺50g,所述步骤二中乳酸溶液为40g,硅溶胶和铝溶胶均为360g,所述步骤三中钛白粉为2940g,田菁粉为0g,PEO为280g,CMC为112g,硬脂酸为80g,纤维为100g,长度3-6mm,所述步骤四中去离子水为4000ml。
  4. 根据权利要求1所述低温烟气脱硝的催化剂成型工艺,其特征在于, 所述步骤一中偏钒酸铵粉体为240g,木棉190g,去离子水300~400ml,单乙醇胺50g,所述步骤二中乳酸溶液为40g,硅溶胶和铝溶胶均为360g,所述步骤三中钛白粉为2880g,田菁粉为60g,PEO为280g,CMC为112g,硬脂酸为80g,纤维为100g,长度3-6mm,所述步骤四中去离子水为4000ml。
  5. 根据权利要求1所述低温烟气脱硝的催化剂成型工艺,其特征在于,所述步骤一中偏钒酸铵粉体为240g,木棉190g,去离子水300~400ml,单乙醇胺50g,所述步骤二中乳酸溶液为40g,硅溶胶和铝溶胶均为360g,所述步骤三中钛白粉为2820g,田菁粉为120g,PEO为280g,CMC为112g,硬脂酸为80g,纤维为100g,长度3-6mm,所述步骤四中去离子水为4000ml。
  6. 根据权利要求1至5任一权利要求所述低温烟气脱硝的催化剂成型工艺,其特征在于,所述步骤五中使用液压挤出机对料团进行挤出成型,得到蜂窝催化剂,干燥条件为60℃下干燥14天,煅烧条件为600℃下煅烧48小时,最终得到蜂窝催化剂。
  7. 根据权利要求1所述低温烟气脱硝的催化剂成型工艺,其特征在于,以质量份数计,所述步骤一中偏钒酸铵粉体为1~6份,木棉5份,去离子水10~15份,单乙醇胺1份,所述步骤二中乳酸溶液为1份,硅溶胶和铝溶胶均为0~8份,所述步骤三中钛白粉为70.5份~88份,田菁粉为0~3份,PEO为0~7份,CMC为0~3份,硬脂酸为0~2份,纤维为0~2.5份,所述步骤四中去离子水为25份。
  8. 根据权利要求1所述低温烟气脱硝的催化剂成型工艺,其特征在于,所述步骤一中偏钒酸铵粉体为6g,木棉为5g,去离子水为6-8ml,单乙醇胺为1ml,所述步骤二中乳酸溶液为1g,硅溶胶和铝溶胶均为9g,所述步骤三中钛白粉为70.5g,田菁粉为3g,PEO为7g,CMC为3g,硬脂酸为2g,纤维为2.5g,所述步骤四中去离子水为25ml。
  9. 根据权利要求1所述低温烟气脱硝的催化剂成型工艺,其特征在于,所述步骤一中偏钒酸铵粉体为6g,木棉为5g,去离子水为6-8ml,单乙醇胺为1ml,所述步骤二中乳酸溶液为1g,硅溶胶和铝溶胶均为9g,所述步骤三 中钛白粉为72.5g,田菁粉为1g,PEO为7g,CMC为3g,硬脂酸为2g,纤维为2.5g,所述步骤四中去离子水为25ml。
  10. 根据权利要求1或8或9所述低温烟气脱硝的催化剂成型工艺,其特征在于,所述步骤五中使用条型挤出机对料团进行挤出成型,得到条型催化剂,干燥条件为100℃下干燥12h,煅烧条件为500℃下煅烧5小时,最终得到条型催化剂。
PCT/CN2014/092860 2014-08-27 2014-12-03 一种低温烟气脱硝的催化剂成型工艺 WO2016029582A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410427461.7A CN104174442B (zh) 2014-08-27 2014-08-27 一种低温烟气脱硝的催化剂成型工艺
CN201410427461.7 2014-08-27

Publications (1)

Publication Number Publication Date
WO2016029582A1 true WO2016029582A1 (zh) 2016-03-03

Family

ID=51955951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092860 WO2016029582A1 (zh) 2014-08-27 2014-12-03 一种低温烟气脱硝的催化剂成型工艺

Country Status (2)

Country Link
CN (1) CN104174442B (zh)
WO (1) WO2016029582A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110270324A (zh) * 2019-08-02 2019-09-24 山东众皓环保科技有限公司 颗粒状蜂窝脱硝催化剂及其制备方法
CN113289651A (zh) * 2021-06-09 2021-08-24 大唐环境产业集团股份有限公司 一种低so2氧化率脱硝催化剂及其制备方法和应用
CN113600232A (zh) * 2021-08-12 2021-11-05 北京华电光大环境股份有限公司 一种用于富砷高灰烟气脱硝的平板式scr催化剂及其制备方法
CN113813955A (zh) * 2021-09-14 2021-12-21 安徽元琛环保科技股份有限公司 一种利用城市污泥制备脱硝催化剂涂覆浆料的方法
CN114247440A (zh) * 2021-11-26 2022-03-29 华电青岛环保技术有限公司 一种scr脱硝催化剂的制备方法
CN115806458A (zh) * 2022-12-06 2023-03-17 西安近代化学研究所 一种改性硝化棉包覆材料、制备方法及其应用
CN117583030A (zh) * 2023-11-27 2024-02-23 华电青岛环保技术有限公司 波纹板式脱硝催化剂及其制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105148904A (zh) * 2015-08-28 2015-12-16 武汉京运通环保工程有限公司 用于低温条件下的烟气脱硝催化剂及其制备方法
CN106944036B (zh) * 2017-03-24 2020-06-02 清华大学 一种三叶草形条状低温烟气脱硝催化剂制备工艺
CN106902807A (zh) * 2017-04-25 2017-06-30 北京环境工程技术有限公司 一种颗粒式低温scr催化剂及其制备方法
CN108126692A (zh) * 2017-12-28 2018-06-08 凯龙蓝烽新材料科技有限公司 一种低温活性好的车用挤出式scr脱硝催化剂及其制备方法
CN108246283B (zh) * 2018-02-13 2019-02-22 宜兴市宜刚环保工程材料有限公司 一种脱硝催化剂及其制备方法
CN110639504A (zh) * 2019-11-06 2020-01-03 山东博霖环保科技发展有限公司 一种蜂窝式低温烟气脱硝催化剂及其制备方法
CN112657552B (zh) * 2020-12-07 2023-07-28 安徽欣创节能环保科技股份有限公司 一种钒磷氧低温脱硝催化剂及其成型制备方法
CN113209960A (zh) * 2021-05-22 2021-08-06 山东博霖环保科技发展有限公司 一种蜂窝式脱硝催化剂及其制备方法及应用
CN114392758A (zh) * 2022-01-11 2022-04-26 河南康宁特环保科技股份有限公司 一种高钒脱硝催化剂及其制备方法
CN114534798A (zh) * 2022-02-21 2022-05-27 华电青岛环保技术有限公司 积碳scr脱硝催化剂的再生制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6025298A (en) * 1998-02-03 2000-02-15 Nichias Corporation Catalyst and process for the production thereof
CN101979135A (zh) * 2010-10-21 2011-02-23 张丽莉 一种用于脱除NOx的催化剂及其制备方法
CN102416320A (zh) * 2011-11-23 2012-04-18 浙江德创环保科技有限公司 脱硝催化剂

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102861595B (zh) * 2012-09-20 2014-05-07 浙江天蓝环保技术股份有限公司 一种用于低温烟气脱硝的蜂窝状scr脱硝催化剂及其制备方法
CN102974340B (zh) * 2012-11-22 2015-08-19 中节能六合天融环保科技有限公司 一种蜂窝状V-Ti低温烟气脱硝催化剂的制备方法
CN103111287A (zh) * 2013-03-18 2013-05-22 北京中南亚太环境科技发展有限公司 烟气脱销催化剂
CN103657737A (zh) * 2013-12-18 2014-03-26 张继惟 一种用于烟气净化的高效催化剂载体
CN103691476B (zh) * 2013-12-19 2016-03-30 海南中航特玻材料有限公司 一种低温同步脱硝脱硫催化剂及制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6025298A (en) * 1998-02-03 2000-02-15 Nichias Corporation Catalyst and process for the production thereof
CN101979135A (zh) * 2010-10-21 2011-02-23 张丽莉 一种用于脱除NOx的催化剂及其制备方法
CN102416320A (zh) * 2011-11-23 2012-04-18 浙江德创环保科技有限公司 脱硝催化剂

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110270324A (zh) * 2019-08-02 2019-09-24 山东众皓环保科技有限公司 颗粒状蜂窝脱硝催化剂及其制备方法
CN110270324B (zh) * 2019-08-02 2021-12-24 山东众皓环保科技有限公司 颗粒状蜂窝脱硝催化剂及其制备方法
CN113289651A (zh) * 2021-06-09 2021-08-24 大唐环境产业集团股份有限公司 一种低so2氧化率脱硝催化剂及其制备方法和应用
CN113600232A (zh) * 2021-08-12 2021-11-05 北京华电光大环境股份有限公司 一种用于富砷高灰烟气脱硝的平板式scr催化剂及其制备方法
CN113600232B (zh) * 2021-08-12 2023-09-19 北京华电光大环境股份有限公司 一种用于富砷高灰烟气脱硝的平板式scr催化剂及其制备方法
CN113813955A (zh) * 2021-09-14 2021-12-21 安徽元琛环保科技股份有限公司 一种利用城市污泥制备脱硝催化剂涂覆浆料的方法
CN113813955B (zh) * 2021-09-14 2024-01-30 安徽元琛环保科技股份有限公司 一种利用城市污泥制备脱硝催化剂涂覆浆料的方法
CN114247440A (zh) * 2021-11-26 2022-03-29 华电青岛环保技术有限公司 一种scr脱硝催化剂的制备方法
CN115806458A (zh) * 2022-12-06 2023-03-17 西安近代化学研究所 一种改性硝化棉包覆材料、制备方法及其应用
CN115806458B (zh) * 2022-12-06 2024-03-29 西安近代化学研究所 一种改性硝化棉包覆材料、制备方法及其应用
CN117583030A (zh) * 2023-11-27 2024-02-23 华电青岛环保技术有限公司 波纹板式脱硝催化剂及其制备方法

Also Published As

Publication number Publication date
CN104174442A (zh) 2014-12-03
CN104174442B (zh) 2016-04-13

Similar Documents

Publication Publication Date Title
WO2016029582A1 (zh) 一种低温烟气脱硝的催化剂成型工艺
US11161106B2 (en) Preparation method of denitration catalyst with wide operating temperature range for flue gas
WO2019006895A1 (zh) 一种协同控制NOx和CVOCs三叶草型催化剂的制备方法及其应用
CN104492424B (zh) 臭氧耦合MnO2/Al2O3催化氧化烟气中SO2制备硫酸的方法
CN101480611B (zh) 一种钒掺杂型钛基烟气脱硝催化材料及其制备方法
WO2015161627A1 (zh) 一种用于400℃~600℃烟气蜂窝脱硝催化剂及其制备方法
CN105289586B (zh) 球状铈锰复合氧化物低温脱硝催化剂及其制备方法和应用
CN105148954B (zh) 一种低温高效scr脱硝催化剂及其制备方法
WO2015158139A1 (zh) 一种有效抑制so2氧化的脱硝催化剂的制备方法
CN105080605A (zh) 一种高温烟气脱硝催化剂制备方法及其产品
CN105413677A (zh) 一种电厂除尘后用低温脱硝催化剂及其制备方法
CN109482194A (zh) 一种协同脱硝和汞氧化的催化剂及其制备方法
CN112206766A (zh) 一种蜂窝状高温550℃的scr脱硝催化剂及其制备方法
CN102380384A (zh) 一种新型环保无毒催化剂的制备方法
CN108187665A (zh) 脱硝催化剂及其制备方法
CN104415766B (zh) 一种燃煤电站烟气脱汞脱硝复合催化剂及其制备方法
CN104415763B (zh) 一种改性硅藻土及其制备方法
CN106111152B (zh) 一种燃煤电站烟气脱汞脱硝复合催化剂及其制备方法
CN104437586A (zh) 一种泡沫式低温烟气脱硝催化剂及其配制方法
CN104368334B (zh) 一种脱硝催化剂及其制备方法
CN104368331B (zh) 一种蜂窝式scr脱硝催化剂端部硬化液及硬化处理方法
CN106215945A (zh) 一种改性硅藻土及其制备方法和用途
CN103537273B (zh) 一种协同脱汞的脱硝催化剂及其制备方法
CN107537514A (zh) 锰铁钴整体式scr低温催化剂制备方法、产品和其应用
CN110694640A (zh) 一种耐水耐硫脱硝催化剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14900471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14900471

Country of ref document: EP

Kind code of ref document: A1