WO2019182001A1 - Film-like adhesive and sheet for semiconductor processing - Google Patents

Film-like adhesive and sheet for semiconductor processing Download PDF

Info

Publication number
WO2019182001A1
WO2019182001A1 PCT/JP2019/011659 JP2019011659W WO2019182001A1 WO 2019182001 A1 WO2019182001 A1 WO 2019182001A1 JP 2019011659 W JP2019011659 W JP 2019011659W WO 2019182001 A1 WO2019182001 A1 WO 2019182001A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
film
film adhesive
mass
resin
Prior art date
Application number
PCT/JP2019/011659
Other languages
French (fr)
Japanese (ja)
Inventor
啓示 布施
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to JP2020507868A priority Critical patent/JP7282076B2/en
Priority to CN201980011346.2A priority patent/CN111670231B/en
Priority to KR1020207016393A priority patent/KR102637855B1/en
Publication of WO2019182001A1 publication Critical patent/WO2019182001A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J107/00Adhesives based on natural rubber
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J109/00Adhesives based on homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J167/00Adhesives based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J171/00Adhesives based on polyethers obtained by reactions forming an ether link in the main chain; Adhesives based on derivatives of such polymers
    • C09J171/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C09J171/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J179/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09J161/00 - C09J177/00
    • C09J179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature

Definitions

  • the present invention relates to a film adhesive and a semiconductor processing sheet.
  • This application claims priority based on Japanese Patent Application No. 2018-057006 filed in Japan on March 23, 2018, the contents of which are incorporated herein by reference.
  • the semiconductor chip is usually die-bonded to the circuit forming surface of the substrate with a film adhesive stuck on the back surface thereof. Then, a semiconductor package is manufactured using the obtained one, and a target semiconductor device is finally manufactured using the semiconductor package.
  • a semiconductor chip having a film-like adhesive on the back surface is produced, for example, by dividing (cutting) a semiconductor wafer having a film-like adhesive on the back surface together with the film-like adhesive.
  • a method for dividing the semiconductor wafer into semiconductor chips in this manner for example, a method of dicing the semiconductor wafer together with the film adhesive using a dicing blade is known.
  • the film adhesive before division (cutting) may be used as a dicing die bonding sheet laminated and integrated on a dicing sheet used for fixing the semiconductor wafer during dicing.
  • thermosetting die-bonding film is disclosed (see Patent Document 1).
  • This thermosetting die-bonding film is excellent in adhesion to an adherend and is supposed to prevent contamination of the substrate and the semiconductor chip due to bleeding of the adhesive.
  • the organic fraction after being thermally cured by heat treatment at 120 ° C. for 1 hour has a gel fraction of 20% by weight or less in the organic component after being thermally cured by heat treatment at 175 ° C. for 1 hour.
  • a thermosetting die-bonding film in which the gel fraction in the component is in the range of 10 to 30% by weight is disclosed (see Patent Document 2). This thermosetting die-bonding film is supposed to suppress curing shrinkage after die bonding, thereby preventing warpage of the adherend.
  • the characteristics of the film adhesive may change due to the reaction of the crosslinkable or curable component that is a component of the film adhesive during storage until it is used. As described above, a film-like adhesive that easily changes its characteristics and has low storage stability may not sufficiently exhibit the intended action during use. Furthermore, the reliability of a semiconductor package manufactured using such a film adhesive and a semiconductor chip may be reduced.
  • thermosetting die-bonding film (film adhesive) described in Patent Document 1 has a melt viscosity within a specific range at 100 ° C. before thermosetting, but before and after storage. Whether the melt viscosity is stable is not certain.
  • thermosetting die-bonding film (film adhesive) described in Patent Document 2 has a gel fraction in the organic component after thermosetting within a specific range, but is the gel fraction before and after storage stable? It is not certain whether or not.
  • thermosetting die-bonding film (film adhesive) described in Patent Documents 1 and 2 has high storage stability and can manufacture a highly reliable semiconductor package. , Is not certain.
  • An object of the present invention is to provide a film adhesive capable of producing a semiconductor package having high storage stability and high reliability based thereon, and a semiconductor processing sheet provided with the film adhesive. To do.
  • the present invention is a case where the film adhesive is stored at 40 ° C., and when the initial detection temperature of the melt viscosity is obtained for the film adhesive before and after storage, the storage time is 168 hours.
  • the difference ⁇ T 168 between the initial detection temperature T 168 and the initial detection temperature T 0 before storage is less than 10 ° C., and the film adhesive before storing the film adhesive at 40 ° C.
  • a film adhesive having a gel fraction W 0 of 15% or less is provided.
  • the present invention stores the film adhesive at 40 ° C., and when the gel fraction is measured for the film adhesive before and after storage, the gel fraction W 168 when the storage time is 168 hours, The change rate RW 168 of the gel fraction when the storage time is 168 hours, obtained from the gel fraction W 0 before storage, is 200% or less, and the gel fraction W 0 is 15 %, The film adhesive is provided.
  • the storage time is 168 hours.
  • a film adhesive in which a gel fraction W 0 of the film adhesive before storing the film adhesive at 40 ° C. is 15% or less.
  • this invention provides the sheet
  • Film adhesive having the following characteristics: (I) When the initial detection temperature of the melt viscosity of the film adhesive after storage at 40 ° C. for 168 hours is T 168 and the initial detection temperature of the melt viscosity of the film adhesive before storage is T 0 When the difference ⁇ T 168 between the T 168 and the T 0 is less than 10 ° C. and (II) the gel fraction before storing the film adhesive at 40 ° C. is W 0 , the W 0 Is 15% or less. [2] Film adhesive having the following characteristics: (I ′) When the gel fraction of the film adhesive after storage for 168 hours at 40 ° C.
  • a support sheet A sheet for semiconductor processing, comprising the film adhesive according to any one of [1] to [3] provided on the support sheet.
  • the film adhesive according to [1] which further has the following characteristics: (III) When the gel fraction of the film adhesive after storage at 40 ° C. for 168 hours is W 168, and the gel fraction of the film adhesive before storage is W 0 , the W 168 and the above The change rate RW 168 of the gel fraction obtained from W 0 is 200% or less. [6] The film adhesive according to any one of [1] to [3], which further has the following characteristics: (IV) the film-like after 168 hours storage at 40 ° C.
  • the reduction rate RF 168 of the elongation at break obtained from F 168 and F 0 is less than 30%.
  • a film adhesive capable of producing a semiconductor package having high storage stability and high reliability based thereon, and a semiconductor processing sheet provided with the film adhesive.
  • the film-like adhesive according to the first embodiment of the present invention stores the film-like adhesive at 40 ° C., and determines the initial detection temperature of the melt viscosity for the film-like adhesive before and after storage
  • the storage time is The difference ⁇ T 168 between the initial detected temperature T 168 in the case of 168 hours and the initial detected temperature T 0 before storage is less than 10 ° C., and the film adhesive before storing at 40 ° C.
  • the gel fraction W 0 of the film adhesive is 15% or less. That is, the film adhesive according to the first embodiment of the present invention has the following characteristics: (I) When the initial detection temperature of the melt viscosity of the film adhesive after storage at 40 ° C.
  • T 168 the initial detection temperature of the melt viscosity of the film adhesive before storage is T 0
  • T 0 the difference between the T 168 and the T 0 is less than 10 ° C.
  • W 0 the gel fraction before storing the film adhesive at 40 ° C.
  • the film-like adhesive of the first embodiment has curability, preferably has thermosetting properties, and preferably has pressure-sensitive adhesive properties.
  • a film adhesive having both thermosetting and pressure-sensitive adhesive properties can be applied by lightly pressing on various adherends in an uncured state.
  • the film adhesive may be one that can be applied to various adherends by heating and softening.
  • the film adhesive finally becomes a cured product having high impact resistance by curing, and this cured product can retain sufficient adhesive properties even under severe high temperature and high humidity conditions.
  • a film-like adhesive that satisfies such conditions is not limited to such storage conditions, but is generally stable under general storage conditions, and changes in properties during storage are suppressed. Can sufficiently exhibit the intended action. And by using such a film adhesive, a highly reliable semiconductor package can be manufactured.
  • the film-like adhesive of the first embodiment has a small W 0 , and enables production of a highly reliable semiconductor package regardless of whether or not it is stored.
  • ⁇ T 168 is less than 10 ° C. as described above, preferably 9.5 ° C. or less, more preferably 9 ° C. or less, and 8 ° C. or less. More preferably, for example, it may be 6 ° C. or lower and 3 ° C. or lower.
  • the lower limit value of ⁇ T 168 is not particularly limited, but is usually 0 ° C. That is, in the film adhesive of the first embodiment, ⁇ T 168 is preferably 0 ° C. or higher.
  • ⁇ T 168 can be appropriately adjusted within a range set by arbitrarily combining the above-described preferable lower limit value and upper limit value.
  • ⁇ T 168 is preferably 0 ° C. or more and less than 10 ° C., more preferably 0 to 9.5 ° C., further preferably 0 to 9 ° C., particularly preferably 0 to 8 ° C., for example, 0 to 6 ° C., And any of 0 to 3 ° C.
  • ⁇ T 168 may be 0 to 7 ° C. However, these are examples of ⁇ T 168 .
  • T 0 is not particularly limited, but is preferably 35 to 100 ° C., more preferably 40 to 90 ° C., and particularly preferably 45 to 80 ° C. preferable. As another aspect, T 0 may be 59 to 71 ° C.
  • T 0 is equal to or more than the lower limit value, it is difficult for a gap to be formed between the film-like adhesive and the sticking target, and the embedding property to the sticking target is further improved. As a result, the reliability of the obtained semiconductor package becomes higher. T 0 that it is equal to or less than the upper limit, handling property of the film-like adhesive is further improved.
  • T 168 is not particularly limited, but is preferably 35 to 109.5 ° C, more preferably 40 to 99.5 ° C, and 45 to 89.5. It is particularly preferable that the temperature is C. As another aspect, T 168 may be 59 to 78 ° C. When T 168 is equal to or more than the lower limit value, it is difficult for a void portion to be generated between the film adhesive and the sticking object, and the embedding property to the sticking object is further improved. As a result, the reliability of the obtained semiconductor package becomes higher. When T168 is equal to or less than the upper limit, the handleability of the film adhesive is further improved.
  • the initial detection temperature T t of the melt viscosity of the film adhesive according to the present embodiment is the melting temperature of the film adhesive whose storage time at 40 ° C. is t hours (t is a number of 0 or more). It is determined by measuring the viscosity by a known method.
  • a capillary rheometer uses a capillary rheometer to measure the film-like adhesive in the cylinder (capillary) and make contact with the inner wall of the cylinder along the inner wall along the longitudinal direction of the cylinder (in other words, the direction of the central axis) ) While maintaining a state in which a certain amount of force is applied to the film-like adhesive in the cylinder (a state where a load is applied, for example, 5.10 N) by the movable piston.
  • the temperature is raised (for example, raised from 50 ° C. to 120 ° C. at 10 ° C./min).
  • the outside of the cylinder When the extrusion of the film adhesive is started, that is, when the detection of the melt viscosity of the film adhesive is started, the temperature of the film adhesive is set to the initial detection temperature T t ( ° C). By this method, T 168 and T 0 are determined.
  • the size and shape of the film adhesive used for the measurement can be appropriately adjusted in consideration of the size of the cylinder and the like. For example, a cylindrical test piece having a diameter of 10 mm and a height of 20 mm is preferable.
  • melt viscosity means the melt viscosity measured by the above method unless otherwise specified.
  • the film-like adhesive which is the measurement target of Tt , at 40 ° C.
  • it is preferably stored in an air atmosphere, preferably stored at rest, and preferably stored in a dark place. And it is more preferable to preserve
  • the Kell fraction W 0 is 15% or less as described above, preferably 13% or less, more preferably 11% or less, and 9% or less. It is particularly preferred.
  • W 0 is equal to or less than the upper limit value, it is difficult for a void portion to be generated between the film adhesive and the sticking target, and the embedding property to the sticking target is further improved. As a result, the reliability of the obtained semiconductor package becomes higher.
  • the lower limit value of W 0 is not particularly limited.
  • W 0 is preferably 3% or more, and more preferably 5% or more.
  • W 0 is equal to or more than the lower limit, the handleability of the film adhesive is improved, and the film adhesive can be more easily attached to the semiconductor wafer. Furthermore, even if the layer adjacent to the film adhesive such as the substrate has an uneven surface, the followability of the film adhesive to the uneven surface is improved.
  • W 0 can be appropriately adjusted within a range set by arbitrarily combining the above-described preferable lower limit value and upper limit value.
  • W 0 is preferably 3-15%, more preferably 3-13%, even more preferably 3-11% ° C., and particularly preferably 3-9%.
  • W 0 is preferably 5 to 15%, more preferably 5 to 13%, still more preferably 5 to 11%, and particularly preferably 5 to 9%.
  • W 0 may be 3 to 8% or 5 to 8%.
  • the gel fraction W 0 can be measured by a known method. For example, 0.5 g of a sheet-like film adhesive test piece having a size of 2.5 cm ⁇ 4.0 cm ⁇ 600 ⁇ m is wrapped with a polyester mesh, and the test piece in this state is subjected to methyl ethyl ketone (23 ° C. (300 mL) for 24 hours, the test piece after immersion was dried (for example, dried at 120 ° C. for 1 hour), and the dried test piece was stored for 24 hours in an environment of 23 ° C. and a relative humidity of 50%. Then, the mass of this test piece is measured. From the measured value of the test piece and the mass of the test piece before immersion, W 0 (%) can be calculated by the following formula.
  • melt viscosity of the film-like adhesive of the first embodiment T t such as T 0 and T 168 , ⁇ T 168 and W 0 (hereinafter, these are collectively referred to as “melt viscosity”). Any) can be appropriately adjusted by adjusting, for example, the type and amount of the component of the film adhesive.
  • the component of the film-like adhesive which is a component of the polymer component (a) described later, and the content ratio thereof, the component of the epoxy resin (b1), the three-dimensional structure of the thermosetting agent (b2), and curing
  • the above-mentioned melt viscosity and the like can be adjusted as appropriate.
  • the film-like adhesive of the first embodiment may be composed of one layer (single layer), or may be composed of two or more layers, and when composed of a plurality of layers, these layers are the same or different from each other.
  • the combination of these multiple layers is not particularly limited.
  • the thickness of the film-like adhesive of the first embodiment is not particularly limited, but is preferably 1 to 50 ⁇ m, more preferably 3 to 40 ⁇ m, and particularly preferably 5 to 30 ⁇ m.
  • the thickness of the film adhesive is equal to or more than the lower limit, the adhesive force of the film adhesive to the adherend (semiconductor wafer, semiconductor chip) is further increased.
  • the thickness of the film adhesive is equal to or less than the above upper limit value, the film adhesive can be more easily cut in the semiconductor chip manufacturing process described later, and the generation of a cut piece derived from the film adhesive The amount can be further reduced.
  • the “thickness of the film-like adhesive” means the thickness of the entire film-like adhesive.
  • the thickness of the film-like adhesive composed of a plurality of layers means all of the film-like adhesive. Means the total thickness of the layers.
  • “thickness” means a value measured by a constant pressure thickness measuring instrument.
  • the film adhesive can be formed from an adhesive composition containing the constituent materials.
  • a film adhesive can be formed in the target site
  • the content ratio of components that do not vaporize at normal temperature is usually the same as the content ratio of the components of the film adhesive.
  • “normal temperature” means a temperature that is not particularly cooled or heated, that is, a normal temperature, and examples thereof include a temperature of 15 to 25 ° C.
  • the adhesive composition may be applied by a known method, for example, an air knife coater, blade coater, bar coater, gravure coater, roll coater, roll knife coater, curtain coater, die coater, knife coater, screen coater. And a method using various coaters such as a Meyer bar coater and a kiss coater.
  • the drying conditions of the adhesive composition are not particularly limited, the adhesive composition is preferably heat-dried when it contains a solvent described later.
  • the adhesive composition containing the solvent is preferably dried at 70 to 130 ° C. for 10 seconds to 5 minutes, for example.
  • the film adhesive according to the second embodiment of the present invention is stored at 40 ° C. and the gel fraction is measured for the film adhesive before and after storage, the storage time is 168 hours.
  • the change rate RW 168 of the gel fraction when the storage time is 168 hours, which is obtained from the gel fraction W 168 and the gel fraction W 0 before storage, is 200% or less, and The gel fraction W 0 is 15% or less.
  • the film adhesive according to the second embodiment of the present invention has the following characteristics: (I ′) When the gel fraction of the film adhesive after storage for 168 hours at 40 ° C. is W 168 and the gel fraction of the film adhesive before storage is W 0 , the W 168 The change rate RW 168 of the gel fraction obtained from the W 0 is 200% or less, and (II ′) the W 0 is 15% or less.
  • the film-like adhesive of the second embodiment has a small RW 168 as described above, and even when stored at 40 ° C. for 168 hours, the change in gel fraction is suppressed and the storage stability is high.
  • a film-like adhesive satisfying such conditions has high storage stability not only in such storage conditions but also in general storage conditions generally applied. And by using such a film adhesive, a highly reliable semiconductor package can be manufactured.
  • the film-like adhesive of the second embodiment has a small W 0 , and enables production of a highly reliable semiconductor package regardless of whether or not it is stored.
  • RW 168 is 200% or less as described above, preferably 185% or less, more preferably 170% or less, and preferably 155% or less. More preferably, for example, it may be either 140% or less and 125% or less.
  • the lower limit value of RW 168 is not particularly limited, but is usually 100%. That is, in the film-like adhesive of the second embodiment, RW 168 is preferably 100% or more. A film adhesive having such characteristics can be produced more easily.
  • RW 168 can be appropriately adjusted within a range set by arbitrarily combining the above-described preferable lower limit value and upper limit value.
  • RW 168 is preferably 100 to 200%, more preferably 100 to 185%, still more preferably 100 to 170% ° C, particularly preferably 100 to 155%, such as 100 to 140%, and 100 to It may be any of 125%. Another aspect may be 113 to 150%. However, these are examples of RW 168 .
  • W 0 is 15% or less as described above, preferably 13% or less, more preferably 11% or less, and 9% or less. Particularly preferred.
  • W 0 is equal to or less than the upper limit value, it is difficult for a void portion to be generated between the film adhesive and the sticking target, and the embedding property to the sticking target is further improved. As a result, the reliability of the obtained semiconductor package becomes higher.
  • the lower limit value of W 0 is not particularly limited.
  • W 0 is preferably 3% or more, and more preferably 5% or more.
  • W 0 is equal to or more than the lower limit, the handleability of the film adhesive is improved, and the film adhesive can be more easily attached to the semiconductor wafer. Furthermore, even if the layer adjacent to the film adhesive such as the substrate has an uneven surface, the followability of the film adhesive to the uneven surface is improved.
  • W 0 can be appropriately adjusted within a range set by arbitrarily combining the above-described preferable lower limit value and upper limit value.
  • W 0 is preferably 3-15%, more preferably 3-13%, even more preferably 3-11% ° C., and particularly preferably 3-9%.
  • W 0 is preferably 5 to 15%, more preferably 5 to 13%, still more preferably 5 to 11%, and particularly preferably 5 to 9%.
  • W 0 may be 3 to 8% or 5 to 8%.
  • W 168 is not particularly limited, but is preferably 4 to 16%, more preferably 5 to 15%, and particularly preferably 6 to 14%. preferable. In another aspect, W 168 may be 9-12 %.
  • W 168 is less than or equal to the above upper limit value, a void portion is less likely to be generated between the film-like adhesive and the sticking target, and the embedding property to the sticking target is further improved. As a result, the reliability of the obtained semiconductor package becomes higher.
  • W 168 is equal to or more than the lower limit, the handleability of the film adhesive is improved, and the film adhesive can be more easily attached to the semiconductor wafer. Furthermore, even if the layer adjacent to the film adhesive such as the substrate has an uneven surface, the followability of the film adhesive to the uneven surface is improved.
  • the gel fraction W t of the film adhesive stored at 40 ° C. for t time can be measured by a known method.
  • a 0.5 g ⁇ 4.0 cm ⁇ 600 ⁇ m sheet-shaped film-shaped adhesive test piece having a size of 2.5 cm ⁇ 4.0 cm ⁇ 600 ⁇ m is prepared from a film-shaped adhesive stored at 40 ° C. for t hours, and then a polyester mesh is used.
  • the test piece in this state is immersed in methyl ethyl ketone (300 mL) at 23 ° C. for 24 hours, and the test piece after immersion is dried (for example, dried at 120 ° C. for 1 hour).
  • the gel fraction W t (%) can be calculated from the measured value of the test piece and the mass of the test piece before immersion.
  • W 168 and W 0 are obtained.
  • the method of measuring the W 0 in the present embodiment is the same as the measurement method of W 0 in the first embodiment described above.
  • gel fraction means a gel fraction measured by the above method unless otherwise specified.
  • the conditions for storing the target film-like adhesive for obtaining W t at 40 ° C. are the same as those for obtaining T t described above.
  • RW 168 can be calculated according to the following formula (i).
  • RW 168 (%) W 168 / W 0 ⁇ 100 (i)
  • the film-like adhesive of the second embodiment has the essential constitution that RW 168 is 200% or less, and the film of the first embodiment described above except that ⁇ T 168 does not have to be less than 10 ° C. It is the same as the adhesive.
  • the film-like adhesive according to the second embodiment has curability like the film-like adhesive according to the first embodiment, and preferably has thermosetting, and has pressure-sensitive adhesiveness. Is preferable, and may have both thermosetting and pressure-sensitive adhesive properties.
  • the film adhesive of the second embodiment also becomes a cured product having high impact resistance by curing, and this cured product can maintain sufficient adhesive properties even under severe high temperature and high humidity conditions.
  • the film adhesive of 2nd Embodiment may consist of 1 layer (single layer) similarly to the film adhesive of 1st Embodiment, and may consist of two or more layers. .
  • the thickness of the film adhesive of 2nd Embodiment is the same as the thickness of the film adhesive of 1st Embodiment.
  • the film adhesive of 2nd Embodiment can be manufactured by the method similar to the case of the film adhesive of 1st Embodiment.
  • W t such as W 0 and W 168 and RW 168 (hereinafter, these may be collectively referred to as “W 0 etc.”) It can be adjusted as appropriate by adjusting the type and amount of the components contained in the film adhesive.
  • the component of the film-like adhesive which is a component of the polymer component (a) described later, and the content ratio thereof, the component of the epoxy resin (b1), the three-dimensional structure of the thermosetting agent (b2), and curing
  • the accelerator (c) the average particle size of the filler (d), and the like
  • W 0 and the like can be appropriately adjusted.
  • these are only examples of adjusting methods such as the above-described W 0 .
  • the film-like adhesive was stored at 40 ° C., and the elongation at break was measured according to JIS K7161: 1994 for the film-like adhesive before and after storage.
  • the storage time is 168 hours
  • the decrease rate RF 168 of the breaking elongation when the storage time is 168 hours it is less than 30%
  • the gel fraction W 0 of the film adhesive before storing the film adhesive at 40 ° C. is 15% or less.
  • the film adhesive according to the third embodiment of the present invention has the following characteristics: (I '') JIS after storage the film-like 168 hours at 40 ° C. of the adhesive K7161: elongation at break, determined in accordance with the 1994 and F 168, before the storage of the film-like adhesive JIS K7161: When the elongation at break measured in accordance with 1994 is F 0 , the decrease rate RF 168 of elongation at break obtained from F 168 and F 0 is less than 30%, and (II ′′) When the gel fraction of the film adhesive before storing the film adhesive at 40 ° C. is defined as W 0 , the W 0 is 15% or less.
  • the film-like adhesive of the third embodiment has a small RF 168 , and even when stored at 40 ° C. for 168 hours, the change in elongation at break is suppressed and the storage stability is high.
  • a film-like adhesive satisfying such conditions has high storage stability not only in such storage conditions but also in general storage conditions generally applied. And by using such a film adhesive, a highly reliable semiconductor package can be manufactured.
  • the film-like adhesive of the third embodiment has a small W 0 , and enables production of a highly reliable semiconductor package regardless of whether or not it is stored.
  • RF 168 is less than 30% as described above, preferably 29.5% or less, more preferably 28% or less, and 26% or less. More preferably, it is particularly preferably 24% or less.
  • the lower limit value of RF 168 is not particularly limited, but is usually 0%. That is, in the film-like adhesive according to the third embodiment, RF 168 is preferably 0% or more, and may be, for example, 5% or more.
  • RF 168 can be appropriately adjusted within a range set by arbitrarily combining the above-described preferable lower limit value and upper limit value.
  • RF 168 is preferably 0% or more and less than 30%, more preferably 0 to 29.5%, even more preferably 0 to 28%, particularly preferably 0 to 26%, most preferably 0. ⁇ 24%.
  • RF 168 is preferably 5% or more and less than 30%, more preferably 5 to 29.5%, still more preferably 5 to 28%, particularly preferably 5 to 26%, most preferably 5 to 24%.
  • RF 168 may be 0-23% or 5-23%. However, these are examples of RF 168 .
  • F 0 is not particularly limited, but is preferably 550 to 950%, more preferably 600 to 900%, and particularly preferably 650 to 850%. preferable. As another aspect, F 0 may be 700 to 800%.
  • F 0 is equal to or less than the upper limit value, it is difficult for a void portion to be formed between the film adhesive and the pasting object, and the embedding property to the pasting object is further improved. As a result, the reliability of the obtained semiconductor package becomes higher.
  • F 0 is equal to or more than the lower limit, the handling properties of the film-like adhesive is further improved.
  • F 168 is not particularly limited, but is preferably 550 to 850%, more preferably 550 to 800%, and particularly preferably 550 to 750%. preferable. In another aspect, F 168 may be 560-700%.
  • F 168 is equal to or less than the upper limit value, it is difficult for a void portion to be generated between the film-like adhesive and the sticking target, and the embedding property to the sticking target is further improved. As a result, the reliability of the obtained semiconductor package becomes higher. The handling property of a film adhesive improves more because F168 is more than the said lower limit.
  • the elongation at break F t is measured according to JIS K7161: 1994. It can.
  • F 168 and F 0 can also be measured according to JIS K7161: 1994.
  • breaking elongation means the breaking elongation measured in accordance with JIS K7161: 1994 (ISO 527-1: 1993) unless otherwise specified.
  • the conditions for storing the film-like adhesive, which is the measurement target of F t , at 40 ° C. are the same as those for obtaining T t described above.
  • the elongation at break F t of a film-like adhesive having a storage time at 40 ° C. of t hours is that the film-like adhesive immediately after production is subjected to an air atmosphere. In a dark place, the sample is stored at 40 ° C. for t hours, and then a test piece is immediately prepared according to JIS K7161: 1994, and the elongation at break of the test piece is measured.
  • the breaking elongation F 0 is a JIS K7161: 1994, immediately after preparing a test piece from a film adhesive immediately after the production, measuring the breaking elongation of the test piece immediately after the production Can be obtained.
  • the film-like adhesive according to the third embodiment has an essential configuration that RF 168 is less than 30%, and ⁇ T 168 does not have to be less than 10 ° C. This is the same as the film adhesive of one embodiment.
  • the film-like adhesive of the third embodiment has curability like the film-like adhesive of the first embodiment, and preferably has thermosetting, and has pressure-sensitive adhesiveness. Is preferable, and may have both thermosetting and pressure-sensitive adhesive properties.
  • the film adhesive of the third embodiment also becomes a cured product having high impact resistance by curing, and this cured product can maintain sufficient adhesive properties even under severe high temperature and high humidity conditions.
  • the film adhesive of 3rd Embodiment may consist of 1 layer (single layer) similarly to the film adhesive of 1st Embodiment, and may consist of two or more layers. .
  • the thickness of the film adhesive of 3rd Embodiment is the same as the thickness of the film adhesive of 1st Embodiment.
  • W 0 of the film-like adhesive of the third embodiment is the same as W 0 of the film-like adhesive of the first embodiment.
  • the film adhesive of 3rd Embodiment can be manufactured by the method similar to the case of the film adhesive of 1st Embodiment.
  • a third embodiment of a film-like adhesive such as F 0 and F 168 F t, the RF 168, W 0 (hereinafter, these are generic, may be referred to as "F 0, etc.") are Any of these can be adjusted as appropriate by adjusting, for example, the types and amounts of the components of the film adhesive.
  • the component of the film-like adhesive which is a component of the polymer component (a) described later, and the content ratio thereof, the component of the epoxy resin (b1), the three-dimensional structure of the thermosetting agent (b2), and curing
  • the accelerator (c) the average particle size of the filler (d), and the like
  • the above-described F 0 and the like can be appropriately adjusted.
  • these are only examples of the adjusting method such as F 0 described above.
  • the film adhesive of the present invention may have both of the characteristics of the above-described first embodiment, second embodiment, and third embodiment in two or more (2 or 3) embodiments. That is, as one embodiment of the film adhesive, for example, ⁇ T 168 is less than 10 ° C., RW 168 is 200% or less, and W 0 is 15% or less. . Moreover, as one embodiment of the film adhesive, for example, ⁇ T 168 is less than 10 ° C., W 0 is 15% or less, and RF 168 is less than 30%. . Moreover, as one embodiment of the film adhesive, for example, RW 168 is 200% or less, W 0 is 15% or less, and RF 168 is less than 30%. .
  • ⁇ T 168 is less than 10 ° C.
  • RW 168 is 200% or less
  • W 0 is 15% or less
  • RF 168 is less than 30%.
  • T 0 , T 168 , ⁇ T 168 , W 0 , W 168 , RW 168 , F 0 , F 168 and RF 168 are all as described above.
  • FIG. 1 is a cross-sectional view schematically showing a film adhesive according to an embodiment of the present invention.
  • the drawings used in the following description may show the main portions in an enlarged manner for convenience, and the dimensional ratios of the respective components are the same as the actual ones. Not necessarily.
  • the film-like adhesive 13 shown here includes a first release film 151 on one side (sometimes referred to as a “first side” in this specification) 13a, and the first side 13a is defined as:
  • a second release film 152 is provided on the other surface (which may be referred to as “second surface” in this specification) 13b on the opposite side.
  • Such a film adhesive 13 is suitable for storing as a roll, for example.
  • the film adhesive 13 has the characteristics of one or more of the first embodiment, the second embodiment, and the third embodiment described above.
  • the film adhesive 13 can be formed from an adhesive composition to be described later.
  • Both the first release film 151 and the second release film 152 may be known ones.
  • the first release film 151 and the second release film 152 may be the same as each other, and are different from each other, for example, different peeling forces are required when peeling from the film adhesive 13. Also good.
  • a preferable adhesive composition includes a thermosetting adhesive composition.
  • a thermosetting adhesive composition what contains a polymer component (a) and an epoxy-type thermosetting resin (b) is mentioned, for example. Hereinafter, each component will be described.
  • the polymer component (a) is a component that can be regarded as formed by polymerization reaction of a polymerizable compound, and imparts film-forming properties, flexibility, etc. to the film adhesive, and is attached to an object to be bonded such as a semiconductor chip. It is a polymer component for improving adhesiveness (sticking property).
  • a polymer component (a) is also a component which does not correspond to the epoxy resin (b1) and thermosetting agent (b2) which are mentioned later. That is, the polymer component (a) excludes components corresponding to the epoxy resin (b1) and the thermosetting agent (b2) described later.
  • the polymer component (a) contained in the adhesive composition and the film-like adhesive may be only one kind, or two or more kinds, and when there are two or more kinds, the combination and ratio thereof can be arbitrarily selected. .
  • polymer component (a) examples include acrylic resins, polyesters, urethane resins, acrylic urethane resins, silicone resins, rubber resins, phenoxy resins, and thermosetting polyimides, and acrylic resins are preferable. .
  • the weight average molecular weight (Mw) of the acrylic resin is preferably 10,000 to 2,000,000, and more preferably 100,000 to 1500,000.
  • Mw weight average molecular weight of the acrylic resin
  • the weight average molecular weight of the acrylic resin is equal to or more than the lower limit, the shape stability of the film adhesive (time stability during storage) is improved.
  • weight average molecular weight of the acrylic resin is not more than the above upper limit value, the film adhesive can easily follow the uneven surface of the adherend, and voids or the like between the adherend and the film adhesive. Occurrence is further suppressed.
  • “weight average molecular weight” is a polystyrene equivalent value measured by gel permeation chromatography (GPC) method unless otherwise specified.
  • the glass transition temperature (Tg) of the acrylic resin is preferably ⁇ 60 to 70 ° C., and more preferably ⁇ 30 to 50 ° C. Since the Tg of the acrylic resin is equal to or higher than the lower limit, the adhesive force between the film adhesive and the adherend is suppressed, and the support described later of the semiconductor chip with the film adhesive during pickup is performed. The separation from the sheet becomes easier.
  • the “semiconductor chip with film adhesive” means “semiconductor chip having a film adhesive on the back surface”. When the Tg of the acrylic resin is equal to or less than the upper limit value, the adhesive force between the film adhesive and the semiconductor chip is improved.
  • Examples of the (meth) acrylic acid ester constituting the acrylic resin include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, (meth ) N-butyl acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, (meth) acrylic Heptyl acid, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, n-octyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate , Undecyl (me
  • (meth) acrylic acid is a concept including both “acrylic acid” and “methacrylic acid”. The same applies to terms similar to (meth) acrylic acid.
  • the acrylic resin is, for example, one or more monomers selected from (meth) acrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene, N-methylolacrylamide and the like in addition to the (meth) acrylic ester. May be obtained by copolymerization.
  • Only one type of monomer constituting the acrylic resin may be used, or two or more types may be used, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the acrylic resin may have a functional group capable of binding to other compounds such as a vinyl group, a (meth) acryloyl group, an amino group, a carboxy group, and an isocyanate group in addition to the above-described hydroxyl group.
  • These functional groups including the hydroxyl group of the acrylic resin may be bonded to other compounds via the crosslinking agent (f) described later, or directly bonded to other compounds not via the crosslinking agent (f). You may do it.
  • the acrylic resin is bonded to another compound through the functional group, the reliability of the package obtained using the film adhesive tends to be improved.
  • the ratio (content) of the amount of the structural unit derived from the glycidyl group-containing monomer to the total content (total mass) of the structural units constituting the acrylic resin is 15% by mass or less. It is preferably 12% by mass or less, more preferably 9% by mass or less. When the ratio (content) is equal to or less than the upper limit value, the storage stability of the film adhesive is further increased.
  • the said glycidyl group containing monomer means the monomer which has glycidyl groups, such as the said glycidyl group containing (meth) acrylic acid ester, for example.
  • the lower limit of the ratio (content) of the amount of the structural unit derived from the glycidyl group-containing monomer to the total content (total mass) of the structural units constituting the acrylic resin is not particularly limited.
  • the ratio (content of the structural unit derived from the glycidyl group-containing monomer) may be 0% by mass or more. For example, if it is 2% by mass or more, the glycidyl group-containing monomer The effect by using can be obtained more clearly.
  • the ratio (content) of the amount of the structural unit derived from the glycidyl group-containing monomer with respect to the total content (total mass) of the structural units constituting this is the above-described preferred lower limit value and upper limit value. It can adjust suitably within the range set combining arbitrarily.
  • the ratio is preferably 0 to 15% by mass, more preferably 0 to 12% by mass, and particularly preferably 0 to 9% by mass.
  • the ratio is preferably 2 to 15% by mass, more preferably 2 to 12% by mass, particularly preferably 2 to 9% by mass, and may be 2 to 5% by mass.
  • thermoplastic resin other than an acrylic resin (hereinafter sometimes simply referred to as “thermoplastic resin”) is used alone without using an acrylic resin. Alternatively, it may be used in combination with an acrylic resin.
  • thermoplastic resin By using the thermoplastic resin, at the time of pick-up, the semiconductor chip with the film adhesive can be easily separated from the support sheet described later, or the film adhesive follows the uneven surface of the adherend. It becomes easy and generation
  • the weight average molecular weight of the thermoplastic resin is preferably 1000 to 100,000, more preferably 3000 to 80,000.
  • the glass transition temperature (Tg) of the thermoplastic resin is preferably ⁇ 30 to 150 ° C., and more preferably ⁇ 20 to 120 ° C.
  • thermoplastic resin examples include polyester, polyurethane, phenoxy resin, polybutene, polybutadiene, and polystyrene.
  • thermoplastic resin which an adhesive composition and a film adhesive contain may be sufficient as the said thermoplastic resin which an adhesive composition and a film adhesive contain, and when it is 2 or more types, those combinations and ratios can be selected arbitrarily.
  • the ratio of the content of the polymer component (a) to the total content (total mass) of all components other than the solvent Is preferably 5 to 20% by mass, more preferably 6 to 16% by mass, and may be 7 to 12% by mass, regardless of the type of the polymer component (a).
  • the ratio of the acrylic resin content to the total content (total mass) of the polymer component (a) is preferably 80 to 100% by mass, 85 to The amount is more preferably 100% by mass, still more preferably 90 to 100% by mass, for example, 95 to 100% by mass.
  • the storage stability of a film adhesive becomes higher because the ratio of the said content is more than the said lower limit.
  • Epoxy thermosetting resin (b) is composed of an epoxy resin (b1) and a thermosetting agent (b2).
  • the epoxy-based thermosetting resin (b) contained in the adhesive composition and the film adhesive may be only one type, two or more types, and when there are two or more types, the combination and ratio thereof are arbitrary. Can be selected.
  • Epoxy resin (b1) examples include known ones such as polyfunctional epoxy resins, biphenyl compounds, bisphenol A diglycidyl ether and hydrogenated products thereof, orthocresol novolac epoxy resins, dicyclopentadiene type epoxy resins, Biphenyl type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, phenylene skeleton type epoxy resins, and the like, and bifunctional or higher functional epoxy compounds are listed.
  • an epoxy resin having an unsaturated hydrocarbon group may be used as the epoxy resin (b1).
  • An epoxy resin having an unsaturated hydrocarbon group is more compatible with an acrylic resin than an epoxy resin having no unsaturated hydrocarbon group. Therefore, the reliability of the package obtained using the film adhesive is improved by using the epoxy resin having an unsaturated hydrocarbon group.
  • the epoxy resin having an unsaturated hydrocarbon group examples include a compound obtained by converting a part of the epoxy group of a polyfunctional epoxy resin into a group having an unsaturated hydrocarbon group. Such a compound can be obtained, for example, by addition reaction of (meth) acrylic acid or a derivative thereof to an epoxy group.
  • the “derivative” means a compound obtained by substituting at least one group of the original compound with another group (substituent) unless otherwise specified.
  • the “group” includes not only an atomic group formed by bonding a plurality of atoms but also one atom.
  • an epoxy resin which has an unsaturated hydrocarbon group the compound etc. which the group which has an unsaturated hydrocarbon group directly couple
  • the unsaturated hydrocarbon group is a polymerizable unsaturated group, and specific examples thereof include an ethenyl group (also referred to as a vinyl group), a 2-propenyl group (also referred to as an allyl group), and a (meth) acryloyl group. , (Meth) acrylamide groups and the like, and an acryloyl group is preferred.
  • the number average molecular weight of the epoxy resin (b1) is not particularly limited, but is preferably 300 to 30000 from the viewpoints of curability of the film adhesive and strength and heat resistance of the cured film adhesive. It is more preferably 400 to 10,000, and particularly preferably 500 to 3000.
  • the “number average molecular weight” means a number average molecular weight represented by a standard polystyrene equivalent value measured by a gel permeation chromatography (GPC) method unless otherwise specified.
  • the epoxy equivalent of the epoxy resin (b1) is preferably 100 to 1000 g / eq, and more preferably 150 to 800 g / eq.
  • “epoxy equivalent” means the number of grams (g / eq) of an epoxy compound containing one equivalent of an epoxy group, and can be measured according to the method of JIS K 7236: 2001.
  • the epoxy resin (b1) which an adhesive composition and a film adhesive contain only 1 type may be sufficient and it may be 2 or more types, and when it is 2 or more types, those combinations and ratios can be selected arbitrarily.
  • the epoxy resin (b1) is selected from the group consisting of a bisphenol A type epoxy resin, a polyfunctional aromatic type (triphenylene type) epoxy resin, a bisphenol F type epoxy resin, and a dicyclopentadiene type epoxy resin. At least one is preferred.
  • the epoxy resin (b1) As a commercially available product of the epoxy resin (b1), there are those containing acrylic resin fine particles (fine particle acrylic resin). In the present invention, it is preferable to use an epoxy resin (b1) that does not contain the acrylic resin fine particles. . In this way, for example, even when the polymer component (a) is a polymer component (a) that is easy to aggregate the acrylic resin fine particles due to the interaction with the acrylic resin fine particles, Aggregation is suppressed. Thereby, the storage stability of a film adhesive becomes higher.
  • the ratio of the content of acrylic resin fine particles to the total content (total mass) of all components other than the solvent that is, the content of acrylic resin fine particles in the film adhesive
  • the ratio of the content of acrylic resin fine particles to the total content (total mass) of all components other than the solvent that is, the content of acrylic resin fine particles in the film adhesive
  • 0 to 5% by mass is preferable, and 0 to 3% by mass is more preferable.
  • thermosetting agent (b2) functions as a curing agent for the epoxy resin (b1).
  • a thermosetting agent (b2) the compound which has 2 or more of functional groups which can react with an epoxy group in 1 molecule is mentioned, for example.
  • the functional group include a phenolic hydroxyl group, an alcoholic hydroxyl group, an amino group, a carboxy group, a group in which an acid group has been anhydrideized, and the like, and a phenolic hydroxyl group, an amino group, or an acid group has been anhydrideized. It is preferably a group, more preferably a phenolic hydroxyl group or an amino group.
  • thermosetting agents (b2) examples of the phenolic curing agent having a phenolic hydroxyl group include polyfunctional phenol resins, biphenols, novolac type phenol resins, dicyclopentadiene type phenol resins, and aralkyl type phenol resins. .
  • examples of the amine-based curing agent having an amino group include dicyandiamide (hereinafter sometimes abbreviated as DICY).
  • the thermosetting agent (b2) may have an unsaturated hydrocarbon group.
  • the thermosetting agent (b2) having an unsaturated hydrocarbon group for example, a compound in which a part of the hydroxyl group of the phenol resin is substituted with a group having an unsaturated hydrocarbon group, an aromatic ring of the phenol resin, Examples thereof include compounds in which a group having a saturated hydrocarbon group is directly bonded.
  • the unsaturated hydrocarbon group in the thermosetting agent (b2) is the same as the unsaturated hydrocarbon group in the epoxy resin having the unsaturated hydrocarbon group described above.
  • thermosetting agent (b2) In the case of using a phenolic curing agent as the thermosetting agent (b2), the thermosetting agent (b2) has a high softening point or glass transition temperature because it becomes easy to adjust the adhesive force of the film adhesive. Those are preferred.
  • thermosetting agent (b2) for example, the number average molecular weight of the resin component such as polyfunctional phenolic resin, novolac type phenolic resin, dicyclopentadiene type phenolic resin, aralkyl type phenolic resin is preferably 300 to 30000. 400 to 10,000 is more preferable, and 500 to 3000 is particularly preferable.
  • the molecular weight of non-resin components such as biphenol and dicyandiamide is not particularly limited, but is preferably 60 to 500, for example.
  • thermosetting agent (b2) which an adhesive composition and a film adhesive contain, only 1 type may be sufficient and 2 or more types may be sufficient, and when it is 2 or more types, those combinations and ratios can be selected arbitrarily. .
  • thermosetting agent (b2) is an alkyl group or the like with respect to the carbon atom adjacent to the carbon atom to which the phenolic hydroxyl group is bonded (that is, the carbon atom constituting the benzene ring skeleton).
  • Those having a steric hindrance in the vicinity of the phenolic hydroxyl group bonded to a substituent are preferable.
  • Examples of such sterically hindered phenol resins include o-cresol type novolac resins.
  • the content of the thermosetting agent (b2) is preferably 10 to 200 parts by mass with respect to 100 parts by mass of the epoxy resin (b1), 15 to The amount is more preferably 160 parts by mass, further preferably 20 to 120 parts by mass, and particularly preferably 25 to 80 parts by mass.
  • the content of the thermosetting agent (b2) is greater than or equal to the lower limit value, the curing of the film adhesive is more likely to proceed.
  • the content of the thermosetting agent (b2) is equal to or lower than the upper limit, the moisture absorption rate of the film adhesive is reduced, and the reliability of the package obtained using the film adhesive is further improved. .
  • the content of the epoxy thermosetting resin (b) (total content of the epoxy resin (b1) and the thermosetting agent (b2)) is the same as that of the polymer component (a).
  • the content is preferably 400 to 1200 parts by mass, more preferably 500 to 1100 parts by mass, still more preferably 600 to 1000 parts by mass, for example, 600 to 900 parts by mass with respect to the content of 100 parts by mass. Part and 800 to 1000 parts by mass.
  • the content of the epoxy thermosetting resin (b) is in such a range, it becomes easier to adjust the adhesive force between the film adhesive and a support sheet described later.
  • the ratio of the content of the sterically hindered phenol resin to the total content (total mass) of the thermosetting agent (b2) is preferably 80 to 100% by mass. 85 to 100% by mass, more preferably 90 to 100% by mass, for example, 95 to 100% by mass.
  • the storage stability of a film adhesive becomes higher because the ratio of the said content is more than the said lower limit.
  • the content of the o-cresol type novolak resin relative to the total content of the thermosetting agent (b2) in the adhesive composition and the film adhesive is The ratio is preferably 80 to 100% by mass, more preferably 85 to 100% by mass, further preferably 90 to 100% by mass, and may be, for example, 95 to 100% by mass. .
  • the film adhesive contains, in addition to the polymer component (a) and the epoxy-based thermosetting resin (b), other components not corresponding to these, if necessary. You may have.
  • other components contained in the film adhesive include a curing accelerator (c), a filler (d), a coupling agent (e), a crosslinking agent (f), and an energy ray curable resin (g). , Photopolymerization initiator (h), general-purpose additive (i) and the like.
  • preferable other components include a curing accelerator (c), a filler (d), a coupling agent (e), and a general-purpose additive (i).
  • “energy beam” means an electromagnetic wave or charged particle beam having energy quanta, and examples thereof include ultraviolet rays, radiation, and electron beams.
  • Ultraviolet rays can be irradiated by using, for example, a high-pressure mercury lamp, a fusion lamp, a xenon lamp, a black light, an LED lamp, or the like as an ultraviolet ray source.
  • the electron beam can be emitted by an electron beam accelerator or the like.
  • “energy ray curable” means the property of being cured by irradiation with energy rays
  • “non-energy ray curable” means the property of not being cured even when irradiated with energy rays. .
  • the curing accelerator (c) is a component for adjusting the curing rate of the adhesive composition.
  • Preferred curing accelerators (c) include, for example, tertiary amines such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol; 2-methylimidazole, 2-phenylimidazole Imidazoles such as 2-phenyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole (ie, at least one hydrogen atom is hydrogen Imidazoles substituted with groups other than atoms); organic phosphines such as tributylphosphine, diphenylphosphine, triphenylphosphine (ie, phosphines wherein at least one hydrogen atom is replaced with an organic group); Phosphonium tetraphen
  • the curing accelerator (c) contained in the adhesive composition and the film adhesive may be only one kind, or two or more kinds, and in the case of two or more kinds, the combination and ratio thereof can be arbitrarily selected. .
  • the content of the curing accelerator (c) in the adhesive composition and the film adhesive is based on 100 parts by mass of the epoxy thermosetting resin (b). 0.01 to 5 parts by mass is preferable, and 0.1 to 2 parts by mass is more preferable.
  • the effect by using a hardening accelerator (c) is acquired more notably because the said content of a hardening accelerator (c) is more than the said lower limit.
  • the content of the curing accelerator (c) is not more than the above upper limit value, for example, the highly polar curing accelerator (c) is in contact with the adherend in the film adhesive under high temperature and high humidity conditions. The effect of suppressing segregation by moving to the adhesion interface side is enhanced, and the reliability of the package obtained using the film adhesive is further improved.
  • the curing accelerator (c) is preferably an inclusion compound containing the imidazole as a guest compound.
  • an imidazole which is an active ingredient is included by a host compound. Therefore, it is presumed that the reaction site of imidazoles is not exposed or the degree of exposure is suppressed except during the reaction. As a result, it is presumed that the storage stability of the film adhesive is further increased by suppressing the progress of the reaction other than the intended purpose of the curing accelerator (c) during storage of the film adhesive.
  • Examples of the clathrate compound include those having imidazoles as a guest compound and carboxylic acid as a host compound.
  • the carboxylic acid that is a host compound is preferably an aromatic carboxylic acid.
  • the aromatic carboxylic acid may be either a monocyclic aromatic carboxylic acid or a polycyclic aromatic carboxylic acid.
  • the aromatic carboxylic acid includes a carboxylic acid having only an aromatic hydrocarbon ring as a ring skeleton, a carboxylic acid having only an aromatic heterocycle as a ring skeleton, and an aromatic hydrocarbon ring and an aromatic heterocycle as a ring skeleton. Any of the carboxylic acids possessed together may be used.
  • the aromatic carboxylic acid is preferably an aromatic hydroxycarboxylic acid.
  • the aromatic hydroxycarboxylic acid is not particularly limited as long as it is an aromatic carboxylic acid having both a hydroxyl group and a carboxy group in one molecule, but is a carboxyl having a structure in which both a hydroxyl group and a carboxy group are bonded to an aromatic ring skeleton. An acid is preferred.
  • the inclusion compound include, for example, that the imidazole is 2-phenyl-4-methyl-5-hydroxymethylimidazole (in this specification, sometimes abbreviated as “2P4MHZ”), An inclusion compound in which the carboxylic acid is 5-hydroxyisophthalic acid (sometimes abbreviated as “HIPA” in this specification), and 2 molecules of 2P4MHZ and 1 molecule of HIPA More preferably, the clathrate compound is constituted.
  • the ratio of the content of the clathrate compound to the total content (total mass) of the curing accelerator (c) is preferably 80 to 100% by mass, 85
  • the content is more preferably from 100 to 100% by mass, still more preferably from 90 to 100% by mass, for example, from 95 to 100% by mass.
  • the storage stability of a film adhesive becomes higher because the ratio of the said content is more than the said lower limit.
  • the content ratio of the clathrate compound is preferably 80 to 100% by mass, more preferably 85 to 100% by mass, further preferably 90 to 100% by mass, for example, 95 to 100%. It may be mass%.
  • the film-like adhesive can easily adjust its thermal expansion coefficient, and the film-like adhesive is optimized by optimizing the thermal expansion coefficient for the object to be adhered to the film-like adhesive.
  • the reliability of the package obtained using the adhesive is improved.
  • the moisture absorption rate of the film adhesive after hardening can be reduced or heat dissipation can also be improved.
  • the filler (d) may be either an organic filler or an inorganic filler, but is preferably an inorganic filler.
  • Preferred inorganic fillers include, for example, powders of silica, alumina, talc, calcium carbonate, titanium white, bengara, silicon carbide, boron nitride, and the like; beads formed by spheroidizing these inorganic fillers; surface modification of these inorganic fillers Products; single crystal fibers of these inorganic fillers; glass fibers and the like.
  • the inorganic filler is preferably silica or alumina.
  • the average particle diameter of the filler (d) is not particularly limited, but is preferably 0.01 to 150 ⁇ m, more preferably 0.1 to 125 ⁇ m, and further preferably 0.5 to 100 ⁇ m. 1 to 75 ⁇ m is particularly preferable. As another aspect, the average particle diameter of the filler (d) may be 0.001 to 0.05 ⁇ m. When the average particle diameter of the filler (d) is in such a range, the effect of using the filler (d) can be sufficiently obtained, and the storage stability of the film adhesive can be further increased.
  • “average particle size” means the value of the particle size (D 50 ) at an integrated value of 50% in the particle size distribution curve obtained by the laser diffraction scattering method, unless otherwise specified. .
  • the filler (d) contained in the adhesive composition and the film-like adhesive may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the ratio of the content of the filler (d) to the total content (total mass) of all components other than the solvent in the adhesive composition (that is, the filler of the film adhesive)
  • the content of (d) is preferably 5 to 40% by mass, more preferably 10 to 35% by mass, and particularly preferably 15 to 30% by mass.
  • the content of the filler (d) is in such a range, the adjustment of the thermal expansion coefficient becomes easier.
  • the ratio of the content of the filler (d) having an average particle diameter of 0.01 to 150 ⁇ m to the total content (total mass) of the filler (d) is 80 Is preferably 100 to 100% by mass, more preferably 85 to 100% by mass, further preferably 90 to 100% by mass, and may be 95 to 100% by mass, for example.
  • the storage stability of a film adhesive becomes higher because the ratio of the said content is more than the said lower limit.
  • the coupling agent (e) has a functional group capable of reacting with an inorganic compound or an organic compound.
  • the coupling agent (e) is preferably a compound having a functional group capable of reacting with the functional group of the polymer component (a), the epoxy thermosetting resin (b), etc., and is a silane coupling agent. It is more preferable.
  • Preferred examples of the silane coupling agent include 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropylmethyldiethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxymethyldiethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3- (2-aminoethylamino) propyltrimethoxysilane, 3- (2-amino Ethylamino) propylmethyldiethoxysilane, 3-
  • the coupling agent (e) which an adhesive composition and a film adhesive contain, only 1 type may be sufficient, 2 or more types may be sufficient, and when it is 2 or more types, those combinations and ratios can be selected arbitrarily.
  • the coupling agent (e) includes 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane and an oligomer type silane coupling agent having an epoxy group, a methyl group and a methoxy group. It is preferably at least one selected from the group consisting of
  • the content of the coupling agent (e) in the adhesive composition and the film adhesive is the total of the polymer component (a) and the epoxy thermosetting resin (b).
  • the content is preferably 0.03 to 20 parts by mass, more preferably 0.05 to 10 parts by mass, and particularly preferably 0.1 to 5 parts by mass with respect to the content of 100 parts by mass.
  • the content of the coupling agent (e) is equal to or higher than the lower limit, the dispersibility of the filler (d) in the resin is improved, the adhesion of the film adhesive to the adherend is improved, and the like.
  • the effect obtained by using the coupling agent (e) is more remarkably obtained. Generation
  • production of an outgas is suppressed more because the said content of a coupling agent (e) is below the said upper limit.
  • the coupling agent (e) is preferably an oligomer type or polymer type organosiloxane among the above.
  • the oligomer type or polymer type organosiloxane is an organosiloxane having an oligomer structure or a polymer structure, which can be regarded as formed by polymerization reaction of a polymerizable compound.
  • the ratio of the content of the oligomer type or polymer type organosiloxane to the total content of the coupling agent (e) is preferably 80 to 100% by mass, 85 It is more preferably from ⁇ 100% by mass, even more preferably from 90 to 100% by mass, for example, from 95 to 100% by mass.
  • the storage stability of a film adhesive becomes higher because the ratio of the said content is more than the said lower limit.
  • Crosslinking agent (f) As the polymer component (a), those having functional groups such as vinyl group, (meth) acryloyl group, amino group, hydroxyl group, carboxy group, isocyanate group and the like that can be bonded to other compounds such as the above-mentioned acrylic resin.
  • the adhesive composition and the film adhesive may contain a crosslinking agent (f) for bonding the functional group with another compound to crosslink. By crosslinking using the crosslinking agent (f), the initial adhesive force and cohesive force of the film adhesive can be adjusted.
  • crosslinking agent (f) examples include an organic polyvalent isocyanate compound, an organic polyvalent imine compound, a metal chelate crosslinking agent (that is, a crosslinking agent having a metal chelate structure), and an aziridine crosslinking agent (that is, having an aziridinyl group).
  • a crosslinking agent examples include an organic polyvalent isocyanate compound, an organic polyvalent imine compound, a metal chelate crosslinking agent (that is, a crosslinking agent having a metal chelate structure), and an aziridine crosslinking agent (that is, having an aziridinyl group).
  • organic polyvalent isocyanate compound examples include an aromatic polyvalent isocyanate compound, an aliphatic polyvalent isocyanate compound, and an alicyclic polyvalent isocyanate compound (hereinafter, these compounds are collectively referred to as “aromatic polyvalent isocyanate compound and the like”).
  • a trimer such as the aromatic polyisocyanate compound, isocyanurate and adduct; a terminal isocyanate urethane prepolymer obtained by reacting the aromatic polyvalent isocyanate compound and the polyol compound. Etc.
  • the “adduct body” includes the aromatic polyisocyanate compound, the aliphatic polyisocyanate compound or the alicyclic polyisocyanate compound, and a low amount such as ethylene glycol, propylene glycol, neopentyl glycol, trimethylolpropane or castor oil. It means a reaction product with a molecularly active hydrogen-containing compound. Examples of the adduct include a xylylene diisocyanate adduct of trimethylolpropane as described later.
  • the “terminal isocyanate urethane prepolymer” means a prepolymer having a urethane bond and an isocyanate group at the end of the molecule.
  • organic polyvalent isocyanate compound for example, 2,4-tolylene diisocyanate; 2,6-tolylene diisocyanate; 1,3-xylylene diisocyanate; 1,4-xylene diisocyanate; diphenylmethane-4 Dimethylmethane-2,4'-diisocyanate; 3-methyldiphenylmethane diisocyanate; hexamethylene diisocyanate; isophorone diisocyanate; dicyclohexylmethane-4,4'-diisocyanate; dicyclohexylmethane-2,4'-diisocyanate; trimethylol Any one of tolylene diisocyanate, hexamethylene diisocyanate and xylylene diisocyanate is added to all or some hydroxyl groups of a polyol such as propane. Or two or more compounds are added; lysine diisocyanate.
  • a polyol such as propane.
  • organic polyvalent imine compound examples include N, N′-diphenylmethane-4,4′-bis (1-aziridinecarboxamide), trimethylolpropane-tri- ⁇ -aziridinylpropionate, and tetramethylolmethane.
  • -Tri- ⁇ -aziridinylpropionate, N, N′-toluene-2,4-bis (1-aziridinecarboxamide) triethylenemelamine and the like.
  • the crosslinking agent (f) When an organic polyvalent isocyanate compound is used as the crosslinking agent (f), it is preferable to use a hydroxyl group-containing polymer as the polymer component (a).
  • the cross-linking agent (f) has an isocyanate group and the polymer component (a) has a hydroxyl group, the cross-linking structure can be simplified in the film adhesive by the reaction between the cross-linking agent (f) and the polymer component (a). Can be introduced.
  • the cross-linking agent (f) contained in the adhesive composition and the film adhesive may be only one kind, two or more kinds, and in the case of two or more kinds, the combination and ratio thereof can be arbitrarily selected.
  • the content of the crosslinking agent (f) is preferably 0 to 5 parts by mass, more preferably 0 to 3 parts by mass with respect to 100 parts by mass of the polymer component (a).
  • the content is more preferably ⁇ 1 part by mass, and particularly preferably 0 part by mass, that is, it is particularly preferred that the adhesive composition and the film adhesive do not contain the crosslinking agent (f).
  • the content of the cross-linking agent (f) is equal to or higher than the lower limit value, the effect of using the cross-linking agent (f) is more remarkably obtained.
  • the storage stability of a film adhesive becomes higher because the content of the crosslinking agent (f) is not more than the upper limit.
  • the energy beam curable resin (g) is obtained by polymerizing (curing) an energy beam curable compound.
  • the energy ray curable compound include compounds having at least one polymerizable double bond in the molecule, and acrylate compounds having a (meth) acryloyl group are preferable.
  • acrylate compound examples include trimethylolpropane tri (meth) acrylate, tetramethylolmethanetetra (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol monohydroxypenta ( Chain aliphatic skeleton-containing (meth) acrylates such as (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,4-butylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate; Cyclic aliphatic skeleton-containing (meth) acrylates such as cyclopentanyl di (meth) acrylate; polyalkylene glycol (meth) acrylates such as polyethylene glycol di (meth) acrylate Oligoester (meth)
  • the weight average molecular weight of the energy ray curable resin (g) is preferably 100 to 30000, and more preferably 300 to 10000.
  • the energy ray curable resin (g) contained in the adhesive composition may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the content of the energy ray curable resin (g) is preferably 1 to 95% by mass with respect to the total mass of the adhesive composition. More preferably, the content is 10% by mass, and particularly preferably 10 to 85% by mass.
  • the adhesive composition may contain the photopolymerization initiator (h) in order to efficiently advance the polymerization reaction of the energy beam curable resin (g). Good.
  • Examples of the photopolymerization initiator (h) in the adhesive composition include benzoin such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, benzoin methyl benzoate, and benzoin dimethyl ketal.
  • benzoin such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, benzoin methyl benzoate, and benzoin dimethyl ketal.
  • Acetophenone compounds such as acetophenone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 2,2-dimethoxy-1,2-diphenylethane-1-one; bis (2,4,6 Acylphosphine oxide compounds such as -trimethylbenzoyl) phenylphosphine oxide and 2,4,6-trimethylbenzoyldiphenylphosphine oxide; benzylphenyl sulfide, tetramethylthiuram monosulfate Sulfide compounds such as amides; ⁇ -ketol compounds such as 1-hydroxycyclohexyl phenyl ketone; azo compounds such as azobisisobutyronitrile; titanocene compounds such as titanocene; thioxanthone compounds such as thioxanthone; peroxide compounds; Diketone compound; benzyl; dibenzyl; benzophenone; 2,4-diethylthioxanth
  • 1 type may be sufficient as the photoinitiator (h) which an adhesive composition contains, and when it is 2 or more types, those combinations and ratios can be selected arbitrarily.
  • content of a photoinitiator (h) is 0.1 with respect to 100 mass parts of energy beam curable resin (g) content. It is preferably ⁇ 20 parts by mass, more preferably 1 to 10 parts by mass, and particularly preferably 2 to 5 parts by mass.
  • the general-purpose additive (i) may be a known one, can be arbitrarily selected according to the purpose, and is not particularly limited.
  • Preferred general-purpose additives (i) include, for example, plasticizers, antistatic agents, antioxidants, colorants (dyes, pigments), gettering agents and the like.
  • the general-purpose additive (i) contained in the adhesive composition and the film-like adhesive may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected. .
  • the content of the general-purpose additive (i) in the adhesive composition and the film adhesive is not particularly limited, and may be appropriately selected depending on the purpose.
  • the adhesive composition further contains a solvent.
  • the adhesive composition containing a solvent has good handleability.
  • the solvent is not particularly limited, but preferred examples include hydrocarbons such as toluene and xylene; methanol, ethanol, 2-propanol, isobutyl alcohol (also referred to as 2-methylpropan-1-ol), 1-butanol and the like. And alcohols; esters such as ethyl acetate; ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran; amides (compounds having an amide bond) such as dimethylformamide and N-methylpyrrolidone.
  • the solvent which an adhesive composition contains only 1 type may be sufficient, and it may be 2 or more types, and when it is 2 or more types, those combinations and ratios can be selected arbitrarily.
  • the solvent contained in the adhesive composition is preferably methyl ethyl ketone or the like from the viewpoint that the components contained in the adhesive composition can be mixed more uniformly.
  • Adhesive Composition An adhesive composition is obtained by mix
  • the order of addition at the time of blending each component is not particularly limited, and two or more components may be added simultaneously.
  • a solvent it may be used by mixing the solvent with any compounding component other than the solvent and diluting the compounding component in advance, or by diluting any compounding component other than the solvent in advance. You may use it by mixing a solvent with these compounding ingredients, without leaving.
  • the method of mixing each component at the time of compounding is not particularly limited, from a known method such as a method of mixing by rotating a stirrer or a stirring blade; a method of mixing using a mixer; a method of mixing by applying ultrasonic waves What is necessary is just to select suitably.
  • the temperature and time during the addition and mixing of each component are not particularly limited as long as each compounding component does not deteriorate, and may be adjusted as appropriate, but the temperature is preferably 15 to 30 ° C.
  • the semiconductor processing sheet of the present invention includes a support sheet, and the film adhesive is provided on the support sheet. That is, the semiconductor processing sheet of the present invention includes a support sheet and the film adhesive provided on the support sheet.
  • the semiconductor processing sheet is suitable as a dicing die bonding sheet, for example.
  • the film adhesive has high storage stability, suppresses changes in properties during storage, and can sufficiently exhibit the intended action during use. Therefore, the semiconductor package formed by taking in the film adhesive using the semiconductor processing sheet has high reliability. Moreover, the semiconductor package formed by incorporating such a film-like adhesive having high storage stability can suppress the change in characteristics caused by the change in the characteristics of the film-like adhesive even during the storage. Therefore, also in this respect, the semiconductor package has high reliability.
  • the support sheet may be composed of one layer (single layer) or may be composed of two or more layers.
  • the constituent materials and thicknesses of the plurality of layers may be the same or different from each other, and the combination of the plurality of layers is not particularly limited as long as the effects of the present invention are not impaired.
  • Preferable support sheets include, for example, those composed only of a base material; those provided with a base material, and provided with an intermediate layer on the base material. That is, the support sheet according to the present invention may be a support sheet composed of only a base material; it may be a support sheet including a base material and an intermediate layer provided on the base material.
  • the support sheet made of only the base material is suitable as a carrier sheet or a dicing sheet.
  • the sheet for semiconductor processing provided with such a support sheet composed only of the base material is a surface opposite to the side provided with the support sheet (that is, the base material) of the film adhesive (in this specification, “ The first surface is sometimes referred to as “the first surface”, and is attached to the surface opposite to the side on which the circuit of the semiconductor wafer is formed (in this specification, sometimes referred to as the “back surface”). Is done.
  • the support sheet provided with a base material and provided with an intermediate layer on the base material is suitable as a dicing sheet.
  • the semiconductor processing sheet provided with such a support sheet also has a surface (first surface) opposite to the side provided with the support sheet of the film adhesive and the side on which the circuit of the semiconductor wafer is formed. Is affixed to the opposite side (back side) and used.
  • each layer which comprises a support sheet is demonstrated.
  • the base material is in the form of a sheet or a film, and examples of the constituent material include various resins.
  • the resin include polyethylene such as low density polyethylene (sometimes abbreviated as LDPE), linear low density polyethylene (sometimes abbreviated as LLDPE), and high density polyethylene (sometimes abbreviated as HDPE).
  • Polyolefins other than polyethylene such as polypropylene, polybutene, polybutadiene, polymethylpentene, norbornene resin; ethylene-vinyl acetate copolymer, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester copolymer
  • Ethylene copolymers such as ethylene-norbornene copolymer (that is, copolymers obtained using ethylene as a monomer); vinyl chloride resins such as polyvinyl chloride and vinyl chloride copolymers (that is, monomers) Resin obtained using vinyl chloride as Styrene; polycycloolefin; polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polyethylene isophthalate, polyethylene-2,6-naphthalenedicarboxylate, wholly aromatic polyesters in which all structural units have aromatic cyclic groups, etc.
  • Polyester Copolymer of two or more of the above polyesters; Poly (meth) acrylic acid ester; Polyurethane; Polyurethane acrylate; Polyimide; Polycarbonate; Fluororesin; Polyacetal; Modified polyphenylene oxide; Polyphenylene sulfide; Is mentioned.
  • polymer alloys such as a mixture of the said polyester and other resin, are mentioned, for example.
  • the polymer alloy of the polyester and the other resin is preferably one in which the amount of the resin other than the polyester is relatively small.
  • the resin examples include a crosslinked resin in which one or more of the resins exemplified so far are crosslinked; modification of an ionomer or the like using one or more of the resins exemplified so far. Resins can also be mentioned.
  • the resin constituting the substrate may be only one kind, or two or more kinds, and in the case of two or more kinds, the combination and ratio thereof can be arbitrarily selected.
  • the substrate may be composed of one layer (single layer) or may be composed of two or more layers. When the substrate is composed of a plurality of layers, these layers may be the same or different from each other.
  • the combination of layers is not particularly limited.
  • the thickness of the substrate is preferably 50 to 300 ⁇ m, and more preferably 60 to 150 ⁇ m.
  • the thickness of the base material is in such a range, the flexibility of the semiconductor processing sheet and the adhesiveness to the semiconductor wafer or the semiconductor chip are further improved.
  • the thickness of the substrate means the thickness of the entire substrate.
  • the thickness of the substrate composed of a plurality of layers means the total thickness of all the layers constituting the substrate. means.
  • the base material is preferably one having high thickness accuracy, that is, one in which variation in thickness is suppressed regardless of the part.
  • materials that can be used to construct such a substrate with high thickness accuracy include polyethylene, polyolefins other than polyethylene, polyethylene terephthalate, ethylene-vinyl acetate copolymer, and the like. Is mentioned.
  • the base material contains various known additives such as a filler, a colorant, an antistatic agent, an antioxidant, an organic lubricant, a catalyst, and a softener (plasticizer) in addition to the main constituent material such as the resin. May be.
  • the substrate may be transparent or opaque, may be colored according to the purpose, or other layers may be deposited.
  • the substrate is subjected to uneven blasting treatment such as sandblasting treatment, solvent treatment, corona discharge treatment, electron beam irradiation treatment, plasma treatment,
  • the surface may be subjected to an oxidation treatment such as ozone / ultraviolet irradiation treatment, flame treatment, chromic acid treatment, hot air treatment, or the like.
  • the base material may have a surface subjected to primer treatment.
  • the base material is an antistatic coating layer; a layer that prevents the base material from adhering to other sheets or the base material from adhering to the adsorption table when the semiconductor processing sheets are stacked and stored. It may have.
  • the base material can be manufactured by a known method.
  • a base material containing a resin can be produced by molding a resin composition containing the resin.
  • the intermediate layer is not particularly limited as long as it is disposed between the base material and the film adhesive and exhibits its function. More specifically, examples of the intermediate layer include a peelability improving layer in which one surface is peeled.
  • the said peelability improvement layer is a sheet form or a film form.
  • a peelability improvement layer what consists of a resin layer and the peeling process layer formed on the said resin layer is comprised, for example, and it consists of a plurality of layers.
  • the peelability improving layer is arranged with the release treatment layer facing the film adhesive.
  • the resin layer can be produced by molding a resin composition containing a resin. And a peelability improvement layer can be manufactured by carrying out the peeling process of one surface of the said resin layer.
  • the release treatment of the resin layer can be performed by various known release agents such as alkyd, silicone, fluorine, unsaturated polyester, polyolefin or wax.
  • the release agent is preferably an alkyd, silicone or fluorine release agent.
  • the resin that is a constituent material of the resin layer may be appropriately selected according to the purpose, and is not particularly limited.
  • Preferred examples of the resin include polyethylene terephthalate (sometimes abbreviated as PET), polyethylene naphthalate (sometimes abbreviated as PEN), polybutylene terephthalate (sometimes abbreviated as PBT), polyethylene ( PE (sometimes abbreviated as PE), polypropylene (sometimes abbreviated as PP), and the like.
  • the resin layer may be composed of one layer (single layer), may be composed of two or more layers, and when composed of a plurality of layers, these layers may be the same or different from each other,
  • the combination of these multiple layers is not particularly limited.
  • the thickness of the peelability improving layer (total thickness of the resin layer and the release treatment layer) is preferably 10 to 2000 nm, more preferably 25 to 1500 nm, and particularly preferably 50 to 1200 nm. .
  • the thickness of the peelability improving layer is equal to or more than the lower limit, the action of the peelability improving layer becomes more remarkable, and further, the effect of suppressing breakage such as cutting of the peelability improving layer becomes higher.
  • the thickness of the peelable improvement layer is less than or equal to the above upper limit value, the pick-up force is easily transmitted to the semiconductor chip with the film adhesive when picking up the semiconductor chip with the film adhesive to be described later, making the pickup easier Can be done.
  • FIG. 2 is a cross-sectional view schematically showing an embodiment of the semiconductor processing sheet of the present invention.
  • the same components as those shown in the already explained figures are given the same reference numerals as those in the already explained figures, and their detailed explanations are omitted.
  • the semiconductor processing sheet 1 ⁇ / b> A shown here includes a support sheet 10, and a film adhesive 13 on the support sheet 10.
  • the support sheet 10 is composed only of the base material 11, and in other words, the semiconductor processing sheet 1 ⁇ / b> A is on one surface (which may be referred to as “first surface” in this specification) 11 a of the base material 11.
  • the film adhesive 13 is laminated.
  • the semiconductor processing sheet 1 ⁇ / b> A further includes a release film 15 on the film adhesive 13.
  • a film adhesive 13 is laminated on the first surface 11a of the substrate 11, and the surface of the film adhesive 13 opposite to the side on which the substrate 11 is provided (this specification)
  • the jig adhesive layer 16 is laminated on a part of the portion 13a, that is, in the vicinity of the peripheral portion, and the first surface 13a of the film adhesive 13 is formed.
  • the release film 15 is formed on the surface on which the jig adhesive layer 16 is not laminated and on the surface 16 a (upper surface and side surface) of the jig adhesive layer 16 that is not in contact with the film adhesive 13.
  • the first surface 11 a of the substrate 11 is also referred to as the first surface 10 a of the support sheet 10.
  • the release film 15 is the same as the first release film 151 or the second release film 152 shown in FIG.
  • the adhesive layer 16 for jigs may have, for example, a single-layer structure containing an adhesive component, or a plurality of layers in which layers containing an adhesive component are laminated on both surfaces of a core sheet. It may be of a structure.
  • the back surface of the semiconductor wafer (not shown) is attached to the first surface 13a of the film adhesive 13 with the release film 15 removed, and the jig adhesive layer 16 is further attached.
  • the upper surface of the surface 16a is used by being attached to a jig such as a ring frame.
  • FIG. 3 is a cross-sectional view schematically showing another embodiment of the semiconductor processing sheet of the present invention.
  • the semiconductor processing sheet 1B shown here is the same as the semiconductor processing sheet 1A shown in FIG. 2 except that the jig processing adhesive layer 16 is not provided. That is, in the semiconductor processing sheet 1B, the film adhesive 13 is laminated on the first surface 11a of the substrate 11 (the first surface 10a of the support sheet 10), and the entire surface of the first surface 13a of the film adhesive 13 is obtained. Further, a release film 15 is laminated.
  • the semiconductor processing sheet 1B is configured by laminating the base material 11, the film adhesive 13, and the release film 15 in this order in the thickness direction.
  • the semiconductor processing sheet 1B shown in FIG. 3 is the center of the first surface 13a of the film adhesive 13 in a state where the release film 15 is removed, as in the case of the semiconductor processing sheet 1A shown in FIG.
  • the rear surface of the semiconductor wafer (not shown) is attached to a partial region on the side, and the region near the peripheral edge of the film adhesive 13 is attached to a jig such as a ring frame for use.
  • FIG. 4 is a cross-sectional view schematically showing still another embodiment of the semiconductor processing sheet of the present invention.
  • the semiconductor processing sheet 1 ⁇ / b> C shown here is the same as the semiconductor processing sheet 1 ⁇ / b> A shown in FIG. 2 except that an intermediate layer 12 is further provided between the base material 11 and the film adhesive 13. It is.
  • the support sheet 10 is a laminated body of the base material 11 and the intermediate layer 12, and the semiconductor processing sheet 1 ⁇ / b> C has a configuration in which the film adhesive 13 is laminated on the first surface 10 a of the support sheet 10.
  • the intermediate layer 12 is laminated on the first surface 11a of the base material 11, and the surface of the intermediate layer 12 opposite to the base material 11 side (in this specification, “first surface
  • the film adhesive 13 is laminated on the entire surface of 12a, and a jig adhesive layer is formed on a part of the first surface 13a of the film adhesive 13, that is, in the vicinity of the peripheral edge. 16 is laminated, and the surface of the first surface 13a of the film adhesive 13 on which the jig adhesive layer 16 is not laminated and the jig adhesive layer 16 out of contact with the film adhesive 13
  • the release film 15 is laminated on the surface 16a (upper surface and side surface) that is not formed.
  • the intermediate layer 12 is the peelability improving layer
  • the layer on the base material 11 side of the intermediate layer 12 becomes the resin layer (not shown), and the film of the intermediate layer 12
  • the layer on the side of the adhesive 13 becomes the release treatment layer (not shown). Therefore, in this case, the first surface 12a of the intermediate layer 12 is a peeling treatment surface.
  • Such an intermediate layer 12 is easy to peel off the film-like adhesive (those obtained by cutting the film-like adhesive 13 in FIG. 4) when picking up a semiconductor chip with a film-like adhesive described later.
  • the semiconductor processing sheet 1C shown in FIG. 4 has a semiconductor wafer (not shown) attached to the first surface 13a of the film adhesive 13 with the release film 15 removed, and further bonded to a jig.
  • the upper surface of the surface 16a of the agent layer 16 is used by being attached to a jig such as a ring frame.
  • FIG. 5 is a cross-sectional view schematically showing still another embodiment of the semiconductor processing sheet of the present invention.
  • the semiconductor processing sheet 1D shown here is the same as the semiconductor processing sheet 1C shown in FIG. 4 except that the jig processing adhesive layer 16 is not provided and the shape of the film adhesive is different. That is, the semiconductor processing sheet 1 ⁇ / b> D includes the base material 11, the intermediate layer 12 on the base material 11, and the film adhesive 23 on the intermediate layer 12.
  • the support sheet 10 is a laminate of the base material 11 and the intermediate layer 12, and the semiconductor processing sheet 1 ⁇ / b> D also has a configuration in which the film adhesive 23 is laminated on the first surface 10 a of the support sheet 10.
  • the intermediate layer 12 is laminated on the first surface 11a of the base material 11, and the film-like adhesive 23 is formed in a part of the first surface 12a of the intermediate layer 12, that is, in the central region. Are stacked. And the area
  • a release film 15 is laminated on the top.
  • the film adhesive 23 has a surface area smaller than that of the intermediate layer 12, and has, for example, a circular shape.
  • the back surface of the semiconductor wafer (not shown) is pasted on the upper surface of the surface 23a of the film adhesive 23 in a state where the release film 15 is removed.
  • a region where the film adhesive 23 is not laminated is attached to a jig such as a ring frame and used.
  • the semiconductor processing sheet 1D shown in FIG. 5 in the first surface 12a of the intermediate layer 12, the region where the film adhesive 23 is not laminated is cured in the same manner as shown in FIGS. A tool adhesive layer may be laminated (not shown).
  • the semiconductor processing sheet 1 ⁇ / b> D provided with such a jig adhesive layer has an upper surface of the surface of the jig adhesive layer. Used by sticking to a jig such as a frame.
  • the sheet for semiconductor processing may be provided with an adhesive layer for jigs regardless of the form of the support sheet and the film-like adhesive.
  • the semiconductor processing sheet provided with the jig adhesive layer preferably has a jig adhesive layer on the film adhesive.
  • the semiconductor processing sheet of the present invention is not limited to that shown in FIGS. 2 to 5, and a part of the configuration shown in FIGS. 2 to 5 is changed or deleted within a range not impairing the effects of the present invention.
  • another configuration may be added to what has been described so far.
  • layers other than the base material, the intermediate layer, the film adhesive, and the release film may be provided at any location.
  • some clearance gaps may arise between the peeling film and the layer which is directly contacting with this peeling film.
  • the size and shape of each layer can be arbitrarily adjusted according to the purpose.
  • the film-like adhesive and semiconductor processing sheet of the present invention are used to manufacture a semiconductor package and a semiconductor device after manufacturing a semiconductor chip with a film-like adhesive. Can be used.
  • the film-like adhesive not provided with the support sheet is affixed to the back surface of the semiconductor wafer, for example, the peeling film is removed as necessary, and the exposed surface (in other words, the side affixed to the semiconductor wafer)
  • a dicing sheet is affixed to the opposite surface (sometimes referred to as a “second surface” in this specification).
  • the laminated structure obtained by laminating the dicing sheet, the film adhesive, and the semiconductor wafer in this order in the thickness direction is then subjected to a known dicing process.
  • the laminated structure of the dicing sheet and the film adhesive can be regarded as a dicing die bonding sheet.
  • the semiconductor wafer is divided into a plurality of semiconductor chips, and the film adhesive is also cut along the outer periphery of the semiconductor chip, and the film adhesive after the cutting is provided on the back surface.
  • a semiconductor chip (sometimes referred to as a semiconductor chip with a film adhesive) is obtained.
  • the semiconductor processing sheet already has a structure as a dicing die bonding sheet. Therefore, when the semiconductor processing sheet is affixed to the back surface of the semiconductor wafer, the semiconductor processing sheet (dicing sheet, film adhesive) and the semiconductor wafer are stacked in this order in the thickness direction. After obtaining the body, as described above, using a film-like adhesive not provided with a support sheet, in the same manner as when a dicing sheet was attached to the second surface, and thereafter with a film-like adhesive A semiconductor chip is obtained.
  • the method for dicing the semiconductor wafer may be a known method and is not particularly limited.
  • a preferable dicing method of the semiconductor wafer for example, a method using a blade (namely, blade dicing), a method performed by laser irradiation (namely, laser dicing), and a method performed by spraying water containing an abrasive (namely, water dicing). And a method of cutting a semiconductor wafer.
  • the obtained semiconductor chip with the film adhesive is then separated (picked up) from the dicing sheet and adhered in the film form. It is die-bonded to the circuit forming surface of the substrate by the agent. Thereafter, the semiconductor package and the semiconductor device are manufactured by the same method as the conventional method. For example, if necessary, at least one semiconductor chip is further laminated on this die-bonded semiconductor chip, wire bonding is performed, and then the entire product is sealed with a resin, whereby a semiconductor package is obtained. Is produced. Then, a target semiconductor device is manufactured using this semiconductor package.
  • the film adhesive of the present invention the obtained semiconductor package has high reliability.
  • the film adhesive of the present invention is a film adhesive having the following properties: (I-1)
  • the initial detection temperature of the melt viscosity of the film adhesive after storage at 40 ° C. for 168 hours is T 168
  • the initial detection temperature of the melt viscosity of the film adhesive before storage is T 0 .
  • the T 168 is 50 to 78 ° C .
  • the T 0 is 59 to 71 ° C .
  • the difference ⁇ T 168 between the T 168 and the T 0 is 0-7 ° C .
  • (II-1) When the gel fraction of the film adhesive after storage for 168 hours at 40 ° C.
  • the breaking elongation measured according to 1994 is F 168
  • the breaking elongation measured according to JIS K7161: 1994 before the storage of the film adhesive is F 0
  • the F 168 is 0 to 23%, or 5 to 23%
  • the F 0 is 700 to 800%
  • the decrease rate RF 168 of the elongation at break obtained from the F 168 and the F 0 is 560 to 700%.
  • the film adhesive is formed from a film adhesive composition
  • the film adhesive composition includes a polymer component (a), an epoxy thermosetting resin (b), a curing accelerator (c), a filler (d), and a coupling agent (e);
  • the polymer component (a) is: N-Butyl acrylate (preferably 10 to 15 parts by mass with respect to 100 parts by mass of the polymer component (a)), methyl acrylate (preferably 70 to 100 parts by mass of the polymer component (a)) To 80 parts by mass), glycidyl methacrylate (preferably 2 to 5 parts by mass with respect to 100 parts by mass of the polymer component (a)), and 2-hydroxyethyl acrylate (100 parts by mass of the polymer component (a)).
  • the epoxy thermosetting resin (b) comprises an epoxy resin (b1) and a thermosetting agent (b2);
  • the epoxy resin (b1) is A bisphenol A type epoxy resin and a polyfunctional aromatic type (triphenylene type) epoxy resin, or a bisphenol F type epoxy resin and a dicyclopentadiene type epoxy resin;
  • the thermosetting agent (b2) is an o-cresol type novolac resin;
  • the curing accelerator (c) is An inclusion compound of one molecule of 5-hydroxyisophthalic acid (HIPA) and two molecules of 2-phenyl-4-methyl-5-hydroxymethylimidazole (2P4MHZ), or 2-phenyl-4,5-dihydroxymethylimidazole;
  • the filler (d) is spherical silica (preferably having an average particle size of 0.01 to 0.05 ⁇ m); and the coupling
  • the film adhesive is The content of the polymer component (a) is 7 to 12 with respect to the total content of all the components constituting the film adhesive composition (that is, the total mass of the film adhesive composition). % By weight; The proportion of the content of the structural unit derived from the glycidyl methacrylate is 2 to 5% by mass with respect to the total amount of the structural unit constituting the polymer component (a); The content of the epoxy thermosetting resin (b) is 600 to 1000 parts by mass with respect to 100 parts by mass of the polymer component (a); The content of the curing accelerator (c) is 0.1 to 2 parts by mass with respect to 100 parts by mass of the epoxy thermosetting resin (b); The content of the filler (d) is 15 to 30 masses with respect to the total content of all components constituting the film adhesive composition (that is, the total mass of the film adhesive composition). And the content of the coupling agent (e) is from 0.1 to 100 parts by mass with respect to 100 parts by mass of the total content of the polymer component (a) and the epoxy thermo
  • (A) -1 Acrylic resin (weight average molecular weight 350,000, glass transition) obtained by copolymerizing BA (10 parts by mass), MA (70 parts by mass), GMA (5 parts by mass) and HEA (15 parts by mass) Temperature-1 ° C).
  • (A) -2 Acrylic resin (weight average molecular weight 700,000, glass transition) obtained by copolymerizing BA (40 parts by mass), EA (25 parts by mass), AN (30 parts by mass) and GMA (5 parts by mass) Temperature -14 ° C).
  • (A) -3 Acrylic resin obtained by copolymerizing BA (55 parts by mass), MA (10 parts by mass), GMA (20 parts by mass) and HEA (15 parts by mass) (weight average molecular weight 800000, glass transition Temperature -28 ° C).
  • (A) -4 Thermoplastic resin, polyester (Toyobo “Byron 220”, weight average molecular weight 35000, glass transition temperature 53 ° C.)
  • Epoxy resin (b1)] B1) -1: Bisphenol A type epoxy resin (“JER828” manufactured by Mitsubishi Chemical Corporation, epoxy equivalent of 184 to 194 g / eq)
  • B1) -2 Polyfunctional aromatic type (triphenylene type) epoxy resin (“EPPN-502H” manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent 167 g / eq, softening point 54 ° C., weight average molecular weight 1200)
  • B1) -3 Bisphenol F type epoxy resin (“YL983U” manufactured by Mitsubishi Chemical Corporation, epoxy equivalent 170 g / eq)
  • B1) -4 Dicyclopentadiene type epoxy resin (“XD-1000-L” manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent 248 g / eq)
  • B1) -5 Mix
  • the film-like adhesive obtained above was stored at 168 hours (one week) at 40 ° C. in a dark place in an air atmosphere immediately after its production.
  • the same cylindrical test piece as described above was immediately produced from the film-like adhesive after storage.
  • Temperature T 168 ) (° C.) was determined.
  • a difference ⁇ T 168 (° C.) between T 168 and T 0 was calculated.
  • the film-like adhesive obtained above was stored at 168 hours (one week) at 40 ° C. in a dark place in an air atmosphere immediately after its production.
  • the same sheet-like test piece as described above was immediately produced from the film-like adhesive after storage.
  • gel fraction W168 (%) was computed about the test piece produced from the film-like adhesive after this preservation
  • the rate of change RW 168 (%) of the gel fraction of the test piece was calculated.
  • the film-like adhesive obtained above was stored at 168 hours (one week) at 40 ° C. in a dark place in an air atmosphere immediately after its production. Then, immediately, in accordance with JIS K7161: 1994 (ISO 527-1: 1993), a test piece was prepared from the film-like adhesive after storage, and the elongation at break F 168 (%) was measured for this test piece. It was measured. Furthermore, the reduction rate RF 168 (%) of the breaking elongation of the test piece was calculated according to the above formula (ii). These results are shown in Table 1.
  • the release film was removed from the semiconductor processing sheet obtained above. Then, using a laminating apparatus (“VA-400” manufactured by Taisei Laminator Co., Ltd.), a semiconductor processing sheet was attached to the ground surface (back surface) of the silicon mirror wafer with the film adhesive. At this time, the semiconductor processing sheet was heated to 60 ° C. and pasted under conditions of a pasting speed of 0.6 m / min and a pasting pressure of 0.5 MPa.
  • VA-400 manufactured by Taisei Laminator Co., Ltd.
  • the base material was removed from the film-like adhesive of the semiconductor processing sheet after being attached to the silicon mirror wafer.
  • an expanded tape (“ADWILL DG889SO5” manufactured by Lintec) was attached to the exposed surface of the newly formed film adhesive using a laminating apparatus (“VA-400” manufactured by Taisei Laminator).
  • VA-400 laminating apparatus manufactured by Taisei Laminator
  • a double-sided tape for fixing a ring frame (“ADWILL G-01DF * ” manufactured by Lintec) was attached to an exposed surface in the vicinity of the peripheral edge of the expanded tape that was not attached to the film adhesive. Then, the first laminated structure in which the expanded tape, the film adhesive, and the silicon mirror wafer were laminated in this order in the thickness direction was fixed to the ring frame with the double-sided tape.
  • the surface protection tape is removed from the mirror surface of the silicon mirror wafer, and the silicon mirror wafer is divided by dicing using a dicing apparatus (“DFD6361” manufactured by Disco), and the film adhesive is also cut.
  • a silicon chip having a size of 8 mm ⁇ 8 mm was obtained.
  • the moving speed of the dicing blade is 50 mm / sec
  • the rotational speed of the dicing blade is 40,000 rpm
  • the expanded tape is cut with a dicing blade to a depth of 20 ⁇ m from the adhesive surface of the film adhesive. went.
  • a plurality of silicon chips (in other words, a plurality of silicon chips with a film-like adhesive) provided with a cut film-like adhesive on the back surface are aligned on the expanded tape by the film-like adhesive.
  • the 2nd laminated structure fixed by is obtained.
  • a circuit pattern is formed on a copper foil (thickness 18 ⁇ m) of a copper foil-clad laminate (“HL832NX-A” manufactured by Mitsubishi Gas Chemical Company) as a substrate, and a solder resist (“PSR-” manufactured by Taiyo Ink Co., Ltd.) is formed on this circuit pattern.
  • a substrate (“LN001E-001 PCB (Au) AUS308” manufactured by CIMA ELECTRONICS) was prepared.
  • the second laminated structure obtained above was installed in an expanding unit of a pickup / die bonding apparatus (“BESTEM D02” manufactured by Canon Machinery Co., Ltd.). Next, with the five pins, the second laminated structure was pushed up from the expanded tape side under the conditions of a push-up speed of 300 mm / min and a push-up amount of 200 ⁇ m, and further, using a collet with a size of 8 mm ⁇ 8 mm, The silicon chip with film adhesive was picked up by pulling it away from the expanded tape.
  • a pickup / die bonding apparatus (“BESTEM D02” manufactured by Canon Machinery Co., Ltd.).
  • the picked up silicon chip with film adhesive was bonded to the substrate. Bonding at this time was performed by applying a force of 2.45 N (250 gf) to the silicon chip with a film adhesive heated to 120 ° C. for 0.5 seconds.
  • a layer made of a sealing resin (“KE-G1250” manufactured by Kyocera Chemical Co., Ltd.) was formed on the silicon chip after bonding using a sealing device (“MPC-06M TriAl Press” manufactured by Apic Yamada). And this sealing resin was hardened and the sealing substrate was obtained by forming the 400-micrometer-thick sealing layer. The curing of the sealing resin at this time was performed by applying a pressure of 7 MPa to the sealing resin heated to 175 ° C. for 2 minutes.
  • a dicing tape (“adwill D-510T” manufactured by Lintec Co., Ltd.) is attached to this sealing substrate, and this dicing blade is rotated at 4000 rpm using a dicing apparatus (“DFD6361” manufactured by Disco).
  • a dicing apparatus (“DFD6361” manufactured by Disco).
  • the semiconductor package obtained above was immediately subjected to IR reflow three times with a maximum temperature of 260 ° C. and heating for 1 minute.
  • the IR reflow at this time was performed using a desktop reflow furnace (“STR-2010N2M” manufactured by Senju Metal Industry Co., Ltd.).
  • the semiconductor package obtained above was allowed to absorb moisture by standing still for 168 hours (1 week) under a moist heat condition of 85 ° C. and a relative humidity of 60%. Then, immediately after the moisture absorption, the semiconductor package after IR reflow was evaluated by performing IR reflow three times in the same manner as in the case of the semiconductor package immediately after manufacture. The results are shown in Table 1.
  • ⁇ T 168 was 7 ° C. or less (0 to 7 ° C.), and the melt viscosity was stable during storage of the film adhesive. Further, W 0 is 8% and RW 168 is 150% or less (113 to 150%), the gel fraction before storage of the film adhesive is low, and the gel is stored during storage of the film adhesive. The fraction was stable. RF 168 was 22.8% or less (22.2 to 22.8%), and the elongation at break was stable during storage of the film adhesive.
  • the film adhesives of Examples 1 and 2 had stable melt viscosity, gel fraction and elongation at break during storage, and the storage stability of the film adhesive was high. Reflecting these results, in Examples 1 and 2, the reliability of the semiconductor package was high both immediately after manufacture and after moisture absorption.
  • ⁇ T 168 was 14 ° C., and during the storage of the film adhesive, the melt viscosity was not stable and increased remarkably. Moreover, although W 0 was 8% and RW 168 was 300% and the gel fraction before storage of the film adhesive was low, the gel fraction was not stable during storage of the film adhesive. , Was significantly increased. Further, RF 168 was 85.4%, and during the storage of the film adhesive, the elongation at break was not stable and significantly decreased.
  • the film-like adhesive of Comparative Example 1 was not stable in terms of storage viscosity, gel fraction and elongation at break, and the storage stability of the film-like adhesive was low. Reflecting these results, in Comparative Example 1, the reliability of the semiconductor package immediately after manufacture was high, but the reliability of the semiconductor package after moisture absorption was completely low.
  • ⁇ T 168 was 1 ° C., and the melt viscosity was stable during storage of the film adhesive.
  • W 0 was 18%, and the gel fraction before storage of the film adhesive was high.
  • the RW 168 was 117% and the gel fraction was stable during storage of the film adhesive, but this merely remained in a high gel fraction state.
  • RF 168 was 12.5% or less, and the elongation at break was stable during storage of the film adhesive.
  • the film-like adhesive of Comparative Example 2 had a gel fraction that was consistently high from the beginning (immediately after production) and could not be judged to have high storage stability. And reflecting these results, in Comparative Example 2, the reliability of the semiconductor package was low both immediately after manufacture and after moisture absorption.
  • the present invention can provide a film adhesive capable of producing a highly reliable semiconductor package based on the storage stability, and a semiconductor processing sheet provided with the film adhesive. Since it can be used for manufacturing, it is extremely useful industrially.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Laminated Bodies (AREA)
  • Dicing (AREA)

Abstract

A film-like adhesive having the following characteristics: (I) when an initial detected temperature of the melt viscosity of the film-like adhesive after being stored for 168 hours at 40°C is T168, and when the initial detected temperature of the melt viscosity of the film-like adhesive before being stored is T0, the difference ΔT168 between the T168 and the T0 is less than 10°C, and (II) when a gel fraction before the film-like adhesive is stored at 40°C is W0, W0 is no more than 15%.

Description

フィルム状接着剤及び半導体加工用シートFilm adhesive and semiconductor processing sheet
 本発明は、フィルム状接着剤及び半導体加工用シートに関する。
 本願は、2018年3月23日に、日本に出願された特願2018-057006号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a film adhesive and a semiconductor processing sheet.
This application claims priority based on Japanese Patent Application No. 2018-057006 filed in Japan on March 23, 2018, the contents of which are incorporated herein by reference.
 半導体チップは、通常、その裏面に貼付されているフィルム状接着剤によって、基板の回路形成面にダイボンディングされる。そして、得られたものを用いて、半導体パッケージが作製され、この半導体パッケージを用いて、最終的に、目的とする半導体装置が製造される。 The semiconductor chip is usually die-bonded to the circuit forming surface of the substrate with a film adhesive stuck on the back surface thereof. Then, a semiconductor package is manufactured using the obtained one, and a target semiconductor device is finally manufactured using the semiconductor package.
 裏面にフィルム状接着剤を備えた半導体チップは、例えば、裏面にフィルム状接着剤を備えた半導体ウエハを、フィルム状接着剤とともに分割(切断)することによって作製される。このように半導体ウエハを半導体チップへと分割する方法としては、例えば、ダイシングブレードを用いて、半導体ウエハをフィルム状接着剤ごとダイシングする方法が知られている。この場合、分割(切断)前のフィルム状接着剤は、ダイシング時に半導体ウエハを固定するために使用されるダイシングシートに積層されて一体化された、ダイシングダイボンディングシートとして利用されることもある。 A semiconductor chip having a film-like adhesive on the back surface is produced, for example, by dividing (cutting) a semiconductor wafer having a film-like adhesive on the back surface together with the film-like adhesive. As a method for dividing the semiconductor wafer into semiconductor chips in this manner, for example, a method of dicing the semiconductor wafer together with the film adhesive using a dicing blade is known. In this case, the film adhesive before division (cutting) may be used as a dicing die bonding sheet laminated and integrated on a dicing sheet used for fixing the semiconductor wafer during dicing.
 フィルム状接着剤としては、目的に応じて、これまでに種々のものが開示されている。
 例えば、熱可塑性樹脂成分5~15重量%及び熱硬化性樹脂成分45~55重量%を主成分として含有し、熱硬化前の100℃における溶融粘度が400Pa・s以上2500Pa・s以下である熱硬化型ダイボンドフィルムが開示されている(特許文献1参照)。
 この熱硬化型ダイボンドフィルムは、被着体との密着性に優れており、接着剤の滲み出しによる基板や半導体チップの汚染を防止する、とされている。
Various film adhesives have been disclosed so far depending on the purpose.
For example, a heat containing a thermoplastic resin component of 5 to 15% by weight and a thermosetting resin component of 45 to 55% by weight as a main component and having a melt viscosity at 100 ° C. of 400 Pa · s to 2500 Pa · s before thermosetting. A curable die-bonding film is disclosed (see Patent Document 1).
This thermosetting die-bonding film is excellent in adhesion to an adherend and is supposed to prevent contamination of the substrate and the semiconductor chip due to bleeding of the adhesive.
 また、120℃、1時間の熱処理により熱硬化された後の有機成分におけるゲル分率が20重量%以下の範囲内であり、かつ、175℃、1時間の熱処理により熱硬化された後の有機成分におけるゲル分率が10~30重量%の範囲内である熱硬化型ダイボンドフィルムが開示されている(特許文献2参照)。この熱硬化型ダイボンドフィルムは、ダイボンディング後の硬化収縮が抑制され、これにより被着体に対する反りの発生を防止できる、とされている。 The organic fraction after being thermally cured by heat treatment at 120 ° C. for 1 hour has a gel fraction of 20% by weight or less in the organic component after being thermally cured by heat treatment at 175 ° C. for 1 hour. A thermosetting die-bonding film in which the gel fraction in the component is in the range of 10 to 30% by weight is disclosed (see Patent Document 2). This thermosetting die-bonding film is supposed to suppress curing shrinkage after die bonding, thereby preventing warpage of the adherend.
特開2008-244464号公報JP 2008-244464 A 特開2011-103440号公報JP 2011-103440 A
 フィルム状接着剤は、使用されるまでの間の保存中に、その含有成分である架橋又は硬化可能な成分が反応してしまうことで、特性が変化してしまうことがある。このように、特性が変化し易く、保存安定性が低いフィルム状接着剤は、使用時において目的とする作用を十分に示せないことがある。さらに、このようなフィルム状接着剤と半導体チップを用いて製造された半導体パッケージは、信頼性が低下してしまうことがある。 The characteristics of the film adhesive may change due to the reaction of the crosslinkable or curable component that is a component of the film adhesive during storage until it is used. As described above, a film-like adhesive that easily changes its characteristics and has low storage stability may not sufficiently exhibit the intended action during use. Furthermore, the reliability of a semiconductor package manufactured using such a film adhesive and a semiconductor chip may be reduced.
 これに対して、上述のとおり、特許文献1に記載の熱硬化型ダイボンドフィルム(フィルム状接着剤)は、熱硬化前の100℃における溶融粘度が特定の範囲内となるが、保管前後での溶融粘度が安定しているか否かは定かではない。 On the other hand, as described above, the thermosetting die-bonding film (film adhesive) described in Patent Document 1 has a melt viscosity within a specific range at 100 ° C. before thermosetting, but before and after storage. Whether the melt viscosity is stable is not certain.
 特許文献2に記載の熱硬化型ダイボンドフィルム(フィルム状接着剤)は、熱硬化後の有機成分におけるゲル分率が特定の範囲内となるが、保管前後でのゲル分率が安定しているか否かは定かではない。 The thermosetting die-bonding film (film adhesive) described in Patent Document 2 has a gel fraction in the organic component after thermosetting within a specific range, but is the gel fraction before and after storage stable? It is not certain whether or not.
 このように、特許文献1~2に記載の熱硬化型ダイボンドフィルム(フィルム状接着剤)は、保存安定性が高いか否か、及び、信頼性が高い半導体パッケージを製造可能であるか否か、が定かではない。 As described above, the thermosetting die-bonding film (film adhesive) described in Patent Documents 1 and 2 has high storage stability and can manufacture a highly reliable semiconductor package. , Is not certain.
 本発明は、保存安定性が高く、さらに、それに基づいて信頼性が高い半導体パッケージを製造可能なフィルム状接着剤、及び前記フィルム状接着剤を備えた半導体加工用シートを提供することを目的とする。 An object of the present invention is to provide a film adhesive capable of producing a semiconductor package having high storage stability and high reliability based thereon, and a semiconductor processing sheet provided with the film adhesive. To do.
 上記課題を解決するため、本発明は、フィルム状接着剤を40℃で保存し、保存前後の前記フィルム状接着剤について、溶融粘度の初期検出温度を求めたとき、保存時間が168時間の場合の前記初期検出温度T168と、保存前の前記初期検出温度Tと、の差ΔT168が、10℃未満であり、前記フィルム状接着剤を40℃で保存する前の前記フィルム状接着剤のゲル分率Wが、15%以下である、フィルム状接着剤を提供する。
 また、本発明は、フィルム状接着剤を40℃で保存し、保存前後の前記フィルム状接着剤についてゲル分率を測定したとき、保存時間が168時間の場合の前記ゲル分率W168と、保存前の前記ゲル分率Wと、から求められる、保存時間が168時間の場合の前記ゲル分率の変化率RW168が、200%以下であり、かつ、前記ゲル分率Wが15%以下である、フィルム状接着剤を提供する。
In order to solve the above problems, the present invention is a case where the film adhesive is stored at 40 ° C., and when the initial detection temperature of the melt viscosity is obtained for the film adhesive before and after storage, the storage time is 168 hours. The difference ΔT 168 between the initial detection temperature T 168 and the initial detection temperature T 0 before storage is less than 10 ° C., and the film adhesive before storing the film adhesive at 40 ° C. A film adhesive having a gel fraction W 0 of 15% or less is provided.
In addition, the present invention stores the film adhesive at 40 ° C., and when the gel fraction is measured for the film adhesive before and after storage, the gel fraction W 168 when the storage time is 168 hours, The change rate RW 168 of the gel fraction when the storage time is 168 hours, obtained from the gel fraction W 0 before storage, is 200% or less, and the gel fraction W 0 is 15 %, The film adhesive is provided.
 また、本発明は、フィルム状接着剤を40℃で保存し、保存前後の前記フィルム状接着剤について、JIS K7161:1994に準拠して破断伸度を測定したとき、保存時間が168時間の場合の前記破断伸度F168と、保存前の前記破断伸度Fと、から求められる、保存時間が168時間の場合の前記破断伸度の低下率RF168が、30%未満であり、前記フィルム状接着剤を40℃で保存する前の前記フィルム状接着剤のゲル分率Wが、15%以下である、フィルム状接着剤を提供する。
 また、本発明は、支持シートを備え、前記支持シート上に、前記フィルム状接着剤を備えた、半導体加工用シートを提供する。
In the present invention, when the film adhesive is stored at 40 ° C., and the elongation at break is measured in accordance with JIS K7161: 1994, the storage time is 168 hours. The breaking elongation reduction rate RF 168 when the storage time is 168 hours, which is obtained from the breaking elongation F 168 and the breaking elongation F 0 before storage, is less than 30%, Provided is a film adhesive in which a gel fraction W 0 of the film adhesive before storing the film adhesive at 40 ° C. is 15% or less.
Moreover, this invention provides the sheet | seat for semiconductor processing provided with the support sheet and having the said film adhesive on the said support sheet.
 すなわち、本発明は以下の態様を含む。
[1] 以下の特性を有するフィルム状接着剤:
(I)前記フィルム状接着剤の40℃で168時間保存後の溶融粘度の初期検出温度をT168とし、前記フィルム状接着剤の前記保存前の溶融粘度の初期検出温度をTとしたとき、前記T168と前記Tとの差ΔT168が10℃未満であり、かつ
(II)前記フィルム状接着剤を40℃で保存する前のゲル分率をWとしたとき、前記Wが15%以下である。
[2] 以下の特性を有するフィルム状接着剤:
(I’)前記フィルム状接着剤の40℃で168時間保存後のゲル分率をW168とし、前記フィルム状接着剤の前記保存前のゲル分率をWとしたとき、前記W168と前記Wとから求められるゲル分率の変化率RW168が200%以下であり、かつ(II’)前記Wが15%以下である。
[3] 以下の特性を有するフィルム状接着剤:
(I’’)前記フィルム状接着剤の40℃で168時間保存後のJIS K7161:1994に準拠して測定した破断伸度をF168とし、前記フィルム状接着剤の前記保存前のJIS K7161:1994に準拠して測定した破断伸度をFとしたとき、前記F168と前記Fとから求められる破断伸度の低下率RF168が30%未満であり、かつ(II’’)前記フィルム状接着剤を40℃で保存する前の前記フィルム状接着剤のゲル分率をWとしたとき、前記Wが15%以下である。
[4] 支持シートと、
 前記支持シート上に備えられた、[1]~[3]のいずれか一つに記載のフィルム状接着剤を含む、半導体加工用シート。
 
[5]さらに以下の特性を有する[1]に記載のフィルム状接着剤:
(III)前記フィルム状接着剤の40℃で168時間保存後のゲル分率をW168とし、前記フィルム状接着剤の前記保存前のゲル分率をWとしたとき、前記W168と前記Wとから求められるゲル分率の変化率RW168が200%以下である。
[6]さらに以下の特性を有する[1]から[3]のいずれか1つに記載のフィルム状接着剤:
(IV)前記フィルム状接着剤の40℃で168時間保存後のJIS K7161:1994に準拠して測定した破断伸度をF168とし、前記フィルム状接着剤の前記保存前のJIS K7161:1994に準拠して測定した破断伸度をFとしたとき、前記F168と前記Fとから求められる破断伸度の低下率RF168が30%未満である。
That is, the present invention includes the following aspects.
[1] Film adhesive having the following characteristics:
(I) When the initial detection temperature of the melt viscosity of the film adhesive after storage at 40 ° C. for 168 hours is T 168 and the initial detection temperature of the melt viscosity of the film adhesive before storage is T 0 When the difference ΔT 168 between the T 168 and the T 0 is less than 10 ° C. and (II) the gel fraction before storing the film adhesive at 40 ° C. is W 0 , the W 0 Is 15% or less.
[2] Film adhesive having the following characteristics:
(I ′) When the gel fraction of the film adhesive after storage for 168 hours at 40 ° C. is W 168 and the gel fraction of the film adhesive before storage is W 0 , the W 168 The change rate RW 168 of the gel fraction obtained from the W 0 is 200% or less, and (II ′) the W 0 is 15% or less.
[3] Film adhesive having the following characteristics:
(I '') JIS after storage the film-like 168 hours at 40 ° C. of the adhesive K7161: elongation at break, determined in accordance with the 1994 and F 168, before the storage of the film-like adhesive JIS K7161: When the elongation at break measured in accordance with 1994 is F 0 , the decrease rate RF 168 of elongation at break obtained from F 168 and F 0 is less than 30%, and (II ″) When the gel fraction of the film adhesive before storing the film adhesive at 40 ° C. is defined as W 0 , the W 0 is 15% or less.
[4] a support sheet;
A sheet for semiconductor processing, comprising the film adhesive according to any one of [1] to [3] provided on the support sheet.

[5] The film adhesive according to [1], which further has the following characteristics:
(III) When the gel fraction of the film adhesive after storage at 40 ° C. for 168 hours is W 168, and the gel fraction of the film adhesive before storage is W 0 , the W 168 and the above The change rate RW 168 of the gel fraction obtained from W 0 is 200% or less.
[6] The film adhesive according to any one of [1] to [3], which further has the following characteristics:
(IV) the film-like after 168 hours storage at 40 ° C. of the adhesive JIS K7161: elongation at break, determined in accordance with the 1994 and F 168, the film-like adhesive the storage prior to JIS of K7161: 1994 When the elongation at break measured in accordance with F0 is F 0 , the reduction rate RF 168 of the elongation at break obtained from F 168 and F 0 is less than 30%.
 本発明によれば、保存安定性が高く、さらに、それに基づいて信頼性が高い半導体パッケージを製造可能なフィルム状接着剤、及び前記フィルム状接着剤を備えた半導体加工用シートが提供される。 According to the present invention, there are provided a film adhesive capable of producing a semiconductor package having high storage stability and high reliability based thereon, and a semiconductor processing sheet provided with the film adhesive.
本発明の一実施形態に係るフィルム状接着剤を模式的に示す断面図である。It is sectional drawing which shows typically the film adhesive which concerns on one Embodiment of this invention. 本発明の半導体加工用シートの一実施形態を模式的に示す断面図である。It is sectional drawing which shows typically one Embodiment of the sheet | seat for semiconductor processing of this invention. 本発明の半導体加工用シートの他の実施形態を模式的に示す断面図である。It is sectional drawing which shows typically other embodiment of the sheet | seat for semiconductor processing of this invention. 本発明の半導体加工用シートのさらに他の実施形態を模式的に示す断面図である。It is sectional drawing which shows typically other embodiment of the sheet | seat for semiconductor processing of this invention. 本発明の半導体加工用シートのさらに他の実施形態を模式的に示す断面図である。It is sectional drawing which shows typically other embodiment of the sheet | seat for semiconductor processing of this invention.
◇フィルム状接着剤
<<第1実施形態>>
 本発明の第1実施形態に係るフィルム状接着剤は、フィルム状接着剤を40℃で保存し、保存前後の前記フィルム状接着剤について、溶融粘度の初期検出温度を求めたとき、保存時間が168時間の場合の前記初期検出温度T168と、保存前の前記初期検出温度Tと、の差ΔT168が、10℃未満であり、前記フィルム状接着剤を40℃で保存する前の前記フィルム状接着剤のゲル分率Wが、15%以下となる。
 すなわち、本発明の第1実施形態に係るフィルム状接着剤は、以下の特性を有する:
(I)前記フィルム状接着剤の40℃で168時間保存後の溶融粘度の初期検出温度をT168とし、前記フィルム状接着剤の前記保存前の溶融粘度の初期検出温度をTとしたとき、前記T168と前記Tとの差ΔT168が10℃未満であり、かつ
(II)前記フィルム状接着剤を40℃で保存する前のゲル分率をWとしたとき、前記Wが15%以下である。
◇ Film adhesive << First embodiment >>
When the film-like adhesive according to the first embodiment of the present invention stores the film-like adhesive at 40 ° C., and determines the initial detection temperature of the melt viscosity for the film-like adhesive before and after storage, the storage time is The difference ΔT 168 between the initial detected temperature T 168 in the case of 168 hours and the initial detected temperature T 0 before storage is less than 10 ° C., and the film adhesive before storing at 40 ° C. The gel fraction W 0 of the film adhesive is 15% or less.
That is, the film adhesive according to the first embodiment of the present invention has the following characteristics:
(I) When the initial detection temperature of the melt viscosity of the film adhesive after storage at 40 ° C. for 168 hours is T 168 and the initial detection temperature of the melt viscosity of the film adhesive before storage is T 0 When the difference ΔT 168 between the T 168 and the T 0 is less than 10 ° C. and (II) the gel fraction before storing the film adhesive at 40 ° C. is W 0 , the W 0 Is 15% or less.
 第1実施形態のフィルム状接着剤は、硬化性を有するものであり、熱硬化性を有するものが好ましく、また感圧接着性を有するものが好ましい。熱硬化性及び感圧接着性をともに有するフィルム状接着剤は、未硬化状態では各種被着体に軽く押圧することで貼付できる。
 また、フィルム状接着剤は、加熱して軟化させることで各種被着体に貼付できるものであってもよい。フィルム状接着剤は、硬化によって最終的には耐衝撃性が高い硬化物となり、この硬化物は、厳しい高温・高湿度条件下においても十分な接着特性を保持し得る。
The film-like adhesive of the first embodiment has curability, preferably has thermosetting properties, and preferably has pressure-sensitive adhesive properties. A film adhesive having both thermosetting and pressure-sensitive adhesive properties can be applied by lightly pressing on various adherends in an uncured state.
The film adhesive may be one that can be applied to various adherends by heating and softening. The film adhesive finally becomes a cured product having high impact resistance by curing, and this cured product can retain sufficient adhesive properties even under severe high temperature and high humidity conditions.
 第1実施形態のフィルム状接着剤は、このようにΔT168(=T168-T)が小さく、40℃で168時間保存した場合であっても、溶融粘度の変化が抑制されており、保存安定性が高い。このような条件を満たすフィルム状接着剤は、このような保存条件に限らず、通常適用される保存条件全般で、保存安定性が高く、保存中の特性の変化が抑制され、その使用時においては、目的とする作用を十分に示すことが可能である。そして、このようなフィルム状接着剤を用いることで、信頼性が高い半導体パッケージを製造できる。
 また、第1実施形態のフィルム状接着剤はWが小さく、その保存の有無によらず、信頼性が高い半導体パッケージの製造を可能とする。
The film-like adhesive of the first embodiment thus has a small ΔT 168 (= T 168 −T 0 ), and even when stored at 40 ° C. for 168 hours, the change in melt viscosity is suppressed, High storage stability. A film-like adhesive that satisfies such conditions is not limited to such storage conditions, but is generally stable under general storage conditions, and changes in properties during storage are suppressed. Can sufficiently exhibit the intended action. And by using such a film adhesive, a highly reliable semiconductor package can be manufactured.
In addition, the film-like adhesive of the first embodiment has a small W 0 , and enables production of a highly reliable semiconductor package regardless of whether or not it is stored.
 第1実施形態のフィルム状接着剤において、ΔT168は、上記のとおり10℃未満であり、9.5℃以下であることが好ましく、9℃以下であることがより好ましく、8℃以下であることがさらに好ましく、例えば、6℃以下及び3℃以下のいずれかであってもよい。 In the film adhesive of the first embodiment, ΔT 168 is less than 10 ° C. as described above, preferably 9.5 ° C. or less, more preferably 9 ° C. or less, and 8 ° C. or less. More preferably, for example, it may be 6 ° C. or lower and 3 ° C. or lower.
 第1実施形態のフィルム状接着剤において、ΔT168の下限値は、特に限定されないが、通常は0℃である。すなわち、第1実施形態のフィルム状接着剤において、ΔT168は、0℃以上であることが好ましい。 In the film adhesive of the first embodiment, the lower limit value of ΔT 168 is not particularly limited, but is usually 0 ° C. That is, in the film adhesive of the first embodiment, ΔT 168 is preferably 0 ° C. or higher.
 第1実施形態のフィルム状接着剤において、ΔT168は、上述の好ましい下限値及び上限値を任意に組み合わせて設定される範囲内に、適宜調節できる。例えば、ΔT168は、好ましくは0℃以上10℃未満、より好ましくは0~9.5℃、さらに好ましくは0~9℃、特に好ましくは0~8℃であり、例えば、0~6℃、及び0~3℃のいずれかであってもよい。また別の側面として、ΔT168は、0~7℃であってもよい。ただし、これらは、ΔT168の一例である。 In the film-like adhesive of the first embodiment, ΔT 168 can be appropriately adjusted within a range set by arbitrarily combining the above-described preferable lower limit value and upper limit value. For example, ΔT 168 is preferably 0 ° C. or more and less than 10 ° C., more preferably 0 to 9.5 ° C., further preferably 0 to 9 ° C., particularly preferably 0 to 8 ° C., for example, 0 to 6 ° C., And any of 0 to 3 ° C. As another aspect, ΔT 168 may be 0 to 7 ° C. However, these are examples of ΔT 168 .
 第1実施形態のフィルム状接着剤において、Tは、特に限定されないが、35~100℃であることが好ましく、40~90℃であることがより好ましく、45~80℃であることが特に好ましい。別の側面として、Tは59~71℃であってもよい。Tが前記下限値以上であることで、フィルム状接着剤とその貼付対象物との間に空隙部が生じ難くなり、貼付対象物に対する埋め込み性がより向上する。その結果、得られる半導体パッケージの信頼性がより高くなる。Tが前記上限値以下であることで、フィルム状接着剤の取り扱い性がより向上する。 In the film adhesive of the first embodiment, T 0 is not particularly limited, but is preferably 35 to 100 ° C., more preferably 40 to 90 ° C., and particularly preferably 45 to 80 ° C. preferable. As another aspect, T 0 may be 59 to 71 ° C. When T 0 is equal to or more than the lower limit value, it is difficult for a gap to be formed between the film-like adhesive and the sticking target, and the embedding property to the sticking target is further improved. As a result, the reliability of the obtained semiconductor package becomes higher. T 0 that it is equal to or less than the upper limit, handling property of the film-like adhesive is further improved.
 第1実施形態のフィルム状接着剤において、T168は、特に限定されないが、35~109.5℃であることが好ましく、40~99.5℃であることがより好ましく、45~89.5℃であることが特に好ましい。また、別の側面として、T168は59~78℃であってもよい。T168が前記下限値以上であることで、フィルム状接着剤とその貼付対象物との間に空隙部が生じ難くなり、貼付対象物に対する埋め込み性がより向上する。その結果、得られる半導体パッケージの信頼性がより高くなる。
 T168が前記上限値以下であることで、フィルム状接着剤の取り扱い性がより向上する。
In the film-like adhesive of the first embodiment, T 168 is not particularly limited, but is preferably 35 to 109.5 ° C, more preferably 40 to 99.5 ° C, and 45 to 89.5. It is particularly preferable that the temperature is C. As another aspect, T 168 may be 59 to 78 ° C. When T 168 is equal to or more than the lower limit value, it is difficult for a void portion to be generated between the film adhesive and the sticking object, and the embedding property to the sticking object is further improved. As a result, the reliability of the obtained semiconductor package becomes higher.
When T168 is equal to or less than the upper limit, the handleability of the film adhesive is further improved.
 本実施形態に係るフィルム状接着剤の溶融粘度の初期検出温度Tは、40℃での保存時間がt時間(tは0以上の数である。)であるフィルム状接着剤について、その溶融粘度を公知の方法で測定することにより求められる。すなわち、キャピラリーレオメーターを用い、そのシリンダー(キャピラリー)内に、測定対象のフィルム状接着剤をセットし、シリンダーの内壁に接触しながらこの内壁に沿って、シリンダーの長手方向(換言すると中心軸方向)に移動可能なピストンによって、このシリンダー内のフィルム状接着剤に対して一定の大きさの力を加えた状態(荷重をかけた状態、例えば5.10N)を維持しながら、フィルム状接着剤を昇温(例えば、10℃/minで50℃から120℃まで昇温)させる。そして、シリンダーの先端部(フィルム状接着剤に対して力を加えている方向の先端部)に設けられた穴(例えば、直径0.5mm、高さ1.0mmの穴)から、シリンダーの外部へフィルム状接着剤の押出しが開始されたとき、すなわち、フィルム状接着剤の溶融粘度の検出が開始されたときの、フィルム状接着剤の温度を、フィルム状接着剤の初期検出温度T(℃)として採用する。この方法により、T168及びTが求められる。測定に供するフィルム状接着剤の大きさ及び形状は、シリンダーの大きさ等を考慮して、適宜調節できる。例えば、直径10mm、高さ20mmの円柱状の試験片が好ましい。 The initial detection temperature T t of the melt viscosity of the film adhesive according to the present embodiment is the melting temperature of the film adhesive whose storage time at 40 ° C. is t hours (t is a number of 0 or more). It is determined by measuring the viscosity by a known method. That is, using a capillary rheometer, set the film-like adhesive to be measured in the cylinder (capillary) and make contact with the inner wall of the cylinder along the inner wall along the longitudinal direction of the cylinder (in other words, the direction of the central axis) ) While maintaining a state in which a certain amount of force is applied to the film-like adhesive in the cylinder (a state where a load is applied, for example, 5.10 N) by the movable piston. The temperature is raised (for example, raised from 50 ° C. to 120 ° C. at 10 ° C./min). Then, from the hole (for example, a hole with a diameter of 0.5 mm and a height of 1.0 mm) provided at the tip of the cylinder (tip in the direction in which a force is applied to the film adhesive), the outside of the cylinder When the extrusion of the film adhesive is started, that is, when the detection of the melt viscosity of the film adhesive is started, the temperature of the film adhesive is set to the initial detection temperature T t ( ° C). By this method, T 168 and T 0 are determined. The size and shape of the film adhesive used for the measurement can be appropriately adjusted in consideration of the size of the cylinder and the like. For example, a cylindrical test piece having a diameter of 10 mm and a height of 20 mm is preferable.
 なお、本明細書において、「溶融粘度」とは、特に断りのない限り、上述の方法で測定された溶融粘度を意味する。 In the present specification, “melt viscosity” means the melt viscosity measured by the above method unless otherwise specified.
 Tの測定対象であるフィルム状接着剤を40℃で保存するときは、空気雰囲気下で保存することが好ましく、静置保存することが好ましく、暗所で保存することが好ましい。そして、これら2以上の条件を満たすように保存することがより好ましく、すべての条件を満たすように保存することが特に好ましい。 When storing the film-like adhesive, which is the measurement target of Tt , at 40 ° C., it is preferably stored in an air atmosphere, preferably stored at rest, and preferably stored in a dark place. And it is more preferable to preserve | save so that these 2 or more conditions may be satisfy | filled, and it is especially preferable to preserve | save so that all conditions may be satisfy | filled.
 Tの測定対象であるフィルム状接着剤を40℃で保存するときは、このフィルム状接着剤の作製直後から、保存を開始することが好ましい。 When storing the film-like adhesive which is the measurement target of Tt at 40 ° C., it is preferable to start the storage immediately after the production of the film-like adhesive.
 第1実施形態のフィルム状接着剤において、ケル分率Wは、上記のとおり15%以下であり、13%以下であることが好ましく、11%以下であることがより好ましく、9%以下であることが特に好ましい。Wが前記上限値以下であることで、フィルム状接着剤とその貼付対象物との間に空隙部が生じ難くなり、貼付対象物に対する埋め込み性がより向上する。その結果、得られる半導体パッケージの信頼性がより高くなる。 In the film adhesive of the first embodiment, the Kell fraction W 0 is 15% or less as described above, preferably 13% or less, more preferably 11% or less, and 9% or less. It is particularly preferred. When W 0 is equal to or less than the upper limit value, it is difficult for a void portion to be generated between the film adhesive and the sticking target, and the embedding property to the sticking target is further improved. As a result, the reliability of the obtained semiconductor package becomes higher.
 第1実施形態のフィルム状接着剤において、Wの下限値は、特に限定されない。
 第1実施形態のフィルム状接着剤において、Wは、3%以上であることが好ましく、5%以上であることがより好ましい。Wが前記下限値以上であることで、フィルム状接着剤の取り扱い性が向上し、フィルム状接着剤の半導体ウエハへの貼付がより容易となる。さらに、基材等のフィルム状接着剤に隣接する層が、凹凸面を有していても、この凹凸面に対するフィルム状接着剤の追従性が向上する。
In the film adhesive of the first embodiment, the lower limit value of W 0 is not particularly limited.
In the film-like adhesive of the first embodiment, W 0 is preferably 3% or more, and more preferably 5% or more. When W 0 is equal to or more than the lower limit, the handleability of the film adhesive is improved, and the film adhesive can be more easily attached to the semiconductor wafer. Furthermore, even if the layer adjacent to the film adhesive such as the substrate has an uneven surface, the followability of the film adhesive to the uneven surface is improved.
 第1実施形態のフィルム状接着剤において、Wは、上述の好ましい下限値及び上限値を任意に組み合わせて設定される範囲内に、適宜調節できる。例えば、一実施形態において、Wは、好ましくは3~15%、より好ましくは3~13%、さらに好ましくは3~11%℃、特に好ましくは3~9%である。また、別の側面として、Wは、好ましくは5~15%、より好ましくは5~13%、さらに好ましくは5~11%℃、特に好ましくは5~9%である。また別の側面として、Wは、3~8%であってもよく、5~8%であってもよい。ただし、これらは、Wの一例である。 In the film-like adhesive according to the first embodiment, W 0 can be appropriately adjusted within a range set by arbitrarily combining the above-described preferable lower limit value and upper limit value. For example, in one embodiment, W 0 is preferably 3-15%, more preferably 3-13%, even more preferably 3-11% ° C., and particularly preferably 3-9%. In another aspect, W 0 is preferably 5 to 15%, more preferably 5 to 13%, still more preferably 5 to 11%, and particularly preferably 5 to 9%. As another aspect, W 0 may be 3 to 8% or 5 to 8%. However, these are examples of W 0.
 本実施形態においては、ゲル分率Wは公知の方法で測定できる。
 例えば、大きさが2.5cm×4.0cm×600μmである、シート状のフィルム状接着剤の試験片0.5gを、ポリエステル製のメッシュにより包み、この状態の試験片を23℃のメチルエチルケトン(300mL)中に24時間浸漬し、浸漬後の試験片を乾燥(例えば120℃で1時間乾燥)させ、乾燥後の試験片を23℃、相対湿度50%の環境下で24時間静置保存した後、この試験片の質量を測定する。前記試験片の測定値と、浸漬前の試験片の質量とから、W(%)を下記式により算出できる。
In the present embodiment, the gel fraction W 0 can be measured by a known method.
For example, 0.5 g of a sheet-like film adhesive test piece having a size of 2.5 cm × 4.0 cm × 600 μm is wrapped with a polyester mesh, and the test piece in this state is subjected to methyl ethyl ketone (23 ° C. (300 mL) for 24 hours, the test piece after immersion was dried (for example, dried at 120 ° C. for 1 hour), and the dried test piece was stored for 24 hours in an environment of 23 ° C. and a relative humidity of 50%. Then, the mass of this test piece is measured. From the measured value of the test piece and the mass of the test piece before immersion, W 0 (%) can be calculated by the following formula.
 第1実施形態のフィルム状接着剤の溶融粘度と、TやT168等のTと、ΔT168と、Wと(以下、これらを包括して、「溶融粘度等」と称することがある)は、いずれも、例えば、フィルム状接着剤の含有成分の種類及び量等を調節することで、適宜調節できる。例えば、フィルム状接着剤の含有成分である、後述する重合体成分(a)における構成単位の種類及びその含有比率、エポキシ樹脂(b1)の構成成分、熱硬化剤(b2)の立体構造、硬化促進剤(c)の反応性、並びに充填材(d)の平均粒子径等を調節することで、上述の溶融粘度等を適宜調節できる。ただし、これらは、上述の溶融粘度等の調節方法の一例に過ぎない。 The melt viscosity of the film-like adhesive of the first embodiment, T t such as T 0 and T 168 , ΔT 168 and W 0 (hereinafter, these are collectively referred to as “melt viscosity”). Any) can be appropriately adjusted by adjusting, for example, the type and amount of the component of the film adhesive. For example, the component of the film-like adhesive, which is a component of the polymer component (a) described later, and the content ratio thereof, the component of the epoxy resin (b1), the three-dimensional structure of the thermosetting agent (b2), and curing By adjusting the reactivity of the accelerator (c) and the average particle diameter of the filler (d), the above-mentioned melt viscosity and the like can be adjusted as appropriate. However, these are only examples of methods for adjusting the above-described melt viscosity and the like.
 第1実施形態のフィルム状接着剤は1層(単層)からなるものでもよいし、2層以上の複数層からなるものでもよく、複数層からなる場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。 The film-like adhesive of the first embodiment may be composed of one layer (single layer), or may be composed of two or more layers, and when composed of a plurality of layers, these layers are the same or different from each other. The combination of these multiple layers is not particularly limited.
 なお、本明細書においては、フィルム状接着剤の場合に限らず、「複数層が互いに同一でも異なっていてもよい」とは、「すべての層が同一であってもよいし、すべての層が異なっていてもよく、一部の層のみが同一であってもよい」ことを意味し、さらに「複数層が互いに異なる」とは、「各層の構成材料及び厚さの少なくとも一方が互いに異なる」ことを意味する。 In the present specification, not only in the case of a film-like adhesive, but “a plurality of layers may be the same or different from each other” means “all layers may be the same or all layers. May be different, and only some of the layers may be the same ”, and“ a plurality of layers are different from each other ”means that“ at least one of the constituent material and thickness of each layer is different from each other ” "Means.
 第1実施形態のフィルム状接着剤の厚さは、特に限定されないが、1~50μmであることが好ましく、3~40μmであることがより好ましく、5~30μmであることが特に好ましい。フィルム状接着剤の厚さが前記下限値以上であることで、フィルム状接着剤の被着体(半導体ウエハ、半導体チップ)に対する接着力が、より高くなる。フィルム状接着剤の厚さが前記上限値以下であることで、後述する半導体チップの製造工程において、フィルム状接着剤をより容易に切断でき、また、フィルム状接着剤に由来する切断片の発生量をより低減できる。
 ここで、「フィルム状接着剤の厚さ」とは、フィルム状接着剤全体の厚さを意味し、例えば、複数層からなるフィルム状接着剤の厚さとは、フィルム状接着剤を構成するすべての層の合計の厚さを意味する。
 なお、本明細書において、「厚さ」とは、定圧厚さ測定器で測定した値を意味する。
The thickness of the film-like adhesive of the first embodiment is not particularly limited, but is preferably 1 to 50 μm, more preferably 3 to 40 μm, and particularly preferably 5 to 30 μm. When the thickness of the film adhesive is equal to or more than the lower limit, the adhesive force of the film adhesive to the adherend (semiconductor wafer, semiconductor chip) is further increased. When the thickness of the film adhesive is equal to or less than the above upper limit value, the film adhesive can be more easily cut in the semiconductor chip manufacturing process described later, and the generation of a cut piece derived from the film adhesive The amount can be further reduced.
Here, the “thickness of the film-like adhesive” means the thickness of the entire film-like adhesive. For example, the thickness of the film-like adhesive composed of a plurality of layers means all of the film-like adhesive. Means the total thickness of the layers.
In the present specification, “thickness” means a value measured by a constant pressure thickness measuring instrument.
 フィルム状接着剤は、その構成材料を含有する接着剤組成物から形成できる。例えば、フィルム状接着剤の形成対象面に接着剤組成物を塗工し、必要に応じて乾燥させることで、目的とする部位にフィルム状接着剤を形成できる。
 接着剤組成物中の、常温で気化しない成分同士の含有量の比率は、通常、フィルム状接着剤の前記成分同士の含有量の比率と同じとなる。なお、本明細書において、「常温」とは、特に冷やしたり、熱したりしない温度、すなわち平常の温度を意味し、例えば、15~25℃の温度等が挙げられる。
The film adhesive can be formed from an adhesive composition containing the constituent materials. For example, a film adhesive can be formed in the target site | part by applying an adhesive composition to the formation object surface of a film adhesive, and making it dry as needed.
In the adhesive composition, the content ratio of components that do not vaporize at normal temperature is usually the same as the content ratio of the components of the film adhesive. In the present specification, “normal temperature” means a temperature that is not particularly cooled or heated, that is, a normal temperature, and examples thereof include a temperature of 15 to 25 ° C.
 接着剤組成物の塗工は、公知の方法で行えばよく、例えば、エアーナイフコーター、ブレードコーター、バーコーター、グラビアコーター、ロールコーター、ロールナイフコーター、カーテンコーター、ダイコーター、ナイフコーター、スクリーンコーター、マイヤーバーコーター、キスコーター等の各種コーターを用いる方法が挙げられる。 The adhesive composition may be applied by a known method, for example, an air knife coater, blade coater, bar coater, gravure coater, roll coater, roll knife coater, curtain coater, die coater, knife coater, screen coater. And a method using various coaters such as a Meyer bar coater and a kiss coater.
 接着剤組成物の乾燥条件は、特に限定されないが、接着剤組成物は、後述する溶媒を含有している場合、加熱乾燥させることが好ましい。溶媒を含有する接着剤組成物は、例えば、70~130℃で10秒間~5分間の条件で乾燥させることが好ましい。 Although the drying conditions of the adhesive composition are not particularly limited, the adhesive composition is preferably heat-dried when it contains a solvent described later. The adhesive composition containing the solvent is preferably dried at 70 to 130 ° C. for 10 seconds to 5 minutes, for example.
<<第2実施形態>>
 本発明の第2実施形態に係るフィルム状接着剤は、フィルム状接着剤を40℃で保存し、保存前後の前記フィルム状接着剤についてゲル分率を測定したとき、保存時間が168時間の場合の前記ゲル分率W168と、保存前の前記ゲル分率Wと、から求められる、保存時間が168時間の場合の前記ゲル分率の変化率RW168が、200%以下であり、かつ、前記ゲル分率Wが15%以下となる。
 別の側面として、本発明の第2実施形態に係るフィルム状接着剤は、以下の特性を有する:
(I’)前記フィルム状接着剤の40℃で168時間保存後のゲル分率をW168とし、前記フィルム状接着剤の前記保存前のゲル分率をWとしたとき、前記W168と前記Wとから求められるゲル分率の変化率RW168が200%以下であり、かつ
(II’)前記Wが15%以下である。
<< Second Embodiment >>
When the film adhesive according to the second embodiment of the present invention is stored at 40 ° C. and the gel fraction is measured for the film adhesive before and after storage, the storage time is 168 hours. The change rate RW 168 of the gel fraction when the storage time is 168 hours, which is obtained from the gel fraction W 168 and the gel fraction W 0 before storage, is 200% or less, and The gel fraction W 0 is 15% or less.
As another aspect, the film adhesive according to the second embodiment of the present invention has the following characteristics:
(I ′) When the gel fraction of the film adhesive after storage for 168 hours at 40 ° C. is W 168 and the gel fraction of the film adhesive before storage is W 0 , the W 168 The change rate RW 168 of the gel fraction obtained from the W 0 is 200% or less, and (II ′) the W 0 is 15% or less.
 第2実施形態のフィルム状接着剤は、このようにRW168が小さく、40℃で168時間保存した場合であっても、ゲル分率の変化が抑制されており、保存安定性が高い。このような条件を満たすフィルム状接着剤は、このような保存条件に限らず、通常適用される保存条件全般で、保存安定性が高い。そして、このようなフィルム状接着剤を用いることで、信頼性が高い半導体パッケージを製造できる。
 また、第2実施形態のフィルム状接着剤はWが小さく、その保存の有無によらず、信頼性が高い半導体パッケージの製造を可能とする。
The film-like adhesive of the second embodiment has a small RW 168 as described above, and even when stored at 40 ° C. for 168 hours, the change in gel fraction is suppressed and the storage stability is high. A film-like adhesive satisfying such conditions has high storage stability not only in such storage conditions but also in general storage conditions generally applied. And by using such a film adhesive, a highly reliable semiconductor package can be manufactured.
In addition, the film-like adhesive of the second embodiment has a small W 0 , and enables production of a highly reliable semiconductor package regardless of whether or not it is stored.
 第2実施形態のフィルム状接着剤において、RW168は、上記のとおり200%以下であり、185%以下であることが好ましく、170%以下であることがより好ましく、155%以下であることがさらに好ましく、例えば、140%以下及び125%以下のいずれかであってもよい。 In the film adhesive of the second embodiment, RW 168 is 200% or less as described above, preferably 185% or less, more preferably 170% or less, and preferably 155% or less. More preferably, for example, it may be either 140% or less and 125% or less.
 第2実施形態のフィルム状接着剤において、RW168の下限値は、特に限定されないが、通常は100%である。すなわち、第2実施形態のフィルム状接着剤において、RW168は、100%以上であることが好ましい。このような特性のフィルム状接着剤は、より容易に製造できる。 In the film-like adhesive of the second embodiment, the lower limit value of RW 168 is not particularly limited, but is usually 100%. That is, in the film-like adhesive of the second embodiment, RW 168 is preferably 100% or more. A film adhesive having such characteristics can be produced more easily.
 第2実施形態のフィルム状接着剤において、RW168は、上述の好ましい下限値及び上限値を任意に組み合わせて設定される範囲内に、適宜調節できる。例えば、RW168は、好ましくは100~200%、より好ましくは100~185%、さらに好ましくは100~170%℃、特に好ましくは100~155%であり、例えば、100~140%、及び100~125%のいずれかであってもよい。また別の側面として、113~150%であってもよい。ただし、これらは、RW168の一例である。 In the film-like adhesive of the second embodiment, RW 168 can be appropriately adjusted within a range set by arbitrarily combining the above-described preferable lower limit value and upper limit value. For example, RW 168 is preferably 100 to 200%, more preferably 100 to 185%, still more preferably 100 to 170% ° C, particularly preferably 100 to 155%, such as 100 to 140%, and 100 to It may be any of 125%. Another aspect may be 113 to 150%. However, these are examples of RW 168 .
 第2実施形態のフィルム状接着剤において、Wは、上記のとおり15%以下であり、13%以下であることが好ましく、11%以下であることがより好ましく、9%以下であることが特に好ましい。Wが前記上限値以下であることで、フィルム状接着剤とその貼付対象物との間に空隙部が生じ難くなり、貼付対象物に対する埋め込み性がより向上する。その結果、得られる半導体パッケージの信頼性がより高くなる。 In the film-like adhesive of the second embodiment, W 0 is 15% or less as described above, preferably 13% or less, more preferably 11% or less, and 9% or less. Particularly preferred. When W 0 is equal to or less than the upper limit value, it is difficult for a void portion to be generated between the film adhesive and the sticking target, and the embedding property to the sticking target is further improved. As a result, the reliability of the obtained semiconductor package becomes higher.
 第2実施形態のフィルム状接着剤において、Wの下限値は、特に限定されない。
 第2実施形態のフィルム状接着剤において、Wは、3%以上であることが好ましく、5%以上であることがより好ましい。Wが前記下限値以上であることで、フィルム状接着剤の取り扱い性が向上し、フィルム状接着剤の半導体ウエハへの貼付がより容易となる。さらに、基材等のフィルム状接着剤に隣接する層が、凹凸面を有していても、この凹凸面に対するフィルム状接着剤の追従性が向上する。
In the film adhesive of the second embodiment, the lower limit value of W 0 is not particularly limited.
In the film-like adhesive of the second embodiment, W 0 is preferably 3% or more, and more preferably 5% or more. When W 0 is equal to or more than the lower limit, the handleability of the film adhesive is improved, and the film adhesive can be more easily attached to the semiconductor wafer. Furthermore, even if the layer adjacent to the film adhesive such as the substrate has an uneven surface, the followability of the film adhesive to the uneven surface is improved.
 第2実施形態のフィルム状接着剤において、Wは、上述の好ましい下限値及び上限値を任意に組み合わせて設定される範囲内に、適宜調節できる。例えば、一実施形態において、Wは、好ましくは3~15%、より好ましくは3~13%、さらに好ましくは3~11%℃、特に好ましくは3~9%である。また、別の側面として、Wは、好ましくは5~15%、より好ましくは5~13%、さらに好ましくは5~11%℃、特に好ましくは5~9%である。さらに別の側面として、Wは、3~8%であってもよく、5~8%であってもよい。ただし、これらは、Wの一例である。 In the film-like adhesive of the second embodiment, W 0 can be appropriately adjusted within a range set by arbitrarily combining the above-described preferable lower limit value and upper limit value. For example, in one embodiment, W 0 is preferably 3-15%, more preferably 3-13%, even more preferably 3-11% ° C., and particularly preferably 3-9%. In another aspect, W 0 is preferably 5 to 15%, more preferably 5 to 13%, still more preferably 5 to 11%, and particularly preferably 5 to 9%. As yet another aspect, W 0 may be 3 to 8% or 5 to 8%. However, these are examples of W 0.
 第2実施形態のフィルム状接着剤において、W168は、特に限定されないが、4~16%であることが好ましく、5~15%であることがより好ましく、6~14%であることが特に好ましい。別の側面として、W168は9~12%であってもよい。W168が前記上限値以下であることで、フィルム状接着剤とその貼付対象物との間に空隙部が生じ難くなり、貼付対象物に対する埋め込み性がより向上する。その結果、得られる半導体パッケージの信頼性がより高くなる。W168が前記下限値以上であることで、フィルム状接着剤の取り扱い性が向上し、フィルム状接着剤の半導体ウエハへの貼付がより容易となる。さらに、基材等のフィルム状接着剤に隣接する層が、凹凸面を有していても、この凹凸面に対するフィルム状接着剤の追従性が向上する。 In the film-like adhesive of the second embodiment, W 168 is not particularly limited, but is preferably 4 to 16%, more preferably 5 to 15%, and particularly preferably 6 to 14%. preferable. In another aspect, W 168 may be 9-12 %. When W 168 is less than or equal to the above upper limit value, a void portion is less likely to be generated between the film-like adhesive and the sticking target, and the embedding property to the sticking target is further improved. As a result, the reliability of the obtained semiconductor package becomes higher. When W 168 is equal to or more than the lower limit, the handleability of the film adhesive is improved, and the film adhesive can be more easily attached to the semiconductor wafer. Furthermore, even if the layer adjacent to the film adhesive such as the substrate has an uneven surface, the followability of the film adhesive to the uneven surface is improved.
 本実施形態において、40℃でt時間(tは0以上の数である。)保存したフィルム状接着剤のゲル分率Wは公知の方法で測定できる。
 例えば、40℃でt時間保存したフィルム状接着剤から大きさが2.5cm×4.0cm×600μmであるシート状のフィルム状接着剤の試験片0.5gを作製し、ポリエステル製のメッシュにより包み、この状態の試験片を23℃のメチルエチルケトン(300mL)中に24時間浸漬し、浸漬後の試験片を乾燥(例えば120℃で1時間乾燥)させ、乾燥後の試験片を23℃、相対湿度50%の環境下で24時間静置保存した後、この試験片の質量を測定する。前記試験片の測定値と、浸漬前の試験片の質量とから、ゲル分率W(%)を算出できる。この方法により、W168及びWが求められる。
 なお、本実施形態におけるWの測定方法は、上述の第1実施形態におけるWの測定方法と同じである。
In the present embodiment, the gel fraction W t of the film adhesive stored at 40 ° C. for t time (t is a number of 0 or more) can be measured by a known method.
For example, a 0.5 g × 4.0 cm × 600 μm sheet-shaped film-shaped adhesive test piece having a size of 2.5 cm × 4.0 cm × 600 μm is prepared from a film-shaped adhesive stored at 40 ° C. for t hours, and then a polyester mesh is used. The test piece in this state is immersed in methyl ethyl ketone (300 mL) at 23 ° C. for 24 hours, and the test piece after immersion is dried (for example, dried at 120 ° C. for 1 hour). After standing still for 24 hours in a 50% humidity environment, the mass of the test piece is measured. The gel fraction W t (%) can be calculated from the measured value of the test piece and the mass of the test piece before immersion. By this method, W 168 and W 0 are obtained.
The method of measuring the W 0 in the present embodiment is the same as the measurement method of W 0 in the first embodiment described above.
 なお、本明細書において、「ゲル分率」とは、特に断りのない限り、上述の方法で測定されたゲル分率を意味する。 In the present specification, “gel fraction” means a gel fraction measured by the above method unless otherwise specified.
 Wを求める対象のフィルム状接着剤を40℃で保存するときの条件は、上述のTを求める場合と同じである。 The conditions for storing the target film-like adhesive for obtaining W t at 40 ° C. are the same as those for obtaining T t described above.
 Wの測定対象であるフィルム状接着剤を40℃で保存するときは、このフィルム状接着剤の作製直後から、保存を開始することが好ましい。 When saving a W t measured in the film-like adhesive 40 ° C. from immediately after the production of the film-like adhesive, it is preferable to start saving.
 RW168は、下記式(i)に従って算出できる。
 RW168(%)=W168/W×100 (i)
RW 168 can be calculated according to the following formula (i).
RW 168 (%) = W 168 / W 0 × 100 (i)
 第2実施形態のフィルム状接着剤は、RW168が200%以下であることを必須の構成とし、かつΔT168が10℃未満でなくてもよい点以外は、上述の第1実施形態のフィルム状接着剤と同じである。 The film-like adhesive of the second embodiment has the essential constitution that RW 168 is 200% or less, and the film of the first embodiment described above except that ΔT 168 does not have to be less than 10 ° C. It is the same as the adhesive.
 例えば、第2実施形態のフィルム状接着剤は、第1実施形態のフィルム状接着剤と同様に、硬化性を有するものであり、熱硬化性を有するものが好ましく、感圧接着性を有するものが好ましく、熱硬化性及び感圧接着性をともに有していてもよい。第2実施形態のフィルム状接着剤も、硬化によって最終的には耐衝撃性が高い硬化物となり、この硬化物は、厳しい高温・高湿度条件下においても十分な接着特性を保持し得る。
 また、第2実施形態のフィルム状接着剤は、第1実施形態のフィルム状接着剤と同様に、1層(単層)からなるものでもよいし、2層以上の複数層からなるものでもよい。
 また、第2実施形態のフィルム状接着剤の厚さは、第1実施形態のフィルム状接着剤の厚さと同じである。
 また、第2実施形態のフィルム状接着剤は、第1実施形態のフィルム状接着剤の場合と同様の方法で製造できる。
For example, the film-like adhesive according to the second embodiment has curability like the film-like adhesive according to the first embodiment, and preferably has thermosetting, and has pressure-sensitive adhesiveness. Is preferable, and may have both thermosetting and pressure-sensitive adhesive properties. The film adhesive of the second embodiment also becomes a cured product having high impact resistance by curing, and this cured product can maintain sufficient adhesive properties even under severe high temperature and high humidity conditions.
Moreover, the film adhesive of 2nd Embodiment may consist of 1 layer (single layer) similarly to the film adhesive of 1st Embodiment, and may consist of two or more layers. .
Moreover, the thickness of the film adhesive of 2nd Embodiment is the same as the thickness of the film adhesive of 1st Embodiment.
Moreover, the film adhesive of 2nd Embodiment can be manufactured by the method similar to the case of the film adhesive of 1st Embodiment.
 第2実施形態のフィルム状接着剤のWやW168等のWと、RW168と(以下、これらを包括して、「W等」と称することがある)は、いずれも、例えば、フィルム状接着剤の含有成分の種類及び量等を調節することで、適宜調節できる。例えば、フィルム状接着剤の含有成分である、後述する重合体成分(a)における構成単位の種類及びその含有比率、エポキシ樹脂(b1)の構成成分、熱硬化剤(b2)の立体構造、硬化促進剤(c)の反応性、並びに充填材(d)の平均粒子径等を調節することで、上述のW等を適宜調節できる。ただし、これらは、上述のW等の調節方法の一例に過ぎない。 In the film-like adhesive of the second embodiment, W t such as W 0 and W 168 and RW 168 (hereinafter, these may be collectively referred to as “W 0 etc.”) It can be adjusted as appropriate by adjusting the type and amount of the components contained in the film adhesive. For example, the component of the film-like adhesive, which is a component of the polymer component (a) described later, and the content ratio thereof, the component of the epoxy resin (b1), the three-dimensional structure of the thermosetting agent (b2), and curing By adjusting the reactivity of the accelerator (c), the average particle size of the filler (d), and the like, the above-described W 0 and the like can be appropriately adjusted. However, these are only examples of adjusting methods such as the above-described W 0 .
<<第3実施形態>>
 本発明の第3実施形態に係るフィルム状接着剤は、フィルム状接着剤を40℃で保存し、保存前後の前記フィルム状接着剤について、JIS K7161:1994に準拠して破断伸度を測定したとき、保存時間が168時間の場合の前記破断伸度F168と、保存前の前記破断伸度Fと、から求められる、保存時間が168時間の場合の前記破断伸度の低下率RF168が、30%未満であり、前記フィルム状接着剤を40℃で保存する前の前記フィルム状接着剤のゲル分率Wが、15%以下となる。
 別の側面として、本発明の第3実施形態に係るフィルム状接着剤は、以下の特性を有する:
(I’’)前記フィルム状接着剤の40℃で168時間保存後のJIS K7161:1994に準拠して測定した破断伸度をF168とし、前記フィルム状接着剤の前記保存前のJIS K7161:1994に準拠して測定した破断伸度をFとしたとき、前記F168と前記Fとから求められる破断伸度の低下率RF168が30%未満であり、かつ
(II’’)前記フィルム状接着剤を40℃で保存する前の前記フィルム状接着剤のゲル分率をWとしたとき、前記Wが15%以下である。
<< Third Embodiment >>
In the film-like adhesive according to the third embodiment of the present invention, the film-like adhesive was stored at 40 ° C., and the elongation at break was measured according to JIS K7161: 1994 for the film-like adhesive before and after storage. When the storage time is 168 hours, the breaking elongation F 168 when the storage time is 168 hours, and the breaking elongation F 0 before the storage, the decrease rate RF 168 of the breaking elongation when the storage time is 168 hours However, it is less than 30%, and the gel fraction W 0 of the film adhesive before storing the film adhesive at 40 ° C. is 15% or less.
As another aspect, the film adhesive according to the third embodiment of the present invention has the following characteristics:
(I '') JIS after storage the film-like 168 hours at 40 ° C. of the adhesive K7161: elongation at break, determined in accordance with the 1994 and F 168, before the storage of the film-like adhesive JIS K7161: When the elongation at break measured in accordance with 1994 is F 0 , the decrease rate RF 168 of elongation at break obtained from F 168 and F 0 is less than 30%, and (II ″) When the gel fraction of the film adhesive before storing the film adhesive at 40 ° C. is defined as W 0 , the W 0 is 15% or less.
 第3実施形態のフィルム状接着剤は、このようにRF168が小さく、40℃で168時間保存した場合であっても、破断伸度の変化が抑制されており、保存安定性が高い。このような条件を満たすフィルム状接着剤は、このような保存条件に限らず、通常適用される保存条件全般で、保存安定性が高い。そして、このようなフィルム状接着剤を用いることで、信頼性が高い半導体パッケージを製造できる。
 また、第3実施形態のフィルム状接着剤はWが小さく、その保存の有無によらず、信頼性が高い半導体パッケージの製造を可能とする。
As described above, the film-like adhesive of the third embodiment has a small RF 168 , and even when stored at 40 ° C. for 168 hours, the change in elongation at break is suppressed and the storage stability is high. A film-like adhesive satisfying such conditions has high storage stability not only in such storage conditions but also in general storage conditions generally applied. And by using such a film adhesive, a highly reliable semiconductor package can be manufactured.
In addition, the film-like adhesive of the third embodiment has a small W 0 , and enables production of a highly reliable semiconductor package regardless of whether or not it is stored.
 第3実施形態のフィルム状接着剤において、RF168は、上記のとおり30%未満であり、29.5%以下であることが好ましく、28%以下であることがより好ましく、26%以下であることがさらに好ましく、24%以下であることが特に好ましい。 In the film-like adhesive of the third embodiment, RF 168 is less than 30% as described above, preferably 29.5% or less, more preferably 28% or less, and 26% or less. More preferably, it is particularly preferably 24% or less.
 第3実施形態のフィルム状接着剤において、RF168の下限値は、特に限定されないが、通常は0%である。すなわち、第3実施形態のフィルム状接着剤において、RF168は、0%以上であることが好ましく、例えば、5%以上であってもよい。 In the film-like adhesive of the third embodiment, the lower limit value of RF 168 is not particularly limited, but is usually 0%. That is, in the film-like adhesive according to the third embodiment, RF 168 is preferably 0% or more, and may be, for example, 5% or more.
 第3実施形態のフィルム状接着剤において、RF168は、上述の好ましい下限値及び上限値を任意に組み合わせて設定される範囲内に、適宜調節できる。例えば、一実施形態において、RF168は、好ましくは0%以上30%未満、より好ましくは0~29.5%、さらに好ましくは0~28%、特に好ましくは0~26%、最も好ましくは0~24%である。また、また別の側面として、RF168は、好ましくは5%以上30%未満、より好ましくは5~29.5%、さらに好ましくは5~28%、特に好ましくは5~26%、最も好ましくは5~24%である。さらに別の側面として、RF168は、0~23%であってもよく、5~23%であってもよい。ただし、これらは、RF168の一例である。 In the film-like adhesive of the third embodiment, RF 168 can be appropriately adjusted within a range set by arbitrarily combining the above-described preferable lower limit value and upper limit value. For example, in one embodiment, RF 168 is preferably 0% or more and less than 30%, more preferably 0 to 29.5%, even more preferably 0 to 28%, particularly preferably 0 to 26%, most preferably 0. ~ 24%. As another aspect, RF 168 is preferably 5% or more and less than 30%, more preferably 5 to 29.5%, still more preferably 5 to 28%, particularly preferably 5 to 26%, most preferably 5 to 24%. As yet another aspect, RF 168 may be 0-23% or 5-23%. However, these are examples of RF 168 .
 第3実施形態のフィルム状接着剤において、Fは、特に限定されないが、550~950%であることが好ましく、600~900%であることがより好ましく、650~850%であることが特に好ましい。別の側面として、Fは700~800%であってもよい。Fが前記上限値以下であることで、フィルム状接着剤とその貼付対象物との間に空隙部が生じ難くなり、貼付対象物に対する埋め込み性がより向上する。その結果、得られる半導体パッケージの信頼性がより高くなる。Fが前記下限値以上であることで、フィルム状接着剤の取り扱い性がより向上する。 In the film adhesive of the third embodiment, F 0 is not particularly limited, but is preferably 550 to 950%, more preferably 600 to 900%, and particularly preferably 650 to 850%. preferable. As another aspect, F 0 may be 700 to 800%. When F 0 is equal to or less than the upper limit value, it is difficult for a void portion to be formed between the film adhesive and the pasting object, and the embedding property to the pasting object is further improved. As a result, the reliability of the obtained semiconductor package becomes higher. By F 0 is equal to or more than the lower limit, the handling properties of the film-like adhesive is further improved.
 第3実施形態のフィルム状接着剤において、F168は、特に限定されないが、550~850%であることが好ましく、550~800%であることがより好ましく、550~750%であることが特に好ましい。別の側面として、F168は560~700%であってもよい。F168が前記上限値以下であることで、フィルム状接着剤とその貼付対象物との間に空隙部が生じ難くなり、貼付対象物に対する埋め込み性がより向上する。その結果、得られる半導体パッケージの信頼性がより高くなる。F168が前記下限値以上であることで、フィルム状接着剤の取り扱い性がより向上する。 In the film adhesive of the third embodiment, F 168 is not particularly limited, but is preferably 550 to 850%, more preferably 550 to 800%, and particularly preferably 550 to 750%. preferable. In another aspect, F 168 may be 560-700%. When F 168 is equal to or less than the upper limit value, it is difficult for a void portion to be generated between the film-like adhesive and the sticking target, and the embedding property to the sticking target is further improved. As a result, the reliability of the obtained semiconductor package becomes higher. The handling property of a film adhesive improves more because F168 is more than the said lower limit.
 本実施形態においては、40℃での保存時間がt時間(tは0以上の数である。)であるフィルム状接着剤について、破断伸度Fは、JIS K7161:1994に準拠して測定できる。例えば、F168及びFも、JIS K7161:1994に準拠して測定できる。 In the present embodiment, for a film adhesive having a storage time at 40 ° C. of t hours (t is a number of 0 or more), the elongation at break F t is measured according to JIS K7161: 1994. it can. For example, F 168 and F 0 can also be measured according to JIS K7161: 1994.
 なお、本明細書において、「破断伸度」とは、特に断りのない限り、JIS K7161:1994(ISO 527-1:1993)に準拠して測定された破断伸度を意味する。 In this specification, “breaking elongation” means the breaking elongation measured in accordance with JIS K7161: 1994 (ISO 527-1: 1993) unless otherwise specified.
 Fの測定対象であるフィルム状接着剤を40℃で保存するときの条件は、上述のTを求める場合と同じである。 The conditions for storing the film-like adhesive, which is the measurement target of F t , at 40 ° C. are the same as those for obtaining T t described above.
 Fを求める対象のフィルム状接着剤を40℃で保存するときは、このフィルム状接着剤の作製直後から、保存を開始することが好ましい。
 1つの側面として、40℃での保存時間がt時間(tは0以上の数である。)であるフィルム状接着剤の破断伸度Fは、作成直後のフィルム状接着剤を空気雰囲気下の暗所において、40℃でt時間静置保存し、次いで直ちにJIS K7161:1994に準拠して試験片を作製し、この試験片について破断伸度を測定することにより得られる。
 また、1つの側面として、破断伸度Fは、JIS K7161:1994に準拠して、作成直後のフィルム状接着剤から直ちに試験片を作製し、この作製直後の試験片について破断伸度を測定することにより得られる。
When storing the film adhesive for which Ft is to be determined at 40 ° C., it is preferable to start the storage immediately after the production of the film adhesive.
As one aspect, the elongation at break F t of a film-like adhesive having a storage time at 40 ° C. of t hours (t is a number of 0 or more) is that the film-like adhesive immediately after production is subjected to an air atmosphere. In a dark place, the sample is stored at 40 ° C. for t hours, and then a test piece is immediately prepared according to JIS K7161: 1994, and the elongation at break of the test piece is measured.
Moreover, as one aspect, the breaking elongation F 0 is a JIS K7161: 1994, immediately after preparing a test piece from a film adhesive immediately after the production, measuring the breaking elongation of the test piece immediately after the production Can be obtained.
 RF168は、下記式(ii)に従って算出できる。
 RF168(%)=(F-F168)/F×100 (ii)
RF 168 can be calculated according to the following equation (ii).
RF 168 (%) = (F 0 -F 168 ) / F 0 × 100 (ii)
 第3実施形態のフィルム状接着剤は、上述のように、RF168が30%未満であることを必須の構成とし、かつΔT168が10℃未満でなくてもよい点以外は、上述の第1実施形態のフィルム状接着剤と同じである。 As described above, the film-like adhesive according to the third embodiment has an essential configuration that RF 168 is less than 30%, and ΔT 168 does not have to be less than 10 ° C. This is the same as the film adhesive of one embodiment.
 例えば、第3実施形態のフィルム状接着剤は、第1実施形態のフィルム状接着剤と同様に、硬化性を有するものであり、熱硬化性を有するものが好ましく、感圧接着性を有するものが好ましく、熱硬化性及び感圧接着性をともに有していてもよい。第3実施形態のフィルム状接着剤も、硬化によって最終的には耐衝撃性が高い硬化物となり、この硬化物は、厳しい高温・高湿度条件下においても十分な接着特性を保持し得る。
 また、第3実施形態のフィルム状接着剤は、第1実施形態のフィルム状接着剤と同様に、1層(単層)からなるものでもよいし、2層以上の複数層からなるものでもよい。
 また、第3実施形態のフィルム状接着剤の厚さは、第1実施形態のフィルム状接着剤の厚さと同じである。
 また、第3実施形態のフィルム状接着剤のWは、第1実施形態のフィルム状接着剤のWと同じである。
 また、第3実施形態のフィルム状接着剤は、第1実施形態のフィルム状接着剤の場合と同様の方法で製造できる。
For example, the film-like adhesive of the third embodiment has curability like the film-like adhesive of the first embodiment, and preferably has thermosetting, and has pressure-sensitive adhesiveness. Is preferable, and may have both thermosetting and pressure-sensitive adhesive properties. The film adhesive of the third embodiment also becomes a cured product having high impact resistance by curing, and this cured product can maintain sufficient adhesive properties even under severe high temperature and high humidity conditions.
Moreover, the film adhesive of 3rd Embodiment may consist of 1 layer (single layer) similarly to the film adhesive of 1st Embodiment, and may consist of two or more layers. .
Moreover, the thickness of the film adhesive of 3rd Embodiment is the same as the thickness of the film adhesive of 1st Embodiment.
Further, W 0 of the film-like adhesive of the third embodiment is the same as W 0 of the film-like adhesive of the first embodiment.
Moreover, the film adhesive of 3rd Embodiment can be manufactured by the method similar to the case of the film adhesive of 1st Embodiment.
 第3実施形態のフィルム状接着剤のFやF168等のFと、RF168と、Wと(以下、これらを包括して、「F等」と称することがある)は、いずれも、例えば、フィルム状接着剤の含有成分の種類及び量等を調節することで、適宜調節できる。例えば、フィルム状接着剤の含有成分である、後述する重合体成分(a)における構成単位の種類及びその含有比率、エポキシ樹脂(b1)の構成成分、熱硬化剤(b2)の立体構造、硬化促進剤(c)の反応性、並びに充填材(d)の平均粒子径等を調節することで、上述のF等を適宜調節できる。ただし、これらは、上述のF等の調節方法の一例に過ぎない。 A third embodiment of a film-like adhesive such as F 0 and F 168 F t, the RF 168, W 0 (hereinafter, these are generic, may be referred to as "F 0, etc.") are Any of these can be adjusted as appropriate by adjusting, for example, the types and amounts of the components of the film adhesive. For example, the component of the film-like adhesive, which is a component of the polymer component (a) described later, and the content ratio thereof, the component of the epoxy resin (b1), the three-dimensional structure of the thermosetting agent (b2), and curing By adjusting the reactivity of the accelerator (c), the average particle size of the filler (d), and the like, the above-described F 0 and the like can be appropriately adjusted. However, these are only examples of the adjusting method such as F 0 described above.
 本発明のフィルム状接着剤は、上述の第1実施形態、第2実施形態及び第3実施形態のいずれか2以上(2又は3)の実施形態の特性をともに有していてもよい。
 すなわち、前記フィルム状接着剤の一実施形態としては、例えば、ΔT168が10℃未満であり、かつ、RW168が200%以下であり、かつ、Wが15%以下であるものが挙げられる。
 また、前記フィルム状接着剤の一実施形態としては、例えば、ΔT168が10℃未満であり、かつ、Wが15%以下であり、かつ、RF168が30%未満であるものが挙げられる。
 また、前記フィルム状接着剤の一実施形態としては、例えば、RW168が200%以下であり、かつ、Wが15%以下であり、かつ、RF168が30%未満であるものが挙げられる。
 また、前記フィルム状接着剤の一実施形態としては、例えば、ΔT168が10℃未満であり、かつ、RW168が200%以下であり、かつ、Wが15%以下であり、かつ、RF168が30%未満であるものが挙げられる。
 これらフィルム状接着剤において、T、T168、ΔT168、W、W168、RW168、F、F168及びRF168は、すべて、先に説明したとおりのものである。
The film adhesive of the present invention may have both of the characteristics of the above-described first embodiment, second embodiment, and third embodiment in two or more (2 or 3) embodiments.
That is, as one embodiment of the film adhesive, for example, ΔT 168 is less than 10 ° C., RW 168 is 200% or less, and W 0 is 15% or less. .
Moreover, as one embodiment of the film adhesive, for example, ΔT 168 is less than 10 ° C., W 0 is 15% or less, and RF 168 is less than 30%. .
Moreover, as one embodiment of the film adhesive, for example, RW 168 is 200% or less, W 0 is 15% or less, and RF 168 is less than 30%. .
Further, as one embodiment of the film adhesive, for example, ΔT 168 is less than 10 ° C., RW 168 is 200% or less, W 0 is 15% or less, and RF 168 is less than 30%.
In these film adhesives, T 0 , T 168 , ΔT 168 , W 0 , W 168 , RW 168 , F 0 , F 168 and RF 168 are all as described above.
 図1は、本発明の一実施形態に係るフィルム状接着剤を模式的に示す断面図である。なお、以下の説明で用いる図は、本発明の特徴を分かり易くするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率等が実際と同じであるとは限らない。 FIG. 1 is a cross-sectional view schematically showing a film adhesive according to an embodiment of the present invention. In addition, in order to make the features of the present invention easier to understand, the drawings used in the following description may show the main portions in an enlarged manner for convenience, and the dimensional ratios of the respective components are the same as the actual ones. Not necessarily.
 ここに示すフィルム状接着剤13は、その一方の面(本明細書においては、「第1面」と称することがある)13a上に第1剥離フィルム151を備え、前記第1面13aとは反対側の他方の面(本明細書においては、「第2面」と称することがある)13b上に第2剥離フィルム152を備えている。
 このようなフィルム状接着剤13は、例えば、ロール状として保管するのに好適である。
The film-like adhesive 13 shown here includes a first release film 151 on one side (sometimes referred to as a “first side” in this specification) 13a, and the first side 13a is defined as: A second release film 152 is provided on the other surface (which may be referred to as “second surface” in this specification) 13b on the opposite side.
Such a film adhesive 13 is suitable for storing as a roll, for example.
 フィルム状接着剤13は、上述の第1実施形態、第2実施形態及び第3実施形態のいずれか1又は2以上の実施形態の特性を有する。
 フィルム状接着剤13は、後述する接着剤組成物から形成できる。
The film adhesive 13 has the characteristics of one or more of the first embodiment, the second embodiment, and the third embodiment described above.
The film adhesive 13 can be formed from an adhesive composition to be described later.
 第1剥離フィルム151及び第2剥離フィルム152は、いずれも公知のものでよい。
 第1剥離フィルム151及び第2剥離フィルム152は、互いに同じものであってもよいし、例えば、フィルム状接着剤13から剥離させるときに必要な剥離力が互いに異なるなど、互いに異なるものであってもよい。
Both the first release film 151 and the second release film 152 may be known ones.
The first release film 151 and the second release film 152 may be the same as each other, and are different from each other, for example, different peeling forces are required when peeling from the film adhesive 13. Also good.
 図1に示すフィルム状接着剤13は、第1剥離フィルム151及び第2剥離フィルム152のいずれか一方が取り除かれ、生じた露出面に、半導体ウエハ(図示略)の裏面が貼付される。そして、第1剥離フィルム151及び第2剥離フィルム152の残りの他方が取り除かれ、生じた露出面が、後述する支持シートの貼付面となる。 1, one of the first release film 151 and the second release film 152 is removed, and the back surface of the semiconductor wafer (not shown) is attached to the resulting exposed surface. And the remaining other of the 1st peeling film 151 and the 2nd peeling film 152 is removed, and the produced exposed surface turns into the sticking surface of the support sheet mentioned later.
<<接着剤組成物>>
 好ましい接着剤組成物としては、熱硬化性の接着剤組成物が挙げられる。
 熱硬化性の接着剤組成物としては、例えば、重合体成分(a)及びエポキシ系熱硬化性樹脂(b)を含有するものが挙げられる。以下、各成分について説明する。
<< Adhesive composition >>
A preferable adhesive composition includes a thermosetting adhesive composition.
As a thermosetting adhesive composition, what contains a polymer component (a) and an epoxy-type thermosetting resin (b) is mentioned, for example. Hereinafter, each component will be described.
(重合体成分(a))
 重合体成分(a)は、重合性化合物が重合反応して形成されたとみなせる成分であり、フィルム状接着剤に造膜性や可撓性等を付与すると共に、半導体チップ等の接着対象への接着性(貼付性)を向上させるための高分子成分である。また、重合体成分(a)は、後述するエポキシ樹脂(b1)及び熱硬化剤(b2)に該当しない成分でもある。すなわち、重合体成分(a)は、後述するエポキシ樹脂(b1)及び熱硬化剤(b2)に該当する成分を除く。
(Polymer component (a))
The polymer component (a) is a component that can be regarded as formed by polymerization reaction of a polymerizable compound, and imparts film-forming properties, flexibility, etc. to the film adhesive, and is attached to an object to be bonded such as a semiconductor chip. It is a polymer component for improving adhesiveness (sticking property). Moreover, a polymer component (a) is also a component which does not correspond to the epoxy resin (b1) and thermosetting agent (b2) which are mentioned later. That is, the polymer component (a) excludes components corresponding to the epoxy resin (b1) and the thermosetting agent (b2) described later.
 接着剤組成物及びフィルム状接着剤が含有する重合体成分(a)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The polymer component (a) contained in the adhesive composition and the film-like adhesive may be only one kind, or two or more kinds, and when there are two or more kinds, the combination and ratio thereof can be arbitrarily selected. .
 重合体成分(a)としては、例えば、アクリル系樹脂、ポリエステル、ウレタン系樹脂、アクリルウレタン樹脂、シリコーン系樹脂、ゴム系樹脂、フェノキシ樹脂、熱硬化性ポリイミド等が挙げられ、アクリル系樹脂が好ましい。 Examples of the polymer component (a) include acrylic resins, polyesters, urethane resins, acrylic urethane resins, silicone resins, rubber resins, phenoxy resins, and thermosetting polyimides, and acrylic resins are preferable. .
 重合体成分(a)における前記アクリル系樹脂としては、公知のアクリル重合体が挙げられる。
 アクリル系樹脂の重量平均分子量(Mw)は、10000~2000000であることが好ましく、100000~1500000であることがより好ましい。アクリル系樹脂の重量平均分子量がこのような範囲内であることで、フィルム状接着剤と被着体との間の接着力を好ましい範囲に調節することが容易となる。
 一方、アクリル系樹脂の重量平均分子量が前記下限値以上であることで、フィルム状接着剤の形状安定性(保管時の経時安定性)が向上する。また、アクリル系樹脂の重量平均分子量が前記上限値以下であることで、被着体の凹凸面へフィルム状接着剤が追従し易くなり、被着体とフィルム状接着剤との間でボイド等の発生がより抑制される。
 なお、本明細書において、「重量平均分子量」とは、特に断りのない限り、ゲル・パーミエーション・クロマトグラフィー(GPC)法により測定されるポリスチレン換算値である。
As said acrylic resin in a polymer component (a), a well-known acrylic polymer is mentioned.
The weight average molecular weight (Mw) of the acrylic resin is preferably 10,000 to 2,000,000, and more preferably 100,000 to 1500,000. When the weight average molecular weight of the acrylic resin is within such a range, it becomes easy to adjust the adhesive force between the film adhesive and the adherend to a preferable range.
On the other hand, when the weight average molecular weight of the acrylic resin is equal to or more than the lower limit, the shape stability of the film adhesive (time stability during storage) is improved. Moreover, since the weight average molecular weight of the acrylic resin is not more than the above upper limit value, the film adhesive can easily follow the uneven surface of the adherend, and voids or the like between the adherend and the film adhesive. Occurrence is further suppressed.
In the present specification, “weight average molecular weight” is a polystyrene equivalent value measured by gel permeation chromatography (GPC) method unless otherwise specified.
 アクリル系樹脂のガラス転移温度(Tg)は、-60~70℃であることが好ましく、-30~50℃であることがより好ましい。アクリル系樹脂のTgが前記下限値以上であることで、フィルム状接着剤と被着体との間の接着力が抑制されて、ピックアップ時において、フィルム状接着剤付き半導体チップの、後述する支持シートからの引き離しがより容易となる。本明細書において、「フィルム状接着剤付き半導体チップ」とは、「フィルム状接着剤を裏面に備えた半導体チップ」を意味する。アクリル系樹脂のTgが前記上限値以下であることで、フィルム状接着剤と半導体チップとの間の接着力が向上する。 The glass transition temperature (Tg) of the acrylic resin is preferably −60 to 70 ° C., and more preferably −30 to 50 ° C. Since the Tg of the acrylic resin is equal to or higher than the lower limit, the adhesive force between the film adhesive and the adherend is suppressed, and the support described later of the semiconductor chip with the film adhesive during pickup is performed. The separation from the sheet becomes easier. In the present specification, the “semiconductor chip with film adhesive” means “semiconductor chip having a film adhesive on the back surface”. When the Tg of the acrylic resin is equal to or less than the upper limit value, the adhesive force between the film adhesive and the semiconductor chip is improved.
 アクリル系樹脂を構成する前記(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸n-ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル((メタ)アクリル酸ラウリルともいう)、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル((メタ)アクリル酸ミリスチルともいう)、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル((メタ)アクリル酸パルミチルともいう)、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル((メタ)アクリル酸ステアリルともいう)等の、アルキルエステルを構成するアルキル基が、炭素数が1~18の鎖状構造である(メタ)アクリル酸アルキルエステル;
 (メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンタニル等の(メタ)アクリル酸シクロアルキルエステル;
 (メタ)アクリル酸ベンジル等の(メタ)アクリル酸アラルキルエステル;
 (メタ)アクリル酸ジシクロペンテニルエステル等の(メタ)アクリル酸シクロアルケニルエステル;
 (メタ)アクリル酸ジシクロペンテニルオキシエチルエステル等の(メタ)アクリル酸シクロアルケニルオキシアルキルエステル;
 (メタ)アクリル酸イミド;
 (メタ)アクリル酸グリシジル等のグリシジル基含有(メタ)アクリル酸エステル;
 (メタ)アクリル酸ヒドロキシメチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル等の水酸基含有(メタ)アクリル酸エステル;
 (メタ)アクリル酸N-メチルアミノエチル等の置換アミノ基含有(メタ)アクリル酸エステル等が挙げられる。ここで、「置換アミノ基」とは、アミノ基の1個又は2個の水素原子が水素原子以外の基で置換されてなる基を意味する。
Examples of the (meth) acrylic acid ester constituting the acrylic resin include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, (meth ) N-butyl acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, (meth) acrylic Heptyl acid, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, n-octyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate , Undecyl (meth) acrylate, dodecyl (meth) acrylate ((meth) acrylic acid (Also known as uril), tridecyl (meth) acrylate, tetradecyl (meth) acrylate (also referred to as myristyl (meth) acrylate), pentadecyl (meth) acrylate, hexadecyl (meth) acrylate (also known as palmityl (meth) acrylate) The alkyl group constituting the alkyl ester such as heptadecyl (meth) acrylate and octadecyl (meth) acrylate (also referred to as stearyl (meth) acrylate) has a chain structure having 1 to 18 carbon atoms. (Meth) acrylic acid alkyl ester;
(Meth) acrylic acid cycloalkyl esters such as (meth) acrylic acid isobornyl, (meth) acrylic acid dicyclopentanyl;
(Meth) acrylic acid aralkyl esters such as (meth) acrylic acid benzyl;
(Meth) acrylic acid cycloalkenyl esters such as (meth) acrylic acid dicyclopentenyl ester;
(Meth) acrylic acid cycloalkenyloxyalkyl esters such as (meth) acrylic acid dicyclopentenyloxyethyl ester;
(Meth) acrylic imide;
Glycidyl group-containing (meth) acrylic acid ester such as (meth) acrylic acid glycidyl;
Hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, (meta ) Hydroxyl group-containing (meth) acrylic acid esters such as 3-hydroxybutyl acrylate and 4-hydroxybutyl (meth) acrylate;
Examples thereof include substituted amino group-containing (meth) acrylic acid esters such as N-methylaminoethyl (meth) acrylate. Here, the “substituted amino group” means a group formed by replacing one or two hydrogen atoms of an amino group with a group other than a hydrogen atom.
 なお、本明細書において、「(メタ)アクリル酸」とは、「アクリル酸」及び「メタクリル酸」の両方を包含する概念とする。(メタ)アクリル酸と類似の用語についても同様である。 In the present specification, “(meth) acrylic acid” is a concept including both “acrylic acid” and “methacrylic acid”. The same applies to terms similar to (meth) acrylic acid.
 アクリル系樹脂は、例えば、前記(メタ)アクリル酸エステル以外に、(メタ)アクリル酸、イタコン酸、酢酸ビニル、アクリロニトリル、スチレン及びN-メチロールアクリルアミド等から選択される1種又は2種以上のモノマーが共重合してなるものでもよい。 The acrylic resin is, for example, one or more monomers selected from (meth) acrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene, N-methylolacrylamide and the like in addition to the (meth) acrylic ester. May be obtained by copolymerization.
 アクリル系樹脂を構成するモノマーは、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 Only one type of monomer constituting the acrylic resin may be used, or two or more types may be used, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
 アクリル系樹脂は、上述の水酸基以外に、ビニル基、(メタ)アクリロイル基、アミノ基、カルボキシ基、イソシアネート基等の他の化合物と結合可能な官能基を有していてもよい。アクリル系樹脂の水酸基をはじめとするこれら官能基は、後述する架橋剤(f)を介して他の化合物と結合してもよいし、架橋剤(f)を介さずに他の化合物と直接結合していてもよい。アクリル系樹脂が前記官能基により他の化合物と結合することで、フィルム状接着剤を用いて得られたパッケージの信頼性が向上する傾向がある。 The acrylic resin may have a functional group capable of binding to other compounds such as a vinyl group, a (meth) acryloyl group, an amino group, a carboxy group, and an isocyanate group in addition to the above-described hydroxyl group. These functional groups including the hydroxyl group of the acrylic resin may be bonded to other compounds via the crosslinking agent (f) described later, or directly bonded to other compounds not via the crosslinking agent (f). You may do it. When the acrylic resin is bonded to another compound through the functional group, the reliability of the package obtained using the film adhesive tends to be improved.
 アクリル系樹脂において、前記アクリル系樹脂を構成する構成単位の合計含有量(総質量)に対する、グリシジル基含有モノマーから誘導される構成単位の量の割合(含有量)は、15質量%以下であることが好ましく、12質量%以下であることがより好ましく、9質量%以下であることが特に好ましい。前記割合(含有量)が前記上限値以下であることで、フィルム状接着剤の保存安定性がより高くなる。なお、前記グリシジル基含有モノマーとは、例えば、前記グリシジル基含有(メタ)アクリル酸エステル等の、グリシジル基を有するモノマーを意味する。 In the acrylic resin, the ratio (content) of the amount of the structural unit derived from the glycidyl group-containing monomer to the total content (total mass) of the structural units constituting the acrylic resin is 15% by mass or less. It is preferably 12% by mass or less, more preferably 9% by mass or less. When the ratio (content) is equal to or less than the upper limit value, the storage stability of the film adhesive is further increased. In addition, the said glycidyl group containing monomer means the monomer which has glycidyl groups, such as the said glycidyl group containing (meth) acrylic acid ester, for example.
 アクリル系樹脂において、これを構成する構成単位の合計含有量(総質量)に対する、グリシジル基含有モノマーから誘導される構成単位の量の割合(含有量)の下限値は、特に限定されない。
 アクリル系樹脂において、前記割合(グリシジル基含有モノマーから誘導される構成単位の含有量)は、0質量%以上であってもよいし、例えば、2質量%以上であれば、グリシジル基含有モノマーを用いることによる効果が、より明らかに得られる。
In the acrylic resin, the lower limit of the ratio (content) of the amount of the structural unit derived from the glycidyl group-containing monomer to the total content (total mass) of the structural units constituting the acrylic resin is not particularly limited.
In the acrylic resin, the ratio (content of the structural unit derived from the glycidyl group-containing monomer) may be 0% by mass or more. For example, if it is 2% by mass or more, the glycidyl group-containing monomer The effect by using can be obtained more clearly.
 アクリル系樹脂において、これを構成する構成単位の合計含有量(総質量)に対する、グリシジル基含有モノマーから誘導される構成単位の量の割合(含有量)は、上述の好ましい下限値及び上限値を任意に組み合わせて設定される範囲内に、適宜調節できる。例えば、一実施形態において、前記割合は、好ましくは0~15質量%、より好ましくは0~12質量%、特に好ましくは0~9質量%である。別の側面として、前記割合は、好ましくは2~15質量%、より好ましくは2~12質量%、特に好ましくは2~9質量%であり、2~5質量%であってもよい。ただし、これらは、前記割合の一例である。 In the acrylic resin, the ratio (content) of the amount of the structural unit derived from the glycidyl group-containing monomer with respect to the total content (total mass) of the structural units constituting this is the above-described preferred lower limit value and upper limit value. It can adjust suitably within the range set combining arbitrarily. For example, in one embodiment, the ratio is preferably 0 to 15% by mass, more preferably 0 to 12% by mass, and particularly preferably 0 to 9% by mass. As another aspect, the ratio is preferably 2 to 15% by mass, more preferably 2 to 12% by mass, particularly preferably 2 to 9% by mass, and may be 2 to 5% by mass. However, these are examples of the ratio.
 本発明においては、重合体成分(a)として、アクリル系樹脂以外の熱可塑性樹脂(以下、単に「熱可塑性樹脂」と略記することがある)を、アクリル系樹脂を用いずに単独で用いてもよいし、アクリル系樹脂と併用してもよい。前記熱可塑性樹脂を用いることで、ピックアップ時において、フィルム状接着剤付き半導体チップの、後述する支持シートからの引き離しがより容易となったり、被着体の凹凸面へフィルム状接着剤が追従し易くなり、被着体とフィルム状接着剤との間でボイド等の発生がより抑制されることがある。 In the present invention, as the polymer component (a), a thermoplastic resin other than an acrylic resin (hereinafter sometimes simply referred to as “thermoplastic resin”) is used alone without using an acrylic resin. Alternatively, it may be used in combination with an acrylic resin. By using the thermoplastic resin, at the time of pick-up, the semiconductor chip with the film adhesive can be easily separated from the support sheet described later, or the film adhesive follows the uneven surface of the adherend. It becomes easy and generation | occurrence | production of a void etc. may be suppressed more between a to-be-adhered body and a film adhesive.
 前記熱可塑性樹脂の重量平均分子量は1000~100000であることが好ましく、3000~80000であることがより好ましい。 The weight average molecular weight of the thermoplastic resin is preferably 1000 to 100,000, more preferably 3000 to 80,000.
 前記熱可塑性樹脂のガラス転移温度(Tg)は、-30~150℃であることが好ましく、-20~120℃であることがより好ましい。 The glass transition temperature (Tg) of the thermoplastic resin is preferably −30 to 150 ° C., and more preferably −20 to 120 ° C.
 前記熱可塑性樹脂としては、例えば、ポリエステル、ポリウレタン、フェノキシ樹脂、ポリブテン、ポリブタジエン、ポリスチレン等が挙げられる。 Examples of the thermoplastic resin include polyester, polyurethane, phenoxy resin, polybutene, polybutadiene, and polystyrene.
 接着剤組成物及びフィルム状接着剤が含有する前記熱可塑性樹脂は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 1 type may be sufficient as the said thermoplastic resin which an adhesive composition and a film adhesive contain, and when it is 2 or more types, those combinations and ratios can be selected arbitrarily.
 接着剤組成物において、溶媒以外の全ての成分の総含有量(総質量)に対する重合体成分(a)の含有量の割合(すなわち、フィルム状接着剤の重合体成分(a)の含有量)は、重合体成分(a)の種類によらず、5~20質量%であることが好ましく、6~16質量%であることがより好ましく、7~12質量%等であってもよい。 In the adhesive composition, the ratio of the content of the polymer component (a) to the total content (total mass) of all components other than the solvent (that is, the content of the polymer component (a) of the film adhesive) Is preferably 5 to 20% by mass, more preferably 6 to 16% by mass, and may be 7 to 12% by mass, regardless of the type of the polymer component (a).
 接着剤組成物及びフィルム状接着剤において、重合体成分(a)の総含有量(総質量)に対する、アクリル系樹脂の含有量の割合は、80~100質量%であることが好ましく、85~100質量%であることがより好ましく、90~100質量%であることがさらに好ましく、例えば、95~100質量%であってもよい。前記含有量の割合が前記下限値以上であることで、フィルム状接着剤の保存安定性がより高くなる。 In the adhesive composition and the film adhesive, the ratio of the acrylic resin content to the total content (total mass) of the polymer component (a) is preferably 80 to 100% by mass, 85 to The amount is more preferably 100% by mass, still more preferably 90 to 100% by mass, for example, 95 to 100% by mass. The storage stability of a film adhesive becomes higher because the ratio of the said content is more than the said lower limit.
(エポキシ系熱硬化性樹脂(b))
 エポキシ系熱硬化性樹脂(b)は、エポキシ樹脂(b1)及び熱硬化剤(b2)からなる。
 接着剤組成物及びフィルム状接着剤が含有するエポキシ系熱硬化性樹脂(b)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
(Epoxy thermosetting resin (b))
The epoxy thermosetting resin (b) is composed of an epoxy resin (b1) and a thermosetting agent (b2).
The epoxy-based thermosetting resin (b) contained in the adhesive composition and the film adhesive may be only one type, two or more types, and when there are two or more types, the combination and ratio thereof are arbitrary. Can be selected.
・エポキシ樹脂(b1)
 エポキシ樹脂(b1)としては、公知のものが挙げられ、例えば、多官能系エポキシ樹脂、ビフェニル化合物、ビスフェノールAジグリシジルエーテル及びその水添物、オルソクレゾールノボラックエポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェニレン骨格型エポキシ樹脂等、2官能以上のエポキシ化合物が挙げられる。
・ Epoxy resin (b1)
Examples of the epoxy resin (b1) include known ones such as polyfunctional epoxy resins, biphenyl compounds, bisphenol A diglycidyl ether and hydrogenated products thereof, orthocresol novolac epoxy resins, dicyclopentadiene type epoxy resins, Biphenyl type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, phenylene skeleton type epoxy resins, and the like, and bifunctional or higher functional epoxy compounds are listed.
 エポキシ樹脂(b1)としては、不飽和炭化水素基を有するエポキシ樹脂を用いてもよい。不飽和炭化水素基を有するエポキシ樹脂は、不飽和炭化水素基を有しないエポキシ樹脂よりもアクリル系樹脂との相溶性が高い。そのため、不飽和炭化水素基を有するエポキシ樹脂を用いることで、フィルム状接着剤を用いて得られたパッケージの信頼性が向上する。 As the epoxy resin (b1), an epoxy resin having an unsaturated hydrocarbon group may be used. An epoxy resin having an unsaturated hydrocarbon group is more compatible with an acrylic resin than an epoxy resin having no unsaturated hydrocarbon group. Therefore, the reliability of the package obtained using the film adhesive is improved by using the epoxy resin having an unsaturated hydrocarbon group.
 不飽和炭化水素基を有するエポキシ樹脂としては、例えば、多官能系エポキシ樹脂のエポキシ基の一部が不飽和炭化水素基を有する基に変換されてなる化合物が挙げられる。このような化合物は、例えば、エポキシ基へ(メタ)アクリル酸又はその誘導体を付加反応させることにより得られる。なお、本明細書において「誘導体」とは、特に断りのない限り、元の化合物の少なくとも1個の基がそれ以外の基(置換基)で置換されてなるものを意味する。ここで、「基」とは、複数個の原子が結合してなる原子団だけでなく、1個の原子も包含するものとする。 Examples of the epoxy resin having an unsaturated hydrocarbon group include a compound obtained by converting a part of the epoxy group of a polyfunctional epoxy resin into a group having an unsaturated hydrocarbon group. Such a compound can be obtained, for example, by addition reaction of (meth) acrylic acid or a derivative thereof to an epoxy group. In the present specification, the “derivative” means a compound obtained by substituting at least one group of the original compound with another group (substituent) unless otherwise specified. Here, the “group” includes not only an atomic group formed by bonding a plurality of atoms but also one atom.
 また、不飽和炭化水素基を有するエポキシ樹脂としては、例えば、エポキシ樹脂を構成する芳香環等に、不飽和炭化水素基を有する基が直接結合した化合物等が挙げられる。
 不飽和炭化水素基は、重合性を有する不飽和基であり、その具体的な例としては、エテニル基(ビニル基ともいう)、2-プロペニル基(アリル基ともいう)、(メタ)アクリロイル基、(メタ)アクリルアミド基等が挙げられ、アクリロイル基が好ましい。
Moreover, as an epoxy resin which has an unsaturated hydrocarbon group, the compound etc. which the group which has an unsaturated hydrocarbon group directly couple | bonded with the aromatic ring etc. which comprise an epoxy resin are mentioned, for example.
The unsaturated hydrocarbon group is a polymerizable unsaturated group, and specific examples thereof include an ethenyl group (also referred to as a vinyl group), a 2-propenyl group (also referred to as an allyl group), and a (meth) acryloyl group. , (Meth) acrylamide groups and the like, and an acryloyl group is preferred.
 エポキシ樹脂(b1)の数平均分子量は、特に限定されないが、フィルム状接着剤の硬化性、並びに硬化後のフィルム状接着剤の強度及び耐熱性の点から、300~30000であることが好ましく、400~10000であることがより好ましく、500~3000であることが特に好ましい。
 本明細書において、「数平均分子量」は、特に断らない限り、ゲルパーミエーションクロマトグラフィー(GPC)法によって測定される標準ポリスチレン換算の値で表される数平均分子量を意味する。
 エポキシ樹脂(b1)のエポキシ当量は、100~1000g/eqであることが好ましく、150~800g/eqであることがより好ましい。
 本明細書において、「エポキシ当量」とは1当量のエポキシ基を含むエポキシ化合物のグラム数(g/eq)を意味し、JIS K 7236:2001の方法に従って測定することができる。
The number average molecular weight of the epoxy resin (b1) is not particularly limited, but is preferably 300 to 30000 from the viewpoints of curability of the film adhesive and strength and heat resistance of the cured film adhesive. It is more preferably 400 to 10,000, and particularly preferably 500 to 3000.
In the present specification, the “number average molecular weight” means a number average molecular weight represented by a standard polystyrene equivalent value measured by a gel permeation chromatography (GPC) method unless otherwise specified.
The epoxy equivalent of the epoxy resin (b1) is preferably 100 to 1000 g / eq, and more preferably 150 to 800 g / eq.
In the present specification, “epoxy equivalent” means the number of grams (g / eq) of an epoxy compound containing one equivalent of an epoxy group, and can be measured according to the method of JIS K 7236: 2001.
 接着剤組成物及びフィルム状接着剤が含有するエポキシ樹脂(b1)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 1つの側面として、エポキシ樹脂(b1)としては、ビスフェノールA型エポキシ樹脂、多官能芳香族型(トリフェニレン型)エポキシ樹脂、ビスフェノールF型エポキシ樹脂及びジシクロペンタジエン型エポキシ樹脂からなる群から選択される少なくとも1つが好ましい。
As for the epoxy resin (b1) which an adhesive composition and a film adhesive contain, only 1 type may be sufficient and it may be 2 or more types, and when it is 2 or more types, those combinations and ratios can be selected arbitrarily.
As one aspect, the epoxy resin (b1) is selected from the group consisting of a bisphenol A type epoxy resin, a polyfunctional aromatic type (triphenylene type) epoxy resin, a bisphenol F type epoxy resin, and a dicyclopentadiene type epoxy resin. At least one is preferred.
 エポキシ樹脂(b1)の市販品としては、アクリル樹脂微粒子(微粒子状のアクリル樹脂)を含有するものがあるが、本発明においては、アクリル樹脂微粒子を含有しないエポキシ樹脂(b1)を用いることが好ましい。このようにすることで、例えば、重合体成分(a)として、アクリル樹脂微粒子との相互作用によって、アクリル樹脂微粒子を凝集させ易いものを用いた場合であっても、このようなアクリル樹脂微粒子の凝集が抑制される。これにより、フィルム状接着剤の保存安定性がより高くなる。
 例えば、接着剤組成物において、溶媒以外の全ての成分の総含有量(総質量)に対する、アクリル樹脂微粒子の含有量の割合(すなわち、フィルム状接着剤のアクリル樹脂微粒子の含有量)は、アクリル樹脂微粒子の由来によらず、0~5質量%であることが好ましく、0~3質量%であることがより好ましい。
As a commercially available product of the epoxy resin (b1), there are those containing acrylic resin fine particles (fine particle acrylic resin). In the present invention, it is preferable to use an epoxy resin (b1) that does not contain the acrylic resin fine particles. . In this way, for example, even when the polymer component (a) is a polymer component (a) that is easy to aggregate the acrylic resin fine particles due to the interaction with the acrylic resin fine particles, Aggregation is suppressed. Thereby, the storage stability of a film adhesive becomes higher.
For example, in the adhesive composition, the ratio of the content of acrylic resin fine particles to the total content (total mass) of all components other than the solvent (that is, the content of acrylic resin fine particles in the film adhesive) is acrylic. Regardless of the origin of the resin fine particles, 0 to 5% by mass is preferable, and 0 to 3% by mass is more preferable.
・熱硬化剤(b2)
 熱硬化剤(b2)は、エポキシ樹脂(b1)に対する硬化剤として機能する。
 熱硬化剤(b2)としては、例えば、1分子中にエポキシ基と反応し得る官能基を2個以上有する化合物が挙げられる。前記官能基としては、例えば、フェノール性水酸基、アルコール性水酸基、アミノ基、カルボキシ基、酸基が無水物化された基等が挙げられ、フェノール性水酸基、アミノ基、又は酸基が無水物化された基であることが好ましく、フェノール性水酸基又はアミノ基であることがより好ましい。
・ Thermosetting agent (b2)
The thermosetting agent (b2) functions as a curing agent for the epoxy resin (b1).
As a thermosetting agent (b2), the compound which has 2 or more of functional groups which can react with an epoxy group in 1 molecule is mentioned, for example. Examples of the functional group include a phenolic hydroxyl group, an alcoholic hydroxyl group, an amino group, a carboxy group, a group in which an acid group has been anhydrideized, and the like, and a phenolic hydroxyl group, an amino group, or an acid group has been anhydrideized. It is preferably a group, more preferably a phenolic hydroxyl group or an amino group.
 熱硬化剤(b2)のうち、フェノール性水酸基を有するフェノール系硬化剤としては、例えば、多官能フェノール樹脂、ビフェノール、ノボラック型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、アラルキル型フェノール樹脂等が挙げられる。
 熱硬化剤(b2)のうち、アミノ基を有するアミン系硬化剤としては、例えば、ジシアンジアミド(以下、DICYと略記することがある)等が挙げられる。
Among the thermosetting agents (b2), examples of the phenolic curing agent having a phenolic hydroxyl group include polyfunctional phenol resins, biphenols, novolac type phenol resins, dicyclopentadiene type phenol resins, and aralkyl type phenol resins. .
Among the thermosetting agents (b2), examples of the amine-based curing agent having an amino group include dicyandiamide (hereinafter sometimes abbreviated as DICY).
 熱硬化剤(b2)は、不飽和炭化水素基を有するものでもよい。
 不飽和炭化水素基を有する熱硬化剤(b2)としては、例えば、フェノール樹脂の水酸基の一部が、不飽和炭化水素基を有する基で置換されてなる化合物、フェノール樹脂の芳香環に、不飽和炭化水素基を有する基が直接結合してなる化合物等が挙げられる。
 熱硬化剤(b2)における前記不飽和炭化水素基は、上述の不飽和炭化水素基を有するエポキシ樹脂における不飽和炭化水素基と同様である。
The thermosetting agent (b2) may have an unsaturated hydrocarbon group.
As the thermosetting agent (b2) having an unsaturated hydrocarbon group, for example, a compound in which a part of the hydroxyl group of the phenol resin is substituted with a group having an unsaturated hydrocarbon group, an aromatic ring of the phenol resin, Examples thereof include compounds in which a group having a saturated hydrocarbon group is directly bonded.
The unsaturated hydrocarbon group in the thermosetting agent (b2) is the same as the unsaturated hydrocarbon group in the epoxy resin having the unsaturated hydrocarbon group described above.
 熱硬化剤(b2)としてフェノール系硬化剤を用いる場合には、フィルム状接着剤の接着力を調節することが容易となる点から、熱硬化剤(b2)は軟化点又はガラス転移温度が高いものが好ましい。 In the case of using a phenolic curing agent as the thermosetting agent (b2), the thermosetting agent (b2) has a high softening point or glass transition temperature because it becomes easy to adjust the adhesive force of the film adhesive. Those are preferred.
 熱硬化剤(b2)のうち、例えば、多官能フェノール樹脂、ノボラック型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、アラルキル型フェノール樹脂等の樹脂成分の数平均分子量は、300~30000であることが好ましく、400~10000であることがより好ましく、500~3000であることが特に好ましい。
 熱硬化剤(b2)のうち、例えば、ビフェノール、ジシアンジアミド等の非樹脂成分の分子量は、特に限定されないが、例えば、60~500であることが好ましい。
Of the thermosetting agent (b2), for example, the number average molecular weight of the resin component such as polyfunctional phenolic resin, novolac type phenolic resin, dicyclopentadiene type phenolic resin, aralkyl type phenolic resin is preferably 300 to 30000. 400 to 10,000 is more preferable, and 500 to 3000 is particularly preferable.
Among the thermosetting agents (b2), for example, the molecular weight of non-resin components such as biphenol and dicyandiamide is not particularly limited, but is preferably 60 to 500, for example.
 接着剤組成物及びフィルム状接着剤が含有する熱硬化剤(b2)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 As for the thermosetting agent (b2) which an adhesive composition and a film adhesive contain, only 1 type may be sufficient and 2 or more types may be sufficient, and when it is 2 or more types, those combinations and ratios can be selected arbitrarily. .
 熱硬化剤(b2)は、フェノール樹脂のうち、フェノール性水酸基が結合している炭素原子と隣り合う炭素原子(すなわち、ベンゼン環骨格を構成している炭素原子)に対して、アルキル基等の置換基が結合して、前記フェノール性水酸基の近傍に立体障害を有するもの(本明細書においては、「立体障害型フェノール樹脂」と略記することがある)が好ましい。このような立体障害型フェノール樹脂としては、例えば、o-クレゾール型ノボラック樹脂等が挙げられる。 The thermosetting agent (b2) is an alkyl group or the like with respect to the carbon atom adjacent to the carbon atom to which the phenolic hydroxyl group is bonded (that is, the carbon atom constituting the benzene ring skeleton). Those having a steric hindrance in the vicinity of the phenolic hydroxyl group bonded to a substituent (in this specification, sometimes abbreviated as “sterically hindered phenol resin”) are preferable. Examples of such sterically hindered phenol resins include o-cresol type novolac resins.
 接着剤組成物及びフィルム状接着剤において、熱硬化剤(b2)の含有量は、エポキシ樹脂(b1)の含有量100質量部に対して、10~200質量部であることが好ましく、15~160質量部であることがより好ましく、20~120質量部であることがさらに好ましく、25~80質量部であることが特に好ましい。熱硬化剤(b2)の前記含有量が前記下限値以上であることで、フィルム状接着剤の硬化がより進行し易くなる。熱硬化剤(b2)の前記含有量が前記上限値以下であることで、フィルム状接着剤の吸湿率が低減されて、フィルム状接着剤を用いて得られたパッケージの信頼性がより向上する。 In the adhesive composition and the film adhesive, the content of the thermosetting agent (b2) is preferably 10 to 200 parts by mass with respect to 100 parts by mass of the epoxy resin (b1), 15 to The amount is more preferably 160 parts by mass, further preferably 20 to 120 parts by mass, and particularly preferably 25 to 80 parts by mass. When the content of the thermosetting agent (b2) is greater than or equal to the lower limit value, the curing of the film adhesive is more likely to proceed. When the content of the thermosetting agent (b2) is equal to or lower than the upper limit, the moisture absorption rate of the film adhesive is reduced, and the reliability of the package obtained using the film adhesive is further improved. .
 接着剤組成物及びフィルム状接着剤において、エポキシ系熱硬化性樹脂(b)の含有量(エポキシ樹脂(b1)及び熱硬化剤(b2)の総含有量)は、重合体成分(a)の含有量100質量部に対して、400~1200質量部であることが好ましく、500~1100質量部であることがより好ましく、600~1000質量部であることがさらに好ましく、例えば、600~900質量部、及び800~1000質量部のいずれかであってもよい。エポキシ系熱硬化性樹脂(b)の前記含有量がこのような範囲であることで、フィルム状接着剤と、後述する支持シートと、の間の接着力を調節することがより容易となる。 In the adhesive composition and the film adhesive, the content of the epoxy thermosetting resin (b) (total content of the epoxy resin (b1) and the thermosetting agent (b2)) is the same as that of the polymer component (a). The content is preferably 400 to 1200 parts by mass, more preferably 500 to 1100 parts by mass, still more preferably 600 to 1000 parts by mass, for example, 600 to 900 parts by mass with respect to the content of 100 parts by mass. Part and 800 to 1000 parts by mass. When the content of the epoxy thermosetting resin (b) is in such a range, it becomes easier to adjust the adhesive force between the film adhesive and a support sheet described later.
 接着剤組成物及びフィルム状接着剤において、熱硬化剤(b2)の総含有量(総質量)に対する、前記立体障害型フェノール樹脂の含有量の割合は、80~100質量%であることが好ましく、85~100質量%であることがより好ましく、90~100質量%であることがさらに好ましく、例えば、95~100質量%であってもよい。前記含有量の割合が前記下限値以上であることで、フィルム状接着剤の保存安定性がより高くなる。
 そして、フィルム状接着剤の保存安定性がさらに高くなる点から、接着剤組成物及びフィルム状接着剤において、熱硬化剤(b2)の総含有量に対する、o-クレゾール型ノボラック樹脂の含有量の割合は、80~100質量%であることが好ましく、85~100質量%であることがより好ましく、90~100質量%であることがさらに好ましく、例えば、95~100質量%であってもよい。
In the adhesive composition and the film adhesive, the ratio of the content of the sterically hindered phenol resin to the total content (total mass) of the thermosetting agent (b2) is preferably 80 to 100% by mass. 85 to 100% by mass, more preferably 90 to 100% by mass, for example, 95 to 100% by mass. The storage stability of a film adhesive becomes higher because the ratio of the said content is more than the said lower limit.
From the point that the storage stability of the film adhesive is further increased, the content of the o-cresol type novolak resin relative to the total content of the thermosetting agent (b2) in the adhesive composition and the film adhesive is The ratio is preferably 80 to 100% by mass, more preferably 85 to 100% by mass, further preferably 90 to 100% by mass, and may be, for example, 95 to 100% by mass. .
 前記フィルム状接着剤は、その各種物性を改良するために、重合体成分(a)及びエポキシ系熱硬化性樹脂(b)以外に、さらに必要に応じて、これらに該当しない他の成分を含有していてもよい。
 前記フィルム状接着剤が含有する他の成分としては、例えば、硬化促進剤(c)、充填材(d)、カップリング剤(e)、架橋剤(f)、エネルギー線硬化性樹脂(g)、光重合開始剤(h)、汎用添加剤(i)等が挙げられる。これらの中でも、好ましい前記他の成分としては、硬化促進剤(c)、充填材(d)、カップリング剤(e)、汎用添加剤(i)が挙げられる。
In order to improve the various physical properties, the film adhesive contains, in addition to the polymer component (a) and the epoxy-based thermosetting resin (b), other components not corresponding to these, if necessary. You may have.
Examples of other components contained in the film adhesive include a curing accelerator (c), a filler (d), a coupling agent (e), a crosslinking agent (f), and an energy ray curable resin (g). , Photopolymerization initiator (h), general-purpose additive (i) and the like. Among these, preferable other components include a curing accelerator (c), a filler (d), a coupling agent (e), and a general-purpose additive (i).
 本発明において、「エネルギー線」とは、電磁波又は荷電粒子線の中でエネルギー量子を有するものを意味し、その例として、紫外線、放射線、電子線等が挙げられる。
 紫外線は、例えば、紫外線源として高圧水銀ランプ、ヒュージョンランプ、キセノンランプ、ブラックライト又はLEDランプ等を用いることで照射できる。電子線は、電子線加速器等によって発生させたものを照射できる。
 本発明において、「エネルギー線硬化性」とは、エネルギー線を照射することにより硬化する性質を意味し、「非エネルギー線硬化性」とは、エネルギー線を照射しても硬化しない性質を意味する。
In the present invention, “energy beam” means an electromagnetic wave or charged particle beam having energy quanta, and examples thereof include ultraviolet rays, radiation, and electron beams.
Ultraviolet rays can be irradiated by using, for example, a high-pressure mercury lamp, a fusion lamp, a xenon lamp, a black light, an LED lamp, or the like as an ultraviolet ray source. The electron beam can be emitted by an electron beam accelerator or the like.
In the present invention, “energy ray curable” means the property of being cured by irradiation with energy rays, and “non-energy ray curable” means the property of not being cured even when irradiated with energy rays. .
(硬化促進剤(c))
 硬化促進剤(c)は、接着剤組成物の硬化速度を調節するための成分である。
 好ましい硬化促進剤(c)としては、例えば、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の第3級アミン;2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等のイミダゾール類(すなわち、少なくとも1個の水素原子が水素原子以外の基で置換されたイミダゾール);トリブチルホスフィン、ジフェニルホスフィン、トリフェニルホスフィン等の有機ホスフィン類(すなわち、少なくとも1個の水素原子が有機基で置換されたホスフィン);テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート等のテトラフェニルボロン塩;前記イミダゾール類をゲスト化合物とする包接化合物等が挙げられる。
(Curing accelerator (c))
The curing accelerator (c) is a component for adjusting the curing rate of the adhesive composition.
Preferred curing accelerators (c) include, for example, tertiary amines such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol; 2-methylimidazole, 2-phenylimidazole Imidazoles such as 2-phenyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole (ie, at least one hydrogen atom is hydrogen Imidazoles substituted with groups other than atoms); organic phosphines such as tributylphosphine, diphenylphosphine, triphenylphosphine (ie, phosphines wherein at least one hydrogen atom is replaced with an organic group); Phosphonium tetraphenylborate, tetraphenyl boron salts such as triphenyl phosphine tetraphenyl borate; clathrate compounds to the imidazoles guest compound.
 接着剤組成物及びフィルム状接着剤が含有する硬化促進剤(c)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The curing accelerator (c) contained in the adhesive composition and the film adhesive may be only one kind, or two or more kinds, and in the case of two or more kinds, the combination and ratio thereof can be arbitrarily selected. .
 硬化促進剤(c)を用いる場合、接着剤組成物及びフィルム状接着剤において、硬化促進剤(c)の含有量は、エポキシ系熱硬化性樹脂(b)の含有量100質量部に対して、0.01~5質量部であることが好ましく、0.1~2質量部であることがより好ましい。硬化促進剤(c)の前記含有量が前記下限値以上であることで、硬化促進剤(c)を用いたことによる効果がより顕著に得られる。硬化促進剤(c)の含有量が前記上限値以下であることで、例えば、高極性の硬化促進剤(c)が、高温・高湿度条件下でフィルム状接着剤中において被着体との接着界面側に移動して偏析することを抑制する効果が高くなり、フィルム状接着剤を用いて得られたパッケージの信頼性がより向上する。 When the curing accelerator (c) is used, the content of the curing accelerator (c) in the adhesive composition and the film adhesive is based on 100 parts by mass of the epoxy thermosetting resin (b). 0.01 to 5 parts by mass is preferable, and 0.1 to 2 parts by mass is more preferable. The effect by using a hardening accelerator (c) is acquired more notably because the said content of a hardening accelerator (c) is more than the said lower limit. When the content of the curing accelerator (c) is not more than the above upper limit value, for example, the highly polar curing accelerator (c) is in contact with the adherend in the film adhesive under high temperature and high humidity conditions. The effect of suppressing segregation by moving to the adhesion interface side is enhanced, and the reliability of the package obtained using the film adhesive is further improved.
 硬化促進剤(c)は、上記の中でも、前記イミダゾール類をゲスト化合物とする包接化合物であることが好ましい。このような硬化促進剤(c)においては、活性成分であるイミダゾール類がホスト化合物によって包接されている。そのため、反応時以外は、イミダゾール類の反応部位が露出していないか、又は、露出の程度が抑制されていると推測される。その結果、フィルム状接着剤の保存中に、硬化促進剤(c)の目的外の反応の進行が抑制されることによって、フィルム状接着剤の保存安定性が、より高くなると推測される。 Among the above, the curing accelerator (c) is preferably an inclusion compound containing the imidazole as a guest compound. In such a curing accelerator (c), an imidazole which is an active ingredient is included by a host compound. Therefore, it is presumed that the reaction site of imidazoles is not exposed or the degree of exposure is suppressed except during the reaction. As a result, it is presumed that the storage stability of the film adhesive is further increased by suppressing the progress of the reaction other than the intended purpose of the curing accelerator (c) during storage of the film adhesive.
 前記包接化合物としては、例えば、イミダゾール類をゲスト化合物とし、カルボン酸をホスト化合物とするものが挙げられる。 Examples of the clathrate compound include those having imidazoles as a guest compound and carboxylic acid as a host compound.
 ホスト化合物である前記カルボン酸は、芳香族カルボン酸であることが好ましい。
 前記芳香族カルボン酸は、単環芳香族カルボン酸及び多環芳香族カルボン酸のいずれであってもよい。
 前記芳香族カルボン酸は、環骨格として芳香族炭化水素環のみを有するカルボン酸、環骨格として芳香族複素環のみを有するカルボン酸、及び、環骨格として芳香族炭化水素環及び芳香族複素環をともに有するカルボン酸のいずれであってもよい。
The carboxylic acid that is a host compound is preferably an aromatic carboxylic acid.
The aromatic carboxylic acid may be either a monocyclic aromatic carboxylic acid or a polycyclic aromatic carboxylic acid.
The aromatic carboxylic acid includes a carboxylic acid having only an aromatic hydrocarbon ring as a ring skeleton, a carboxylic acid having only an aromatic heterocycle as a ring skeleton, and an aromatic hydrocarbon ring and an aromatic heterocycle as a ring skeleton. Any of the carboxylic acids possessed together may be used.
 前記芳香族カルボン酸は、芳香族ヒドロキシカルボン酸であることが好ましい。
 前記芳香族ヒドロキシカルボン酸は、1分子中に水酸基及びカルボキシ基をともに有する芳香族カルボン酸であれば、特に限定されないが、芳香族環骨格に、水酸基及びカルボキシ基がともに結合した構造を有するカルボン酸であることが好ましい。
The aromatic carboxylic acid is preferably an aromatic hydroxycarboxylic acid.
The aromatic hydroxycarboxylic acid is not particularly limited as long as it is an aromatic carboxylic acid having both a hydroxyl group and a carboxy group in one molecule, but is a carboxyl having a structure in which both a hydroxyl group and a carboxy group are bonded to an aromatic ring skeleton. An acid is preferred.
 前記包接化合物で好ましいものとしては、例えば、前記イミダゾール類が2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール(本明細書においては、「2P4MHZ」と略記することがある)であり、前記カルボン酸が5-ヒドロキシイソフタル酸(本明細書においては、「HIPA」と略記することがある)である包接化合物が挙げられ、2分子の2P4MHZと、1分子のHIPAと、で1分子が構成されている包接化合物であることがより好ましい。 Preferable examples of the inclusion compound include, for example, that the imidazole is 2-phenyl-4-methyl-5-hydroxymethylimidazole (in this specification, sometimes abbreviated as “2P4MHZ”), An inclusion compound in which the carboxylic acid is 5-hydroxyisophthalic acid (sometimes abbreviated as “HIPA” in this specification), and 2 molecules of 2P4MHZ and 1 molecule of HIPA More preferably, the clathrate compound is constituted.
 接着剤組成物及びフィルム状接着剤において、硬化促進剤(c)の総含有量(総質量)に対する、前記包接化合物の含有量の割合は、80~100質量%であることが好ましく、85~100質量%であることがより好ましく、90~100質量%であることがさらに好ましく、例えば、95~100質量%であってもよい。前記含有量の割合が前記下限値以上であることで、フィルム状接着剤の保存安定性がより高くなる。
 そして、フィルム状接着剤の保存安定性がさらに高くなる点から、接着剤組成物及びフィルム状接着剤において、硬化促進剤(c)の総含有量に対する、上述の2P4MHZ及びHIPAで構成されている包接化合物の含有量の割合は、80~100質量%であることが好ましく、85~100質量%であることがより好ましく、90~100質量%であることがさらに好ましく、例えば、95~100質量%であってもよい。
In the adhesive composition and the film adhesive, the ratio of the content of the clathrate compound to the total content (total mass) of the curing accelerator (c) is preferably 80 to 100% by mass, 85 The content is more preferably from 100 to 100% by mass, still more preferably from 90 to 100% by mass, for example, from 95 to 100% by mass. The storage stability of a film adhesive becomes higher because the ratio of the said content is more than the said lower limit.
And from the point which the storage stability of a film adhesive becomes still higher, in an adhesive composition and a film adhesive, it is comprised with the above-mentioned 2P4MHZ and HIPA with respect to the total content of a hardening accelerator (c). The content ratio of the clathrate compound is preferably 80 to 100% by mass, more preferably 85 to 100% by mass, further preferably 90 to 100% by mass, for example, 95 to 100%. It may be mass%.
(充填材(d))
 フィルム状接着剤は、充填材(d)を含有することにより、その熱膨張係数の調整が容易となり、この熱膨張係数をフィルム状接着剤の貼付対象物に対して最適化することで、フィルム状接着剤を用いて得られたパッケージの信頼性がより向上する。また、フィルム状接着剤が充填材(d)を含有することにより、硬化後のフィルム状接着剤の吸湿率を低減したり、放熱性を向上させたりすることもできる。
(Filler (d))
By including the filler (d), the film-like adhesive can easily adjust its thermal expansion coefficient, and the film-like adhesive is optimized by optimizing the thermal expansion coefficient for the object to be adhered to the film-like adhesive. The reliability of the package obtained using the adhesive is improved. Moreover, when a film adhesive contains a filler (d), the moisture absorption rate of the film adhesive after hardening can be reduced or heat dissipation can also be improved.
 充填材(d)は、有機充填材及び無機充填材のいずれでもよいが、無機充填材であることが好ましい。
 好ましい無機充填材としては、例えば、シリカ、アルミナ、タルク、炭酸カルシウム、チタンホワイト、ベンガラ、炭化ケイ素、窒化ホウ素等の粉末;これら無機充填材を球形化したビーズ;これら無機充填材の表面改質品;これら無機充填材の単結晶繊維;ガラス繊維等が挙げられる。
 これらの中でも、無機充填材は、シリカ又はアルミナであることが好ましい。
The filler (d) may be either an organic filler or an inorganic filler, but is preferably an inorganic filler.
Preferred inorganic fillers include, for example, powders of silica, alumina, talc, calcium carbonate, titanium white, bengara, silicon carbide, boron nitride, and the like; beads formed by spheroidizing these inorganic fillers; surface modification of these inorganic fillers Products; single crystal fibers of these inorganic fillers; glass fibers and the like.
Among these, the inorganic filler is preferably silica or alumina.
 充填材(d)の平均粒子径は、特に限定されないが、0.01~150μmであることが好ましく、0.1~125μmであることがより好ましく、0.5~100μmであることがさらに好ましく、1~75μmであることが特に好ましい。別の側面として、充填材(d)の平均粒子径は、0,01~0.05μmであってもよい。充填材(d)の平均粒子径がこのような範囲であることで、充填材(d)を用いたことによる効果を十分に得られるとともに、フィルム状接着剤の保存安定性がより高くなる。
 なお、本明細書において「平均粒子径」とは、特に断りのない限り、レーザー回折散乱法によって求められた粒度分布曲線における、積算値50%での粒子径(D50)の値を意味する。
The average particle diameter of the filler (d) is not particularly limited, but is preferably 0.01 to 150 μm, more preferably 0.1 to 125 μm, and further preferably 0.5 to 100 μm. 1 to 75 μm is particularly preferable. As another aspect, the average particle diameter of the filler (d) may be 0.001 to 0.05 μm. When the average particle diameter of the filler (d) is in such a range, the effect of using the filler (d) can be sufficiently obtained, and the storage stability of the film adhesive can be further increased.
In the present specification, “average particle size” means the value of the particle size (D 50 ) at an integrated value of 50% in the particle size distribution curve obtained by the laser diffraction scattering method, unless otherwise specified. .
 接着剤組成物及びフィルム状接着剤が含有する充填材(d)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The filler (d) contained in the adhesive composition and the film-like adhesive may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
 充填材(d)を用いる場合、接着剤組成物において、溶媒以外の全ての成分の総含有量(総質量)に対する充填材(d)の含有量の割合(すなわち、フィルム状接着剤の充填材(d)の含有量)は、5~40質量%であることが好ましく、10~35質量%であることがより好ましく、15~30質量%であることが特に好ましい。充填材(d)の含有量がこのような範囲であることで、上記の熱膨張係数の調整がより容易となる。 When the filler (d) is used, the ratio of the content of the filler (d) to the total content (total mass) of all components other than the solvent in the adhesive composition (that is, the filler of the film adhesive) The content of (d) is preferably 5 to 40% by mass, more preferably 10 to 35% by mass, and particularly preferably 15 to 30% by mass. When the content of the filler (d) is in such a range, the adjustment of the thermal expansion coefficient becomes easier.
 接着剤組成物及びフィルム状接着剤において、充填材(d)の総含有量(総質量)に対する、平均粒子径が0.01~150μmである充填材(d)の含有量の割合は、80~100質量%であることが好ましく、85~100質量%であることがより好ましく、90~100質量%であることがさらに好ましく、例えば、95~100質量%であってもよい。前記含有量の割合が前記下限値以上であることで、フィルム状接着剤の保存安定性がより高くなる。 In the adhesive composition and the film adhesive, the ratio of the content of the filler (d) having an average particle diameter of 0.01 to 150 μm to the total content (total mass) of the filler (d) is 80 Is preferably 100 to 100% by mass, more preferably 85 to 100% by mass, further preferably 90 to 100% by mass, and may be 95 to 100% by mass, for example. The storage stability of a film adhesive becomes higher because the ratio of the said content is more than the said lower limit.
(カップリング剤(e))
 フィルム状接着剤は、カップリング剤(e)を含有することにより、被着体に対する接着性及び密着性が向上する。また、フィルム状接着剤がカップリング剤(e)を含有することにより、その硬化物は耐熱性を損なうことなく、耐水性が向上する。カップリング剤(e)は、無機化合物又は有機化合物と反応可能な官能基を有する。
(Coupling agent (e))
When the film adhesive contains the coupling agent (e), the adhesion and adhesion to the adherend are improved. Moreover, when a film adhesive contains a coupling agent (e), the hardened | cured material improves water resistance, without impairing heat resistance. The coupling agent (e) has a functional group capable of reacting with an inorganic compound or an organic compound.
 カップリング剤(e)は、重合体成分(a)、エポキシ系熱硬化性樹脂(b)等が有する官能基と反応可能な官能基を有する化合物であることが好ましく、シランカップリング剤であることがより好ましい。
 好ましい前記シランカップリング剤としては、例えば、3-グリシジルオキシプロピルトリメトキシシラン、3-グリシジルオキシプロピルメチルジエトキシシラン、3-グリシジルオキシプロピルトリエトキシシラン、3-グリシジルオキシメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-メタクリロイルオキシプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-(2-アミノエチルアミノ)プロピルトリメトキシシラン、3-(2-アミノエチルアミノ)プロピルメチルジエトキシシラン、3-(フェニルアミノ)プロピルトリメトキシシラン、3-アニリノプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、ビス(3-トリエトキシシリルプロピル)テトラスルファン、メチルトリメトキシシラン、メチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリアセトキシシラン、イミダゾールシラン、オリゴマー型又はポリマー型オルガノシロキサン等が挙げられる。
The coupling agent (e) is preferably a compound having a functional group capable of reacting with the functional group of the polymer component (a), the epoxy thermosetting resin (b), etc., and is a silane coupling agent. It is more preferable.
Preferred examples of the silane coupling agent include 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropylmethyldiethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxymethyldiethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3- (2-aminoethylamino) propyltrimethoxysilane, 3- (2-amino Ethylamino) propylmethyldiethoxysilane, 3- (phenylamino) propyltrimethoxysilane, 3-anilinopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-mercaptopropi Trimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, bis (3-triethoxysilylpropyl) tetrasulfane, methyltrimethoxysilane, methyltriethoxysilane, vinyltrimethoxysilane, vinyltriacetoxysilane, imidazolesilane, oligomer type Or a polymer type organosiloxane etc. are mentioned.
 接着剤組成物及びフィルム状接着剤が含有するカップリング剤(e)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 1つの側面として、カップリング剤(e)としては、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン及びエポキシ基、メチル基及びメトキシ基を有するオリゴマー型シランカップリング剤からなる群から選択される少なくとも1つであることが好ましい。
As for the coupling agent (e) which an adhesive composition and a film adhesive contain, only 1 type may be sufficient, 2 or more types may be sufficient, and when it is 2 or more types, those combinations and ratios can be selected arbitrarily. .
In one aspect, the coupling agent (e) includes 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane and an oligomer type silane coupling agent having an epoxy group, a methyl group and a methoxy group. It is preferably at least one selected from the group consisting of
 カップリング剤(e)を用いる場合、接着剤組成物及びフィルム状接着剤において、カップリング剤(e)の含有量は、重合体成分(a)及びエポキシ系熱硬化性樹脂(b)の総含有量100質量部に対して、0.03~20質量部であることが好ましく、0.05~10質量部であることがより好ましく、0.1~5質量部であることが特に好ましい。
 カップリング剤(e)の前記含有量が前記下限値以上であることで、充填材(d)の樹脂への分散性の向上や、フィルム状接着剤の被着体との接着性の向上等、カップリング剤(e)を用いたことによる効果がより顕著に得られる。カップリング剤(e)の前記含有量が前記上限値以下であることで、アウトガスの発生がより抑制される。
In the case where the coupling agent (e) is used, the content of the coupling agent (e) in the adhesive composition and the film adhesive is the total of the polymer component (a) and the epoxy thermosetting resin (b). The content is preferably 0.03 to 20 parts by mass, more preferably 0.05 to 10 parts by mass, and particularly preferably 0.1 to 5 parts by mass with respect to the content of 100 parts by mass.
When the content of the coupling agent (e) is equal to or higher than the lower limit, the dispersibility of the filler (d) in the resin is improved, the adhesion of the film adhesive to the adherend is improved, and the like. The effect obtained by using the coupling agent (e) is more remarkably obtained. Generation | occurrence | production of an outgas is suppressed more because the said content of a coupling agent (e) is below the said upper limit.
 カップリング剤(e)は、上記の中でも、オリゴマー型又はポリマー型オルガノシロキサンであることが好ましい。前記オリゴマー型又はポリマー型オルガノシロキサンは、重合性化合物が重合反応して形成されたとみなすことができる、オリゴマー構造又はポリマー構造を有するオルガノシロキサンである。このようなオリゴマー型又はポリマー型オルガノシロキサンを用いることにより、カップリング剤(e)を用いたことによる効果を十分に得られるとともに、フィルム状接着剤の保存安定性がより高くなる。 The coupling agent (e) is preferably an oligomer type or polymer type organosiloxane among the above. The oligomer type or polymer type organosiloxane is an organosiloxane having an oligomer structure or a polymer structure, which can be regarded as formed by polymerization reaction of a polymerizable compound. By using such an oligomer-type or polymer-type organosiloxane, the effect obtained by using the coupling agent (e) can be sufficiently obtained, and the storage stability of the film adhesive can be further increased.
 接着剤組成物及びフィルム状接着剤において、カップリング剤(e)の総含有量に対する、前記オリゴマー型又はポリマー型オルガノシロキサンの含有量の割合は、80~100質量%であることが好ましく、85~100質量%であることがより好ましく、90~100質量%であることがさらに好ましく、例えば、95~100質量%であってもよい。前記含有量の割合が前記下限値以上であることで、フィルム状接着剤の保存安定性がより高くなる。 In the adhesive composition and the film adhesive, the ratio of the content of the oligomer type or polymer type organosiloxane to the total content of the coupling agent (e) is preferably 80 to 100% by mass, 85 It is more preferably from ˜100% by mass, even more preferably from 90 to 100% by mass, for example, from 95 to 100% by mass. The storage stability of a film adhesive becomes higher because the ratio of the said content is more than the said lower limit.
(架橋剤(f))
 重合体成分(a)として、上述のアクリル系樹脂等の、他の化合物と結合可能なビニル基、(メタ)アクリロイル基、アミノ基、水酸基、カルボキシ基、イソシアネート基等の官能基を有するものを用いる場合、接着剤組成物及びフィルム状接着剤は、前記官能基を他の化合物と結合させて架橋するための架橋剤(f)を含有していてもよい。架橋剤(f)を用いて架橋することにより、フィルム状接着剤の初期接着力及び凝集力を調節できる。
(Crosslinking agent (f))
As the polymer component (a), those having functional groups such as vinyl group, (meth) acryloyl group, amino group, hydroxyl group, carboxy group, isocyanate group and the like that can be bonded to other compounds such as the above-mentioned acrylic resin. When used, the adhesive composition and the film adhesive may contain a crosslinking agent (f) for bonding the functional group with another compound to crosslink. By crosslinking using the crosslinking agent (f), the initial adhesive force and cohesive force of the film adhesive can be adjusted.
 架橋剤(f)としては、例えば、有機多価イソシアネート化合物、有機多価イミン化合物、金属キレート系架橋剤(すなわち、金属キレート構造を有する架橋剤)、アジリジン系架橋剤(すなわち、アジリジニル基を有する架橋剤)等が挙げられる。 Examples of the crosslinking agent (f) include an organic polyvalent isocyanate compound, an organic polyvalent imine compound, a metal chelate crosslinking agent (that is, a crosslinking agent having a metal chelate structure), and an aziridine crosslinking agent (that is, having an aziridinyl group). A crosslinking agent).
 前記有機多価イソシアネート化合物としては、例えば、芳香族多価イソシアネート化合物、脂肪族多価イソシアネート化合物及び脂環族多価イソシアネート化合物(以下、これら化合物をまとめて「芳香族多価イソシアネート化合物等」と略記することがある);前記芳香族多価イソシアネート化合物等の三量体、イソシアヌレート体及びアダクト体;前記芳香族多価イソシアネート化合物等とポリオール化合物とを反応させて得られる末端イソシアネートウレタンプレポリマー等が挙げられる。前記「アダクト体」は、前記芳香族多価イソシアネート化合物、脂肪族多価イソシアネート化合物又は脂環族多価イソシアネート化合物と、エチレングリコール、プロピレングリコール、ネオペンチルグリコール、トリメチロールプロパン又はヒマシ油等の低分子活性水素含有化合物との反応物を意味する。前記アダクト体の例としては、後述するようなトリメチロールプロパンのキシリレンジイソシアネート付加物等が挙げられる。また、「末端イソシアネートウレタンプレポリマー」とは、ウレタン結合を有するとともに、分子の末端部にイソシアネート基を有するプレポリマーを意味する。 Examples of the organic polyvalent isocyanate compound include an aromatic polyvalent isocyanate compound, an aliphatic polyvalent isocyanate compound, and an alicyclic polyvalent isocyanate compound (hereinafter, these compounds are collectively referred to as “aromatic polyvalent isocyanate compound and the like”). A trimer such as the aromatic polyisocyanate compound, isocyanurate and adduct; a terminal isocyanate urethane prepolymer obtained by reacting the aromatic polyvalent isocyanate compound and the polyol compound. Etc. The “adduct body” includes the aromatic polyisocyanate compound, the aliphatic polyisocyanate compound or the alicyclic polyisocyanate compound, and a low amount such as ethylene glycol, propylene glycol, neopentyl glycol, trimethylolpropane or castor oil. It means a reaction product with a molecularly active hydrogen-containing compound. Examples of the adduct include a xylylene diisocyanate adduct of trimethylolpropane as described later. The “terminal isocyanate urethane prepolymer” means a prepolymer having a urethane bond and an isocyanate group at the end of the molecule.
 前記有機多価イソシアネート化合物として、より具体的には、例えば、2,4-トリレンジイソシアネート;2,6-トリレンジイソシアネート;1,3-キシリレンジイソシアネート;1,4-キシレンジイソシアネート;ジフェニルメタン-4,4’-ジイソシアネート;ジフェニルメタン-2,4’-ジイソシアネート;3-メチルジフェニルメタンジイソシアネート;ヘキサメチレンジイソシアネート;イソホロンジイソシアネート;ジシクロヘキシルメタン-4,4’-ジイソシアネート;ジシクロヘキシルメタン-2,4’-ジイソシアネート;トリメチロールプロパン等のポリオールのすべて又は一部の水酸基に、トリレンジイソシアネート、ヘキサメチレンジイソシアネート及びキシリレンジイソシアネートのいずれか1種又は2種以上が付加した化合物;リジンジイソシアネート等が挙げられる。 More specifically, as the organic polyvalent isocyanate compound, for example, 2,4-tolylene diisocyanate; 2,6-tolylene diisocyanate; 1,3-xylylene diisocyanate; 1,4-xylene diisocyanate; diphenylmethane-4 Dimethylmethane-2,4'-diisocyanate; 3-methyldiphenylmethane diisocyanate; hexamethylene diisocyanate; isophorone diisocyanate; dicyclohexylmethane-4,4'-diisocyanate; dicyclohexylmethane-2,4'-diisocyanate; trimethylol Any one of tolylene diisocyanate, hexamethylene diisocyanate and xylylene diisocyanate is added to all or some hydroxyl groups of a polyol such as propane. Or two or more compounds are added; lysine diisocyanate.
 前記有機多価イミン化合物としては、例えば、N,N’-ジフェニルメタン-4,4’-ビス(1-アジリジンカルボキシアミド)、トリメチロールプロパン-トリ-β-アジリジニルプロピオネート、テトラメチロールメタン-トリ-β-アジリジニルプロピオネート、N,N’-トルエン-2,4-ビス(1-アジリジンカルボキシアミド)トリエチレンメラミン等が挙げられる。 Examples of the organic polyvalent imine compound include N, N′-diphenylmethane-4,4′-bis (1-aziridinecarboxamide), trimethylolpropane-tri-β-aziridinylpropionate, and tetramethylolmethane. -Tri-β-aziridinylpropionate, N, N′-toluene-2,4-bis (1-aziridinecarboxamide) triethylenemelamine and the like.
 架橋剤(f)として有機多価イソシアネート化合物を用いる場合、重合体成分(a)としては、水酸基含有重合体を用いることが好ましい。架橋剤(f)がイソシアネート基を有し、重合体成分(a)が水酸基を有する場合、架橋剤(f)と重合体成分(a)との反応によって、フィルム状接着剤に架橋構造を簡便に導入できる。 When an organic polyvalent isocyanate compound is used as the crosslinking agent (f), it is preferable to use a hydroxyl group-containing polymer as the polymer component (a). When the cross-linking agent (f) has an isocyanate group and the polymer component (a) has a hydroxyl group, the cross-linking structure can be simplified in the film adhesive by the reaction between the cross-linking agent (f) and the polymer component (a). Can be introduced.
 接着剤組成物及びフィルム状接着剤が含有する架橋剤(f)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The cross-linking agent (f) contained in the adhesive composition and the film adhesive may be only one kind, two or more kinds, and in the case of two or more kinds, the combination and ratio thereof can be arbitrarily selected.
 架橋剤(f)の含有量は、重合体成分(a)の含有量100質量部に対して、0~5質量部であることが好ましく、0~3質量部であることがより好ましく、0~1質量部であることがさらに好ましく、0質量部であること、すなわち、接着剤組成物及びフィルム状接着剤が架橋剤(f)を含有していないことが特に好ましい。架橋剤(f)の前記含有量が前記下限値以上であることで、架橋剤(f)を用いたことによる効果がより顕著に得られる。架橋剤(f)の前記含有量が前記上限値以下であることで、フィルム状接着剤の保存安定性がより高くなる。 The content of the crosslinking agent (f) is preferably 0 to 5 parts by mass, more preferably 0 to 3 parts by mass with respect to 100 parts by mass of the polymer component (a). The content is more preferably ˜1 part by mass, and particularly preferably 0 part by mass, that is, it is particularly preferred that the adhesive composition and the film adhesive do not contain the crosslinking agent (f). When the content of the cross-linking agent (f) is equal to or higher than the lower limit value, the effect of using the cross-linking agent (f) is more remarkably obtained. The storage stability of a film adhesive becomes higher because the content of the crosslinking agent (f) is not more than the upper limit.
(エネルギー線硬化性樹脂(g))
 フィルム状接着剤は、エネルギー線硬化性樹脂(g)を含有していることにより、エネルギー線の照射によって特性を変化させることができる。
(Energy ray curable resin (g))
Since the film adhesive contains the energy beam curable resin (g), the properties can be changed by irradiation with the energy beam.
 エネルギー線硬化性樹脂(g)は、エネルギー線硬化性化合物を重合(硬化)して得られたものである。
 前記エネルギー線硬化性化合物としては、例えば、分子内に少なくとも1個の重合性二重結合を有する化合物が挙げられ、(メタ)アクリロイル基を有するアクリレート系化合物が好ましい。
The energy beam curable resin (g) is obtained by polymerizing (curing) an energy beam curable compound.
Examples of the energy ray curable compound include compounds having at least one polymerizable double bond in the molecule, and acrylate compounds having a (meth) acryloyl group are preferable.
 前記アクリレート系化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート等の鎖状脂肪族骨格含有(メタ)アクリレート;ジシクロペンタニルジ(メタ)アクリレート等の環状脂肪族骨格含有(メタ)アクリレート;ポリエチレングリコールジ(メタ)アクリレート等のポリアルキレングリコール(メタ)アクリレート;オリゴエステル(メタ)アクリレート;ウレタン(メタ)アクリレートオリゴマー;エポキシ変性(メタ)アクリレート;前記ポリアルキレングリコール(メタ)アクリレート以外のポリエーテル(メタ)アクリレート;イタコン酸オリゴマー等が挙げられる。 Examples of the acrylate compound include trimethylolpropane tri (meth) acrylate, tetramethylolmethanetetra (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol monohydroxypenta ( Chain aliphatic skeleton-containing (meth) acrylates such as (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,4-butylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate; Cyclic aliphatic skeleton-containing (meth) acrylates such as cyclopentanyl di (meth) acrylate; polyalkylene glycol (meth) acrylates such as polyethylene glycol di (meth) acrylate Oligoester (meth) acrylate; urethane (meth) acrylate oligomer, epoxy-modified (meth) acrylate; the polyalkylene glycol (meth) Polyether (meth) acrylates other than the acrylates; itaconic acid oligomer, and the like.
 エネルギー線硬化性樹脂(g)の重量平均分子量は、100~30000であることが好ましく、300~10000であることがより好ましい。 The weight average molecular weight of the energy ray curable resin (g) is preferably 100 to 30000, and more preferably 300 to 10000.
 接着剤組成物が含有するエネルギー線硬化性樹脂(g)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The energy ray curable resin (g) contained in the adhesive composition may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
 エネルギー線硬化性樹脂(g)を用いる場合、接着剤組成物の総質量に対して、エネルギー線硬化性樹脂(g)の含有量は、1~95質量%であることが好ましく、5~90質量%であることがより好ましく、10~85質量%であることが特に好ましい。 When the energy ray curable resin (g) is used, the content of the energy ray curable resin (g) is preferably 1 to 95% by mass with respect to the total mass of the adhesive composition. More preferably, the content is 10% by mass, and particularly preferably 10 to 85% by mass.
(光重合開始剤(h))
 接着剤組成物は、エネルギー線硬化性樹脂(g)を含有する場合、エネルギー線硬化性樹脂(g)の重合反応を効率よく進めるために、光重合開始剤(h)を含有していてもよい。
(Photopolymerization initiator (h))
When the adhesive composition contains the energy beam curable resin (g), the adhesive composition may contain the photopolymerization initiator (h) in order to efficiently advance the polymerization reaction of the energy beam curable resin (g). Good.
 接着剤組成物における光重合開始剤(h)としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾイン安息香酸、ベンゾイン安息香酸メチル、ベンゾインジメチルケタール等のベンゾイン化合物;アセトフェノン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン等のアセトフェノン化合物;ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド等のアシルフォスフィンオキサイド化合物;ベンジルフェニルスルフィド、テトラメチルチウラムモノスルフィド等のスルフィド化合物;1-ヒドロキシシクロヘキシルフェニルケトン等のα-ケトール化合物;アゾビスイソブチロニトリル等のアゾ化合物;チタノセン等のチタノセン化合物;チオキサントン等のチオキサントン化合物;パーオキサイド化合物;ジアセチル等のジケトン化合物;ベンジル;ジベンジル;ベンゾフェノン;2,4-ジエチルチオキサントン;1,2-ジフェニルメタン;2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノン;1-クロロアントラキノン、2-クロロアントラキノン等のキノン化合物等が挙げられる。
 また、光重合開始剤(h)としては、例えば、アミン等の光増感剤等も挙げられる。
Examples of the photopolymerization initiator (h) in the adhesive composition include benzoin such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, benzoin methyl benzoate, and benzoin dimethyl ketal. Compounds; Acetophenone compounds such as acetophenone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 2,2-dimethoxy-1,2-diphenylethane-1-one; bis (2,4,6 Acylphosphine oxide compounds such as -trimethylbenzoyl) phenylphosphine oxide and 2,4,6-trimethylbenzoyldiphenylphosphine oxide; benzylphenyl sulfide, tetramethylthiuram monosulfate Sulfide compounds such as amides; α-ketol compounds such as 1-hydroxycyclohexyl phenyl ketone; azo compounds such as azobisisobutyronitrile; titanocene compounds such as titanocene; thioxanthone compounds such as thioxanthone; peroxide compounds; Diketone compound; benzyl; dibenzyl; benzophenone; 2,4-diethylthioxanthone; 1,2-diphenylmethane; 2-hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl] propanone; 1-chloroanthraquinone; And quinone compounds such as 2-chloroanthraquinone.
Moreover, as a photoinitiator (h), photosensitizers, such as an amine, etc. are mentioned, for example.
 接着剤組成物が含有する光重合開始剤(h)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 1 type may be sufficient as the photoinitiator (h) which an adhesive composition contains, and when it is 2 or more types, those combinations and ratios can be selected arbitrarily.
 光重合開始剤(h)を用いる場合、接着剤組成物において、光重合開始剤(h)の含有量は、エネルギー線硬化性樹脂(g)の含有量100質量部に対して、0.1~20質量部であることが好ましく、1~10質量部であることがより好ましく、2~5質量部であることが特に好ましい。 When using a photoinitiator (h), in an adhesive composition, content of a photoinitiator (h) is 0.1 with respect to 100 mass parts of energy beam curable resin (g) content. It is preferably ˜20 parts by mass, more preferably 1 to 10 parts by mass, and particularly preferably 2 to 5 parts by mass.
(汎用添加剤(i))
 汎用添加剤(i)は、公知のものでよく、目的に応じて任意に選択でき、特に限定されない。好ましい汎用添加剤(i)としては、例えば、可塑剤、帯電防止剤、酸化防止剤、着色剤(染料、顔料)、ゲッタリング剤等が挙げられる。
(General-purpose additive (i))
The general-purpose additive (i) may be a known one, can be arbitrarily selected according to the purpose, and is not particularly limited. Preferred general-purpose additives (i) include, for example, plasticizers, antistatic agents, antioxidants, colorants (dyes, pigments), gettering agents and the like.
 接着剤組成物及びフィルム状接着剤が含有する汎用添加剤(i)は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
 接着剤組成物及びフィルム状接着剤の汎用添加剤(i)の含有量は、特に限定されず、目的に応じて適宜選択すればよい。
The general-purpose additive (i) contained in the adhesive composition and the film-like adhesive may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected. .
The content of the general-purpose additive (i) in the adhesive composition and the film adhesive is not particularly limited, and may be appropriately selected depending on the purpose.
(溶媒)
 接着剤組成物は、さらに溶媒を含有することが好ましい。溶媒を含有する接着剤組成物は、取り扱い性が良好となる。
 前記溶媒は特に限定されないが、好ましいものとしては、例えば、トルエン、キシレン等の炭化水素;メタノール、エタノール、2-プロパノール、イソブチルアルコール(2-メチルプロパン-1-オールともいう)、1-ブタノール等のアルコール;酢酸エチル等のエステル;アセトン、メチルエチルケトン等のケトン;テトラヒドロフラン等のエーテル;ジメチルホルムアミド、N-メチルピロリドン等のアミド(アミド結合を有する化合物)等が挙げられる。
 接着剤組成物が含有する溶媒は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
(solvent)
It is preferable that the adhesive composition further contains a solvent. The adhesive composition containing a solvent has good handleability.
The solvent is not particularly limited, but preferred examples include hydrocarbons such as toluene and xylene; methanol, ethanol, 2-propanol, isobutyl alcohol (also referred to as 2-methylpropan-1-ol), 1-butanol and the like. And alcohols; esters such as ethyl acetate; ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran; amides (compounds having an amide bond) such as dimethylformamide and N-methylpyrrolidone.
As for the solvent which an adhesive composition contains, only 1 type may be sufficient, and it may be 2 or more types, and when it is 2 or more types, those combinations and ratios can be selected arbitrarily.
 接着剤組成物が含有する溶媒は、接着剤組成物中の含有成分をより均一に混合できる点から、メチルエチルケトン等であることが好ましい。 The solvent contained in the adhesive composition is preferably methyl ethyl ketone or the like from the viewpoint that the components contained in the adhesive composition can be mixed more uniformly.
<<接着剤組成物の製造方法>>
 接着剤組成物は、これを構成するための各成分を配合することで得られる。
 各成分の配合時における添加順序は特に限定されず、2種以上の成分を同時に添加してもよい。
 溶媒を用いる場合には、溶媒を溶媒以外のいずれかの配合成分と混合してこの配合成分を予め希釈しておくことで用いてもよいし、溶媒以外のいずれかの配合成分を予め希釈しておくことなく、溶媒をこれら配合成分と混合することで用いてもよい。
<< Method for Producing Adhesive Composition >>
An adhesive composition is obtained by mix | blending each component for comprising this.
The order of addition at the time of blending each component is not particularly limited, and two or more components may be added simultaneously.
When a solvent is used, it may be used by mixing the solvent with any compounding component other than the solvent and diluting the compounding component in advance, or by diluting any compounding component other than the solvent in advance. You may use it by mixing a solvent with these compounding ingredients, without leaving.
 配合時に各成分を混合する方法は特に限定されず、撹拌子又は撹拌翼等を回転させて混合する方法;ミキサーを用いて混合する方法;超音波を加えて混合する方法等、公知の方法から適宜選択すればよい。
 各成分の添加及び混合時の温度並びに時間は、各配合成分が劣化しない限り特に限定されず、適宜調節すればよいが、温度は15~30℃であることが好ましい。
The method of mixing each component at the time of compounding is not particularly limited, from a known method such as a method of mixing by rotating a stirrer or a stirring blade; a method of mixing using a mixer; a method of mixing by applying ultrasonic waves What is necessary is just to select suitably.
The temperature and time during the addition and mixing of each component are not particularly limited as long as each compounding component does not deteriorate, and may be adjusted as appropriate, but the temperature is preferably 15 to 30 ° C.
◇半導体加工用シート
 本発明の半導体加工用シートは、支持シートを備え、前記支持シート上に、前記フィルム状接着剤を備える。すなわち、本発明の半導体加工用シートは、支持シートと、前記支持シート上に備えられた前記フィルム状接着剤とを含む。
 前記半導体加工用シートは、例えば、ダイシングダイボンディングシートとして好適である。
◇ Semiconductor Processing Sheet The semiconductor processing sheet of the present invention includes a support sheet, and the film adhesive is provided on the support sheet. That is, the semiconductor processing sheet of the present invention includes a support sheet and the film adhesive provided on the support sheet.
The semiconductor processing sheet is suitable as a dicing die bonding sheet, for example.
 前記フィルム状接着剤は、先に説明したとおり、保存安定性が高く、保存中の特性の変化が抑制され、使用時においては、目的とする作用を十分に示すことが可能である。したがって、前記半導体加工用シートを用いて、前記フィルム状接着剤を取り込んで形成された半導体パッケージは、信頼性が高い。また、このような保存安定性が高いフィルム状接着剤を取り込んで形成された半導体パッケージは、その保存中においても、フィルム状接着剤の特性の変化に起因する、特性の変化が抑制される。したがって、この点においても、前記半導体パッケージは、信頼性が高い。 As described above, the film adhesive has high storage stability, suppresses changes in properties during storage, and can sufficiently exhibit the intended action during use. Therefore, the semiconductor package formed by taking in the film adhesive using the semiconductor processing sheet has high reliability. Moreover, the semiconductor package formed by incorporating such a film-like adhesive having high storage stability can suppress the change in characteristics caused by the change in the characteristics of the film-like adhesive even during the storage. Therefore, also in this respect, the semiconductor package has high reliability.
<<支持シート>>
 前記支持シートは、1層(単層)からなるものでもよいし、2層以上の複数層からなるものでもよい。支持シートが複数層からなる場合、これら複数層の構成材料及び厚さは、互いに同一でも異なっていてもよく、これら複数層の組み合わせは、本発明の効果を損なわない限り、特に限定されない。
<< support sheet >>
The support sheet may be composed of one layer (single layer) or may be composed of two or more layers. When the support sheet is composed of a plurality of layers, the constituent materials and thicknesses of the plurality of layers may be the same or different from each other, and the combination of the plurality of layers is not particularly limited as long as the effects of the present invention are not impaired.
 好ましい支持シートとしては、例えば、基材のみからなるもの;基材を備え、前記基材上に中間層を備えたもの等が挙げられる。
 すなわち、本発明に係る支持シートは、基材のみからなる支持シートであってもよく;基材と、前記基材上に備えられた中間層を含む支持シートであってもよい。
Preferable support sheets include, for example, those composed only of a base material; those provided with a base material, and provided with an intermediate layer on the base material.
That is, the support sheet according to the present invention may be a support sheet composed of only a base material; it may be a support sheet including a base material and an intermediate layer provided on the base material.
 基材のみからなる前記支持シートは、キャリアシート又はダイシングシートとして好適である。このような基材のみからなる支持シートを備えた半導体加工用シートは、フィルム状接着剤の支持シート(すなわち基材)を備えている側とは反対側の面(本明細書においては、「第1面」と称することがある)が、半導体ウエハの回路が形成されている側とは反対側の面(本明細書においては、「裏面」と称することがある)に貼付されて、使用される。 The support sheet made of only the base material is suitable as a carrier sheet or a dicing sheet. The sheet for semiconductor processing provided with such a support sheet composed only of the base material is a surface opposite to the side provided with the support sheet (that is, the base material) of the film adhesive (in this specification, “ The first surface is sometimes referred to as “the first surface”, and is attached to the surface opposite to the side on which the circuit of the semiconductor wafer is formed (in this specification, sometimes referred to as the “back surface”). Is done.
 一方、基材を備え、前記基材上に中間層を備えた前記支持シートは、ダイシングシートとして好適である。このような支持シートを備えた半導体加工用シートも、フィルム状接着剤の支持シートを備えている側とは反対側の面(第1面)が、半導体ウエハの回路が形成されている側とは反対側の面(裏面)に貼付されて、使用される。 On the other hand, the support sheet provided with a base material and provided with an intermediate layer on the base material is suitable as a dicing sheet. The semiconductor processing sheet provided with such a support sheet also has a surface (first surface) opposite to the side provided with the support sheet of the film adhesive and the side on which the circuit of the semiconductor wafer is formed. Is affixed to the opposite side (back side) and used.
 半導体加工用シートの使用方法は、後ほど詳しく説明する。
 以下、支持シートを構成する各層について、説明する。
The method for using the semiconductor processing sheet will be described in detail later.
Hereinafter, each layer which comprises a support sheet is demonstrated.
<基材>
 前記基材は、シート状又はフィルム状であり、その構成材料としては、例えば、各種樹脂が挙げられる。
 前記樹脂としては、例えば、低密度ポリエチレン(LDPEと略記することがある)、直鎖低密度ポリエチレン(LLDPEと略記することがある)、高密度ポリエチレン(HDPEと略記することがある)等のポリエチレン;ポリプロピレン、ポリブテン、ポリブタジエン、ポリメチルペンテン、ノルボルネン樹脂等のポリエチレン以外のポリオレフィン;エチレン-酢酸ビニル共重合体、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル共重合体、エチレン-ノルボルネン共重合体等のエチレン系共重合体(すなわち、モノマーとしてエチレンを用いて得られた共重合体);ポリ塩化ビニル、塩化ビニル共重合体等の塩化ビニル系樹脂(すなわち、モノマーとして塩化ビニルを用いて得られた樹脂);ポリスチレン;ポリシクロオレフィン;ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリエチレンイソフタレート、ポリエチレン-2,6-ナフタレンジカルボキシレート、すべての構成単位が芳香族環式基を有する全芳香族ポリエステル等のポリエステル;2種以上の前記ポリエステルの共重合体;ポリ(メタ)アクリル酸エステル;ポリウレタン;ポリウレタンアクリレート;ポリイミド;ポリアミド;ポリカーボネート;フッ素樹脂;ポリアセタール;変性ポリフェニレンオキシド;ポリフェニレンスルフィド;ポリスルホン;ポリエーテルケトン等が挙げられる。
 また、前記樹脂としては、例えば、前記ポリエステルとそれ以外の樹脂との混合物等のポリマーアロイも挙げられる。前記ポリエステルとそれ以外の樹脂とのポリマーアロイは、ポリエステル以外の樹脂の量が比較的少量であるものが好ましい。
 また、前記樹脂としては、例えば、ここまでに例示した前記樹脂の1種又は2種以上が架橋した架橋樹脂;ここまでに例示した前記樹脂の1種又は2種以上を用いたアイオノマー等の変性樹脂も挙げられる。
<Base material>
The base material is in the form of a sheet or a film, and examples of the constituent material include various resins.
Examples of the resin include polyethylene such as low density polyethylene (sometimes abbreviated as LDPE), linear low density polyethylene (sometimes abbreviated as LLDPE), and high density polyethylene (sometimes abbreviated as HDPE). Polyolefins other than polyethylene such as polypropylene, polybutene, polybutadiene, polymethylpentene, norbornene resin; ethylene-vinyl acetate copolymer, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester copolymer Ethylene copolymers such as ethylene-norbornene copolymer (that is, copolymers obtained using ethylene as a monomer); vinyl chloride resins such as polyvinyl chloride and vinyl chloride copolymers (that is, monomers) Resin obtained using vinyl chloride as Styrene; polycycloolefin; polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polyethylene isophthalate, polyethylene-2,6-naphthalenedicarboxylate, wholly aromatic polyesters in which all structural units have aromatic cyclic groups, etc. Polyester; Copolymer of two or more of the above polyesters; Poly (meth) acrylic acid ester; Polyurethane; Polyurethane acrylate; Polyimide; Polycarbonate; Fluororesin; Polyacetal; Modified polyphenylene oxide; Polyphenylene sulfide; Is mentioned.
Moreover, as said resin, polymer alloys, such as a mixture of the said polyester and other resin, are mentioned, for example. The polymer alloy of the polyester and the other resin is preferably one in which the amount of the resin other than the polyester is relatively small.
Examples of the resin include a crosslinked resin in which one or more of the resins exemplified so far are crosslinked; modification of an ionomer or the like using one or more of the resins exemplified so far. Resins can also be mentioned.
 基材を構成する樹脂は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。 The resin constituting the substrate may be only one kind, or two or more kinds, and in the case of two or more kinds, the combination and ratio thereof can be arbitrarily selected.
 基材は1層(単層)からなるものでもよいし、2層以上の複数層からなるものでもよく、複数層からなる場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。 The substrate may be composed of one layer (single layer) or may be composed of two or more layers. When the substrate is composed of a plurality of layers, these layers may be the same or different from each other. The combination of layers is not particularly limited.
 基材の厚さは、50~300μmであることが好ましく、60~150μmであることがより好ましい。基材の厚さがこのような範囲であることで、半導体加工用シートの可撓性と、半導体ウエハ又は半導体チップへの貼付性がより向上する。
 ここで、「基材の厚さ」とは、基材全体の厚さを意味し、例えば、複数層からなる基材の厚さとは、基材を構成するすべての層の合計の厚さを意味する。
The thickness of the substrate is preferably 50 to 300 μm, and more preferably 60 to 150 μm. When the thickness of the base material is in such a range, the flexibility of the semiconductor processing sheet and the adhesiveness to the semiconductor wafer or the semiconductor chip are further improved.
Here, “the thickness of the substrate” means the thickness of the entire substrate. For example, the thickness of the substrate composed of a plurality of layers means the total thickness of all the layers constituting the substrate. means.
 基材は、厚さの精度が高いもの、すなわち、部位によらず厚さのばらつきが抑制されたものが好ましい。上述の構成材料のうち、このような厚さの精度が高い基材を構成するのに使用可能な材料としては、例えば、ポリエチレン、ポリエチレン以外のポリオレフィン、ポリエチレンテレフタレート、エチレン-酢酸ビニル共重合体等が挙げられる。 The base material is preferably one having high thickness accuracy, that is, one in which variation in thickness is suppressed regardless of the part. Among the above-mentioned constituent materials, examples of materials that can be used to construct such a substrate with high thickness accuracy include polyethylene, polyolefins other than polyethylene, polyethylene terephthalate, ethylene-vinyl acetate copolymer, and the like. Is mentioned.
 基材は、前記樹脂等の主たる構成材料以外に、充填材、着色剤、帯電防止剤、酸化防止剤、有機滑剤、触媒、軟化剤(可塑剤)等の公知の各種添加剤を含有していてもよい。 The base material contains various known additives such as a filler, a colorant, an antistatic agent, an antioxidant, an organic lubricant, a catalyst, and a softener (plasticizer) in addition to the main constituent material such as the resin. May be.
 基材は、透明であってもよいし、不透明であってもよく、目的に応じて着色されていてもよいし、他の層が蒸着されていてもよい。 The substrate may be transparent or opaque, may be colored according to the purpose, or other layers may be deposited.
 基材は、その上に設けられる中間層等の他の層との密着性を向上させるために、サンドブラスト処理、溶剤処理等による凹凸化処理や、コロナ放電処理、電子線照射処理、プラズマ処理、オゾン・紫外線照射処理、火炎処理、クロム酸処理、熱風処理等の酸化処理等が表面に施されたものであってもよい。
 また、基材は、表面がプライマー処理を施されたものであってもよい。
 また、基材は、帯電防止コート層;半導体加工用シートを重ね合わせて保存する際に、基材が他のシートに接着することや、基材が吸着テーブルに接着することを防止する層等を有するものであってもよい。
In order to improve the adhesion with other layers such as an intermediate layer provided on the substrate, the substrate is subjected to uneven blasting treatment such as sandblasting treatment, solvent treatment, corona discharge treatment, electron beam irradiation treatment, plasma treatment, The surface may be subjected to an oxidation treatment such as ozone / ultraviolet irradiation treatment, flame treatment, chromic acid treatment, hot air treatment, or the like.
The base material may have a surface subjected to primer treatment.
In addition, the base material is an antistatic coating layer; a layer that prevents the base material from adhering to other sheets or the base material from adhering to the adsorption table when the semiconductor processing sheets are stacked and stored. It may have.
 基材は、公知の方法で製造できる。例えば、樹脂を含有する基材は、前記樹脂を含有する樹脂組成物を成形することで製造できる。 The base material can be manufactured by a known method. For example, a base material containing a resin can be produced by molding a resin composition containing the resin.
<中間層>
 前記中間層は、基材とフィルム状接着剤との間に配置され、その機能を発揮するものであれば、特に限定されない。
 中間層として、より具体的には、例えば、一方の面が剥離処理されている剥離性改善層が挙げられる。
<Intermediate layer>
The intermediate layer is not particularly limited as long as it is disposed between the base material and the film adhesive and exhibits its function.
More specifically, examples of the intermediate layer include a peelability improving layer in which one surface is peeled.
○剥離性改善層
 前記剥離性改善層は、シート状又はフィルム状である。
 剥離性改善層としては、例えば、樹脂層と、前記樹脂層上に形成された剥離処理層と、を備えて構成された、複数層からなるものが挙げられる。半導体加工用シートにおいて、剥離性改善層は、その剥離処理層をフィルム状接着剤側に向けて、配置されている。
○ Peelability improvement layer The said peelability improvement layer is a sheet form or a film form.
As a peelability improvement layer, what consists of a resin layer and the peeling process layer formed on the said resin layer is comprised, for example, and it consists of a plurality of layers. In the sheet for semiconductor processing, the peelability improving layer is arranged with the release treatment layer facing the film adhesive.
 剥離性改善層のうち、前記樹脂層は、樹脂を含有する樹脂組成物を成形することで作製できる。
 そして、剥離性改善層は、前記樹脂層の一方の面を剥離処理することで製造できる。
Among the peelability improving layers, the resin layer can be produced by molding a resin composition containing a resin.
And a peelability improvement layer can be manufactured by carrying out the peeling process of one surface of the said resin layer.
 前記樹脂層の剥離処理は、例えば、アルキッド系、シリコーン系、フッ素系、不飽和ポリエステル系、ポリオレフィン系又はワックス系等の、公知の各種剥離剤によって行うことができる。
 前記剥離剤は、耐熱性を有する点では、アルキッド系、シリコーン系又はフッ素系の剥離剤であることが好ましい。
The release treatment of the resin layer can be performed by various known release agents such as alkyd, silicone, fluorine, unsaturated polyester, polyolefin or wax.
In terms of heat resistance, the release agent is preferably an alkyd, silicone or fluorine release agent.
 前記樹脂層の構成材料である樹脂は、目的に応じて適宜選択すればよく、特に限定されない。
 前記樹脂で好ましいものとしては、例えば、ポリエチレンテレフタレート(PETと略記することがある)、ポリエチレンナフタレート(PENと略記することがある)、ポリブチレンテレフタレート(PBTと略記することがある)、ポリエチレン(PEと略記することがある)、ポリプロピレン(PPと略記することがある)等が挙げられる。
The resin that is a constituent material of the resin layer may be appropriately selected according to the purpose, and is not particularly limited.
Preferred examples of the resin include polyethylene terephthalate (sometimes abbreviated as PET), polyethylene naphthalate (sometimes abbreviated as PEN), polybutylene terephthalate (sometimes abbreviated as PBT), polyethylene ( PE (sometimes abbreviated as PE), polypropylene (sometimes abbreviated as PP), and the like.
 前記樹脂層は、1層(単層)からなるものでもよいし、2層以上の複数層からなるものでもよく、複数層からなる場合、これら複数層は、互いに同一でも異なっていてもよく、これら複数層の組み合わせは特に限定されない。 The resin layer may be composed of one layer (single layer), may be composed of two or more layers, and when composed of a plurality of layers, these layers may be the same or different from each other, The combination of these multiple layers is not particularly limited.
 剥離性改善層の厚さ(樹脂層及び剥離処理層の合計の厚さ)は、10~2000nmであることが好ましく、25~1500nmであることがより好ましく、50~1200nmであることが特に好ましい。剥離性改善層の厚さが前記下限値以上であることで、剥離性改善層の作用がより顕著となり、さらに、剥離性改善層の切断等の破損を抑制する効果がより高くなる。剥離性改善層の厚さが前記上限値以下であることで、後述するフィルム状接着剤付き半導体チップのピックアップ時に、突き上げる力がフィルム状接着剤付き半導体チップに伝達され易くなり、ピックアップをより容易に行うことができる。 The thickness of the peelability improving layer (total thickness of the resin layer and the release treatment layer) is preferably 10 to 2000 nm, more preferably 25 to 1500 nm, and particularly preferably 50 to 1200 nm. . When the thickness of the peelability improving layer is equal to or more than the lower limit, the action of the peelability improving layer becomes more remarkable, and further, the effect of suppressing breakage such as cutting of the peelability improving layer becomes higher. When the thickness of the peelable improvement layer is less than or equal to the above upper limit value, the pick-up force is easily transmitted to the semiconductor chip with the film adhesive when picking up the semiconductor chip with the film adhesive to be described later, making the pickup easier Can be done.
 次に、本発明の半導体加工用シートの例を、支持シートの種類ごとに、以下、図面を参照しながら説明する。 Next, examples of the semiconductor processing sheet of the present invention will be described below for each type of support sheet with reference to the drawings.
 図2は、本発明の半導体加工用シートの一実施形態を模式的に示す断面図である。
 なお、図2以降の図において、既に説明済みの図に示すものと同じ構成要素には、その説明済みの図の場合と同じ符号を付し、その詳細な説明は省略する。
FIG. 2 is a cross-sectional view schematically showing an embodiment of the semiconductor processing sheet of the present invention.
In FIG. 2 and subsequent figures, the same components as those shown in the already explained figures are given the same reference numerals as those in the already explained figures, and their detailed explanations are omitted.
 ここに示す半導体加工用シート1Aは、支持シート10を備え、支持シート10上にフィルム状接着剤13を備えている。支持シート10は、基材11のみからなり、半導体加工用シート1Aは、換言すると、基材11の一方の面(本明細書においては、「第1面」と称することがある)11a上にフィルム状接着剤13が積層された構成を有する。また、半導体加工用シート1Aは、さらにフィルム状接着剤13上に剥離フィルム15を備えている。 The semiconductor processing sheet 1 </ b> A shown here includes a support sheet 10, and a film adhesive 13 on the support sheet 10. The support sheet 10 is composed only of the base material 11, and in other words, the semiconductor processing sheet 1 </ b> A is on one surface (which may be referred to as “first surface” in this specification) 11 a of the base material 11. The film adhesive 13 is laminated. The semiconductor processing sheet 1 </ b> A further includes a release film 15 on the film adhesive 13.
 半導体加工用シート1Aにおいては、基材11の第1面11aにフィルム状接着剤13が積層され、フィルム状接着剤13の、基材11を備えている側とは反対側の面(本明細書においては、「第1面」と称することがある)13aの一部、すなわち、周縁部近傍の領域に治具用接着剤層16が積層され、フィルム状接着剤13の第1面13aのうち、治具用接着剤層16が積層されていない面と、治具用接着剤層16のうち、フィルム状接着剤13と接触していない面16a(上面及び側面)に、剥離フィルム15が積層されている。
 ここで、基材11の第1面11aは、支持シート10の第1面10aとも称する。
In the semiconductor processing sheet 1A, a film adhesive 13 is laminated on the first surface 11a of the substrate 11, and the surface of the film adhesive 13 opposite to the side on which the substrate 11 is provided (this specification) The jig adhesive layer 16 is laminated on a part of the portion 13a, that is, in the vicinity of the peripheral portion, and the first surface 13a of the film adhesive 13 is formed. Among them, the release film 15 is formed on the surface on which the jig adhesive layer 16 is not laminated and on the surface 16 a (upper surface and side surface) of the jig adhesive layer 16 that is not in contact with the film adhesive 13. Are stacked.
Here, the first surface 11 a of the substrate 11 is also referred to as the first surface 10 a of the support sheet 10.
 剥離フィルム15は、図1に示す第1剥離フィルム151又は第2剥離フィルム152と同様のものである。 The release film 15 is the same as the first release film 151 or the second release film 152 shown in FIG.
 治具用接着剤層16は、例えば、接着剤成分を含有する単層構造のものであってもよいし、芯材となるシートの両面に接着剤成分を含有する層が積層された複数層構造のものであってもよい。 The adhesive layer 16 for jigs may have, for example, a single-layer structure containing an adhesive component, or a plurality of layers in which layers containing an adhesive component are laminated on both surfaces of a core sheet. It may be of a structure.
 半導体加工用シート1Aは、剥離フィルム15が取り除かれた状態で、フィルム状接着剤13の第1面13aに、半導体ウエハ(図示略)の裏面が貼付され、さらに、治具用接着剤層16の面16aのうち上面が、リングフレーム等の治具に貼付されて、使用される。 In the semiconductor processing sheet 1A, the back surface of the semiconductor wafer (not shown) is attached to the first surface 13a of the film adhesive 13 with the release film 15 removed, and the jig adhesive layer 16 is further attached. The upper surface of the surface 16a is used by being attached to a jig such as a ring frame.
 図3は、本発明の半導体加工用シートの他の実施形態を模式的に示す断面図である。
 ここに示す半導体加工用シート1Bは、治具用接着剤層16を備えていない点以外は、図2に示す半導体加工用シート1Aと同じである。すなわち、半導体加工用シート1Bにおいては、基材11の第1面11a(支持シート10の第1面10a)にフィルム状接着剤13が積層され、フィルム状接着剤13の第1面13aの全面に、剥離フィルム15が積層されている。
 換言すると、半導体加工用シート1Bは、基材11、フィルム状接着剤13及び剥離フィルム15がこの順に、これらの厚さ方向において積層されて、構成されている。
FIG. 3 is a cross-sectional view schematically showing another embodiment of the semiconductor processing sheet of the present invention.
The semiconductor processing sheet 1B shown here is the same as the semiconductor processing sheet 1A shown in FIG. 2 except that the jig processing adhesive layer 16 is not provided. That is, in the semiconductor processing sheet 1B, the film adhesive 13 is laminated on the first surface 11a of the substrate 11 (the first surface 10a of the support sheet 10), and the entire surface of the first surface 13a of the film adhesive 13 is obtained. Further, a release film 15 is laminated.
In other words, the semiconductor processing sheet 1B is configured by laminating the base material 11, the film adhesive 13, and the release film 15 in this order in the thickness direction.
 図3に示す半導体加工用シート1Bは、図2に示す半導体加工用シート1Aの場合と同様に、剥離フィルム15が取り除かれた状態で、フィルム状接着剤13の第1面13aのうち、中央側の一部の領域に、半導体ウエハ(図示略)の裏面が貼付され、さらに、フィルム状接着剤13の周縁部近傍の領域が、リングフレーム等の治具に貼付されて、使用される。 The semiconductor processing sheet 1B shown in FIG. 3 is the center of the first surface 13a of the film adhesive 13 in a state where the release film 15 is removed, as in the case of the semiconductor processing sheet 1A shown in FIG. The rear surface of the semiconductor wafer (not shown) is attached to a partial region on the side, and the region near the peripheral edge of the film adhesive 13 is attached to a jig such as a ring frame for use.
 図4は、本発明の半導体加工用シートのさらに他の実施形態を模式的に示す断面図である。
 ここに示す半導体加工用シート1Cは、基材11と、フィルム状接着剤13と、の間に、さらに、中間層12を備えている点以外は、図2に示す半導体加工用シート1Aと同じである。支持シート10は、基材11及び中間層12の積層体であり、半導体加工用シート1Cも、支持シート10の第1面10a上にフィルム状接着剤13が積層された構成を有する。
FIG. 4 is a cross-sectional view schematically showing still another embodiment of the semiconductor processing sheet of the present invention.
The semiconductor processing sheet 1 </ b> C shown here is the same as the semiconductor processing sheet 1 </ b> A shown in FIG. 2 except that an intermediate layer 12 is further provided between the base material 11 and the film adhesive 13. It is. The support sheet 10 is a laminated body of the base material 11 and the intermediate layer 12, and the semiconductor processing sheet 1 </ b> C has a configuration in which the film adhesive 13 is laminated on the first surface 10 a of the support sheet 10.
 半導体加工用シート1Cにおいては、基材11の第1面11aに中間層12が積層され、中間層12の、基材11側とは反対側の面(本明細書においては、「第1面」と称することがある)12aの全面に、フィルム状接着剤13が積層され、フィルム状接着剤13の第1面13aの一部、すなわち、周縁部近傍の領域に、治具用接着剤層16が積層され、フィルム状接着剤13の第1面13aのうち、治具用接着剤層16が積層されていない面と、治具用接着剤層16のうち、フィルム状接着剤13と接触していない面16a(上面及び側面)に、剥離フィルム15が積層されている。 In the semiconductor processing sheet 1C, the intermediate layer 12 is laminated on the first surface 11a of the base material 11, and the surface of the intermediate layer 12 opposite to the base material 11 side (in this specification, “first surface The film adhesive 13 is laminated on the entire surface of 12a, and a jig adhesive layer is formed on a part of the first surface 13a of the film adhesive 13, that is, in the vicinity of the peripheral edge. 16 is laminated, and the surface of the first surface 13a of the film adhesive 13 on which the jig adhesive layer 16 is not laminated and the jig adhesive layer 16 out of contact with the film adhesive 13 The release film 15 is laminated on the surface 16a (upper surface and side surface) that is not formed.
 半導体加工用シート1Cにおいては、中間層12が前記剥離性改善層である場合には、例えば、中間層12の基材11側の層が前記樹脂層(図示略)となり、中間層12のフィルム状接着剤13側の層が前記剥離処理層(図示略)となる。したがって、この場合、中間層12の第1面12aは、剥離処理面となる。このような中間層12は、後述するフィルム状接着剤付き半導体チップのピックアップ時において、フィルム状接着剤(図4中のフィルム状接着剤13が切断されたもの)の剥離が容易である。 In the sheet for semiconductor processing 1C, when the intermediate layer 12 is the peelability improving layer, for example, the layer on the base material 11 side of the intermediate layer 12 becomes the resin layer (not shown), and the film of the intermediate layer 12 The layer on the side of the adhesive 13 becomes the release treatment layer (not shown). Therefore, in this case, the first surface 12a of the intermediate layer 12 is a peeling treatment surface. Such an intermediate layer 12 is easy to peel off the film-like adhesive (those obtained by cutting the film-like adhesive 13 in FIG. 4) when picking up a semiconductor chip with a film-like adhesive described later.
 図4に示す半導体加工用シート1Cは、剥離フィルム15が取り除かれた状態で、フィルム状接着剤13第1面13aに、半導体ウエハ(図示略)の裏面が貼付され、さらに、治具用接着剤層16の面16aのうち上面が、リングフレーム等の治具に貼付されて、使用される。 The semiconductor processing sheet 1C shown in FIG. 4 has a semiconductor wafer (not shown) attached to the first surface 13a of the film adhesive 13 with the release film 15 removed, and further bonded to a jig. The upper surface of the surface 16a of the agent layer 16 is used by being attached to a jig such as a ring frame.
 図5は、本発明の半導体加工用シートのさらに他の実施形態を模式的に示す断面図である。
 ここに示す半導体加工用シート1Dは、治具用接着剤層16を備えておらず、かつフィルム状接着剤の形状が異なる点以外は、図4に示す半導体加工用シート1Cと同じである。すなわち、半導体加工用シート1Dは、基材11を備え、基材11上に中間層12を備え、中間層12上にフィルム状接着剤23を備えている。支持シート10は、基材11及び中間層12の積層体であり、半導体加工用シート1Dも、支持シート10の第1面10a上にフィルム状接着剤23が積層された構成を有する。
FIG. 5 is a cross-sectional view schematically showing still another embodiment of the semiconductor processing sheet of the present invention.
The semiconductor processing sheet 1D shown here is the same as the semiconductor processing sheet 1C shown in FIG. 4 except that the jig processing adhesive layer 16 is not provided and the shape of the film adhesive is different. That is, the semiconductor processing sheet 1 </ b> D includes the base material 11, the intermediate layer 12 on the base material 11, and the film adhesive 23 on the intermediate layer 12. The support sheet 10 is a laminate of the base material 11 and the intermediate layer 12, and the semiconductor processing sheet 1 </ b> D also has a configuration in which the film adhesive 23 is laminated on the first surface 10 a of the support sheet 10.
 半導体加工用シート1Dにおいては、基材11の第1面11aに中間層12が積層され、中間層12の第1面12aの一部、すなわち、中央側の領域に、フィルム状接着剤23が積層されている。そして、中間層12の第1面12aのうち、フィルム状接着剤23が積層されていない領域と、フィルム状接着剤23のうち、中間層12と接触していない面23a(上面及び側面)の上に、剥離フィルム15が積層されている。 In the semiconductor processing sheet 1D, the intermediate layer 12 is laminated on the first surface 11a of the base material 11, and the film-like adhesive 23 is formed in a part of the first surface 12a of the intermediate layer 12, that is, in the central region. Are stacked. And the area | region where the film adhesive 23 is not laminated | stacked among the 1st surfaces 12a of the intermediate | middle layer 12, and the surface 23a (upper surface and side surface) which are not contacting the intermediate | middle layer 12 among the film adhesives 23. A release film 15 is laminated on the top.
 半導体加工用シート1Dを上方から見下ろして平面視したときに、フィルム状接着剤23は中間層12よりも表面積が小さく、例えば、円形状等の形状を有する。 When the semiconductor processing sheet 1D is viewed from above and viewed in plan, the film adhesive 23 has a surface area smaller than that of the intermediate layer 12, and has, for example, a circular shape.
 図5に示す半導体加工用シート1Dは、剥離フィルム15が取り除かれた状態で、フィルム状接着剤23の面23aのうち上面に、半導体ウエハ(図示略)の裏面が貼付され、さらに、中間層12の第1面12aのうち、フィルム状接着剤23が積層されていない領域が、リングフレーム等の治具に貼付されて、使用される。 In the semiconductor processing sheet 1D shown in FIG. 5, the back surface of the semiconductor wafer (not shown) is pasted on the upper surface of the surface 23a of the film adhesive 23 in a state where the release film 15 is removed. Of the 12 first surfaces 12a, a region where the film adhesive 23 is not laminated is attached to a jig such as a ring frame and used.
 なお、図5に示す半導体加工用シート1Dにおいては、中間層12の第1面12aのうち、フィルム状接着剤23が積層されていない領域に、図2及び図4に示すものと同様に治具用接着剤層が積層されていてもよい(図示略)。このような治具用接着剤層を備えた半導体加工用シート1Dは、図2及び図4に示す半導体加工用シートの場合と同様に、治具用接着剤層の面のうち上面が、リングフレーム等の治具に貼付されて、使用される。 In the semiconductor processing sheet 1D shown in FIG. 5, in the first surface 12a of the intermediate layer 12, the region where the film adhesive 23 is not laminated is cured in the same manner as shown in FIGS. A tool adhesive layer may be laminated (not shown). As in the case of the semiconductor processing sheet shown in FIGS. 2 and 4, the semiconductor processing sheet 1 </ b> D provided with such a jig adhesive layer has an upper surface of the surface of the jig adhesive layer. Used by sticking to a jig such as a frame.
 このように、半導体加工用シートは、支持シート及びフィルム状接着剤がどのような形態であっても、治具用接着剤層を備えたものであってもよい。ただし、通常は、図2及び図4に示すように、治具用接着剤層を備えた半導体加工用シートとしては、フィルム状接着剤上に治具用接着剤層を備えたものが好ましい。 Thus, the sheet for semiconductor processing may be provided with an adhesive layer for jigs regardless of the form of the support sheet and the film-like adhesive. However, normally, as shown in FIGS. 2 and 4, the semiconductor processing sheet provided with the jig adhesive layer preferably has a jig adhesive layer on the film adhesive.
 本発明の半導体加工用シートは、図2~図5に示すものに限定されず、本発明の効果を損なわない範囲内において、図2~図5に示すものの一部の構成が変更又は削除されたものや、これまでに説明したものにさらに他の構成が追加されたものであってもよい。 The semiconductor processing sheet of the present invention is not limited to that shown in FIGS. 2 to 5, and a part of the configuration shown in FIGS. 2 to 5 is changed or deleted within a range not impairing the effects of the present invention. In addition, another configuration may be added to what has been described so far.
 例えば、図2~図5に示す半導体加工用シートは、基材、中間層、フィルム状接着剤及び剥離フィルム以外の層が、任意の箇所に設けられていてもよい。
 また、半導体加工用シートにおいては、剥離フィルムと、この剥離フィルムと直接接触している層との間に、一部隙間が生じていてもよい。
 また、半導体加工用シートにおいては、各層の大きさや形状は、目的に応じて任意に調節できる。
For example, in the semiconductor processing sheets shown in FIGS. 2 to 5, layers other than the base material, the intermediate layer, the film adhesive, and the release film may be provided at any location.
Moreover, in the sheet | seat for semiconductor processing, some clearance gaps may arise between the peeling film and the layer which is directly contacting with this peeling film.
In the semiconductor processing sheet, the size and shape of each layer can be arbitrarily adjusted according to the purpose.
◇フィルム状接着剤及び半導体加工用シートの使用方法
 本発明のフィルム状接着剤及び半導体加工用シートは、フィルム状接着剤付き半導体チップの製造を経て、半導体パッケージ及び半導体装置を製造するために、使用できる。
◇ Method of using film-like adhesive and semiconductor processing sheet The film-like adhesive and semiconductor processing sheet of the present invention are used to manufacture a semiconductor package and a semiconductor device after manufacturing a semiconductor chip with a film-like adhesive. Can be used.
 支持シートを備えていないフィルム状接着剤は、半導体ウエハの裏面に貼付された後、例えば、必要に応じて剥離フィルムが取り除かれ、その露出面(換言すると、半導体ウエハに貼付されている側と反対側の面。本明細書においては、「第2面」と称することがある。)に、ダイシングシートが貼付される。このようにして得られた、ダイシングシート、フィルム状接着剤及び半導体ウエハがこの順に、これらの厚さ方向において積層されている積層構造体は、この後、公知のダイシング工程に供される。なお、ダイシングシート及びフィルム状接着剤の積層構造は、ダイシングダイボンディングシートと見做すことができる。 After the film-like adhesive not provided with the support sheet is affixed to the back surface of the semiconductor wafer, for example, the peeling film is removed as necessary, and the exposed surface (in other words, the side affixed to the semiconductor wafer) A dicing sheet is affixed to the opposite surface (sometimes referred to as a “second surface” in this specification). The laminated structure obtained by laminating the dicing sheet, the film adhesive, and the semiconductor wafer in this order in the thickness direction is then subjected to a known dicing process. The laminated structure of the dicing sheet and the film adhesive can be regarded as a dicing die bonding sheet.
 ダイシング工程を行うことによって、半導体ウエハは複数個の半導体チップへと分割されるとともに、フィルム状接着剤も半導体チップの外周に沿って切断され、この切断後のフィルム状接着剤を裏面に備えた半導体チップ(フィルム状接着剤付き半導体チップということがある)が得られる。 By performing the dicing process, the semiconductor wafer is divided into a plurality of semiconductor chips, and the film adhesive is also cut along the outer periphery of the semiconductor chip, and the film adhesive after the cutting is provided on the back surface. A semiconductor chip (sometimes referred to as a semiconductor chip with a film adhesive) is obtained.
 一方、前記半導体加工用シートは、すでにダイシングダイボンディングシートとしての構造を有している。したがって、半導体加工用シートが半導体ウエハの裏面に貼付された段階で、半導体加工用シート(ダイシングシート、フィルム状接着剤)及び半導体ウエハがこの順に、これらの厚さ方向において積層されている積層構造体を得た後は、上述のように、支持シートを備えていないフィルム状接着剤を用いて、その第2面にダイシングシートを貼付した場合と同様の方法で、以降、フィルム状接着剤付き半導体チップが得られる。 Meanwhile, the semiconductor processing sheet already has a structure as a dicing die bonding sheet. Therefore, when the semiconductor processing sheet is affixed to the back surface of the semiconductor wafer, the semiconductor processing sheet (dicing sheet, film adhesive) and the semiconductor wafer are stacked in this order in the thickness direction. After obtaining the body, as described above, using a film-like adhesive not provided with a support sheet, in the same manner as when a dicing sheet was attached to the second surface, and thereafter with a film-like adhesive A semiconductor chip is obtained.
 半導体ウエハのダイシングの方法は、公知の方法でよく、特に限定されない。
 半導体ウエハの好ましいダイシングの方法としては、例えば、ブレードを用いる方法(すなわち、ブレードダイシング)、レーザー照射により行う方法(すなわち、レーザーダイシング)、研磨剤を含む水の吹き付けにより行う方法(すなわち、ウォーターダイシング)等の、半導体ウエハを切り込む方法が挙げられる。
The method for dicing the semiconductor wafer may be a known method and is not particularly limited.
As a preferable dicing method of the semiconductor wafer, for example, a method using a blade (namely, blade dicing), a method performed by laser irradiation (namely, laser dicing), and a method performed by spraying water containing an abrasive (namely, water dicing). And a method of cutting a semiconductor wafer.
 フィルム状接着剤及び半導体加工用シートのいずれを用いた場合であっても、得られたフィルム状接着剤付き半導体チップは、この後、ダイシングシートから引き離されて(ピックアップされて)、フィルム状接着剤によって、基板の回路形成面にダイボンディングされる。以降は従来法と同様の方法で、半導体パッケージ及び半導体装置が製造される。
 例えば、必要に応じて、このダイボンディングされた半導体チップに、さらに半導体チップを少なくとも1個積層して、ワイヤボンディングを行った後、得られたもの全体を樹脂により封止することで、半導体パッケージが作製される。そして、この半導体パッケージを用いて、目的とする半導体装置が作製される。
 本発明のフィルム状接着剤を用いることで、得られる半導体パッケージは、信頼性が高いものとなる。
Regardless of whether the film adhesive or the semiconductor processing sheet is used, the obtained semiconductor chip with the film adhesive is then separated (picked up) from the dicing sheet and adhered in the film form. It is die-bonded to the circuit forming surface of the substrate by the agent. Thereafter, the semiconductor package and the semiconductor device are manufactured by the same method as the conventional method.
For example, if necessary, at least one semiconductor chip is further laminated on this die-bonded semiconductor chip, wire bonding is performed, and then the entire product is sealed with a resin, whereby a semiconductor package is obtained. Is produced. Then, a target semiconductor device is manufactured using this semiconductor package.
By using the film adhesive of the present invention, the obtained semiconductor package has high reliability.
 1つの側面として、本発明のフィルム状接着剤は、以下の特性を有するフィルム状接着剤である:
(I-1)前記フィルム状接着剤の40℃で168時間保存後の溶融粘度の初期検出温度をT168とし、前記フィルム状接着剤の前記保存前の溶融粘度の初期検出温度をTとしたとき、
 前記T168が50~78℃であり、
 前記Tが59~71℃であり、
 前記T168と前記Tとの差ΔT168が0~7℃であり;
(II-1)前記フィルム状接着剤の40℃で168時間保存後のゲル分率をW168とし、前記フィルム状接着剤の前記保存前のゲル分率をWとしたとき、
 前記W168が9~12%であり、
 前記Wが3~8%又は5~8%であり、
 前記W168と前記Wとから求められるゲル分率の変化率RW168が113~150%であり;かつ
(III-1)前記フィルム状接着剤の40℃で168時間保存後のJIS K7161:1994に準拠して測定した破断伸度をF168とし、前記フィルム状接着剤の前記保存前のJIS K7161:1994に準拠して測定した破断伸度をFとしたとき、
 前記F168が0~23%、又は5~23%であり、
 前記Fが700~800%であり、
 前記F168と前記Fとから求められる破断伸度の低下率RF168が560~700%である。
As one aspect, the film adhesive of the present invention is a film adhesive having the following properties:
(I-1) The initial detection temperature of the melt viscosity of the film adhesive after storage at 40 ° C. for 168 hours is T 168, and the initial detection temperature of the melt viscosity of the film adhesive before storage is T 0 . When
The T 168 is 50 to 78 ° C .;
The T 0 is 59 to 71 ° C .;
The difference ΔT 168 between the T 168 and the T 0 is 0-7 ° C .;
(II-1) When the gel fraction of the film adhesive after storage for 168 hours at 40 ° C. is W 168, and the gel fraction of the film adhesive before storage is W 0 ,
W 168 is 9-12 %,
W 0 is 3-8% or 5-8%,
The change rate RW 168 of the gel fraction obtained from the W 168 and the W 0 is 113 to 150%; and (III-1) JIS K7161: after the film adhesive is stored at 40 ° C. for 168 hours When the breaking elongation measured according to 1994 is F 168, and the breaking elongation measured according to JIS K7161: 1994 before the storage of the film adhesive is F 0 ,
The F 168 is 0 to 23%, or 5 to 23%,
The F 0 is 700 to 800%;
The decrease rate RF 168 of the elongation at break obtained from the F 168 and the F 0 is 560 to 700%.
 さらに、前記フィルム状接着剤は、フィルム状接着剤組成物から形成されており、
 前記フィルム状接着剤組成物は、重合体成分(a)、エポキシ系熱硬化性樹脂(b)、硬化促進剤(c)、充填材(d)及びカップリング剤(e)を含み;
 前記重合体成分(a)は、
アクリル酸n-ブチル(前記重合体成分(a)100質量部に対して、好ましくは10~15質量部)、アクリル酸メチル(前記重合体成分(a)100質量部に対して、好ましくは70~80質量部)、メタクリル酸グリシジル(前記重合体成分(a)100質量部に対して、好ましくは2~5質量部)、及びアクリル酸2-ヒドロキシエチル(前記重合体成分(a)100質量部に対して、好ましくは15~20質量部)を共重合してなるアクリル系樹脂、又は
アクリル酸n-ブチル(前記重合体成分(a)100質量部に対して、好ましくは40~50質量部)、アクリル酸エチル(前記重合体成分(a)100質量部に対して、好ましくは20~30質量部)、アクリロニトリル(前記重合体成分(a)100質量部に対して、好ましくは20~40質量部)、及びメタクリル酸グリシジル(前記重合体成分(a)100質量部に対して、好ましくは2~5質量部)を共重合してなるアクリル系樹脂であり;
 前記エポキシ系熱硬化性樹脂(b)は、エポキシ樹脂(b1)と熱硬化剤(b2)とからなり;
 前記エポキシ樹脂(b1)は、
ビスフェノールA型エポキシ樹脂及び多官能芳香族型(トリフェニレン型)エポキシ樹脂であり、又はビスフェノールF型エポキシ樹脂及びジシクロペンタジエン型エポキシ樹脂であり;
 前記熱硬化剤(b2)は、o-クレゾール型ノボラック樹脂であり;
 前記硬化促進剤(c)は、
5-ヒドロキシイソフタル酸(HIPA)1分子と2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール(2P4MHZ)2分子との包接化合物、又は2-フェニル-4,5-ジヒドロキシメチルイミダゾールであり;
 前記充填材(d)は球状シリカ(好ましくは平均粒子径が0.01~0.05μm)であり;かつ
 前記カップリング剤(e)は、エポキシ基、メチル基及びメトキシ基を有するオリゴマー型シランカップリング剤であり、又はエポキシ基、メチル基及びメトキシ基を有するオリゴマー型シランカップリング剤と3-グリシドキシプロピルトリメトキシシランとグリシドキシプロピルトリエトキシシランとである、
 フィルム状接着剤であってもよい。
Furthermore, the film adhesive is formed from a film adhesive composition,
The film adhesive composition includes a polymer component (a), an epoxy thermosetting resin (b), a curing accelerator (c), a filler (d), and a coupling agent (e);
The polymer component (a) is:
N-Butyl acrylate (preferably 10 to 15 parts by mass with respect to 100 parts by mass of the polymer component (a)), methyl acrylate (preferably 70 to 100 parts by mass of the polymer component (a)) To 80 parts by mass), glycidyl methacrylate (preferably 2 to 5 parts by mass with respect to 100 parts by mass of the polymer component (a)), and 2-hydroxyethyl acrylate (100 parts by mass of the polymer component (a)). An acrylic resin obtained by copolymerizing 15 to 20 parts by mass with respect to parts, or n-butyl acrylate (preferably 40 to 50 parts by mass with respect to 100 parts by mass of the polymer component (a)). Parts), ethyl acrylate (preferably 20 to 30 parts by weight with respect to 100 parts by weight of the polymer component (a)), and acrylonitrile (with respect to 100 parts by weight of the polymer component (a)). Ku 20 to 40 parts by weight) and for glycidyl methacrylate (the polymer component (a) 100 parts by weight, preferably acrylic resin obtained by copolymerizing 2 to 5 parts by weight);
The epoxy thermosetting resin (b) comprises an epoxy resin (b1) and a thermosetting agent (b2);
The epoxy resin (b1) is
A bisphenol A type epoxy resin and a polyfunctional aromatic type (triphenylene type) epoxy resin, or a bisphenol F type epoxy resin and a dicyclopentadiene type epoxy resin;
The thermosetting agent (b2) is an o-cresol type novolac resin;
The curing accelerator (c) is
An inclusion compound of one molecule of 5-hydroxyisophthalic acid (HIPA) and two molecules of 2-phenyl-4-methyl-5-hydroxymethylimidazole (2P4MHZ), or 2-phenyl-4,5-dihydroxymethylimidazole;
The filler (d) is spherical silica (preferably having an average particle size of 0.01 to 0.05 μm); and the coupling agent (e) is an oligomeric silane having an epoxy group, a methyl group and a methoxy group A coupling agent, or an oligomeric silane coupling agent having an epoxy group, a methyl group and a methoxy group, and 3-glycidoxypropyltrimethoxysilane and glycidoxypropyltriethoxysilane.
A film adhesive may be used.
 さらに、前記フィルム状接着剤は、
 前記重合体成分(a)の含有量が、前記フィルム状接着剤組成物を構成する全ての成分の総含有量(すなわち、前記フィルム状接着剤組成物の総質量)に対して、7~12質量%であり;
 前記メタクリル酸グリシジルから誘導される構成単位の含有量の割合が、前記重合体成分(a)を構成する構成単位の全量に対して、2~5質量%であり;
 前記エポキシ系熱硬化性樹脂(b)の含有量が、前記重合体成分(a)の含有量100質量部に対して、600~1000質量部であり;
 前記硬化促進剤(c)の含有量が、前記エポキシ系熱硬化性樹脂(b)の含有量100質量部に対して、0.1~2質量部であり;
 前記充填材(d)の含有量が、前記フィルム状接着剤組成物を構成する全ての成分の総含有量(すなわち、前記フィルム状接着剤組成物の総質量)に対して、15~30質量%であり;かつ
 前記カップリング剤(e)の含有量が、前記重合体成分(a)及び前記エポキシ系熱硬化性樹脂(b)の総含有量100質量部に対して、0.1~5質量部である、
 フィルム状接着剤であってもよい。
Furthermore, the film adhesive is
The content of the polymer component (a) is 7 to 12 with respect to the total content of all the components constituting the film adhesive composition (that is, the total mass of the film adhesive composition). % By weight;
The proportion of the content of the structural unit derived from the glycidyl methacrylate is 2 to 5% by mass with respect to the total amount of the structural unit constituting the polymer component (a);
The content of the epoxy thermosetting resin (b) is 600 to 1000 parts by mass with respect to 100 parts by mass of the polymer component (a);
The content of the curing accelerator (c) is 0.1 to 2 parts by mass with respect to 100 parts by mass of the epoxy thermosetting resin (b);
The content of the filler (d) is 15 to 30 masses with respect to the total content of all components constituting the film adhesive composition (that is, the total mass of the film adhesive composition). And the content of the coupling agent (e) is from 0.1 to 100 parts by mass with respect to 100 parts by mass of the total content of the polymer component (a) and the epoxy thermosetting resin (b). 5 parts by mass,
A film adhesive may be used.
 以下、具体的実施例により、本発明についてより詳細に説明する。ただし、本発明は、以下に示す実施例に、何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the present invention is not limited to the following examples.
<モノマー>
 本実施例及び比較例において、略記しているモノマーの正式名称を、以下に示す。
 BA:アクリル酸n-ブチル
 MA:アクリル酸メチル
 HEA:アクリル酸2-ヒドロキシエチル
 GMA:メタクリル酸グリシジル
 EA:アクリル酸エチル
 AN:アクリロニトリル
<Monomer>
In the examples and comparative examples, the formal names of the monomers abbreviated are shown below.
BA: n-butyl acrylate MA: methyl acrylate HEA: 2-hydroxyethyl acrylate GMA: glycidyl methacrylate EA: ethyl acrylate AN: acrylonitrile
<接着剤組成物の製造原料>
 本実施例及び比較例において、接着剤組成物の製造に用いた原料を以下に示す。
<Production raw material of adhesive composition>
In the examples and comparative examples, the raw materials used for the production of the adhesive composition are shown below.
[重合体成分(a)]
 (a)-1:BA(10質量部)、MA(70質量部)、GMA(5質量部)及びHEA(15質量部)を共重合してなるアクリル系樹脂(重量平均分子量350000、ガラス転移温度-1℃)。
 (a)-2:BA(40質量部)、EA(25質量部)、AN(30質量部)及びGMA(5質量部)を共重合してなるアクリル系樹脂(重量平均分子量700000、ガラス転移温度-14℃)。
 (a)-3:BA(55質量部)、MA(10質量部)、GMA(20質量部)及びHEA(15質量部)を共重合してなるアクリル系樹脂(重量平均分子量800000、ガラス転移温度-28℃)。
 (a)-4:熱可塑性樹脂、ポリエステル(東洋紡社製「バイロン220」、重量平均分子量35000、ガラス転移温度53℃)
[エポキシ樹脂(b1)]
 (b1)-1:ビスフェノールA型エポキシ樹脂(三菱化学社製「JER828」、エポキシ当量184~194g/eq)
 (b1)-2:多官能芳香族型(トリフェニレン型)エポキシ樹脂(日本化薬社製「EPPN-502H」、エポキシ当量167g/eq、軟化点54℃、重量平均分子量1200)
 (b1)-3:ビスフェノールF型エポキシ樹脂(三菱化学社製「YL983U」、エポキシ当量170g/eq)
 (b1)-4:ジシクロペンタジエン型エポキシ樹脂(日本化薬社製「XD-1000-L」、エポキシ当量248g/eq)
 (b1)-5:液状ビスフェノールA型エポキシ樹脂及びアクリルゴム微粒子の混合物(日本化薬社製「BPA328」、エポキシ当量235g/eq)
 (b1)-6:ジシクロペンタジエン型エポキシ樹脂(DIC社製「エピクロンHP-7200HH」、エポキシ当量255~260g/eq)
[熱硬化剤(b2)]
 (b2)-1:o-クレゾール型ノボラック樹脂(DIC社製「フェノライトKA-1160」)
 (b2)-2:ノボラック型フェノール樹脂(o-クレゾール型以外のノボラック樹脂、昭和電工社製「BRG-556」)
 (b2)-3:ジシアンジアミド(ADEKA社製「アデカハードナーEH-3636AS」、固体分散型潜在性硬化剤、活性水素量21g/eq)
[硬化促進剤(c)]
 (c)-1:5-ヒドロキシイソフタル酸(HIPA)1分子と2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール(2P4MHZ)2分子との包接化合物(日本曹達社製「HIPA-2P4MHZ」)
 (c)-2:2-フェニル-4,5-ジヒドロキシメチルイミダゾール(四国化成工業社製「キュアゾール2PHZ-PW」)
[充填材(d)]
 (d)-1:エポキシ基で修飾された球状シリカ(アドマテックス社製「アドマナノ YA050C-MKK」、平均粒子径50nm)
 (d)-2: シリカフィラー(アドマテックス社製「SC2050MA」、エポキシ系化合物で表面修飾されたシリカフィラー、平均粒子径500nm)
[カップリング剤(e)]
 (e)-1:3-グリシドキシプロピルトリメトキシシラン(信越シリコーン社製「KBM-403」、シランカップリング剤、メトキシ当量12.7mmol/g、分子量236.3)
 (e)-2:3-グリシドキシプロピルトリエトキシシラン(信越シリコーン社製「KBE-403」、シランカップリング剤、メトキシ当量8.1mmol/g、分子量278.4)
 (e)-3:エポキシ基、メチル基及びメトキシ基を有するオリゴマー型シランカップリング剤(信越シリコーン社製「X-41-1056」、エポキシ当量280g/eq)
 (e)-4:トリメトキシ[3-(フェニルアミノ)プロピル]シラン(東レ・ダウ社製「SZ6083」、シランカップリング剤)
 (e)-5:3-グリシドキシプロピルトリメトキシシランを付加させたシリケート化合物(三菱化学社製「MKCシリケートMSEP2」)
[架橋剤(f)]
 (f)-1:トリメチロールプロパンのトリレンジイソシアネート三量体付加物(トーヨーケム社製「BHS8515」)
[エネルギー線硬化性樹脂(g)]
 (g)-1:トリシクロデカンジメチロールジアクリレート(日本化薬社製「KAYARAD R-684」、紫外線硬化性樹脂、分子量304)
[光重合開始剤(h)]
 (h)-1:1-ヒドロキシシクロヘキシルフェニルケトン(BASF社製「IRGACURE(登録商標)184」)
 (h)-2:2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1(BASF社製「IRGACURE(登録商標)369」)
[Polymer component (a)]
(A) -1: Acrylic resin (weight average molecular weight 350,000, glass transition) obtained by copolymerizing BA (10 parts by mass), MA (70 parts by mass), GMA (5 parts by mass) and HEA (15 parts by mass) Temperature-1 ° C).
(A) -2: Acrylic resin (weight average molecular weight 700,000, glass transition) obtained by copolymerizing BA (40 parts by mass), EA (25 parts by mass), AN (30 parts by mass) and GMA (5 parts by mass) Temperature -14 ° C).
(A) -3: Acrylic resin obtained by copolymerizing BA (55 parts by mass), MA (10 parts by mass), GMA (20 parts by mass) and HEA (15 parts by mass) (weight average molecular weight 800000, glass transition Temperature -28 ° C).
(A) -4: Thermoplastic resin, polyester (Toyobo “Byron 220”, weight average molecular weight 35000, glass transition temperature 53 ° C.)
[Epoxy resin (b1)]
(B1) -1: Bisphenol A type epoxy resin (“JER828” manufactured by Mitsubishi Chemical Corporation, epoxy equivalent of 184 to 194 g / eq)
(B1) -2: Polyfunctional aromatic type (triphenylene type) epoxy resin (“EPPN-502H” manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent 167 g / eq, softening point 54 ° C., weight average molecular weight 1200)
(B1) -3: Bisphenol F type epoxy resin (“YL983U” manufactured by Mitsubishi Chemical Corporation, epoxy equivalent 170 g / eq)
(B1) -4: Dicyclopentadiene type epoxy resin (“XD-1000-L” manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent 248 g / eq)
(B1) -5: Mixture of liquid bisphenol A type epoxy resin and acrylic rubber fine particles (“BPA328” manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent 235 g / eq)
(B1) -6: Dicyclopentadiene type epoxy resin (“Epiclon HP-7200HH” manufactured by DIC, epoxy equivalent of 255 to 260 g / eq)
[Thermosetting agent (b2)]
(B2) -1: o-cresol type novolak resin (“Phenolite KA-1160” manufactured by DIC)
(B2) -2: Novolac type phenolic resin (novolak resin other than o-cresol type, “BRG-556” manufactured by Showa Denko KK)
(B2) -3: Dicyandiamide (“ADEKA HARDNER EH-3636AS” manufactured by ADEKA, solid dispersion type latent curing agent, active hydrogen amount 21 g / eq)
[Curing accelerator (c)]
(C) -1: an inclusion compound of one molecule of 5-hydroxyisophthalic acid (HIPA) and two molecules of 2-phenyl-4-methyl-5-hydroxymethylimidazole (2P4MHZ) (“HIPA-2P4MHZ” manufactured by Nippon Soda Co., Ltd.) )
(C) -2: 2-phenyl-4,5-dihydroxymethylimidazole (“Cureazole 2PHZ-PW” manufactured by Shikoku Chemicals)
[Filler (d)]
(D) -1: Spherical silica modified with an epoxy group (“Admanano YA050C-MKK” manufactured by Admatechs, average particle size 50 nm)
(D) -2: Silica filler (“SC2050MA” manufactured by Admatechs, silica filler surface-modified with an epoxy compound, average particle diameter of 500 nm)
[Coupling agent (e)]
(E) -1: 3-Glycidoxypropyltrimethoxysilane (“KBM-403” manufactured by Shin-Etsu Silicone Co., Ltd., silane coupling agent, methoxy equivalent 12.7 mmol / g, molecular weight 236.3)
(E) -2: 3-Glycidoxypropyltriethoxysilane (“KBE-403” manufactured by Shin-Etsu Silicone Co., Ltd., silane coupling agent, methoxy equivalent 8.1 mmol / g, molecular weight 278.4)
(E) -3: Oligomer type silane coupling agent having an epoxy group, a methyl group and a methoxy group (“X-41-1056” manufactured by Shin-Etsu Silicone Co., Ltd., epoxy equivalent: 280 g / eq)
(E) -4: Trimethoxy [3- (phenylamino) propyl] silane (“SZ6083” manufactured by Toray Dow Co., silane coupling agent)
(E) -5: A silicate compound to which 3-glycidoxypropyltrimethoxysilane is added (“MKC silicate MSEP2” manufactured by Mitsubishi Chemical Corporation)
[Crosslinking agent (f)]
(F) -1: Tolylene diisocyanate trimer adduct of trimethylolpropane (“BHS8515” manufactured by Toyochem)
[Energy ray curable resin (g)]
(G) -1: Tricyclodecane dimethylol diacrylate (“KAYARAD R-684” manufactured by Nippon Kayaku Co., Ltd., UV curable resin, molecular weight 304)
[Photoinitiator (h)]
(H) -1: 1-hydroxycyclohexyl phenyl ketone (“IRGACURE (registered trademark) 184” manufactured by BASF)
(H) -2: 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 (“IRGACURE® 369” manufactured by BASF)
[実施例1]
<<フィルム状接着剤の製造>>
<接着剤組成物の製造>
 重合体成分(a)-1(10質量部)、エポキシ樹脂(b1)-1(20質量部)、エポキシ樹脂(b1)-2(25質量部)、熱硬化剤(b2)-1(25質量部)、硬化促進剤(c)-1(0.3質量部)、充填材(d)-1(20質量部)、カップリング剤(e)-1(0.3質量部)、カップリング剤(e)-2(0.4質量部)及びカップリング剤(e)-3(0.5質量部)をメチルエチルケトンに溶解又は分散させて、23℃で撹拌することにより、固形分濃度が55質量%である接着剤組成物を得た。なお、ここに示すメチルエチルケトン以外の成分の配合量は、すべて固形分換算値である。
[Example 1]
<< Manufacture of film adhesive >>
<Manufacture of adhesive composition>
Polymer component (a) -1 (10 parts by mass), epoxy resin (b1) -1 (20 parts by mass), epoxy resin (b1) -2 (25 parts by mass), thermosetting agent (b2) -1 (25 Parts by weight), curing accelerator (c) -1 (0.3 parts by weight), filler (d) -1 (20 parts by weight), coupling agent (e) -1 (0.3 parts by weight), cup The solid component concentration is obtained by dissolving or dispersing the ring agent (e) -2 (0.4 parts by mass) and the coupling agent (e) -3 (0.5 parts by mass) in methyl ethyl ketone and stirring at 23 ° C. An adhesive composition having a content of 55% by mass was obtained. In addition, all the compounding quantities of components other than the methyl ethyl ketone shown here are solid content conversion values.
<フィルム状接着剤の製造>
 ポリエチレンテレフタレート(PET)製フィルムの片面がシリコーン処理により剥離処理されている剥離フィルム(リンテック社製「SP-PET381031H」、厚さ38μm)の前記剥離処理面に、上記で得られた接着剤組成物を塗工し、100℃で2分間加熱乾燥させることにより、厚さ20μmのフィルム状接着剤を形成した。
<Manufacture of film adhesive>
The adhesive composition obtained above on the release-treated surface of a release film (“SP-PET381031H” manufactured by Lintec Co., Ltd., thickness 38 μm) in which one side of a polyethylene terephthalate (PET) film is subjected to release treatment by silicone treatment Was applied and dried at 100 ° C. for 2 minutes to form a film adhesive having a thickness of 20 μm.
<<半導体加工用シートの製造>>
 上記で得られたフィルム状接着剤の、剥離フィルムを備えている側とは反対側の表面(露出面)に、基材としてポリエチレン製フィルム(厚さ100μm)を貼り合せることにより、基材、フィルム状接着剤及び剥離フィルムがこの順に、これらの厚さ方向において積層されて構成された、半導体加工用シートを得た。
<< Manufacture of semiconductor processing sheets >>
By bonding a polyethylene film (thickness: 100 μm) as a base material to the surface (exposed surface) opposite to the side provided with the release film of the film-like adhesive obtained above, a base material, A sheet for semiconductor processing was obtained, in which a film adhesive and a release film were laminated in this order in the thickness direction.
<<フィルム状接着剤の評価>>
<溶融粘度の初期検出温度差ΔT168の算出>
 上記で得られたフィルム状接着剤から、直ちに、直径10mm、高さ20mmの円柱状の試験片を作製した。
 キャピラリーレオメーター(島津製作所社製「CFT-100D」)の測定箇所に、この作製直後の試験片をセットし、試験片に5.10N(50kgf)の力を加えながら、試験片を昇温速度10℃/minで50℃から120℃まで昇温させた。そして、ダイに設けられた直径0.5mm、高さ1.0mmの穴からの、試験片の押出しが開始されたとき、すなわち、試験片の溶融粘度の検出が開始された温度(初期検出温度T)(℃)を求めた。結果を表1に示す。
<< Evaluation of film adhesive >>
<Calculation of initial detected temperature difference ΔT 168 of melt viscosity>
From the film adhesive obtained above, a cylindrical test piece having a diameter of 10 mm and a height of 20 mm was immediately prepared.
Place the test piece immediately after the preparation at the measurement point of the capillary rheometer (“CFT-100D” manufactured by Shimadzu Corporation), and apply the force of 5.10 N (50 kgf) to the test piece. The temperature was raised from 50 ° C. to 120 ° C. at 10 ° C./min. Then, when the extrusion of the test piece from the hole of 0.5 mm in diameter and 1.0 mm in height provided in the die is started, that is, the temperature at which the detection of the melt viscosity of the test piece is started (initial detection temperature). T 0 ) (° C.) was determined. The results are shown in Table 1.
 別途、上記で得られたフィルム状接着剤を、その作製直後から、空気雰囲気下の暗所において、40℃で168時間(1週間)静置保存した。
 この保存後のフィルム状接着剤から、直ちに、上記と同じ円柱状の試験片を作製した。
 そして、上記の作製直後のフィルム状接着剤から作製した試験片の場合と同じ方法で、この保存後のフィルム状接着剤から作製した試験片について、溶融粘度の検出が開始された温度(初期検出温度T168)(℃)を求めた。さらに、T168とTとの差ΔT168(℃)を算出した。これらの結果を表1に示す。
Separately, the film-like adhesive obtained above was stored at 168 hours (one week) at 40 ° C. in a dark place in an air atmosphere immediately after its production.
The same cylindrical test piece as described above was immediately produced from the film-like adhesive after storage.
Then, in the same manner as in the case of the test piece prepared from the film-like adhesive immediately after the preparation, the temperature at which the detection of the melt viscosity was started (initial detection) for the test piece prepared from the film-like adhesive after storage. Temperature T 168 ) (° C.) was determined. Further, a difference ΔT 168 (° C.) between T 168 and T 0 was calculated. These results are shown in Table 1.
<ゲル分率の変化率RW168の算出>
 上記で得られたフィルム状接着剤から、直ちに、大きさが2.5cm×4.0cm×600μmのシート状の試験片(0.5g)を作製した。
 ポリエステル製の♯200メッシュにより、この作製直後の試験片を包み、この状態の試験片を23℃のメチルエチルケトン(300mL)中に24時間浸漬した。
 次いで、メチルエチルケトン中からメッシュと共に試験片を取り出し、メッシュを取り除いた試験片を120℃で1時間乾燥させた。
 この乾燥後の試験片を、23℃、相対湿度50%の環境下で24時間静置保存した後、試験片の質量を測定した。そして、この測定値と、浸漬前の試験片の質量(0.5g)と、から、ゲル分率W(%)を算出した。結果を表1に示す。
<Calculation of change rate RW 168 of gel fraction>
A sheet-like test piece (0.5 g) having a size of 2.5 cm × 4.0 cm × 600 μm was immediately prepared from the film-like adhesive obtained above.
The test piece immediately after the production was wrapped with a # 200 mesh made of polyester, and the test piece in this state was immersed in methyl ethyl ketone (300 mL) at 23 ° C. for 24 hours.
Next, the test piece was taken out of the methyl ethyl ketone together with the mesh, and the test piece from which the mesh was removed was dried at 120 ° C. for 1 hour.
The dried test piece was stored for 24 hours in an environment of 23 ° C. and 50% relative humidity, and then the mass of the test piece was measured. Then, the measured value, the mass before immersion of the test piece and (0.5 g), from the calculated gel fraction W 0 (percent). The results are shown in Table 1.
 別途、上記で得られたフィルム状接着剤を、その作製直後から、空気雰囲気下の暗所において、40℃で168時間(1週間)静置保存した。
 この保存後のフィルム状接着剤から、直ちに、上記と同じシート状の試験片を作製した。そして、上記の作製直後のフィルム状接着剤から作製した試験片の場合と同じ方法で、この保存後のフィルム状接着剤から作製した試験片について、ゲル分率W168(%)を算出した。さらに、前記式(i)に従って、試験片のゲル分率の変化率RW168(%)を算出した。これらの結果を表1に示す。
Separately, the film-like adhesive obtained above was stored at 168 hours (one week) at 40 ° C. in a dark place in an air atmosphere immediately after its production.
The same sheet-like test piece as described above was immediately produced from the film-like adhesive after storage. And gel fraction W168 (%) was computed about the test piece produced from the film-like adhesive after this preservation | save by the same method as the case of the test piece produced from said film-like adhesive immediately after preparation. Furthermore, according to the formula (i), the rate of change RW 168 (%) of the gel fraction of the test piece was calculated. These results are shown in Table 1.
<破断伸度の低下率RF168の算出>
 JIS K7161:1994に準拠して、上記で得られたフィルム状接着剤から直ちに試験片を作製し、この作製直後の試験片について、破断伸度F(%)を測定した。結果を表1に示す。
<Calculation of reduction ratio RF 168 elongation at break>
In accordance with JIS K7161: 1994, a test piece was immediately produced from the film-like adhesive obtained above, and the breaking elongation F 0 (%) of the test piece immediately after the production was measured. The results are shown in Table 1.
 別途、上記で得られたフィルム状接着剤を、その作製直後から、空気雰囲気下の暗所において、40℃で168時間(1週間)静置保存した。
 次いで、直ちに、JIS K7161:1994(ISO 527-1:1993)に準拠して、この保存後のフィルム状接着剤から試験片を作製し、この試験片について、破断伸度F168(%)を測定した。さらに、前記式(ii)に従って、試験片の破断伸度の低下率RF168(%)を算出した。これらの結果を表1に示す。
Separately, the film-like adhesive obtained above was stored at 168 hours (one week) at 40 ° C. in a dark place in an air atmosphere immediately after its production.
Then, immediately, in accordance with JIS K7161: 1994 (ISO 527-1: 1993), a test piece was prepared from the film-like adhesive after storage, and the elongation at break F 168 (%) was measured for this test piece. It was measured. Furthermore, the reduction rate RF 168 (%) of the breaking elongation of the test piece was calculated according to the above formula (ii). These results are shown in Table 1.
<半導体パッケージの信頼性の評価>
(フィルム状接着剤付き半導体チップの製造)
 テープ貼合装置 (リンテック社製「RAD3510」)を用いて、常温下で、8インチシリコンミラーウエハ(厚さ720μm)のミラー面に、表面保護テープ(リンテック社製「Adwill E-3125KN)を貼付した。そして、グラインダー(DISCO社製「DFG8760」)を用いて、シリコンウエハの、この表面保護テープを貼付した面とは反対側の面(すなわち裏面)を研削した。このときの研削は、シリコンウエハの厚さが50μmになるまで行い、研削面をドライポリッシュ仕上げとした。
<Evaluation of semiconductor package reliability>
(Manufacture of semiconductor chip with film adhesive)
Surface protection tape (“Adwill E-3125KN” manufactured by Lintec) is applied to the mirror surface of an 8-inch silicon mirror wafer (thickness: 720 μm) at room temperature using a tape bonding device (“RAD3510” manufactured by Lintec). Then, using a grinder (“DFG8760” manufactured by DISCO), the surface of the silicon wafer opposite to the surface to which the surface protective tape was applied (ie, the back surface) was ground. The grinding at this time was performed until the thickness of the silicon wafer reached 50 μm, and the ground surface was dry-polished.
 次いで、上記で得られた半導体加工用シートにおいて、剥離フィルムを取り除いた。そして、このシリコンミラーウエハの研削面(裏面)に、ラミネート装置(大成ラミネーター社製「VA-400」)を用いて、半導体加工用シートを、そのフィルム状接着剤によって貼付した。このとき、半導体加工用シートは、60℃に加熱して、貼付速度0.6m/min、貼付圧力0.5MPaの条件で貼付した。 Next, the release film was removed from the semiconductor processing sheet obtained above. Then, using a laminating apparatus (“VA-400” manufactured by Taisei Laminator Co., Ltd.), a semiconductor processing sheet was attached to the ground surface (back surface) of the silicon mirror wafer with the film adhesive. At this time, the semiconductor processing sheet was heated to 60 ° C. and pasted under conditions of a pasting speed of 0.6 m / min and a pasting pressure of 0.5 MPa.
 次いで、シリコンミラーウエハに貼付した後の半導体加工用シートのうち、基材をフィルム状接着剤から取り除いた。そして、新たに生じたフィルム状接着剤の露出面に、ラミネート装置(大成ラミネーター社製「VA-400」)を用いて、エキスパンドテープ(リンテック社製「ADWILL DG889SO5」)を貼付した。このとき、エキスパンドテープは、常温下で、貼付速度0.6m/min、貼付圧力0.5MPaの条件で貼付した。 Next, the base material was removed from the film-like adhesive of the semiconductor processing sheet after being attached to the silicon mirror wafer. Then, an expanded tape (“ADWILL DG889SO5” manufactured by Lintec) was attached to the exposed surface of the newly formed film adhesive using a laminating apparatus (“VA-400” manufactured by Taisei Laminator). At this time, the expanded tape was applied at normal temperature under the conditions of an application speed of 0.6 m / min and an application pressure of 0.5 MPa.
 次いで、エキスパンドテープのうち、フィルム状接着剤に貼付されていない周縁部近傍の露出面に、リングフレーム固定用両面テープ(リンテック社製「ADWILL G-01DF」)を貼付した。そして、エキスパンドテープ、フィルム状接着剤及びシリコンミラーウエハがこの順に、これらの厚さ方向において積層された第1積層構造体を、この両面テープによって、リングフレームに固定した。 Next, a double-sided tape for fixing a ring frame (“ADWILL G-01DF * ” manufactured by Lintec) was attached to an exposed surface in the vicinity of the peripheral edge of the expanded tape that was not attached to the film adhesive. Then, the first laminated structure in which the expanded tape, the film adhesive, and the silicon mirror wafer were laminated in this order in the thickness direction was fixed to the ring frame with the double-sided tape.
 次いで、シリコンミラーウエハのミラー面から、前記表面保護テープを取り除き、ダイシング装置(Disco社製「DFD6361」)を用いてダイシングすることにより、シリコンミラーウエハを分割するとともに、フィルム状接着剤も切断し、大きさが8mm×8mmのシリコンチップを得た。このときのダイシングは、ダイシングブレードの移動速度を50mm/sec、ダイシングブレードの回転数を40000rpmとし、エキスパンドテープに対して、そのフィルム状接着剤の貼付面から20μmの深さまでダイシングブレードで切り込むことにより行った。
 以上により、裏面に切断後のフィルム状接着剤を備えた複数個のシリコンチップ(換言すると、複数個のフィルム状接着剤付きシリコンチップ)が、フィルム状接着剤によって、エキスパンドテープ上に整列した状態で固定されている、第2積層構造体を得た。
Next, the surface protection tape is removed from the mirror surface of the silicon mirror wafer, and the silicon mirror wafer is divided by dicing using a dicing apparatus (“DFD6361” manufactured by Disco), and the film adhesive is also cut. A silicon chip having a size of 8 mm × 8 mm was obtained. In this dicing, the moving speed of the dicing blade is 50 mm / sec, the rotational speed of the dicing blade is 40,000 rpm, and the expanded tape is cut with a dicing blade to a depth of 20 μm from the adhesive surface of the film adhesive. went.
As described above, a plurality of silicon chips (in other words, a plurality of silicon chips with a film-like adhesive) provided with a cut film-like adhesive on the back surface are aligned on the expanded tape by the film-like adhesive. The 2nd laminated structure fixed by is obtained.
(半導体パッケージの製造)
 基板として、銅箔張り積層板(三菱ガス化学社製「HL832NX-A」)の銅箔(厚さ18μm)に回路パターンが形成され、この回路パターン上にソルダーレジスト(太陽インキ社製「PSR-4000AUS308」)の層が形成されている基板(シーマ電子社製「LN001E-001 PCB(Au)AUS308」)を用意した。
(Manufacture of semiconductor packages)
A circuit pattern is formed on a copper foil (thickness 18 μm) of a copper foil-clad laminate (“HL832NX-A” manufactured by Mitsubishi Gas Chemical Company) as a substrate, and a solder resist (“PSR-” manufactured by Taiyo Ink Co., Ltd.) is formed on this circuit pattern. A substrate (“LN001E-001 PCB (Au) AUS308” manufactured by CIMA ELECTRONICS) was prepared.
 一方、ピックアップ・ダイボンディング装置(キャノンマシナリー社製「BESTEM D02」)のエキスパンドユニットに、上記で得られた第2積層構造体を設置した。
 次いで、5本のピンにより、突上げ速度300mm/min、突上げ量200μmの条件で、第2積層構造体をそのエキスパンドテープ側から突き上げ、さらに、大きさが8mm×8mmのコレットを用いて、フィルム状接着剤付きシリコンチップをエキスパンドテープから引き離すことによりピックアップした。
On the other hand, the second laminated structure obtained above was installed in an expanding unit of a pickup / die bonding apparatus (“BESTEM D02” manufactured by Canon Machinery Co., Ltd.).
Next, with the five pins, the second laminated structure was pushed up from the expanded tape side under the conditions of a push-up speed of 300 mm / min and a push-up amount of 200 μm, and further, using a collet with a size of 8 mm × 8 mm, The silicon chip with film adhesive was picked up by pulling it away from the expanded tape.
 次いで、ピックアップしたフィルム状接着剤付きシリコンチップを、前記基板にボンディングした。このときのボンディングは、120℃に加熱したフィルム状接着剤付きシリコンチップに対して、2.45N(250gf)の力を0.5秒加えることで行った。 Next, the picked up silicon chip with film adhesive was bonded to the substrate. Bonding at this time was performed by applying a force of 2.45 N (250 gf) to the silicon chip with a film adhesive heated to 120 ° C. for 0.5 seconds.
 次いで、封止装置(アピックヤマダ社製「MPC-06M TriAl Press」)を用いて、ボンディング後のシリコンチップ上に、封止樹脂(京セラケミカル社製「KE-G1250」)からなる層を形成した。そして、この封止樹脂を硬化させて、厚さ400μmの封止層を形成することにより、封止基板を得た。このときの封止樹脂の硬化は、175℃に加熱した封止樹脂に7MPaの圧力を2分加えることにより行った。 Next, a layer made of a sealing resin (“KE-G1250” manufactured by Kyocera Chemical Co., Ltd.) was formed on the silicon chip after bonding using a sealing device (“MPC-06M TriAl Press” manufactured by Apic Yamada). And this sealing resin was hardened and the sealing substrate was obtained by forming the 400-micrometer-thick sealing layer. The curing of the sealing resin at this time was performed by applying a pressure of 7 MPa to the sealing resin heated to 175 ° C. for 2 minutes.
 次いで、この封止基板にダイシングテープ(リンテック社製「adwill D-510T」)を貼付し、ダイシング装置(Disco社製「DFD6361」)を用いて、ダイシングブレードの回転数を4000rpmとして、この封止基板をダイシングすることにより、大きさが15mm×15mmの半導体パッケージを得た。 Next, a dicing tape (“adwill D-510T” manufactured by Lintec Co., Ltd.) is attached to this sealing substrate, and this dicing blade is rotated at 4000 rpm using a dicing apparatus (“DFD6361” manufactured by Disco). By dicing the substrate, a semiconductor package having a size of 15 mm × 15 mm was obtained.
(半導体パッケージの信頼性の評価)
 上記で得られた半導体パッケージに対して、直ちに、最高温度を260℃として1分間加熱するIRリフローを3回行った。このときのIRリフローは、卓上リフロー炉(千住金属工業社製「STR-2010N2M」)を用いて行った。
(Evaluation of semiconductor package reliability)
The semiconductor package obtained above was immediately subjected to IR reflow three times with a maximum temperature of 260 ° C. and heating for 1 minute. The IR reflow at this time was performed using a desktop reflow furnace (“STR-2010N2M” manufactured by Senju Metal Industry Co., Ltd.).
 次いで、超音波顕微鏡(Sonoscan社製「D-9600」)を用いて、このIRリフロー後の半導体パッケージを観察し、接合部の浮きの有無、接合部の剥がれの有無、及びパッケージクラックの有無を確認した。そして、接合部の浮き、接合部の剥がれ、及びパッケージクラックのすべてが確認されなかった場合には「A」と判定し、いずれか1以上が確認された場合には「B」と判定した。結果を表1に示す。 Next, using an ultrasonic microscope (“D-9600” manufactured by Sonoscan), the semiconductor package after the IR reflow was observed to check whether the joint was lifted, the joint was peeled off, and the package was cracked. confirmed. Then, when all of the joint floating, the peeling of the joint, and the package crack were not confirmed, it was determined as “A”, and when any one or more was confirmed, it was determined as “B”. The results are shown in Table 1.
 別途、上記で得られた半導体パッケージを、JEDEC Level2に準拠し、85℃、相対湿度60%の湿熱条件下において、168時間(1週間)静置保存することにより、吸湿させた。
 次いで、直ちに、この吸湿後の半導体パッケージに対して、上記の製造直後の半導体パッケージの場合と同じ方法で、IRリフローを3回行い、IRリフロー後の半導体パッケージを評価した。結果を表1に示す。
Separately, according to JEDEC Level2, the semiconductor package obtained above was allowed to absorb moisture by standing still for 168 hours (1 week) under a moist heat condition of 85 ° C. and a relative humidity of 60%.
Then, immediately after the moisture absorption, the semiconductor package after IR reflow was evaluated by performing IR reflow three times in the same manner as in the case of the semiconductor package immediately after manufacture. The results are shown in Table 1.
<<フィルム状接着剤及び半導体加工用シートの製造、並びにフィルム状接着剤の評価>>
[実施例2、比較例1~2]
 接着剤組成物の含有成分の種類及び含有量が、表1に示すとおりとなるように、接着剤組成物の製造時における、配合成分の種類及び配合量のいずれか一方又は両方を変更した点以外は、実施例1の場合と同じ方法で、フィルム状接着剤及び半導体加工用シートを製造し、フィルム状接着剤を評価した。結果を表1に示す。
<< Production of film adhesive and semiconductor processing sheet, and evaluation of film adhesive >>
[Example 2, Comparative Examples 1 and 2]
The point which changed either one or both of the kind of compounding component and the compounding quantity at the time of manufacture of an adhesive composition so that the kind and content of the component of adhesive composition may become as showing in Table 1. Except for the above, a film adhesive and a semiconductor processing sheet were produced in the same manner as in Example 1, and the film adhesive was evaluated. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記結果から明らかなように、実施例1~2においては、ΔT168が7℃以下(0~7℃)であり、フィルム状接着剤の保存中、その溶融粘度は安定していた。また、Wが8%で、かつRW168が150%以下(113~150%)であり、フィルム状接着剤の保存前のゲル分率が低く、かつフィルム状接着剤の保存中、そのゲル分率が安定していた。また、RF168が22.8%以下(22.2~22.8%)であり、フィルム状接着剤の保存中、その破断伸度は安定していた。 As is apparent from the above results, in Examples 1 and 2, ΔT 168 was 7 ° C. or less (0 to 7 ° C.), and the melt viscosity was stable during storage of the film adhesive. Further, W 0 is 8% and RW 168 is 150% or less (113 to 150%), the gel fraction before storage of the film adhesive is low, and the gel is stored during storage of the film adhesive. The fraction was stable. RF 168 was 22.8% or less (22.2 to 22.8%), and the elongation at break was stable during storage of the film adhesive.
 このように、実施例1~2のフィルム状接着剤は、その保存中の溶融粘度、ゲル分率及び破断伸度が安定しており、フィルム状接着剤の保存安定性が高かった。
 そして、これらの結果を反映して、実施例1~2においては、製造直後及び吸湿後のいずれにおいても、半導体パッケージの信頼性が高かった。
As described above, the film adhesives of Examples 1 and 2 had stable melt viscosity, gel fraction and elongation at break during storage, and the storage stability of the film adhesive was high.
Reflecting these results, in Examples 1 and 2, the reliability of the semiconductor package was high both immediately after manufacture and after moisture absorption.
 これに対して、比較例1においては、ΔT168が14℃であり、フィルム状接着剤の保存中、その溶融粘度が安定せず、顕著に増大していた。また、Wが8%で、かつRW168が300%であり、フィルム状接着剤の保存前のゲル分率が低かったものの、フィルム状接着剤の保存中、そのゲル分率が安定せず、顕著に増大していた。また、RF168が85.4%であり、フィルム状接着剤の保存中、その破断伸度は安定せず、顕著に低下していた。 On the other hand, in Comparative Example 1, ΔT 168 was 14 ° C., and during the storage of the film adhesive, the melt viscosity was not stable and increased remarkably. Moreover, although W 0 was 8% and RW 168 was 300% and the gel fraction before storage of the film adhesive was low, the gel fraction was not stable during storage of the film adhesive. , Was significantly increased. Further, RF 168 was 85.4%, and during the storage of the film adhesive, the elongation at break was not stable and significantly decreased.
 このように、比較例1のフィルム状接着剤は、その保存中の溶融粘度、ゲル分率及び破断伸度が安定しておらず、フィルム状接着剤の保存安定性が低かった。
 そして、これらの結果を反映して、比較例1においては、製造直後の半導体パッケージの信頼性は高かったが、吸湿後の半導体パッケージの信頼性は、一転して低かった。
Thus, the film-like adhesive of Comparative Example 1 was not stable in terms of storage viscosity, gel fraction and elongation at break, and the storage stability of the film-like adhesive was low.
Reflecting these results, in Comparative Example 1, the reliability of the semiconductor package immediately after manufacture was high, but the reliability of the semiconductor package after moisture absorption was completely low.
 比較例2においては、ΔT168が1℃であり、フィルム状接着剤の保存中、その溶融粘度は安定していた。一方、Wが18%であり、フィルム状接着剤の保存前のゲル分率が高かった。RW168は117%であり、フィルム状接着剤の保存中、そのゲル分率は安定していたが、これは単に、ゲル分率が高い状態のままであるに過ぎなかった。RF168は12.5%以下であり、フィルム状接着剤の保存中、その破断伸度は安定していた。 In Comparative Example 2, ΔT 168 was 1 ° C., and the melt viscosity was stable during storage of the film adhesive. On the other hand, W 0 was 18%, and the gel fraction before storage of the film adhesive was high. The RW 168 was 117% and the gel fraction was stable during storage of the film adhesive, but this merely remained in a high gel fraction state. RF 168 was 12.5% or less, and the elongation at break was stable during storage of the film adhesive.
 このように、比較例2のフィルム状接着剤は、ゲル分率が初期(製造直後)から一貫して高く、保存安定性が高いと判断できなかった。
 そして、これらの結果を反映して、比較例2においては、製造直後及び吸湿後のいずれにおいても、半導体パッケージの信頼性が低かった。
Thus, the film-like adhesive of Comparative Example 2 had a gel fraction that was consistently high from the beginning (immediately after production) and could not be judged to have high storage stability.
And reflecting these results, in Comparative Example 2, the reliability of the semiconductor package was low both immediately after manufacture and after moisture absorption.
 本発明は、保存安定性が高く、さらに、それに基づいて信頼性が高い半導体パッケージを製造可能なフィルム状接着剤、及び前記フィルム状接着剤を備えた半導体加工用シートが提供でき、半導体装置の製造に利用可能であるので産業上極めて有用である。 The present invention can provide a film adhesive capable of producing a highly reliable semiconductor package based on the storage stability, and a semiconductor processing sheet provided with the film adhesive. Since it can be used for manufacturing, it is extremely useful industrially.
 1A,1B,1C,1D・・・半導体加工用シート、
10・・・支持シート、
12・・・中間層、
13,23・・・フィルム状接着剤
1A, 1B, 1C, 1D ... Semiconductor processing sheet,
10 ... support sheet,
12 ... intermediate layer,
13, 23 ... Film adhesive

Claims (4)

  1.  以下の特性を有するフィルム状接着剤:
    (I)前記フィルム状接着剤の40℃で168時間保存後の溶融粘度の初期検出温度をT168とし、
     前記フィルム状接着剤の前記保存前の溶融粘度の初期検出温度をTとしたとき、
     前記T168と前記Tとの差ΔT168が10℃未満であり、かつ
    (II) 前記フィルム状接着剤を40℃で保存する前のゲル分率をWとしたとき、Wが15%以下である、
    フィルム状接着剤。
    Film adhesive with the following properties:
    (I) The initial detection temperature of the melt viscosity after storage for 168 hours at 40 ° C. of the film adhesive is T 168 ,
    When the initial detected temperature of the melt viscosity before the saving of the film adhesive was a T 0,
    The difference ΔT 168 between the T 168 and the T 0 is less than 10 ° C., and (II) W 0 is 15 when the gel fraction before storing the film adhesive at 40 ° C. is W 0. % Or less,
    Film adhesive.
  2.  以下の特性を有するフィルム状接着剤:
    (I’)前記フィルム状接着剤の40℃で168時間保存後のゲル分率をW168とし、
     前記フィルム状接着剤の保存前のゲル分率をWとしたとき、
     前記W168と前記Wとから求められるゲル分率の変化率RW168が200%以下であり、かつ、
    (II’)前記ゲル分率Wが15%以下である、
    フィルム状接着剤。
    Film adhesive with the following properties:
    (I ′) The gel fraction of the film adhesive after storage at 40 ° C. for 168 hours is defined as W 168 .
    When the gel fraction before storage of the film adhesive is W 0 ,
    The change rate RW 168 of the gel fraction obtained from the W 168 and the W 0 is 200% or less, and
    (II ′) The gel fraction W 0 is 15% or less,
    Film adhesive.
  3.  以下の特性を有するフィルム状接着剤:
    (I’’)前記フィルム状接着剤の40℃で168時間保存後のJIS K7161:1994に準拠して測定した破断伸度をF168とし、
     前記フィルム状接着剤の前記保存前のJIS K7161:1994に準拠して測定した破断伸度をFとしたとき、
     前記F168と前記Fとから求められる破断伸度の低下率RF168が30%未満であり、かつ
    (II’’)前記フィルム状接着剤を40℃で保存する前の前記フィルム状接着剤のゲル分率をWとしたとき、 前記Wが15%以下である、
    フィルム状接着剤。
    Film adhesive with the following properties:
    (I ″) The elongation at break measured according to JIS K7161: 1994 after storing the film adhesive at 40 ° C. for 168 hours is F 168 ,
    When the elongation at break measured according to JIS K7161: 1994 before the storage of the film adhesive is F 0 ,
    The reduction rate of elongation at break RF 168 calculated from the F 168 and the F 0 is less than 30%, and (II ″) the film adhesive before the film adhesive is stored at 40 ° C. When the gel fraction is W 0 , the W 0 is 15% or less.
    Film adhesive.
  4.  支持シートと、前記支持シート上に備えられた請求項1~3のいずれか一項に記載のフィルム状接着剤とを含む、半導体加工用シート。 A semiconductor processing sheet comprising a support sheet and the film adhesive according to any one of claims 1 to 3 provided on the support sheet.
PCT/JP2019/011659 2018-03-23 2019-03-20 Film-like adhesive and sheet for semiconductor processing WO2019182001A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020507868A JP7282076B2 (en) 2018-03-23 2019-03-20 Film adhesives and sheets for semiconductor processing
CN201980011346.2A CN111670231B (en) 2018-03-23 2019-03-20 Film-like adhesive and sheet for semiconductor processing
KR1020207016393A KR102637855B1 (en) 2018-03-23 2019-03-20 Film-like adhesives and sheets for semiconductor processing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018057006 2018-03-23
JP2018-057006 2018-03-23

Publications (1)

Publication Number Publication Date
WO2019182001A1 true WO2019182001A1 (en) 2019-09-26

Family

ID=67986231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011659 WO2019182001A1 (en) 2018-03-23 2019-03-20 Film-like adhesive and sheet for semiconductor processing

Country Status (5)

Country Link
JP (1) JP7282076B2 (en)
KR (1) KR102637855B1 (en)
CN (1) CN111670231B (en)
TW (2) TWI836931B (en)
WO (1) WO2019182001A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196138A1 (en) * 2019-03-22 2020-10-01 リンテック株式会社 Film adhesive and sheet for semiconductor processing
WO2020196130A1 (en) * 2019-03-22 2020-10-01 リンテック株式会社 Film adhesive and sheet for semiconductor processing
CN113493662A (en) * 2020-03-18 2021-10-12 琳得科株式会社 Film-like adhesive and dicing die
KR20240079207A (en) 2021-10-05 2024-06-04 린텍 가부시키가이샤 Methods for manufacturing thermoset films, composite sheets, and semiconductor devices

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7471880B2 (en) * 2020-03-18 2024-04-22 リンテック株式会社 Film-like adhesive and dicing die bonding sheet

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001172590A (en) * 1999-12-16 2001-06-26 Nippon Nsc Ltd Hot melt adhesive
JP2001220566A (en) * 1999-11-30 2001-08-14 Hitachi Chem Co Ltd Adhesive composition, its preparation process, adhesive film, printing circuit board for mounting semiconductor and semiconductor device
JP2005089575A (en) * 2003-09-16 2005-04-07 Sekisui Chem Co Ltd Adhesive sheet for card or tag
JP2016020476A (en) * 2014-06-20 2016-02-04 日東電工株式会社 Thermosetting adhesion sheet and flexible printed circuit board
WO2016027888A1 (en) * 2014-08-22 2016-02-25 リンテック株式会社 Protective-coating-forming sheet and method for manufacturing semiconductor chip provided with protective coating
JP2017045934A (en) * 2015-08-28 2017-03-02 日立化成株式会社 Adhesive film
JP2017137453A (en) * 2016-02-05 2017-08-10 日立化成株式会社 Glue film

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026547A (en) * 2003-07-04 2005-01-27 Hitachi Chem Co Ltd Semiconductor device and method for manufacturing the same and adhesive sheet to be used for semiconductor device
JP5003090B2 (en) * 2006-10-06 2012-08-15 住友ベークライト株式会社 Adhesive film and semiconductor device using the same
JP4732472B2 (en) 2007-03-01 2011-07-27 日東電工株式会社 Thermosetting die bond film
JP2011103440A (en) 2009-10-14 2011-05-26 Nitto Denko Corp Thermosetting die bonding film
JP2011216774A (en) * 2010-04-01 2011-10-27 Sumitomo Bakelite Co Ltd Semiconductor bonding film and semiconductor device
CN105027273B (en) * 2013-03-07 2019-01-22 住友电木株式会社 Adhesive film, laminated body and its solidfied material and semiconductor device and its manufacturing method
CN105199616A (en) * 2014-06-20 2015-12-30 日东电工株式会社 Heat-curable adhesive sheet and flexible printed circuit substrate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001220566A (en) * 1999-11-30 2001-08-14 Hitachi Chem Co Ltd Adhesive composition, its preparation process, adhesive film, printing circuit board for mounting semiconductor and semiconductor device
JP2001172590A (en) * 1999-12-16 2001-06-26 Nippon Nsc Ltd Hot melt adhesive
JP2005089575A (en) * 2003-09-16 2005-04-07 Sekisui Chem Co Ltd Adhesive sheet for card or tag
JP2016020476A (en) * 2014-06-20 2016-02-04 日東電工株式会社 Thermosetting adhesion sheet and flexible printed circuit board
WO2016027888A1 (en) * 2014-08-22 2016-02-25 リンテック株式会社 Protective-coating-forming sheet and method for manufacturing semiconductor chip provided with protective coating
JP2017045934A (en) * 2015-08-28 2017-03-02 日立化成株式会社 Adhesive film
JP2017137453A (en) * 2016-02-05 2017-08-10 日立化成株式会社 Glue film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196138A1 (en) * 2019-03-22 2020-10-01 リンテック株式会社 Film adhesive and sheet for semiconductor processing
WO2020196130A1 (en) * 2019-03-22 2020-10-01 リンテック株式会社 Film adhesive and sheet for semiconductor processing
CN113493662A (en) * 2020-03-18 2021-10-12 琳得科株式会社 Film-like adhesive and dicing die
KR20240079207A (en) 2021-10-05 2024-06-04 린텍 가부시키가이샤 Methods for manufacturing thermoset films, composite sheets, and semiconductor devices

Also Published As

Publication number Publication date
JPWO2019182001A1 (en) 2021-03-11
TWI798390B (en) 2023-04-11
CN111670231B (en) 2022-06-03
KR20200133717A (en) 2020-11-30
JP7282076B2 (en) 2023-05-26
TW202325809A (en) 2023-07-01
CN111670231A (en) 2020-09-15
TWI836931B (en) 2024-03-21
TW202003735A (en) 2020-01-16
KR102637855B1 (en) 2024-02-16

Similar Documents

Publication Publication Date Title
WO2019182001A1 (en) Film-like adhesive and sheet for semiconductor processing
JP7155245B2 (en) Die bonding film, dicing die bonding sheet, and method for manufacturing semiconductor chip
WO2017145979A1 (en) Film-shaped adhesive composite sheet and method for producing semiconductor device
JPWO2014155756A1 (en) Adhesive sheet, composite sheet for forming protective film, and method for producing chip with protective film
WO2018083982A1 (en) Dicing die bonding sheet and method for producing semiconductor chip
WO2018180594A1 (en) Film-like adhesive composite sheet and semiconductor device manufacturing method
JP6438181B1 (en) Semiconductor device and manufacturing method thereof
TWI837327B (en) Film adhesives and sheets for semiconductor processing
WO2020196138A1 (en) Film adhesive and sheet for semiconductor processing
WO2017078039A1 (en) Thermosetting resin film, first protective film forming sheet, and method for forming first protective film
CN108604542B (en) Protective film-forming film and composite sheet for forming protective film
JP7413356B2 (en) Film adhesives and sheets for semiconductor processing
JP7291310B1 (en) Thermosetting film, composite sheet, and method for manufacturing semiconductor device
WO2023058303A1 (en) Thermosetting film, composite sheet, and method for manufacturing semiconductor device
JP7471880B2 (en) Film-like adhesive and dicing die bonding sheet
JP7471879B2 (en) Film-like adhesive and dicing die bonding sheet
TWI845643B (en) Film adhesive and semiconductor processing sheet
WO2022210087A1 (en) Filmy adhesive, dicing/die bonding sheet, method for producing semiconductor device, use of filmy adhesive, use of dicing/die bonding sheet, and method for reworking semiconductor wafer
JP7520497B2 (en) Adhesive films and composite adhesive sheets

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19771285

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020507868

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19771285

Country of ref document: EP

Kind code of ref document: A1