WO2016027873A1 - 圧縮着火式内燃機関、及び内燃機関 - Google Patents

圧縮着火式内燃機関、及び内燃機関 Download PDF

Info

Publication number
WO2016027873A1
WO2016027873A1 PCT/JP2015/073456 JP2015073456W WO2016027873A1 WO 2016027873 A1 WO2016027873 A1 WO 2016027873A1 JP 2015073456 W JP2015073456 W JP 2015073456W WO 2016027873 A1 WO2016027873 A1 WO 2016027873A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
electrode
combustion engine
igniter
booster circuit
Prior art date
Application number
PCT/JP2015/073456
Other languages
English (en)
French (fr)
Inventor
池田 裕二
Original Assignee
イマジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US15/505,159 priority Critical patent/US20170306918A1/en
Application filed by イマジニアリング株式会社 filed Critical イマジニアリング株式会社
Priority to EP15833987.9A priority patent/EP3184805A4/en
Priority to JP2016544257A priority patent/JP6635342B2/ja
Publication of WO2016027873A1 publication Critical patent/WO2016027873A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P23/00Other ignition
    • F02P23/04Other physical ignition means, e.g. using laser rays
    • F02P23/045Other physical ignition means, e.g. using laser rays using electromagnetic microwaves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B11/00Engines characterised by both fuel-air mixture compression and air compression, or characterised by both positive ignition and compression ignition, e.g. in different cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/10Engines or plants characterised by use of other specific gases, e.g. acetylene, oxyhydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/242Arrangement of spark plugs or injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/02Arrangements having two or more sparking plugs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/08Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits having multiple-spark ignition, i.e. ignition occurring simultaneously at different places in one engine cylinder or in two or more separate engine cylinders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/40Sparking plugs structurally combined with other devices
    • H01T13/44Sparking plugs structurally combined with other devices with transformers, e.g. for high-frequency ignition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/50Sparking plugs having means for ionisation of gap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/10Engines or plants characterised by use of other specific gases, e.g. acetylene, oxyhydrogen
    • F02B2043/103Natural gas, e.g. methane or LNG used as a fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P13/00Sparking plugs structurally combined with other parts of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P23/00Other ignition
    • F02P23/04Other physical ignition means, e.g. using laser rays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/045Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions combined with electronic control of other engine functions, e.g. fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/152Digital data processing dependent on pinking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an internal combustion engine, and CNG (Compressed Natural Gas).
  • the present invention relates to a compression ignition type internal combustion engine such as a diesel engine using a gaseous fuel such as a spark ignition type internal combustion engine such as a gasoline engine.
  • Diesel engines which is a type of compression ignition type internal combustion engine, ignition is performed by injecting liquid fuel into air that has become hot during the compression stroke.
  • Diesel engines are excellent in efficiency and can be applied to various types of fuels (petroleum fuels such as light oil and heavy oil, squalene and ester liquid fuels), and can be applied to various engines ranging from small high-speed engines to huge low-speed engines for ships. It has the advantage of being able to. *
  • Non-Patent Document 1 Non-Patent Document 1
  • Patent Document 1 the flame propagation speed of a diesel engine is slower than that of a gasoline engine. Therefore, for example, even if the central portion of the combustion chamber can be ignited by the spark plug, the outer edge portion may not be sufficiently ignited. Similar problems have been pointed out in spark ignition internal combustion engines.
  • the present invention has been made in view of the above points.
  • a plasma generator having a first electrode for receiving the output from the first electrode and a second electrode provided in proximity to the first electrode, the plasma generator being exposed to the combustion chamber of the internal combustion engine It is characterized by a plurality of arrangements.
  • FIG. 1 is a diagram illustrating a configuration of a diesel engine 10.
  • 2 is a bottom view of a cylinder head of the diesel engine 10.
  • FIG. 3 is a partial cross-sectional front view showing the configuration of the igniter 3.
  • FIG. This is an equivalent circuit of the igniter 3. It is a time chart explaining the control which the control apparatus 41 performs.
  • 1 is a diagram illustrating a configuration of a diesel engine 100.
  • 2 is a bottom view of a cylinder head of the diesel engine 100.
  • FIG. It is a time chart explaining the control which the control apparatus 41 performs.
  • FIG. 1 is a diagram illustrating a configuration of a diesel engine 10.
  • the diesel engine 10 is an example of a compression ignition type internal combustion engine of the present invention.
  • the engine body is shown in a partially sectional front sectional view.
  • An injector 1 that injects CNG fuel into the combustion chamber 28 is inserted into the cylinder head 21 of the diesel engine 10.
  • a plurality of igniters 3 are inserted into the insertion holes of the cylinder head 21.
  • the igniter 3A is at point A between the intake ports 24, the igniter 3B is at point B between the exhaust ports 26, and the points C and D are between the intake port 24 and the exhaust port 26.
  • a total of four igniters are arranged for each of the igniters 3C and 3D.
  • the flame propagation is terminated before the self-ignition is reached, and knocking is suppressed.
  • an effect of propagating flame to the center of the combustion chamber can be expected, heat loss on the cylinder wall surface at a low temperature can be reduced, and thermal efficiency can be improved. Further, NOx emission can be suppressed.
  • the igniter 3 includes an input portion 3a to which microwaves are input, a coupling portion 3b for performing capacitive coupling for the purpose of impedance matching between the microwave and the igniter 3, and an amplification / discharge portion 3c for performing voltage amplification and discharge. Divided.
  • the igniter 3 accommodates internal members by a case 31 made of conductive metal.
  • the input portion 3a is provided with an input terminal 32 for inputting a microwave generated by an external oscillation circuit and a first center electrode 33.
  • the first center electrode 33 transmits microwaves.
  • a dielectric 39 a such as ceramic is provided between the first center electrode 33 and the case 31.
  • the second center electrode 34 has a cylindrical configuration having a bottom portion on the amplification / discharge portion 3 c side, and the cylindrical portion surrounds the first center electrode 33.
  • the cylindrical inner walls of the rod-shaped first center electrode 33 and the cylindrical second center electrode 34 are opposed to each other, and the microwave from the first center electrode 33 is transmitted to the second center electrode 34 by capacitive coupling at the opposed portion. Is done.
  • the cylindrical portion of the second center electrode 34 is filled with a dielectric 39 b such as ceramic, and a dielectric 39 c such as ceramic is also provided between the second center electrode 34 and the case 31.
  • the third center electrode 35 and the discharge electrode 36 are provided in the amplification / discharge part 3c.
  • the third center electrode 35 is connected to the second center electrode 34, and the microwave of the second center electrode 34 is transmitted.
  • the discharge electrode 36 is attached to the tip of the third center electrode 35.
  • the third center electrode 35 has a coil component, and the microwave potential increases as it passes through the third center electrode 35. As a result, a high voltage of several tens of KV is generated between the discharge electrode 36 and the case 31, and a discharge occurs between the discharge electrode 36 and the case 31.
  • FIG. 4 is a diagram showing an equivalent circuit of the igniter 3.
  • a microwave (voltage V1, frequency 2.45 GHz) input from an external oscillation circuit (MW) is connected to a resonance circuit including a capacitor C3, a reactance L, and a capacitor C2 via a capacitor C1.
  • a discharge unit is provided in parallel with the capacitor C3.
  • C1 corresponds to the coupling capacitance, and mainly the positional relationship between the second center electrode 34 and the first center electrode 33 (distance between the electrodes and the area facing each other) and the material filled between the electrodes (in this example, It is determined by the ceramic structure dielectric 39b).
  • the first center electrode 33 may be configured to be movable in the axial direction in order to easily adjust the impedance.
  • the capacitance C2 is a grounded capacitance formed by the second center electrode 34 and the case 31, and is determined by the distance between the second center electrode 34 and the case 31, the facing area, and the dielectric constant of the dielectric 39c.
  • the case 31 is made of a conductive metal and functions as a ground electrode.
  • the reactance L corresponds to the coil component of the third center electrode 35.
  • the capacity C3 is a discharge capacity formed by the third center electrode 35, the discharge electrode 36, and the case 31. This is because (1) the shape and size of the discharge electrode 36 and the distance between the case 31, (2) the distance between the third center electrode 35 and the case 31, and (3) between the third center electrode 35 and the case 31. It is determined by the gap (air layer) 37 provided, the thickness of the dielectric 39d, and the like. If C2 >> C3, the potential difference between both ends of the capacitor C3 can be made sufficiently larger than V1, and as a result, the discharge electrode 36 can be set to a high potential. Furthermore, since C3 can be reduced, the area of the capacitor can be reduced.
  • the capacitance C3 is substantially determined by the portion of the third center electrode 35 and the case 31 that face each other across the dielectric 39d. In other words, the capacitance C3 can be adjusted by changing the length of the gap (air layer) 37 in the axial direction.
  • the coupling capacitance C1 When it can be considered that the coupling capacitance C1 is sufficiently small, the capacitance C3, the reactance L, and the capacitance C2 form a series resonance circuit, and the resonance frequency f can be expressed by Equation 1.
  • the igniter 3 is designed so that the discharge capacity C3, the coil reactance L, and the ground capacity C2 satisfy the relationship of Formula 1.
  • the igniter 3 generates a voltage Vc3 higher than the power supply voltage (the microwave voltage V1 input to the igniter 3) by a boosting method using a resonator. As a result, discharge occurs between the discharge electrode 36 and the ground electrode (case 31). When the discharge voltage exceeds the breakdown voltage of the gas molecules in the vicinity, electrons are emitted from the gas molecules, non-equilibrium plasma is generated, and the fuel is ignited.
  • the igniter 3 is advantageous for downsizing.
  • the igniter of the present invention is superior to a conventional igniter having a resonance structure (for example, Patent Document 2).
  • the control device 41 controls the injection timing and injection pressure (injection size) of the injector 1 and controls the microwave generator 42.
  • the microwave generator 42 generates an input voltage to the igniter 3 by using an oscillator that oscillates an AC signal of 2.45 GHz, a circuit that controls ON / OFF of the microwave, and a microwave generated from a power source of a car battery (for example, DC 12V).
  • An amplification circuit that performs amplification to meet the specifications is provided. That is, the control device 41 indirectly controls the igniter 3 by controlling the microwave generator 42. In other words, the discharge timing of the igniter 3 can be freely controlled by controlling the generation timing of the microwave by the microwave generator 42.
  • the control device 41 controls the injector 1 such that CNG fuel injection is started when the crank angle of the piston 27 exceeds approximately ⁇ 90 degrees.
  • control is performed so that the igniter 3A performs discharge.
  • the vicinity (point A) of the igniter 3A is ignited.
  • the igniters 3B, 3C, and 3D are discharged in this order, and the points B, C, and D are sequentially ignited.
  • four igniters may be discharged simultaneously, but in this case, four microwave generators 42 are required, and the system becomes expensive.
  • the period for performing the discharge necessary for ignition is not a long period. Therefore, in the present embodiment, one microwave generator 42 is used, and the igniters to be discharged are sequentially switched and used.
  • a method of switching the igniter a method of sequentially switching by switching, a method of sweeping the oscillation frequency of the microwave generator 42 by utilizing the fact that there is an individual difference in the resonance frequency of the igniter, For example, a method of using the reflected wave generated in the above as a signal source of another igniter 3 can be considered.
  • the igniter 3 since the igniter 3 is driven by microwaves, discharge is also performed at a cycle of microwaves (GHz). Therefore, since the next discharge is performed before the generated radicals are killed, the generated OH radicals are maintained without being killed. On the other hand, since the conventional spark plug cannot turn on / off the spark at a high frequency, the radical generated once is immediately killed. Therefore, when a conventional spark plug is used, the above-described effects cannot be achieved. In this way, the use of the igniter 3 makes it possible to realize the multipoint ignition as described above.
  • FIG. 6 is a diagram illustrating a configuration of a diesel engine 100 according to the second embodiment.
  • the engine body is shown in a partially sectional front sectional view.
  • An injector unit 6 including an injector for injecting CNG fuel into the combustion chamber 28 and an igniter for igniting the fuel is inserted into the cylinder head 21 of the diesel engine 100.
  • FIG. 7 is a partially sectional front view showing the configuration of the injector unit 6.
  • the injector unit 6 includes an injector 61, an igniter 3, and a casing 64 for housing them.
  • the igniter 3 is arranged on the central axis of the casing 64, and two injectors 61 are arranged adjacent to this. *
  • the injector 61 is of a miniaturized type because it is integrated with the igniter 3. Since the fuel injection amount decreases due to the downsizing, the injector unit 61 uses a plurality (two) of injectors to compensate for this.
  • a plurality of igniters are further inserted into the insertion holes of the cylinder head 21.
  • an igniter 3A is provided at point A between the intake ports 24, and an igniter 3B is provided at point B between the exhaust ports 26.
  • a total of five igniters are arranged at points C and D between the port 24 and the exhaust port 26, respectively.
  • FIG. 9 is an example of control performed by the control device 41.
  • the igniter 3 is controlled to discharge, and the central portion of the combustion chamber 28, which is also a portion where the injector 1 is provided, ignites.
  • the igniters 3A, 3B, 3C, and 3D are discharged in this order, and the points A, B, C, and D are ignited sequentially.
  • This embodiment also realizes multipoint ignition, shortens the flame propagation distance, shortens the initial combustion period, shortens the main combustion period, stabilizes, and the like.
  • each igniter is sequentially ignited according to the control of the control device 41.
  • each igniter may be ignited sequentially by using a reflected wave from the igniter 3.
  • the matching of the internal impedance of the igniter 3 is broken at this moment, and a reflected wave is generated. That is, the microwave flows backward from the front end portion (amplification / discharge portion 3c) to the rear end portion (input portion 3a). Utilizing this property, the reflected wave can be guided to each igniter 3 in order and the reflected wave can be effectively utilized.
  • the igniters 3A, 3B, 3C, and 3D are connected (electrically) in series, the igniter 3B uses the reflected microwave from the igniter 3A as a power source, and the igniter 3C receives the reflected microwave from the igniter 3B. It can be realized by a method of using as a power source. Thereby, the timing control by the control apparatus 4 becomes unnecessary. Further, if it is attempted to control each igniter 3 using a single power source, it is difficult to switch at high speed. However, if this property is used, microwaves to be ignited at high speed can be switched.
  • the present embodiment is applicable not only to compression ignition type internal combustion engines but also to spark ignition type internal combustion engines such as gasoline engines.
  • the igniter 3 is not limited to the above, and other types such as a corona discharge plug (for example, EcoFlash (registered trademark of BorgWarner)) may be used.
  • a corona discharge plug for example, EcoFlash (registered trademark of BorgWarner)
  • EcoFlash registered trademark of BorgWarner
  • an igniter capable of continuous discharge at a high frequency is preferable in order to achieve the effects shown in the above embodiment.
  • igniter 3 is assumed to operate by microwaves, it may be one that uses electromagnetic waves having other bands.
  • Injector 3 Igniter 3a Input part 3b Coupling part 3c Amplification / discharge part 31 Case (ground electrode) 32 microwave input terminal 33 first center electrode 34 second center electrode 35 third center electrode 36 discharge electrode 37 gap 39 dielectric 6 injector unit 61 injector 64 casing 10 diesel engine 41 controller 42 microwave generator 100 diesel engine

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

【課題】 気体燃料を燃料として用いる圧縮着火式内燃機関において、燃焼室の中心部のみならず、外縁部の着火特性も向上させる。電磁波を生成する電磁波生成器と、電磁波生成器を制御する制御装置と、共振構造により電磁波を昇圧する昇圧回路、昇圧回路からの出力を受入れる第1電極、及び第1電極に近接して設けられる第2電極を有するプラズマ生成器を備え、プラズマ生成器を、第1電極が前記内燃機関の燃焼室に露出するように複数配設した。

Description

圧縮着火式内燃機関、及び内燃機関
 本発明は、内燃機関に関し、CNG(Compressed Natural Gas、圧縮天然ガス)
等の気体燃料を用いるディーゼルエンジン等の圧縮着火式内燃機関、及びガソリンエンジン等の火花着火式内燃機関に関する。
 圧縮着火式内燃機関の一種であるディーゼルエンジンでは、圧縮行程で高温になった空気に液体燃料を噴射することで着火させる。ディーゼルエンジンは、効率に優れ、様々な燃料(軽油、重油等の石油系燃料や、スクワレン、エステル系の液体燃料)に適用でき、小型高速機関から巨大な船舶用低速機関まで様々な機関に適用できる、といった長所がある。 
 しかし、ディーゼルエンジンの場合、NOxの排ガスやススの発生、等の欠点を有していた。これに対し、ディーゼル排ガスを減らすことができる燃料として、CNGが注目されている。しかし、CNGは軽油と比較して着火温度が高い。従って、従来のディーゼルエンジンをCNG燃料により動作させることはできないため、例えば軽油をパイロット燃料として使用したり、点火プラグ等の着火手段を用いたりすることが提案されている(非特許文献1)。
特開2013-057279号公報 米国特許7963262号公報 「高効率大型ガスエンジンを開発」(三井造船技報No.191(2007-6), P.19-25)
 しかし、例えば特許文献1等でも指摘されているように、ディーゼルエンジンでは火炎伝播速度がガソリンエンジンに比べて遅い。従って、例えば燃焼室の中心部分が点火プラグにより着火できたとしても、外縁部分の着火が十分に行えない場合がある。火花着火式の内燃機関においても、同様の問題が指摘されている。
 本発明は、以上の点に鑑みてなされたものである。
 本発明の気体燃料を燃料として用いる圧縮着火式の内燃機関であって、電磁波を生成する電磁波生成器と、電磁波生成器を制御する制御装置と、共振構造により電磁波を昇圧する昇圧回路、昇圧回路からの出力を受入れる第1電極、及び第1電極に近接して設けられる第2電極を有するプラズマ生成器を備え、プラズマ生成器を、第1電極が前記内燃機関の燃焼室に露出するように複数配設したことを特徴とする。
 本発明によれば、気体燃料を燃料として用いる圧縮着火式内燃機関において、燃焼室の中心部のみならず、外縁部の着火特性も向上させることができる。
ディーゼルエンジン10の構成を示す図である。 ディーゼルエンジン10のシリンダヘッドの底面図である。 イグナイタ3の構成を示す一部断面の正面図である。 イグナイタ3の等価回路である。 制御装置41が行う制御を説明するタイムチャートである。 ディーゼルエンジン100の構成を示す図である。 インジェクタユニット6の構成を示す図である。 ディーゼルエンジン100のシリンダヘッドの底面図である。 制御装置41が行う制御を説明するタイムチャートである。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態は、好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
(第1の実施形態)
 図1は、ディーゼルエンジン10の構成を示す図である。このディーゼルエンジン10は、本発明の圧縮着火式内燃機関の一例である。エンジン本体部に関しては、一部断面の正面断面図で示している。ディーゼルエンジン10のシリンダヘッド21には、CNG燃料を燃焼室28に噴射するインジェクタ1が挿入される。
 また、シリンダヘッド21には、複数個のイグナイタ3(3A~3D)がシリンダヘッド21の挿入孔に挿入される。図2のシリンダヘッド21の底面図に示すように、吸気ポート24間のA点にイグナイタ3A、排気ポート26間のB点にイグナイタ3B、吸気ポート24と排気ポート26間のC点、D点それぞれにイグナイタ3C、3Dと、合計で4つのイグナイタが配置される。インジェクタ1から離れた位置に4つのイグナイタを配置することにより、多点着火を実現し、火炎伝播距離を短縮し、初期燃焼期間の短縮、主燃焼期間の短縮、安定化が可能となる。また、火炎伝播距離の短縮により、自着火に至る前に火炎伝播が終了し、ノッキングが抑制される。また、燃焼室中心部へ火炎伝播を行う効果も期待でき、低温であるシリンダ壁面での熱損失を低減でき、熱効率の向上を図ることもできる。また、NOx排出の抑制も可能である。
 図3を参照して、イグナイタ3の構成の詳細を説明する。イグナイタ3は、マイクロ波が入力される入力部分3a、マイクロ波とイグナイタ3のインピーダンス整合等を目的とした容量結合が行われる結合部分3b、及び電圧の増幅や放電を行う増幅/放電部分3cに分かれる。イグナイタ3は導電性の金属からなるケース31により内部の各部材が収容される。
 入力部分3aには、外部の発振回路で生成されたマイクロ波を入力する入力端子32、第1中心電極33が設けられる。第1中心電極33はマイクロ波を伝送する。第1中心電極33とケース31の間にはセラミック等の誘電体39aが設けられる。
 結合部分3bには、第1中心電極33、第2中心電極34が設けられる。この結合部分3bは、専ら、発振回路とイグナイタ3のインピーダンス整合を行うことを目的に設けられている。第2中心電極34は、増幅/放電部分3c側に底部を有する筒状構成であり、筒状部が第1中心電極33を囲む。棒状の第1中心電極33と筒状の第2中心電極34の筒部内壁は対向しており、この対向部分において第1中心電極33からのマイクロ波が容量結合により第2中心電極34へ伝送される。第2中心電極34の筒状部分には、セラミック等の誘電体39bが充填され、第2中心電極34とケース31の間にもセラミック等の誘電体39cが設けられる。
 増幅/放電部分3cには、第3中心電極35、放電電極36が設けられる。第3中心電極35は、第2中心電極34と接続しており、第2中心電極34のマイクロ波が伝送される。放電電極36は、第3中心電極35の先端部に取付けられる。第3中心電極35はコイル成分を有しており、マイクロ波の電位は第3中心電極35を通過するに従い高くなる。その結果、放電電極36とケース31の間に数十KVの高電圧が発生し、放電電極36とケース31の間で放電が起きる。
 図4は、イグナイタ3の等価回路を示す図である。外部の発振回路(MW)から入力されるマイクロ波(電圧V1、周波数2.45GHz)は容量C1を介して、容量C3、リアクタンスL、容量C2からなる共振回路に接続される。また、容量C3と並列に放電部が設けられる。
 ここで、C1は結合容量に相当し、主に第2中心電極34と第1中心電極33の位置関係(両電極間の距離や対向する面積)や電極間に充填される材料(本例ではセラミック構造の誘電体39b)により決まる。第1中心電極33は、インピーダンスの調整を容易にすべく、その軸芯方向に移動可能な構成としても良い。
 容量C2は、第2中心電極34とケース31によって形成される接地容量であり、第2中心電極34とケース31との距離や対向面積、及び誘電体39cの誘電率によって決まる。ケース31は導電性の金属で構成されており、接地電極としても機能する。
 リアクタンスLは、第3中心電極35のコイル成分に相当する。
 容量C3は、第3中心電極35、放電電極36及びとケース31によって形成される放電容量である。これは、(1)放電電極36の形状、大きさ及びケース31との距離、(2)第3中心電極35とケース31との距離、(3)第3中心電極35とケース31の間に設けた間隙(空気層)37や誘電体39dの厚み、等で決まる。C2>>C3とすれば、容量C3の両端の電位差をV1よりも十分に大きくすることができ、その結果、放電電極36を高電位にすることができる。更にはC3を小さくすることができるから、コンデンサの面積も小さくて済む。なお、容量C3は実質的には、第3中心電極35とケース31のうち、誘電体39dを挟んで対向する部分によって決まる。逆に言えば、間隙(空気層)37の軸方向の長さを変えることで容量C3の調整を行うこともできる。 
 結合容量C1が十分に小さいと看做せる場合、容量C3、リアクタンスL、容量C2は直列共振回路をなし、共振周波数fは数式1で表現できる。
Figure JPOXMLDOC01-appb-M000001
 つまり、f=2.45GHzとした場合に、放電容量C3、コイルリアクタンスL、及び接地容量C2が数式1の関係を満たすようにイグナイタ3は設計される。
 上述のようにイグナイタ3は、共振器による昇圧方式により、電源電圧(イグナイタ3に入力されるマイクロ波の電圧V1)よりも高い電圧Vc3を生成する。これにより、放電電極36と接地電極(ケース31)間に放電が生じる。放電電圧が、その近辺のガス分子のブレークダウン電圧を超えると、ガス分子から電子が放出されて非平衡プラズマが生成され、燃料が点火する。
 また、2.45GHz帯の周波数を使用するため、コンデンサの容量が小さく済み、イグナイタ3は、小型化に有利である。また、昇圧方式を採用する結果、イグナイタ3のうち、放電電極36の近傍のみが高電位となるので、アイソレーションの点でも優れる。これらの点において、本発明のイグナイタは、従来の共振構造のイグナイタ(例えば、特許文献2)よりも優れている。
 再び、図1を参照して、制御装置41は、インジェクタ1の噴射タイミングや噴射圧(噴射の大きさ)を制御したり、マイクロ波発生器42を制御したりする。マイクロ波発生器42は、2.45GHzの交流信号を発振器する発振器、マイクロ波のON/OFFを制御する回路、カーバッテリー(例えば直流12V)の電源から生成されたマイクロ波をイグナイタ3の入力電圧仕様に合うように増幅を行う増幅回路等を備える。つまり、制御装置41は、マイクロ波発生器42を制御することで間接的にイグナイタ3を制御する。逆に言えば、マイクロ波発生器42によるマイクロ波の生成タイミングを制御することにより、イグナイタ3の放電タイミングを自由に制御できる。リアクタンスの大きい点火コイルを使用する通常のスパークプラグでは、高速な応答は困難であり、連続的な放電を行うことが難しい。一方、イグナイタ3はマイクロ波により駆動するため高速な応答が可能であり、マイクロ波発生器42を自由に制御することにより、任意のタイミングで高周波での、あたかも連続的な放電を生じさせることができる。従って、後述するような様々な制御が可能である。この点で従来のスパークプラグとは大きく相違する。
 ここで、次に図5を参照して、制御装置41が行う制御例を説明する。制御装置41は、ピストン27のクランク角度が大よそ-90度を超えた時点でCNG燃料の噴射が開始されるよう、インジェクタ1を制御する。インジェクタ1の噴射開始後、先ず、イグナイタ3Aが放電を行うよう制御を行う。イグナイタ3Aの近傍(A点)を着火させる。次に、同様にして、イグナイタ3B、3C、3Dの順で放電させて、B点、C点、D点を順次着火させる。なお、4つのイグナイタを同時に放電させても良いが、この場合、マイクロ波生成器42が4つ必要となり、システムが高価になる。しかし、着火に必要な放電を行うべき期間は長期間ではない。そこで、本実施形態では、1つのマイクロ波生成器42を用い、放電させるイグナイタを順次切り替えて使用する。
 なお、イグナイタを切り替える方法としては、スイッチングにより順次切り替える方法、イグナイタの共振周波数に個体差があることを逆に利用して、マイクロ波生成器42の発振周波数をスイープしていく方法、イグナイタ3内で生じる反射波を他のイグナイタ3の信号源として使用する方法等が考えられる。
 なお、イグナイタ3は、マイクロ波により駆動するので、放電もマイクロ波(GHz)の周期で行われる。従って、発生したラジカルが死滅する前に、次の放電が行われるから、発生したOHラジカル等は死滅せず維持される。これに対し、従来のスパークプラグでは、高周波でのスパークのON/OFFを行うことができないため、一端発生したラジカルはすぐに死滅してしまう。従って、従来のスパークプラグを用いた場合、上記のような作用効果を奏することはできない。このように、イグナイタ3を使用することで上記のような多点着火を実現することができる。
(第2の実施形態)
 図6は、第2実施形態に係るディーゼルエンジン100の構成を示す図である。エンジン本体部に関しては、一部断面の正面断面図で示している。ディーゼルエンジン100のシリンダヘッド21には、CNG燃料を燃焼室28に噴射するインジェクタと、その燃料を点火するためのイグナイタを含むインジェクタユニット6が挿入される。
 図7は、インジェクタユニット6の構成を示す一部断面の正面図である。インジェクタユニット6は、インジェクタ61と、イグナイタ3と、これらを収納するケーシング64からなる。
 イグナイタ3は、ケーシング64の中心軸上に配置され、これに隣接して2つのインジェクタ61が配置される。 
 インジェクタ61は、イグナイタ3と一体化する関係上、小型化したタイプのものが用いられる。小型化により、燃料の噴射量が低下するため、これを補うべく、インジェクタユニット61はインジェクタを複数(2個)用いている。
 再び図6に戻り、ディーゼルエンジン10は、インジェクタユニット6内に収納されるイグナイタ3に加えて、更に複数個のイグナイタがシリンダヘッド21の挿入孔に挿入される。図8のシリンダヘッド21の底面図に示すように、中央部のインジェクタ3(インジェクタユニット6)に加え、吸気ポート24間のA点にイグナイタ3A、排気ポート26間のB点にイグナイタ3B、吸気ポート24と排気ポート26間のC点、D点それぞれにイグナイタ3C、3Dと、合計で5つのイグナイタが配置される。
 図9は、制御装置41が行う制御例である。まず、イグナイタ3が放電を行うよう制御し、インジェクタ1が配備される部分でもある燃焼室28の中心部が着火する。次に、イグナイタ3A、3B、3C、3Dの順で放電させて、A点、B点、C点、D点を順次着火させる。
 本実施形態によっても多点着火を実現し、火炎伝播距離を短縮し、初期燃焼期間の短縮、主燃焼期間の短縮、安定化などが可能となる。
(第3実施形態)
 上記実施形態では、制御装置41の制御にしたがって、各イグナイタにより順次点火させていた。これに対し、イグナイタ3からの反射波を利用することにより、各イグナイタを順次点火させるようにしてもよい。イグナイタ3の放電電極36で放電が行われると、この瞬間にイグナイタ3の内部インピーダンスの整合が崩れ、反射波が生じる。つまり、マイクロ波が先端部(増幅/放電部分3c)から後端部(入力部分3a)に逆流する。この性質を利用して、反射波を順次各イグナイタ3に導き、反射波を有効に活用することができる。つまり、イグナイタ3A、3B、3C、3Dを(電気的に)直列に接続ようにし、イグナイタ3Bは、イグナイタ3Aからの反射マイクロ波を電源として使用し、イグナイタ3Cはイグナイタ3Bからの反射マイクロ波を電源として使用する、といった方法により実現できる。これにより、制御装置4によるタイミング制御が不要になる。また、単一電源を用いて各イグナイタ3を制御しようとすると、高速の切り替えが難しいが、この性質を利用すれば、高速で点火させるマイクロ波を切り替えることができる。なお、本実施形態に関しては、圧縮着火式の内燃機関に限らず、ガソリンエンジン等の火花点火式の内燃機関にも適用できるものである。
 以上、本発明の実施形態について説明した。本発明の範囲はあくまでも特許請求の範囲に記載された発明に基づいて定められるものであり、上記実施形態に限定されるべきものではない。
 例えば、イグナイタ3は、上記のものに限らず、例えばコロナ放電プラグ(例えばボルグワーナー社のEcoFlash(米国登録商標))など他のタイプのものを用いても良い。但し、上記の実施形態で示した効果を奏するには、高い周波数での連続放電が可能なイグナイタが好ましい。
 また、イグナイタ3はマイクロ波により動作するものとしているが、他の帯域を有する電磁波を使用するものでも良い。
1  インジェクタ
3  イグナイタ
 3a 入力部分
 3b 結合部分
 3c 増幅/放電部分
 31 ケース(接地電極)
 32 マイクロ波入力端子
 33 第1中心電極
 34 第2中心電極
 35 第3中心電極
 36 放電電極
 37 空隙
 39 誘電体
6  インジェクタユニット
 61 インジェクタ
 64 ケーシング
10 ディーゼルエンジン
41 制御装置
42 マイクロ波生成器
100 ディーゼルエンジン

Claims (3)

  1.  気体燃料を燃料として用いる圧縮着火式の内燃機関であって、
     電磁波を生成する電磁波生成器と、
     電磁波生成器を制御する制御装置と、
     共振構造により電磁波を昇圧する昇圧回路、昇圧回路からの出力を受入れる第1電極、及び第1電極に近接して設けられる第2電極を有するプラズマ生成器を備え、
     プラズマ生成器を、第1電極が前記内燃機関の燃焼室に露出するように複数配設した内燃機関。
  2.  前記プラズマ生成器を、前記内燃機関の燃焼室天井面に形成される吸気ポート間、排気ポート間、又は吸気ポートと排気ポートとの間に配設した請求項1に記載の内燃機関。
  3.  電磁波を生成する電磁波生成器と、
     電磁波生成器より入力された電磁波を共振構造により昇圧する昇圧回路と、昇圧回路の出力側に配設され放電電極を有する第1のプラズマ生成器と、
     前記第1のプラズマ生成器の放電電極近傍において反射した電磁波を入力し、この入力された電磁波を共振構造により昇圧する昇圧回路と、昇圧回路の出力側に配設され放電電極を有する第2のプラズマ生成器を備え、
     第1、第2プラズマ生成器を、用いることにより、複数の箇所において点火を行うことを特徴とする内燃機関。
PCT/JP2015/073456 2014-08-21 2015-08-21 圧縮着火式内燃機関、及び内燃機関 WO2016027873A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/505,159 US20170306918A1 (en) 2014-08-21 2015-08-12 Compression-ignition type internal combustion engine, and internal combustion engine
EP15833987.9A EP3184805A4 (en) 2014-08-21 2015-08-21 Compression-ignition type internal combustion engine, and internal combustion engine
JP2016544257A JP6635342B2 (ja) 2014-08-21 2015-08-21 圧縮着火式内燃機関、及び内燃機関

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-168870 2014-08-21
JP2014168870 2014-08-21
JP2014247500 2014-12-06
JP2014-247500 2014-12-06

Publications (1)

Publication Number Publication Date
WO2016027873A1 true WO2016027873A1 (ja) 2016-02-25

Family

ID=55350813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073456 WO2016027873A1 (ja) 2014-08-21 2015-08-21 圧縮着火式内燃機関、及び内燃機関

Country Status (4)

Country Link
US (1) US20170306918A1 (ja)
EP (1) EP3184805A4 (ja)
JP (1) JP6635342B2 (ja)
WO (1) WO2016027873A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6739348B2 (ja) * 2014-11-24 2020-08-12 イマジニアリング株式会社 点火ユニット、点火システム、及び内燃機関
WO2020054754A1 (ja) * 2018-09-14 2020-03-19 パナソニックIpマネジメント株式会社 マイクロ波加熱装置
CN115387919B (zh) * 2021-07-27 2023-09-22 淄柴机器有限公司 一种船用发动机的油气双燃料切换方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148022A (en) * 1981-03-10 1982-09-13 Toyota Motor Corp Multiple-point-ignition internal combustion engine
JP2004087498A (ja) * 2002-08-28 2004-03-18 Robert Bosch Gmbh 内燃機関の空気・燃料混合気を点火するための装置
JP2009036198A (ja) * 2007-07-12 2009-02-19 Imagineering Kk 点火またはプラズマ発生装置
WO2012105570A1 (ja) * 2011-01-31 2012-08-09 イマジニアリング株式会社 プラズマ生成装置
JP2013015077A (ja) * 2011-07-04 2013-01-24 Daihatsu Motor Co Ltd 火花点火式内燃機関

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0619662A2 (pt) * 2006-09-20 2011-10-11 Imagineering Inc equipamento de ignição, motor de combustão interna, vela de ignição, equipamento de plasma, equipamento para degradação de gás de exaustão, equipamento para a geração / esterilização / desinfecção de ozÈnio e equipamento para a eliminação de odores
JP2009036068A (ja) * 2007-08-01 2009-02-19 Nissan Motor Co Ltd 内燃機関の燃焼制御装置
JP5374691B2 (ja) * 2008-03-14 2013-12-25 イマジニアリング株式会社 複数放電のプラズマ装置
JP5061335B2 (ja) * 2008-03-14 2012-10-31 イマジニアリング株式会社 シリンダヘッドを用いたプラズマ装置
JP5200233B2 (ja) * 2008-03-14 2013-06-05 イマジニアリング株式会社 内燃機関のガスケット及び内燃機関
WO2012099027A1 (ja) * 2011-01-18 2012-07-26 イマジニアリング株式会社 プラズマ生成装置、及び内燃機関
JP5961871B2 (ja) * 2011-01-28 2016-08-02 イマジニアリング株式会社 内燃機関の制御装置
WO2012105572A2 (ja) * 2011-01-31 2012-08-09 イマジニアリング株式会社 内燃機関
JP6152534B2 (ja) * 2011-01-31 2017-06-28 イマジニアリング株式会社 プラズマ生成装置
EP2677163A4 (en) * 2011-02-15 2018-08-08 Imagineering, Inc. Internal combustion engine
WO2012111701A2 (ja) * 2011-02-15 2012-08-23 イマジニアリング株式会社 内燃機関
JPWO2012124671A1 (ja) * 2011-03-14 2014-07-24 イマジニアリング株式会社 内燃機関
JP6145759B2 (ja) * 2011-09-11 2017-06-14 イマジニアリング株式会社 アンテナ構造、高周波放射用プラグ、及び内燃機関
US9860968B2 (en) * 2011-09-22 2018-01-02 Imagineering, Inc. Plasma generating device, and internal combustion engine
WO2013191142A1 (ja) * 2012-06-22 2013-12-27 イマジニアリング株式会社 アンテナ構造体及び内燃機関
EP2928270A4 (en) * 2012-11-30 2016-06-22 Imagineering Inc PLASMA GENERATION DEVICE
EP2950621A4 (en) * 2013-01-22 2017-01-25 Imagineering, Inc. Plasma generating device, and internal combustion engine
US10132286B2 (en) * 2013-08-21 2018-11-20 Imagineering, Inc. Ignition system for internal combustion engine, and internal combustion engine
US20170276109A1 (en) * 2014-05-29 2017-09-28 Imagineering, Inc. Injector having in-built ignition system
EP3196994B1 (en) * 2014-07-11 2018-05-16 Imagineering, Inc. Ignition device
EP3064766A1 (de) * 2015-03-03 2016-09-07 MWI Micro Wave Ignition AG Verfahren und Vorrichtung zum Einbringen von Mikrowellenenergie in einen Brennraum eines Verbrennungsmotors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148022A (en) * 1981-03-10 1982-09-13 Toyota Motor Corp Multiple-point-ignition internal combustion engine
JP2004087498A (ja) * 2002-08-28 2004-03-18 Robert Bosch Gmbh 内燃機関の空気・燃料混合気を点火するための装置
JP2009036198A (ja) * 2007-07-12 2009-02-19 Imagineering Kk 点火またはプラズマ発生装置
WO2012105570A1 (ja) * 2011-01-31 2012-08-09 イマジニアリング株式会社 プラズマ生成装置
JP2013015077A (ja) * 2011-07-04 2013-01-24 Daihatsu Motor Co Ltd 火花点火式内燃機関

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3184805A4 *

Also Published As

Publication number Publication date
EP3184805A4 (en) 2018-05-02
US20170306918A1 (en) 2017-10-26
JP6635342B2 (ja) 2020-01-22
EP3184805A1 (en) 2017-06-28
JPWO2016027873A1 (ja) 2017-07-20

Similar Documents

Publication Publication Date Title
JP5934851B2 (ja) 内燃機関
JP6685518B2 (ja) 点火装置内蔵インジェクタ
WO2016027873A1 (ja) 圧縮着火式内燃機関、及び内燃機関
JP6739348B2 (ja) 点火ユニット、点火システム、及び内燃機関
JP2016130512A (ja) 点火方法、及び点火システム
WO2011152493A1 (ja) 内燃機関の制御装置
JP6064138B2 (ja) 内燃機関、及びプラズマ生成装置
JP6086445B2 (ja) アンテナ構造体、高周波放射用プラグ及び内燃機関
JP2012149608A (ja) 内燃機関の点火装置
JP6620748B2 (ja) インジェクタユニット、及び点火プラグ
WO2013011967A1 (ja) 内燃機関
WO2013021993A1 (ja) 内燃機関
WO2016027877A1 (ja) 点火プラグ、圧縮着火式内燃機関
JP6635341B2 (ja) 圧縮着火式内燃機関の修理方法
WO2018056278A1 (ja) 圧縮自着火エンジン
JPWO2013035881A1 (ja) アンテナ構造、高周波放射用プラグ、及び内燃機関
JP6145760B2 (ja) 高周波放射用プラグ及び内燃機関
WO2015186683A1 (ja) インジェクタユニット
WO2015186682A1 (ja) インジェクタユニット
JP5973956B2 (ja) 内燃機関の点火装置
JP2013194717A (ja) アンテナ構造体、高周波放射用プラグ、内燃機関
JPWO2016093351A1 (ja) 点火装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15833987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016544257

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015833987

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015833987

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15505159

Country of ref document: US