WO2016027883A1 - Protective-coating-forming sheet and method for manufacturing semiconductor chip provided with protective coating - Google Patents

Protective-coating-forming sheet and method for manufacturing semiconductor chip provided with protective coating Download PDF

Info

Publication number
WO2016027883A1
WO2016027883A1 PCT/JP2015/073503 JP2015073503W WO2016027883A1 WO 2016027883 A1 WO2016027883 A1 WO 2016027883A1 JP 2015073503 W JP2015073503 W JP 2015073503W WO 2016027883 A1 WO2016027883 A1 WO 2016027883A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective film
forming
film
sheet
workpiece
Prior art date
Application number
PCT/JP2015/073503
Other languages
French (fr)
Japanese (ja)
Inventor
山本 大輔
尚哉 佐伯
裕之 米山
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to SG11201701272UA priority Critical patent/SG11201701272UA/en
Priority to KR1020177004494A priority patent/KR102376017B1/en
Priority to JP2016544263A priority patent/JP6589209B2/en
Priority to CN201580044561.4A priority patent/CN106660332B/en
Priority to MYPI2017700515A priority patent/MY186759A/en
Publication of WO2016027883A1 publication Critical patent/WO2016027883A1/en
Priority to PH12017500285A priority patent/PH12017500285B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body

Definitions

  • the present invention relates to a protective film-forming sheet capable of forming a protective film on a workpiece such as a semiconductor wafer or a workpiece (for example, a semiconductor chip) obtained by processing the workpiece.
  • a protective film-forming sheet capable of forming a protective film on a workpiece such as a semiconductor wafer or a workpiece (for example, a semiconductor chip) obtained by processing the workpiece.
  • semiconductor devices have been manufactured by a mounting method called a face-down method.
  • a mounting method called a face-down method.
  • the circuit surface side of the semiconductor chip is bonded to a chip mounting portion such as a lead frame. Therefore, the back surface side of the semiconductor chip on which no circuit is formed is exposed.
  • Patent Documents 1 and 2 disclose a protective film forming / dicing integrated sheet (that is, a protective film) in which a protective film forming layer (that is, a protective film forming film) capable of forming the protective film is formed on an adhesive sheet. Forming sheet).
  • the protective film forming / dicing integrated sheet the protective film forming film is cured by heat treatment to form the protective film. That is, according to the protective film forming / dicing integrated sheet, both the dicing of the semiconductor wafer and the protective film formation on the semiconductor chip can be performed, and the semiconductor chip with the protective film can be obtained.
  • a laminated adhesive sheet (that is, a laminate in which two adhesive sheets comprising a base material and an adhesive layer are laminated) is attached to an extremely thin semiconductor wafer, and the laminated adhesive sheet is laminated from the laminated adhesive sheet side.
  • Stealth dicing to divide the semiconductor wafer along the dicing line and produce semiconductor chips by expanding the adhesive sheet after irradiating the semiconductor wafer with laser light and forming the modified part inside the semiconductor wafer The law is disclosed.
  • the member positioned between the adhesive sheet and the semiconductor wafer is also divided in the same manner as the semiconductor wafer.
  • a protective film formation film may be cooled.
  • the protective film in stealth dicing, when a member positioned between a pressure sensitive adhesive sheet and a workpiece such as a semiconductor wafer is a protective film formed from a protective film forming film, the protective film is suitable when the pressure sensitive adhesive sheet is expanded. It aims at providing the sheet
  • segmented into. Another object of the present invention is to provide a method for producing a workpiece such as a semiconductor chip with a protective film using the protective film-forming sheet.
  • a protective film-forming sheet comprising a first support sheet and a protective film-forming film laminated on the first surface side of the first support sheet, wherein the protective film-forming film is cured
  • the protective film made of a conductive material and formed by curing the protective film-forming film has a breaking strain at 50 ° C. of 20% or less and a peak temperature T1 of loss tangent within a range of 25 ° C. to 60 ° C.
  • a protective film forming sheet comprising a first support sheet and a protective film-forming film laminated on the first surface side of the first support sheet, wherein the protective film-forming film is cured
  • the protective film made of a conductive material and formed by curing the protective film-forming film has a breaking strain at 50 ° C. of 20% or less and a peak temperature T1 of loss tangent within a range of 25 ° C. to 60 ° C.
  • the said protective film is a sheet
  • the said protective film is a sheet
  • the protective film forming sheet includes the second support sheet laminated on the surface of the protective film forming film opposite to the surface facing the first support sheet. 4) The protective film-forming sheet according to any one of 4).
  • the first support sheet provided in the protective film forming sheet is stretched in a state where the protective film is held within a range of 40 ° C.
  • Laminating step of obtaining a third laminate comprising: a second curing step of obtaining the protective film by curing the protective film-forming film provided in the third laminated body; a third substrate; The third pressure-sensitive adhesive layer side surface of the processing sheet provided with a third pressure-sensitive adhesive layer laminated on one surface side of the third base material, and the third curing step.
  • a protective film-forming sheet comprising a first support sheet and a protective film-forming film laminated on the first surface side of the first support sheet,
  • the protective film-forming film is made of a curable material,
  • the protective film-forming film has the following characteristics: When the protective film-forming film is cured to form a protective film, the breaking strain at 50 ° C. is 20% or less and the loss tangent peak temperature T1 is 25 ° C. to 60 ° C.
  • the protective film-forming sheet according to [1], wherein the protective film-forming film further has the following characteristics:
  • the storage elastic modulus at 25 ° C. of the protective film is 3.0 ⁇ 10 9 Pa or more.
  • a surface opposite to the surface facing the first support sheet in the protective film-forming film provided in the protective film-forming sheet described in any one of [1] to [5] A sticking step of obtaining a first laminate including the protective film forming sheet and the work by sticking the exposed face to one face of the work;
  • the first support sheet is extended in a state where the temperature T2 of the protective film in the first laminated body that has undergone the first curing step is maintained within a range of 40 ° C.
  • dividing the protective film By dividing the protective film, a plurality of chips with the protective film formed by dividing the laminate of the workpiece and the protective film so that a cut surface is generated in the thickness direction is provided on one side of the first support sheet.
  • the modified layer forming a modified layer in the workpiece interior.
  • Irradiate The method of manufacturing a protective layer with a chip containing the modified layer forming step, forming a modified layer in the workpiece interior.
  • the protective film forming sheet of the present invention even if the protective film formed from the protective film forming film is a member located between the adhesive sheet and a workpiece such as a semiconductor wafer, the adhesive sheet in stealth dicing.
  • the protective film can be appropriately divided when the is expanded. Therefore, it is possible to stably manufacture a semiconductor chip with a protective film.
  • FIG. 1 is a cross-sectional view of a protective film forming sheet according to an embodiment of the present invention.
  • the protective film forming sheet 3 according to the present embodiment includes a first support sheet 4 and one surface of the first support sheet 4 (a “first surface” to be described later;
  • the jig pressure-sensitive adhesive layer 5 is a layer for bonding the protective film forming sheet 3 to a jig such as a ring frame.
  • the protective film forming sheet 3 includes a release sheet 6 on the protective film forming film 1 and the jig pressure-sensitive adhesive layer 5 (that is, opposite to the first support sheet 4). ing.
  • the release sheet 6 is a sheet that is peeled and removed when the protective film forming sheet 3 is used, and is not an essential component in the protective film forming sheet 3. That is, one side surface of the protective film-forming sheet according to one embodiment of the present invention includes a first support sheet 4 and a protective film-forming film 1 laminated on one surface side of the first support sheet 4.
  • the protective film-forming sheet 3 holds the workpiece by being attached to the workpiece when the workpiece is processed, and a protective film is applied to the workpiece or a workpiece obtained by processing the workpiece. Used to form.
  • This protective film is composed of a cured protective film-forming film 1.
  • the protective film forming sheet 3 according to the present embodiment is used to hold a semiconductor wafer during dicing processing of a semiconductor wafer as a workpiece and to form a protective film on a semiconductor chip obtained by dicing. It is not limited to this.
  • the protective film forming sheet 3 according to the present embodiment is usually formed into a long shape, wound into a roll, and used in a roll-to-roll manner.
  • the first support sheet 4 according to the protective film-forming sheet 3 according to an embodiment of the present invention includes a base 41 and one surface side of the base 41 (that is, the protective film-forming film 1 side; 1 and the adhesive layer 42 laminated on the upper side).
  • first surface the surface of the first support sheet 4 on which the protective film forming film 1 is laminated
  • second surface the opposite surface (the lower surface in FIG. 1)
  • first support sheet 4 the pressure-sensitive adhesive layer 42 is laminated on the first surface side of the first support sheet 4
  • the base material 41 is laminated on the second surface side of the first support sheet 4. ing.
  • the base material 41 according to the protective film-forming sheet 3 according to an embodiment of the present invention is not particularly limited as long as it is a base material normally used as a base material of an adhesive sheet used for stealth dicing.
  • the base material 41 may have a single layer structure or a laminated structure.
  • the protective film-forming film 1 is a film that forms a protective film by heating, and the substrate 41 is also heated when the protective film-forming film 1 for forming the protective film is heated, No. 41 is required to be a base material that can be appropriately used even after this heating (for example, it can be appropriately expanded).
  • the melting point of the base material 41 is preferably 90 to 180 ° C., particularly preferably 100 to 160 ° C., and further preferably 110 to 150 ° C.
  • the storage elastic modulus of the substrate 41 at 130 ° C. is preferably 1 to 100 MPa.
  • the storage elastic modulus at 130 ° C. is in the above range, it is possible to reduce the possibility that a problem occurs when the first support sheet 4 is expanded while ensuring the heat resistance of the base material 41.
  • the storage elastic modulus of the base material 41 at 130 ° C. is more preferably 2 to 80 MPa. It is particularly preferably 5 to 50 MPa.
  • the measuring method of the said storage elastic modulus is as showing to the test example mentioned later.
  • the method of adjusting the storage elastic modulus in 130 degreeC of the base material 41 generally it can adjust mainly with the storage elastic modulus of the resin material to be used.
  • the storage elastic modulus tends to increase when the molecular weight is high, and the storage elastic modulus tends to increase due to cross-linking or narrow molecular weight distribution. Based on this tendency, it can be adjusted to an arbitrary storage elastic modulus.
  • the light transmittance at a wavelength of 1064 nm after the substrate 41 is heated is preferably 40% or more and 100% or less, and is preferably 50% or more and 99.9%. More preferably, it is 60% or more and 99.5% or less. Since the light transmittance at a wavelength of 1064 nm after the heating of the base material 41 is in the above range, the work can be divided by stealth dicing.
  • the light transmittance at a wavelength of 532 nm after the substrate 41 is heated is preferably 0.1% or more and 40% or less. It is more preferably 3% or more and 35% or less, and particularly preferably 0.5% or more and 30% or less. Since the light transmittance at a wavelength of 532 nm after heating the substrate 41 is in the above range, the laser printability is excellent.
  • the resin film constituting the substrate 41 include polyethylene films such as low density polyethylene (LDPE) film, linear low density polyethylene (LLDPE) film, and high density polyethylene (HDPE) film, polypropylene film, and ethylene-propylene.
  • polyethylene films such as low density polyethylene (LDPE) film, linear low density polyethylene (LLDPE) film, and high density polyethylene (HDPE) film, polypropylene film, and ethylene-propylene.
  • Polyolefin films such as copolymer film, polybutene film, polybutadiene film, polymethylpentene film, ethylene-norbornene copolymer film, norbornene resin film; ethylene-vinyl acetate copolymer film, ethylene- (meth) acrylic acid copolymer Polymer films, ethylene copolymer films such as ethylene- (meth) acrylate copolymer films; polyvinyl chloride films such as polyvinyl chloride films and vinyl chloride copolymer films Lum, polyethylene terephthalate film, a polyester film such as polyethylene terephthalate and polybutylene terephthalate film; polyurethane film; polyimide film; polystyrene films; polycarbonate films; fluororesin films and the like.
  • modified films such as these crosslinked films and ionomer films are also used.
  • a laminated film in which a plurality of the above films are laminated may be used.
  • (meth) acrylic acid in the present specification means both acrylic acid and methacrylic acid. The same applies to other similar terms.
  • polyolefin film is preferable, polyethylene film, polypropylene film and ethylene-propylene copolymer film are more preferable, and ethylene-propylene copolymer film is particularly preferable.
  • these resin films the above-described physical properties are easily satisfied.
  • the above-described physical properties are satisfied by adjusting the copolymerization ratio of the ethylene monomer and the propylene monomer. easy.
  • these resin films are preferable also from a viewpoint of workpiece sticking property or chip peelability.
  • the resin film may be subjected to a surface treatment by an oxidation method, an unevenness method, or a primer treatment on one or both sides as desired for the purpose of improving the adhesion with the pressure-sensitive adhesive layer 42 laminated on the surface.
  • an oxidation method include corona discharge treatment, plasma discharge treatment, chromium oxidation treatment (wet), flame treatment, hot air treatment, ozone, and ultraviolet irradiation treatment.
  • the unevenness method include a sand blast method and a thermal spraying method.
  • the base material 41 may contain various additives such as a colorant, a flame retardant, a plasticizer, an antistatic agent, a lubricant, and a filler in the resin film.
  • the thickness of the substrate 41 is not particularly limited as long as it can function properly in each step in which the protective film forming sheet 3 is used, but is preferably 20 ⁇ m to 450 ⁇ m, more preferably 25 ⁇ m to 400 ⁇ m. 50 ⁇ m to 350 ⁇ m is particularly preferable.
  • the “thickness” means a value represented by an average of thicknesses measured with a contact-type thickness meter at any five locations.
  • the pressure-sensitive adhesive layer 42 provided in the first support sheet 4 according to the protective film-forming sheet 3 according to an embodiment of the present invention may be composed of an energy ray non-curable pressure-sensitive adhesive, or energy rays. You may be comprised from a curable adhesive.
  • the energy ray non-curable adhesive those having desired adhesive strength and removability are preferable, for example, acrylic adhesive, rubber adhesive, silicone adhesive, urethane adhesive, polyester adhesive.
  • Polyvinyl ether-based pressure-sensitive adhesives can be used. Among these, an acrylic pressure-sensitive adhesive having high adhesion to the protective film-forming film 1 is preferable.
  • the adhesive strength of the energy ray-curable adhesive is reduced by irradiation with energy rays. Therefore, if an energy ray-curable pressure-sensitive adhesive is used, when the work or workpiece and the first support sheet 4 are desired to be separated, they can be easily separated by irradiating energy rays.
  • energy rays ultraviolet rays, electron beams, etc. are usually used. Irradiation of energy rays varies depending on the kind of energy rays, for example, in the case of ultraviolet rays, preferably 50 ⁇ 1000mJ / cm 2 in quantity, more preferably 100 ⁇ 500mJ / cm 2. In the case of an electron beam, about 10 to 1000 krad is preferable.
  • the pressure-sensitive adhesive layer 42 in the protective film forming sheet 3 is preferably cured.
  • a material obtained by curing an energy ray-curable pressure-sensitive adhesive usually has a high elastic modulus and high surface smoothness. Therefore, the protective film-forming film 1 in contact with a cured portion made of such a material is cured to form a protective film.
  • the surface of the protective film in contact with the cured portion of the pressure-sensitive adhesive layer 42 has high smoothness (gloss), and is excellent in appearance as a protective film for the chip. Further, when laser printing is performed on a protective film having high surface smoothness, the visibility of the printing is improved.
  • the energy ray-curable pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer 42 may be mainly composed of a polymer having energy ray-curing property; a polymer having no energy ray-curing property and many energy ray-curing properties.
  • the pressure-sensitive adhesive may be mainly composed of a mixture with at least one component selected from the group consisting of functional monomers and oligomers.
  • the “main component” as used herein means that it is contained in an amount of 60% by mass or more based on the total mass of the energy ray-curable pressure-sensitive adhesive.
  • the polymer having energy ray curability is a (meth) acrylic acid ester (co) polymer (A) in which a functional group having energy ray curability (that is, energy ray curable group) is introduced into the side chain (hereinafter referred to as “ It is preferably an energy beam curable polymer (A) ”.
  • This energy ray curable polymer (A) includes a (meth) acrylic copolymer (a1) having a functional group-containing monomer unit, and an unsaturated group-containing compound (a2) having a substituent bonded to the functional group. It is preferable that it is a polymer obtained by making it react.
  • the acrylic copolymer (a1) comprises at least a structural unit derived from a functional group-containing monomer and a structural unit derived from a (meth) acrylate monomer or a derivative thereof.
  • the functional group-containing monomer in the structural unit derived from the functional group-containing monomer includes a monomer having a polymerizable double bond and a functional group such as a hydroxyl group, an amino group, a substituted amino group, and an epoxy group in the molecule. preferable.
  • the functional group-containing monomer examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and the like. These may be used alone or in combination of two or more.
  • Examples of the (meth) acrylic acid ester monomer include alkyl (meth) acrylates having an alkyl group having 1 to 20 carbon atoms, cycloalkyl (meth) acrylates having an alkyl group having 3 to 11 carbon atoms, and benzyl (meth) acrylate. Etc. are used.
  • alkyl (meth) acrylates having an alkyl group having 1 to 18 carbon atoms are preferred, such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, Examples include 2-ethylhexyl (meth) acrylate.
  • the structural unit derived from the functional group-containing monomer is usually 3 to 100% by mass, preferably 5 to 40% by mass, based on the total mass of the acrylic copolymer (a1).
  • a structural unit derived from a (meth) acrylic acid ester monomer or a derivative thereof is usually contained in an amount of 0 to 97% by mass, preferably 60 to 95% by mass. That is, the acrylic copolymer (a1) contains 3 to 100% by mass of structural units derived from the functional group-containing monomer with respect to the total mass of the acrylic copolymer (a1).
  • a structural unit derived from a meth) acrylate monomer or a derivative thereof is usually contained in a proportion of 0 to 97% by mass; a structural unit derived from the functional group-containing monomer is contained in a proportion of 5 to 40% by mass. It is more preferable that the structural unit derived from the (meth) acrylic acid ester monomer or a derivative thereof is usually contained in a proportion of 60 to 95% by mass. In addition, the total mass of the structural unit derived from the functional group-containing monomer and the structural unit derived from the (meth) acrylic acid ester monomer or derivative thereof does not exceed 100% by mass.
  • the acrylic copolymer (a1) can be obtained by copolymerizing a functional group-containing monomer as described above with a (meth) acrylic acid ester monomer or a derivative thereof in a conventional manner. Dimethylacrylamide, vinyl formate, vinyl acetate, styrene and the like may be copolymerized.
  • the substituent of the unsaturated group-containing compound (a2) can be appropriately selected according to the type of functional group of the functional group-containing monomer unit of the acrylic copolymer (a1).
  • the substituent is preferably an isocyanate group or an epoxy group
  • the substituent is an amino group, a carboxyl group or an aziridinyl group. preferable.
  • the unsaturated group-containing compound (a2) contains 1 to 5, preferably 1 to 2, energy beam polymerizable carbon-carbon double bonds per molecule.
  • Specific examples of such unsaturated group-containing compound (a2) include, for example, 2-methacryloyloxyethyl isocyanate, meta-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate, methacryloyl isocyanate, allyl isocyanate, 1,1- ( Bisacryloyloxymethyl) ethyl isocyanate; acryloyl monoisocyanate compound obtained by reaction of diisocyanate compound or polyisocyanate compound with hydroxyethyl (meth) acrylate; diisocyanate compound or polyisocyanate compound, polyol compound, and hydroxyethyl (meth) Acryloyl monoisocyanate compound obtained by reaction with acrylate; glycidyl (meth) acrylate; (meth) acrylic acid, 2- (1
  • the unsaturated group-containing compound (a2) is usually used in a proportion of 10 to 100 equivalents, preferably 20 to 95 equivalents, per 100 equivalents of the functional group-containing monomer of the acrylic copolymer (a1).
  • the reaction temperature, pressure, solvent, time, presence of catalyst, catalyst can be selected as appropriate.
  • the functional group present in the acrylic copolymer (a1) reacts with the substituent in the unsaturated group-containing compound (a2), so that the unsaturated group is contained in the acrylic copolymer (a1). It introduce
  • the weight average molecular weight of the energy beam curable polymer (A) thus obtained is preferably 10,000 or more, more preferably 150,000 to 1,500,000, particularly preferably 200,000 to 1,000,000.
  • the weight average molecular weight (Mw) in this specification is the value of polystyrene conversion measured by the gel permeation chromatography method (GPC method).
  • the energy beam curable pressure sensitive adhesive is mainly composed of a polymer having energy beam curable properties
  • the energy beam curable pressure sensitive adhesive is at least selected from the group consisting of energy beam curable monomers and oligomers.
  • One component (B) may be further contained.
  • At least one component (B) selected from the group consisting of energy ray-curable monomers and oligomers for example, an ester of a polyhydric alcohol and (meth) acrylic acid can be used.
  • Examples of at least one component (B) selected from the group consisting of such energy ray-curable monomers and oligomers include monofunctional acrylates such as cyclohexyl (meth) acrylate and isobornyl (meth) acrylate; Methylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexane
  • Polyfunctional oligoesters such as diol di (meth) acrylate, polyethylene glycol di (meth) acrylate, dimethylol tricyclodecane di (meth) acrylate; polyester oligo (meth) acrylate Rate, and polyurethane oligo (meth) acrylate.
  • At least one component (B) selected from the group consisting of energy beam curable monomers and / or oligomers it is selected from the group consisting of energy beam curable monomers and oligomers in the energy beam curable adhesive.
  • the content of at least one component (B) is preferably 5 to 80% by mass, more preferably 20 to 60% by mass, based on the total mass of the energy ray-curable pressure-sensitive adhesive.
  • photopolymerization initiator (C) examples include benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, benzoin methyl benzoate, benzoin dimethyl ketal, 2,4-diethylthioxanthone, 1-hydroxycyclohexyl phenyl ketone, benzyldiphenyl sulfide, tetramethylthiuram monosulfide, azobisisobutyronitrile, benzyl, dibenzyl, diacetyl, ⁇ -chloranthraquinone, (2,4 6-trimethylbenzyldiphenyl) phosphine oxide, 2-benzothiazole-N, N-diethyldithiocarbamate, oligo ⁇ 2-hydroxy-2-methy 1- [4-trimethyl
  • the photopolymerization initiator (C) is an energy ray curable copolymer (A) (in the case of blending at least one component (B) selected from the group consisting of energy ray curable monomers and oligomers).
  • A energy ray curable copolymer
  • B component selected from the group consisting of energy ray curable monomers and oligomers
  • the amount is preferably 0.1 to 10 parts by mass, particularly 0.5 to 6 parts by mass.
  • the energy ray curable pressure-sensitive adhesive other components may be appropriately blended in addition to the above components.
  • other components include a polymer component or oligomer component (D) that does not have energy beam curability, and a crosslinking agent (E).
  • a polymer component or oligomer component (D) that does not have energy beam curability and a crosslinking agent (E).
  • one aspect of the energy beam curable pressure-sensitive adhesive is at least one component (B) selected from the group consisting of an energy beam curable copolymer (A) and, optionally, an energy beam curable monomer and oligomer.
  • Examples of the polymer component or oligomer component (D) having no energy ray curability include polyacrylates, polyesters, polyurethanes, polycarbonates, polyolefins, etc., and polymers having a weight average molecular weight (Mw) of 3,000 to 2.5 million. Or an oligomer is preferable.
  • crosslinking agent (E) a polyfunctional compound having reactivity with the functional group of the energy beam curable copolymer (A) or the like can be used.
  • polyfunctional compounds include isocyanate compounds, epoxy compounds, amine compounds, melamine compounds, aziridine compounds, hydrazine compounds, aldehyde compounds, oxazoline compounds, metal alkoxide compounds, metal chelate compounds, metal salts, ammonium salts. And reactive phenol resins.
  • the blending amount of these other components is not particularly limited, and is appropriately determined in the range of 0 to 40 parts by mass with respect to 100 parts by mass of the energy beam curable copolymer (A).
  • the energy ray curable pressure-sensitive adhesive is mainly composed of a mixture of a polymer component not having energy ray curable properties and at least one selected from the group consisting of energy ray curable polyfunctional monomers and oligomers. This will be described below.
  • the polymer component having no energy beam curability for example, the same components as those of the acrylic copolymer (a1) described above can be used.
  • the content of the polymer component having no energy beam curability in the energy beam curable resin composition is preferably 20 to 99.9% by mass with respect to the total mass of the energy beam curable resin composition. In particular, it is preferably 30 to 80% by mass.
  • the at least one component selected from the group consisting of energy ray-curable polyfunctional monomers and oligomers the same components as the aforementioned component (B) are selected.
  • the blending ratio of the polymer component not having energy ray curability to at least one component selected from the group consisting of energy ray curable polyfunctional monomers and oligomers is 100 parts by mass of the polymer component not having energy ray curability.
  • at least one component selected from the group consisting of a polyfunctional monomer and an oligomer is preferably 10 to 150 parts by mass, and more preferably 25 to 100 parts by mass.
  • the photopolymerization initiator (C) and the crosslinking agent (E) can be appropriately blended as described above. That is, one aspect of the energy ray curable pressure-sensitive adhesive is a polymer component that does not have energy ray curable, at least one component selected from the group consisting of energy ray curable polyfunctional monomers and oligomers, and, if desired, And at least one component selected from the group consisting of a photopolymerization initiator (C) and a crosslinking agent (E).
  • the thickness of the pressure-sensitive adhesive layer 42 is not particularly limited as long as it can function properly in each step in which the protective film forming sheet 3 is used. Specifically, the thickness is preferably 1 ⁇ m to 50 ⁇ m, more preferably 2 ⁇ m to 30 ⁇ m, and particularly preferably 3 ⁇ m to 20 ⁇ m.
  • the protective film forming film 1 is a film for forming a protective film on a workpiece or a workpiece obtained by processing the workpiece.
  • This protective film is composed of a cured protective film-forming film 1.
  • the workpiece include a semiconductor wafer, and examples of the workpiece obtained by processing the workpiece include a semiconductor chip.
  • the present invention is not limited to these.
  • the protective film is formed on the back side of the semiconductor wafer (the side on which no electrodes such as bumps are formed).
  • the protective film-forming film 1 may be a single-layer film or a multi-layer film. However, the protective-film-forming film 1 is a single layer in terms of ease of light transmittance control and manufacturing cost. Is preferred.
  • the protective film-forming film 1 is preferably made of a curable material, and a specific example of such a material is an uncured curable adhesive.
  • a workpiece such as a semiconductor wafer
  • the protective film forming film 1 is cured, thereby firmly bonding the protective film formed of the cured protective film forming film 1 to the workpiece.
  • a durable protective film can be formed on the chip or the like. That is, one side surface of the protective film forming sheet according to one embodiment of the present invention includes a protective film forming film made of an uncured curable material.
  • the protective film-forming film 1 preferably has adhesiveness at room temperature or exhibits adhesiveness by heating. Thereby, when superposing
  • the curable adhesive constituting the protective film-forming film 1 having the above characteristics contains a curable component and a binder polymer component.
  • a curable component a thermosetting component, an energy ray curable component, or a mixture thereof can be used, but it is particularly preferable to use a thermosetting component. That is, the protective film forming film 1 is preferably composed of a thermosetting adhesive.
  • thermosetting component examples include epoxy resins, phenol resins, melamine resins, urea resins, polyester resins, urethane resins, acrylic resins, polyimide resins, benzoxazine resins, and mixtures thereof.
  • an epoxy resin, a phenol resin, and a mixture thereof are preferably used.
  • Epoxy resin has the property of forming a three-dimensional network and forming a strong film when heated.
  • an epoxy resin conventionally known various epoxy resins are used, but those having a molecular weight (formula) of about 300 to 2000 are preferable, and those having a molecular weight of 300 to 500 are more preferable.
  • the epoxy equivalent of the epoxy resin is preferably 50 to 5000 g / eq.
  • epoxy resins include glycidyl ethers of phenols such as bisphenol A, bisphenol F, resorcinol, phenyl novolac, and cresol novolac; glycidyl ethers of alcohols such as butanediol, polyethylene glycol, and polypropylene glycol; Glycidyl ethers of carboxylic acids such as phthalic acid, isophthalic acid, tetrahydrophthalic acid; glycidyl type or alkyl glycidyl type epoxy resins in which active hydrogen bonded to nitrogen atom such as aniline isocyanurate is substituted with glycidyl group; 3,4-epoxycyclohexylmethyl-3,4-dicyclohexanecarboxylate, 2- (3,4-epoxy) cyclohexyl-5,5-spiro (3 - Epoxy) as cyclohexane -m- dioxane, carbon in the
  • bisphenol-based glycidyl type epoxy resins o-cresol novolac type epoxy resins and phenol novolac type epoxy resins are preferably used. These epoxy resins may be used alone or in combination of two or more.
  • thermally activated latent epoxy resin curing agent is a type of curing agent that does not react with the epoxy resin at room temperature but is activated by heating at a certain temperature or more and reacts with the epoxy resin.
  • the heat activated latent epoxy resin curing agent is activated by a method in which active species (anions and cations) are generated by a chemical reaction by heating; the epoxy resin is stably dispersed in the epoxy resin at around room temperature and is heated at a high temperature.
  • thermally active latent epoxy resin curing agent examples include various onium salts, dibasic acid dihydrazide compounds, dicyandiamide, amine adduct curing agents, high melting point active hydrogen compounds such as imidazole compounds, and the like. These thermally activated latent epoxy resin curing agents can be used singly or in combination of two or more.
  • the heat-activatable latent epoxy resin curing agent as described above is preferably 0.1 to 20 parts by weight, particularly preferably 0.2 to 10 parts by weight, and still more preferably 0.8 to 100 parts by weight of the epoxy resin. It is used at a ratio of 3 to 5 parts by weight.
  • phenolic resin condensates of phenols such as alkylphenols, polyhydric phenols, naphthols, and aldehydes are used without particular limitation.
  • phenol novolak resin, o-cresol novolak resin, p-cresol novolak resin, t-butylphenol novolak resin, dicyclopentadiene cresol resin, polyparavinylphenol resin, bisphenol A type novolak resin, or modified products thereof Etc. are used.
  • the phenolic hydroxyl group contained in these phenolic resins can easily undergo an addition reaction with the epoxy group of the above epoxy resin by heating to form a cured product having high impact resistance. For this reason, you may use together an epoxy resin and a phenol-type resin.
  • Examples of the energy ray curable component include components listed as at least one component selected from the group consisting of an energy ray curable polymer in the pressure-sensitive adhesive layer 42 and energy ray curable monomers and oligomers.
  • the binder polymer component can give an appropriate tack to the protective film forming film 1 and improve the operability of the protective film forming sheet 3.
  • the weight average molecular weight of the binder polymer is usually in the range of 50,000 to 2,000,000, preferably 100,000 to 1,500,000, particularly preferably 200,000 to 1,000,000. When the weight average molecular weight is too low, the film formation of the protective film-forming film 1 becomes insufficient, and when it is too high, the compatibility with other components is deteriorated, and as a result, uniform film formation is prevented.
  • a binder polymer for example, an acrylic polymer, a polyester resin, a phenoxy resin, a urethane resin, a silicone resin, a rubber polymer, and the like are used, and an acrylic polymer is particularly preferably used.
  • the acrylic polymer examples include a (meth) acrylic acid ester copolymer composed of a (meth) acrylic acid ester monomer and a structural unit derived from a (meth) acrylic acid derivative.
  • the (meth) acrylic acid ester monomer is preferably a (meth) acrylic acid alkyl ester having an alkyl group having 1 to 18 carbon atoms, specifically, methyl (meth) acrylate, (meth) Examples include ethyl acrylate, propyl (meth) acrylate, and butyl (meth) acrylate.
  • (meth) acrylic acid derivatives include (meth) acrylic acid, glycidyl (meth) acrylate, and hydroxyethyl (meth) acrylate.
  • the weight average molecular weight of the polymer is preferably 100,000 or more, particularly preferably 150,000 to 1,000,000.
  • the glass transition temperature of the acrylic polymer is usually 20 ° C. or lower, preferably about ⁇ 70 ° C. to 0 ° C., and has adhesiveness at room temperature (23 ° C.).
  • the blending ratio of the thermosetting component and the binder polymer component is the blending amount of the thermosetting component, preferably 50-1500 parts by weight, more preferably 70-1000 parts by weight, when the binder polymer component is 100 parts by weight. Particularly preferred is 80 to 800 parts by weight.
  • the protective film-forming film 1 may further contain at least one component selected from the group consisting of a colorant and a filler.
  • the colorant for example, known colorants such as inorganic pigments, organic pigments, organic dyes and the like can be used.
  • the colorant is an organic colorant. It is preferable to contain.
  • the colorant is a colorant composed of a pigment. Preferably there is.
  • the filler examples include silica such as crystalline silica, fused silica, and synthetic silica, and inorganic filler such as alumina and glass balloon.
  • silica is preferable, synthetic silica is more preferable, and synthetic silica of the type in which ⁇ -ray sources that cause malfunction of the semiconductor device are removed as much as possible is optimal.
  • the shape of the filler include a spherical shape, a needle shape, and an indefinite shape, and a spherical shape is preferable, and a true spherical shape is particularly preferable.
  • the content of at least one component selected from the group consisting of a colorant and a filler is preferably 5 to 75% by mass with respect to the total mass of the protective film-forming film.
  • the average particle size of the filler is preferably 0.005 to 20 ⁇ m.
  • the protective film forming film 1 may contain a coupling agent.
  • a coupling agent By containing the coupling agent, after the protective film forming film 1 is cured, the adhesiveness and adhesion between the protective film and the workpiece can be improved without impairing the heat resistance of the protective film. Water resistance (moisture heat resistance) can also be improved.
  • a silane coupling agent is preferable because of its versatility and cost merit.
  • silane coupling agent examples include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ - (methacryloxy).
  • ⁇ -glycidoxypropyltrimethoxysilane is preferred. These can be used individually by 1 type or in mixture of 2 or more types.
  • the content of the coupling agent is 0.1 when the total mass part of the binder polymer component and the curable component is 100 parts by mass. ⁇ 5 parts by mass are preferred.
  • the protective film-forming film 1 may contain a crosslinking agent such as an organic polyvalent isocyanate compound, an organic polyvalent imine compound, and an organometallic chelate compound in order to adjust the cohesive force before curing.
  • the protective film-forming film 1 may contain an antistatic agent in order to suppress static electricity and improve the reliability of the chip.
  • the protective film-forming film 1 may contain a flame retardant such as a phosphoric acid compound, a bromine compound, or a phosphorus compound in order to enhance the flame retardant performance of the protective film and improve the reliability as a package.
  • one side surface of the protective film-forming film 1 includes at least one component selected from the group consisting of a curable component, a binder polymer component, and, if desired, a colorant and a filler, a coupling agent, a crosslinking agent, a charging agent. And at least one component selected from the group consisting of an inhibitor and a flame retardant.
  • the thickness of the protective film-forming film 1 is preferably 3 ⁇ m to 300 ⁇ m, more preferably 5 ⁇ m to 200 ⁇ m, and more preferably 7 ⁇ m to 100 ⁇ m in order to effectively exhibit the function as a protective film. Particularly preferred.
  • the protective film has a breaking strain at 50 ° C. of 0.1% or more and 20% or less.
  • the breaking strain is 20% or less, when the first support sheet 4 is expanded (expanded) under the conditions described later, the protective film provided in the first support sheet 4 can be appropriately divided. It becomes possible.
  • the breaking strain at 50 ° C. exceeds 20%, the protective film is likely to be divided inappropriately. Specifically, the phenomenon in which the material forming the protective film in the divided portion is partly thread-like and does not split (this book In the specification, it is also referred to as “stringing phenomenon”). From the viewpoint of more stably achieving appropriate division of the protective film, the breaking strain at 50 ° C.
  • the “breaking strain at 50 ° C.” of the protective film can be measured by a method described in a test example described later.
  • the protective film has a loss tangent peak temperature T1 in the range of 25 ° C to 60 ° C.
  • the condition described later specifically, the temperature T2 of the protective film when the first support sheet 4 is extended in the first dividing step is 40 ° C.
  • the protective film provided in the first support sheet 4 can be appropriately divided.
  • the temperature T1 is excessively low, the protective film becomes soft, and the breaking strain at 50 ° C. of the protective film tends to exceed 20%.
  • the temperature T2 is preferably equal to or higher than the peak temperature T1 of the loss tangent.
  • the “peak temperature of loss tangent” of the protective film can be measured by the method described in a test example described later.
  • the protective film preferably has a storage elastic modulus at 25 ° C. of 3.0 ⁇ 10 9 Pa or more and 5.0 ⁇ 10 11 or less, and is 5.0 ⁇ 10 9 Pa or more and 1.0 ⁇ 10 11 or less. More preferably.
  • the storage elastic modulus at 25 ° C. of the protective film is 3.0 ⁇ 10 9 Pa or more, when the semiconductor chip with the protective film is separated from the first support sheet 4, the problem that the protective film gets stuck is less likely to occur. .
  • the protective film preferably has a loss tangent at 25 ° C. of 0.01 or more and 0.4 or less.
  • the loss tangent of the protective film at 25 ° C. is more preferably 0.03 or more and 0.3 or less, and particularly preferably 0.05 or more and 0.2 or less.
  • the “storage elastic modulus at 25 ° C.” and “loss tangent at 25 ° C.” of the protective film can be measured by the methods described in the test examples described later.
  • the protective film preferably has a light transmittance at a wavelength of 1064 nm of 40% or more and 100% or less. Since the light transmittance at a wavelength of 1064 nm of the protective film is 40% or more, the laser light for stealth dicing can efficiently reach the workpiece such as a semiconductor wafer. From the viewpoint of more stably realizing efficient arrival of the laser beam to the semiconductor wafer, the light transmittance at a wavelength of 1064 nm of the protective film is preferably 50% or more and 99.9% or less, and 60% or more. 99.5% or less is more preferable.
  • the protective film preferably has a breaking stress at 50 ° C. of 1.0 ⁇ 10 3 Pa or more and 2.0 ⁇ 10 7 Pa or less.
  • the breaking stress is 2.0 ⁇ 10 7 Pa or less
  • the breaking stress at 50 ° C. is 2.0 ⁇ 10 7 Pa or less
  • the “breaking stress at 50 ° C.” of the protective film can be measured by a method described in a test example described later.
  • one side surface of the protective film-forming sheet of the present invention has the protective film-forming film
  • the protective film-forming film is a protective film-forming sheet having the following characteristics:
  • the breaking strain at 50 ° C. is 0.1% or more and 20% or less, and the loss tangent peak temperature T1 is in the range of 25 ° C. to 60 ° C.
  • the protective film-forming film may further have at least one of the following characteristics: Storage elastic modulus at 25 ° C. is 3.0 ⁇ 10 9 Pa or more and 5.0 ⁇ 10 11 or less; Loss tangent at 25 ° C. is 0.01 or more and 0.4 or less;
  • the light transmittance at a wavelength of 1064 nm is 40% or more and 100% or less;
  • the breaking stress at 50 ° C. is 1.0 ⁇ 10 3 Pa or more and 2.0 ⁇ 10 7 Pa or less.
  • the “characteristic” means a chemical or physicochemical characteristic of the protective film-forming film.
  • Adhesive layer for jigs Adhesives constituting the adhesive layer 5 for jigs are preferably adhesives having a desired adhesive strength and removability, such as acrylic adhesives, rubber adhesives, and silicone adhesives.
  • An adhesive, a urethane-based adhesive, a polyester-based adhesive, a polyvinyl ether-based adhesive, or the like can be used.
  • an acrylic pressure-sensitive adhesive that has high adhesion to a jig such as a ring frame and can effectively prevent the protective film forming sheet 3 from being peeled off from the ring frame or the like in a dicing process or the like is preferable.
  • the base material as a core material may intervene in the middle of the thickness direction of the adhesive layer 5 for jigs.
  • the thickness of the jig pressure-sensitive adhesive layer 5 is preferably 5 ⁇ m to 200 ⁇ m, more preferably 10 ⁇ m to 100 ⁇ m, from the viewpoint of adhesion to a jig such as a ring frame.
  • Release sheet The release sheet 6 according to the protective film-forming sheet 3 according to an embodiment of the present invention includes the protective film-forming film 1 and the jig adhesive layer 5 until the protective film-forming sheet 3 is used. Protect.
  • the configuration of the release sheet 6 is arbitrary, and a sheet obtained by peeling a plastic film with a release agent or the like is exemplified.
  • the plastic film include polyester films such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; and polyolefin films such as polypropylene and polyethylene.
  • a silicone release agent, a fluorine release agent, a long-chain alkyl release agent, or the like can be used, and among these, a silicone release agent that can provide stable performance at low cost is preferable.
  • the thickness of the release sheet 6 is not particularly limited, but is usually about 20 ⁇ m to 250 ⁇ m.
  • the protective film forming sheet 3 is preferably a laminate including the protective film forming film 1 (also referred to as “laminate I” in this specification) and the first support sheet 4. Are separately produced, and then the protective film-forming film 1 and the first support sheet 4 are prepared using the laminate I and the laminate II.
  • the present invention is not limited to this.
  • the protective film forming film 1 is formed on the release surface of the first release sheet.
  • a coating agent for a protective film-forming film containing a curable adhesive constituting the protective film-forming film 1 and, if desired, further a solvent is prepared, and a roll coater, a knife coater, a roll knife coater, an air knife
  • the coating agent is applied to the release surface of the first release sheet by a coating machine such as a coater, die coater, bar coater, gravure coater, curtain coater, and the like, and dried to form the protective film forming film 1 as the first release sheet. Formed on the release surface.
  • a laminate (laminate I) in which the protective film-forming film 1 is sandwiched between two release sheets by laminating the release surface of the second release sheet on the exposed surface of the protective film-forming film 1 and press-bonding it. obtain.
  • the protective film-forming film 1 (and the second release sheet) may be formed in a desired shape, for example, a circle. In this case, what is necessary is just to remove suitably the protective film formation film 1 and the excess part of the 2nd peeling sheet which arose by the half cut.
  • an adhesive for the adhesive layer containing the adhesive constituting the adhesive layer 42 and optionally further a solvent is applied to the release surface of the third release sheet. It is made to dry and the adhesive layer 42 is formed in the peeling surface of a 3rd peeling sheet. Then, the base material 41 is crimped
  • the pressure-sensitive adhesive layer 42 when the pressure-sensitive adhesive layer 42 is made of an energy ray-curable pressure-sensitive adhesive, the pressure-sensitive adhesive layer 42 may be irradiated with energy rays at this stage to cure the pressure-sensitive adhesive layer 42 or to protect it.
  • the pressure-sensitive adhesive layer 42 may be cured by irradiating energy rays after laminating the film-forming film 1.
  • the adhesive layer 42 when hardening the adhesive layer 42 after laminating
  • energy rays ultraviolet rays, electron beams, etc. are usually used. Irradiation of energy rays varies depending on the kind of energy rays, for example, in the case of ultraviolet rays, preferably 50 ⁇ 1000mJ / cm 2 in quantity, more preferably 100 ⁇ 500mJ / cm 2. In the case of an electron beam, about 10 to 1000 krad is preferable.
  • the second release sheet in laminate I is peeled off, and the third release sheet in laminate II is peeled off and exposed in laminate I.
  • the protective film forming film 1 and the pressure-sensitive adhesive layer 42 of the first support sheet 4 exposed in the laminate II are overlapped and pressure-bonded.
  • the first support sheet 4 may be half-cut as desired to have a desired shape, for example, a circle having a larger diameter than the protective film-forming film 1. In this case, an excess portion of the first support sheet 4 generated by the half cut may be removed as appropriate.
  • a protective film-forming sheet 3 comprising the film-forming film 1 and a first release sheet laminated on the surface opposite to the surface facing the first support sheet 4 in the protective film-forming film 1 is obtained.
  • the jig pressure-sensitive adhesive layer 5 is formed on the peripheral edge of the surface opposite to the surface facing the first support sheet 4 in the protective film forming film 1. .
  • the jig pressure-sensitive adhesive layer 5 can also be applied and formed in the same manner as the pressure-sensitive adhesive layer 42.
  • the exposed surface is attached to one surface of the semiconductor wafer 7 as a work, specifically, the surface (back surface) opposite to the circuit forming surface, and the protective film forming sheet 3 is attached. And a workpiece 1 are obtained (FIG. 3).
  • the first laminated body 10 shown in FIG. 3 further includes a jig pressure-sensitive adhesive layer 5 and a ring frame 8.
  • the jig adhesive layer 5 is an element of the protective film forming sheet 3, and the protective film forming film 1 of the protective film forming sheet 3 is attached to the semiconductor wafer 7 in the first attaching step.
  • the jig adhesive layer 5 of the protective film forming sheet 3 may be attached to the ring frame 8.
  • one side surface of the first sticking step is a surface opposite to the surface facing the first support sheet in the protective film forming film provided in the protective film forming sheet according to one embodiment of the present invention. And affixing the exposed surface to one surface of the workpiece to obtain a first laminate including the protective film forming sheet and the workpiece.
  • the heating time and heating temperature vary depending on the material constituting the film, it is preferable to heat at 90 to 170 ° C. for 0.5 to 5 hours, for example.
  • seat 3 for protective film formation of the 1st laminated body 10 obtained by the 1st sticking process is equipped is hardened, and a protective film is obtained.
  • the curing conditions for obtaining the protective film are appropriately set based on the material constituting the protective film forming film 1.
  • the protective film forming film 1 is a thermosetting adhesive
  • the protective film forming film 1 may be heated at a predetermined temperature for an appropriate time.
  • the protective film formation film 1 is not a thermosetting adhesive, it heat-processes separately. That is, one side surface of the first curing step includes obtaining a protective film by curing the protective film forming film in the first laminate.
  • one aspect of the first dividing step is that the temperature T2 of the protective film in the first laminated body that has undergone the first curing step is kept in a range of 40 ° C. to 70 ° C.
  • the method for extending the first support sheet 4 is not limited. As shown in FIG. 4, the ring-shaped member R is pressed against the surface of the first support sheet 4 opposite to the surface facing the ring frame 8, and the ring frame 8 and the ring-shaped member R are pressed.
  • the first support sheet 4 may be extended by changing the relative position in the vertical direction. That is, the stress generated in the support sheet 4 by the extension includes a vector amount in a horizontal direction or a direction parallel to the back surface of the semiconductor wafer 7.
  • the protective film forming film 1 is generally composed of a curable material that is a material capable of forming a protective film by curing, and a typical example thereof is an uncured curable adhesive. .
  • a curable material that is a material capable of forming a protective film by curing, and a typical example thereof is an uncured curable adhesive.
  • Such a material has a large amount of deformation (breaking strain) until it breaks when a tensile force is applied, and may not be divided even when the first support sheet 4 is stretched (expanded). Therefore, when the first support sheet 4 is expanded, the protective film-forming film 1 is cooled to about 0 ° C. to ⁇ 20 ° C. (specifically, it may be achieved by cooling the first laminate 10).
  • the breaking strain of the protective film-forming film 1 is reduced.
  • a relatively expensive cooling facility is required for cooling compared to heating, and the energy required for cooling is greater than the energy required for heating. For this reason, cooling the protective film-forming film 1, generally cooling the first laminated body 10, brings about an initial investment and an increase in running cost in the method for manufacturing a chip with a protective film.
  • the first support sheet 4 is positioned between the first support sheet 4 and the semiconductor wafer 7 when the first support sheet 4 is expanded.
  • the member is a protective film. Since the protective film is obtained by curing the protective film-forming film 1, its breaking strain is lower than that of the protective film-forming film 1. Therefore, the division failure due to the breaking strain is unlikely to occur. However, since the protective film is a cured material, the breaking stress may be increased, and there is a possibility that division failure may occur due to the height of the breaking stress. Therefore, in the method for manufacturing a chip with a protective film according to an embodiment of the present invention, when the first support sheet 4 is expanded, the temperature T2 of the protective film is maintained in the range of 40 ° C. to 70 ° C. It is said.
  • the possibility of the defective division of the protective film is reduced. If the temperature T2 of the protective film is increased to about 40 ° C., the reduction of the breaking stress becomes clear as compared with the room temperature (23 ° C.) state, and the effect (reduction of defective partitioning) derived from the heat expansion can be stably enjoyed. It becomes possible to do.
  • the temperature T2 of the protective film during expansion of the first support sheet 4 is more than 70 ° C.
  • an increase in the breaking strain of the protective film a change in mechanical properties of the first support sheet 4 (decrease in Young's modulus,
  • There is an increased possibility of inconveniences such as work defects caused by softening and the like specifically examples include a decrease in the amount of expand and fusion of the first support sheet 4 to the table). Therefore, by setting the temperature T2 of the protective film at the time of expanding the first support sheet 4 to 70 ° C. or less, the possibility that a problem occurs in the production of the chip with the protective film can be stably reduced.
  • the temperature T2 of the protective film during the expansion of the first support sheet 4 may be preferably 42 ° C. or more and 65 ° C. or less, It may be more preferable to set it as 43 degreeC or more and 60 degrees C or less, and it may be especially preferable to set it as 45 degreeC or more and 55 degrees C or less.
  • each of the plurality of protective film-provided chips 9 included in the second stacked body 20 obtained by performing the first division step is changed to the first pickup step.
  • the individual chip 9 with protective film is obtained as a workpiece.
  • This separation method is not limited.
  • a push-up pin P and a vacuum suction collet C may be used.
  • tip 9 with a protective film can be obtained. That is, according to one aspect of the first pickup process, the chip with the protective film is processed by separating each of the plurality of chips with the protective film included in the second laminate from the first support sheet. Including getting as.
  • Modified layer forming step Before the first dividing step is started, the laser beam in the infrared region (for example, 1064 nm) is irradiated so as to be focused on the focal point set inside the semiconductor wafer 7 (work). Then, a modified layer forming step for forming a modified layer inside the semiconductor wafer 7 is performed. In the first dividing step, the first support sheet to be bonded to the semiconductor wafer 7 that has undergone the modified layer forming step is stretched to divide the semiconductor wafer 7 along the planned dividing line. That is, one side of the modified layer forming step is to irradiate the laser beam in the infrared region so as to be focused on the focal point set inside the workpiece before the first dividing step is started. Forming a modified layer inside the workpiece.
  • the laser beam in the infrared region for example, 1064 nm
  • a modified layer forming step for forming a modified layer inside the semiconductor wafer 7 is performed.
  • FIG. 6 shows a protective film forming sheet according to another embodiment of the present invention. It is sectional drawing.
  • the protective film forming sheet 3 ⁇ / b> A according to this embodiment includes a first support sheet 4 in which an adhesive layer 42 is laminated on one surface of a base material 41, and a first support sheet.
  • a release sheet 6 is provided.
  • the protective film-forming film 1 in the embodiment is formed to be substantially the same as or slightly larger than the work in the surface direction, and smaller than the first support sheet 4 in the surface direction.
  • the part of the pressure-sensitive adhesive layer 42 where the protective film forming film 1 is not laminated can be attached to a jig such as a ring frame.
  • each member of the protective film forming sheet 3A is the same as the material and thickness of each member of the protective film forming sheet 3 described above.
  • the pressure-sensitive adhesive layer 42 is made of an energy ray-curable pressure-sensitive adhesive
  • the portion in contact with the protective film forming film 1 in the pressure-sensitive adhesive layer 42 cures the energy ray-curable pressure-sensitive adhesive, and the other portions are energy. It is preferable not to cure the linear curable adhesive.
  • the adhesive layer 5 for jigs of the protective film forming sheet 3 described above is provided on the peripheral edge of the adhesive layer 42 of the first support sheet 4 of the protective film forming sheet 3A on the side opposite to the base 41.
  • a similar pressure-sensitive adhesive layer for jigs may be provided separately.
  • seat 3B for protective film formation which concerns on one of other embodiment of this invention is equipped It may be made of a base material (only) without an adhesive layer.
  • the surface on the protective film forming film side of the substrate corresponds to the first surface of the first support sheet.
  • the peripheral portion of the surface opposite to the surface facing the substrate (first support sheet) in the protective film forming film is for the jig shown in FIG. It is preferable that the same adhesive layer for jigs as the adhesive layer 5 is provided.
  • the first support sheet is a release sheet
  • the first support sheet provided in the protective film-forming sheet according to one of the other embodiments of the present invention may be a release sheet having a release surface. Good.
  • the release surface corresponds to the first surface of the first support sheet.
  • the specific configuration of the release sheet is not limited.
  • the protective film-forming sheet according to one of the other embodiments of the present invention is a surface opposite to the surface facing the first support sheet of the protective film-forming film. You may provide the 2nd support sheet laminated
  • the second support sheet is a release sheet, and may be arranged so that the release surface faces the protective film-forming film.
  • the protective film-forming film 1 is formed from the first support sheet 4 in the first pickup process, specifically, it is a part of the chip 7 with the protective film.
  • the divided body of the protective film is separated.
  • the protective film-forming film is peeled from the first support sheet and then cured to form a protective film.
  • An example of such a manufacturing method is as follows.
  • the surface opposite to the surface facing the first support sheet in the protective film forming film 1 provided in the protective film forming sheet according to the embodiment of the present invention is exposed, and the exposed surface is a semiconductor wafer.
  • the work 7 and the protective film forming film 1 are attached to one surface of the work 7 and the like, and the first support sheet of the protective film forming sheet is peeled from the protective film forming film 1.
  • a laminating step for obtaining a third laminate 11 comprising; A second curing step of obtaining a protective film by curing the protective film-forming film 1 provided in the third laminate 11; The third pressure-sensitive adhesive layer side 131 of the processing sheet 13 provided with the third base material 11 and the third pressure-sensitive adhesive layer 131 laminated on one surface side of the third base material 132. By attaching the surface and the surface on the protective film side of the third laminate 11 that has undergone the second curing step, the processing sheet 13 and the third laminate 11 are provided. 2nd sticking process of obtaining the laminated body 12 of 4; In a state where the temperature T3 of the protective film included in the fourth stacked body 12 is maintained within a range of 40 ° C.
  • the processing sheet 13 included in the fourth stacked body 12 is extended, By dividing the protective film together with the work 7, a plurality of chips 9 with a protective film formed by dividing the laminate of the work 7 and the protective film so as to generate a cut surface in the thickness direction is provided.
  • a second dividing step of obtaining a fifth laminated body 14 disposed on one surface of the sheet 13 for use; and each of the plurality of protective film-provided chips 9 provided in the fifth laminated body 14 for the processing A second pick-up step that separates from the sheet 13 and obtains a chip 9 with a protective film as a workpiece, and further, the focal point set inside the workpiece 7 before the second dividing step is started. Focused Uni irradiated with laser light in the infrared region, including a modified layer forming step of forming a modified layer inside the workpiece 7.
  • the 3rd base material 132 with which processing sheet 13 is provided should just have the same characteristic as base material 41 with which support sheet 4 is provided.
  • seat 13 for processing is provided should just have the characteristic similar to the adhesive layer 42 with which the support sheet 4 is provided.
  • segmentation process is more than said temperature T1.
  • another layer may be interposed between the base material 41 and the pressure-sensitive adhesive layer 42 in the first support sheet 4. Further, another layer may be laminated on the first surface of the first support sheet 4 made of the base material 41.
  • a layer for adjusting the adhesion between the substrate 41 and the pressure-sensitive adhesive layer 42 such as a primer layer, and the adhesion between the support sheet 4 and the protective film forming film 1 are prepared.
  • Example 1 The following components are mixed at a blending ratio shown in Table 1 (in terms of solid content) and diluted with methyl ethyl ketone so that the solid content concentration is 50% by mass with respect to the total mass of the coating agent for protective film forming film. Thus, a coating agent for a protective film-forming film was prepared.
  • Binder polymer (meth) acrylic ester copolymer obtained by copolymerizing 10 parts by weight of n-butyl acrylate, 70 parts by weight of methyl acrylate, 5 parts by weight of glycidyl methacrylate and 15 parts by weight of 2-hydroxyethyl acrylate Combined (weight average molecular weight: 400,000, glass transition temperature: -1 ° C)
  • A-2 Binder polymer: (meth) acrylic acid ester copolymer obtained by copolymerizing 85 parts by mass of methyl acrylate and 15 parts by mass of 2-hydroxyethyl acrylate (weight average molecular weight: 400,000, glass transition temperature: -6 °C)
  • the aforementioned coating agent for a protective film-forming film is finally obtained.
  • the protective film-forming film is laminated with the release surface of a release sheet (SP-PET251130, manufactured by Lintec Co., Ltd.) on which one side of the PET film is formed with a silicone release agent layer.
  • Example 2 For the protective film-forming film in which the types and blending amounts of the components constituting the protective film-forming film are the compositions shown in the column of Example 2 in Table 1 and diluted with methyl ethyl ketone so that the solid content concentration becomes 50% A protective film-forming sheet was produced in the same manner as in Example 1 except that the coating agent was adjusted.
  • a dicing tape was attached to the ring frame.
  • a laser (wavelength: 1064 nm) focused inside the wafer was irradiated through the dicing tape and the protective film using a laser irradiation apparatus. At this time, irradiation was performed while scanning along a planned cutting line set so that a 5 mm ⁇ 5 mm chip body was formed.
  • an expander (DISCO, DDS2300)
  • a dicing tape was attached to a wafer with a protective film at a speed of 100 mm / second and an expand amount of 10 mm in an environment of 50 ° C.
  • the chip with protective film was picked up by pulling up the extruded chip with protective film with a vacuum suction collet.
  • A the trace of the pin pressed against the protective film is not found good
  • B the case where “possible”
  • C the case where “possible”
  • the results are shown in Table 2.
  • the protective film according to Comparative Example 2 was not properly divided in Test Example 2, the protective film according to Examples 1 and 2 and Comparative Example 1 (the evaluation target was a part of the split). Only this 4th laminated body provided with a protective film performed this evaluation.
  • the protective film-forming sheet of the example provided with a protective film having a breaking strain at 50 ° C. of 20% or less and a loss tangent peak temperature T1 in the range of 25 ° C. to 60 ° C.
  • the strength of the protective film was also excellent.
  • the protective film-forming sheet according to the present invention can be suitably used in the case where it includes a step of dividing the protective film while heating, it is extremely important industrially.
  • SYMBOLS 1 Protective film formation film 3, 3A, 3B ... Protective film formation sheet 4 ... Support sheet 41 ... Base material 42 ... Adhesive layer 5 ... Jig adhesive layer 6 ... Release sheet 7 ... Semiconductor wafer 8 ... Ring frame DESCRIPTION OF SYMBOLS 9 ... Chip 10 with a protective film ... 1st laminated body 11 ... 2nd laminated body 12 ... 3rd laminated body 13 ... Sheet

Abstract

 A protective-coating-forming sheet (3) provided with a first support sheet (4) and a protective-coating formation film (1) layered on a first surface side of the first support sheet (4), the protective-coating formation film (1) comprising a curable material, and the protective-coating formation film (1) having the following characteristics: when the protective-coating formation film (1) is cured and a protective coating is obtained, the breaking strain of the protective coating at 50°C is 20% or less, and the loss tangent peak temperature T1 thereof is 25°C to 60°C.

Description

保護膜形成用シートおよび保護膜付き半導体チップの製造方法Protective film forming sheet and manufacturing method of semiconductor chip with protective film
 本発明は、半導体ウエハ等のワークまたは前記ワークを加工して得られる加工物(例えば半導体チップ)に保護膜を形成することのできる保護膜形成用シートに関するものである。
 本願は、2014年8月22日に、日本に出願された特願2014-169266号および特願2014-169267号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a protective film-forming sheet capable of forming a protective film on a workpiece such as a semiconductor wafer or a workpiece (for example, a semiconductor chip) obtained by processing the workpiece.
This application claims priority based on Japanese Patent Application Nos. 2014-169266 and 2014-169267 filed in Japan on August 22, 2014, the contents of which are incorporated herein by reference.
 近年、フェイスダウン方式と呼ばれる実装法により半導体装置を製造することが行われている。この方法では、バンプ等の電極が形成された回路面を有する半導体チップを実装する際に、半導体チップの回路面側をリードフレーム等のチップ搭載部に接合している。したがって、回路が形成されていない半導体チップの裏面側が露出する構造となる。 In recent years, semiconductor devices have been manufactured by a mounting method called a face-down method. In this method, when a semiconductor chip having a circuit surface on which electrodes such as bumps are formed is mounted, the circuit surface side of the semiconductor chip is bonded to a chip mounting portion such as a lead frame. Therefore, the back surface side of the semiconductor chip on which no circuit is formed is exposed.
 特許文献1および2は、上記の保護膜を形成することのできる保護膜形成層(即ち、保護膜形成フィルム)が粘着シート上に形成された保護膜形成・ダイシング一体型シート(即ち、保護膜形成用シート)を開示している。この保護膜形成・ダイシング一体型シートにおいて、上記保護膜形成フィルムは、加熱処理によって硬化し、上記の保護膜を形成する。すなわち、上記保護膜形成・ダイシング一体型シートによれば、半導体ウエハのダイシングおよび半導体チップに対する保護膜形成の両方を行うことができ、保護膜付き半導体チップを得ることができる。 Patent Documents 1 and 2 disclose a protective film forming / dicing integrated sheet (that is, a protective film) in which a protective film forming layer (that is, a protective film forming film) capable of forming the protective film is formed on an adhesive sheet. Forming sheet). In the protective film forming / dicing integrated sheet, the protective film forming film is cured by heat treatment to form the protective film. That is, according to the protective film forming / dicing integrated sheet, both the dicing of the semiconductor wafer and the protective film formation on the semiconductor chip can be performed, and the semiconductor chip with the protective film can be obtained.
 一方、半導体ウエハ等のワークから半導体チップ等の片状体からなる加工物を製造する際に、従来は、ワークに洗浄等を目的とした液体を吹き付けながら回転刃でワークを切断して片状体を得るブレードダイシング加工が行われることが一般的であった。しかしながら、近年は、乾式で片状体への分割が可能なステルスダイシング(登録商標;以下同じ)加工が採用されてきている(特許文献3)。 On the other hand, when manufacturing a workpiece made of a semiconductor chip or other piece from a workpiece such as a semiconductor wafer, conventionally, the workpiece is cut with a rotary blade while spraying a liquid for the purpose of cleaning or the like, and the piece is cut into a piece. It has been common practice to perform blade dicing to obtain a body. However, in recent years, stealth dicing (registered trademark; the same applies hereinafter) processing that can be divided into pieces in a dry process has been employed (Patent Document 3).
 例えば、特許文献3には、積層粘着シート(即ち、基材と粘着剤層とからなる粘着シートを2層積層したもの)を極薄の半導体ウエハに貼付し、積層粘着シート側から積層粘着シート越しに半導体ウエハにレーザ光を照射し、半導体ウエハの内部に改質部を形成した後、粘着シートをエキスパンドすることで、ダイシングラインに沿って半導体ウエハを分割し、半導体チップを生産するステルスダイシング法が開示されている。 For example, in Patent Document 3, a laminated adhesive sheet (that is, a laminate in which two adhesive sheets comprising a base material and an adhesive layer are laminated) is attached to an extremely thin semiconductor wafer, and the laminated adhesive sheet is laminated from the laminated adhesive sheet side. Stealth dicing to divide the semiconductor wafer along the dicing line and produce semiconductor chips by expanding the adhesive sheet after irradiating the semiconductor wafer with laser light and forming the modified part inside the semiconductor wafer The law is disclosed.
特開2012-33637号公報JP 2012-33637 A 特開2011-151362号公報JP 2011-151362 A 日本国特許第3762409号公報Japanese Patent No. 3762409
 上記のようにステルスダイシングでは、粘着シートをエキスパンドして半導体ウエハを分割するため、粘着シートと半導体ウエハとの間に位置する部材も、半導体ウエハと同様に分割されることが好ましい場合もある。そのような部材が保護膜形成フィルムである場合には、適切な分割を実現するために、保護膜形成フィルムを冷却する場合もある。 As described above, in stealth dicing, since the adhesive sheet is expanded to divide the semiconductor wafer, it may be preferable that the member positioned between the adhesive sheet and the semiconductor wafer is also divided in the same manner as the semiconductor wafer. When such a member is a protective film formation film, in order to implement | achieve appropriate division | segmentation, a protective film formation film may be cooled.
 本発明は、ステルスダイシングにおいて、粘着シートと半導体ウエハ等のワークとの間に位置する部材が保護膜形成フィルムから形成された保護膜である場合に、粘着シートをエキスパンドした際に保護膜が適切に分割されうる、保護膜形成フィルムを備えた保護膜形成用シートを提供することを目的とする。また、別の側面として、本発明は、かかる保護膜形成用シートを用いて保護膜付き半導体チップ等の加工物を製造する方法を提供することを目的とする。 In the present invention, in stealth dicing, when a member positioned between a pressure sensitive adhesive sheet and a workpiece such as a semiconductor wafer is a protective film formed from a protective film forming film, the protective film is suitable when the pressure sensitive adhesive sheet is expanded. It aims at providing the sheet | seat for protective film formation provided with the protective film formation film which can be divided | segmented into. Another object of the present invention is to provide a method for producing a workpiece such as a semiconductor chip with a protective film using the protective film-forming sheet.
 上記目的を達成するために、提供される本発明は以下の態様を含む。
(1)第1の支持シートと、前記第1の支持シートの第1の面側に積層された保護膜形成フィルムとを備えた保護膜形成用シートであって、前記保護膜形成フィルムは硬化性材料からなり、前記保護膜形成フィルムが硬化してなる保護膜は、50℃における破断ひずみが20%以下、かつ損失正接のピーク温度T1が25℃から60℃の範囲内にあることを特徴とする保護膜形成用シート。
In order to achieve the above object, the provided invention includes the following aspects.
(1) A protective film-forming sheet comprising a first support sheet and a protective film-forming film laminated on the first surface side of the first support sheet, wherein the protective film-forming film is cured The protective film made of a conductive material and formed by curing the protective film-forming film has a breaking strain at 50 ° C. of 20% or less and a peak temperature T1 of loss tangent within a range of 25 ° C. to 60 ° C. A protective film forming sheet.
(2)前記保護膜は、25℃における貯蔵弾性率が5.0×10Pa以上である、上記(1)に記載の保護膜形成用シート。 (2) The said protective film is a sheet | seat for protective film formation as described in said (1) whose storage elastic modulus in 25 degreeC is 5.0 * 10 < 9 > Pa or more.
(3)前記保護膜は、25℃における損失正接が0.4以下である、上記(1)または(2)に記載の保護膜形成用シート。 (3) The said protective film is a sheet | seat for protective film formation as described in said (1) or (2) whose loss tangent in 25 degreeC is 0.4 or less.
(4)前記保護膜の波長1064nmの光線透過率は40%以上である、上記(1)から(3)のいずれかに記載の保護膜形成用シート。 (4) The protective film-forming sheet according to any one of (1) to (3), wherein a light transmittance at a wavelength of 1064 nm of the protective film is 40% or more.
(5)前記保護膜形成用シートは、前記保護膜形成フィルムの前記第1の支持シートに対向する面と反対の面側に積層された第2の支持シートを備える、上記(1)から(4)のいずれかに記載の保護膜形成用シート。 (5) The protective film forming sheet includes the second support sheet laminated on the surface of the protective film forming film opposite to the surface facing the first support sheet. 4) The protective film-forming sheet according to any one of 4).
(6)上記(1)から(5)のいずれかに記載される保護膜形成用シートが備える前記保護膜形成フィルムの前記第1の支持シートに対向する面と反対側の面を表出させ、前記面をワークの一の面に貼付して、前記保護膜形成用シートと前記ワークとを備える第1の積層体を得る貼付工程;前記第1の積層体の前記保護膜形成用シートが備える前記保護膜形成フィルムを硬化させて前記保護膜を得る第1の硬化工程;前記第1の硬化工程を経た前記第1の積層体の前記保護膜形成用シートが備える前記保護膜の温度T2を40℃から70℃の範囲内に保持した状態で、前記保護膜形成用シートが備える前記第1の支持シートを伸長して、前記ワークとともに前記保護膜を分割して、前記ワークと前記保護膜との積層体が分割されてなる複数の保護膜付きチップが、前記第1の支持シートの一方の面上に配置されてなる第2の積層体を得る第1の分割工程;および前記第2の積層体が備える前記複数の保護膜付きチップのそれぞれを前記第1の支持シートから分離して、前記保護膜付きチップを加工物として得る第1のピックアップ工程を備え、前記第1の分割工程が開始されるまでに、前記ワークの内部に設定された焦点に集束されるように赤外域のレーザ光を照射して、前記ワーク内部に改質層を形成する改質層形成工程が行われることを特徴とする保護膜付きチップの製造方法。 (6) The surface opposite to the surface facing the first support sheet of the protective film-forming film provided in the protective film-forming sheet described in any one of (1) to (5) is exposed. A sticking step of sticking the surface to one surface of a work to obtain a first laminate including the protective film-forming sheet and the work; the protective film-forming sheet of the first laminate; A first curing step of curing the protective film-forming film provided to obtain the protective film; a temperature T2 of the protective film provided in the protective film-forming sheet of the first laminate that has undergone the first curing step The first support sheet provided in the protective film forming sheet is stretched in a state where the protective film is held within a range of 40 ° C. to 70 ° C., and the protective film is divided together with the work, so that the work and the protection A plurality of layers formed by dividing a laminate with a film A first dividing step of obtaining a second laminated body in which a chip with a protective film is disposed on one surface of the first support sheet; and the plurality of protective films with the second laminated body A first pick-up step for separating each of the chips from the first support sheet to obtain the chip with the protective film as a workpiece, and the inside of the workpiece before the first dividing step is started. Manufacturing of a chip with a protective film characterized by performing a modified layer forming step of forming a modified layer inside the workpiece by irradiating an infrared laser beam so as to be focused on a focal point set to Method.
(7)前記温度T2は前記温度T1以上である、上記(6)に記載の保護膜付チップの製造方法。 (7) The method for manufacturing a chip with a protective film according to (6), wherein the temperature T2 is equal to or higher than the temperature T1.
(8)上記(1)から(5)のいずれかに記載される保護膜形成用シートが備える前記保護膜形成フィルムの前記第1の支持シートに対向する面と反対側の面を表出させ、前記面をワークの一の面に貼付すること、および前記保護膜形成用シートの前記第1の支持シートを前記保護膜形成フィルムから剥離することを行って、前記ワークと前記保護膜形成フィルムとを備える第3の積層体を得る積層工程;前記第3の積層体が備える前記保護膜形成フィルムを硬化させて前記保護膜を得る第2の硬化工程;第3の基材と、前記第3の基材の一方の面側に積層された第3の粘着剤層とを備えた加工用シートの前記第3の粘着剤層側の面と、前記第2の硬化工程を経た前記第3の積層体の前記保護膜側の面とを貼合して、前記加工用シートと前記第3の積層体とを備える第4の積層体を得る第2の貼付工程;前記第4の積層体が備える前記保護膜の温度T3を40℃から70℃の範囲内に保持した状態で、前記第4の積層体が備える前記加工用シートを伸長して、前記ワークとともに前記保護膜を分割して、前記ワークと前記保護膜との積層体が分割されてなる複数の保護膜付きチップが、前記加工用シートの一方の面上に配置されてなる第5の積層体を得る第2の分割工程;および前記第5の積層体が備える前記複数の保護膜付きチップのそれぞれを前記加工用シートから分離して、前記保護膜付きチップを加工物として得る第2のピックアップ工程を備え、前記第2の分割工程が開始されるまでに、前記ワークの内部に設定された焦点に集束されるように赤外域のレーザ光を照射して、前記ワーク内部に改質層を形成する改質層形成工程が行われることを特徴とする保護膜付きチップの製造方法。 (8) The surface opposite to the surface facing the first support sheet of the protective film-forming film provided in the protective film-forming sheet described in any one of (1) to (5) is exposed. Affixing the surface to one surface of the work, and peeling the first support sheet of the protective film-forming sheet from the protective film-forming film. Laminating step of obtaining a third laminate comprising: a second curing step of obtaining the protective film by curing the protective film-forming film provided in the third laminated body; a third substrate; The third pressure-sensitive adhesive layer side surface of the processing sheet provided with a third pressure-sensitive adhesive layer laminated on one surface side of the third base material, and the third curing step. Bonding the surface of the laminate of the protective film side, the processing sheet and the 2nd sticking process of obtaining the 4th layered product provided with 3 layered product; in the state where temperature T3 of the protective film with which the 4th layered product is provided was kept in the range of 40 ° C to 70 ° C. Extending the processing sheet provided in the fourth laminated body, dividing the protective film together with the work, a plurality of chips with protective film formed by dividing the laminated body of the work and the protective film, A second dividing step of obtaining a fifth laminated body arranged on one surface of the processing sheet; and each of the plurality of protective film-provided chips provided in the fifth laminated body. And a second pick-up step for obtaining the chip with the protective film as a work piece so as to be focused on a focal point set inside the workpiece before the second dividing step is started. Irradiate laser light in the infrared region The method of manufacturing a protective layer with a chip, characterized in that the modified layer forming step of forming a modified layer in the workpiece interior is performed.
(9)前記温度T3は前記温度T1以上である、上記(8)に記載の保護膜付チップの製造方法。 (9) The method for manufacturing a chip with a protective film according to (8), wherein the temperature T3 is equal to or higher than the temperature T1.
 即ち、本発明は以下の態様を含む。
[1]第1の支持シートと、前記第1の支持シートの第1の面側に積層された保護膜形成フィルムとを備えた保護膜形成用シートであって、
 前記保護膜形成フィルムは硬化性材料からなり、
 前記保護膜形成フィルムは以下の特性を有する保護膜形成用シート:
 前記保護膜形成フィルムを硬化して保護膜としたとき、50℃における破断ひずみが20%以下、かつ損失正接のピーク温度T1が25℃から60℃である。
[2]前記保護膜形成フィルムがさらに以下の特性を有する[1]に記載の保護膜形成用シート:
 前記保護膜の25℃における貯蔵弾性率が3.0×10Pa以上である。
[3]前記保護膜形成フィルムがさらに以下の特性を有する[1]又は[2]に記載の保護膜形成用シート:
 前記保護膜は、25℃における損失正接が0.4以下である。
[4]前記保護膜形成フィルムがさらに以下の特性を有する[1]から[3]のいずれか一つに記載の保護膜形成用シート:
 前記保護膜の波長1064nmの光線透過率が40%以上である。
[5]前記保護膜形成用シートは、前記保護膜形成フィルムにおける前記第1の支持シートに対向する面とは反対の面側に積層された第2の支持シートをさらに備える、[1]から[4]のいずれか一つに記載の保護膜形成用シート。
[6][1]から[5]のいずれかに一つに記載される保護膜形成用シートが備える前記保護膜形成フィルムにおける前記第1の支持シートに対向する面とは反対側の面を表出させ、前記表出させた面をワークの一の面に貼付して、前記保護膜形成用シートと前記ワークとを備える第1の積層体を得る貼付工程;
 前記第1の積層体における前記保護膜形成フィルムを硬化させることによって前記保護膜を得る第1の硬化工程;
 前記第1の硬化工程を経た前記第1の積層体における前記保護膜の温度T2を40℃から70℃の範囲内に保持した状態で前記第1の支持シートを伸長させて、前記ワークとともに前記保護膜を分割することによって、前記ワークと前記保護膜との積層体が厚さ方向に切断面が発生するように分割されてなる複数の保護膜付きチップが、前記第1の支持シートの一方の面上に配置されてなる第2の積層体を得る第1の分割工程;および
 前記第2の積層体が備える前記複数の保護膜付きチップのそれぞれを前記第1の支持シートから分離して、前記保護膜付きチップを加工物として得る第1のピックアップ工程、を含み、さらに
 前記第1の分割工程が開始されるまでに、前記ワークの内部に設定された焦点に集束されるように赤外域のレーザ光を照射して、前記ワーク内部に改質層を形成する改質層形成工程、を含む
保護膜付きチップの製造方法。
[7]前記温度T2は前記温度T1以上である、[6]に記載の保護膜付チップの製造方法。
[8][1]から[5]のいずれか1つに記載される保護膜形成用シートが備える前記保護膜形成フィルムの前記第1の支持シートに対向する面とは反対側の面を表出させ、前記表出させた面をワークの一の面に貼付すること、および前記保護膜形成用シートの前記第1の支持シートを前記保護膜形成フィルムから剥離することによって、前記ワークと前記保護膜形成フィルムとを備える第3の積層体を得る積層工程;
 前記第3の積層体が備える前記保護膜形成フィルムを硬化させることによって前記保護膜を得る第2の硬化工程;
 第3の基材と、前記第3の基材の一方の面側に積層された第3の粘着剤層とを備えた加工用シートにおける前記第3の粘着剤層が積層された側の面と、前記第2の硬化工程を経た前記第3の積層体における前記保護膜側の面とを貼合して、前記加工用シートと前記第3の積層体とを備える第4の積層体を得る第2の貼付工程;
 前記第4の積層体が備える前記保護膜の温度T3を40℃から70℃の範囲内に保持した状態で、前記第4の積層体が備える前記加工用シートを伸長させて、前記ワークとともに前記保護膜を分割することによって、前記ワークと前記保護膜との積層体が厚さ方向に切断面を発生するように分割されてなる複数の保護膜付きチップが、前記加工用シートの一方の面上に配置されてなる第5の積層体を得る第2の分割工程;および
 前記第5の積層体が備える前記複数の保護膜付きチップのそれぞれを前記加工用シートから分離して、前記保護膜付きチップを加工物として得る第2のピックアップ工程、を含み、さらに
 前記第2の分割工程が開始されるまでに、前記ワークの内部に設定された焦点に集束されるように赤外域のレーザ光を照射して、前記ワーク内部に改質層を形成する改質層形成工程、を含む
保護膜付きチップの製造方法。
[9]前記温度T3は前記温度T1以上である、[8]に記載の保護膜付チップの製造方法。
That is, the present invention includes the following aspects.
[1] A protective film-forming sheet comprising a first support sheet and a protective film-forming film laminated on the first surface side of the first support sheet,
The protective film-forming film is made of a curable material,
The protective film-forming film has the following characteristics:
When the protective film-forming film is cured to form a protective film, the breaking strain at 50 ° C. is 20% or less and the loss tangent peak temperature T1 is 25 ° C. to 60 ° C.
[2] The protective film-forming sheet according to [1], wherein the protective film-forming film further has the following characteristics:
The storage elastic modulus at 25 ° C. of the protective film is 3.0 × 10 9 Pa or more.
[3] The protective film-forming sheet according to [1] or [2], wherein the protective film-forming film further has the following characteristics:
The protective film has a loss tangent at 25 ° C. of 0.4 or less.
[4] The protective film-forming sheet according to any one of [1] to [3], wherein the protective film-forming film further has the following characteristics:
The protective film has a light transmittance of 40% or more at a wavelength of 1064 nm.
[5] The protective film-forming sheet further includes a second support sheet laminated on a surface of the protective film-forming film opposite to the surface facing the first support sheet, from [1]. [4] The protective film-forming sheet according to any one of [4].
[6] A surface opposite to the surface facing the first support sheet in the protective film-forming film provided in the protective film-forming sheet described in any one of [1] to [5] A sticking step of obtaining a first laminate including the protective film forming sheet and the work by sticking the exposed face to one face of the work;
A first curing step of obtaining the protective film by curing the protective film-forming film in the first laminate;
The first support sheet is extended in a state where the temperature T2 of the protective film in the first laminated body that has undergone the first curing step is maintained within a range of 40 ° C. to 70 ° C., together with the workpiece, By dividing the protective film, a plurality of chips with the protective film formed by dividing the laminate of the workpiece and the protective film so that a cut surface is generated in the thickness direction is provided on one side of the first support sheet. A first dividing step of obtaining a second laminated body arranged on the surface of the substrate; and separating each of the plurality of protective film-provided chips provided in the second laminated body from the first support sheet. A first pick-up step for obtaining the chip with protective film as a workpiece, and before the first dividing step is started, the red so as to be focused on the focal point set inside the workpiece Outer laser By irradiating method of the protective film-attached chip including the formation step, the modified layer forming a modified layer in the workpiece interior.
[7] The method for manufacturing a chip with a protective film according to [6], wherein the temperature T2 is equal to or higher than the temperature T1.
[8] A surface opposite to the surface facing the first support sheet of the protective film-forming film included in the protective film-forming sheet described in any one of [1] to [5] is represented. And sticking the exposed surface to one surface of the workpiece, and peeling the first support sheet of the protective film-forming sheet from the protective film-forming film, A laminating step of obtaining a third laminate comprising a protective film-forming film;
A second curing step of obtaining the protective film by curing the protective film-forming film provided in the third laminate;
Surface on which the third pressure-sensitive adhesive layer is laminated in a processing sheet comprising a third base material and a third pressure-sensitive adhesive layer laminated on one surface side of the third base material And a fourth laminate including the processing sheet and the third laminate by bonding the surface of the third laminate that has undergone the second curing step to the surface on the protective film side. Obtaining a second application step;
In a state where the temperature T3 of the protective film included in the fourth stacked body is maintained within a range of 40 ° C. to 70 ° C., the processing sheet included in the fourth stacked body is stretched, and the workpiece together with the workpiece By dividing the protective film, a plurality of chips with a protective film formed by dividing the laminate of the workpiece and the protective film so as to generate a cut surface in the thickness direction is one surface of the processing sheet. A second dividing step of obtaining a fifth laminated body disposed thereon; and separating each of the plurality of chips with protective film provided in the fifth laminated body from the processing sheet, and A second pick-up step for obtaining a chip with a workpiece as a workpiece, and further, a laser beam in an infrared region so as to be focused on a focal point set inside the workpiece before the second splitting step is started. Irradiate The method of manufacturing a protective layer with a chip containing the modified layer forming step, forming a modified layer in the workpiece interior.
[9] The method for manufacturing a chip with a protective film according to [8], wherein the temperature T3 is equal to or higher than the temperature T1.
 本発明に係る保護膜形成用シートによれば、前記保護膜形成フィルムから形成された保護膜が粘着シートと半導体ウエハ等のワークとの間に位置する部材であっても、ステルスダイシングにおいて粘着シートをエキスパンドした際に保護膜を適切に分割することが可能である。したがって、保護膜付き半導体チップを安定的に製造することが可能となる。 According to the protective film forming sheet of the present invention, even if the protective film formed from the protective film forming film is a member located between the adhesive sheet and a workpiece such as a semiconductor wafer, the adhesive sheet in stealth dicing. The protective film can be appropriately divided when the is expanded. Therefore, it is possible to stably manufacture a semiconductor chip with a protective film.
本発明の一実施形態に係る保護膜形成用シートを概念的に示す断面図である。It is sectional drawing which shows notionally the protective film formation sheet which concerns on one Embodiment of this invention. 本発明の一実施形態に係る保護膜形成用シートから剥離シートを剥離させた状態を概念的に示す断面図である。It is sectional drawing which shows notionally the state which peeled the peeling sheet from the protective film formation sheet which concerns on one Embodiment of this invention. 本発明の一実施形態に係る保護膜付きチップの製造方法が備える第1の貼付工程を経て得られた第1の積層体を概念的に示す断面図である。It is sectional drawing which shows notionally the 1st laminated body obtained through the 1st sticking process with which the manufacturing method of the chip | tip with a protective film which concerns on one Embodiment of this invention is provided. 本発明の一実施形態に係る保護膜付きチップの製造方法が備える第1の分割工程を経て得られた第2の積層体を概念的に示す断面図である。It is sectional drawing which shows notionally the 2nd laminated body obtained through the 1st division | segmentation process with which the manufacturing method of the chip | tip with a protective film which concerns on one Embodiment of this invention is provided. 本発明の一実施形態に係る保護膜付きチップの製造方法が備える第1のピックアップ工程を実施している状態を概念的に示す断面図である。It is sectional drawing which shows notionally the state which is implementing the 1st pick-up process with which the manufacturing method of the chip | tip with a protective film which concerns on one Embodiment of this invention is provided. 本発明の他の実施形態の一つに係る保護膜形成用シートを概念的に示す断面図である。It is sectional drawing which shows notionally the sheet | seat for protective film formation which concerns on one of other embodiment of this invention. 本発明のその他の実施形態に係る保護膜付きチップの製造方法が備える積層工程を経て得られた第3の積層体を概念的に示す断面図である。It is sectional drawing which shows notionally the 3rd laminated body obtained through the lamination process with which the manufacturing method of the chip | tip with a protective film which concerns on other embodiment of this invention is provided. 本発明のその他の実施形態に係る保護膜付きチップの製造方法が備える第2の貼付工程を経て得られた第4の積層体を概念的に示す断面図である。It is sectional drawing which shows notionally the 4th laminated body obtained through the 2nd sticking process with which the manufacturing method of the chip | tip with a protective film which concerns on other embodiment of this invention is provided. 本発明のその他の実施形態に係る保護膜付きチップの製造方法が備える第2の分割工程を経て得られた第5の積層体を概念的に示す断面図である。It is sectional drawing which shows notionally the 5th laminated body obtained through the 2nd division | segmentation process with which the manufacturing method of the chip | tip with a protective film which concerns on other embodiment of this invention is provided. 本発明のその他の実施形態に係る保護膜付きチップの製造方法が備える第2のピックアップ工程を実施している状態を概念的に示す断面図である。It is sectional drawing which shows notionally the state which is implementing the 2nd pick-up process with which the manufacturing method of the chip | tip with a protective film which concerns on other embodiment of this invention is provided. 本発明のその他の実施形態の一つに係る保護膜形成用シートを概念的に示す断面図である。It is sectional drawing which shows notionally the sheet | seat for protective film formation which concerns on one of other embodiment of this invention.
 以下、本発明の実施形態について説明する。
 図1は本発明の一実施形態に係る保護膜形成用シートの断面図である。図1に示すように、本実施形態に係る保護膜形成用シート3は、第1の支持シート4と、第1の支持シート4の一方の面(後述する「第1の面」;図1中、上面)側に積層された保護膜形成フィルム1と、保護膜形成フィルム1における第1の支持シート4と対向する面とは反対側の面の周縁部に積層された治具用粘着剤層5とを備えて構成される。治具用粘着剤層5は、保護膜形成用シート3をリングフレーム等の治具に接着するための層である。また、本実施形態に係る保護膜形成用シート3は、保護膜形成フィルム1および治具用粘着剤層5上(即ち、第1の支持シート4とは反対側)に、剥離シート6を備えている。この剥離シート6は、保護膜形成用シート3の使用時に剥離除去されるシートであり、保護膜形成用シート3において必須の構成要素ではない。
 即ち、本発明の一実施形態に係る保護膜形成用シートの1つの側面は、第1の支持シート4と、第1の支持シート4の一方の面側に積層された保護膜形成フィルム1と、保護膜形成フィルム1における第1の支持シート4と対向する面とは反対側の面の周縁部に積層された治具用粘着剤層5と、所望により、保護膜形成フィルム1および治具用粘着剤層5上に積層された剥離シート6と、を含む。
Hereinafter, embodiments of the present invention will be described.
FIG. 1 is a cross-sectional view of a protective film forming sheet according to an embodiment of the present invention. As shown in FIG. 1, the protective film forming sheet 3 according to the present embodiment includes a first support sheet 4 and one surface of the first support sheet 4 (a “first surface” to be described later; The protective film forming film 1 laminated on the middle, upper surface) side, and the adhesive for the jig laminated on the peripheral edge of the surface opposite to the surface facing the first support sheet 4 in the protective film forming film 1 And a layer 5. The jig pressure-sensitive adhesive layer 5 is a layer for bonding the protective film forming sheet 3 to a jig such as a ring frame. Further, the protective film forming sheet 3 according to the present embodiment includes a release sheet 6 on the protective film forming film 1 and the jig pressure-sensitive adhesive layer 5 (that is, opposite to the first support sheet 4). ing. The release sheet 6 is a sheet that is peeled and removed when the protective film forming sheet 3 is used, and is not an essential component in the protective film forming sheet 3.
That is, one side surface of the protective film-forming sheet according to one embodiment of the present invention includes a first support sheet 4 and a protective film-forming film 1 laminated on one surface side of the first support sheet 4. The adhesive layer 5 for jigs laminated on the peripheral edge of the surface opposite to the surface facing the first support sheet 4 in the protective film forming film 1, and, if desired, the protective film forming film 1 and the jig And a release sheet 6 laminated on the pressure-sensitive adhesive layer 5.
 本実施形態に係る保護膜形成用シート3は、ワークを加工するときに、前記ワークに貼付されて前記ワークを保持するとともに、前記ワークまたは前記ワークを加工して得られる加工物に保護膜を形成するために用いられる。この保護膜は硬化した保護膜形成フィルム1から構成される。 The protective film-forming sheet 3 according to the present embodiment holds the workpiece by being attached to the workpiece when the workpiece is processed, and a protective film is applied to the workpiece or a workpiece obtained by processing the workpiece. Used to form. This protective film is composed of a cured protective film-forming film 1.
 本実施形態に係る保護膜形成用シート3は、一例として、ワークとしての半導体ウエハのダイシング加工時に半導体ウエハを保持するとともに、ダイシングによって得られる半導体チップに保護膜を形成するために用いられるが、これに限定されるものではない。 As an example, the protective film forming sheet 3 according to the present embodiment is used to hold a semiconductor wafer during dicing processing of a semiconductor wafer as a workpiece and to form a protective film on a semiconductor chip obtained by dicing. It is not limited to this.
 本実施形態に係る保護膜形成用シート3は、通常、長尺に形成されてロール状に巻き取られ、ロール・トゥ・ロールで使用される。 The protective film forming sheet 3 according to the present embodiment is usually formed into a long shape, wound into a roll, and used in a roll-to-roll manner.
1.支持シート
 本発明の一実施形態である保護膜形成用シート3に係る第1の支持シート4は、基材41と、基材41の一方の面側(即ち、保護膜形成フィルム1側;図1中、上側)に積層された粘着剤層42とを備えて構成される。ここで、第1の支持シート4における保護膜形成フィルム1が積層される側の面を「第1の面」、その反対側の面(図1中、下面)を「第2の面」という。第1の支持シート4において、粘着剤層42は第1の支持シート4の第1の面側に積層されており、基材41は第1の支持シート4の第2の面側に積層されている。
1. Support Sheet The first support sheet 4 according to the protective film-forming sheet 3 according to an embodiment of the present invention includes a base 41 and one surface side of the base 41 (that is, the protective film-forming film 1 side; 1 and the adhesive layer 42 laminated on the upper side). Here, the surface of the first support sheet 4 on which the protective film forming film 1 is laminated is referred to as “first surface”, and the opposite surface (the lower surface in FIG. 1) is referred to as “second surface”. . In the first support sheet 4, the pressure-sensitive adhesive layer 42 is laminated on the first surface side of the first support sheet 4, and the base material 41 is laminated on the second surface side of the first support sheet 4. ing.
1-1.基材
 本発明の一実施形態である保護膜形成用シート3に係る基材41はステルスダイシングに用いられる粘着シートの基材として通常使用される基材であれば、特に限定されない。基材41は単層構造を有していてもよいし、積層構造を有していてもよい。保護膜形成フィルム1が加熱により保護膜を形成するフィルムであって、保護膜形成のための保護膜形成フィルム1の加熱が行われる際に、基材41も加熱される場合には、基材41はこの加熱後も適切に使用できる(例えば、適切にエキスパンドできること等が挙げられる。)基材であることが求められる。
1-1. Base Material The base material 41 according to the protective film-forming sheet 3 according to an embodiment of the present invention is not particularly limited as long as it is a base material normally used as a base material of an adhesive sheet used for stealth dicing. The base material 41 may have a single layer structure or a laminated structure. When the protective film-forming film 1 is a film that forms a protective film by heating, and the substrate 41 is also heated when the protective film-forming film 1 for forming the protective film is heated, No. 41 is required to be a base material that can be appropriately used even after this heating (for example, it can be appropriately expanded).
 かかる観点から、基材41の融点は、90~180℃であることが好ましく、特に100~160℃であることが好ましく、さらに110~150℃であることが好ましい。 From such a viewpoint, the melting point of the base material 41 is preferably 90 to 180 ° C., particularly preferably 100 to 160 ° C., and further preferably 110 to 150 ° C.
 基材41の融点を調整する方法に特に制限はないが、一般的には用いる樹脂材料の融点によって主として調整することができる。また、融点の異なる複数の樹脂材料を混合したり、複数のモノマーを共重合したりすることで任意の融点に調整することもできる。 Although there is no restriction | limiting in particular in the method of adjusting the melting | fusing point of the base material 41, Generally, it can adjust mainly with melting | fusing point of the resin material to be used. Moreover, it can also adjust to arbitrary melting | fusing point by mixing the some resin material from which melting | fusing point differs, or copolymerizing a some monomer.
 基材41の130℃における貯蔵弾性率は、1~100MPaであることが好ましい。130℃における貯蔵弾性率が上記範囲であることにより、基材41の耐熱性を確保しつつ、第1の支持シート4をエキスパンドする際に不具合が生じる可能性を低減させることができる。基材41の耐熱性を高めることと第1の支持シート4を容易にエキスパンドすることとを両立させる観点から、基材41の130℃における貯蔵弾性率は、2~80MPaであることがより好ましく、5~50MPaであることが特に好ましい。なお、上記貯蔵弾性率の測定方法は、後述する試験例に示す通りである。 The storage elastic modulus of the substrate 41 at 130 ° C. is preferably 1 to 100 MPa. When the storage elastic modulus at 130 ° C. is in the above range, it is possible to reduce the possibility that a problem occurs when the first support sheet 4 is expanded while ensuring the heat resistance of the base material 41. From the standpoint of improving both the heat resistance of the base material 41 and easily expanding the first support sheet 4, the storage elastic modulus of the base material 41 at 130 ° C. is more preferably 2 to 80 MPa. It is particularly preferably 5 to 50 MPa. In addition, the measuring method of the said storage elastic modulus is as showing to the test example mentioned later.
 基材41の130℃における貯蔵弾性率を調整する方法に特に限定はないが、一般的には用いる樹脂材料の貯蔵弾性率によって主として調整することができる。また、一般的に同じ化学構造であっても分子量が高いと貯蔵弾性率は高くなる傾向があり、架橋や狭い分子量分布によっても貯蔵弾性率が高くなる傾向がある。この傾向を踏まえて、任意の貯蔵弾性率に調整することができる。 Although there is no limitation in particular in the method of adjusting the storage elastic modulus in 130 degreeC of the base material 41, generally it can adjust mainly with the storage elastic modulus of the resin material to be used. In general, even if the chemical structure is the same, the storage elastic modulus tends to increase when the molecular weight is high, and the storage elastic modulus tends to increase due to cross-linking or narrow molecular weight distribution. Based on this tendency, it can be adjusted to an arbitrary storage elastic modulus.
 ステルスダイシング等において波長1064nmのレーザ光を使用する場合、基材41の加熱後の波長1064nmの光線透過率は、40%以上、100%以下であることが好ましく、50%以上、99.9%以下であることがより好ましく、60%以上、99.5%以下であることが特に好ましい。基材41の加熱後の波長1064nmの光線透過率が上記の範囲にあることで、ステルスダイシングによるワークの分割性に優れる。 When laser light having a wavelength of 1064 nm is used in stealth dicing or the like, the light transmittance at a wavelength of 1064 nm after the substrate 41 is heated is preferably 40% or more and 100% or less, and is preferably 50% or more and 99.9%. More preferably, it is 60% or more and 99.5% or less. Since the light transmittance at a wavelength of 1064 nm after the heating of the base material 41 is in the above range, the work can be divided by stealth dicing.
 また、保護膜に対するレーザマーキング等において波長532nmのレーザ光を使用する場合、基材41の加熱後の波長532nmの光線透過率は、0.1%以上、40%以下であることが好ましく、0.3%以上、35%以下であることがより好ましく、0.5%以上、30%以下であることが特に好ましい。基材41の加熱後の波長532nmの光線透過率が上記の範囲にあることで、レーザ印字性に優れる。 When laser light having a wavelength of 532 nm is used for laser marking or the like on the protective film, the light transmittance at a wavelength of 532 nm after the substrate 41 is heated is preferably 0.1% or more and 40% or less. It is more preferably 3% or more and 35% or less, and particularly preferably 0.5% or more and 30% or less. Since the light transmittance at a wavelength of 532 nm after heating the substrate 41 is in the above range, the laser printability is excellent.
 基材41を構成する樹脂フィルムの具体例としては、低密度ポリエチレン(LDPE)フィルム、直鎖低密度ポリエチレン(LLDPE)フィルム、高密度ポリエチレン(HDPE)フィルム等のポリエチレンフィルム、ポリプロピレンフィルム、エチレン-プロピレン共重合体フィルム、ポリブテンフィルム、ポリブタジエンフィルム、ポリメチルペンテンフィルム、エチレン-ノルボルネン共重合体フィルム、ノルボルネン樹脂フィルム等のポリオレフィン系フィルム;エチレン-酢酸ビニル共重合体フィルム、エチレン-(メタ)アクリル酸共重合体フィルム、エチレン-(メタ)アクリル酸エステル共重合体フィルム等のエチレン系共重合フィルム;ポリ塩化ビニルフィルム、塩化ビニル共重合体フィルム等のポリ塩化ビニル系フィルム;ポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム等のポリエステル系フィルム;ポリウレタンフィルム;ポリイミドフィルム;ポリスチレンフィルム;ポリカーボネートフィルム;フッ素樹脂フィルム等が挙げられる。また、これらの架橋フィルム、アイオノマーフィルムのような変性フィルムも用いられる。さらに上記フィルムを複数積層した積層フィルムであってもよい。なお、本明細書における「(メタ)アクリル酸」は、アクリル酸およびメタクリル酸の両方を意味する。他の類似用語についても同様である。 Specific examples of the resin film constituting the substrate 41 include polyethylene films such as low density polyethylene (LDPE) film, linear low density polyethylene (LLDPE) film, and high density polyethylene (HDPE) film, polypropylene film, and ethylene-propylene. Polyolefin films such as copolymer film, polybutene film, polybutadiene film, polymethylpentene film, ethylene-norbornene copolymer film, norbornene resin film; ethylene-vinyl acetate copolymer film, ethylene- (meth) acrylic acid copolymer Polymer films, ethylene copolymer films such as ethylene- (meth) acrylate copolymer films; polyvinyl chloride films such as polyvinyl chloride films and vinyl chloride copolymer films Lum, polyethylene terephthalate film, a polyester film such as polyethylene terephthalate and polybutylene terephthalate film; polyurethane film; polyimide film; polystyrene films; polycarbonate films; fluororesin films and the like. In addition, modified films such as these crosslinked films and ionomer films are also used. Furthermore, a laminated film in which a plurality of the above films are laminated may be used. In addition, “(meth) acrylic acid” in the present specification means both acrylic acid and methacrylic acid. The same applies to other similar terms.
 上記の中でも、ポリオレフィン系フィルムが好ましく、ポリエチレンフィルム、ポリプロピレンフィルムおよびエチレン-プロピレン共重合体フィルムがより好ましく、さらにはエチレン-プロピレン共重合体フィルムが特に好ましい。これらの樹脂フィルムによれば、前述した物性を満たし易く、特に、エチレン-プロピレン共重合体フィルムの場合には、エチレンモノマーとプロピレンモノマーとの共重合比を調整することにより、前述した物性を満たし易い。また、これらの樹脂フィルムは、ワーク貼付性やチップ剥離性の観点からも好ましい。 Among the above, polyolefin film is preferable, polyethylene film, polypropylene film and ethylene-propylene copolymer film are more preferable, and ethylene-propylene copolymer film is particularly preferable. According to these resin films, the above-described physical properties are easily satisfied. In particular, in the case of an ethylene-propylene copolymer film, the above-described physical properties are satisfied by adjusting the copolymerization ratio of the ethylene monomer and the propylene monomer. easy. Moreover, these resin films are preferable also from a viewpoint of workpiece sticking property or chip peelability.
 上記樹脂フィルムは、その表面に積層される粘着剤層42との密着性を向上させる目的で、所望により片面または両面に、酸化法や凹凸化法等による表面処理、あるいはプライマー処理を施すことができる。上記酸化法としては、例えばコロナ放電処理、プラズマ放電処理、クロム酸化処理(湿式)、火炎処理、熱風処理、オゾン、紫外線照射処理等が挙げられる。また、凹凸化法としては、例えばサンドブラスト法、溶射処理法等が挙げられる。 The resin film may be subjected to a surface treatment by an oxidation method, an unevenness method, or a primer treatment on one or both sides as desired for the purpose of improving the adhesion with the pressure-sensitive adhesive layer 42 laminated on the surface. it can. Examples of the oxidation method include corona discharge treatment, plasma discharge treatment, chromium oxidation treatment (wet), flame treatment, hot air treatment, ozone, and ultraviolet irradiation treatment. Examples of the unevenness method include a sand blast method and a thermal spraying method.
 なお、基材41は、上記樹脂フィルム中に、着色剤、難燃剤、可塑剤、帯電防止剤、滑剤、フィラー等の各種添加剤を含有してもよい。 The base material 41 may contain various additives such as a colorant, a flame retardant, a plasticizer, an antistatic agent, a lubricant, and a filler in the resin film.
 基材41の厚さは、保護膜形成用シート3が使用される各工程において適切に機能できる限り、特に限定されないが、20μm~450μmであることが好ましく、25μm~400μmであることがより好ましく、50μm~350μmであることが特に好ましい。
 なお、「厚さ」とは、任意の5箇所で、接触式厚み計で厚さを測定した平均で表される値を意味する。
The thickness of the substrate 41 is not particularly limited as long as it can function properly in each step in which the protective film forming sheet 3 is used, but is preferably 20 μm to 450 μm, more preferably 25 μm to 400 μm. 50 μm to 350 μm is particularly preferable.
The “thickness” means a value represented by an average of thicknesses measured with a contact-type thickness meter at any five locations.
1-2.粘着剤層
 本発明の一実施形態である保護膜形成用シート3に係る第1の支持シート4が備える粘着剤層42は、エネルギー線非硬化性粘着剤から構成されてもよいし、エネルギー線硬化性粘着剤から構成されてもよい。エネルギー線非硬化性粘着剤としては、所望の粘着力および再剥離性を有するものが好ましく、例えば、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ポリエステル系粘着剤、ポリビニルエーテル系粘着剤等を使用することができる。これらの中でも、保護膜形成フィルム1との密着性が高いアクリル系粘着剤が好ましい。
1-2. Pressure-sensitive adhesive layer The pressure-sensitive adhesive layer 42 provided in the first support sheet 4 according to the protective film-forming sheet 3 according to an embodiment of the present invention may be composed of an energy ray non-curable pressure-sensitive adhesive, or energy rays. You may be comprised from a curable adhesive. As the energy ray non-curable adhesive, those having desired adhesive strength and removability are preferable, for example, acrylic adhesive, rubber adhesive, silicone adhesive, urethane adhesive, polyester adhesive. Polyvinyl ether-based pressure-sensitive adhesives can be used. Among these, an acrylic pressure-sensitive adhesive having high adhesion to the protective film-forming film 1 is preferable.
 一方、エネルギー線硬化性粘着剤は、エネルギー線照射により粘着力が低下する。そのため、エネルギー線硬化性粘着剤を用いれば、ワークまたは加工物と第1の支持シート4とを分離させたいときに、エネルギー線を照射することにより、容易に分離させることができる。
 エネルギー線としては、通常、紫外線、電子線等が用いられる。エネルギー線の照射量は、エネルギー線の種類によって異なるが、例えば紫外線の場合には、光量で50~1000mJ/cmが好ましく、100~500mJ/cmがより好ましい。また、電子線の場合には、10~1000krad程度が好ましい。
On the other hand, the adhesive strength of the energy ray-curable adhesive is reduced by irradiation with energy rays. Therefore, if an energy ray-curable pressure-sensitive adhesive is used, when the work or workpiece and the first support sheet 4 are desired to be separated, they can be easily separated by irradiating energy rays.
As energy rays, ultraviolet rays, electron beams, etc. are usually used. Irradiation of energy rays varies depending on the kind of energy rays, for example, in the case of ultraviolet rays, preferably 50 ~ 1000mJ / cm 2 in quantity, more preferably 100 ~ 500mJ / cm 2. In the case of an electron beam, about 10 to 1000 krad is preferable.
 粘着剤層42がエネルギー線硬化性粘着剤からなる場合、保護膜形成用シート3における粘着剤層42は硬化していることが好ましい。エネルギー線硬化性粘着剤を硬化した材料は、通常、弾性率が高く、かつ表面の平滑性が高いため、かかる材料からなる硬化部分に接触している保護膜形成フィルム1を硬化させて保護膜を形成すると、前記粘着剤層42の硬化部分と接触している前記保護膜の表面は、平滑性(グロス)が高くなり、チップの保護膜として美観に優れたものとなる。また、表面平滑性の高い保護膜にレーザ印字が施されると、その印字の視認性が向上する。 When the pressure-sensitive adhesive layer 42 is made of an energy ray-curable pressure-sensitive adhesive, the pressure-sensitive adhesive layer 42 in the protective film forming sheet 3 is preferably cured. A material obtained by curing an energy ray-curable pressure-sensitive adhesive usually has a high elastic modulus and high surface smoothness. Therefore, the protective film-forming film 1 in contact with a cured portion made of such a material is cured to form a protective film. When the surface is formed, the surface of the protective film in contact with the cured portion of the pressure-sensitive adhesive layer 42 has high smoothness (gloss), and is excellent in appearance as a protective film for the chip. Further, when laser printing is performed on a protective film having high surface smoothness, the visibility of the printing is improved.
 粘着剤層42を構成するエネルギー線硬化性粘着剤は、エネルギー線硬化性を有するポリマーを主成分とするものであってもよいし;エネルギー線硬化性を有しないポリマーとエネルギー線硬化性の多官能モノマーおよびオリゴマーからなる群から選択される少なくとも1つの成分との混合物を主成分とする粘着剤であってもよい。 The energy ray-curable pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer 42 may be mainly composed of a polymer having energy ray-curing property; a polymer having no energy ray-curing property and many energy ray-curing properties. The pressure-sensitive adhesive may be mainly composed of a mixture with at least one component selected from the group consisting of functional monomers and oligomers.
 エネルギー線硬化性粘着剤が、エネルギー線硬化性を有するポリマーを主成分とする場合について、以下説明する。
 なお、ここでいう「主成分」とは、エネルギー線硬化性粘着剤の総質量に対して、60質量%以上含まれることを意味する。
The case where the energy ray curable pressure-sensitive adhesive is mainly composed of a polymer having energy ray curable properties will be described below.
The “main component” as used herein means that it is contained in an amount of 60% by mass or more based on the total mass of the energy ray-curable pressure-sensitive adhesive.
 エネルギー線硬化性を有するポリマーは、側鎖にエネルギー線硬化性を有する官能基(即ち、エネルギー線硬化性基)が導入された(メタ)アクリル酸エステル(共)重合体(A)(以下「エネルギー線硬化型重合体(A)」という場合がある。)であることが好ましい。このエネルギー線硬化型重合体(A)は、官能基含有モノマー単位を有する(メタ)アクリル系共重合体(a1)と、その官能基に結合する置換基を有する不飽和基含有化合物(a2)とを反応させて得られる重合体であることが好ましい。 The polymer having energy ray curability is a (meth) acrylic acid ester (co) polymer (A) in which a functional group having energy ray curability (that is, energy ray curable group) is introduced into the side chain (hereinafter referred to as “ It is preferably an energy beam curable polymer (A) ”. This energy ray curable polymer (A) includes a (meth) acrylic copolymer (a1) having a functional group-containing monomer unit, and an unsaturated group-containing compound (a2) having a substituent bonded to the functional group. It is preferable that it is a polymer obtained by making it react.
 アクリル系共重合体(a1)は、少なくとも官能基含有モノマーから導かれる構成単位と、(メタ)アクリル酸エステルモノマーまたはその誘導体から導かれる構成単位とからなる。 The acrylic copolymer (a1) comprises at least a structural unit derived from a functional group-containing monomer and a structural unit derived from a (meth) acrylate monomer or a derivative thereof.
 上記官能基含有モノマーから導かれる構成単位における官能基含有モノマーとしては、重合性の二重結合と、ヒドロキシル基、アミノ基、置換アミノ基、エポキシ基等の官能基とを分子内に有するモノマーが好ましい。 The functional group-containing monomer in the structural unit derived from the functional group-containing monomer includes a monomer having a polymerizable double bond and a functional group such as a hydroxyl group, an amino group, a substituted amino group, and an epoxy group in the molecule. preferable.
 上記官能基含有モノマーのさらに具体的な例としては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等が挙げられ、これらは単独でまたは2種以上を組み合わせて用いられる。 More specific examples of the functional group-containing monomer include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and the like. These may be used alone or in combination of two or more.
 上記(メタ)アクリル酸エステルモノマーとしては、アルキル基の炭素数が1~20であるアルキル(メタ)アクリレート、アルキル基の炭素数が3~11のシクロアルキル(メタ)アクリレート、ベンジル(メタ)アクリレート等が用いられる。これらの中でも、ルキル基の炭素数が1~18であるアルキル(メタ)アクリレートが好ましく、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等が挙げられる。 Examples of the (meth) acrylic acid ester monomer include alkyl (meth) acrylates having an alkyl group having 1 to 20 carbon atoms, cycloalkyl (meth) acrylates having an alkyl group having 3 to 11 carbon atoms, and benzyl (meth) acrylate. Etc. are used. Among these, alkyl (meth) acrylates having an alkyl group having 1 to 18 carbon atoms are preferred, such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, Examples include 2-ethylhexyl (meth) acrylate.
 アクリル系共重合体(a1)は、アクリル系共重合体(a1)の総質量に対して、上記官能基含有モノマーから導かれる構成単位を通常3~100質量%、好ましくは5~40質量%の割合で含有し、(メタ)アクリル酸エステルモノマーまたはその誘導体から導かれる構成単位を通常0~97質量%、好ましくは60~95質量%の割合で含有してなる。
 即ち、アクリル系共重合体(a1)は、アクリル系共重合体(a1)の総質量に対して、上記官能基含有モノマーから導かれる構成単位を3~100質量%の割合で含有し、(メタ)アクリル酸エステルモノマーまたはその誘導体から導かれる構成単位を通常0~97質量%の割合で含有することが好ましく;上記官能基含有モノマーから導かれる構成単位を5~40質量%の割合で含有し、(メタ)アクリル酸エステルモノマーまたはその誘導体から導かれる構成単位を通常60~95質量%の割合で含有することがより好ましい。
 なお、上記官能基含有モノマーから導かれる構成単位と(メタ)アクリル酸エステルモノマーまたはその誘導体から導かれる構成単位の合計質量は、100質量%を超えない。
In the acrylic copolymer (a1), the structural unit derived from the functional group-containing monomer is usually 3 to 100% by mass, preferably 5 to 40% by mass, based on the total mass of the acrylic copolymer (a1). And a structural unit derived from a (meth) acrylic acid ester monomer or a derivative thereof is usually contained in an amount of 0 to 97% by mass, preferably 60 to 95% by mass.
That is, the acrylic copolymer (a1) contains 3 to 100% by mass of structural units derived from the functional group-containing monomer with respect to the total mass of the acrylic copolymer (a1). It is preferable that a structural unit derived from a meth) acrylate monomer or a derivative thereof is usually contained in a proportion of 0 to 97% by mass; a structural unit derived from the functional group-containing monomer is contained in a proportion of 5 to 40% by mass. It is more preferable that the structural unit derived from the (meth) acrylic acid ester monomer or a derivative thereof is usually contained in a proportion of 60 to 95% by mass.
In addition, the total mass of the structural unit derived from the functional group-containing monomer and the structural unit derived from the (meth) acrylic acid ester monomer or derivative thereof does not exceed 100% by mass.
 アクリル系共重合体(a1)は、上記のような官能基含有モノマーと、(メタ)アクリル酸エステルモノマーまたはその誘導体とを常法で共重合することにより得られるが、これらモノマーの他にもジメチルアクリルアミド、蟻酸ビニル、酢酸ビニル、スチレン等が共重合されてもよい。 The acrylic copolymer (a1) can be obtained by copolymerizing a functional group-containing monomer as described above with a (meth) acrylic acid ester monomer or a derivative thereof in a conventional manner. Dimethylacrylamide, vinyl formate, vinyl acetate, styrene and the like may be copolymerized.
 上記官能基含有モノマー単位(即ち、官能基含有モノマーから導かれる構成単位)を有するアクリル系共重合体(a1)を、その官能基に結合する置換基を有する不飽和基含有化合物(a2)と反応させることにより、エネルギー線硬化型重合体(A)が得られる。 An unsaturated group-containing compound (a2) having a substituent bonded to the functional group, the acrylic copolymer (a1) having the functional group-containing monomer unit (that is, a structural unit derived from the functional group-containing monomer); By making it react, an energy ray hardening-type polymer (A) is obtained.
 不飽和基含有化合物(a2)が有する置換基は、アクリル系共重合体(a1)が有する官能基含有モノマー単位の官能基の種類に応じて、適宜選択することができる。例えば、官能基がヒドロキシル基、アミノ基または置換アミノ基の場合、置換基としてはイソシアネート基またはエポキシ基が好ましく、官能基がエポキシ基の場合、置換基としてはアミノ基、カルボキシル基またはアジリジニル基が好ましい。 The substituent of the unsaturated group-containing compound (a2) can be appropriately selected according to the type of functional group of the functional group-containing monomer unit of the acrylic copolymer (a1). For example, when the functional group is a hydroxyl group, an amino group or a substituted amino group, the substituent is preferably an isocyanate group or an epoxy group, and when the functional group is an epoxy group, the substituent is an amino group, a carboxyl group or an aziridinyl group. preferable.
 また、不飽和基含有化合物(a2)には、エネルギー線重合性の炭素-炭素二重結合が、1分子毎に1~5個、好ましくは1~2個含まれている。このような不飽和基含有化合物(a2)の具体例としては、例えば、2-メタクリロイルオキシエチルイソシアネート、メタ-イソプロペニル-α,α-ジメチルベンジルイソシアネート、メタクリロイルイソシアネート、アリルイソシアネート、1,1-(ビスアクリロイルオキシメチル)エチルイソシアネート;ジイソシアネート化合物またはポリイソシアネート化合物と、ヒドロキシエチル(メタ)アクリレートとの反応により得られるアクリロイルモノイソシアネート化合物;ジイソシアネート化合物またはポリイソシアネート化合物と、ポリオール化合物と、ヒドロキシエチル(メタ)アクリレートとの反応により得られるアクリロイルモノイソシアネート化合物;グリシジル(メタ)アクリレート;(メタ)アクリル酸、2-(1-アジリジニル)エチル(メタ)アクリレート;または2-ビニル-2-オキサゾリン;2-イソプロペニル-2-オキサゾリン等のアルケニルオキサゾリン化合物等が挙げられる。
 上記の中でも、2-メタクリロイルオキシエチルイソシアネートが好ましい。
The unsaturated group-containing compound (a2) contains 1 to 5, preferably 1 to 2, energy beam polymerizable carbon-carbon double bonds per molecule. Specific examples of such unsaturated group-containing compound (a2) include, for example, 2-methacryloyloxyethyl isocyanate, meta-isopropenyl-α, α-dimethylbenzyl isocyanate, methacryloyl isocyanate, allyl isocyanate, 1,1- ( Bisacryloyloxymethyl) ethyl isocyanate; acryloyl monoisocyanate compound obtained by reaction of diisocyanate compound or polyisocyanate compound with hydroxyethyl (meth) acrylate; diisocyanate compound or polyisocyanate compound, polyol compound, and hydroxyethyl (meth) Acryloyl monoisocyanate compound obtained by reaction with acrylate; glycidyl (meth) acrylate; (meth) acrylic acid, 2- (1 -Aziridinyl) ethyl (meth) acrylate; or 2-vinyl-2-oxazoline; alkenyl oxazoline compounds such as 2-isopropenyl-2-oxazoline.
Among the above, 2-methacryloyloxyethyl isocyanate is preferable.
 不飽和基含有化合物(a2)は、上記アクリル系共重合体(a1)の官能基含有モノマー100当量当たり、通常10~100当量、好ましくは20~95当量の割合で用いられる。 The unsaturated group-containing compound (a2) is usually used in a proportion of 10 to 100 equivalents, preferably 20 to 95 equivalents, per 100 equivalents of the functional group-containing monomer of the acrylic copolymer (a1).
 アクリル系共重合体(a1)と不飽和基含有化合物(a2)との反応においては、官能基と置換基との組合せに応じて、反応の温度、圧力、溶媒、時間、触媒の有無、触媒の種類を適宜選択することができる。これにより、アクリル系共重合体(a1)中に存在する官能基と、不飽和基含有化合物(a2)中の置換基とが反応し、不飽和基がアクリル系共重合体(a1)中の側鎖に導入され、エネルギー線硬化型重合体(A)が得られる。 In the reaction between the acrylic copolymer (a1) and the unsaturated group-containing compound (a2), depending on the combination of the functional group and the substituent, the reaction temperature, pressure, solvent, time, presence of catalyst, catalyst Can be selected as appropriate. As a result, the functional group present in the acrylic copolymer (a1) reacts with the substituent in the unsaturated group-containing compound (a2), so that the unsaturated group is contained in the acrylic copolymer (a1). It introduce | transduces into a side chain and an energy-beam curable polymer (A) is obtained.
 このようにして得られるエネルギー線硬化型重合体(A)の重量平均分子量は、1万以上が好ましく、15万~150万がより好ましく、20万~100万でが特に好ましい。なお、本明細書における重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー法(GPC法)により測定したポリスチレン換算の値である。 The weight average molecular weight of the energy beam curable polymer (A) thus obtained is preferably 10,000 or more, more preferably 150,000 to 1,500,000, particularly preferably 200,000 to 1,000,000. In addition, the weight average molecular weight (Mw) in this specification is the value of polystyrene conversion measured by the gel permeation chromatography method (GPC method).
 エネルギー線硬化性粘着剤が、エネルギー線硬化性を有するポリマーを主成分とする場合であっても、エネルギー線硬化性粘着剤は、エネルギー線硬化性のモノマーおよびオリゴマーからなる群から選択される少なくとも1つの成分(B)をさらに含有してもよい。 Even when the energy beam curable pressure sensitive adhesive is mainly composed of a polymer having energy beam curable properties, the energy beam curable pressure sensitive adhesive is at least selected from the group consisting of energy beam curable monomers and oligomers. One component (B) may be further contained.
 エネルギー線硬化性のモノマーおよびオリゴマーからなる群から選択される少なくとも1つの成分(B)としては、例えば、多価アルコールと(メタ)アクリル酸とのエステル等を使用することができる。 As at least one component (B) selected from the group consisting of energy ray-curable monomers and oligomers, for example, an ester of a polyhydric alcohol and (meth) acrylic acid can be used.
 かかるエネルギー線硬化性のモノマーおよびオリゴマーからなる群から選択される少なくとも1つの成分(B)としては、例えば、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等の単官能性アクリル酸エステル類;トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート等の多官能性アクリル酸エステル類;ポリエステルオリゴ(メタ)アクリレート、ポリウレタンオリゴ(メタ)アクリレート等が挙げられる。
 上記の中でも多官能性アクリル酸エステル類、ポリウレタンオリゴ(メタ)アクリレートが好ましい。
Examples of at least one component (B) selected from the group consisting of such energy ray-curable monomers and oligomers include monofunctional acrylates such as cyclohexyl (meth) acrylate and isobornyl (meth) acrylate; Methylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexane Polyfunctional oligoesters such as diol di (meth) acrylate, polyethylene glycol di (meth) acrylate, dimethylol tricyclodecane di (meth) acrylate; polyester oligo (meth) acrylate Rate, and polyurethane oligo (meth) acrylate.
Among these, polyfunctional acrylic acid esters and polyurethane oligo (meth) acrylate are preferable.
 エネルギー線硬化性のモノマーおよび/オリゴマーからなる群から選択される少なくとも1つの成分(B)を配合する場合、エネルギー線硬化性粘着剤中におけるエネルギー線硬化性のモノマーおよびオリゴマーからなる群から選択される少なくとも1つの成分(B)の含有量は、前記エネルギー線硬化性粘着剤の総質量に対して、5~80質量%であることが好ましく、20~60質量%であることがより好ましい。 When blending at least one component (B) selected from the group consisting of energy beam curable monomers and / or oligomers, it is selected from the group consisting of energy beam curable monomers and oligomers in the energy beam curable adhesive. The content of at least one component (B) is preferably 5 to 80% by mass, more preferably 20 to 60% by mass, based on the total mass of the energy ray-curable pressure-sensitive adhesive.
 ここで、エネルギー線硬化性樹脂組成物を硬化させるためのエネルギー線として紫外線を用いる場合には、さらに光重合開始剤(C)を添加することが好ましく、この光重合開始剤(C)の使用により、重合硬化時間および光線照射量を少なくすることができる。 Here, when using ultraviolet rays as an energy ray for curing the energy ray-curable resin composition, it is preferable to further add a photopolymerization initiator (C). Use of this photopolymerization initiator (C) Thus, the polymerization curing time and the amount of light irradiation can be reduced.
 光重合開始剤(C)としては、具体的には、ベンゾフェノン、アセトフェノン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾイン安息香酸、ベンゾイン安息香酸メチル、ベンゾインジメチルケタール、2,4-ジエチルチオキサンソン、1-ヒドロキシシクロヘキシルフェニルケトン、ベンジルジフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロニトリル、ベンジル、ジベンジル、ジアセチル、β-クロールアンスラキノン、(2,4,6-トリメチルベンジルジフェニル)フォスフィンオキサイド、2-ベンゾチアゾール-N,N-ジエチルジチオカルバメート、オリゴ{2-ヒドロキシ-2-メチル-1-[4-(1-プロペニル)フェニル]プロパノン}、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン等が挙げられる。
 これらは単独で用いてもよいし、2種以上を併用してもよい。
Specific examples of the photopolymerization initiator (C) include benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, benzoin methyl benzoate, benzoin dimethyl ketal, 2,4-diethylthioxanthone, 1-hydroxycyclohexyl phenyl ketone, benzyldiphenyl sulfide, tetramethylthiuram monosulfide, azobisisobutyronitrile, benzyl, dibenzyl, diacetyl, β-chloranthraquinone, (2,4 6-trimethylbenzyldiphenyl) phosphine oxide, 2-benzothiazole-N, N-diethyldithiocarbamate, oligo {2-hydroxy-2-methy 1- [4- (1-propenyl) phenyl] propanone}, 2,2-dimethoxy-like.
These may be used alone or in combination of two or more.
 光重合開始剤(C)は、エネルギー線硬化型共重合体(A)(エネルギー線硬化性のモノマーおよびオリゴマーからなる群から選択される少なくとも1つの成分(B)を配合する場合には、エネルギー線硬化型共重合体(A)、およびエネルギー線硬化性のモノマーおよびオリゴマーからなる群から選択される少なくとも1つの成分(B)の合計量を100質量部とする)を100質量部としたとき、0.1~10質量部、特には0.5~6質量部の範囲の量で用いられることが好ましい。 The photopolymerization initiator (C) is an energy ray curable copolymer (A) (in the case of blending at least one component (B) selected from the group consisting of energy ray curable monomers and oligomers). When the total amount of the linear curable copolymer (A) and at least one component (B) selected from the group consisting of energy ray curable monomers and oligomers is 100 parts by mass) is 100 parts by mass The amount is preferably 0.1 to 10 parts by mass, particularly 0.5 to 6 parts by mass.
 エネルギー線硬化性粘着剤においては、上記成分以外にも、適宜他の成分を配合してもよい。他の成分としては、例えば、エネルギー線硬化性を有しないポリマー成分またはオリゴマー成分(D)、架橋剤(E)等が挙げられる。
 即ち、エネルギー線硬化性粘着剤の1つの側面は、エネルギー線硬化型共重合体(A)と、所望によりエネルギー線硬化性のモノマーおよびオリゴマーからなる群から選択される少なくとも1つの成分(B)、光重合開始剤(C)、エネルギー線硬化性を有しないポリマー成分またはオリゴマー成分(D)、および架橋剤(E)からなる群から選択される少なくとも1つの成分を含む。
In the energy ray curable pressure-sensitive adhesive, other components may be appropriately blended in addition to the above components. Examples of other components include a polymer component or oligomer component (D) that does not have energy beam curability, and a crosslinking agent (E).
That is, one aspect of the energy beam curable pressure-sensitive adhesive is at least one component (B) selected from the group consisting of an energy beam curable copolymer (A) and, optionally, an energy beam curable monomer and oligomer. And at least one component selected from the group consisting of a photopolymerization initiator (C), a polymer component or oligomer component (D) having no energy ray curability, and a crosslinking agent (E).
 エネルギー線硬化性を有しないポリマー成分またはオリゴマー成分(D)としては、例えば、ポリアクリル酸エステル、ポリエステル、ポリウレタン、ポリカーボネート、ポリオレフィン等が挙げられ、重量平均分子量(Mw)が3000~250万のポリマーまたはオリゴマーが好ましい。 Examples of the polymer component or oligomer component (D) having no energy ray curability include polyacrylates, polyesters, polyurethanes, polycarbonates, polyolefins, etc., and polymers having a weight average molecular weight (Mw) of 3,000 to 2.5 million. Or an oligomer is preferable.
 架橋剤(E)としては、エネルギー線硬化型共重合体(A)等が有する官能基との反応性を有する多官能性化合物を用いることができる。このような多官能性化合物の例としては、イソシアナート化合物、エポキシ化合物、アミン化合物、メラミン化合物、アジリジン化合物、ヒドラジン化合物、アルデヒド化合物、オキサゾリン化合物、金属アルコキシド化合物、金属キレート化合物、金属塩、アンモニウム塩、反応性フェノール樹脂等を挙げることができる。 As the crosslinking agent (E), a polyfunctional compound having reactivity with the functional group of the energy beam curable copolymer (A) or the like can be used. Examples of such polyfunctional compounds include isocyanate compounds, epoxy compounds, amine compounds, melamine compounds, aziridine compounds, hydrazine compounds, aldehyde compounds, oxazoline compounds, metal alkoxide compounds, metal chelate compounds, metal salts, ammonium salts. And reactive phenol resins.
 これら他の成分(D)、(E)をエネルギー線硬化性粘着剤に配合することにより、硬化前における粘着性および剥離性、硬化後の強度、他の層との接着性、保存安定性等を改善し得る。これら他の成分の配合量は特に限定されず、エネルギー線硬化型共重合体(A)100質量部に対して0~40質量部の範囲で適宜決定される。 By blending these other components (D) and (E) into the energy ray-curable pressure-sensitive adhesive, tackiness and peelability before curing, strength after curing, adhesion to other layers, storage stability, etc. Can improve. The blending amount of these other components is not particularly limited, and is appropriately determined in the range of 0 to 40 parts by mass with respect to 100 parts by mass of the energy beam curable copolymer (A).
 次に、エネルギー線硬化性粘着剤が、エネルギー線硬化性を有しないポリマー成分とエネルギー線硬化性の多官能モノマーおよびオリゴマーからなる群から選択される少なくとも1つとの混合物を主成分とする場合について、以下説明する。 Next, when the energy ray curable pressure-sensitive adhesive is mainly composed of a mixture of a polymer component not having energy ray curable properties and at least one selected from the group consisting of energy ray curable polyfunctional monomers and oligomers. This will be described below.
 エネルギー線硬化性を有しないポリマー成分としては、例えば、前述したアクリル系共重合体(a1)と同様の成分が使用できる。エネルギー線硬化性樹脂組成物中におけるエネルギー線硬化性を有しないポリマー成分の含有量は、前記エネルギー線硬化性樹脂組成物の総質量に対して、20~99.9質量%であることが好ましく、特に30~80質量%であることが好ましい。 As the polymer component having no energy beam curability, for example, the same components as those of the acrylic copolymer (a1) described above can be used. The content of the polymer component having no energy beam curability in the energy beam curable resin composition is preferably 20 to 99.9% by mass with respect to the total mass of the energy beam curable resin composition. In particular, it is preferably 30 to 80% by mass.
 エネルギー線硬化性の多官能モノマーおよびオリゴマーからなる群から選択される少なくとも1つの成分としては、前述の成分(B)と同じものが選択される。エネルギー線硬化性を有しないポリマー成分とエネルギー線硬化性の多官能モノマーおよびオリゴマーからなる群から選択される少なくとも1つの成分との配合比は、エネルギー線硬化性を有しないポリマー成分を100質量部としたとき、多官能モノマーおよびオリゴマーからなる群から選択される少なくとも1つの成分は、10~150質量部であるのが好ましく、25~100質量部であるのがより好ましい。 As the at least one component selected from the group consisting of energy ray-curable polyfunctional monomers and oligomers, the same components as the aforementioned component (B) are selected. The blending ratio of the polymer component not having energy ray curability to at least one component selected from the group consisting of energy ray curable polyfunctional monomers and oligomers is 100 parts by mass of the polymer component not having energy ray curability. In this case, at least one component selected from the group consisting of a polyfunctional monomer and an oligomer is preferably 10 to 150 parts by mass, and more preferably 25 to 100 parts by mass.
 この場合においても、上記と同様に、光重合開始剤(C)や架橋剤(E)を適宜配合することができる。
 即ち、エネルギー線硬化性粘着剤の1つの側面は、エネルギー線硬化性を有しないポリマー成分と、エネルギー線硬化性の多官能モノマーおよびオリゴマーからなる群から選択される少なくとも1つの成分と、所望により、光重合開始剤(C)および架橋剤(E)からなる群から選択される少なくとも1つの成分とを含む。
Also in this case, the photopolymerization initiator (C) and the crosslinking agent (E) can be appropriately blended as described above.
That is, one aspect of the energy ray curable pressure-sensitive adhesive is a polymer component that does not have energy ray curable, at least one component selected from the group consisting of energy ray curable polyfunctional monomers and oligomers, and, if desired, And at least one component selected from the group consisting of a photopolymerization initiator (C) and a crosslinking agent (E).
 粘着剤層42の厚さは、保護膜形成用シート3が使用される各工程において適切に機能できる限り、特に限定されない。具体的には、1μm~50μmであることが好ましく、2μm~30μmであることがより好ましく、3μm~20μmであることが特に好ましい。 The thickness of the pressure-sensitive adhesive layer 42 is not particularly limited as long as it can function properly in each step in which the protective film forming sheet 3 is used. Specifically, the thickness is preferably 1 μm to 50 μm, more preferably 2 μm to 30 μm, and particularly preferably 3 μm to 20 μm.
2.保護膜形成フィルム
 保護膜形成フィルム1は、ワークまたは前記ワークを加工して得られる加工物に保護膜を形成するためのフィルムである。この保護膜は硬化した保護膜形成フィルム1から構成される。ワークとしては、例えば半導体ウエハ等が挙げられ、前記ワークを加工して得られる加工物としては、例えば半導体チップが挙げられるが、本発明はこれらに限定されるものではない。なお、ワークが半導体ウエハの場合、保護膜は、半導体ウエハの裏面側(バンプ等の電極が形成されていない側)に形成される。
2. Protective film forming film The protective film forming film 1 is a film for forming a protective film on a workpiece or a workpiece obtained by processing the workpiece. This protective film is composed of a cured protective film-forming film 1. Examples of the workpiece include a semiconductor wafer, and examples of the workpiece obtained by processing the workpiece include a semiconductor chip. However, the present invention is not limited to these. When the work is a semiconductor wafer, the protective film is formed on the back side of the semiconductor wafer (the side on which no electrodes such as bumps are formed).
 保護膜形成フィルム1は、単層からなるフィルムであってもよいし、複数層からなるフィルムであってもよいが、光線透過率の制御の容易性および製造コストの面から単層からなることが好ましい。 The protective film-forming film 1 may be a single-layer film or a multi-layer film. However, the protective-film-forming film 1 is a single layer in terms of ease of light transmittance control and manufacturing cost. Is preferred.
 保護膜形成フィルム1は、硬化性材料からなることが好ましく、そのような材料の具体例として、未硬化の硬化性接着剤が挙げられる。この場合、保護膜形成フィルム1に半導体ウエハ等のワークを重ね合わせた後、保護膜形成フィルム1を硬化させることにより、硬化した保護膜形成フィルム1から構成される保護膜をワークに強固に接着させることができ、耐久性を有する保護膜をチップ等に形成することができる。
 即ち、本発明の一実施形態である保護膜形成用シートの1つの側面は、未硬化の硬化性材料からなる保護膜形成フィルムを含む。
The protective film-forming film 1 is preferably made of a curable material, and a specific example of such a material is an uncured curable adhesive. In this case, after a workpiece such as a semiconductor wafer is overlaid on the protective film forming film 1, the protective film forming film 1 is cured, thereby firmly bonding the protective film formed of the cured protective film forming film 1 to the workpiece. A durable protective film can be formed on the chip or the like.
That is, one side surface of the protective film forming sheet according to one embodiment of the present invention includes a protective film forming film made of an uncured curable material.
 保護膜形成フィルム1は、常温で粘着性を有するか、加熱により粘着性を発揮することが好ましい。これにより、上記のように保護膜形成フィルム1に半導体ウエハ等のワークを重ね合わせるときに両者を貼合させることができる。したがって、保護膜形成フィルム1を硬化させる前に位置決めを確実に行うことができる。 The protective film-forming film 1 preferably has adhesiveness at room temperature or exhibits adhesiveness by heating. Thereby, when superposing | stacking workpiece | work, such as a semiconductor wafer, on the protective film formation film 1 as mentioned above, both can be bonded. Therefore, positioning can be reliably performed before the protective film forming film 1 is cured.
 上記のような特性を有する保護膜形成フィルム1を構成する硬化性接着剤は、硬化性成分とバインダーポリマー成分とを含有することが好ましい。硬化性成分としては、熱硬化性成分、エネルギー線硬化性成分、またはこれらの混合物を用いることができるが、熱硬化性成分を用いることが特に好ましい。すなわち、保護膜形成フィルム1は、熱硬化性接着剤から構成されることが好ましい。 It is preferable that the curable adhesive constituting the protective film-forming film 1 having the above characteristics contains a curable component and a binder polymer component. As the curable component, a thermosetting component, an energy ray curable component, or a mixture thereof can be used, but it is particularly preferable to use a thermosetting component. That is, the protective film forming film 1 is preferably composed of a thermosetting adhesive.
 熱硬化性成分としては、例えば、エポキシ樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂、ポリエステル樹脂、ウレタン樹脂、アクリル樹脂、ポリイミド樹脂、ベンゾオキサジン樹脂等およびこれらの混合物が挙げられる。これらの中でも、エポキシ樹脂、フェノール樹脂およびこれらの混合物が好ましく用いられる。 Examples of the thermosetting component include epoxy resins, phenol resins, melamine resins, urea resins, polyester resins, urethane resins, acrylic resins, polyimide resins, benzoxazine resins, and mixtures thereof. Among these, an epoxy resin, a phenol resin, and a mixture thereof are preferably used.
 エポキシ樹脂は、加熱を受けると三次元網状化し、強固な被膜を形成する性質を有する。このようなエポキシ樹脂としては、従来より公知の種々のエポキシ樹脂が用いられるが、通常は、分子量(式量)300~2000程度のものが好ましく、分子量300~500のものがより好ましい。さらには、分子量330~400の、常温で液状のエポキシ樹脂と、分子量400~2500、特に分子量500~2000の、常温で固体のエポキシ樹脂と、をブレンドして用いることが好ましい。また、エポキシ樹脂のエポキシ当量は、50~5000g/eqであることが好ましい。 Epoxy resin has the property of forming a three-dimensional network and forming a strong film when heated. As such an epoxy resin, conventionally known various epoxy resins are used, but those having a molecular weight (formula) of about 300 to 2000 are preferable, and those having a molecular weight of 300 to 500 are more preferable. Further, it is preferable to use a blend of an epoxy resin having a molecular weight of 330 to 400 and liquid at normal temperature and an epoxy resin having a molecular weight of 400 to 2500, particularly 500 to 2000 and solid at normal temperature. The epoxy equivalent of the epoxy resin is preferably 50 to 5000 g / eq.
 このようなエポキシ樹脂としては、具体的には、ビスフェノールA、ビスフェノールF、レゾルシノール、フェニルノボラック、クレゾールノボラック等のフェノール類のグリシジルエーテル;ブタンジオール、ポリエチレングリコール、ポリプロピレングリコール等のアルコール類のグリシジルエーテル;フタル酸、イソフタル酸、テトラヒドロフタル酸等のカルボン酸のグリシジルエーテル;アニリンイソシアヌレート等の窒素原子に結合した活性水素をグリシジル基で置換したグリシジル型もしくはアルキルグリシジル型のエポキシ樹脂;ビニルシクロヘキサンジエポキシド、3,4-エポキシシクロヘキシルメチル-3,4-ジシクロヘキサンカルボキシレート、2-(3,4-エポキシ)シクロヘキシル-5,5-スピロ(3,4-エポキシ)シクロヘキサン-m-ジオキサン等のように、分子内の炭素-炭素二重結合を例えば酸化することによりエポキシが導入された、いわゆる脂環型エポキシドを挙げることができる。その他、ビフェニル骨格、ジシクロヘキサジエン骨格、ナフタレン骨格等を有するエポキシ樹脂を用いることもできる。 Specific examples of such epoxy resins include glycidyl ethers of phenols such as bisphenol A, bisphenol F, resorcinol, phenyl novolac, and cresol novolac; glycidyl ethers of alcohols such as butanediol, polyethylene glycol, and polypropylene glycol; Glycidyl ethers of carboxylic acids such as phthalic acid, isophthalic acid, tetrahydrophthalic acid; glycidyl type or alkyl glycidyl type epoxy resins in which active hydrogen bonded to nitrogen atom such as aniline isocyanurate is substituted with glycidyl group; 3,4-epoxycyclohexylmethyl-3,4-dicyclohexanecarboxylate, 2- (3,4-epoxy) cyclohexyl-5,5-spiro (3 - Epoxy) as cyclohexane -m- dioxane, carbon in the molecule - epoxy is introduced by for example oxidation to carbon double bond include a so-called alicyclic epoxides. In addition, an epoxy resin having a biphenyl skeleton, a dicyclohexadiene skeleton, a naphthalene skeleton, or the like can also be used.
 これらの中でも、ビスフェノール系グリシジル型エポキシ樹脂、o-クレゾールノボラック型エポキシ樹脂およびフェノールノボラック型エポキシ樹脂が好ましく用いられる。これらエポキシ樹脂は、1種を単独で、または2種以上を組み合わせて用いてもよい。 Among these, bisphenol-based glycidyl type epoxy resins, o-cresol novolac type epoxy resins and phenol novolac type epoxy resins are preferably used. These epoxy resins may be used alone or in combination of two or more.
 エポキシ樹脂を用いる場合には、助剤として、熱活性型潜在性エポキシ樹脂硬化剤を併用することが好ましい。「熱活性型潜在性エポキシ樹脂硬化剤」とは、室温ではエポキシ樹脂と反応せず、ある温度以上の加熱により活性化し、エポキシ樹脂と反応するタイプの硬化剤である。熱活性型潜在性エポキシ樹脂硬化剤の活性化方法には、加熱による化学反応で活性種(アニオン、カチオン)を生成する方法;室温付近ではエポキシ樹脂中に安定に分散しており高温でエポキシ樹脂と相溶・溶解し、硬化反応を開始する方法;モレキュラーシーブ封入タイプの硬化剤で高温で溶出して硬化反応を開始する方法;マイクロカプセルによる方法等が存在する。 In the case of using an epoxy resin, it is preferable to use a thermally activated latent epoxy resin curing agent in combination as an auxiliary agent. The “thermally active latent epoxy resin curing agent” is a type of curing agent that does not react with the epoxy resin at room temperature but is activated by heating at a certain temperature or more and reacts with the epoxy resin. The heat activated latent epoxy resin curing agent is activated by a method in which active species (anions and cations) are generated by a chemical reaction by heating; the epoxy resin is stably dispersed in the epoxy resin at around room temperature and is heated at a high temperature. There are a method of initiating a curing reaction by dissolving and dissolving with a solvent; a method of starting a curing reaction by elution at a high temperature with a molecular sieve encapsulated type curing agent; a method using a microcapsule and the like.
 熱活性型潜在性エポキシ樹脂硬化剤の具体例としては、各種オニウム塩や、二塩基酸ジヒドラジド化合物、ジシアンジアミド、アミンアダクト硬化剤、イミダゾール化合物等の高融点活性水素化合物等を挙げることができる。これら熱活性型潜在性エポキシ樹脂硬化剤は、1種を単独で、または2種以上を組み合わせて用いることができる。上記のような熱活性型潜在性エポキシ樹脂硬化剤は、エポキシ樹脂100重量部に対して、好ましくは0.1~20重量部、特に好ましくは0.2~10重量部、さらに好ましくは0.3~5重量部の割合で用いられる。 Specific examples of the thermally active latent epoxy resin curing agent include various onium salts, dibasic acid dihydrazide compounds, dicyandiamide, amine adduct curing agents, high melting point active hydrogen compounds such as imidazole compounds, and the like. These thermally activated latent epoxy resin curing agents can be used singly or in combination of two or more. The heat-activatable latent epoxy resin curing agent as described above is preferably 0.1 to 20 parts by weight, particularly preferably 0.2 to 10 parts by weight, and still more preferably 0.8 to 100 parts by weight of the epoxy resin. It is used at a ratio of 3 to 5 parts by weight.
 フェノール系樹脂としては、アルキルフェノール、多価フェノール、ナフトール等のフェノール類とアルデヒド類との縮合物等が特に制限されることなく用いられる。具体的には、フェノールノボラック樹脂、o-クレゾールノボラック樹脂、p-クレゾールノボラック樹脂、t-ブチルフェノールノボラック樹脂、ジシクロペンタジエンクレゾール樹脂、ポリパラビニルフェノール樹脂、ビスフェノールA型ノボラック樹脂、あるいはこれらの変性物等が用いられる。 As the phenolic resin, condensates of phenols such as alkylphenols, polyhydric phenols, naphthols, and aldehydes are used without particular limitation. Specifically, phenol novolak resin, o-cresol novolak resin, p-cresol novolak resin, t-butylphenol novolak resin, dicyclopentadiene cresol resin, polyparavinylphenol resin, bisphenol A type novolak resin, or modified products thereof Etc. are used.
 これらのフェノール系樹脂に含まれるフェノール性水酸基は、上記エポキシ樹脂のエポキシ基と加熱により容易に付加反応して、耐衝撃性の高い硬化物を形成することができる。このため、エポキシ樹脂とフェノール系樹脂とを併用してもよい。 The phenolic hydroxyl group contained in these phenolic resins can easily undergo an addition reaction with the epoxy group of the above epoxy resin by heating to form a cured product having high impact resistance. For this reason, you may use together an epoxy resin and a phenol-type resin.
 エネルギー線硬化性成分としては、粘着剤層42におけるエネルギー線硬化性を有するポリマーや、エネルギー線硬化性のモノマーおよびオリゴマーからなる群から選択される少なくとも1つの成分として挙げた成分が挙げられる。 Examples of the energy ray curable component include components listed as at least one component selected from the group consisting of an energy ray curable polymer in the pressure-sensitive adhesive layer 42 and energy ray curable monomers and oligomers.
 バインダーポリマー成分は、保護膜形成フィルム1に適度なタックを与え、保護膜形成用シート3の操作性を向上することができる。バインダーポリマーの重量平均分子量は、通常は5万~200万、好ましくは10万~150万、特に好ましくは20万~100万の範囲にある。重量平均分子量が低過ぎると、保護膜形成フィルム1のフィルム形成が不十分となり、高過ぎると他の成分との相溶性が悪くなり、結果として均一なフィルム形成が妨げられる。即ち、重量平均分子量が上記下限値以上であると、保護膜形成フィルム1のフィルム形成が十分であり、上記上限値以下であると他の成分との相溶性が良好であり、結果として均一なフィルムを形成することができる。このようなバインダーポリマーとしては、例えば、アクリル系ポリマー、ポリエステル樹脂、フェノキシ樹脂、ウレタン樹脂、シリコーン樹脂、ゴム系ポリマー等が用いられ、特にアクリル系ポリマーが好ましく用いられる。 The binder polymer component can give an appropriate tack to the protective film forming film 1 and improve the operability of the protective film forming sheet 3. The weight average molecular weight of the binder polymer is usually in the range of 50,000 to 2,000,000, preferably 100,000 to 1,500,000, particularly preferably 200,000 to 1,000,000. When the weight average molecular weight is too low, the film formation of the protective film-forming film 1 becomes insufficient, and when it is too high, the compatibility with other components is deteriorated, and as a result, uniform film formation is prevented. That is, when the weight average molecular weight is not less than the above lower limit value, film formation of the protective film-forming film 1 is sufficient, and when it is not more than the above upper limit value, the compatibility with other components is good, and as a result, uniform. A film can be formed. As such a binder polymer, for example, an acrylic polymer, a polyester resin, a phenoxy resin, a urethane resin, a silicone resin, a rubber polymer, and the like are used, and an acrylic polymer is particularly preferably used.
 アクリル系ポリマーとしては、例えば、(メタ)アクリル酸エステルモノマーと(メタ)アクリル酸誘導体から導かれる構成単位とからなる(メタ)アクリル酸エステル共重合体が挙げられる。ここで(メタ)アクリル酸エステルモノマーとしては、好ましくはアルキル基の炭素数が1~18である(メタ)アクリル酸アルキルエステルが挙げられ、具体的には(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル等が挙げられる。また、(メタ)アクリル酸誘導体としては、例えば、(メタ)アクリル酸、(メタ)アクリル酸グリシジル、(メタ)アクリル酸ヒドロキシエチル等が挙げられる。 Examples of the acrylic polymer include a (meth) acrylic acid ester copolymer composed of a (meth) acrylic acid ester monomer and a structural unit derived from a (meth) acrylic acid derivative. Here, the (meth) acrylic acid ester monomer is preferably a (meth) acrylic acid alkyl ester having an alkyl group having 1 to 18 carbon atoms, specifically, methyl (meth) acrylate, (meth) Examples include ethyl acrylate, propyl (meth) acrylate, and butyl (meth) acrylate. Examples of (meth) acrylic acid derivatives include (meth) acrylic acid, glycidyl (meth) acrylate, and hydroxyethyl (meth) acrylate.
 上記の中でもメタクリル酸グリシジル等を構成単位として用いてアクリル系ポリマーにグリシジル基を導入すると、前述した熱硬化性成分としてのエポキシ樹脂との相溶性が向上し、保護膜形成フィルム1の硬化後のガラス転移温度(Tg)が高くなり、耐熱性が向上する。また、上記の中でもアクリル酸ヒドロキシエチル等を構成単位として用いてアクリル系ポリマーに水酸基を導入すると、ワークへの密着性や粘着物性をコントロールすることができる。 Among them, when a glycidyl group is introduced into an acrylic polymer using glycidyl methacrylate as a constituent unit, the compatibility with the epoxy resin as the thermosetting component described above is improved, and the protective film-forming film 1 after being cured is cured. Glass transition temperature (Tg) becomes high and heat resistance improves. In addition, among the above, when a hydroxyl group is introduced into an acrylic polymer using hydroxyethyl acrylate or the like as a structural unit, adhesion to a workpiece and physical properties of an adhesive can be controlled.
 バインダーポリマーとしてアクリル系ポリマーを使用した場合における前記ポリマーの重量平均分子量は、好ましくは10万以上であり、特に好ましくは15万~100万である。アクリル系ポリマーのガラス転移温度は通常20℃以下、好ましくは-70℃~0℃程度であり、常温(23℃)においては粘着性を有する。 When the acrylic polymer is used as the binder polymer, the weight average molecular weight of the polymer is preferably 100,000 or more, particularly preferably 150,000 to 1,000,000. The glass transition temperature of the acrylic polymer is usually 20 ° C. or lower, preferably about −70 ° C. to 0 ° C., and has adhesiveness at room temperature (23 ° C.).
 熱硬化性成分とバインダーポリマー成分との配合比率は、バインダーポリマー成分を100重量部としたとき、熱硬化性成分の配合量、好ましくは50~1500重量部、より好ましくは70~1000重量部、特に好ましくは80~800重量部である。このような割合で熱硬化性成分とバインダーポリマー成分とを配合すると、硬化前には適度なタックを示し、貼付作業を安定して行うことができ、また硬化後には、被膜強度に優れた保護膜が得られる。 The blending ratio of the thermosetting component and the binder polymer component is the blending amount of the thermosetting component, preferably 50-1500 parts by weight, more preferably 70-1000 parts by weight, when the binder polymer component is 100 parts by weight. Particularly preferred is 80 to 800 parts by weight. When the thermosetting component and the binder polymer component are blended in such a ratio, an appropriate tack is exhibited before curing, and the sticking operation can be stably performed. A membrane is obtained.
 保護膜形成フィルム1は、着色剤およびフィラーからなる群から選択される少なくとも1つの成分をさらに含有してもよい。 The protective film-forming film 1 may further contain at least one component selected from the group consisting of a colorant and a filler.
 着色剤としては、例えば、無機系顔料、有機系顔料、有機系染料等公知の着色剤を使用することができるが、光線透過率の制御性を高める観点から、着色剤は有機系の着色剤を含有することが好ましい。着色剤の化学的安定性(具体的には、溶出しにくさ、色移りの生じにくさ、経時変化の少なさが例示される。)を高める観点から、着色剤は顔料からなる着色剤であることが好ましい。 As the colorant, for example, known colorants such as inorganic pigments, organic pigments, organic dyes and the like can be used. From the viewpoint of improving the controllability of light transmittance, the colorant is an organic colorant. It is preferable to contain. From the viewpoint of enhancing the chemical stability of the colorant (specifically, elution resistance, difficulty in color transfer, and little change over time are exemplified), the colorant is a colorant composed of a pigment. Preferably there is.
 フィラーとしては、結晶シリカ、溶融シリカ、合成シリカ等のシリカや、アルミナ、ガラスバルーン等の無機フィラーが挙げられる。中でもシリカが好ましく、合成シリカがより好ましく、特に半導体装置の誤作動の要因となるα線の線源を極力除去したタイプの合成シリカが最適である。フィラーの形状としては、球形、針状、不定形等が挙げられるが、球形であることが好ましく、特に真球形であることが好ましい。フィラーが球形または真球形であると、光線の乱反射が生じ難く、保護膜形成フィルム1の光線透過率のスペクトルのプロファイルの制御が容易となる。
 着色剤およびフィラーからなる群から選択される少なくとも1つの成分の含有量としては、保護膜形成フィルム全体の質量に対して、5~75質量%が好ましい。
 フィラーの平均粒径は0.005~20μmが好ましい。
Examples of the filler include silica such as crystalline silica, fused silica, and synthetic silica, and inorganic filler such as alumina and glass balloon. Among these, silica is preferable, synthetic silica is more preferable, and synthetic silica of the type in which α-ray sources that cause malfunction of the semiconductor device are removed as much as possible is optimal. Examples of the shape of the filler include a spherical shape, a needle shape, and an indefinite shape, and a spherical shape is preferable, and a true spherical shape is particularly preferable. When the filler is spherical or true spherical, irregular reflection of light does not easily occur, and control of the light transmittance spectrum profile of the protective film-forming film 1 becomes easy.
The content of at least one component selected from the group consisting of a colorant and a filler is preferably 5 to 75% by mass with respect to the total mass of the protective film-forming film.
The average particle size of the filler is preferably 0.005 to 20 μm.
 また、保護膜形成フィルム1は、カップリング剤を含有してもよい。カップリング剤を含有することにより、保護膜形成フィルム1の硬化後において、保護膜の耐熱性を損なわずに、前記保護膜とワークとの接着性および密着性を向上させることができるとともに、さらに耐水性(耐湿熱性)も向上させることができる。カップリング剤としては、その汎用性とコストメリット等からシランカップリング剤が好ましい。 Further, the protective film forming film 1 may contain a coupling agent. By containing the coupling agent, after the protective film forming film 1 is cured, the adhesiveness and adhesion between the protective film and the workpiece can be improved without impairing the heat resistance of the protective film. Water resistance (moisture heat resistance) can also be improved. As the coupling agent, a silane coupling agent is preferable because of its versatility and cost merit.
 シランカップリング剤としては、例えば、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-(メタクリロキシプロピル)トリメトキシシラン、γ-アミノプロピルトリメトキシシラン、N-6-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-6-(アミノエチル)-γ-アミノプロピルメチルジエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-ウレイドプロピルトリエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、ビス(3-トリエトキシシリルプロピル)テトラスルファン、メチルトリメトキシシラン、メチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリアセトキシシラン、イミダゾールシラン等が挙げられる。これらの中でも、γ-グリシドキシプロピルトリメトキシシランが好ましい。これらは1種を単独で、または2種以上混合して使用することができる。
 保護膜形成フィルム1がバインダーポリマー成分および硬化性成分を含有する場合、カップリング剤の含有量としては、バインダーポリマー成分および硬化性成分の質量部の合計を100質量部としたとき、0.1~5質量部が好ましい。
Examples of the silane coupling agent include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ- (methacryloxy). Propyl) trimethoxysilane, γ-aminopropyltrimethoxysilane, N-6- (aminoethyl) -γ-aminopropyltrimethoxysilane, N-6- (aminoethyl) -γ-aminopropylmethyldiethoxysilane, N -Phenyl-γ-aminopropyltrimethoxysilane, γ-ureidopropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, bis (3-triethoxysilylpropyl) tetrasulfane, methyltri Methoxysilane , Methyltriethoxysilane, vinyltrimethoxysilane, vinyltriacetoxysilane, imidazolesilane and the like. Of these, γ-glycidoxypropyltrimethoxysilane is preferred. These can be used individually by 1 type or in mixture of 2 or more types.
When the protective film-forming film 1 contains a binder polymer component and a curable component, the content of the coupling agent is 0.1 when the total mass part of the binder polymer component and the curable component is 100 parts by mass. ~ 5 parts by mass are preferred.
 保護膜形成フィルム1は、硬化前の凝集力を調節するために、有機多価イソシアナート化合物、有機多価イミン化合物、有機金属キレート化合物等の架橋剤を含有してもよい。また、保護膜形成フィルム1は、静電気を抑制し、チップの信頼性を向上させるために、帯電防止剤を含有してもよい。さらに、保護膜形成フィルム1は、保護膜の難燃性能を高め、パッケージとしての信頼性を向上させるために、リン酸化合物、ブロム化合物、リン系化合物等の難燃剤を含有してもよい。
 即ち、保護膜形成フィルム1の1つの側面は、硬化性成分と、バインダーポリマー成分と、所望により、着色剤およびフィラーからなる群から選択される少なくとも1つの成分、カップリング剤、架橋剤、帯電防止剤、および難燃剤からなる群から選択される少なくも1つの成分と、を含む。
The protective film-forming film 1 may contain a crosslinking agent such as an organic polyvalent isocyanate compound, an organic polyvalent imine compound, and an organometallic chelate compound in order to adjust the cohesive force before curing. The protective film-forming film 1 may contain an antistatic agent in order to suppress static electricity and improve the reliability of the chip. Furthermore, the protective film-forming film 1 may contain a flame retardant such as a phosphoric acid compound, a bromine compound, or a phosphorus compound in order to enhance the flame retardant performance of the protective film and improve the reliability as a package.
That is, one side surface of the protective film-forming film 1 includes at least one component selected from the group consisting of a curable component, a binder polymer component, and, if desired, a colorant and a filler, a coupling agent, a crosslinking agent, a charging agent. And at least one component selected from the group consisting of an inhibitor and a flame retardant.
 保護膜形成フィルム1の厚さは、保護膜としての機能を効果的に発揮させるために、3μm~300μmであることが好ましく、5μm~200μmであることがより好ましく、7μm~100μmであることが特に好ましい。 The thickness of the protective film-forming film 1 is preferably 3 μm to 300 μm, more preferably 5 μm to 200 μm, and more preferably 7 μm to 100 μm in order to effectively exhibit the function as a protective film. Particularly preferred.
3.保護膜
 本発明の一実施形態に係る保護膜形成フィルム1から形成された保護膜は、次の特性を備える。
3. Protective film The protective film formed from the protective film formation film 1 which concerns on one Embodiment of this invention is equipped with the following characteristic.
 保護膜は、50℃における破断ひずみが0.1%以上、20%以下である。かかる破断ひずみが20%以下であることにより、後述する条件で第1の支持シート4を伸長した(エキスパンドさせた)際に、第1の支持シート4が備える保護膜を適切に分割することが可能となる。50℃における破断ひずみが20%を超えると、保護膜の分割が不適切になりやすく、具体的には、分割部分において保護膜を形成する材料が部分的に糸状となって分割しない現象(本明細書において「糸曳き現象」ともいう。)が生じやすくなる。保護膜の適切な分割をより安定的に達成する観点から、保護膜の50℃における破断ひずみは、0.2%以上、15%以下であることが好ましく、0.3%以上、13%以下であることがより好ましく、0.5%以上、10%以下であることが特に好ましい。
 なお、保護膜の「50℃における破断ひずみ」は、後述する試験例に記載する方法により測定することができる。
The protective film has a breaking strain at 50 ° C. of 0.1% or more and 20% or less. When the breaking strain is 20% or less, when the first support sheet 4 is expanded (expanded) under the conditions described later, the protective film provided in the first support sheet 4 can be appropriately divided. It becomes possible. When the breaking strain at 50 ° C. exceeds 20%, the protective film is likely to be divided inappropriately. Specifically, the phenomenon in which the material forming the protective film in the divided portion is partly thread-like and does not split (this book In the specification, it is also referred to as “stringing phenomenon”). From the viewpoint of more stably achieving appropriate division of the protective film, the breaking strain at 50 ° C. of the protective film is preferably 0.2% or more and 15% or less, and is 0.3% or more and 13% or less. It is more preferable that it is 0.5% or more and 10% or less.
The “breaking strain at 50 ° C.” of the protective film can be measured by a method described in a test example described later.
 保護膜は、損失正接のピーク温度T1が25℃から60℃の範囲内にある。損失正接のピーク温度T1が上記の範囲内にあることにより、後述する条件(具体的には、第1の分割工程における第1の支持シート4を伸長させるときの保護膜の温度T2を40℃から70℃の範囲内に保持すること)で第1の支持シート4を伸長させた(エキスパンドさせた)際に、第1の支持シート4が備える保護膜を適切に分割することが可能となる。温度T1が過度に低い場合には、保護膜が軟質化し、保護膜の50℃における破断ひずみが20%を超えやすくなる。温度T1が過度に高い場合には、保護膜が硬質化し、第1の支持シート4をエキスパンドした際に保護膜の分割が適切に行われにくくなる。保護膜の適切な分割をより安定的に達成する観点から、温度T2は、損失正接のピーク温度T1以上であることが好ましい。
 なお、保護膜の「損失正接のピーク温度」は、後述する試験例に記載の方法により測定することができる。
The protective film has a loss tangent peak temperature T1 in the range of 25 ° C to 60 ° C. When the loss tangent peak temperature T1 is within the above range, the condition described later (specifically, the temperature T2 of the protective film when the first support sheet 4 is extended in the first dividing step is 40 ° C.) When the first support sheet 4 is stretched (expanded) by maintaining the temperature within a range of 70 ° C. to 70 ° C., the protective film provided in the first support sheet 4 can be appropriately divided. . When the temperature T1 is excessively low, the protective film becomes soft, and the breaking strain at 50 ° C. of the protective film tends to exceed 20%. When the temperature T1 is excessively high, the protective film is hardened, and when the first support sheet 4 is expanded, it is difficult to appropriately divide the protective film. From the viewpoint of more stably achieving appropriate division of the protective film, the temperature T2 is preferably equal to or higher than the peak temperature T1 of the loss tangent.
The “peak temperature of loss tangent” of the protective film can be measured by the method described in a test example described later.
 保護膜は、25℃における貯蔵弾性率が3.0×10Pa以上、5.0×1011以下であることが好ましく、5.0×10Pa以上、1.0×1011以下であることがより好ましい。保護膜の25℃における貯蔵弾性率が3.0×10Pa以上であることにより、保護膜付き半導体チップを第1の支持シート4から分離させる際に、保護膜が疵付く不具合が生じにくい。 The protective film preferably has a storage elastic modulus at 25 ° C. of 3.0 × 10 9 Pa or more and 5.0 × 10 11 or less, and is 5.0 × 10 9 Pa or more and 1.0 × 10 11 or less. More preferably. When the storage elastic modulus at 25 ° C. of the protective film is 3.0 × 10 9 Pa or more, when the semiconductor chip with the protective film is separated from the first support sheet 4, the problem that the protective film gets stuck is less likely to occur. .
 保護膜は、25℃における損失正接が0.01以上、0.4以下であることが好ましい。保護膜の25℃における損失正接が0.4以下であることにより、保護膜付き半導体チップを第1の支持シート4から分離させる際に、保護膜が疵付く不具合が生じにくい。保護膜の25℃における損失正接は、0.03以上0.3以下であることがより好ましく、0.05以上0.2以下であることが特に好ましい。
 なお、保護膜の「25℃における貯蔵弾性率」および「25℃における損失正接」は、後述する試験例に記載する方法により測定することができる。
The protective film preferably has a loss tangent at 25 ° C. of 0.01 or more and 0.4 or less. When the loss tangent at 25 ° C. of the protective film is 0.4 or less, when the semiconductor chip with the protective film is separated from the first support sheet 4, the problem that the protective film becomes sticky is less likely to occur. The loss tangent of the protective film at 25 ° C. is more preferably 0.03 or more and 0.3 or less, and particularly preferably 0.05 or more and 0.2 or less.
The “storage elastic modulus at 25 ° C.” and “loss tangent at 25 ° C.” of the protective film can be measured by the methods described in the test examples described later.
 保護膜は、波長1064nmの光線透過率は40%以上、100%以下であることが好ましい。保護膜の波長1064nmの光線透過率は40%以上であることにより、ステルスダイシングのためのレーザ光を効率的に半導体ウエハ等のワーク内に到達させることができる。レーザ光の効率的な半導体ウエハへの到達をより安定的に実現する観点から、保護膜の波長1064nmの光線透過率は、50%以上、99.9%以下であることが好ましく、60%以上、99.5%以下であることがより好ましい。 The protective film preferably has a light transmittance at a wavelength of 1064 nm of 40% or more and 100% or less. Since the light transmittance at a wavelength of 1064 nm of the protective film is 40% or more, the laser light for stealth dicing can efficiently reach the workpiece such as a semiconductor wafer. From the viewpoint of more stably realizing efficient arrival of the laser beam to the semiconductor wafer, the light transmittance at a wavelength of 1064 nm of the protective film is preferably 50% or more and 99.9% or less, and 60% or more. 99.5% or less is more preferable.
 保護膜は、50℃における破断応力が1.0×10Pa以上、2.0×10Pa以下であることが好ましい。かかる破断応力が2.0×10Pa以下であることにより、後述する条件で第1の支持シート4を伸長した(エキスパンドさせた)際に、第1の支持シート4が備える保護膜を適切に分割することが可能となる。保護膜の適切な分割をより安定的に達成する観点から、保護膜の50℃における破断応力は、5.0×10Pa以上、1.9×10Pa以下であることがより好ましく、5.0×10Pa以上、1.8×10Pa以下であることが特に好ましく、8.0×10Pa以上、1.7×10Pa以下であることがさらに好ましい。
 なお、保護膜の「50℃における破断応力」は、後述する試験例に記載する方法により測定することができる。
The protective film preferably has a breaking stress at 50 ° C. of 1.0 × 10 3 Pa or more and 2.0 × 10 7 Pa or less. When the breaking stress is 2.0 × 10 7 Pa or less, when the first support sheet 4 is expanded (expanded) under the conditions described later, the protective film included in the first support sheet 4 is appropriately used. It becomes possible to divide into. From the viewpoint of more stably achieving appropriate division of the protective film, the breaking stress at 50 ° C. of the protective film is more preferably 5.0 × 10 3 Pa or more and 1.9 × 10 7 Pa or less, It is particularly preferably 5.0 × 10 3 Pa or more and 1.8 × 10 7 Pa or less, and more preferably 8.0 × 10 3 Pa or more and 1.7 × 10 7 Pa or less.
The “breaking stress at 50 ° C.” of the protective film can be measured by a method described in a test example described later.
 即ち、本発明の保護膜形成用シートの1つの側面は、前記保護膜形成フィルムを有し、前記保護膜形成フィルムは以下の特性を有する保護膜形成用シートである:
 50℃における破断ひずみが0.1%以上、20%以下であり、かつ損失正接のピーク温度T1が25℃から60℃の範囲内にある。
 前記保護膜形成フィルムは以下の少なくとも1つの特性をさらに有していてもよい:
 25℃における貯蔵弾性率が3.0×10Pa以上、5.0×1011以下である;
 25℃における損失正接が0.01以上、0.4以下である;
 波長1064nmの光線透過率は40%以上、100%以下である;
 50℃における破断応力が1.0×10Pa以上、2.0×10Pa以下である。
 なお、ここでいう「特性」とは、保護膜形成フィルムの化学的または物理化学的特性を意味する。
That is, one side surface of the protective film-forming sheet of the present invention has the protective film-forming film, and the protective film-forming film is a protective film-forming sheet having the following characteristics:
The breaking strain at 50 ° C. is 0.1% or more and 20% or less, and the loss tangent peak temperature T1 is in the range of 25 ° C. to 60 ° C.
The protective film-forming film may further have at least one of the following characteristics:
Storage elastic modulus at 25 ° C. is 3.0 × 10 9 Pa or more and 5.0 × 10 11 or less;
Loss tangent at 25 ° C. is 0.01 or more and 0.4 or less;
The light transmittance at a wavelength of 1064 nm is 40% or more and 100% or less;
The breaking stress at 50 ° C. is 1.0 × 10 3 Pa or more and 2.0 × 10 7 Pa or less.
Here, the “characteristic” means a chemical or physicochemical characteristic of the protective film-forming film.
4.治具用粘着剤層
 治具用粘着剤層5を構成する粘着剤としては、所望の粘着力および再剥離性を有する粘着剤が好ましく、例えば、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ポリエステル系粘着剤、ポリビニルエーテル系粘着剤等を使用することができる。これらの中でも、リングフレーム等の治具との密着性が高く、ダイシング工程等にてリングフレーム等から保護膜形成用シート3が剥がれることを効果的に抑制することのできるアクリル系粘着剤が好ましい。なお、治具用粘着剤層5の厚さ方向の途中には、芯材としての基材が介在していてもよい。
4). Adhesive layer for jigs Adhesives constituting the adhesive layer 5 for jigs are preferably adhesives having a desired adhesive strength and removability, such as acrylic adhesives, rubber adhesives, and silicone adhesives. An adhesive, a urethane-based adhesive, a polyester-based adhesive, a polyvinyl ether-based adhesive, or the like can be used. Among these, an acrylic pressure-sensitive adhesive that has high adhesion to a jig such as a ring frame and can effectively prevent the protective film forming sheet 3 from being peeled off from the ring frame or the like in a dicing process or the like is preferable. . In addition, the base material as a core material may intervene in the middle of the thickness direction of the adhesive layer 5 for jigs.
 一方、治具用粘着剤層5の厚さは、リングフレーム等の治具に対する接着性の観点から、5μm~200μmであることが好ましく、10μm~100μmであることがより好ましい。 On the other hand, the thickness of the jig pressure-sensitive adhesive layer 5 is preferably 5 μm to 200 μm, more preferably 10 μm to 100 μm, from the viewpoint of adhesion to a jig such as a ring frame.
5.剥離シート
 本発明の一実施形態である保護膜形成用シート3に係る剥離シート6は、保護膜形成用シート3が使用されるまでの間、保護膜形成フィルム1および治具用粘着剤層5を保護する。
5. Release sheet The release sheet 6 according to the protective film-forming sheet 3 according to an embodiment of the present invention includes the protective film-forming film 1 and the jig adhesive layer 5 until the protective film-forming sheet 3 is used. Protect.
 剥離シート6の構成は任意であり、プラスチックフィルムを剥離剤等により剥離処理したシートが例示される。プラスチックフィルムの具体例としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム;およびポリプロピレンやポリエチレン等のポリオレフィンフィルムが挙げられる。剥離剤としては、シリコーン系剥離剤、フッ素系剥離剤、長鎖アルキル系剥離剤等を用いることができるが、これらの中で、安価で安定した性能が得られるシリコーン系剥離剤が好ましい。剥離シート6の厚さについては特に制限はないが、通常20μm~250μm程度である。 The configuration of the release sheet 6 is arbitrary, and a sheet obtained by peeling a plastic film with a release agent or the like is exemplified. Specific examples of the plastic film include polyester films such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; and polyolefin films such as polypropylene and polyethylene. As the release agent, a silicone release agent, a fluorine release agent, a long-chain alkyl release agent, or the like can be used, and among these, a silicone release agent that can provide stable performance at low cost is preferable. The thickness of the release sheet 6 is not particularly limited, but is usually about 20 μm to 250 μm.
6.保護膜形成用シートの製造方法
 保護膜形成用シート3は、好ましくは、保護膜形成フィルム1を含む積層体(本明細書において「積層体I」ともいう。)と、第1の支持シート4を含む積層体(本明細書において「積層体II」ともいう。)とを別々に作製した後、積層体Iおよび積層体IIを使用して、保護膜形成フィルム1と第1の支持シート4とを積層することにより製造することができるが、これに限定されるものではない。
6). Method for Producing Protective Film Forming Sheet The protective film forming sheet 3 is preferably a laminate including the protective film forming film 1 (also referred to as “laminate I” in this specification) and the first support sheet 4. Are separately produced, and then the protective film-forming film 1 and the first support sheet 4 are prepared using the laminate I and the laminate II. However, the present invention is not limited to this.
 積層体Iを製造するには、第1の剥離シートの剥離面に、保護膜形成フィルム1を形成する。具体的には、保護膜形成フィルム1を構成する硬化性接着剤と、所望によりさらに溶媒とを含有する保護膜形成フィルム用の塗布剤を調製し、ロールコーター、ナイフコーター、ロールナイフコーター、エアナイフコーター、ダイコーター、バーコーター、グラビアコーター、カーテンコーター等の塗工機によって第1の剥離シートの剥離面に前記塗布剤を塗布して乾燥させて、保護膜形成フィルム1を第1の剥離シートの剥離面に形成する。次に、保護膜形成フィルム1の露出面に第2の剥離シートの剥離面を重ねて圧着し、2枚の剥離シートに保護膜形成フィルム1が挟持されてなる積層体(積層体I)を得る。 To manufacture the laminate I, the protective film forming film 1 is formed on the release surface of the first release sheet. Specifically, a coating agent for a protective film-forming film containing a curable adhesive constituting the protective film-forming film 1 and, if desired, further a solvent is prepared, and a roll coater, a knife coater, a roll knife coater, an air knife The coating agent is applied to the release surface of the first release sheet by a coating machine such as a coater, die coater, bar coater, gravure coater, curtain coater, and the like, and dried to form the protective film forming film 1 as the first release sheet. Formed on the release surface. Next, a laminate (laminate I) in which the protective film-forming film 1 is sandwiched between two release sheets by laminating the release surface of the second release sheet on the exposed surface of the protective film-forming film 1 and press-bonding it. obtain.
 この積層体Iにおいては、所望によりハーフカットを施し、保護膜形成フィルム1(および第2の剥離シート)を所望の形状、例えば円形等にしてもよい。この場合、ハーフカットにより生じた保護膜形成フィルム1および第2の剥離シートの余分な部分は、適宜除去すればよい。 In this laminate I, half-cutting may be performed if desired, and the protective film-forming film 1 (and the second release sheet) may be formed in a desired shape, for example, a circle. In this case, what is necessary is just to remove suitably the protective film formation film 1 and the excess part of the 2nd peeling sheet which arose by the half cut.
 一方、積層体IIを製造するには、第3の剥離シートの剥離面に、粘着剤層42を構成する粘着剤と、所望によりさらに溶媒とを含有する粘着剤層用の塗布剤を塗布し乾燥させて、第3の剥離シートの剥離面に粘着剤層42を形成する。その後、粘着剤層42の露出面に基材41を圧着し、基材41および粘着剤層42からなる第1の支持シート4と、第3の剥離シートとからなる積層体(積層体II)を得る。 On the other hand, in order to produce the laminate II, an adhesive for the adhesive layer containing the adhesive constituting the adhesive layer 42 and optionally further a solvent is applied to the release surface of the third release sheet. It is made to dry and the adhesive layer 42 is formed in the peeling surface of a 3rd peeling sheet. Then, the base material 41 is crimped | bonded to the exposed surface of the adhesive layer 42, and the laminated body (laminated body II) which consists of the 1st support sheet 4 which consists of the base material 41 and the adhesive layer 42, and a 3rd peeling sheet. Get.
 ここで、粘着剤層42がエネルギー線硬化性粘着剤からなる場合には、この段階で粘着剤層42に対してエネルギー線を照射して、粘着剤層42を硬化させてもよいし、保護膜形成フィルム1を積層した後にエネルギー線を照射して粘着剤層42を硬化させてもよい。また、保護膜形成フィルム1を積層した後に粘着剤層42を硬化させる場合、ダイシング工程前に粘着剤層42を硬化させてもよいし、ダイシング工程後に粘着剤層42を硬化させてもよい。 Here, when the pressure-sensitive adhesive layer 42 is made of an energy ray-curable pressure-sensitive adhesive, the pressure-sensitive adhesive layer 42 may be irradiated with energy rays at this stage to cure the pressure-sensitive adhesive layer 42 or to protect it. The pressure-sensitive adhesive layer 42 may be cured by irradiating energy rays after laminating the film-forming film 1. Moreover, when hardening the adhesive layer 42 after laminating | stacking the protective film formation film 1, the adhesive layer 42 may be hardened before a dicing process, and the adhesive layer 42 may be hardened after a dicing process.
 エネルギー線としては、通常、紫外線、電子線等が用いられる。エネルギー線の照射量は、エネルギー線の種類によって異なるが、例えば紫外線の場合には、光量で50~1000mJ/cmが好ましく、100~500mJ/cmがより好ましい。また、電子線の場合には、10~1000krad程度が好ましい。 As energy rays, ultraviolet rays, electron beams, etc. are usually used. Irradiation of energy rays varies depending on the kind of energy rays, for example, in the case of ultraviolet rays, preferably 50 ~ 1000mJ / cm 2 in quantity, more preferably 100 ~ 500mJ / cm 2. In the case of an electron beam, about 10 to 1000 krad is preferable.
 以上のようにして積層体Iおよび積層体IIが得られたら、積層体Iにおける第2の剥離シートを剥離するとともに、積層体IIにおける第3の剥離シートを剥離し、積層体Iにて露出した保護膜形成フィルム1と、積層体IIにて露出した第1の支持シート4の粘着剤層42とを重ね合わせて圧着する。第1の支持シート4は、所望によりハーフカットし、所望の形状、例えば保護膜形成フィルム1よりも大きい径を有する円形等にしてもよい。この場合、ハーフカットにより生じた第1の支持シート4の余分な部分は、適宜除去すればよい。 When laminate I and laminate II are obtained as described above, the second release sheet in laminate I is peeled off, and the third release sheet in laminate II is peeled off and exposed in laminate I. The protective film forming film 1 and the pressure-sensitive adhesive layer 42 of the first support sheet 4 exposed in the laminate II are overlapped and pressure-bonded. The first support sheet 4 may be half-cut as desired to have a desired shape, for example, a circle having a larger diameter than the protective film-forming film 1. In this case, an excess portion of the first support sheet 4 generated by the half cut may be removed as appropriate.
 このようにして、基材41の上に粘着剤層42が積層されてなる第1の支持シート4と、第1の支持シート4における粘着剤層42が積層されている側に積層された保護膜形成フィルム1と、保護膜形成フィルム1における第1の支持シート4と対向する面とは反対側に面に積層された第1の剥離シートとからなる保護膜形成用シート3が得られる。最後に、第1の剥離シートを剥離した後、保護膜形成フィルム1における第1の支持シート4と対向する面とは反対側の面の周縁部に、治具用粘着剤層5を形成する。治具用粘着剤層5も、上記粘着剤層42と同様の方法により塗布し形成することができる。 Thus, the 1st support sheet 4 by which the adhesive layer 42 is laminated | stacked on the base material 41, and the protection laminated | stacked on the side by which the adhesive layer 42 in the 1st support sheet 4 is laminated | stacked. A protective film-forming sheet 3 comprising the film-forming film 1 and a first release sheet laminated on the surface opposite to the surface facing the first support sheet 4 in the protective film-forming film 1 is obtained. Finally, after peeling the first release sheet, the jig pressure-sensitive adhesive layer 5 is formed on the peripheral edge of the surface opposite to the surface facing the first support sheet 4 in the protective film forming film 1. . The jig pressure-sensitive adhesive layer 5 can also be applied and formed in the same manner as the pressure-sensitive adhesive layer 42.
7.保護膜形成用シートの使用方法
 本発明の一実施形態である保護膜形成用シート3を用いて、一例としてワークとしての半導体ウエハから保護膜付きチップを製造する方法を以下に説明する。
7). Method for Using Protective Film Forming Sheet A method for producing a chip with a protective film from a semiconductor wafer as a work as an example using the protective film forming sheet 3 according to one embodiment of the present invention will be described below.
(1)第1の貼付工程
 まず、上記の本発明の一実施形態に係る保護膜形成用シート3が備える保護膜形成フィルム1における第1の支持シート4に対向する面とは反対側の面を表出させる。図1に示される保護膜形成用シート3については、図2に示されるように、剥離シート6を剥離すればよい。
(1) 1st sticking process First, the surface on the opposite side to the surface which opposes the 1st support sheet 4 in the protective film formation film 1 with which the sheet | seat 3 for protective film formation which concerns on one Embodiment of said invention is equipped. To express. For the protective film forming sheet 3 shown in FIG. 1, the release sheet 6 may be peeled off as shown in FIG.
 次に、表出させた上記の面をワークとしての半導体ウエハ7の一の面、具体的には、回路形成面とは反対側の面(裏面)に貼付して、保護膜形成用シート3とワーク1とを備える第1の積層体10を得る(図3)。図3に示される第1の積層体10は、治具用粘着剤層5およびリングフレーム8をさらに備えている。前述のように、治具用接着剤層5は保護膜形成用シート3の一要素であり、第1の貼付工程において、保護膜形成用シート3の保護膜形成フィルム1を半導体ウエハ7に貼付する際に、保護膜形成用シート3の治具用接着剤層5をリングフレーム8に貼付すればよい。
 即ち、第1の貼付工程の1つの側面は、本発明の一実施形態に係る保護膜形成用シートが備える保護膜形成フィルムにおける、第1の支持シートに対向する面とは反対側の面を表出させること;および前記表出させた面をワークの一の面に貼付して、前記保護膜形成用シートと前記ワークとを備える第1の積層体を得ること、を含む。
 加熱時間および加熱温度はフィルムを構成する材料によって異なるが、例えば90~170℃で、0.5~5時間加熱するのが好ましい。
Next, the exposed surface is attached to one surface of the semiconductor wafer 7 as a work, specifically, the surface (back surface) opposite to the circuit forming surface, and the protective film forming sheet 3 is attached. And a workpiece 1 are obtained (FIG. 3). The first laminated body 10 shown in FIG. 3 further includes a jig pressure-sensitive adhesive layer 5 and a ring frame 8. As described above, the jig adhesive layer 5 is an element of the protective film forming sheet 3, and the protective film forming film 1 of the protective film forming sheet 3 is attached to the semiconductor wafer 7 in the first attaching step. In this case, the jig adhesive layer 5 of the protective film forming sheet 3 may be attached to the ring frame 8.
That is, one side surface of the first sticking step is a surface opposite to the surface facing the first support sheet in the protective film forming film provided in the protective film forming sheet according to one embodiment of the present invention. And affixing the exposed surface to one surface of the workpiece to obtain a first laminate including the protective film forming sheet and the workpiece.
Although the heating time and heating temperature vary depending on the material constituting the film, it is preferable to heat at 90 to 170 ° C. for 0.5 to 5 hours, for example.
(2)第1の硬化工程
 第1の貼付工程により得られた第1の積層体10の保護膜形成用シート3が備える保護膜形成フィルム1を硬化させて保護膜を得る。保護膜を得るための硬化条件は保護膜形成フィルム1を構成する材料に基づいて適宜設定される。保護膜形成フィルム1が熱硬化性接着剤の場合には、保護膜形成フィルム1を所定温度で適切な時間加熱すればよい。また、保護膜形成フィルム1が熱硬化性接着剤でない場合には、別途加熱処理を施す。
 即ち、第1の硬化工程の1つの側面は、前記第1の積層体における保護膜形成フィルムを硬化させることによって保護膜を得ることを含む。
(2) 1st hardening process The protective film formation film 1 with which the sheet | seat 3 for protective film formation of the 1st laminated body 10 obtained by the 1st sticking process is equipped is hardened, and a protective film is obtained. The curing conditions for obtaining the protective film are appropriately set based on the material constituting the protective film forming film 1. When the protective film forming film 1 is a thermosetting adhesive, the protective film forming film 1 may be heated at a predetermined temperature for an appropriate time. Moreover, when the protective film formation film 1 is not a thermosetting adhesive, it heat-processes separately.
That is, one side surface of the first curing step includes obtaining a protective film by curing the protective film forming film in the first laminate.
(3)第1の分割工程
 前記第1の硬化工程を経た第1の積層体10の保護膜形成用シート3が備える保護膜の温度T2を40℃から70℃の範囲内に保持した状態で、保護膜形成用シート3が備える第1の支持シート4を伸長させて(エキスパンドさせて)、半導体ウエハ7とともに保護膜を分割する。その結果、図4に示されるように、半導体ウエハ7と保護膜との積層体が厚さ方向に切断面を発生するように分割されてなる複数(例えば2~20,000)の保護膜付きチップ9が、第1の支持シート4の一方の面上に配置されてなる第2の積層体20が得られる。
 即ち、第1の分割工程の1つの側面は、前記第1の硬化工程を経た前記第1の積層体における前記保護膜の温度T2を40℃から70℃の範囲内に保持した状態で前記第1の支持シートを伸長させて、前記ワークと前記保護膜との積層体を分割することによって、複数の保護膜付きチップが前記第1の支持シートの一方の面上に配置されてなる第2の積層体を得ること、を含む。
(3) 1st division | segmentation process In the state which maintained temperature T2 of the protective film with which the sheet | seat 3 for protective film formation of the 1st laminated body 10 which passed through the said 1st hardening process is provided in the range of 40 to 70 degreeC. Then, the first support sheet 4 provided in the protective film forming sheet 3 is extended (expanded) to divide the protective film together with the semiconductor wafer 7. As a result, as shown in FIG. 4, a laminated body of the semiconductor wafer 7 and the protective film is divided so as to generate a cut surface in the thickness direction (for example, 2 to 20,000). A second laminate 20 in which the chips 9 are arranged on one surface of the first support sheet 4 is obtained.
That is, one aspect of the first dividing step is that the temperature T2 of the protective film in the first laminated body that has undergone the first curing step is kept in a range of 40 ° C. to 70 ° C. A second structure in which a plurality of chips with a protective film are arranged on one surface of the first support sheet by extending one support sheet to divide the laminate of the workpiece and the protective film. Obtaining a laminate of
 第1の支持シート4を伸長する方法は限定されない。図4に示されるように、第1の支持シート4におけるリングフレーム8に対向する面とは反対の面側からリング状の部材Rを押し当てて、リングフレーム8とリング状の部材Rとの鉛直方向の相対位置を変化させることにより、第1の支持シート4を伸長させてもよい。即ち、前記伸長により支持シート4に生じる応力には、水平方向または半導体ウエハ7の裏面に平行な方向のベクトル量を含む。 The method for extending the first support sheet 4 is not limited. As shown in FIG. 4, the ring-shaped member R is pressed against the surface of the first support sheet 4 opposite to the surface facing the ring frame 8, and the ring frame 8 and the ring-shaped member R are pressed. The first support sheet 4 may be extended by changing the relative position in the vertical direction. That is, the stress generated in the support sheet 4 by the extension includes a vector amount in a horizontal direction or a direction parallel to the back surface of the semiconductor wafer 7.
 通常、第1の支持シート4のエキスパンドが行われる際に第1の支持シート4と半導体ウエハ7との間に位置する部材は、保護膜形成フィルム1である。保護膜形成フィルム1は、硬化することにより保護膜を形成することが可能な材料である硬化性材料から構成される場合が一般的であり、その典型例は未硬化の硬化性接着剤である。このような材料は、引張力を付与された場合に破断に至るまでの変形量(破断ひずみ)が大きく、第1の支持シート4を伸長して(エキスパンドさせて)も分割できない場合がある。このため、第1の支持シート4のエキスパンドに際して、保護膜形成フィルム1を0℃から-20℃程度に冷却(具体的には、第1の積層体10を冷却することによって達成される場合が一般的である。)して、保護膜形成フィルム1の破断ひずみを低減させることが行われている。しかしながら、一般に、加熱に比べて、冷却を行うためには、比較的高額な冷却設備が必要であり、冷却のために要するエネルギーは加熱に要するエネルギーよりも多い。このため、保護膜形成フィルム1を冷却すること、一般的には、第1の積層体10を冷却することは、保護膜付きチップの製造方法における初期投資およびランニングコストの増大をもたらしている。 Usually, the member positioned between the first support sheet 4 and the semiconductor wafer 7 when the first support sheet 4 is expanded is the protective film forming film 1. The protective film forming film 1 is generally composed of a curable material that is a material capable of forming a protective film by curing, and a typical example thereof is an uncured curable adhesive. . Such a material has a large amount of deformation (breaking strain) until it breaks when a tensile force is applied, and may not be divided even when the first support sheet 4 is stretched (expanded). Therefore, when the first support sheet 4 is expanded, the protective film-forming film 1 is cooled to about 0 ° C. to −20 ° C. (specifically, it may be achieved by cooling the first laminate 10). In general, the breaking strain of the protective film-forming film 1 is reduced. However, in general, a relatively expensive cooling facility is required for cooling compared to heating, and the energy required for cooling is greater than the energy required for heating. For this reason, cooling the protective film-forming film 1, generally cooling the first laminated body 10, brings about an initial investment and an increase in running cost in the method for manufacturing a chip with a protective film.
 これに対し、本発明の一実施形態に係る保護膜付きチップの製造方法では、第1の支持シート4のエキスパンドが行われる際に第1の支持シート4と半導体ウエハ7との間に位置する部材は保護膜である。保護膜は、保護膜形成フィルム1が硬化して得られたものであるから、その破断ひずみは保護膜形成フィルム1の破断ひずみよりも低下している。したがって、破断ひずみに起因する分割不良は生じにくい。ただし、保護膜は硬化した材料であるため、破断応力が高まっている場合があり、破断応力の高さに起因して分割不良が生じる可能性がある。そこで、本発明の一実施形態に係る保護膜付きチップの製造方法では、第1の支持シート4のエキスパンドに際して、保護膜の温度T2を40℃から70℃の範囲内に保持した状態とすることとしている。 In contrast, in the method for manufacturing a chip with a protective film according to an embodiment of the present invention, the first support sheet 4 is positioned between the first support sheet 4 and the semiconductor wafer 7 when the first support sheet 4 is expanded. The member is a protective film. Since the protective film is obtained by curing the protective film-forming film 1, its breaking strain is lower than that of the protective film-forming film 1. Therefore, the division failure due to the breaking strain is unlikely to occur. However, since the protective film is a cured material, the breaking stress may be increased, and there is a possibility that division failure may occur due to the height of the breaking stress. Therefore, in the method for manufacturing a chip with a protective film according to an embodiment of the present invention, when the first support sheet 4 is expanded, the temperature T2 of the protective film is maintained in the range of 40 ° C. to 70 ° C. It is said.
 すなわち、従来のクールエキスパンドとは反対に、ヒートエキスパンドを行うことにより、保護膜の分割不良が生じる可能性を低減させている。保護膜の温度T2を、40℃程度まで高めれば、室温(23℃)状態に比べて破断応力の低下が明確となり、ヒートエキスパンドしたことに由来する効果(分割不良の低減)を安定的に享受することが可能となる。一方、第1の支持シート4のエキスパンドの際の保護膜の温度T2を70℃超とすると、保護膜の破断ひずみの増大、第1の支持シート4の機械特性の変化(ヤング率の低下、軟質化等)に起因する作業不良(具体例として、エキスパンド量の低下、第1の支持シート4のテーブルへの融着等が挙げられる。)といった不具合が顕在化する可能性が高まる。したがって、第1の支持シート4のエキスパンドの際の保護膜の温度T2を70℃以下とすることにより、保護膜付きチップの製造において不具合が生じる可能性を安定的に低減させることができる。こうした不具合が生じる可能性をより安定的に低減させる観点から、第1の支持シート4のエキスパンドの際の保護膜の温度T2は、42℃以上、65℃以下とすることが好ましい場合があり、43℃以上、60℃以下とすることがより好ましい場合があり、45℃以上、55℃以下とすることが特に好ましい場合がある。 That is, contrary to the conventional cool expand, by performing the heat expand, the possibility of the defective division of the protective film is reduced. If the temperature T2 of the protective film is increased to about 40 ° C., the reduction of the breaking stress becomes clear as compared with the room temperature (23 ° C.) state, and the effect (reduction of defective partitioning) derived from the heat expansion can be stably enjoyed. It becomes possible to do. On the other hand, when the temperature T2 of the protective film during expansion of the first support sheet 4 is more than 70 ° C., an increase in the breaking strain of the protective film, a change in mechanical properties of the first support sheet 4 (decrease in Young's modulus, There is an increased possibility of inconveniences such as work defects caused by softening and the like (specific examples include a decrease in the amount of expand and fusion of the first support sheet 4 to the table). Therefore, by setting the temperature T2 of the protective film at the time of expanding the first support sheet 4 to 70 ° C. or less, the possibility that a problem occurs in the production of the chip with the protective film can be stably reduced. From the viewpoint of more stably reducing the possibility of such a problem, the temperature T2 of the protective film during the expansion of the first support sheet 4 may be preferably 42 ° C. or more and 65 ° C. or less, It may be more preferable to set it as 43 degreeC or more and 60 degrees C or less, and it may be especially preferable to set it as 45 degreeC or more and 55 degrees C or less.
(4)第1のピックアップ工程
 第1のピックアップ工程では、第1の分割工程を実施したことにより得られた、第2の積層体20が備える複数の保護膜付きチップ9のそれぞれを、第1の支持シート4から分離して個別の保護膜付きチップ9を加工物として得る。この分離方法は限定されない。図5に示されるように、突き上げピンPおよび真空吸着コレットCを使用してもよい。こうして、保護膜付きチップ9を得ることができる。 即ち、第1のピックアップ工程の1つの側面は、前記第2の積層体が備える前記複数の保護膜付きチップのそれぞれを前記第1の支持シートから分離することによって前記保護膜付きチップを加工物として得ることを含む。
(4) First Pickup Step In the first pickup step, each of the plurality of protective film-provided chips 9 included in the second stacked body 20 obtained by performing the first division step is changed to the first pickup step. Separately from the support sheet 4, the individual chip 9 with protective film is obtained as a workpiece. This separation method is not limited. As shown in FIG. 5, a push-up pin P and a vacuum suction collet C may be used. In this way, the chip | tip 9 with a protective film can be obtained. That is, according to one aspect of the first pickup process, the chip with the protective film is processed by separating each of the plurality of chips with the protective film included in the second laminate from the first support sheet. Including getting as.
(5)改質層形成工程
 第1の分割工程が開始されるまでに、半導体ウエハ7(ワーク)の内部に設定された焦点に集束されるように赤外域(例えば1064nm)のレーザ光を照射して、半導体ウエハ7内部に改質層を形成する改質層形成工程が行われる。第1の分割工程では、改質層形成工程を経た半導体ウエハ7に対して貼着する第1の支持シートが伸長されることにより、分割予定ラインでの半導体ウエハ7の分割が行われる。即ち、改質層形成工程の1つの側面は、前記第1の分割工程が開始されるまでに、前記ワークの内部に設定された焦点に集束されるように赤外域のレーザ光を照射して、前記ワーク内部に改質層を形成することを含む。
(5) Modified layer forming step Before the first dividing step is started, the laser beam in the infrared region (for example, 1064 nm) is irradiated so as to be focused on the focal point set inside the semiconductor wafer 7 (work). Then, a modified layer forming step for forming a modified layer inside the semiconductor wafer 7 is performed. In the first dividing step, the first support sheet to be bonded to the semiconductor wafer 7 that has undergone the modified layer forming step is stretched to divide the semiconductor wafer 7 along the planned dividing line. That is, one side of the modified layer forming step is to irradiate the laser beam in the infrared region so as to be focused on the focal point set inside the workpiece before the first dividing step is started. Forming a modified layer inside the workpiece.
8.保護膜形成用シートの他の実施形態
(1)第1の支持シートが治具用粘着剤層を有しない場合
 図6は本発明のその他の実施形態の一つに係る保護膜形成用シートの断面図である。図6に示すように、本実施形態に係る保護膜形成用シート3Aは、基材41の一方の面に粘着剤層42が積層されてなる第1の支持シート4と、第1の支持シート4における粘着剤層42が積層されている側に積層された保護膜形成フィルム1と、保護膜形成フィルム1の、第1の支持シート4に対応する面とは反対側の面に積層された剥離シート6とを備えて構成される。実施形態における保護膜形成フィルム1は、面方向にてワークとほぼ同じか、ワークよりも少し大きく形成されており、かつ第1の支持シート4よりも面方向に小さく形成されている。保護膜形成フィルム1が積層されていない部分の粘着剤層42は、リングフレーム等の治具に貼付することが可能となっている。
8). Other Embodiments of Protective Film Forming Sheet (1) When First Support Sheet Does Not Have Jig Adhesive Layer FIG. 6 shows a protective film forming sheet according to another embodiment of the present invention. It is sectional drawing. As shown in FIG. 6, the protective film forming sheet 3 </ b> A according to this embodiment includes a first support sheet 4 in which an adhesive layer 42 is laminated on one surface of a base material 41, and a first support sheet. The protective film forming film 1 laminated on the side where the pressure-sensitive adhesive layer 42 in FIG. 4 is laminated, and the surface of the protective film forming film 1 laminated on the surface opposite to the surface corresponding to the first support sheet 4. A release sheet 6 is provided. The protective film-forming film 1 in the embodiment is formed to be substantially the same as or slightly larger than the work in the surface direction, and smaller than the first support sheet 4 in the surface direction. The part of the pressure-sensitive adhesive layer 42 where the protective film forming film 1 is not laminated can be attached to a jig such as a ring frame.
 本実施形態に係る保護膜形成用シート3Aの各部材の材料および厚さ等は、前述した保護膜形成用シート3の各部材の材料および厚さと同様である。ただし、粘着剤層42がエネルギー線硬化性粘着剤からなる場合、粘着剤層42における保護膜形成フィルム1と接触する部分は、エネルギー線硬化性粘着剤を硬化させ、それ以外の部分は、エネルギー線硬化性粘着剤を硬化させないことが好ましい。これにより、保護膜形成フィルム1を硬化させた保護膜の平滑性(グロス)を高くすることができるとともに、リングフレーム等の治具に対する接着力を高く維持することができる。 The material and thickness of each member of the protective film forming sheet 3A according to the present embodiment are the same as the material and thickness of each member of the protective film forming sheet 3 described above. However, when the pressure-sensitive adhesive layer 42 is made of an energy ray-curable pressure-sensitive adhesive, the portion in contact with the protective film forming film 1 in the pressure-sensitive adhesive layer 42 cures the energy ray-curable pressure-sensitive adhesive, and the other portions are energy. It is preferable not to cure the linear curable adhesive. Thereby, while being able to make high the smoothness (gloss) of the protective film which hardened the protective film formation film 1, the adhesive force with respect to jigs, such as a ring frame, can be maintained highly.
 なお、保護膜形成用シート3Aの第1の支持シート4の粘着剤層42における基材41とは反対側の周縁部には、前述した保護膜形成用シート3の治具用粘着剤層5と同様の治具用粘着剤層が別途設けられていてもよい。 In addition, the adhesive layer 5 for jigs of the protective film forming sheet 3 described above is provided on the peripheral edge of the adhesive layer 42 of the first support sheet 4 of the protective film forming sheet 3A on the side opposite to the base 41. A similar pressure-sensitive adhesive layer for jigs may be provided separately.
(2)第1の支持シートが粘着剤層を有しない場合
 図11に示すように、本発明のその他の実施形態の一つに係る保護膜形成用シート3Bが備える第1の支持シートは、粘着剤層を備えず、基材(のみ)からなってもよい。この場合、基材における保護膜形成フィルム側の面が第1の支持シートの第1の面に該当する。
(2) When 1st support sheet does not have an adhesive layer As shown in FIG. 11, the 1st support sheet with which the sheet | seat 3B for protective film formation which concerns on one of other embodiment of this invention is equipped, It may be made of a base material (only) without an adhesive layer. In this case, the surface on the protective film forming film side of the substrate corresponds to the first surface of the first support sheet.
 第1の支持シートが基材からなる場合、保護膜形成フィルムにおける基材(第1の支持シート)と対向する面とは反対側の面の周縁部には、図1に示される治具用粘着剤層5と同様の治具用粘着剤層が設けられることが好ましい。 When the first support sheet is made of a substrate, the peripheral portion of the surface opposite to the surface facing the substrate (first support sheet) in the protective film forming film is for the jig shown in FIG. It is preferable that the same adhesive layer for jigs as the adhesive layer 5 is provided.
(3)第1の支持シートが剥離シートである場合
 本発明のその他の実施形態の一つに係る保護膜形成用シートが備える第1の支持シートは、剥離面を有する剥離シートであってもよい。この場合、剥離面が第1の支持シートの第1の面に該当する。剥離シートの具体的な構成は限定されない。
(3) When the first support sheet is a release sheet The first support sheet provided in the protective film-forming sheet according to one of the other embodiments of the present invention may be a release sheet having a release surface. Good. In this case, the release surface corresponds to the first surface of the first support sheet. The specific configuration of the release sheet is not limited.
(4)第2の支持シートを備える場合
 本発明のその他の実施形態の一つに係る保護膜形成用シートは、保護膜形成フィルムの第1の支持シートに対向する面とは反対の面側に積層された第2の支持シートを備えてもよい。第2の支持シートは剥離シートであって、剥離面が保護膜形成フィルムに対向するように配置されていてもよい。
(4) When provided with a second support sheet The protective film-forming sheet according to one of the other embodiments of the present invention is a surface opposite to the surface facing the first support sheet of the protective film-forming film. You may provide the 2nd support sheet laminated | stacked on. The second support sheet is a release sheet, and may be arranged so that the release surface faces the protective film-forming film.
(5)第1の支持シートが保護膜形成フィルムから剥離される場合
 図2から図5に示されるように、上記の本発明の一実施形態に係る保護膜付きチップ7の製造方法では、第1の硬化工程において保護膜形成フィルム1から保護膜を形成した後、第1のピックアップ工程において、第1の支持シート4から保護膜、具体的には、保護膜付きチップ7の一部である保護膜の分割体を分離させる。
(5) When the first support sheet is peeled from the protective film-forming film As shown in FIGS. 2 to 5, in the manufacturing method of the protective film-coated chip 7 according to the embodiment of the present invention, After forming the protective film from the protective film-forming film 1 in the curing process 1, the protective film is formed from the first support sheet 4 in the first pickup process, specifically, it is a part of the chip 7 with the protective film. The divided body of the protective film is separated.
 本発明のその他の実施形態の一つに係る保護膜付きチップの製造方法では、保護膜形成フィルムは第1の支持シートから剥離された後、硬化されて保護膜となる。そのような製造方法の一例は次のとおりである。 In the method for manufacturing a chip with a protective film according to another embodiment of the present invention, the protective film-forming film is peeled from the first support sheet and then cured to form a protective film. An example of such a manufacturing method is as follows.
 すなわち、本施形態に係る製造方法の1つの側面は、図7~図10に示すように、
 本発明の一実施形態に係る保護膜形成用シートが備える保護膜形成フィルム1における第1の支持シートに対向する面とは反対側の面を表出させ、前記表出させた面を半導体ウエハ等のワーク7の一の面に貼付すること、および前記保護膜形成用シートの第1の支持シートを保護膜形成フィルム1から剥離することによって、前記ワーク7と前記保護膜形成フィルム1とを備える第3の積層体11を得る積層工程;
 前記第3の積層体11が備える前記保護膜形成フィルム1を硬化させることによって保護膜を得る第2の硬化工程;
 第3の基材11と、第3の基材132の一方の面側に積層された第3の粘着剤層131とを備えた加工用シート13における、前記第3の粘着剤層側131の面と、前記第2の硬化工程を経た前記第3の積層体11における前記保護膜側の面とを貼合することによって、前記加工用シート13と前記第3の積層体11とを備える第4の積層体12を得る第2の貼付工程;
 前記第4の積層体12が備える前記保護膜の温度T3を40℃から70℃の範囲内に保持した状態で、前記第4の積層体12が備える前記加工用シート13を伸長させて、前記ワーク7とともに前記保護膜を分割することによって前記ワーク7と前記保護膜との積層体が厚さ方向に切断面を発生するように分割されてなる、複数の保護膜付きチップ9が、前記加工用シート13の一方の面上に配置されてなる第5の積層体14を得る第2の分割工程;および
 前記第5の積層体14が備える複数の保護膜付きチップ9のそれぞれを前記加工用シート13から分離して、保護膜付きチップ9を加工物として得る第2のピックアップ工程を含み、さらに
 前記第2の分割工程が開始されるまでに、前記ワーク7の内部に設定された焦点に集束されるように赤外域のレーザ光を照射して、前記ワーク7内部に改質層を形成する改質層形成工程を含む。
That is, one aspect of the manufacturing method according to this embodiment is as shown in FIGS.
The surface opposite to the surface facing the first support sheet in the protective film forming film 1 provided in the protective film forming sheet according to the embodiment of the present invention is exposed, and the exposed surface is a semiconductor wafer. The work 7 and the protective film forming film 1 are attached to one surface of the work 7 and the like, and the first support sheet of the protective film forming sheet is peeled from the protective film forming film 1. A laminating step for obtaining a third laminate 11 comprising;
A second curing step of obtaining a protective film by curing the protective film-forming film 1 provided in the third laminate 11;
The third pressure-sensitive adhesive layer side 131 of the processing sheet 13 provided with the third base material 11 and the third pressure-sensitive adhesive layer 131 laminated on one surface side of the third base material 132. By attaching the surface and the surface on the protective film side of the third laminate 11 that has undergone the second curing step, the processing sheet 13 and the third laminate 11 are provided. 2nd sticking process of obtaining the laminated body 12 of 4;
In a state where the temperature T3 of the protective film included in the fourth stacked body 12 is maintained within a range of 40 ° C. to 70 ° C., the processing sheet 13 included in the fourth stacked body 12 is extended, By dividing the protective film together with the work 7, a plurality of chips 9 with a protective film formed by dividing the laminate of the work 7 and the protective film so as to generate a cut surface in the thickness direction is provided. A second dividing step of obtaining a fifth laminated body 14 disposed on one surface of the sheet 13 for use; and each of the plurality of protective film-provided chips 9 provided in the fifth laminated body 14 for the processing A second pick-up step that separates from the sheet 13 and obtains a chip 9 with a protective film as a workpiece, and further, the focal point set inside the workpiece 7 before the second dividing step is started. Focused Uni irradiated with laser light in the infrared region, including a modified layer forming step of forming a modified layer inside the workpiece 7.
 ここで、加工用シート13が備える第3の基材132は、支持シート4が備える基材41と同様の特徴を有していればよい。また、加工用シート13が備える第3の粘着剤層131は、支持シート4が備える粘着剤層42と同様の特徴を有していればよい。また、第2の分割工程における温度T3は上記の温度T1以上であることが好ましい。 Here, the 3rd base material 132 with which processing sheet 13 is provided should just have the same characteristic as base material 41 with which support sheet 4 is provided. Moreover, the 3rd adhesive layer 131 with which the sheet | seat 13 for processing is provided should just have the characteristic similar to the adhesive layer 42 with which the support sheet 4 is provided. Moreover, it is preferable that temperature T3 in a 2nd division | segmentation process is more than said temperature T1.
 以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。 The embodiment described above is described for facilitating understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.
 例えば、第1の支持シート4における基材41と粘着剤層42との間には、他の層が介在していてもよい。また、基材41からなる第1の支持シート4の第1の面には、他の層が積層されていてもよい。他の層としては、例えば、プライマー層等の基材41と粘着剤層42の間の接着性を調製するための層、支持シート4と保護膜形成フィルム1との間の接着性を調製する層が挙げられる。 For example, another layer may be interposed between the base material 41 and the pressure-sensitive adhesive layer 42 in the first support sheet 4. Further, another layer may be laminated on the first surface of the first support sheet 4 made of the base material 41. As other layers, for example, a layer for adjusting the adhesion between the substrate 41 and the pressure-sensitive adhesive layer 42 such as a primer layer, and the adhesion between the support sheet 4 and the protective film forming film 1 are prepared. Layer.
 以下、実施例等により本発明をさらに具体的に説明するが、本発明の範囲はこれらの実施例等に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and the like, but the scope of the present invention is not limited to these examples and the like.
〔実施例1〕
 次の各成分を、表1に示す配合比(固形分換算)で混合し、固形分濃度が保護膜形成フィルム用塗布剤の総質量に対して、50質量%となるようにメチルエチルケトンで希釈して、保護膜形成フィルム用塗布剤を調製した。
(A-1)バインダーポリマー:n-ブチルアクリレート10質量部、メチルアクリレート70質量部、グリシジルメタクリレート5質量部および2-ヒドロキシエチルアクリレート15質量部を共重合してなる(メタ)アクリル酸エステル共重合体(重量平均分子量:40万,ガラス転移温度:-1℃)
(A-2)バインダーポリマー:メチルアクリレート85質量部、および2-ヒドロキシエチルアクリレート15質量部を共重合してなる(メタ)アクリル酸エステル共重合体(重量平均分子量:40万,ガラス転移温度:-6℃)
(A-3)バインダーポリマー:n-ブチルアクリレート55質量部、メチルアクリレート10質量部、グリシジルメタクリレート20質量部および2-ヒドロキシエチルアクリレート15質量部を共重合してなる(メタ)アクリル酸エステル共重合体(重量平均分子量:80万,ガラス転移温度:-28℃)
(B-1)ビスフェノールA型エポキシ樹脂(三菱化学社製,jER828,エポキシ当量184~194g/eq)
(B-2)ビスフェノールA型エポキシ樹脂(三菱化学社製,jER1055,エポキシ当量800~900g/eq)
(B-3)ジシクロペンタジエン型エポキシ樹脂(DIC社製,エピクロンHP-7200HH,エポキシ当量255~260g/eq)
(B-4)クレゾールノボラック型エポキシ樹脂(日本化薬社製,EOCN-104,エポキシ当量220g/eq)
(C)熱活性潜在性エポキシ樹脂硬化剤:ジシアンジアミド(ADEKA社製,アデカハードナーEH-3636AS,活性水素量21g/eq)
(D)硬化促進剤:2-フェニル-4,5-ジヒドロキシメチルイミダゾール(四国化成工業社製,キュアゾール2PHZ)
(E-1)エポキシ基修飾球状シリカフィラー(アドマテックス社製,SC2050MA,平均粒径0.5μm)
(E-2)ビニル基修飾球状シリカシリカフィラー(アドマテックス社製,YA050C-MJA,平均粒径0.05μm)
(E-3)不定形シリカシリカフィラー(龍森社製,SV-10,平均粒径8μm)
(F)シランカップリング剤:γ-グリシドキシプロピルトリメトキシシラン(信越化学工業社製,KBM403,メトキシ当量:12.7mmol/g,分子量:236.3)
[Example 1]
The following components are mixed at a blending ratio shown in Table 1 (in terms of solid content) and diluted with methyl ethyl ketone so that the solid content concentration is 50% by mass with respect to the total mass of the coating agent for protective film forming film. Thus, a coating agent for a protective film-forming film was prepared.
(A-1) Binder polymer: (meth) acrylic ester copolymer obtained by copolymerizing 10 parts by weight of n-butyl acrylate, 70 parts by weight of methyl acrylate, 5 parts by weight of glycidyl methacrylate and 15 parts by weight of 2-hydroxyethyl acrylate Combined (weight average molecular weight: 400,000, glass transition temperature: -1 ° C)
(A-2) Binder polymer: (meth) acrylic acid ester copolymer obtained by copolymerizing 85 parts by mass of methyl acrylate and 15 parts by mass of 2-hydroxyethyl acrylate (weight average molecular weight: 400,000, glass transition temperature: -6 ℃)
(A-3) Binder polymer: (meth) acrylic acid ester copolymer obtained by copolymerizing 55 parts by mass of n-butyl acrylate, 10 parts by mass of methyl acrylate, 20 parts by mass of glycidyl methacrylate and 15 parts by mass of 2-hydroxyethyl acrylate Combined (weight average molecular weight: 800,000, glass transition temperature: -28 ° C)
(B-1) Bisphenol A type epoxy resin (Mitsubishi Chemical Corporation, jER828, epoxy equivalent of 184 to 194 g / eq)
(B-2) Bisphenol A type epoxy resin (manufactured by Mitsubishi Chemical Corporation, jER1055, epoxy equivalent 800-900 g / eq)
(B-3) Dicyclopentadiene-type epoxy resin (manufactured by DIC, Epicron HP-7200HH, epoxy equivalent of 255 to 260 g / eq)
(B-4) Cresol novolac type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., EOCN-104, epoxy equivalent 220 g / eq)
(C) Thermally active latent epoxy resin curing agent: Dicyandiamide (manufactured by ADEKA, Adeka Hardener EH-3636AS, active hydrogen amount 21 g / eq)
(D) Curing accelerator: 2-phenyl-4,5-dihydroxymethylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd., Curazole 2PHZ)
(E-1) Epoxy group-modified spherical silica filler (manufactured by Admatechs, SC2050MA, average particle size 0.5 μm)
(E-2) Vinyl group-modified spherical silica silica filler (manufactured by Admatechs, YA050C-MJA, average particle size 0.05 μm)
(E-3) Amorphous silica-silica filler (manufactured by Tatsumori, SV-10, average particle size 8 μm)
(F) Silane coupling agent: γ-glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM403, methoxy equivalent: 12.7 mmol / g, molecular weight: 236.3)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 ポリエチレンテレフタレート(PET)フィルムの片面にシリコーン系の剥離剤層が形成されてなる剥離シート(リンテック社製,SP-PET381031)上に、前述の保護膜形成フィルム用塗布剤を、最終的に得られる保護膜形成フィルムの厚さが25μmとなるように、ナイフコーターにて塗布した後、オーブンにて120℃、2分間乾燥させて、保護膜形成フィルムを形成した。次いで、保護膜形成フィルムにPETフィルムの片面にシリコーン系の剥離剤層が形成されてなる剥離シート(リンテック社製,SP-PET251130)の剥離面を重ねて両者を貼り合わせ、保護膜形成用シートを得た。 On the release sheet (SP-PET 381031 manufactured by Lintec Co., Ltd.) in which a silicone release agent layer is formed on one side of a polyethylene terephthalate (PET) film, the aforementioned coating agent for a protective film-forming film is finally obtained. After coating with a knife coater so that the thickness of the protective film-forming film was 25 μm, it was dried in an oven at 120 ° C. for 2 minutes to form a protective film-forming film. Next, the protective film-forming film is laminated with the release surface of a release sheet (SP-PET251130, manufactured by Lintec Co., Ltd.) on which one side of the PET film is formed with a silicone release agent layer. Got.
〔実施例2〕
 保護膜形成フィルムを構成する各成分の種類および配合量を表1の実施例2の列に示される組成であって固形分濃度が50%となるようにメチルエチルケトンで希釈された保護膜形成フィルム用塗布剤を調整したこと以外、実施例1と同様にして保護膜形成用シートを製造した。
[Example 2]
For the protective film-forming film in which the types and blending amounts of the components constituting the protective film-forming film are the compositions shown in the column of Example 2 in Table 1 and diluted with methyl ethyl ketone so that the solid content concentration becomes 50% A protective film-forming sheet was produced in the same manner as in Example 1 except that the coating agent was adjusted.
〔比較例1〕
 保護膜形成フィルムを構成する各成分の種類および配合量を表1の比較例1の列に示される組成であって固形分濃度が50%となるようにメチルエチルケトンで希釈された保護膜形成フィルム用塗布剤を調整したこと以外、実施例1と同様にして保護膜形成用シートを製造した。
[Comparative Example 1]
For the protective film-forming film in which the type and amount of each component constituting the protective film-forming film are the compositions shown in the column of Comparative Example 1 in Table 1 and diluted with methyl ethyl ketone so that the solid content concentration becomes 50% A protective film-forming sheet was produced in the same manner as in Example 1 except that the coating agent was adjusted.
〔比較例2〕
 保護膜形成フィルムを構成する各成分の種類および配合量を表1の比較例2の列に示される組成であって固形分濃度が50%となるようにメチルエチルケトンで希釈された保護膜形成フィルム用塗布剤を調整したこと以外、実施例1と同様にして保護膜形成用シートを製造した。なお、(E-3)不定形シリカシリカフィラー(SV-10)は予めメチルエチルケトン中にビーズミルで24時間分散を行ったものを使用した。
[Comparative Example 2]
For the protective film-forming film in which the types and amounts of the components constituting the protective film-forming film are the compositions shown in the column of Comparative Example 2 in Table 1 and diluted with methyl ethyl ketone so that the solid content concentration is 50%. A protective film-forming sheet was produced in the same manner as in Example 1 except that the coating agent was adjusted. Note that (E-3) amorphous silica-silica filler (SV-10) used was previously dispersed in methyl ethyl ketone for 24 hours using a bead mill.
〔試験例1〕<粘弾性の測定>
(1)硬化物サンプルの作製
 実施例および比較例で作製した保護膜形成用シートの2枚の剥離シートを剥離して、得られた保護膜形成フィルムを厚さ200μmになるように積層した。得られた保護膜形成層を、130℃、2時間オーブン内(大気雰囲気下)で加熱して、厚さ200μmの保護膜を硬化物サンプルとして得た。
(2)硬化後の50℃における破断ひずみの測定
 得られた硬化物サンプルを切り出し、幅5mm×長さ20mm×厚さ200μmの試験片を用意した。動的機械分析装置(ティー・エイ・インスツルメント社製,DMA Q800)を用いて、試験片の引張り試験(チャック間距離:5mm)を行った。温度50℃の環境下に1分間保持した後に、1N/分の一定の増加率で荷重を増加させながら引張り試験を行った。その結果から破断ひずみを抽出した。結果を表2に示す。
(3)硬化物サンプルの損失正接のピーク温度の測定
 硬化物サンプルを切り出し、幅4.5mm×長さ20mm×厚さ200μmの試験片を用意した。動的機械分析装置(ティー・エイ・インスツルメント社製,DMA Q800)を用いて、下記の条件で貯蔵弾性率および損失弾性率の測定を行った。
  測定モード:引っ張りモード
  測定開始温度:0℃
  測定終了温度:300℃
  昇温速度:3℃/分
  周波数:11Hz
  測定雰囲気:大気
 得られた貯蔵弾性率および損失弾性率から損失正接(tanδ)を算出して、その値が最大となる温度を、損失正接のピーク温度とした。結果を表2に示す。
(4)硬化物サンプル25℃における貯蔵弾性率および損失正接の測定
 上記の貯蔵弾性率および損失弾性率の測定データから、25℃での貯蔵弾性率および25℃での損失正接を求めた。結果を表2に示す。
(5)硬化後の50℃における破断応力の測定
 得られた硬化物サンプルを切り出し、幅5mm×長さ20mm×厚さ200μmの試験片を用意した。動的機械分析装置(ティー・エイ・インスツルメント社製,DMA Q800)を用いて、試験片の引張り試験(チャック間距離:5mm)を行った。温度50℃の環境下に1分間保持した後に、1N/分の一定の増加率で荷重を増加させながら引張り試験を行った。その結果から破断応力を抽出した。その結果、実施例1では1.71×10Pa、実施例2では1.02×10Pa、比較例1では8.90×10Pa、比較例2では2.27×10Paであった。
[Test Example 1] <Measurement of viscoelasticity>
(1) Preparation of hardened | cured material sample The two peeling sheets of the protective film formation sheet produced by the Example and the comparative example were peeled, and the obtained protective film formation film was laminated | stacked so that it might become thickness 200 micrometers. The obtained protective film-forming layer was heated in an oven (in the atmosphere) at 130 ° C. for 2 hours to obtain a protective film having a thickness of 200 μm as a cured product sample.
(2) Measurement of breaking strain at 50 ° C. after curing The obtained cured product sample was cut out to prepare a test piece having a width of 5 mm × a length of 20 mm × a thickness of 200 μm. Using a dynamic mechanical analyzer (manufactured by TA Instruments, DMA Q800), a tensile test (distance between chucks: 5 mm) of the test piece was performed. After holding for 1 minute in an environment at a temperature of 50 ° C., a tensile test was performed while increasing the load at a constant rate of increase of 1 N / min. The fracture strain was extracted from the result. The results are shown in Table 2.
(3) Measurement of peak temperature of loss tangent of cured product sample A cured product sample was cut out, and a test piece having a width of 4.5 mm, a length of 20 mm, and a thickness of 200 μm was prepared. Using a dynamic mechanical analyzer (manufactured by TA Instruments, DMA Q800), storage elastic modulus and loss elastic modulus were measured under the following conditions.
Measurement mode: Pull mode Measurement start temperature: 0 ° C
Measurement end temperature: 300 ° C
Temperature increase rate: 3 ° C / min Frequency: 11Hz
Measurement atmosphere: air The loss tangent (tan δ) was calculated from the obtained storage elastic modulus and loss elastic modulus, and the temperature at which the value was the maximum was taken as the peak temperature of the loss tangent. The results are shown in Table 2.
(4) Measurement of storage elastic modulus and loss tangent at 25 ° C. of cured product From the measurement data of the above storage elastic modulus and loss elastic modulus, the storage elastic modulus at 25 ° C. and the loss tangent at 25 ° C. were determined. The results are shown in Table 2.
(5) Measurement of breaking stress at 50 ° C. after curing The obtained cured product sample was cut out to prepare a test piece of width 5 mm × length 20 mm × thickness 200 μm. Using a dynamic mechanical analyzer (manufactured by TA Instruments, DMA Q800), a tensile test (distance between chucks: 5 mm) of the test piece was performed. After holding for 1 minute in an environment at a temperature of 50 ° C., a tensile test was performed while increasing the load at a constant rate of increase of 1 N / min. The breaking stress was extracted from the result. As a result, 1.71 × 10 7 Pa in Example 1, 1.02 × 10 7 Pa in Example 2, 8.90 × 10 6 Pa in Comparative Example 1, and 2.27 × 10 7 Pa in Comparative Example 2. Met.
〔試験例2〕<分割性の評価>
 厚さ100μm、外径8インチのシリコンウエハからなるワークに、シリコンウエハと同形状に切断加工された保護膜形成フィルムを、貼付装置(リンテック社製,RAD-3600F/12)を用いて70℃で貼付後、130℃、2時間オーブン内(大気雰囲気下)で加熱し、硬化させて保護膜付きウエハを作製した。
 貼付装置(リンテック社製,RAD-2700F/12)を用い、ステルスダイシング用ダイシングテープ(リンテック社製,Adwill D-821HS)を、保護膜付きウエハの保護膜面に貼付した。このとき、リングフレームに対するダイシングテープの貼付も行った。
 レーザ照射装置を用いて、ダイシングテープおよび保護膜越しに、ウエハ内部で集光するレーザ(波長:1064nm)を照射した。この際、5mm×5mmのチップ体が形成されるように設定された切断予定ラインに沿って走査させながら照射した。
 次いで、エキスパンド装置(DISCO社製,DDS2300)を用いて、温度50℃の環境下で、速度100mm/秒、エキスパンド量10mmで、保護膜付きウエハに貼着するダイシングテープのエキスパンドを行った。
 その結果、全ての切断予定ラインにて分割されたウエハと同様に保護膜も分割された場合には保護膜分割性が良好(表2中「A」)とし、分割後の保護膜に糸曳き現象が認められた場合(表2中「B」)、または保護膜が分割されない箇所があった場合(表2中「C」)を不良と判定した。結果を表2に示す。
[Test Example 2] <Evaluation of separability>
A protective film-forming film cut into the same shape as a silicon wafer is applied to a workpiece made of a silicon wafer having a thickness of 100 μm and an outer diameter of 8 inches at 70 ° C. using a sticking apparatus (RADTEC, RAD-3600F / 12). After pasting, a wafer with a protective film was produced by heating and curing in an oven (under atmospheric atmosphere) at 130 ° C. for 2 hours.
A dicing tape for stealth dicing (manufactured by Lintec Corporation, Adwill D-821HS) was applied to the protective film surface of the wafer with the protective film using a bonding apparatus (Rintech Co., RAD-2700F / 12). At this time, a dicing tape was attached to the ring frame.
A laser (wavelength: 1064 nm) focused inside the wafer was irradiated through the dicing tape and the protective film using a laser irradiation apparatus. At this time, irradiation was performed while scanning along a planned cutting line set so that a 5 mm × 5 mm chip body was formed.
Next, using an expander (DISCO, DDS2300), a dicing tape was attached to a wafer with a protective film at a speed of 100 mm / second and an expand amount of 10 mm in an environment of 50 ° C.
As a result, when the protective film is divided in the same manner as the wafer divided along all the scheduled cutting lines, the protective film division property is good ("A" in Table 2), and the protective film after division is threaded. When the phenomenon was recognized (“B” in Table 2), or when there was a portion where the protective film was not divided (“C” in Table 2), it was determined to be defective. The results are shown in Table 2.
〔試験例3〕<保護膜の強度の評価>
 試験例2において行った分割性評価後に上記のエキスパンド装置を用いて、熱源を550℃に設定したIR炉を用いて、分割されたウエハおよび保護膜(すなわち、複数の保護膜付きチップ)ならびにダイシングテープを備える積層体(第4の積層体)を、5分間加熱することにより、ダイシングテープをエキスパンドした際に生じたダイシングテープの弛みを矯正した。次いで、ダイボンダー(キヤノンマシナリー社製,Bestem-D02)を用いて、3mmのエキスパンドを行った状態で、ダイシングテープの分割されたウエハおよび保護膜に対向する面と反対の面側から突き上げピンを押し付け、押し出された保護膜付きチップを真空吸着コレットで引き上げることにより、保護膜付きチップをピックアップした。
 ピックアップされた保護膜付きチップを観察して、保護膜に押し付けたピンの跡が認められなかった場合を良好(表2中「A」)、問題ない程度のピンの跡が認められた場合を可(表2中「B」)、ピンの後が認められた場合を不良(表2中「C」)と判定した。結果を表2に示す。なお、本評価は、比較例2に係る保護膜は、試験例2において適切に分割されなかったため、実施例1および2ならびに比較例1(評価対象は割断された一部とした。)に係る保護膜を備える第4の積層体についてのみ本評価を行った。
[Test Example 3] <Evaluation of strength of protective film>
After the division property evaluation performed in Test Example 2, using the above expanding apparatus, using the IR furnace with the heat source set at 550 ° C., the divided wafer, the protective film (that is, a plurality of chips with protective films), and dicing The slack of the dicing tape generated when the dicing tape was expanded was corrected by heating the laminated body (fourth laminated body) including the tape for 5 minutes. Next, using a die bonder (Canon Machinery Co., Ltd., Bestem-D02), with a 3 mm expanded state, push the push-up pin from the surface opposite to the surface facing the divided wafer and protective film of the dicing tape. The chip with protective film was picked up by pulling up the extruded chip with protective film with a vacuum suction collet.
When the picked-up chip with protective film is observed and the trace of the pin pressed against the protective film is not found good ("A" in Table 2), the case where the trace of the pin with no problem is recognized A case where “possible” (“B” in Table 2) and after the pin were recognized was determined to be defective (“C” in Table 2). The results are shown in Table 2. In this evaluation, since the protective film according to Comparative Example 2 was not properly divided in Test Example 2, the protective film according to Examples 1 and 2 and Comparative Example 1 (the evaluation target was a part of the split). Only this 4th laminated body provided with a protective film performed this evaluation.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から分かるように、50℃における破断ひずみが20%以下、かつ損失正接のピーク温度T1が25℃から60℃の範囲内にある保護膜を備える実施例の保護膜形成用シートは、分割性に優れるとともに、保護膜の強度にも優れるものであった。 As can be seen from Table 2, the protective film-forming sheet of the example provided with a protective film having a breaking strain at 50 ° C. of 20% or less and a loss tangent peak temperature T1 in the range of 25 ° C. to 60 ° C. In addition to excellent properties, the strength of the protective film was also excellent.
 本発明に係る保護膜形成用シートは、保護膜を加熱しながら分割する工程を含む場合に好適に用いることができるので、産業上極めて重要である。 Since the protective film-forming sheet according to the present invention can be suitably used in the case where it includes a step of dividing the protective film while heating, it is extremely important industrially.
1…保護膜形成フィルム
3,3A,3B…保護膜形成用シート
4…支持シート
41…基材
42…粘着剤層
5…治具用粘着剤層
6…剥離シート
7…半導体ウエハ
8…リングフレーム
9…保護膜付きチップ
10…第1の積層体
11…第2の積層体
12…第3の積層体
13…加工用シート
131…第3の粘着剤層
132…第3の基材
14…第4の積層体
R…リング状部材
P…突き上げピン
C…真空吸着コレット
DESCRIPTION OF SYMBOLS 1 ... Protective film formation film 3, 3A, 3B ... Protective film formation sheet 4 ... Support sheet 41 ... Base material 42 ... Adhesive layer 5 ... Jig adhesive layer 6 ... Release sheet 7 ... Semiconductor wafer 8 ... Ring frame DESCRIPTION OF SYMBOLS 9 ... Chip 10 with a protective film ... 1st laminated body 11 ... 2nd laminated body 12 ... 3rd laminated body 13 ... Sheet | seat 131 for processing ... 3rd adhesive layer 132 ... 3rd base material 14 ... 3rd 4 laminate R ... ring-shaped member P ... push-up pin C ... vacuum suction collet

Claims (8)

  1.  第1の支持シートと、前記第1の支持シートの第1の面側に積層された保護膜形成フィルムとを備えた保護膜形成用シートであって、
     前記保護膜形成フィルムは硬化性材料からなり、
     前記保護膜形成フィルムは以下の特性を有する保護膜形成用シート:
     前記保護膜形成フィルムを硬化して保護膜としたとき、前記保護膜の50℃における破断ひずみが20%以下であり、かつ損失正接のピーク温度T1が25℃から60℃である。
    A protective film-forming sheet comprising a first support sheet and a protective film-forming film laminated on the first surface side of the first support sheet,
    The protective film-forming film is made of a curable material,
    The protective film-forming film has the following characteristics:
    When the protective film-forming film is cured to form a protective film, the protective film has a breaking strain at 50 ° C. of 20% or less and a peak temperature T1 of loss tangent is 25 ° C. to 60 ° C.
  2.  前記保護膜形成フィルムがさらに以下の特性を有する請求項1に記載の保護膜形成用シート:
     前記保護膜の25℃における貯蔵弾性率が3.0×10Pa以上である。
    The protective film-forming sheet according to claim 1, wherein the protective film-forming film further has the following characteristics:
    The storage elastic modulus at 25 ° C. of the protective film is 3.0 × 10 9 Pa or more.
  3.  前記保護膜形成フィルムがさらに以下の特性を有する請求項1または2に記載の保護膜形成用シート:
     前記保護膜の25℃における損失正接が0.4以下である。
    The protective film-forming sheet according to claim 1 or 2, wherein the protective film-forming film further has the following characteristics:
    The loss tangent at 25 ° C. of the protective film is 0.4 or less.
  4.  前記保護膜形成フィルムがさらに以下の特性を有する請求項1から3のいずれか一項に記載の保護膜形成用シート:
     前記保護膜の波長1064nmの光線透過率が40%以上である。
    The protective film-forming sheet according to any one of claims 1 to 3, wherein the protective film-forming film further has the following characteristics:
    The protective film has a light transmittance of 40% or more at a wavelength of 1064 nm.
  5.  請求項1から4のいずれかに一項に記載される保護膜形成用シートが備える前記保護膜形成フィルムにおける前記第1の支持シートに対向する面とは反対側の面を表出させ、前記表出させた面をワークの一の面に貼付して、前記保護膜形成用シートと前記ワークとを備える第1の積層体を得る貼付工程;
     前記第1の積層体における前記保護膜形成フィルムを硬化させることによって前記保護膜を得る第1の硬化工程;
     前記第1の硬化工程を経た前記第1の積層体における前記保護膜の温度T2を40℃から70℃の範囲内に保持した状態で前記第1の支持シートを伸長させて、前記ワークとともに前記保護膜を分割することによって前記ワークと前記保護膜との積層体が厚さ方向に切断面が発生するように分割されてなる複数の保護膜付きチップが、前記第1の支持シートの一方の面上に配置されてなる第2の積層体を得る第1の分割工程;および
     前記第2の積層体が備える前記複数の保護膜付きチップのそれぞれを前記第1の支持シートから分離して、前記保護膜付きチップを加工物として得る第1のピックアップ工程、を含み、さらに
     前記第1の分割工程が開始されるまでに、前記ワークの内部に設定された焦点に集束されるように赤外域のレーザ光を照射して、前記ワーク内部に改質層を形成する改質層形成工程、を含む
    保護膜付きチップの製造方法。
    The surface opposite to the surface facing the first support sheet in the protective film-forming film provided in the protective film-forming sheet according to any one of claims 1 to 4 is exposed, and An attaching step of attaching the exposed surface to one surface of the workpiece to obtain a first laminate comprising the protective film-forming sheet and the workpiece;
    A first curing step of obtaining the protective film by curing the protective film-forming film in the first laminate;
    The first support sheet is extended in a state where the temperature T2 of the protective film in the first laminated body that has undergone the first curing step is maintained within a range of 40 ° C. to 70 ° C., together with the workpiece, A plurality of chips with a protective film formed by dividing the laminate of the workpiece and the protective film so as to generate a cut surface in the thickness direction by dividing the protective film is one of the first support sheets. Separating each of the plurality of protective film-provided chips provided in the second laminated body from the first support sheet; and a first dividing step of obtaining a second laminated body arranged on the surface; A first pick-up step for obtaining the chip with protective film as a workpiece, and further, the infrared region is focused to a focal point set inside the workpiece before the first dividing step is started. Laser light And irradiating method of the protective film-attached chip containing the modified layer forming step, forming a modified layer in the workpiece interior.
  6.  前記温度T2は前記温度T1以上である、請求項5に記載の保護膜付チップの製造方法。 The method for manufacturing a chip with a protective film according to claim 5, wherein the temperature T2 is equal to or higher than the temperature T1.
  7.  請求項1から4のいずれかに一項に記載される保護膜形成用シートが備える前記保護膜形成フィルムの前記第1の支持シートに対向する面とは反対側の面を表出させ、前記表出させた面をワークの一の面に貼付すること、および前記保護膜形成用シートの前記第1の支持シートを前記保護膜形成フィルムから剥離することを行って、前記ワークと前記保護膜形成フィルムとを備える第3の積層体を得る積層工程;
     前記第3の積層体が備える前記保護膜形成フィルムを硬化させることによって前記保護膜を得る第2の硬化工程;
     第3の基材と、前記第3の基材の一方の面側に積層された第3の粘着剤層とを備えた加工用シートにおける前記第3の粘着剤層が積層された側の面と、前記第2の硬化工程を経た前記第3の積層体における前記保護膜側の面とを貼合して、前記加工用シートと前記第3の積層体とを備える第4の積層体を得る第2の貼付工程;
     前記第4の積層体が備える前記保護膜の温度T3を40℃から70℃の範囲内に保持した状態で、前記第4の積層体が備える前記加工用シートを伸長させて、前記ワークとともに前記保護膜を分割することによって、前記ワークと前記保護膜との積層体が厚さ方向に切断面が発生するように分割されてなる複数の保護膜付きチップが、前記加工用シートの一方の面上に配置されてなる第5の積層体を得る第2の分割工程;および
     前記第5の積層体が備える前記複数の保護膜付きチップのそれぞれを前記加工用シートから分離して、前記保護膜付きチップを加工物として得る第2のピックアップ工程、を含み、さらに
     前記第2の分割工程が開始されるまでに、前記ワークの内部に設定された焦点に集束されるように赤外域のレーザ光を照射して、前記ワーク内部に改質層を形成する改質層形成工程、を含む
    保護膜付きチップの製造方法。
    The surface opposite to the surface facing the first support sheet of the protective film-forming film provided in the protective film-forming sheet according to any one of claims 1 to 4 is exposed, and Affixing the exposed surface to one surface of the workpiece and peeling off the first support sheet of the protective film-forming sheet from the protective film-forming film, the workpiece and the protective film A laminating step of obtaining a third laminate comprising a forming film;
    A second curing step of obtaining the protective film by curing the protective film-forming film provided in the third laminate;
    Surface on which the third pressure-sensitive adhesive layer is laminated in a processing sheet comprising a third base material and a third pressure-sensitive adhesive layer laminated on one surface side of the third base material And a fourth laminate including the processing sheet and the third laminate by bonding the surface of the third laminate that has undergone the second curing step to the surface on the protective film side. Obtaining a second application step;
    In a state where the temperature T3 of the protective film included in the fourth stacked body is maintained within a range of 40 ° C. to 70 ° C., the processing sheet included in the fourth stacked body is stretched, and the workpiece together with the workpiece By dividing the protective film, a plurality of chips with the protective film formed by dividing the laminate of the workpiece and the protective film so that a cut surface is generated in the thickness direction is provided on one surface of the processing sheet. A second dividing step of obtaining a fifth laminated body disposed thereon; and separating each of the plurality of chips with protective film provided in the fifth laminated body from the processing sheet, and A second pick-up step for obtaining a chip with a workpiece as a workpiece, and further, a laser beam in an infrared region so as to be focused on a focal point set inside the workpiece before the second splitting step is started. Irradiate The method of manufacturing a protective layer with a chip containing the modified layer forming step, forming a modified layer in the workpiece interior.
  8.  前記温度T3は前記温度T1以上である、請求項7に記載の保護膜付チップの製造方法。 The method for manufacturing a chip with a protective film according to claim 7, wherein the temperature T3 is equal to or higher than the temperature T1.
PCT/JP2015/073503 2014-08-22 2015-08-21 Protective-coating-forming sheet and method for manufacturing semiconductor chip provided with protective coating WO2016027883A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
SG11201701272UA SG11201701272UA (en) 2014-08-22 2015-08-21 Protective coating-forming sheet and method for manufacturing semiconductor chip provided with protective coating
KR1020177004494A KR102376017B1 (en) 2014-08-22 2015-08-21 Protective-coating-forming sheet and method for manufacturing semiconductor chip provided with protective coating
JP2016544263A JP6589209B2 (en) 2014-08-22 2015-08-21 Protective film forming sheet and manufacturing method of semiconductor chip with protective film
CN201580044561.4A CN106660332B (en) 2014-08-22 2015-08-21 Protective film forming sheet and method for manufacturing semiconductor chip with protective film
MYPI2017700515A MY186759A (en) 2014-08-22 2015-08-21 Protective coating-forming sheet and method for manufacturing semiconductor chip provided with protective coating
PH12017500285A PH12017500285B1 (en) 2014-08-22 2017-02-16 Protective coating-forming sheet and method for manufacturing semiconductor chip provided with protective coating

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-169266 2014-08-22
JP2014-169267 2014-08-22
JP2014169267 2014-08-22
JP2014169266 2014-08-22

Publications (1)

Publication Number Publication Date
WO2016027883A1 true WO2016027883A1 (en) 2016-02-25

Family

ID=55350823

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/073545 WO2016027888A1 (en) 2014-08-22 2015-08-21 Protective-coating-forming sheet and method for manufacturing semiconductor chip provided with protective coating
PCT/JP2015/073503 WO2016027883A1 (en) 2014-08-22 2015-08-21 Protective-coating-forming sheet and method for manufacturing semiconductor chip provided with protective coating

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073545 WO2016027888A1 (en) 2014-08-22 2015-08-21 Protective-coating-forming sheet and method for manufacturing semiconductor chip provided with protective coating

Country Status (8)

Country Link
JP (2) JPWO2016027888A1 (en)
KR (2) KR102376017B1 (en)
CN (2) CN106660332B (en)
MY (2) MY186759A (en)
PH (2) PH12017500284B1 (en)
SG (2) SG11201701270QA (en)
TW (4) TWI668290B (en)
WO (2) WO2016027888A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073627A1 (en) * 2015-10-29 2017-05-04 リンテック株式会社 Film for protective film formation and composite sheet for protective film formation
JP2017157809A (en) * 2016-03-04 2017-09-07 リンテック株式会社 Semiconductor processing sheet, winding body thereof, and manufacturing method of winding body
CN108778731A (en) * 2016-04-28 2018-11-09 琳得科株式会社 Protective film formation composite sheet
CN109328219A (en) * 2016-05-12 2019-02-12 住友电木株式会社 Adhesive tape is used in semiconductor substrate processing
WO2019146607A1 (en) * 2018-01-24 2019-08-01 リンテック株式会社 Long laminated sheet, and winding body thereof
KR20200138152A (en) * 2018-03-30 2020-12-09 린텍 가부시키가이샤 Composite sheet for forming a protective film and its manufacturing method
KR20200138145A (en) * 2018-03-30 2020-12-09 린텍 가부시키가이샤 Composite sheet for forming support sheet and protective film
KR20220113548A (en) * 2016-04-28 2022-08-12 린텍 가부시키가이샤 Film for forming protective film, and composite sheet for forming protective film
JP7453879B2 (en) 2020-08-12 2024-03-21 リンテック株式会社 Protective film forming sheet roll and protective film forming sheet roll manufacturing method

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7008620B2 (en) * 2016-03-04 2022-01-25 リンテック株式会社 Sheet for semiconductor processing
KR20180122316A (en) * 2016-03-04 2018-11-12 린텍 가부시키가이샤 Semiconductor processing sheet
KR102574633B1 (en) * 2016-03-04 2023-09-04 린텍 가부시키가이샤 Composite sheet for forming protective film
KR102516392B1 (en) * 2016-03-04 2023-03-30 린텍 가부시키가이샤 Composite sheet for forming protective film
JP6573841B2 (en) * 2016-03-04 2019-09-11 リンテック株式会社 Semiconductor processing sheet
TWI721158B (en) * 2016-04-28 2021-03-11 日商琳得科股份有限公司 Protective film forming film and composite sheet for forming protective film
TWI796297B (en) * 2016-04-28 2023-03-21 日商琳得科股份有限公司 Composite sheet for forming protective film
WO2017188231A1 (en) * 2016-04-28 2017-11-02 リンテック株式会社 Film for forming protective coat and composite sheet for forming protective coat
JP6776081B2 (en) * 2016-09-28 2020-10-28 リンテック株式会社 Manufacturing method of semiconductor chip with protective film and manufacturing method of semiconductor device
TWI765038B (en) * 2017-05-17 2022-05-21 日商琳得科股份有限公司 Semiconductor device and method for manufacturing same
JP7107946B2 (en) * 2017-08-28 2022-07-27 リンテック株式会社 infrared sensor module
KR102487552B1 (en) 2018-02-05 2023-01-11 삼성전자주식회사 Composition for protective film against sawing process and method of manufacturing semiconductor package using the composition
WO2019182001A1 (en) * 2018-03-23 2019-09-26 リンテック株式会社 Film-like adhesive and sheet for semiconductor processing
CN113692352A (en) * 2019-04-26 2021-11-23 琳得科株式会社 Method for producing third laminate, method for producing fourth laminate, method for producing semiconductor device with back surface protective film, and third laminate
JP7084972B2 (en) * 2020-10-06 2022-06-15 リンテック株式会社 Composite sheet for forming a protective film

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004109786A1 (en) * 2003-06-06 2004-12-16 Hitachi Chemical Co., Ltd. Adhesive sheet, dicing tape integrated type adhesive sheet, and semiconductor device producing method
WO2007119507A1 (en) * 2006-03-28 2007-10-25 Lintec Corporation Sheet for forming protection film for chip
JP2011139042A (en) * 2009-12-04 2011-07-14 Lintec Corp Adhesive sheet for stealth dicing and method of manufacturing semiconductor device
JP2013120841A (en) * 2011-12-07 2013-06-17 Lintec Corp Dicing sheet with protective film forming layer and method for fabricating semiconductor chip
WO2013121701A1 (en) * 2012-02-13 2013-08-22 信越化学工業株式会社 Protective film for semiconductor wafer, and method for manufacturing semiconductor chip
WO2013172328A1 (en) * 2012-05-14 2013-11-21 リンテック株式会社 Sheet having adhesive resin layer attached thereto, and method for producing semiconductor device
WO2015145807A1 (en) * 2014-03-24 2015-10-01 リンテック株式会社 Protective film forming film, protective film forming sheet and work product manufacturing method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE362653T1 (en) 2002-03-12 2007-06-15 Hamamatsu Photonics Kk METHOD FOR SEPARATING SUBSTRATES
TWI289155B (en) * 2002-04-03 2007-11-01 Tomoegawa Paper Co Ltd Adhesive sheet for producing semiconductor devices
JP3857953B2 (en) * 2002-05-16 2006-12-13 株式会社巴川製紙所 Adhesive sheet for semiconductor device manufacturing
JP4364508B2 (en) * 2002-12-27 2009-11-18 リンテック株式会社 Protective film forming sheet for chip back surface and manufacturing method of chip with protective film
WO2005004216A1 (en) * 2003-07-08 2005-01-13 Lintec Corporation Hardenable pressure sensitive adhesive sheet for dicing/die-bonding and method for manufacturing semiconductor device
CN102216075A (en) * 2008-11-27 2011-10-12 三井-杜邦聚合化学株式会社 Protective film for electronic component, manufacturing method therefor, and use thereof
JP5335483B2 (en) * 2009-02-27 2013-11-06 リンテック株式会社 Method for producing polarizing plate with adhesive layer
JP2011151362A (en) 2009-12-24 2011-08-04 Nitto Denko Corp Dicing tape-integrated film for semiconductor back surface
JP2012033637A (en) 2010-07-29 2012-02-16 Nitto Denko Corp Dicing tape integrated semiconductor rear face film, and method of manufacturing semiconductor device
JP5580701B2 (en) * 2010-09-13 2014-08-27 日東電工株式会社 Dicing die bond film
WO2013005470A1 (en) * 2011-07-01 2013-01-10 古河電気工業株式会社 Adhesive film, and dicing/die bonding film and method for processing semiconductor using said dicing/die bonding film
EP2927952B1 (en) * 2012-11-30 2020-11-18 Lintec Corporation Sheet for forming resin film for chips and method for manufacturing semiconductor device
CN106104760B (en) * 2014-03-24 2019-11-01 琳得科株式会社 Protective film forms film and piece is used in protective film formation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004109786A1 (en) * 2003-06-06 2004-12-16 Hitachi Chemical Co., Ltd. Adhesive sheet, dicing tape integrated type adhesive sheet, and semiconductor device producing method
WO2007119507A1 (en) * 2006-03-28 2007-10-25 Lintec Corporation Sheet for forming protection film for chip
JP2011139042A (en) * 2009-12-04 2011-07-14 Lintec Corp Adhesive sheet for stealth dicing and method of manufacturing semiconductor device
JP2013120841A (en) * 2011-12-07 2013-06-17 Lintec Corp Dicing sheet with protective film forming layer and method for fabricating semiconductor chip
WO2013121701A1 (en) * 2012-02-13 2013-08-22 信越化学工業株式会社 Protective film for semiconductor wafer, and method for manufacturing semiconductor chip
WO2013172328A1 (en) * 2012-05-14 2013-11-21 リンテック株式会社 Sheet having adhesive resin layer attached thereto, and method for producing semiconductor device
WO2015145807A1 (en) * 2014-03-24 2015-10-01 リンテック株式会社 Protective film forming film, protective film forming sheet and work product manufacturing method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073627A1 (en) * 2015-10-29 2017-05-04 リンテック株式会社 Film for protective film formation and composite sheet for protective film formation
JP2017157809A (en) * 2016-03-04 2017-09-07 リンテック株式会社 Semiconductor processing sheet, winding body thereof, and manufacturing method of winding body
KR20220113548A (en) * 2016-04-28 2022-08-12 린텍 가부시키가이샤 Film for forming protective film, and composite sheet for forming protective film
CN108778731A (en) * 2016-04-28 2018-11-09 琳得科株式会社 Protective film formation composite sheet
KR102577856B1 (en) * 2016-04-28 2023-09-12 린텍 가부시키가이샤 Film for forming protective film, and composite sheet for forming protective film
CN109328219A (en) * 2016-05-12 2019-02-12 住友电木株式会社 Adhesive tape is used in semiconductor substrate processing
WO2019146607A1 (en) * 2018-01-24 2019-08-01 リンテック株式会社 Long laminated sheet, and winding body thereof
JP7402052B2 (en) 2018-01-24 2023-12-20 リンテック株式会社 Long laminated sheets and their rolls
JPWO2019146607A1 (en) * 2018-01-24 2021-01-07 リンテック株式会社 Long laminated sheet and its winding body
JPWO2019187014A1 (en) * 2018-03-30 2021-03-18 リンテック株式会社 Support sheet and composite sheet for forming protective film
JPWO2019187010A1 (en) * 2018-03-30 2021-03-18 リンテック株式会社 Composite sheet for forming a protective film and its manufacturing method
KR102467148B1 (en) 2018-03-30 2022-11-14 린텍 가부시키가이샤 Composite sheet for forming support sheet and protective film
JP7203087B2 (en) 2018-03-30 2023-01-12 リンテック株式会社 COMPOSITE SHEET FOR PROTECTIVE FILM FORMATION AND METHOD FOR MANUFACTURING SAME
KR102524205B1 (en) * 2018-03-30 2023-04-20 린텍 가부시키가이샤 Composite sheet for forming protective film and manufacturing method thereof
KR20200138145A (en) * 2018-03-30 2020-12-09 린텍 가부시키가이샤 Composite sheet for forming support sheet and protective film
KR20200138152A (en) * 2018-03-30 2020-12-09 린텍 가부시키가이샤 Composite sheet for forming a protective film and its manufacturing method
JP7453879B2 (en) 2020-08-12 2024-03-21 リンテック株式会社 Protective film forming sheet roll and protective film forming sheet roll manufacturing method

Also Published As

Publication number Publication date
TW201614024A (en) 2016-04-16
CN106660333A (en) 2017-05-10
WO2016027888A1 (en) 2016-02-25
PH12017500284A1 (en) 2017-07-03
TWI672354B (en) 2019-09-21
PH12017500285A1 (en) 2017-06-28
CN106660333B (en) 2018-11-06
PH12017500284B1 (en) 2017-07-03
KR20170044652A (en) 2017-04-25
TW201940622A (en) 2019-10-16
CN106660332A (en) 2017-05-10
MY182846A (en) 2021-02-05
JP6589209B2 (en) 2019-10-16
TW201938728A (en) 2019-10-01
TWI668290B (en) 2019-08-11
KR102368140B1 (en) 2022-02-25
KR102376017B1 (en) 2022-03-17
JPWO2016027888A1 (en) 2017-06-01
PH12017500285B1 (en) 2017-06-28
TWI712670B (en) 2020-12-11
SG11201701272UA (en) 2017-04-27
TW201614023A (en) 2016-04-16
JPWO2016027883A1 (en) 2017-06-01
TWI706023B (en) 2020-10-01
SG11201701270QA (en) 2017-03-30
MY186759A (en) 2021-08-18
CN106660332B (en) 2020-08-07
KR20170044108A (en) 2017-04-24

Similar Documents

Publication Publication Date Title
JP6589209B2 (en) Protective film forming sheet and manufacturing method of semiconductor chip with protective film
JP6591652B2 (en) Protective film-forming film, protective film-forming sheet, protective film-forming composite sheet, and method for producing a processed product
JP6670363B2 (en) Protective film forming film
JP6405556B2 (en) Protective film forming film, protective film forming sheet and inspection method
JP6319433B2 (en) Composite sheet for protective film formation
JP6399665B2 (en) Protective film forming film, protective film forming sheet, protective film forming composite sheet and inspection method
JP6554738B2 (en) Protective film-forming film, protective film-forming sheet, workpiece or workpiece manufacturing method, inspection method, workpiece judged to be non-defective, and workpiece judged to be non-defective
WO2015105002A1 (en) Composite sheet for protective-film formation
JP6838018B2 (en) Protective film forming film, protective film forming sheet and inspection method
JP6228343B1 (en) Protective film forming film, protective film forming sheet and inspection method
KR20230085855A (en) Film for protective film formation, sheet for protective film formation, composite sheet for protective film formation and device manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15833458

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016544263

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12017500285

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 20177004494

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15833458

Country of ref document: EP

Kind code of ref document: A1