JP3857953B2 - Adhesive sheet for semiconductor device manufacturing - Google Patents

Adhesive sheet for semiconductor device manufacturing Download PDF

Info

Publication number
JP3857953B2
JP3857953B2 JP2002142056A JP2002142056A JP3857953B2 JP 3857953 B2 JP3857953 B2 JP 3857953B2 JP 2002142056 A JP2002142056 A JP 2002142056A JP 2002142056 A JP2002142056 A JP 2002142056A JP 3857953 B2 JP3857953 B2 JP 3857953B2
Authority
JP
Japan
Prior art keywords
adhesive sheet
adhesive
semiconductor device
resin
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002142056A
Other languages
Japanese (ja)
Other versions
JP2003336015A (en
Inventor
勝治 中場
健 佐藤
修 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoegawa Co Ltd
Original Assignee
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Paper Co Ltd filed Critical Tomoegawa Paper Co Ltd
Priority to JP2002142056A priority Critical patent/JP3857953B2/en
Priority to KR1020030020695A priority patent/KR100633849B1/en
Priority to US10/404,121 priority patent/US20030190466A1/en
Priority to TW092107464A priority patent/TWI289155B/en
Priority to CNB031250386A priority patent/CN1280883C/en
Publication of JP2003336015A publication Critical patent/JP2003336015A/en
Application granted granted Critical
Publication of JP3857953B2 publication Critical patent/JP3857953B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adhesive sheet for manufacturing a semiconductor device which can prevent both wire bonding failure and mold flashing and can prevent formation of rejected products of semiconductor devices when it is used in producing the semiconductor devices such as QFN. <P>SOLUTION: The adhesive sheet for manufacturing the semiconductor device is obtained by laminating an adhesive layer on one surface of a heat-resistant substrate and is releasably applied to a lead frame, and the above adhesive layer contains (a) a thermosetting resin and (b) a butadiene-containing resin at a weight ratio of the resin (a) to the resin (b) of 0.3-3. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、リードフレームに剥離可能に貼着され、QFN等の半導体装置(半導体パッケージ)を製造する際に用いる半導体装置製造用接着シートに関する。
【0002】
【従来の技術】
近年、携帯型パソコン、携帯電話等の電子機器の小型化、多機能化に伴い、電子機器を構成する電子部品の小型化、高集積化の他、電子部品の高密度実装技術が必要になっている。このような背景下、従来のQFP(Quad Flat Package)やSOP(Small Out line Package)等の周辺実装型の半導体装置に代わって、高密度実装が可能なCSP(Chip Scale Package)等の面実装型の半導体装置が注目されている。また、CSPの中でも特にQFN(Quad Flat Non-leaded)は、従来の半導体装置の製造技術を適用して製造できるため好適であり、主に100ピン以下の少端子型の半導体装置として用いられている。
【0003】
従来、QFNの製造方法として、概略下記の方法が知られている。
はじめに、接着シート貼着工程において、リードフレームの一方の面に接着シートを貼着し、次いで、ダイアタッチ工程において、リードフレームに複数形成された半導体素子搭載部(ダイパッド部)に、ICチップ等の半導体素子を各々搭載する。次に、ワイヤボンディング工程において、リードフレームの各半導体素子搭載部の外周に沿って配設された複数のリードと半導体素子とをボンディングワイヤにより電気的に接続する。次に、樹脂封止工程において、リードフレームに搭載された半導体素子を封止樹脂により封止し、その後、接着シート剥離工程において、接着シートをリードフレームから剥離することにより、複数のQFNが配列されたQFNユニットを形成することができる。最後に、ダイシング工程において、このQFNユニットを各QFNの外周に沿ってダイシングすることにより、複数のQFNを同時に製造することができる。
【0004】
以上概略説明したQFNの製造方法において、リードフレームに貼着する従来の接着シートとしては、耐熱性フィルムを基材とし、この基材の一方の面にシリコーン系粘着剤を用いて形成された接着剤層を具備するものが広く用いられている。
【0005】
【発明が解決しようとする課題】
しかしながら、上記構成の従来の接着シートを用いた場合、ワイヤボンディング工程において、リードにボンディングワイヤが十分接合せず、ボンディングワイヤとリードとの間の接続不良が発生することがあった。以下、ボンディングワイヤとリードとの接続不良のことを「ワイヤボンディング不良」と称する。また、樹脂封止工程において、接着シートの接着力が低下して、リードフレームと接着シートとが部分的に剥離し、その結果、リードフレームと接着シートとの間に封止樹脂が流入し、リードの外部接続用部分(リードの接着シートを貼着した側の面)に封止樹脂が付着する、いわゆる「モールドフラッシュ」が発生することがあった。なお、このように、モールドフラッシュが発生した場合には、リードの外部接続用部分に封止樹脂が付着するため、製造された半導体装置を配線基板等に実装する際に、接続不良が発生する恐れがある。
そこで、本発明は、上記事情に鑑みてなされたものであり、QFN等の半導体装置の製造に用いた場合に、ワイヤボンディング不良、モールドフラッシュの双方を防止することができ、半導体装置の不良品化を防止することができる半導体装置製造用接着シートを提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の半導体装置製造用接着シート(以下、「接着シート」と略記する)は、耐熱性基材の一方の面に接着剤層を積層し、リードフレームに剥離可能に貼着される接着シートであり、該接着シートをリードフレームの一方の面に貼着し、他方の面に半導体素子を搭載し、ワイヤボンディング工程、樹脂封止工程を経た後、接着シートをリードフレームから剥離する半導体装置の製造方法に用いる半導体装置製造用接着シートである。そして、前記接着剤層が熱硬化性樹脂(a)及びブタジエン含有樹脂(b)を有し、前記(a)/(b)の重量比が0.3〜3、前記接着剤層の硬化後における貯蔵弾性率が、150℃から250℃の温度範囲の全てにおいて5MPa以上であることを特徴とする。
【0007】
【発明の実施の形態】
以下、本発明について詳述する。
本発明の接着シートは、耐熱性基材の一方の面に、熱硬化性樹脂(a)及びブタジエン含有樹脂(b)を有する接着剤層を積層して構成されたものである。
前記耐熱性基材としては、耐熱性フィルムや金属箔等を挙げることができる。
本発明の接着シートを用いてQFN等の半導体装置を製造する際に、接着シートは、ダイアタッチ工程、ワイヤボンディング工程、樹脂封止工程において、150〜250℃の高温に曝されるが、耐熱性基材として耐熱性フィルムを用いる場合、該耐熱性フィルムの熱膨張係数はガラス転位温度(Tg)以上になると急激に増加し、金属製のリードフレームとの熱膨張差が大きくなるため、室温に戻した際に、耐熱性フィルムとリードフレームに反りが発生する恐れがある。そして、このように、耐熱性フィルムとリードフレームに反りが発生した場合には、樹脂封止工程において、金型の位置決めピンにリードフレームを装着することができず、位置ずれ不良を起こす恐れがある。
【0008】
したがって、耐熱性基材として耐熱性フィルムを用いる場合は、ガラス転位温度が150℃以上の耐熱性フィルムであることが好ましく、更に180℃以上であることがより好ましい。また、耐熱性フィルムの150〜250℃における熱膨張係数が5〜50ppm/℃であることが好ましく、更に10〜30ppm/℃であることがより好ましい。かかる特性を有する耐熱性フィルムとしては、ポリイミド、ポリアミド、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリエーテルケトン、ポリエーテルエーテルケトン、トリアセチルセルロース、ポリエーテルイミド等からなるフィルムを例示することができる。
【0009】
また、耐熱性基材として金属箔を用いる場合においても、前記耐熱性フィルムと同様の理由から、金属箔の150〜250℃における熱膨張係数が5〜50ppm/℃であることが好ましく、更に10〜30ppm/℃であることがより好ましい。金属箔としては、金、銀、銅、白金、アルミニウム、マグネシウム、チタン、クロム、マンガン、鉄、コバルト、ニッケル、亜鉛、パラジウム、カドミウム、インジウム、錫、鉛からなる箔や、これらの金属を主成分とした合金箔、あるいはこれらのメッキ箔を例示することができる。
【0010】
また、本発明の接着シートを用いて半導体装置を製造する際に、接着シート剥離工程における糊残りを防止するためには、耐熱性基材と接着剤層との接着強度Saと、封止樹脂及びリードフレームと接着剤層との接着強度Sbとの比(接着強度比)Sa/Sbが1.5以上であることが好ましい。Sa/Sbが1.5未満の場合では、接着シート剥離工程において糊残りが発生しやすいため好ましくない。なお、接着強度比Sa/Sbを1.5以上とするためには、耐熱性フィルムの場合には、接着剤層を形成する前に、耐熱性フィルムの接着剤層を形成する側の表面に、コロナ処理、プラズマ処理、プライマー処理等の、耐熱性フィルムと接着剤層との接着強度Saを高くするような処理をあらかじめ施しておくことが好適である。また、金属箔の場合では、その製法から圧延金属箔と電解金属箔とに分類されるが、接着強度比Sa/Sbを1.5以上とするために、電解金属箔を用いると共に粗面化された側の面に接着剤層を設けて調整することが好ましい。また、電解金属箔の中でも特に、電解銅箔を用いることが特に好ましい。また、リードフレームの温度が150〜200℃において、接着剤層とリードフレームとの接着強度が10g/cm以上の場合にモールドフラッシュを防止できるため好ましい。
【0011】
前記接着剤層は、熱硬化性樹脂(a)及びブタジエン含有樹脂(b)を有する。この場合、熱硬化性樹脂(a)とブタジエン含有樹脂(b)との重量比(a)/(b)は0.3〜3でなければならない。更に(a)/(b)は0.7〜2が好ましい。0.3未満の場合では、接着剤層の貯蔵弾性率が著しく低くなり、ワイヤボンディング工程において、ボンディングワイヤとリードとの間の接続不良が発生する。一方、3より大きい場合には可とう性が低下するため、樹脂封止工程において、接着シートの接着力が低下して、リードフレームと接着シートとが部分的に剥離しモールドフラッシュが発生し、また糊残りが生じる。
半導体パッケージを製造するための樹脂封止工程においては、150〜200℃に加熱しながら、5〜10GPaの圧力をかけて半導体素子を封止樹脂により封止する。そのため、接着シートの接着剤層が高温に曝される結果、接着剤層の接着力(接着剤層とリードフレームとの接着強度)が低下し、封止樹脂の圧力により、接着剤層がリードフレームから部分的に剥離してモールドフラッシュが発生する場合があるが、上記熱硬化性樹脂(a)及びブタジエン含有樹脂(b)を有する接着剤層を用いた本発明の接着シートでは、接着剤層の接着力が低下しないため上記問題は生じない。
【0012】
前記熱硬化性樹脂(a)としては、尿素樹脂、メラミン樹脂、ベンゾグアナミン樹脂、アセトグアナミン樹脂、フェノール樹脂、レゾルシノール樹脂、キシレン樹脂、フラン樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、イソシアナート樹脂、エポキシ樹脂、マレイミド樹脂、ナジイミド樹脂等を例示することができる。なお、これらの樹脂は単独で用いても良いし、2種以上を併用しても良い。この中でも特にエポキシ樹脂とフェノール樹脂の少なくとも1種を含有することによって、ワイヤボンディング工程における処理温度下で高弾性率を有すると共に、樹脂封止工程における処理温度下でリードフレームとの接着強度が高い接着剤層が得られるため好ましい。
【0013】
また、ブタジエン含有樹脂(b)は、モノマーユニットとしてブタジエンを含有し弾性を有する樹脂である。ブタジエン含有樹脂(b)中のブタジエンの含有量は10重量%以上であることが、接着剤層に高弾性を与え、凝集力を高めることによって接着シート剥離工程において糊残りを防止できるため好ましい。ブタジエン含有樹脂(b)としてはアクリロニトリル−ブタジエン共重合体樹脂(NBR樹脂)、スチレン−ブタジエン−エチレン共重合体樹脂(SEBS樹脂)、スチレン−ブタジエン−スチレン共重合体樹脂(SBS樹脂)、ポリブタジエン等を挙げることができる。また、ブタジエン含有樹脂(b)は、前記熱硬化性樹脂(a)と反応させて接着力を向上させるため、アミノ基、イソシアネート基、グリシジル基、カルボキシル基(無水物を含む)、シラノール基、水酸基、ビニル基、メチロール基、メルカプト基のうち少なくとも1種類以上を含有することが好ましい。ブタジエン含有樹脂(b)としては、特にアクリロニトリル−ブタジエン共重合体樹脂、アクリロニトリル−ブタジエン−メタクリル酸共重合体樹脂、エポキシ化スチレン−ブタジエン−スチレン共重合体、エポキシ化ポリブタジエンから選ばれた少なくとも1種が耐熱性及び接着性に優れているため好ましい。
また、ブタジエン含有樹脂(b)の重量平均分子量が2000〜1000000、好ましくは5000〜800000、更に好ましくは10000〜500000である場合には、接着剤層の凝集力を高めることができ、接着シート剥離工程における糊残りを防止することができるため好ましい。
【0014】
また、接着剤層の熱膨張係数、熱伝導率、表面タック、接着性等を調整するために、接着剤層に無機又は有機フィラーを添加することが好ましい。ここで、無機フィラーとしては、粉砕型シリカ、溶融型シリカ、アルミナ、酸化チタン、酸化ベリリウム、酸化マグネシウム、炭酸カルシウム、窒化チタン、窒化珪素、窒化硼素、硼化チタン、硼化タングステン、炭化珪素、炭化チタン、炭化ジルコニウム、炭化モリブデン、マイカ、酸化亜鉛、カーボンブラック、水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウム、三酸化アンチモン等からなるフィラー、あるいはこれらの表面にトリメチルシロキシル基等を導入したもの等を例示することができる。また、有機フィラーとしては、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリエステルイミド、ナイロン、シリコーン樹脂等からなるフィラーを例示することができる。
【0015】
耐熱性基材の一方の面に接着剤層を形成する方法としては、耐熱性基材上に直接接着剤を塗布し、乾燥させるキャスティング法や、接着剤を離型性フィルム上に一旦塗布し、乾燥させた後、耐熱性基材上に転写させるラミネート法等が好適である。なお、熱硬化性樹脂(a)、ブタジエン含有樹脂(b)ともに有機溶剤、例えばトルエン、キシレン、クロルベンゼン等の芳香族系、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等の非プロトン系極性溶剤、テトラヒドロフラン等の単独あるいは混合物に対して1%以上好ましくは5%以上溶解して接着剤塗布液として使用することが好ましい。
【0016】
本発明の接着シートの接着剤層上に剥離可能な保護フィルムを貼着し、半導体装置製造直前に保護フィルムを剥離する構成としても良い。この場合には、接着シートが製造されてから使用されるまでの間に、接着剤層が損傷されることを防止することができる。保護フィルムとしては離型性を有するものであればいかなるフィルムを用いても良いが、例えばポリエステル、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート等のフィルムや、これらフィルムの表面をシリコーン樹脂又はフッ素化合物で離型処理したフィルム等を例示することができる。
【0017】
また、150℃から250℃の温度範囲全てにおける前記接着剤層の硬化後の貯蔵弾性率は、5MPa以上、好ましくは10MPa以上、更に50MPa以上であることが好ましい。なお、ここでいう硬化後とは、ダイアタッチ工程において加熱処理された状態における接着剤層のことをいう。貯蔵弾性率の測定条件等については実施例で説明する。半導体パッケージを製造するためのワイヤボンディング工程においては、ボンディングワイヤを用いて半導体素子とリードフレームとを接続するために、該ボンディングワイヤの両端を150〜250℃に加熱して60〜120kHzの超音波で融着する。その際、リードフレームの直下に位置する接着シートの接着剤層は、上記加熱による高温に曝されて低弾性化し、超音波を吸収しやすくなり、その結果リードフレームが振動してワイヤボンディング不良が発生しやすいが、上記貯蔵弾性率を有する接着剤層から構成された本発明の接着シートの場合はこのような問題が発生しにくくなる。
【0018】
(半導体装置の製造方法)
次に、図1、図2に基づいて、以上の本発明の接着シートを用いて、半導体装置を製造する方法の一例について簡単に説明する。以下、半導体装置としてQFNを製造する場合を例として説明する。なお、図1はリードフレームを半導体素子を搭載する側から見た時の概略平面図であり、図2(a)〜(f)は、図1に示すリードフレームからQFNを製造する方法を示す工程図であって、リードフレームを図1のA−A’線に沿って切断した時の拡大概略断面図である。
【0019】
はじめに、図1に示す概略構成のリードフレーム20を用意する。リードフレーム20は、ICチップ等の半導体素子を搭載する島状の複数の半導体素子搭載部(ダイバッド部)21を具備し、各半導体素子搭載部21の外周に沿って多数のリード22が配設されたものである。次に、図2(a)に示すように、接着シート貼着工程において、リードフレーム20の一方の面上に、本発明の接着シート10を接着剤層(図示略)側がリードフレーム20側となるように貼着する。なお、接着シート10をリードフレーム20に貼着する方法としては、ラミネート法等が好適である。次に、図2(b)に示すように、ダイアタッチ工程において、リードフレーム20の半導体素子搭載部21に、接着シート10が貼着されていない側からICチップ等の半導体素子30を、ダイアタッチ剤(図示略)を用いて搭載する。
【0020】
次に、図2(c)に示すように、ワイヤボンディング工程において、半導体素子30とリードフレーム20のリード22とを、金ワイヤ等のボンディングワイヤ31を介して電気的に接続する。次に、図2(d)に示すように、樹脂封止工程において、図2(c)に示す製造途中の半導体装置を金型内に載置し、封止樹脂(モールド剤)を用いてトランスファーモールド(金型成型)することにより、半導体素子30を封止樹脂40により封止する。
次に、図2(e)に示すように、接着シート剥離工程において、接着シート10を封止樹脂40及びリードフレーム20から剥離することにより、複数のQFN50が配列されたQFNユニット60を形成することができる。最後に、図2(f)に示すように、ダイシング工程において、QFNユニット60を各QFN50の外周に沿ってダイシングすることにより、複数のQFN50を製造することができる。
このように本発明の接着シート10を用いてQFN等の半導体装置を製造することにより、ワイヤボンディング不良、モールドフラッシュ、糊残りを防止することができ、半導体装置の不良品化を防止することができる。
【0021】
【実施例】
次に、本発明に係る実施例及び比較例について説明する。
各実施例、比較例において、接着剤層用の接着剤を調製して接着シートを作製し、得られた接着剤層や接着シートの評価を行った。
【0022】
<実施例1>
下記の組成及び配合比でテトラヒドロフランに混合し接着剤溶液を作製した。次に、耐熱性基材として、ポリイミド樹脂フィルム(東レ・デュポン社製 商品名:カプトン100EN、厚さ25μm、ガラス転位温度300℃以上、熱膨張係数16ppm/℃、)を用い、その上に乾燥後の厚さが6μmになるように上記接着剤溶液を塗布した後、100℃で5分間乾燥させ、接着剤層を有する本発明の接着シートを得た。なお、熱硬化性樹脂(a)/ブタジエン含有樹脂(b)の重量比は1.5である。

Figure 0003857953
【0023】
<実施例2>
接着剤溶液を下記の組成及び配合比でテトラヒドロフランに混合した接着剤溶液に変更した以外は実施例1と同様にして本発明の接着シートを得た。なお、熱硬化性樹脂(a)/ブタジエン含有樹脂(b)の重量比は1.45である。
Figure 0003857953
【0024】
<実施例3>
接着剤溶液を下記の組成及び配合比でテトラヒドロフランに混合した接着剤溶液に変更した以外は実施例1と同様にして本発明の接着シートを得た。なお、熱硬化性樹脂(a)/ブタジエン含有樹脂(b)の重量比は1.5である。
Figure 0003857953
【0025】
<実施例4>
接着剤溶液を下記の組成及び配合比でテトラヒドロフランに混合した接着剤溶液に変更した以外は実施例1と同様にして本発明の接着シートを得た。なお、熱硬化性樹脂(a)/ブタジエン含有樹脂(b)の重量比は1.5である。
Figure 0003857953
【0026】
<実施例5>
下記の組成及び配合比でテトラヒドロフランに混合し接着剤溶液を作製した。次に、耐熱性基材として、3/4オンスの銅箔(三井金属鉱業社製 商品名:3EC−VLP、厚さ25μm)を使用し、その粗化面上に乾燥後の厚さが8μmになるように上記接着剤溶液を塗布し、100℃で5分間乾燥させ、接着剤層を有する本発明の接着シートを得た。なお、熱硬化性樹脂(a)/ブタジエン含有樹脂(b)の重量比は1.5である。
Figure 0003857953
【0027】
<比較例1>
接着剤溶液を下記の組成及び配合比でテトラヒドロフランに混合した接着剤溶液に変更した以外は実施例1と同様にして比較用の接着シートを得た。なお、熱硬化性樹脂(a)/ブタジエン含有樹脂(b)の重量比は4である。
Figure 0003857953
【0028】
<比較例2>
接着剤溶液を下記の組成及び配合比でテトラヒドロフランに混合した接着剤溶液に変更した以外は実施例1と同様にして比較用の接着シートを得た。なお、熱硬化性樹脂(a)/ブタジエン含有樹脂(b)の重量比は0.25である。
Figure 0003857953
【0029】
<比較例3>
付加型シリコーン粘着剤(信越化学工業社製、商品名:X40−3103、重量平均分子量20000、固形分濃度60%)と白金触媒(信越化学工業社製、商品名:PL−50T)を固形重量比100:1で混合し、シリコーン系接着剤を作製した。
次に、耐熱性基材として、ポリイミド樹脂フィルム(東レ・デュポン社製 商品名:カプトン100EN、厚さ25μm、ガラス転位温度300℃以上、熱膨張係数16ppm/℃)を用い、その上に乾燥後の厚さが6μmになるように上記接着剤を塗布した後、100℃で5分間乾燥させ、接着剤層を有する比較用の接着シートを得た。
【0030】
<比較例4>
エポキシ樹脂(大日本インキ化学工業社製、商品名:HP−7200)40重量部、フェノール樹脂(日本化薬社製、商品名:TPM)20重量部、アクリル酸エステル−グリシジルアクリレート−アクリロニトリル共重合体樹脂(帝国化学産業社製、商品名:SG P−3DR、重量平均分子量1000000)40重量部及び硬化促進剤(四国化成社製 2-エチル4-メチルイミダゾール)1重量部をテトラヒドロフランに混合して接着剤溶液を作製した。
次に、耐熱性基材として、ポリイミド樹脂フィルム(東レ・デュポン社製 商品名:カプトン100EN、厚さ25μm、ガラス転位温度300℃以上、熱膨張係数16ppm/℃)を用い、その上に乾燥後の厚さが6μmになるように上記接着剤溶液を塗布した後、100℃で5分間乾燥させ、接着剤層を有する比較用の接着シートを得た。
【0031】
<貯蔵弾性率の測定>
前記各実施例及び比較例において得られた接着剤溶液を離型性フィルム上に塗布した後、接着シートを作製する際と同じ乾燥条件にて乾燥し、さらに、ダイアタッチ工程の熱処理条件(175℃で2時間)で熱処理を行い、接着剤層付き離型性フィルムを作製した。なお、乾燥後の厚さが0.1mmになるように接着剤の塗布、乾燥を行った。得られたサンプルを5mm×30mmに切断し、弾性率測定装置(オリエンテック社製レオバイブロンDDV−II)を用いて、周波数11Hz、昇温速度3℃/min、測定温度範囲150〜250℃で測定を行い、その結果を表1に示した。なお表1の数値は、測定温度範囲150〜250℃における貯蔵弾性率の最小値を示す。
【0032】
<接着シートの評価>
1.ワイヤボンディング不良
各実施例及び比較例において得られた接着シートを、外寸200×60mmのQFN用リードフレーム(Au−Pd−NiメッキCuリードフレーム、4×16個(計64個)のマトリックス配列、パッケージサイズ10×10mm、84ピン)にラミネート法により貼着した。次いで、エポキシ系ダイアタッチ剤を用いてアルミニウムが蒸着されたダミーチップ(6mm□、厚さ0.4mm)をリードフレームの半導体素子搭載部に搭載した後、ワイヤボンダー(FB−131、カイジョー社製)を用い、加熱温度を210℃、周波数を100kHz、荷重を150gf、処理時間を10msec/ピンとして、ダミーチップとリードとを金ワイヤにより電気的に接続した。得られたパッケージ64個を検査し、リード側接続不良が発生したパッケージ数を、ワイヤボンディング不良の発生個数として検出し、その結果を表1に示した。
【0033】
2.モールドフラッシュ
ワイヤボンディング不良の評価後のリードフレームを用いてモールドフラッシュの評価を行った。エポキシ系モールド剤(ビフェニルエポキシ系、フイラー量85重量%)を用い、加熱温度を180℃、圧力を10MPa、処理時間を3分間として、トランスファーモールド(金型成型)により、ダミーチップを封止樹脂により封止した。樹脂封止後のパッケージ64個を検査し、リードの外部接続用部分(リードの接着シート側の面)に封止樹脂が付着しているパッケージ個数を、モールドフラッシュの発生個数として検出し、その結果を表1に示した。
【0034】
3.接着強度
各実施例及び比較例において得られた接着シートを1cm幅に切断し、50mm×100mm×0.25mmtの銅板(三菱メテックス社製 商品名:MF−202)及びそれに金メッキした板に、ロールラミネーションにより圧着させた。次に上記の板を150℃に加熱し、得られた積層体の接着剤層を板に対して90°方向に引き剥がした時の剥離強度を測定した。同様に、この剥離強度の測定を、板の加熱温度を150℃から200℃まで5℃ごとに上昇させて行った。そして、150〜200℃の各測定温度における剥離強度のうち最小値を接着シートの接着強度とし、その結果を表1に示した。この場合、実用上必要とされる銅板への接着力は、金メッキの有無を問わず10g/cm以上である。
4.糊残り
モールドフラッシュの評価と同様にダミーチップをモールド剤により封止した後、接着シートをリードフレームから剥離速度500mm/minの条件で剥離した。接着シートの剥離後のパッケージ64個を検査し、リードの外部接続用部分(リードの接着シートを貼着した側の面)に接着剤が付着しているパッケージ個数を、糊残りの発生数として表1に示した。
【0035】
【表1】
Figure 0003857953
【0036】
表1に示すように、本発明の接着シートは、ワイヤボンディング不良、モールドフラッシュ及び糊残りが全く発生しなかった。これに対し、熱硬化性樹脂(a)/ブタジエン含有樹脂(b)が3をこえる接着シートである比較例1では、モールドフラッシュが発生し、糊残りの発生個数が多かった。また、熱硬化性樹脂(a)/ブタジエン含有樹脂(b)が0.3未満の接着シートである比較例2では、ワイヤボンディング不良が多く発生した。また、ブタジエン含有樹脂(b)を有しない比較例3及び4の接着シートでは、ワイヤボンディング不良又はモールドフラッシュを発生することが確認された。
【発明の効果】
以上詳述したように、本発明の半導体装置製造用接着シートにおいては、接着剤層が高温に曝されても適切な弾性特性と高い接着力とを有することができるため、本発明の接着シートを用いて、QFN等の半導体装置を製造することにより、ワイヤボンディング不良、モールドフラッシュ及び糊残りを防止することができ、半導体装置の不良品化を防止できる。
【図面の簡単な説明】
【図1】 図1は、本発明の半導体装置製造用接着シートを用いてQFNを製造する際に用いて好適なリードフレームの構造を示す概略平面図である。
【図2】 図2(a)〜(f)は、本発明の半導体装置製造用接着シートを用いてQFNを製造する方法の一例を示す工程図である。
【符号の説明】
10 半導体装置製造用接着シート
20 リードフレーム
30 半導体素子
31 ボンディングワイヤ
40 封止樹脂[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an adhesive sheet for manufacturing a semiconductor device that is attached to a lead frame so as to be peelable and used when manufacturing a semiconductor device (semiconductor package) such as QFN.
[0002]
[Prior art]
In recent years, along with the downsizing and multi-functionalization of electronic devices such as portable personal computers and mobile phones, it has become necessary to provide high-density mounting technology for electronic components in addition to downsizing and high integration of electronic components constituting electronic devices. ing. Under such circumstances, surface mounting such as CSP (Chip Scale Package) capable of high-density mounting instead of conventional peripheral mounting type semiconductor devices such as QFP (Quad Flat Package) and SOP (Small Out line Package). A type of semiconductor device has attracted attention. Among CSPs, QFN (Quad Flat Non-leaded) is particularly suitable because it can be manufactured by applying a conventional semiconductor device manufacturing technique, and is mainly used as a small terminal type semiconductor device having 100 pins or less. Yes.
[0003]
Conventionally, the following methods are generally known as methods for producing QFN.
First, in the adhesive sheet attaching step, an adhesive sheet is attached to one surface of the lead frame, and then in the die attach step, a plurality of semiconductor element mounting portions (die pad portions) formed on the lead frame are attached to an IC chip or the like. Each semiconductor element is mounted. Next, in the wire bonding step, the plurality of leads arranged along the outer periphery of each semiconductor element mounting portion of the lead frame and the semiconductor elements are electrically connected by bonding wires. Next, in the resin sealing step, the semiconductor element mounted on the lead frame is sealed with a sealing resin, and then, in the adhesive sheet peeling step, the adhesive sheet is peeled from the lead frame, thereby arranging a plurality of QFNs. QFN units can be formed. Finally, in the dicing process, a plurality of QFNs can be manufactured simultaneously by dicing the QFN units along the outer periphery of each QFN.
[0004]
In the QFN manufacturing method outlined above, as a conventional adhesive sheet to be adhered to a lead frame, a heat-resistant film is used as a base material, and an adhesive formed on one surface of the base material using a silicone-based adhesive Those having an agent layer are widely used.
[0005]
[Problems to be solved by the invention]
However, when the conventional adhesive sheet having the above configuration is used, the bonding wire may not be sufficiently bonded to the lead in the wire bonding step, and a connection failure between the bonding wire and the lead may occur. Hereinafter, the connection failure between the bonding wire and the lead is referred to as “wire bonding failure”. Further, in the resin sealing step, the adhesive force of the adhesive sheet is reduced, and the lead frame and the adhesive sheet are partially peeled. As a result, the sealing resin flows between the lead frame and the adhesive sheet, In some cases, a so-called “mold flash” occurs in which sealing resin adheres to the external connection portion of the lead (the surface of the lead on which the adhesive sheet is attached). In this way, when mold flash occurs, the sealing resin adheres to the external connection portion of the lead, so that connection failure occurs when the manufactured semiconductor device is mounted on a wiring board or the like. There is a fear.
Therefore, the present invention has been made in view of the above circumstances, and when used in the manufacture of a semiconductor device such as a QFN, it is possible to prevent both wire bonding defects and mold flash, and a defective semiconductor device. An object of the present invention is to provide an adhesive sheet for manufacturing a semiconductor device that can prevent the formation of a semiconductor device.
[0006]
[Means for Solving the Problems]
The adhesive sheet for manufacturing a semiconductor device of the present invention (hereinafter abbreviated as “adhesive sheet”) is an adhesive sheet in which an adhesive layer is laminated on one surface of a heat-resistant substrate and is peelably attached to a lead frame. der is, by adhering the adhesive sheet on one surface of the lead frame, the semiconductor element is mounted on the other side, the wire bonding step, after a resin sealing step, the semiconductor of peeling off the adhesive sheet from the lead frame It is the adhesive sheet for semiconductor device manufacture used for the manufacturing method of an apparatus. The adhesive layer has a thermosetting resin (a) and a butadiene-containing resin (b), and the weight ratio of (a) / (b) is 0.3 to 3 , after the adhesive layer is cured. The storage elastic modulus in is characterized by being 5 MPa or more in the entire temperature range from 150 ° C to 250 ° C.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The adhesive sheet of the present invention is constituted by laminating an adhesive layer having a thermosetting resin (a) and a butadiene-containing resin (b) on one surface of a heat-resistant substrate.
Examples of the heat-resistant substrate include a heat-resistant film and a metal foil.
When manufacturing a semiconductor device such as QFN using the adhesive sheet of the present invention, the adhesive sheet is exposed to a high temperature of 150 to 250 ° C. in a die attach process, a wire bonding process, and a resin sealing process. When a heat-resistant film is used as the heat-resistant substrate, the coefficient of thermal expansion of the heat-resistant film increases rapidly when the glass transition temperature (Tg) or higher, and the difference in thermal expansion from the metal lead frame increases. When returning to, warping may occur in the heat resistant film and the lead frame. If the heat-resistant film and the lead frame are warped as described above, the lead frame cannot be mounted on the positioning pins of the mold in the resin sealing process, which may cause misalignment. is there.
[0008]
Therefore, when using a heat resistant film as the heat resistant substrate, the glass transition temperature is preferably 150 ° C. or higher, more preferably 180 ° C. or higher. Moreover, it is preferable that the thermal expansion coefficient in 150-250 degreeC of a heat resistant film is 5-50 ppm / degreeC, and it is more preferable that it is 10-30 ppm / degreeC. Examples of the heat resistant film having such characteristics include films made of polyimide, polyamide, polyether sulfone, polyphenylene sulfide, polyether ketone, polyether ether ketone, triacetyl cellulose, polyether imide, and the like.
[0009]
Moreover, also when using metal foil as a heat resistant base material, it is preferable that the thermal expansion coefficient in 150-250 degreeC of metal foil is 5-50 ppm / degreeC for the same reason as the said heat resistant film, and also 10 More preferably, it is -30 ppm / degrees C. The metal foil is mainly made of gold, silver, copper, platinum, aluminum, magnesium, titanium, chromium, manganese, iron, cobalt, nickel, zinc, palladium, cadmium, indium, tin, lead, or these metals. The alloy foil used as a component, or these plating foils can be illustrated.
[0010]
Moreover, when manufacturing a semiconductor device using the adhesive sheet of the present invention, in order to prevent adhesive residue in the adhesive sheet peeling step, the adhesive strength Sa between the heat-resistant substrate and the adhesive layer, and the sealing resin The ratio (adhesive strength ratio) Sa / Sb of the adhesive strength Sb between the lead frame and the adhesive layer is preferably 1.5 or more. When Sa / Sb is less than 1.5, an adhesive residue is likely to occur in the adhesive sheet peeling step, which is not preferable. In order to set the adhesive strength ratio Sa / Sb to 1.5 or more, in the case of a heat-resistant film, before forming the adhesive layer, the surface of the heat-resistant film on the side where the adhesive layer is formed is used. It is preferable to perform in advance a treatment for increasing the adhesive strength Sa between the heat-resistant film and the adhesive layer, such as corona treatment, plasma treatment, and primer treatment. In the case of metal foil, it is classified into rolled metal foil and electrolytic metal foil depending on the production method. In order to make the adhesive strength ratio Sa / Sb to be 1.5 or more, the electrolytic metal foil is used and the surface is roughened. It is preferable to adjust by providing an adhesive layer on the surface on the formed side. Moreover, it is especially preferable to use electrolytic copper foil among electrolytic metal foils. Further, when the lead frame temperature is 150 to 200 ° C. and the adhesive strength between the adhesive layer and the lead frame is 10 g / cm or more, it is preferable because mold flash can be prevented.
[0011]
The adhesive layer has a thermosetting resin (a) and a butadiene-containing resin (b). In this case, the weight ratio (a) / (b) between the thermosetting resin (a) and the butadiene-containing resin (b) must be 0.3 to 3. Further, (a) / (b) is preferably 0.7-2. In the case of less than 0.3, the storage elastic modulus of the adhesive layer is remarkably lowered, and a connection failure between the bonding wire and the lead occurs in the wire bonding process. On the other hand, if it is larger than 3, the flexibility is lowered, so in the resin sealing step, the adhesive force of the adhesive sheet is reduced, the lead frame and the adhesive sheet are partially peeled off, and mold flash occurs. In addition, adhesive residue is generated.
In the resin sealing step for manufacturing the semiconductor package, the semiconductor element is sealed with a sealing resin by applying a pressure of 5 to 10 GPa while heating at 150 to 200 ° C. Therefore, as a result of the adhesive layer of the adhesive sheet being exposed to high temperature, the adhesive strength of the adhesive layer (adhesive strength between the adhesive layer and the lead frame) is reduced, and the adhesive layer is lead by the pressure of the sealing resin. In some cases, a mold flash may occur due to partial peeling from the frame. In the adhesive sheet of the present invention using the adhesive layer having the thermosetting resin (a) and the butadiene-containing resin (b), an adhesive is used. The above problem does not occur because the adhesive strength of the layer does not decrease.
[0012]
Examples of the thermosetting resin (a) include urea resin, melamine resin, benzoguanamine resin, acetoguanamine resin, phenol resin, resorcinol resin, xylene resin, furan resin, unsaturated polyester resin, diallyl phthalate resin, isocyanate resin, epoxy Resins, maleimide resins, nadiimide resins and the like can be exemplified. In addition, these resin may be used independently and may use 2 or more types together. Among these, by containing at least one of an epoxy resin and a phenol resin, it has a high elastic modulus at the processing temperature in the wire bonding process and has a high adhesive strength with the lead frame at the processing temperature in the resin sealing process. It is preferable because an adhesive layer is obtained.
[0013]
The butadiene-containing resin (b) is a resin containing butadiene as a monomer unit and having elasticity. It is preferable that the content of butadiene in the butadiene-containing resin (b) is 10% by weight or more because adhesive residue can be prevented in the adhesive sheet peeling step by imparting high elasticity to the adhesive layer and increasing the cohesive force. Examples of the butadiene-containing resin (b) include acrylonitrile-butadiene copolymer resin (NBR resin), styrene-butadiene-ethylene copolymer resin (SEBS resin), styrene-butadiene-styrene copolymer resin (SBS resin), polybutadiene, and the like. Can be mentioned. Further, since the butadiene-containing resin (b) is reacted with the thermosetting resin (a) to improve the adhesive force, an amino group, an isocyanate group, a glycidyl group, a carboxyl group (including an anhydride), a silanol group, It preferably contains at least one of a hydroxyl group, a vinyl group, a methylol group, and a mercapto group. The butadiene-containing resin (b) is at least one selected from acrylonitrile-butadiene copolymer resin, acrylonitrile-butadiene-methacrylic acid copolymer resin, epoxidized styrene-butadiene-styrene copolymer, and epoxidized polybutadiene. Is preferable because of its excellent heat resistance and adhesiveness.
When the weight average molecular weight of the butadiene-containing resin (b) is 2,000 to 1,000,000, preferably 5,000 to 800,000, more preferably 10,000 to 500,000, the cohesive force of the adhesive layer can be increased, and the adhesive sheet is peeled off. It is preferable because adhesive residue in the process can be prevented.
[0014]
In order to adjust the thermal expansion coefficient, thermal conductivity, surface tack, adhesiveness, etc. of the adhesive layer, it is preferable to add an inorganic or organic filler to the adhesive layer. Here, as the inorganic filler, pulverized silica, fused silica, alumina, titanium oxide, beryllium oxide, magnesium oxide, calcium carbonate, titanium nitride, silicon nitride, boron nitride, titanium boride, tungsten boride, silicon carbide, Filler made of titanium carbide, zirconium carbide, molybdenum carbide, mica, zinc oxide, carbon black, aluminum hydroxide, calcium hydroxide, magnesium hydroxide, antimony trioxide or the like, or a trimethylsiloxyl group or the like is introduced on the surface thereof. The thing etc. can be illustrated. Moreover, as an organic filler, the filler which consists of a polyimide, polyamideimide, polyetheretherketone, polyetherimide, polyesterimide, nylon, a silicone resin etc. can be illustrated.
[0015]
As a method of forming an adhesive layer on one surface of a heat resistant substrate, a casting method in which an adhesive is directly applied on a heat resistant substrate and dried, or an adhesive is once applied on a release film. For example, a laminating method in which the film is dried and then transferred onto a heat-resistant substrate is preferable. Note that both the thermosetting resin (a) and the butadiene-containing resin (b) are organic solvents such as aromatics such as toluene, xylene and chlorobenzene, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, dimethylformamide and dimethylacetamide. It is preferable that 1% or more, preferably 5% or more dissolve in an aprotic polar solvent such as N-methylpyrrolidone, tetrahydrofuran alone or a mixture and use it as an adhesive coating solution.
[0016]
It is good also as a structure which sticks the protective film which can be peeled on the adhesive bond layer of the adhesive sheet of this invention, and peels a protective film just before manufacture of a semiconductor device. In this case, it is possible to prevent the adhesive layer from being damaged after the adhesive sheet is manufactured and used. Any film may be used as the protective film as long as it has releasability. For example, films such as polyester, polyethylene, polypropylene, polyethylene terephthalate, etc., and the surface of these films are treated with a silicone resin or a fluorine compound. The film etc. which were done can be illustrated.
[0017]
Further, the storage elastic modulus of the adhesive layer after curing in the entire temperature range from 150 ° C. to 250 ° C. is preferably 5 MPa or more, preferably 10 MPa or more, and more preferably 50 MPa or more. In addition, after hardening here means the adhesive bond layer in the state heat-processed in the die-attach process. The measurement conditions for the storage elastic modulus will be described in Examples. In a wire bonding process for manufacturing a semiconductor package, in order to connect a semiconductor element and a lead frame using a bonding wire, both ends of the bonding wire are heated to 150 to 250 ° C. and an ultrasonic wave of 60 to 120 kHz is used. Fuse with. At that time, the adhesive layer of the adhesive sheet located directly under the lead frame is exposed to the high temperature due to the heating and becomes less elastic and easily absorbs the ultrasonic wave. As a result, the lead frame vibrates and wire bonding failure occurs. Although it is easy to generate | occur | produce, in the case of the adhesive sheet of this invention comprised from the adhesive bond layer which has the said storage elastic modulus, such a problem becomes difficult to generate | occur | produce.
[0018]
(Method for manufacturing semiconductor device)
Next, an example of a method for manufacturing a semiconductor device using the adhesive sheet of the present invention described above will be briefly described with reference to FIGS. Hereinafter, a case where QFN is manufactured as a semiconductor device will be described as an example. 1 is a schematic plan view when the lead frame is viewed from the side on which the semiconductor element is mounted. FIGS. 2A to 2F show a method of manufacturing QFN from the lead frame shown in FIG. FIG. 3 is a process diagram, and is an enlarged schematic cross-sectional view when a lead frame is cut along the line AA ′ in FIG. 1.
[0019]
First, a lead frame 20 having a schematic configuration shown in FIG. 1 is prepared. The lead frame 20 includes a plurality of island-shaped semiconductor element mounting portions (die pad portions) 21 for mounting semiconductor elements such as IC chips, and a large number of leads 22 are arranged along the outer periphery of each semiconductor element mounting portion 21. It has been done. Next, as shown in FIG. 2A, in the adhesive sheet attaching step, the adhesive sheet 10 of the present invention is placed on one surface of the lead frame 20 with the adhesive layer (not shown) side on the lead frame 20 side. Adhere to be. As a method for adhering the adhesive sheet 10 to the lead frame 20, a laminating method or the like is suitable. Next, as shown in FIG. 2B, in the die attach step, the semiconductor element 30 such as an IC chip is attached to the semiconductor element mounting portion 21 of the lead frame 20 from the side where the adhesive sheet 10 is not adhered. It is mounted using a touch agent (not shown).
[0020]
Next, as shown in FIG. 2C, in the wire bonding step, the semiconductor element 30 and the leads 22 of the lead frame 20 are electrically connected through bonding wires 31 such as gold wires. Next, as shown in FIG. 2 (d), in the resin sealing step, the semiconductor device being manufactured shown in FIG. 2 (c) is placed in a mold, and a sealing resin (molding agent) is used. The semiconductor element 30 is sealed with the sealing resin 40 by transfer molding (mold molding).
Next, as shown in FIG. 2E, in the adhesive sheet peeling step, the adhesive sheet 10 is peeled from the sealing resin 40 and the lead frame 20, thereby forming a QFN unit 60 in which a plurality of QFNs 50 are arranged. be able to. Finally, as shown in FIG. 2F, a plurality of QFNs 50 can be manufactured by dicing the QFN unit 60 along the outer periphery of each QFN 50 in the dicing step.
Thus, by manufacturing a semiconductor device such as QFN using the adhesive sheet 10 of the present invention, it is possible to prevent wire bonding defects, mold flash, and adhesive residue, and to prevent defective semiconductor devices. it can.
[0021]
【Example】
Next, examples and comparative examples according to the present invention will be described.
In each Example and Comparative Example, an adhesive for the adhesive layer was prepared to produce an adhesive sheet, and the resulting adhesive layer and adhesive sheet were evaluated.
[0022]
<Example 1>
An adhesive solution was prepared by mixing with tetrahydrofuran at the following composition and mixing ratio. Next, a polyimide resin film (trade name: Kapton 100EN, thickness 25 μm, glass transition temperature 300 ° C. or higher, coefficient of thermal expansion 16 ppm / ° C., manufactured by Toray DuPont Co., Ltd.) is used as a heat-resistant substrate, and then dried thereon. The adhesive solution was applied so that the subsequent thickness was 6 μm, and then dried at 100 ° C. for 5 minutes to obtain an adhesive sheet of the present invention having an adhesive layer. The weight ratio of thermosetting resin (a) / butadiene-containing resin (b) is 1.5.
Figure 0003857953
[0023]
<Example 2>
An adhesive sheet of the present invention was obtained in the same manner as in Example 1 except that the adhesive solution was changed to an adhesive solution mixed with tetrahydrofuran at the following composition and mixing ratio. The weight ratio of thermosetting resin (a) / butadiene-containing resin (b) is 1.45.
Figure 0003857953
[0024]
<Example 3>
An adhesive sheet of the present invention was obtained in the same manner as in Example 1 except that the adhesive solution was changed to an adhesive solution mixed with tetrahydrofuran at the following composition and mixing ratio. The weight ratio of thermosetting resin (a) / butadiene-containing resin (b) is 1.5.
Figure 0003857953
[0025]
<Example 4>
An adhesive sheet of the present invention was obtained in the same manner as in Example 1 except that the adhesive solution was changed to an adhesive solution mixed with tetrahydrofuran at the following composition and mixing ratio. The weight ratio of thermosetting resin (a) / butadiene-containing resin (b) is 1.5.
Figure 0003857953
[0026]
<Example 5>
An adhesive solution was prepared by mixing with tetrahydrofuran at the following composition and mixing ratio. Next, 3/4 oz copper foil (trade name: 3EC-VLP, thickness 25 μm, manufactured by Mitsui Kinzoku Mining Co., Ltd.) is used as the heat-resistant substrate, and the thickness after drying is 8 μm on the roughened surface. The adhesive solution was applied so as to be dried at 100 ° C. for 5 minutes to obtain an adhesive sheet of the present invention having an adhesive layer. The weight ratio of thermosetting resin (a) / butadiene-containing resin (b) is 1.5.
Figure 0003857953
[0027]
<Comparative Example 1>
A comparative adhesive sheet was obtained in the same manner as in Example 1 except that the adhesive solution was changed to an adhesive solution mixed with tetrahydrofuran at the following composition and mixing ratio. The weight ratio of thermosetting resin (a) / butadiene-containing resin (b) is 4.
Figure 0003857953
[0028]
<Comparative example 2>
A comparative adhesive sheet was obtained in the same manner as in Example 1 except that the adhesive solution was changed to an adhesive solution mixed with tetrahydrofuran at the following composition and mixing ratio. The weight ratio of thermosetting resin (a) / butadiene-containing resin (b) is 0.25.
Figure 0003857953
[0029]
<Comparative Example 3>
Addition-type silicone pressure-sensitive adhesive (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: X40-3103, weight average molecular weight 20000, solid content concentration 60%) and platinum catalyst (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: PL-50T) in solid weight A silicone adhesive was prepared by mixing at a ratio of 100: 1.
Next, a polyimide resin film (trade name: Kapton 100EN, thickness 25 μm, glass transition temperature 300 ° C. or higher, coefficient of thermal expansion 16 ppm / ° C., manufactured by Toray DuPont Co., Ltd.) is used as the heat resistant substrate, and after drying, The above adhesive was applied so as to have a thickness of 6 μm, and then dried at 100 ° C. for 5 minutes to obtain a comparative adhesive sheet having an adhesive layer.
[0030]
<Comparative Example 4>
40 parts by weight of an epoxy resin (Dainippon Ink & Chemicals, trade name: HP-7200), 20 parts by weight of a phenolic resin (trade name: TPM, manufactured by Nippon Kayaku Co., Ltd.), acrylic ester-glycidyl acrylate-acrylonitrile co-polymer 40 parts by weight of a coalesced resin (made by Teikoku Chemical Industry Co., Ltd., trade name: SGP-3DR, weight average molecular weight 1000000) and 1 part by weight of a curing accelerator (2-ethyl 4-methylimidazole made by Shikoku Kasei) were mixed with tetrahydrofuran. Thus, an adhesive solution was prepared.
Next, a polyimide resin film (trade name: Kapton 100EN, thickness 25 μm, glass transition temperature 300 ° C. or higher, coefficient of thermal expansion 16 ppm / ° C., manufactured by Toray DuPont Co., Ltd.) is used as the heat resistant substrate, and after drying, The adhesive solution was applied to a thickness of 6 μm and then dried at 100 ° C. for 5 minutes to obtain a comparative adhesive sheet having an adhesive layer.
[0031]
<Measurement of storage modulus>
After the adhesive solution obtained in each of the above examples and comparative examples was applied on a releasable film, it was dried under the same drying conditions as those for producing the adhesive sheet. Heat treatment was performed at 2 ° C. for 2 hours to produce a release film with an adhesive layer. The adhesive was applied and dried so that the thickness after drying was 0.1 mm. The obtained sample was cut into 5 mm × 30 mm, and measured using an elastic modulus measuring device (Orientec's Leo Vibron DDV-II) at a frequency of 11 Hz, a heating rate of 3 ° C./min, and a measuring temperature range of 150 to 250 ° C. The results are shown in Table 1. In addition, the numerical value of Table 1 shows the minimum value of the storage elastic modulus in the measurement temperature range 150-250 degreeC.
[0032]
<Evaluation of adhesive sheet>
1. Wire bonding failure Adhesive sheets obtained in each of Examples and Comparative Examples were arranged in a matrix arrangement of QFN lead frames (Au—Pd—Ni plated Cu lead frames, 4 × 16 pieces (total of 64 pieces)) having an outer size of 200 × 60 mm. , Package size 10 × 10 mm, 84 pins). Next, after mounting a dummy chip (6 mm □, thickness 0.4 mm) on which aluminum was deposited using an epoxy die attach agent on a semiconductor element mounting portion of a lead frame, a wire bonder (FB-131, manufactured by Kaijo Corporation) ), The heating temperature was 210 ° C., the frequency was 100 kHz, the load was 150 gf, the treatment time was 10 msec / pin, and the dummy chip and the lead were electrically connected by a gold wire. The obtained 64 packages were inspected, and the number of packages in which a lead-side connection failure occurred was detected as the number of wire bonding failures. The results are shown in Table 1.
[0033]
2. Mold flash was evaluated using the lead frame after evaluation of mold flash wire bonding failure. Using an epoxy molding agent (biphenyl epoxy, filler weight 85% by weight), heating temperature 180 ° C., pressure 10 MPa, treatment time 3 minutes, transfer mold (mold molding) to seal the dummy chip Sealed with 64 packages after resin sealing are inspected, and the number of packages in which the sealing resin adheres to the external connection portion of the lead (the surface of the lead on the adhesive sheet side) is detected as the number of mold flash occurrences. The results are shown in Table 1.
[0034]
3. Adhesive strength The adhesive sheets obtained in each Example and Comparative Example were cut to a width of 1 cm, and a 50 mm × 100 mm × 0.25 mmt copper plate (trade name: MF-202, manufactured by Mitsubishi Metex Co., Ltd.) and a gold-plated plate were rolled. Crimped by lamination. Next, the above-mentioned plate was heated to 150 ° C., and the peel strength when the adhesive layer of the obtained laminate was peeled away from the plate in the 90 ° direction was measured. Similarly, this peel strength was measured by increasing the heating temperature of the plate from 150 ° C. to 200 ° C. every 5 ° C. And the minimum value among the peeling strength in each measurement temperature of 150-200 degreeC was made into the adhesive strength of an adhesive sheet, and the result was shown in Table 1. In this case, the adhesive force to the copper plate that is practically required is 10 g / cm or more regardless of the presence or absence of gold plating.
4). Similar to the evaluation of the adhesive residue mold flash, the dummy chip was sealed with a molding agent, and then the adhesive sheet was peeled off from the lead frame at a peeling speed of 500 mm / min. 64 packages after peeling the adhesive sheet are inspected, and the number of packages in which the adhesive is attached to the external connection portion of the lead (the surface on the side where the adhesive sheet of the lead is attached) is defined as the number of remaining adhesives. It is shown in Table 1.
[0035]
[Table 1]
Figure 0003857953
[0036]
As shown in Table 1, the adhesive sheet of the present invention was free from wire bonding failure, mold flash, and adhesive residue. On the other hand, in Comparative Example 1, which is an adhesive sheet in which the thermosetting resin (a) / butadiene-containing resin (b) exceeds 3, mold flash occurred and the number of remaining adhesives was large. In Comparative Example 2, which is an adhesive sheet having a thermosetting resin (a) / butadiene-containing resin (b) of less than 0.3, many wire bonding defects occurred. In addition, it was confirmed that the bonding sheets of Comparative Examples 3 and 4 having no butadiene-containing resin (b) generate wire bonding defects or mold flash.
【The invention's effect】
As described in detail above, the adhesive sheet for manufacturing a semiconductor device of the present invention can have appropriate elastic characteristics and high adhesive force even when the adhesive layer is exposed to a high temperature. By manufacturing a semiconductor device such as QFN using wire, defective wire bonding, mold flash, and adhesive residue can be prevented, and defective semiconductor devices can be prevented.
[Brief description of the drawings]
FIG. 1 is a schematic plan view showing the structure of a lead frame suitable for use in manufacturing a QFN using an adhesive sheet for manufacturing a semiconductor device according to the present invention.
FIGS. 2A to 2F are process diagrams showing an example of a method for producing QFN using the adhesive sheet for producing a semiconductor device of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Adhesive sheet 20 for semiconductor device manufacture Lead frame 30 Semiconductor element 31 Bonding wire 40 Sealing resin

Claims (6)

耐熱性基材の一方の面に接着剤層を積層し、リードフレームに剥離可能に貼着される半導体装置製造用接着シートであり、該接着シートをリードフレームの一方の面に貼着し、他方の面に半導体素子を搭載し、ワイヤボンディング工程、樹脂封止工程を経た後、接着シートをリードフレームから剥離する半導体装置の製造方法に用いる半導体装置製造用接着シートであって、前記接着剤層が熱硬化性樹脂(a)及びブタジエン含有樹脂(b)を有し、前記(a)/(b)の重量比が0.3〜3、前記接着剤層の硬化後における貯蔵弾性率が、150℃から250℃の温度範囲の全てにおいて5MPa以上であることを特徴とする半導体装置製造用接着シート。It is an adhesive sheet for manufacturing a semiconductor device in which an adhesive layer is laminated on one side of a heat-resistant substrate and is peelably attached to a lead frame, and the adhesive sheet is attached to one side of the lead frame, A semiconductor device manufacturing adhesive sheet for use in a method for manufacturing a semiconductor device in which a semiconductor element is mounted on the other surface, followed by a wire bonding step and a resin sealing step, and then the adhesive sheet is peeled off from the lead frame. The layer has a thermosetting resin (a) and a butadiene-containing resin (b), the weight ratio of (a) / (b) is 0.3 to 3 , and the storage elastic modulus after curing of the adhesive layer is The adhesive sheet for manufacturing a semiconductor device, characterized in that the pressure is 5 MPa or more in the entire temperature range from 150 ° C. to 250 ° C. 前記耐熱性基材が耐熱性フィルムであって、該耐熱性フィルムのガラス転位温度が150℃以上であり、且つ熱膨張係数が5〜50ppm/℃であることを特徴とする請求項1に記載の半導体装置製造用接着シート。  The heat-resistant substrate is a heat-resistant film, the glass transition temperature of the heat-resistant film is 150 ° C or higher, and the thermal expansion coefficient is 5 to 50 ppm / ° C. Adhesive sheet for manufacturing semiconductor devices. 前記耐熱性基材が金属箔であって、該金属箔の熱膨張係数が5〜50ppm/℃であることを特徴とする請求項1に記載の半導体装置製造用接着シート。  The adhesive sheet for manufacturing a semiconductor device according to claim 1, wherein the heat-resistant substrate is a metal foil, and the metal foil has a thermal expansion coefficient of 5 to 50 ppm / ° C. 前記金属箔が、粗化面を有する電解金属箔であり、且つ粗化面側に接着剤層を設けてなることを特徴とする請求項3に記載の半導体装置製造用接着シート。  The adhesive sheet for manufacturing a semiconductor device according to claim 3, wherein the metal foil is an electrolytic metal foil having a roughened surface, and an adhesive layer is provided on the roughened surface side. 前記ブタジエン含有樹脂(b)の重量平均分子量が2000〜1000000であることを特徴とする請求項1に記載の半導体装置製造用接着シート。  The weight average molecular weight of the said butadiene containing resin (b) is 2000-1 million, The adhesive sheet for semiconductor device manufacture of Claim 1 characterized by the above-mentioned. 前記接着剤層上に保護フィルムを設けてなることを特徴とする請求項1に記載の半導体装置製造用接着シート。  The adhesive sheet for manufacturing a semiconductor device according to claim 1, wherein a protective film is provided on the adhesive layer.
JP2002142056A 2002-04-03 2002-05-16 Adhesive sheet for semiconductor device manufacturing Expired - Lifetime JP3857953B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002142056A JP3857953B2 (en) 2002-05-16 2002-05-16 Adhesive sheet for semiconductor device manufacturing
KR1020030020695A KR100633849B1 (en) 2002-04-03 2003-04-02 Adhesive sheet for producing semiconductor devices
US10/404,121 US20030190466A1 (en) 2002-04-03 2003-04-02 Adhesive sheet for producing semiconductor devices
TW092107464A TWI289155B (en) 2002-04-03 2003-04-02 Adhesive sheet for producing semiconductor devices
CNB031250386A CN1280883C (en) 2002-04-03 2003-04-02 Binding sheet for mfg. semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002142056A JP3857953B2 (en) 2002-05-16 2002-05-16 Adhesive sheet for semiconductor device manufacturing

Publications (2)

Publication Number Publication Date
JP2003336015A JP2003336015A (en) 2003-11-28
JP3857953B2 true JP3857953B2 (en) 2006-12-13

Family

ID=29702468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002142056A Expired - Lifetime JP3857953B2 (en) 2002-04-03 2002-05-16 Adhesive sheet for semiconductor device manufacturing

Country Status (1)

Country Link
JP (1) JP3857953B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106660332A (en) * 2014-08-22 2017-05-10 琳得科株式会社 Protective film forming sheet and manufacturing method for semiconductor chip having the protective film

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4538398B2 (en) * 2005-10-31 2010-09-08 株式会社巴川製紙所 Adhesive sheet for manufacturing semiconductor device and method for manufacturing semiconductor device
JP2012182392A (en) * 2011-03-02 2012-09-20 Nitto Denko Corp Semiconductor device manufacturing method
CN117334646A (en) * 2018-03-13 2024-01-02 株式会社力森诺科 Temporary protective film for semiconductor encapsulation molding, lead frame with temporary protective film, encapsulation molded body with temporary protective film, and method for manufacturing semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106660332A (en) * 2014-08-22 2017-05-10 琳得科株式会社 Protective film forming sheet and manufacturing method for semiconductor chip having the protective film
CN106660332B (en) * 2014-08-22 2020-08-07 琳得科株式会社 Protective film forming sheet and method for manufacturing semiconductor chip with protective film
TWI712670B (en) * 2014-08-22 2020-12-11 日商琳得科股份有限公司 Sheet for forming protective film and method of manufacturing tip having protective film

Also Published As

Publication number Publication date
JP2003336015A (en) 2003-11-28

Similar Documents

Publication Publication Date Title
JP4654062B2 (en) Adhesive sheet for manufacturing semiconductor device and method for manufacturing semiconductor device
KR100633849B1 (en) Adhesive sheet for producing semiconductor devices
JP4319892B2 (en) Adhesive sheet for manufacturing semiconductor device and method for manufacturing semiconductor device
JP4863690B2 (en) Adhesive sheet for manufacturing semiconductor device, semiconductor device and manufacturing method thereof
JP5937398B2 (en) Adhesive sheet for manufacturing semiconductor device and method for manufacturing semiconductor device
JP2005340746A (en) Semiconductor sealing expoxy resin composition, semiconductor device using the same and manufacturing method of semiconductor device
JP4538398B2 (en) Adhesive sheet for manufacturing semiconductor device and method for manufacturing semiconductor device
JP5937397B2 (en) Adhesive sheet for manufacturing semiconductor device and method for manufacturing semiconductor device
JP4125668B2 (en) Manufacturing method of semiconductor device
JP4421204B2 (en) Adhesive sheet for manufacturing semiconductor device, semiconductor device using the same, and manufacturing method
JP4251807B2 (en) Adhesive sheet for semiconductor device manufacturing
JP2006318999A (en) Adhesive film for manufacturing semiconductor device
JP3857953B2 (en) Adhesive sheet for semiconductor device manufacturing
JP2013201403A (en) Adhesive sheet for manufacturing semiconductor device and semiconductor device manufacturing method
JP3779601B2 (en) Mask sheet for semiconductor device assembly
JP4031721B2 (en) Adhesive sheet for semiconductor device manufacturing
JP2002275435A (en) Masking sheet for assembling semiconductor device and method for assembling semiconductor device
JP2002338910A (en) Pressure-sensitive adhesive sheet for manufacturing semiconductor device
JP2007073921A (en) Film for semiconductor, composite metal layer therewith, film with wiring circuit and semiconductor device therewith using the same, semiconductor device, and manufacturing method thereof
JP2021125516A (en) Adhesive sheet for manufacturing semiconductor device
JP2020150076A (en) Adhesive sheet for semiconductor device production
KR100776313B1 (en) Adhesive sheet for producing semiconductor device, semiconductor device, and production method for semiconductor device
JP2004022567A (en) Adhesive sheet for semiconductor and substrate for connecting semiconductor integrated circuit using it, and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060915

R150 Certificate of patent or registration of utility model

Ref document number: 3857953

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term