WO2016027729A1 - 信号処理装置、撮像素子、並びに、電子機器 - Google Patents

信号処理装置、撮像素子、並びに、電子機器 Download PDF

Info

Publication number
WO2016027729A1
WO2016027729A1 PCT/JP2015/072722 JP2015072722W WO2016027729A1 WO 2016027729 A1 WO2016027729 A1 WO 2016027729A1 JP 2015072722 W JP2015072722 W JP 2015072722W WO 2016027729 A1 WO2016027729 A1 WO 2016027729A1
Authority
WO
WIPO (PCT)
Prior art keywords
counter
unit
conversion unit
conversion
converter
Prior art date
Application number
PCT/JP2015/072722
Other languages
English (en)
French (fr)
Inventor
克彦 半澤
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2016544183A priority Critical patent/JP6699553B2/ja
Priority to US15/503,119 priority patent/US10154219B2/en
Publication of WO2016027729A1 publication Critical patent/WO2016027729A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/08Continuously compensating for, or preventing, undesired influence of physical parameters of noise
    • H03M1/0845Continuously compensating for, or preventing, undesired influence of physical parameters of noise of power supply variations, e.g. ripple
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/617Noise processing, e.g. detecting, correcting, reducing or removing noise for reducing electromagnetic interference, e.g. clocking noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/772Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/1205Multiplexed conversion systems
    • H03M1/123Simultaneous, i.e. using one converter per channel but with common control or reference circuits for multiple converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/50Analogue/digital converters with intermediate conversion to time interval
    • H03M1/56Input signal compared with linear ramp

Definitions

  • the present technology relates to a signal processing device, an imaging device, and an electronic device, and more particularly, to a signal processing device, an imaging device, and an electronic device that can suppress power supply fluctuation due to driving of a counter.
  • a / D conversion units used in image sensors and the like generally perform A / D conversion by a single slope A / D conversion method or the like and have a counter circuit.
  • a counter circuit In such a counter circuit, current does not flow when the count value is not inverted, but current flows when the count value is inverted, which may cause noise due to power supply fluctuations.
  • the count value is simultaneously inverted (when all bits are inverted)
  • This technology has been proposed in view of such a situation, and an object of the present technology is to be able to suppress power supply fluctuation due to driving of a counter.
  • One aspect of the present technology is the same as the first A / D converter that performs A / D conversion of an analog signal using a first counter that is a predetermined counter, and the count timing is the same as the first counter.
  • the D conversion unit and the second A / D conversion unit are signal processing devices that are arranged in the vicinity of each other to such an extent that the fluctuations of the power supply affect each other.
  • the first counter may be an up counter, and the second counter may be a down counter.
  • the first counter and the second counter can be asynchronous counters.
  • the first counter and the second counter can be synchronous counters.
  • the first counter and the second counter can be configured by JK flip-flops.
  • the first counter and the second counter can be constituted by D flip-flops.
  • the first counter can be an up / down counter driven as an up counter
  • the second counter can be an up / down counter driven as a down counter
  • the first counter and the second counter can be binary counters.
  • the first counter and the second counter can be gray code counters.
  • the first counter and the second counter may be counters using TDC (Time-to-Digital Converter).
  • the first A / D conversion unit and the second A / D conversion unit can A / D convert the analog signal by a single slope A / D conversion method.
  • the first A / D conversion unit and the second A / D conversion unit can A / D convert the analog signal by an integral A / D conversion method.
  • the first A / D conversion unit and the second A / D conversion unit can be arranged in one row so that they are alternately arranged one by one.
  • the first A / D conversion unit and the second A / D conversion unit may be arranged in one row so that a plurality of the first A / D conversion units are alternately arranged.
  • the first A / D conversion unit and the second A / D conversion unit may be arranged in a matrix so as to be alternately arranged one by one in the row direction.
  • the first A / D conversion unit and the second A / D conversion unit may be arranged in a matrix so as to be alternately arranged in the row direction and the column direction one by one.
  • the first A / D converter and the second A / D converter perform A / D conversion on signals read from unit pixels belonging to a unit pixel column assigned to the first A / D converter and the second A / D converter. be able to.
  • the first A / D conversion unit and the second A / D conversion unit perform A / D conversion on a signal read from a unit pixel in a partial region assigned to itself in the pixel region. Can do.
  • Another aspect of the present technology is a first A / D conversion that performs A / D conversion of an analog signal using a pixel array in which a plurality of unit pixels are arranged in a matrix and a first counter that is a predetermined counter. And a second counter whose count timing is the same as that of the first counter and whose counter value has a polarity opposite to that of the first counter.
  • An A / D converter, and the first A / D converter and the second A / D converter are arranged in the vicinity of each other to the extent that mutual power fluctuations affect each other. It is an element.
  • Still another aspect of the present technology includes an imaging unit that images a subject and an image processing unit that performs image processing on image data obtained by imaging by the imaging unit, and the imaging unit includes a plurality of unit pixels in a matrix.
  • the A / D conversion unit and the second A / D conversion unit are electronic devices that are arranged in the vicinity of each other to the extent that mutual power supply fluctuations affect each other.
  • a first A / D conversion unit that performs A / D conversion of an analog signal using a first counter that is a predetermined counter, and the count timing are the same as the first counter
  • the second A / D converter that performs A / D conversion of the analog signal using the second counter whose count value polarity is opposite to that of the first counter affects the mutual power supply fluctuation. They are arranged close to each other as much as possible.
  • a plurality of unit pixels are read out from unit pixels arranged in a pixel array arranged in a matrix using a first counter that is a predetermined counter in the imaging device.
  • the second A / D converter that performs A / D conversion on the analog signals read from the unit pixels arranged in the pixel array so that the mutual power fluctuation affects each other. Be placed.
  • the first counter that is a predetermined counter is used to arrange the pixel array in the pixel array.
  • the second counter that is opposite to the second A / D converter that performs A / D conversion on the analog signals read from the unit pixels arranged in the pixel array has an influence on the mutual power supply fluctuation. Are arranged in the vicinity of each other to such an extent as to affect each other.
  • the signal can be processed. Further, according to the present technology, it is possible to suppress power supply fluctuation due to driving of the counter.
  • First embodiment image sensor / column A / D converter
  • Second embodiment image sensor area A / D converter
  • Third embodiment imaging apparatus
  • First Embodiment> ⁇ Power supply fluctuation by counter drive>
  • An A / D conversion unit used in an image sensor or the like generally performs A / D conversion by a single slope A / D conversion method or the like, and has a counter circuit.
  • current does not flow when the count value is not inverted, but current flows when the count value is inverted, which may cause noise due to power supply fluctuations.
  • the count value is simultaneously inverted (when all bits are inverted)
  • there is a possibility that a large power fluctuation may occur.
  • Patent Document 1 and Patent Document 2 disclose a method in which the operation timing of a counter is divided into a pre-count and a post-count.
  • Patent Document 3 discloses an operation using positive / negative edges so that A / D conversion can be performed while shifting the count timing.
  • the A / D frequency is halved compared to the case of DDR (Double Data Rate) driving.
  • an A / D conversion unit (column A / D conversion unit) is provided for each column (column) of unit pixels in a pixel area, and signals in each column are A / D converted in parallel.
  • a large number of column A / D converters are arranged in the vicinity of each other in the image sensor, and they are driven simultaneously. Therefore, even when the count value is inverted by 1 bit, a large current fluctuation occurs due to the inversion of all the columns, and the power supply may be greatly shaken.
  • a first A / D conversion unit having one of two types of counters having the same count timing and opposite count value polarities, and a second A / D conversion unit having the other are arranged in the vicinity of each other to the extent that the fluctuations in the power supply affect each other.
  • a first A / D converter that performs A / D conversion of an analog signal using a first counter that is a predetermined counter, the count timing is the same as that of the first counter, and A second A / D converter for A / D converting an analog signal using a second counter whose count value is opposite to the first counter, and a first A / D converter
  • the second A / D converters are arranged in the vicinity of each other to the extent that the fluctuations of the power sources influence each other.
  • the power fluctuation caused by driving the counter of the first A / D converter and the power fluctuation caused by driving the counter of the second A / D converter cancel each other.
  • the fluctuation of the power source due to the driving of is suppressed. This suppresses the generation of noise. Therefore, for example, in the case of an image sensor, it is possible to suppress a reduction in image quality of a captured image.
  • FIG. 1 shows a main configuration example of an image sensor which is an embodiment of an imaging device to which the present technology is applied.
  • An image sensor 100 shown in FIG. 1 is a device that photoelectrically converts light from a subject and outputs it as image data.
  • the image sensor 100 is configured as a CMOS image sensor using CMOS (Complementary Metal Oxide Semiconductor), a CCD image sensor using CCD (Charge Coupled Device), or the like.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge Coupled Device
  • the image sensor 100 includes a pixel array 101, a reference voltage generation unit 102, an A / D conversion unit 103, a horizontal transfer unit 104, a control unit 111, and a vertical scanning unit 112.
  • the pixel array 101 is a pixel region in which pixel configurations (unit pixels) having photoelectric conversion elements such as photodiodes are arranged in a planar shape or a curved shape. Although the details of the configuration of the pixel array 101 will be described later, an analog signal read from the unit pixel is sent to the A / D conversion unit 103 via any one of the vertical signal lines 121-1 to 121-N. Is transmitted.
  • the vertical signal lines 121-1 to 121 -N are referred to as vertical signal lines 121 when it is not necessary to distinguish them from each other.
  • the reference voltage generator 102 generates a reference signal (also referred to as a reference voltage) that serves as a reference signal for A / D conversion of the A / D converter 103.
  • the waveform of this reference signal is arbitrary.
  • the reference signal may be a ramp wave (sawtooth wave).
  • a case where a ramp wave (Ramp) is used as a reference signal will be described as an example.
  • the reference voltage generation unit 102 includes, for example, a D / A conversion unit, and generates a reference signal (Ramp) by the D / A conversion unit. This reference signal (Ramp) is supplied to the A / D conversion unit 103 via the reference signal line 122.
  • the A / D converter 103 uses the reference signal to A / D-convert an analog signal (read from each unit pixel) transmitted from the pixel array 101 via the vertical signal line 121, and The digital data is output to the horizontal transfer unit 104 via any one of the signal lines 123-1 to 123-N.
  • the signal lines 123-1 to 123 -N are referred to as signal lines 123 when it is not necessary to distinguish them from each other.
  • the horizontal transfer unit 104 transfers digital data supplied from the A / D conversion unit 103 via the signal line 123 to the outside of the image sensor 100 or the like via the signal line 124.
  • the control unit 111 controls the reference voltage generation unit 102 by supplying a control signal via the control line 131.
  • the control unit 111 controls the A / D conversion unit 103 by supplying a control signal via the control line 132.
  • the control unit 111 controls the horizontal transfer unit 104 by supplying a control signal through the control line 133.
  • the control unit 111 controls the vertical scanning unit 112 by supplying a control signal via the control line 134.
  • the control unit 111 controls the operation of the entire image sensor 100 (operation of each part).
  • control lines 131 to 134 described above are each represented by one dotted line (dotted arrow), but these control lines are all configured by a plurality of control lines. It may be.
  • the vertical scanning unit 112 is controlled by the control unit 111 to control the operation of the transistors of each unit pixel of the pixel array 101 by supplying control signals via the control lines 125-1 to 125-M. .
  • the control lines 125-1 to 125-M will be referred to as control lines 125 when there is no need to distinguish them from each other.
  • FIG. 1 A main configuration example of the pixel array 101 is shown in FIG. As described above, a plurality of unit pixels are arranged in a plane in the pixel region (pixel array 101).
  • M ⁇ N unit pixels 141 (unit pixels 141-11 to unit pixels 141-MN) are arranged in a matrix (array) of M rows and N columns (array). M and N are arbitrary natural numbers).
  • the unit pixels 141-11 to 141-MN are referred to as unit pixels 141 when it is not necessary to distinguish them from each other.
  • the arrangement of the unit pixels 141 is arbitrary, and may be an arrangement other than a matrix, such as a so-called honeycomb structure.
  • a vertical signal line 121 (vertical signal line 121-1 to vertical signal line 121-N) is formed for each column (column) of the unit pixel 141 (hereinafter also referred to as a unit pixel column). ing. Each vertical signal line 121 is connected to each unit pixel in a column (unit pixel column) corresponding to itself, and transmits a signal read from each unit pixel to the A / D conversion unit 103. As shown in FIG. 2, a control line 125 (control line 125-1 to control line 125-M) is formed for each row of unit pixels 141 (hereinafter also referred to as a unit pixel row). Each control line 125 is connected to each unit pixel in the unit pixel row corresponding to itself, and transmits a control signal supplied from the vertical scanning unit 112 to each unit pixel.
  • the unit pixel 141 is connected to the vertical signal line 121 assigned to the column (unit pixel column) to which the unit pixel 141 belongs and the control line 125 assigned to the unit pixel row to which the unit pixel 141 belongs. Is driven based on a control signal supplied via the A, and supplies an electric signal obtained by itself to the A / D converter 103 via the vertical signal line 121.
  • control lines 125 in each row are shown as a single line, but the control lines 125 in each row may be composed of a plurality of control lines.
  • FIG. 3 is a diagram illustrating an example of a main configuration of the circuit configuration of the unit pixel 141.
  • the unit pixel 141 includes a photodiode (PD) 151, a transfer transistor 152, a reset transistor 153, an amplification transistor 154, and a select transistor 155.
  • PD photodiode
  • the photodiode (PD) 151 photoelectrically converts the received light into a photocharge (here, photoelectrons) having a charge amount corresponding to the light quantity, and accumulates the photocharge. The accumulated photocharge is read out at a predetermined timing.
  • the anode electrode of the photodiode (PD) 151 is connected to the ground (pixel ground) of the pixel region, and the cathode electrode is connected to the floating diffusion (FD) via the transfer transistor 152.
  • the cathode electrode of the photodiode (PD) 151 is connected to the power supply (pixel power supply) in the pixel region, the anode electrode is connected to the floating diffusion (FD) through the transfer transistor 152, and the photocharge is read as a photohole. It is good also as a system.
  • the transfer transistor 152 controls reading of photocharge from the photodiode (PD) 151.
  • the transfer transistor 152 has a drain electrode connected to the floating diffusion and a source electrode connected to the cathode electrode of the photodiode (PD) 151.
  • a transfer control line (TRG) for transmitting a transfer control signal supplied from the vertical scanning unit 112 is connected to the gate electrode of the transfer transistor 152. That is, this transfer control line (TRG) is included in the control line 125 of FIG.
  • the reset transistor 153 resets the potential of the floating diffusion (FD).
  • the reset transistor 153 has a drain electrode connected to the power supply potential and a source electrode connected to the floating diffusion (FD).
  • a reset control line (RST) that transmits a reset control signal supplied from the vertical scanning unit 112 is connected to the gate electrode of the reset transistor 153. That is, the reset control line (RST) is included in the control line 125 in FIG.
  • the amplification transistor 154 amplifies the potential change of the floating diffusion (FD) and outputs it as an electric signal (analog signal).
  • the amplification transistor 154 has a gate electrode connected to the floating diffusion (FD), a drain electrode connected to the source follower power supply voltage, and a source electrode connected to the drain electrode of the select transistor 155.
  • the amplification transistor 154 outputs the potential of the floating diffusion (FD) reset by the reset transistor 153 to the select transistor 155 as a reset signal (reset level).
  • the amplification transistor 154 outputs the potential of the floating diffusion (FD) to which the photocharge has been transferred by the transfer transistor 152 to the select transistor 155 as a light accumulation signal (signal level).
  • the select transistor 155 controls the output of the electrical signal supplied from the amplification transistor 154 to the vertical signal line (VSL) 121 (that is, the A / D conversion unit 103).
  • the select transistor 155 has a drain electrode connected to the source electrode of the amplification transistor 154 and a source electrode connected to the vertical signal line 121.
  • a select control line (SEL) for transmitting a select control signal supplied from the vertical scanning unit 112 is connected to the gate electrode of the select transistor 155. That is, this select control line (SEL) is included in the control line 125 of FIG.
  • the amplification transistor 154 and the vertical signal line 121 are electrically disconnected. Therefore, in this state, no reset signal, pixel signal, or the like is output from the unit pixel 141.
  • the select control line (SEL) is in the on state, the unit pixel 141 is in the selected state. That is, the amplification transistor 154 and the vertical signal line 121 are electrically connected, and a signal output from the amplification transistor 154 is supplied to the vertical signal line 121 as a pixel signal of the unit pixel 141. That is, a reset signal, a pixel signal, and the like are read from the unit pixel 141.
  • the A / D conversion unit 103 includes column A / D conversion units 161-1 to 161-N.
  • the column A / D conversion unit 161-1 to the column A / D conversion unit 161 -N are referred to as a column A / D conversion unit 161 when it is not necessary to distinguish them from each other.
  • the column A / D converter 161 is provided for each column (unit pixel column) of the pixel array 101.
  • each column A / D converter 161 receives a vertical signal of a column corresponding to itself.
  • the line 121 vertical signal line 121-1 to vertical signal line 121-N
  • the column A / D conversion unit 161 performs A / D conversion by a single slope A / D conversion method. That is, each column A / D converter 161 reads a signal read from the unit pixel 141 of the column corresponding to itself and supplied via the vertical signal line 121 of the column via the reference signal line 122.
  • a / D conversion is performed using the reference signal supplied from the voltage generator 102.
  • each column A / D converter 161 is connected to a signal line 123 (signal line 123-1 to signal line 123-N) corresponding to itself.
  • Each column A / D conversion unit 161 supplies the A / D conversion result obtained by itself to the horizontal transfer unit 104 via the signal line 123 corresponding to the column A / D conversion unit 161.
  • Each column A / D conversion unit 161 is driven based on a control signal supplied from the control unit 111 via the control line 132 (that is, control of the control unit 111).
  • column A / D converters 161 corresponding to odd-numbered columns from the left includes a comparison unit 171, an up counter 172, a capacitor 173, and a capacitor 174.
  • column A / D converters 161 corresponding to the even-numbered columns from the left includes a comparison unit 171, a capacitor 173, a capacitor 174, and a down counter 175.
  • N is an even number, but N may be an odd number.
  • the column A / D converter 161-N becomes an odd-numbered column A / D converter 161 from the left, and the column A / D converter 161- (N-1) has an even-numbered column A / D from the left.
  • the conversion unit 161 is used.
  • the comparison unit 171 receives an input signal (for example, an analog signal read from the unit pixel 141) input via the vertical signal line 121 and the capacitor 174, and a reference signal input via the reference signal line 122 and the capacitor 173. (The signal level is compared), and the comparison result is output to the up counter 172 or the down counter 175. That is, the comparison unit 171 outputs a signal indicating which signal level of the input signal or the reference signal is higher.
  • an input signal for example, an analog signal read from the unit pixel 141
  • a reference signal input via the reference signal line 122 and the capacitor 173.
  • the signal indicating the comparison result is 1-bit digital data.
  • the value of the signal indicating the comparison result is “0”, and in the opposite case, the value is “1”.
  • the method of taking the value of this signal may be reversed.
  • the bit length of the signal indicating the comparison result is arbitrary, and may be information composed of a plurality of bits.
  • Capacitor 173 and capacitor 174 are capacitors having a fixed capacity (having a predetermined capacity).
  • the up counter 172 and the down counter 175 indicate the time (for example, the number of clock signals) from the start of counting until the comparison result supplied from the comparison unit 171 is inverted (the signal level of the output of the comparison unit 171 changes).
  • Count The up counter 172 and the down counter 175 use the count value up to that point when the comparison result is inverted as the A / D conversion result of the input signal (that is, the digital data of the signal read from the unit pixel 141). And output to the horizontal transfer unit 104 via the signal line 123. Note that the bit length (number of digits) of the count values output by the up counter 172 and the down counter 175 is arbitrary.
  • the up counter 172 and the down counter 175 are counters having the same count timing but opposite count value polarities. For example, the up counter 172 starts counting from the state where all the bits are “0”, and increases (increments) the count value by “1” each time the count is performed. On the other hand, for example, the down counter 175 starts counting from the state of all the bits “1”, and decrements (decrements) the count value by “1” every time the count is performed. The up counter 172 and the down counter 175 perform such counting at the same timing.
  • the column A / D conversion units 161-1 to 161-N having such a configuration have their mutual configurations. They are arranged in the vicinity of each other to the extent that power fluctuations affect each other.
  • the up counter 172 and the down counter 175 will be described with reference to FIG.
  • the up counter 172 includes a plurality of JK flip-flops (for example, JK flip-flop 181-1, JK flip-flop 181-2, JK flip-flop 181-3, etc Combined as shown in FIG. You may make it comprise with the asynchronous counter which has.
  • the down counter 175 includes a plurality of JK flip-flops (for example, a JK flip-flop 181-1, a JK flip-flop 181-2, a JK flip-flop 181-3,. )) May be configured by an asynchronous counter.
  • these JK flip-flops will be referred to as JK flip-flops 181 when it is not necessary to distinguish them from each other.
  • the counter having the configuration shown in FIG. 5A outputs a count value as in the example of FIG. 5C, assuming that the count value is 3 bits. Further, the counter having the configuration shown in FIG. 5B outputs a count value as in the example of FIG. 5D, assuming that the count value is 3 bits.
  • the A / D conversion unit 103 each column A / D conversion unit 161
  • these count timings are aligned with each other, and the count value is output as in the example of FIG. 6A shows an example of the count value (4 bits) output from the up counter 172
  • FIG. 6B shows an example of the count value (4 bits) output from the down counter 175.
  • the up counter 172 and the down counter 175 have the same count timing, and the polarities of the count values are opposite to each other. Therefore, each bit of the count value varies in the opposite direction at the same time. For example, at the same time that BIT1 of the up counter 172 changes from low (Low) to high (High), BIT1 of the down counter 175 changes from high (High) to low (Low). The same applies to the other bits.
  • the column A / D conversion unit 161 having the up counter 172 and the column A / D conversion unit 161 having the down counter 175 are used as shown in FIG.
  • the power supply fluctuation timings of VDD and VSS coincide with each other, they cancel each other and the fluctuation width is suppressed.
  • the column A / D conversion unit 161 having the up counter 172 and the column A / D conversion unit 161 having the down counter 175 are used as shown in the example of FIG.
  • the VDD power supply fluctuation and the VSS power supply fluctuation are caused by the VDD power supply fluctuation timing and the VSS power supply in the example of FIG. Dispersed in both fluctuation timings. Therefore, each power supply fluctuation peak is suppressed. Further, since the VDD power supply fluctuation and the VSS power supply fluctuation occur at the same timing, they cancel out each other, further suppressing the peak of the power supply fluctuation.
  • the decoupling capacity appears to be large, and fluctuations in the power source can be further suppressed even with a capacity of the same size as the conventional one. In other words, if the variation amount is the same, the decoupling capacity can be further reduced.
  • the A / D converter 103 having both the column A / D converter 161 having the up counter 172 and the column A / D converter 161 having the down counter 175, and the column A / D having the up counter 172 are provided.
  • the frequency characteristics (AC characteristics) are compared with a general A / D converter having only one of the D converter 161 and the column A / D converter 161 having the down counter 175.
  • FIG. 10A shows a general A / D converter having only one of a column A / D converter 161 having an up counter 172 and a column A / D converter 161 having a down counter 175.
  • FIG. 10B is a circuit showing the A / D converter 103 having both the column A / D converter 161 having the up counter 172 and the column A / D converter 161 having the down counter 175.
  • C in FIG. 10 is a circuit representing an ideal low-pass filter.
  • FIG. 10D shows the result of simulation and comparison of frequency characteristics using these circuits.
  • the dotted lines indicate the circuit shown in FIG. 10A (that is, the column A / D converter 161 having the up counter 172 and the column A / D converter 161 having the down counter 175.
  • the frequency characteristics of a general A / D conversion unit having only one of them are shown.
  • the solid line indicates the circuit shown in FIG. 10B (that is, the A / D converter having both the column A / D converter 161 having the up counter 172 and the column A / D converter 161 having the down counter 175. 103)
  • the alternate long and short dash line indicates the frequency characteristic of the circuit shown in FIG. 10C (that is, an ideal low-pass filter).
  • the A / D converter 103 can suppress higher frequency components than a general A / D converter or even an ideal low-pass filter.
  • the counter electrode also has resistance, and the high frequency gain is about 0.5.
  • an ideal low-pass filter is used.
  • the high frequency gain can be suppressed to substantially “0”. Since the mirror effect is equivalent to a case where the capacitance value of the decoupling capacitance is doubled, the cutoff frequency can be halved.
  • the filter effect is reduced, but the same effect as that in the case where there is no resistance in the counter electrode power supply line is obtained as in the case of an ideal low-pass filter.
  • the component gain can be further reduced.
  • the simulation conditions are as shown in FIG. 11A, and the simulation is performed using a circuit having a configuration as shown in FIG. 11B. Then, the simulation result of the circuit shown in FIG. 11B (that is, the circuit representing the A / D conversion unit 103 to which the present technology is applied) and the counter included in the circuit shown in FIG. A simulation result of a circuit having only a down counter (that is, a circuit representing a general A / D conversion unit) is compared.
  • FIG. 12 shows a comparison of the VDD voltage and the VDD current observed at the observation point shown in FIG. 11B regarding the simulation results of these circuits.
  • the upper VDD voltage and VDD current in FIG. 12 show the simulation results of the circuit shown in FIG. 11B, and the lower VDD voltage and VDD current up the counter included in the circuit shown in FIG. 11B.
  • a simulation result of a circuit having only a counter or only a down counter is shown.
  • the circuit shown in B of FIG. 11 (that is, the circuit representing the A / D converter 103 to which the present technology is applied) is included in the counter shown in the circuit shown in B of FIG.
  • the peak of fluctuations in VDD voltage can be suppressed.
  • FIG. 13 shows a comparison between the VSS voltage and the VSS current observed at the observation point shown in FIG. 11B.
  • the upper VSS voltage and VSS current in FIG. 13 show the simulation results of the circuit shown in FIG. 11B, and the lower VSS voltage and VSS current up the counter included in the circuit shown in FIG. 11B.
  • a simulation result of a circuit having only a counter or only a down counter is shown.
  • the circuit shown in B of FIG. 11 (that is, the circuit representing the A / D converter 103 to which the present technology is applied) is included in the counter shown in the circuit shown in B of FIG.
  • the peak of the VSS voltage fluctuation can be suppressed.
  • the A / D conversion unit 103 can suppress power supply fluctuation due to driving of the counter. Accordingly, the column A / D conversion unit 161 (A / D conversion unit 103) can perform A / D conversion more accurately. Then, the image sensor 100 can suppress a reduction in image quality of a captured image obtained by the image sensor 100.
  • FIG. 14A this asynchronous up / down counter includes a JK flip-flop 181 and selectors (selector 201-1, selector 201-2,). When there is no need to distinguish between the selectors, they are referred to as selectors 201.
  • the configuration of the selector 201 is arbitrary, but for example, a configuration as shown in FIG. In the example of FIG. 14B, the selector 201 has NOT 211, AND 212, AND 213, and OR 214, and selects one of the two outputs of the preceding JK flip-flop 181. By selecting the selector 201, the asynchronous up / down counter can be operated as both an up counter and a down counter.
  • the asynchronous up / down counter shown in FIG. 14A is operated as an up counter, which is used as an up counter 172, and the asynchronous up / down counter shown in FIG. 14A is operated as a down counter. It may be a down counter 175.
  • the configuration of the column A / D conversion unit 161 using the up counter 172 and the configuration of the column A / D conversion unit 161 using the down counter 175 can be made the same. Differences in characteristics between columns caused by differences can be suppressed.
  • a synchronous counter may be used.
  • the up counter 172 a synchronous up counter having a plurality of JK flip-flops 181 and AND 221 combined as shown in FIG. 15A may be used. An example of the waveform of the count value of this counter is shown in FIG.
  • the down counter 175 may be a synchronous down counter.
  • a counter using a D flip-flop may be applied.
  • the up counter 172 a plurality of D flip-flops (D flip-flop 231-1, D flip-flop 231-2, D flip-flop 231-3,...) Combined as shown in FIG.
  • An asynchronous up-counter having In the following, each D flip-flop is referred to as a D flip-flop 231 when there is no need to distinguish between them.
  • An example of the waveform of the count value of this counter is shown in FIG.
  • the down counter 175 an asynchronous down counter having the D flip-flop 231 may be used.
  • FIG. 17A shows an example of the waveform of each bit of the count value output from the gray code up counter
  • FIG. 17B shows an example of the waveform of each bit of the count value output from the gray code down counter. Show.
  • An up-counter using TDC is also referred to as a TDC up-counter).
  • the down counter may also be referred to as a TDC down counter).
  • FIG. 18A shows an example of the waveform of each bit of the count value output from the TDC up counter
  • FIG. 18B shows an example of the waveform of each bit of the count value output from the TDC down counter.
  • the A / D converter 103 is driven by driving the counter by setting the count timing to be the same between the up counter 172 and the down counter 175, and the polarities of the count values are opposite to each other. Power supply fluctuation can be suppressed.
  • the column A / D converter 161 may perform A / D conversion by an integral A / D conversion method.
  • a configuration example of the column A / D converter 161 in that case is shown in FIG.
  • the column A / D converter 161-1 includes a switch 241, a resistor 242, an integrator 243, a capacitor 244, a comparator 245, and an up counter 246.
  • the column A / D conversion unit 161-2 includes a switch 241, a resistor 242, an integration unit 243, a capacitor 244, a comparison unit 245, and a down counter 247.
  • the column A / D converter 161 having the up counter 246 and the column A / D converter 161 having the down counter 247 are alternately arranged one by one. . That is, the plurality of column A / D converters 161 having such a configuration are arranged in the vicinity of each other to such an extent that the mutual power supply fluctuations influence each other.
  • the up counter 246 and the down counter 247 operate with the same count timing and opposite polarities of the count values.
  • the A / D conversion unit 103 to which the present technology is applied is applied to the image sensor, and the pixel signal read from the pixel area is A / D converted.
  • An analog signal to be A / D converted by the / D conversion unit 103 is arbitrary, and signals other than the pixel signal can be A / D converted.
  • an audio signal output from a microphone or the like, a motor output, or the like may be used. That is, the A / D conversion unit 103 to which the present technology is applied can be applied to any device other than an image sensor that performs A / D conversion of an analog signal.
  • a plurality of A / D converters arranged in the vicinity of each other are used to apply a large number of analog signals to A / D conversion in parallel, a greater effect can be obtained.
  • the present technology has been described using an example of an A / D conversion unit that performs A / D conversion using a counter.
  • the processing performed using the counter is not limited to A / D conversion. It may be a simple process. That is, the present technology can be applied to an arbitrary processing unit that performs processing using a plurality of counters.
  • the column A / D conversion unit having the up counter and the column A / D conversion unit having the down counter have been described as being arranged in the vicinity of each other.
  • the arrangement positions of are arbitrary as long as they are close to each other.
  • a column A / D converter 161 having an up counter 172 and a column A / D converter 161 having a down counter 175 are arranged in a row so that they are alternately arranged one by one. It may be arranged. Further, for example, as shown in FIG.
  • each column A / D conversion unit 161 as in these examples, the up counter 172 and the down counter 175 can be arranged in the vicinity of each other, and power supply fluctuation due to driving of the counter can be suppressed. it can.
  • the arrangement position of the column A / D conversion unit is not limited to the above-described example.
  • the column A / D conversion units may be arranged in a plurality of rows.
  • the number of column A / D converters 161 having the up counter 172 and the number of column A / D converters 161 having the down counter 175 may not be the same.
  • each column A / D converter 161 may be arranged at a predetermined position in the area where the column A / D converter 161 is arranged.
  • a counter up counter 172 or down counter 175 may be arranged on the lower side of the column A / D converter 161 in the drawing as in the example of FIG.
  • the up counter 172 and the down counter 175 are arranged in one row so as to be alternately arranged one by one.
  • the up counter 172 and the down counter 175 are arranged in one row so that a plurality of up counters 172 and a plurality of down counters 175 are alternately arranged. That is, the up counter 172 and the down counter 175 can be arranged closer to each other, and fluctuations in the power supply due to driving of the counter can be suppressed.
  • the position of the counter in the column A / D conversion unit is arbitrary and may be other than these examples.
  • the positions of the counters in each column A / D converter may not be the same.
  • the number of counters included in each column A / D conversion unit may not be the same.
  • an imaging element to which the present technology is applied can be realized, for example, as a package (chip) in which a semiconductor substrate is sealed, a module in which the package (chip) is installed on a circuit board, or the like.
  • the imaging element in the package (chip) may be configured by a single semiconductor substrate, or may be configured by a plurality of semiconductor substrates superimposed on each other. It may be.
  • FIG. 21 is a diagram illustrating an example of a physical configuration of the image sensor 100 which is an image sensor to which the present technology is applied.
  • the circuit configuration of the image sensor 100 described with reference to FIG. 1 and the like is all formed on a single semiconductor substrate.
  • output units 304-1 to 304-4 are arranged so as to surround the pixel / analog processing unit 301, the digital processing unit 302, and the frame memory 303.
  • the pixel / analog processing unit 301 is a region where an analog configuration such as the pixel array 101 and the A / D conversion unit 103 is formed.
  • the output unit 304-1 to the output unit 304-4 are regions in which, for example, configurations such as I / O cells are arranged.
  • FIG. 21A is an example, and the arrangement of the configuration of each processing unit is not limited to this example.
  • the circuit configuration of the image sensor 100 described with reference to FIG. 1 and the like is two semiconductor substrates that are superimposed on each other (laminated substrate (pixel substrate 311 and circuit substrate 312)). Formed.
  • a pixel / analog processing unit 301, a digital processing unit 302, an output unit 304-1 and an output unit 304-2 are formed on the pixel substrate 311.
  • the output unit 304-1 and the output unit 304-2 are regions in which, for example, configurations such as I / O cells are arranged.
  • a frame memory 303 is formed on the circuit board 312.
  • the pixel substrate 311 and the circuit substrate 312 overlap each other to form a multilayer structure (laminated structure).
  • the pixel / analog processing unit 301 formed on the pixel substrate 311 and the frame memory 303 formed on the circuit substrate 312 are formed in the via region (VIA) 313-1 and the via region (VIA) 314-1. They are electrically connected to each other through through vias (VIA) or the like.
  • the digital processing unit 302 formed on the pixel substrate 311 and the frame memory 303 formed on the circuit substrate 312 are formed in the via region (VIA) 313-2 and the via region (VIA) 314-2. They are electrically connected to each other through through vias (VIA) or the like.
  • This technology can also be applied to such a laminated image sensor.
  • the number (number of layers) of the semiconductor substrates (laminated chips) is arbitrary, and may be, for example, three or more layers as shown in FIG. 21C.
  • the image sensor 100 includes a semiconductor substrate 321, a semiconductor substrate 322, and a semiconductor substrate 323.
  • the semiconductor substrates 321 to 323 overlap with each other to form a multilayer structure (stacked structure).
  • a pixel / analog processing unit 301 is formed on the semiconductor substrate 321, a digital processing unit 302, an output unit 304-1, and an output unit 304-2 are formed on the semiconductor substrate 322, and a frame is formed on the semiconductor substrate 323.
  • a memory 303 is formed.
  • Each processing portion of each semiconductor substrate includes a via region (VIA) 324-1, a via region (VIA) 325-1, a through via (VIA) formed in the via region (VIA) 326-1, and a via region.
  • (VIA) 324-2, via region (VIA) 325-2, and via region (VIA) 326-2 are electrically connected to each other via through vias (VIA).
  • each semiconductor substrate is arbitrary, and is not limited to the example of FIG.
  • the A / D conversion unit 103 is provided with an A / D conversion unit (column A / D conversion unit 161) for each unit pixel column, and each column A / D conversion unit 161 includes the unit pixel.
  • the signal read from each unit pixel in the column has been described as being A / D converted, but the configuration example of the A / D conversion unit 103 is not limited to this.
  • a pixel unit is formed for each predetermined number of unit pixels, and the A / D converter 103 is provided with an A / D converter (area A / D converter) for each pixel unit.
  • Each area A / D conversion unit may perform A / D conversion on a signal read from each unit pixel belonging to the pixel unit assigned to itself.
  • the pixel unit and the area A / D converter may be formed on the same semiconductor substrate.
  • the pixel units 340-1 to 340-3 and the corresponding area A / D conversion units 341-1 to 341-3 are arranged on the same semiconductor substrate. Is formed.
  • the number of pixel units and area A / D converters is arbitrary.
  • each pixel unit formed in the pixel array 101 is referred to as a pixel unit 340, and each area A / D conversion unit formed in the A / D conversion unit 103 is separated from each other.
  • the area A / D conversion unit 341 is referred to.
  • the configuration of the image sensor 100 may be formed on a plurality of semiconductor substrates.
  • the image sensor 100 may have two semiconductor substrates (laminated chips (a pixel substrate 351 and a circuit substrate 352)) that are superposed on each other.
  • N pixel units 340 (pixel units 340-1 to 340-N) in the pixel region (that is, the pixel array 101) are formed on the pixel substrate 351.
  • an area A / D conversion unit 341 corresponding to the pixel unit 340 is formed at a position overlapping the pixel unit 340 on the circuit board 352.
  • the signal read from the unit pixel of the pixel unit 340-K is formed.
  • the number of semiconductor substrates (number of layers) of the image sensor 100 is arbitrary, and may be three or more.
  • the up counter 172 and the down counter 175 are arranged in the vicinity of each other. It may be. That is, the area A / D conversion unit 341 having the up counter 172 and the area A / D conversion unit 341 having the down counter 175 may be arranged in the vicinity of each other. For example, as shown in FIG. 24A, FIG. 25A, and FIG. 26A, an area A / D converter 341 having an up counter 172 and an area A / D converter 341 having a down counter 175 are performed.
  • an area A / D converter 341 having an up counter 172 and an area A / D converter 341 having a down counter 175 May be arranged in a matrix so as to be alternately arranged one by one in the row direction and the column direction (vertical direction in the figure).
  • the up counter 172 and the down counter 175 can be arranged in the vicinity of each other. Therefore, it is possible to suppress power supply fluctuations due to driving of the counter.
  • the arrangement position of the area A / D conversion unit is not limited to the above-described example.
  • the position of the area A / D conversion unit 341 having the up counter 172 and the position of the area A / D conversion unit 341 having the down counter 175 may be interchanged.
  • the area A / D converter 341 having the up counter 172 and the area A / D converter 341 having the down counter 175 are arranged in a matrix so that they are alternately arranged one by one in the column direction (vertical direction in the figure). You may be made to do.
  • the area A / D conversion unit 341 having the up counter 172 and the area A / D conversion unit 341 having the down counter 175 may be arranged in a matrix so as to be alternately arranged in the row direction. .
  • the area A / D conversion unit 341 having the up counter 172 and the area A / D conversion unit 341 having the down counter 175 are arranged in a matrix so as to be alternately arranged in a row direction and a column direction. It may be.
  • the number of area A / D conversion units 341 having the up counter 172 and the number of area A / D conversion units 341 having the down counter 175 may not be the same.
  • each area A / D conversion unit 341 may be arranged at a predetermined position in the area where the area A / D conversion unit 341 is arranged.
  • area A / D conversion units 341 are arranged in a matrix, and in each area A / D conversion unit 341, a counter (up counter 172 or down counter 175) You may make it arrange
  • the columns of the / D converters 341 are arranged so as to be alternately arranged one by one.
  • the counter positions of the area A / D conversion units 341 are the same as those in the example in FIG. 24A, but some up counters 172 and down counters 175 are replaced.
  • the area A / D conversion unit 341 having the up counter 172 and the area A / D conversion unit 341 having the down counter 175 are arranged alternately one by one in the column direction and the row direction.
  • area A / D converters 341 are arranged in a matrix, and in each area A / D converter 341, a counter (up counter 172 or down counter 175)
  • a counter up counter 172 or down counter 175.
  • the area A / D conversion unit 341 and the up counter 172 in which the up counter 172 is arranged on the left side and the lower side in the figure are arranged on the left side and the upper side in the figure.
  • the area A / D conversion units 341 to be arranged are arranged so that the lines are alternately arranged one by one.
  • the counter position of each area A / D conversion unit 341 is the same as that in the example in FIG.
  • the area A / D conversion unit 341 having the up counter 172 and the area A / D conversion unit 341 having the down counter 175 are arranged alternately one by one in the column direction and the row direction.
  • area A / D conversion units 341 are arranged in a matrix, and in each area A / D conversion unit 341, a counter (up counter 172 or down counter 175)
  • a counter up counter 172 or down counter 175.
  • the lower right side in the figure, the upper right side in the figure, the lower left side in the figure, or the upper left side in the figure (that is, any one of the four corners of the outer edge of the area) where the A / D conversion unit 341 itself is arranged May be arranged in the vicinity of two).
  • the / D conversion units 341 and the columns alternately arranged one by one are arranged so as to be alternately arranged one by one.
  • the counter positions of the area A / D conversion units 341 are the same as those in the example in FIG. 26A, but some up counters 172 and down counters 175 are exchanged.
  • the area A / D conversion unit 341 having the up counter 172 and the area A / D conversion unit 341 having the down counter 175 are arranged alternately one by one in the column direction and the row direction.
  • the up counter 172 and the down counter 175 can be arranged closer to each other. Therefore, it is possible to suppress power supply fluctuations due to driving of the counter.
  • the arrangement example of the counter is arbitrary and may be other than these examples.
  • the position of the up counter 172 and the position of the down counter 175 may be switched.
  • the up counter 172 and the down counter 175 may be arranged in a matrix so that a plurality of up counters 172 and a plurality of down counters 175 are alternately arranged in the row direction.
  • the up counter 172 and the down counter 175 may be arranged in a matrix so that a plurality of up counters 172 and a plurality of down counters 175 are alternately arranged in the row direction and the column direction.
  • the up counter 172 and the down counter 175 may be arranged on the upper side or the lower side in the drawing of the area where the area A / D conversion unit 341 is arranged. Further, for example, the up counter 172 and the down counter 175 may be arranged in the vicinity of any three sides on the outer edge of the area where the area A / D conversion unit 341 is arranged. Further, for example, the up counter 172 and the down counter 175 may be arranged in the vicinity of a plurality of corners on the outer edge of the area where the area A / D conversion unit 341 is arranged. Further, the number of counters included in each area A / D conversion unit (any processing unit using a counter) may not be the same.
  • FIG. 27 is a block diagram illustrating a main configuration example of an imaging apparatus as an example of an electronic apparatus to which the present technology is applied.
  • An imaging apparatus 600 shown in FIG. 27 is an apparatus that images a subject and outputs an image of the subject as an electrical signal.
  • the imaging apparatus 600 includes an optical unit 611, a CMOS image sensor 612, an image processing unit 613, a display unit 614, a codec processing unit 615, a storage unit 616, an output unit 617, a communication unit 618, and a control unit 621. , An operation unit 622, and a drive 623.
  • the optical unit 611 includes a lens that adjusts the focal point to the subject and collects light from the focused position, an aperture that adjusts exposure, a shutter that controls the timing of imaging, and the like.
  • the optical unit 611 transmits light (incident light) from the subject and supplies the light to the CMOS image sensor 612.
  • the CMOS image sensor 612 photoelectrically converts incident light, A / D converts a signal for each pixel (pixel signal), performs signal processing such as CDS (CorrelatedorDouble Sampling), and performs image processing on the captured image data after processing. To the unit 613.
  • the image processing unit 613 performs image processing on the captured image data obtained by the CMOS image sensor 612. More specifically, the image processing unit 613 performs, for example, color mixture correction, black level correction, white balance adjustment, demosaic processing, matrix processing, gamma correction, on the captured image data supplied from the CMOS image sensor 612. And various image processing such as YC conversion.
  • the image processing unit 613 supplies captured image data subjected to image processing to the display unit 614.
  • the display unit 614 is configured as a liquid crystal display or the like, for example, and displays an image of captured image data (for example, an image of a subject) supplied from the image processing unit 613.
  • the image processing unit 613 further supplies the captured image data subjected to the image processing to the codec processing unit 615 as necessary.
  • the codec processing unit 615 subjects the captured image data supplied from the image processing unit 613 to encoding processing of a predetermined method, and supplies the obtained encoded data to the storage unit 616. Further, the codec processing unit 615 reads the encoded data recorded in the storage unit 616, decodes it to generate decoded image data, and supplies the decoded image data to the image processing unit 613.
  • the image processing unit 613 performs predetermined image processing on the decoded image data supplied from the codec processing unit 615.
  • the image processing unit 613 supplies the decoded image data subjected to the image processing to the display unit 614.
  • the display unit 614 is configured as a liquid crystal display, for example, and displays an image of the decoded image data supplied from the image processing unit 613.
  • the codec processing unit 615 supplies the encoded data obtained by encoding the captured image data supplied from the image processing unit 613 or the encoded data of the captured image data read from the storage unit 616 to the output unit 617. You may make it output outside the imaging device 600.
  • the codec processing unit 615 supplies captured image data before encoding or decoded image data obtained by decoding encoded data read from the storage unit 616 to the output unit 617, and outputs the image data to the outside of the imaging device 600. You may make it output to.
  • the codec processing unit 615 may transmit the captured image data, the encoded data of the captured image data, or the decoded image data to another device via the communication unit 618. Further, the codec processing unit 615 may acquire captured image data and encoded data of the image data via the communication unit 618. The codec processing unit 615 appropriately encodes and decodes the captured image data acquired through the communication unit 618 and the encoded data of the image data. The codec processing unit 615 supplies the obtained image data or encoded data to the image processing unit 613 as described above, or outputs it to the storage unit 616, the output unit 617, and the communication unit 618. May be.
  • the storage unit 616 stores encoded data supplied from the codec processing unit 615 and the like.
  • the encoded data stored in the storage unit 616 is read out and decoded by the codec processing unit 615 as necessary.
  • the captured image data obtained by the decoding process is supplied to the display unit 614, and a captured image corresponding to the captured image data is displayed.
  • the output unit 617 has an external output interface such as an external output terminal, and outputs various data supplied via the codec processing unit 615 to the outside of the imaging apparatus 600 via the external output interface.
  • the communication unit 618 supplies various types of information such as image data and encoded data supplied from the codec processing unit 615 to another device that is a communication partner of predetermined communication (wired communication or wireless communication). Further, the communication unit 618 acquires various types of information such as image data and encoded data from another device that is a communication partner of predetermined communication (wired communication or wireless communication), and supplies the acquired information to the codec processing unit 615. .
  • the control unit 621 controls the operation of each processing unit (each processing unit indicated by a dotted line 620, the operation unit 622, and the drive 623) of the imaging apparatus 600.
  • the operation unit 622 includes, for example, an arbitrary input device such as a jog dial (trademark), a key, a button, or a touch panel.
  • the operation unit 622 receives an operation input by a user or the like and supplies a signal corresponding to the operation input to the control unit 621. To do.
  • the drive 623 reads information stored in a removable medium 624 attached to the drive 623 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.
  • the drive 623 reads various information such as programs and data from the removable medium 624 and supplies the information to the control unit 621.
  • the drive 623 stores various information such as image data and encoded data supplied through the control unit 621 in the removable medium 624 when the writable removable medium 624 is attached to the drive 623. be able to.
  • the CMOS image sensor 612 of the imaging apparatus 600 As the CMOS image sensor 612 of the imaging apparatus 600 as described above, the present technology described above in each embodiment is applied. That is, the image sensor 100 described above is used as the CMOS image sensor 612. Thereby, the CMOS image sensor 612 can suppress power supply fluctuation due to driving of the counter of the A / D conversion unit, and can suppress a reduction in image quality of the captured image. Therefore, the imaging apparatus 600 can obtain a higher-quality captured image by imaging the subject.
  • the series of processes described above can be executed by hardware or software.
  • a program constituting the software is installed from a network or a recording medium.
  • this recording medium includes a removable medium 624 on which a program is recorded, which is distributed to distribute the program to the user, separately from the apparatus main body.
  • the removable medium 624 includes a magnetic disk (including a flexible disk) and an optical disk (including a CD-ROM and a DVD). Further, magneto-optical disks (including MD (Mini-Disc)) and semiconductor memories are also included.
  • the program can be installed in the storage unit 616 by attaching the removable medium 624 to the drive 623.
  • This program can also be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting. In that case, the program can be received by the communication unit 618 and installed in the storage unit 616.
  • a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
  • the program can be received by the communication unit 618 and installed in the storage unit 616.
  • this program can be installed in advance in a ROM (Read Only Memory) or the like in the storage unit 616 or the control unit 621.
  • the program executed by the computer may be a program that is processed in time series in the order described in this specification, or in parallel or at a necessary timing such as when a call is made. It may be a program for processing.
  • the step of describing the program recorded on the recording medium is not limited to the processing performed in chronological order according to the described order, but may be performed in parallel or It also includes processes that are executed individually.
  • each step described above can be executed in each device described above or any device other than each device described above.
  • the device that executes the process may have the functions (functional blocks and the like) necessary for executing the process described above.
  • Information necessary for processing may be transmitted to the apparatus as appropriate.
  • the system means a set of a plurality of components (devices, modules (parts), etc.), and it does not matter whether all the components are in the same housing. Accordingly, a plurality of devices housed in separate housings and connected via a network and a single device housing a plurality of modules in one housing are all systems. .
  • the configuration described as one device (or processing unit) may be divided and configured as a plurality of devices (or processing units).
  • the configurations described above as a plurality of devices (or processing units) may be combined into a single device (or processing unit).
  • a configuration other than that described above may be added to the configuration of each device (or each processing unit).
  • a part of the configuration of a certain device (or processing unit) may be included in the configuration of another device (or other processing unit). .
  • the present technology can take a configuration of cloud computing in which one function is shared by a plurality of devices via a network and is jointly processed.
  • each step described in the above flowchart can be executed by one device or can be shared by a plurality of devices.
  • the plurality of processes included in the one step can be executed by being shared by a plurality of apparatuses in addition to being executed by one apparatus.
  • the present technology is not limited to this, and any configuration mounted on such a device or a device constituting the system, for example, a processor as a system LSI (Large Scale Integration), a module using a plurality of processors, a plurality of It is also possible to implement as a unit using other modules, a set obtained by further adding other functions to the unit (that is, a partial configuration of the apparatus), and the like.
  • a processor as a system LSI (Large Scale Integration)
  • a module using a plurality of processors a plurality of It is also possible to implement as a unit using other modules, a set obtained by further adding other functions to the unit (that is, a partial configuration of the apparatus), and the like.
  • this technique can also take the following structures.
  • a first A / D converter that A / D converts an analog signal using a first counter that is a predetermined counter;
  • a second A / D that performs A / D conversion of an analog signal using a second counter that has the same count timing as the first counter and the polarity of the count value is opposite to that of the first counter.
  • D conversion unit and The signal processing device wherein the first A / D conversion unit and the second A / D conversion unit are arranged in the vicinity of each other to such an extent that mutual power supply fluctuations affect each other.
  • the first counter is an up counter
  • the signal processing device according to (1), wherein the second counter is a down counter.
  • the signal processing device according to any one of (2) to (7), wherein the first counter and the second counter are binary counters.
  • the signal processing device according to any one of (2) to (9), wherein the first counter and the second counter are counters using a TDC (Time to Digital Converter).
  • the first A / D conversion unit and the second A / D conversion unit A / D convert the analog signal by a single slope A / D conversion method.
  • a signal processing apparatus according to claim 1.
  • the first A / D conversion unit and the second A / D conversion unit perform A / D conversion of the analog signal by an integral A / D conversion method.
  • a signal processing apparatus Any one of (1) to (11) A signal processing apparatus according to claim 1. (13) The first A / D conversion unit and the second A / D conversion unit are arranged in one row so as to be alternately arranged one by one. (1) to (12) Signal processing equipment. (14) The first A / D conversion unit and the second A / D conversion unit are arranged in one row so that a plurality of the first A / D conversion units and a plurality of the second A / D conversion units are alternately arranged. (1) to (13) Signal processing equipment. (15) The first A / D conversion unit and the second A / D conversion are arranged in a matrix so as to be alternately arranged one by one in a row direction. (1) to (14) A signal processing device according to 1.
  • the first A / D conversion unit and the second A / D conversion unit are arranged in a matrix so as to be alternately arranged one by one in the row direction and the column direction. (1) to (15 ).
  • the first A / D conversion unit and the second A / D conversion unit may output signals read from unit pixels belonging to unit pixel columns assigned to the A / D conversion unit in the pixel area.
  • the signal processing device according to any one of (1) to (16), which performs D conversion.
  • Each of the first A / D conversion unit and the second A / D conversion unit outputs a signal read from a unit pixel in a partial region assigned to itself in the pixel region.
  • the signal processing device according to any one of (1) to (17).
  • a pixel array in which a plurality of unit pixels are arranged in a matrix;
  • a first A / D converter that performs A / D conversion on analog signals read from the unit pixels arranged in the pixel array, using a first counter that is a predetermined counter; Reading from the unit pixels arranged in the pixel array using a second counter having a count timing identical to that of the first counter and a counter value having a polarity opposite to that of the first counter
  • a second A / D converter for A / D converting the analog signal thus obtained The imaging device in which the first A / D conversion unit and the second A / D conversion unit are arranged in the vicinity of each other to such an extent that mutual power supply fluctuations affect each other.
  • an imaging unit for imaging a subject an imaging unit for imaging a subject
  • An image processing unit that performs image processing on image data obtained by imaging by the imaging unit,
  • the imaging unit A pixel array in which a plurality of unit pixels are arranged in a matrix;
  • a second A / D that performs A / D conversion of an analog signal using a second counter that has the same count timing as the first counter and the polarity of the count value is opposite to that of the first counter.
  • D conversion unit and An electronic device in which the first A / D conversion unit and the second A / D conversion unit are arranged in the vicinity of each other to such an extent that mutual power supply fluctuations affect each other.
  • 100 image sensor 101 pixel array, 102 reference voltage generation unit, 103 A / D conversion unit, 104 horizontal transfer unit, 111 control unit, 112 vertical scanning unit, 121 vertical signal line, 122 reference signal line, 123 and 124 signal line , 125 control lines, 131 to 134 control lines, 141 unit pixels, 161 column A / D converter, 171 comparator, 172 up counter, 173 and 174 capacitors, 175 down counter, 181 JK flip-flop, 201 selector, 231 D Flip-flop, 241 switch, 242 resistor, 243 integrator, 244 capacitor, 245 comparator, 246 up counter, 247 down counter, 600 imaging device , 612 CMOS image sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

 本技術は、カウンタの駆動による電源変動を抑制することができるようにする信号処理装置、撮像素子、並びに、電子機器に関する。 本技術の信号処理装置は、所定のカウンタである第1のカウンタを用いてアナログ信号をA/D変換する第1のA/D変換部と、カウントタイミングが前記第1のカウンタと同一であり、かつ、カウント値の極性が前記第1のカウンタと反対である第2のカウンタを用いて、アナログ信号をA/D変換する第2のA/D変換部とを備え、前記第1のA/D変換部および前記第2のA/D変換部が、互いの電源変動が影響を及ぼし合う程度に互いの近傍に配置される。本技術は、例えば、撮像素子や電子機器に適用することができる。

Description

信号処理装置、撮像素子、並びに、電子機器
 本技術は、信号処理装置、撮像素子、並びに、電子機器に関し、特に、カウンタの駆動による電源変動を抑制することができるようにした信号処理装置、撮像素子、並びに、電子機器に関する。
 従来、イメージセンサ等に用いられるA/D変換部は、一般的に、シングルスロープA/D変換方式等でA/D変換を行い、カウンタ回路を有している。このようなカウンタ回路は、カウント値の非反転時は電流が流れないが、カウント値の反転時に電流が流れるため、電源変動によりノイズが発生するおそれがあった。特に、カウント値の一斉反転時(全ビット反転時)には大きな電源変動が生じるおそれがあった。
 そこでこのような一斉反転を防ぐ方法が考えられた。例えば、カウンタの動作タイミングを、前カウントと後カウントに分けて動作させる方式が考えられた(例えば、特許文献1および特許文献2参照)。また、カウントタイミングをずらしてA/D変換することができるようにポジ・ネガティブエッジを用いた動作も考えられた(例えば、特許文献3)参照。
特開2009-49459号公報 特開2009-206709号公報 特開2011-259016号公報
 しかしながら、カウンタの駆動による電源変動は、カウント値の一斉反転時以外においても発生するため、これらの方法で十分に電源変動を抑制することができない場合があるおそれがあった。
 本技術は、このような状況に鑑みて提案されたものであり、カウンタの駆動による電源変動を抑制することができるようにすることを目的とする。
 本技術の一側面は、所定のカウンタである第1のカウンタを用いてアナログ信号をA/D変換する第1のA/D変換部と、カウントタイミングが前記第1のカウンタと同一であり、かつ、カウント値の極性が前記第1のカウンタと反対である第2のカウンタを用いて、アナログ信号をA/D変換する第2のA/D変換部とを備え、前記第1のA/D変換部および前記第2のA/D変換部が、互いの電源変動が影響を及ぼし合う程度に互いの近傍に配置される信号処理装置である。
 前記第1のカウンタは、アップカウンタであり、前記第2のカウンタは、ダウンカウンタであるようにすることができる。
 前記第1のカウンタおよび前記第2のカウンタは、非同期式のカウンタであるようにすることができる。
 前記第1のカウンタおよび前記第2のカウンタは、同期式のカウンタであるようにすることができる。
 前記第1のカウンタおよび前記第2のカウンタは、JKフリップフロップにより構成されるようにすることができる。
 前記第1のカウンタおよび前記第2のカウンタは、Dフリップフロップにより構成されるようにすることができる。
 前記第1のカウンタは、アップダウンカウンタをアップカウンタとして駆動させたものであり、前記第2のカウンタは、前記アップダウンカウンタをダウンカウンタとして駆動させたものであるようにすることができる。
 前記第1のカウンタおよび前記第2のカウンタは、バイナリカウンタであるようにすることができる。
 前記第1のカウンタおよび前記第2のカウンタは、グレイコードカウンタであるようにすることができる。
 前記第1のカウンタおよび前記第2のカウンタは、TDC(Time to Digital Converter)を用いたカウンタであるようにすることができる。
 前記第1のA/D変換部および前記第2のA/D変換部は、シングルスロープA/D変換方式で前記アナログ信号をA/D変換することができる。
 前記第1のA/D変換部および前記第2のA/D変換部は、積分型A/D変換方式で前記アナログ信号をA/D変換することができる。
 前記第1のA/D変換部および前記第2のA/D変換部が、1つずつ交互に並ぶように1行に配置されるようにすることができる。
 前記第1のA/D変換部および前記第2のA/D変換部が、複数個ずつ交互に並ぶように1行に配置されるようにすることができる。
 前記第1のA/D変換部および前記第2のA/D変換部が、行方向に1つずつ交互に並ぶように行列状に配置されるようにすることができる。
 前記第1のA/D変換部および前記第2のA/D変換部が、行方向および列方向に1つずつ交互に並ぶように行列状に配置されるようにすることができる。
 前記第1のA/D変換部および前記第2のA/D変換部は、画素領域内の、自身に割り当てられた単位画素列に属する単位画素から読み出された信号をA/D変換することができる。
 前記第1のA/D変換部および前記第2のA/D変換部は、画素領域内の、自身に割り当てられた部分領域内の単位画素から読み出された信号をA/D変換することができる。
 本技術の他の側面は、複数の単位画素が行列状に配置される画素アレイと、所定のカウンタである第1のカウンタを用いてアナログ信号をA/D変換する第1のA/D変換部と、カウントタイミングが前記第1のカウンタと同一であり、かつ、カウント値の極性が前記第1のカウンタと反対である第2のカウンタを用いて、アナログ信号をA/D変換する第2のA/D変換部とを備え、前記第1のA/D変換部および前記第2のA/D変換部が、互いの電源変動が影響を及ぼし合う程度に互いの近傍に配置される撮像素子である。
 本技術のさらに他の側面は、被写体を撮像する撮像部と、前記撮像部による撮像により得られた画像データを画像処理する画像処理部とを備え、前記撮像部は、複数の単位画素が行列状に配置される画素アレイと、所定のカウンタである第1のカウンタを用いてアナログ信号をA/D変換する第1のA/D変換部と、カウントタイミングが前記第1のカウンタと同一であり、かつ、カウント値の極性が前記第1のカウンタと反対である第2のカウンタを用いて、アナログ信号をA/D変換する第2のA/D変換部とを備え、前記第1のA/D変換部および前記第2のA/D変換部が、互いの電源変動が影響を及ぼし合う程度に互いの近傍に配置される電子機器である。
 本技術の一側面においては、所定のカウンタである第1のカウンタを用いてアナログ信号をA/D変換する第1のA/D変換部と、カウントタイミングが第1のカウンタと同一であり、かつ、カウント値の極性が第1のカウンタと反対である第2のカウンタを用いて、アナログ信号をA/D変換する第2のA/D変換部とが、互いの電源変動が影響を及ぼし合う程度に互いの近傍に配置される。
 本技術の他の側面においては、撮像素子において、所定のカウンタである第1のカウンタを用いて、複数の単位画素が行列状に配置される画素アレイに配置された単位画素から読み出されたアナログ信号をA/D変換する第1のA/D変換部と、カウントタイミングが第1のカウンタと同一であり、かつ、カウント値の極性が第1のカウンタと反対である第2のカウンタを用いて、画素アレイに配置された単位画素から読み出されたアナログ信号をA/D変換する第2のA/D変換部とが、互いの電源変動が影響を及ぼし合う程度に互いの近傍に配置される。
 本技術のさらに他の側面においては、電子機器の、複数の単位画素が行列状に配置される画素アレイを備える撮像素子において、所定のカウンタである第1のカウンタを用いて、画素アレイに配置された単位画素から読み出されたアナログ信号をA/D変換する第1のA/D変換部と、カウントタイミングが第1のカウンタと同一であり、かつ、カウント値の極性が第1のカウンタと反対である第2のカウンタを用いて、画素アレイに配置された単位画素から読み出されたアナログ信号をA/D変換する第2のA/D変換部とが、互いの電源変動が影響を及ぼし合う程度に互いの近傍に配置される。
 本技術によれば、信号を処理することが出来る。また本技術によれば、カウンタの駆動による電源変動を抑制することができる。
イメージセンサの主な構成例を示す図である。 画素アレイの主な構成例を示す図である。 単位画素の主な構成例を示す図である。 A/D変換部の主な構成例を示す図である。 カウンタの主な構成例を示す図である。 カウント値の変動の様子の例を説明するタイミングチャートである。 電源変動の様子の例を説明するタイミングチャートである。 電源変動の様子の例を説明するタイミングチャートである。 カウンタ動作時の電源変動を説明する図である。 AC特性についてのシミュレーションの様子を説明する図である。 実負荷での特性についてのシミュレーションの様子を説明する図である。 実負荷での特性についてのシミュレーションの様子を説明する図である。 実負荷での特性についてのシミュレーションの様子を説明する図である。 カウンタの他の構成例を示す図である。 カウンタの他の構成例を示す図である。 カウンタの他の構成例を示す図である。 カウンタの他の例を示すタイミングチャートである。 カウンタの他の例を示すタイミングチャートである。 カラムA/D変換部の他の構成例を示す図である。 カウンタの配置例を示す図である。 イメージセンサの物理構成の例を示す図である。 イメージセンサの他の構成例を示す図である。 イメージセンサの他の構成例を示す図である。 カウンタの他の配置例を示す図である。 カウンタの他の配置例を示す図である。 カウンタの他の配置例を示す図である。 撮像装置の主な構成例を示す図である。
 以下、本開示を実施するための形態(以下実施の形態とする)について説明する。なお、説明は以下の順序で行う。
 1.第1の実施の形態(イメージセンサ・カラムA/D変換部)
 2.第2の実施の形態(イメージセンサ・エリアA/D変換部)
 3.第3の実施の形態(撮像装置)
 <1.第1の実施の形態>
  <カウンタ駆動による電源変動>
 イメージセンサ等に用いられるA/D変換部は、一般的に、シングルスロープA/D変換方式等でA/D変換を行うものであり、カウンタ回路を有している。このようなカウンタ回路は、カウント値の非反転時は電流が流れないが、カウント値の反転時に電流が流れるため、電源変動によりノイズが発生するおそれがあった。特に、カウント値の一斉反転時(全ビット反転時)には大きな電源変動が生じるおそれがあった。
 そこでこのような一斉反転を防ぐ方法が考えられた。例えば、特許文献1や特許文献2においては、カウンタの動作タイミングを、前カウントと後カウントに分けて動作させる方式が開示された。また、特許文献3においては、カウントタイミングをずらしてA/D変換することができるようにポジ・ネガティブエッジを用いた動作が開示された。ただし、これらの方法の場合、DDR(Double Data Rate)駆動した場合に比べ、A/D周波数が半分になってしまう。
 また、カウンタの駆動による電源変動は、カウント値の一斉反転時以外においても発生するため、これらの方法で十分に電源変動を抑制することができない場合があった。
 例えば、イメージセンサにおいて、画素領域の単位画素のカラム(列)毎にA/D変換部(カラムA/D変換部)を設け、各カラムの信号を並行してA/D変換する方法があるが、このような場合、イメージセンサには多数のカラムA/D変換部が互いの近傍に配置され、それらが同時に駆動する。そのため、カウント値が1bit反転する場合でも、全カラムが反転することにより大きな電流変動が起き、電源が大きく揺れるおそれがあった。
 したがって、この電源変動を考慮してカウンタの動作マージンを確保しなければならず、それにより電源電圧を低減することが困難になってしまうことがあった。また、大きな電源変動が発生するおそれがあるため、その電源変動を抑制するために大きなデカップ容量を設ける必要があった。
  <極性の異なるカウンタの併用>
 そこで、カウントタイミングが互いに同一で、カウント値の極性が互いに反対である2種類のカウンタの一方を有する第1のA/D変換部と、他方を有する第2のA/D変換部とを、互いの電源変動が影響を及ぼし合う程度に互いの近傍に配置するようにする。
 例えば、信号処理装置において、所定のカウンタである第1のカウンタを用いてアナログ信号をA/D変換する第1のA/D変換部と、カウントタイミングが第1のカウンタと同一であり、かつ、カウント値の極性が第1のカウンタと反対である第2のカウンタを用いて、アナログ信号をA/D変換する第2のA/D変換部とを備え、第1のA/D変換部および第2のA/D変換部が、互いの電源変動が影響を及ぼし合う程度に互いの近傍に配置されるようにする。
 このようにすることにより、第1のA/D変換部のカウンタの駆動による電源変動と、第2のA/D変換部のカウンタの駆動による電源変動とが互いに打ち消し合うので、全体として、カウンタの駆動による電源変動が抑制される。これによりノイズの発生が抑制される。したがって、例えばイメージセンサの場合、撮像画像の画質の低減を抑制することができる。
  <イメージセンサ>
 このような本技術を適用した撮像素子の一実施の形態であるイメージセンサの主な構成例を、図1に示す。図1に示されるイメージセンサ100は、被写体からの光を光電変換して画像データとして出力するデバイスである。例えば、イメージセンサ100は、CMOS(Complementary Metal Oxide Semiconductor)を用いたCMOSイメージセンサ、CCD(Charge Coupled Device)を用いたCCDイメージセンサ等として構成される。
 図1に示されるように、イメージセンサ100は、画素アレイ101、参照電圧発生部102、A/D変換部103、水平転送部104、制御部111、および垂直走査部112を有する。
 画素アレイ101は、フォトダイオード等の光電変換素子を有する画素構成(単位画素)が平面状または曲面状に配置される画素領域である。画素アレイ101の構成の詳細については後述するが、単位画素から読み出されたアナログ信号は、垂直信号線121-1乃至垂直信号線121-Nのいずれかを介してA/D変換部103に伝送される。以下において、垂直信号線121-1乃至垂直信号線121-Nを互いに区別して説明する必要が無い場合、垂直信号線121と称する。
 参照電圧発生部102は、A/D変換部103のA/D変換の基準信号となる参照信号(参照電圧とも称する)を発生する。この参照信号の波形は任意である。例えば、参照信号をランプ波(のこぎり波)としてもよい。以下においては、参照信号としてランプ波(Ramp)を用いる場合を例に説明する。参照電圧発生部102は、例えば、D/A変換部を有し、そのD/A変換部により参照信号(Ramp)を生成する。この参照信号(Ramp)は、参照信号線122を介してA/D変換部103に供給される。
 A/D変換部103は、その参照信号を用いて、画素アレイ101から垂直信号線121を介して伝送される(各単位画素から読み出された)アナログ信号等をA/D変換し、そのデジタルデータを、信号線123-1乃至信号線123-Nのいずれかを介して水平転送部104に出力する。以下において、信号線123-1乃至信号線123-Nを互いに区別して説明する必要が無い場合、信号線123と称する。
 水平転送部104は、A/D変換部103から信号線123を介して供給されるデジタルデータを、信号線124を介してイメージセンサ100の外部等に転送する。
 制御部111は、制御線131を介して制御信号を供給することにより参照電圧発生部102を制御する。また、制御部111は、制御線132を介して制御信号を供給することによりA/D変換部103を制御する。また、制御部111は、制御線133を介して制御信号を供給することにより水平転送部104を制御する。また、制御部111は、制御線134を介して制御信号を供給することにより垂直走査部112を制御する。このように、イメージセンサ100の各部を制御することにより、制御部111は、イメージセンサ100全体の動作(各部の動作)を制御する。
 なお、図1においては、上述した制御線131乃至制御線134がそれぞれ1本の点線(点線矢印)により示されているが、これらの制御線はいずれも、複数の制御線により構成されるようにしてもよい。
 垂直走査部112は、制御部111に制御されて、制御線125-1乃至制御線125-Mを介して制御信号を供給することにより、画素アレイ101の各単位画素のトランジスタの動作を制御する。なお、以下において、制御線125-1乃至制御線125-Mを互いに区別して説明する必要が無い場合、制御線125と称する。
  <画素アレイ>
 画素アレイ101の主な構成例を図2に示す。上述したように、画素領域(画素アレイ101)には、複数の単位画素が面状に並べられて配置されている。図2の例の場合、M×N個の単位画素141(単位画素141-11乃至単位画素141-MN)が、M行N列の行列状(アレイ状)に並べられて配置されている(M、Nは任意の自然数)。以下において、単位画素141-11乃至単位画素141-MNを互いに区別して説明する必要が無い場合、単位画素141と称する。単位画素141の並べ方は任意であり、例えば、所謂ハニカム構造等のように、行列状以外の並べ方であってもよい。
 図2に示されるように、単位画素141のカラム(列)(以下において、単位画素列とも称する)毎に垂直信号線121(垂直信号線121-1乃至垂直信号線121-N)が形成されている。そして、各垂直信号線121は、自身に対応するカラム(単位画素列)の各単位画素に接続され、その各単位画素から読み出された信号をA/D変換部103に伝送する。また、図2に示されるように、単位画素141の行(以下において、単位画素行とも称する)毎に制御線125(制御線125-1乃至制御線125-M)が形成されている。そして、各制御線125は、自身に対応する単位画素行の各単位画素に接続され、垂直走査部112から供給される制御信号を、その各単位画素に伝送する。
 つまり、単位画素141は、自身が属するカラム(単位画素列)に割り当てられた垂直信号線121と、自身が属する単位画素行に割り当てられた制御線125とに接続されており、その制御線125を介して供給される制御信号に基づいて駆動し、自身において得られる電気信号を、その垂直信号線121を介してA/D変換部103に供給する。
 なお、図2において各行の制御線125は1本の線として示されているが、この各行の制御線125が複数の制御線により構成されるようにしてもよい。
  <単位画素構成>
 図3は、単位画素141の回路構成の主な構成の例を示す図である。図3に示されるように、単位画素141は、フォトダイオード(PD)151、転送トランジスタ152、リセットトランジスタ153、増幅トランジスタ154、およびセレクトトランジスタ155を有する。
 フォトダイオード(PD)151は、受光した光をその光量に応じた電荷量の光電荷(ここでは、光電子)に光電変換してその光電荷を蓄積する。その蓄積された光電荷は、所定のタイミングにおいて読み出される。フォトダイオード(PD)151のアノード電極は画素領域のグランド(画素グランド)に接続され、カソード電極は転送トランジスタ152を介してフローティングディフュージョン(FD)に接続される。もちろん、フォトダイオード(PD)151のカソード電極が画素領域の電源(画素電源)に接続され、アノード電極が転送トランジスタ152を介してフローティングディフュージョン(FD)に接続され、光電荷が光正孔として読み出される方式としてもよい。
 転送トランジスタ152は、フォトダイオード(PD)151からの光電荷の読み出しを制御する。転送トランジスタ152は、ドレイン電極がフローティングディフュージョンに接続され、ソース電極がフォトダイオード(PD)151のカソード電極に接続される。また、転送トランジスタ152のゲート電極には、垂直走査部112から供給される転送制御信号を伝送する転送制御線(TRG)が接続される。つまり、この転送制御線(TRG)は、図2の制御線125に含まれる。
 転送制御線(TRG)の信号(すなわち、転送トランジスタ152のゲート電位)がオフ状態のとき、フォトダイオード(PD)151からの光電荷の転送が行われない(フォトダイオード(PD)151において光電荷が蓄積される)。これに対して、転送制御線(TRG)の信号がオン状態のとき、フォトダイオード(PD)151に蓄積された光電荷がフローティングディフュージョン(FD)に転送される。
 リセットトランジスタ153は、フローティングディフュージョン(FD)の電位をリセットする。リセットトランジスタ153は、ドレイン電極が電源電位に接続され、ソース電極がフローティングディフュージョン(FD)に接続される。また、リセットトランジスタ153のゲート電極には、垂直走査部112から供給されるリセット制御信号を伝送するリセット制御線(RST)が接続される。つまり、このリセット制御線(RST)は、図2の制御線125に含まれる。
 リセット制御線(RST)の信号(すなわち、リセットトランジスタ153のゲート電位)がオフ状態のとき、フローティングディフュージョン(FD)は電源電位と切り離されている。これに対して、リセット制御線(RST)の信号がオン状態のとき、フローティングディフュージョン(FD)の電荷が電源電位に捨てられ、フローティングディフュージョン(FD)がリセットされる。
 増幅トランジスタ154は、フローティングディフュージョン(FD)の電位変化を増幅し、電気信号(アナログ信号)として出力する。増幅トランジスタ154は、ゲート電極がフローティングディフュージョン(FD)に接続され、ドレイン電極がソースフォロワ電源電圧に接続され、ソース電極がセレクトトランジスタ155のドレイン電極に接続されている。
 例えば、増幅トランジスタ154は、リセットトランジスタ153によってリセットされたフローティングディフュージョン(FD)の電位をリセット信号(リセットレベル)としてセレクトトランジスタ155に出力する。また、増幅トランジスタ154は、転送トランジスタ152によって光電荷が転送されたフローティングディフュージョン(FD)の電位を光蓄積信号(信号レベル)としてセレクトトランジスタ155に出力する。
 セレクトトランジスタ155は、増幅トランジスタ154から供給される電気信号の垂直信号線(VSL)121(すなわち、A/D変換部103)への出力を制御する。セレクトトランジスタ155は、ドレイン電極が増幅トランジスタ154のソース電極に接続され、ソース電極が垂直信号線121に接続されている。また、セレクトトランジスタ155のゲート電極には、垂直走査部112から供給されるセレクト制御信号を伝送するセレクト制御線(SEL)が接続される。つまり、このセレクト制御線(SEL)は、図2の制御線125に含まれる。
 セレクト制御線(SEL)の信号(すなわち、セレクトトランジスタ155のゲート電位)がオフ状態のとき、増幅トランジスタ154と垂直信号線121は電気的に切り離されている。したがって、この状態のとき、当該単位画素141からリセット信号や画素信号等が出力されない。これに対して、セレクト制御線(SEL)がオン状態のとき、当該単位画素141が選択状態となる。つまり、増幅トランジスタ154と垂直信号線121が電気的に接続され、増幅トランジスタ154から出力される信号が、当該単位画素141の画素信号として、垂直信号線121に供給される。すなわち、当該単位画素141からリセット信号や画素信号等が読み出される。
  <A/D変換部の構成>
 次に、図4を参照して、A/D変換部103(図1)の構成例について説明する。図4に示されるように、A/D変換部103は、カラムA/D変換部161-1乃至カラムA/D変換部161-Nを有する。以下において、カラムA/D変換部161-1乃至カラムA/D変換部161-Nを互いに区別して説明する必要が無い場合、カラムA/D変換部161と称する。カラムA/D変換部161は、画素アレイ101のカラム(単位画素列)毎に設けられている。
 そして、図4に示されるように、各カラムA/D変換部161(カラムA/D変換部161-1乃至カラムA/D変換部161-N)には、自身に対応するカラムの垂直信号線121(垂直信号線121-1乃至垂直信号線121-N)と、参照信号線122とが接続されている。カラムA/D変換部161は、シングルスロープA/D変換方式でA/D変換を行う。すなわち、各カラムA/D変換部161は、自身に対応するカラムの単位画素141から読み出され、そのカラムの垂直信号線121を介して供給される信号を、参照信号線122を介して参照電圧発生部102から供給される参照信号を利用して、A/D変換する。
 また、図4に示されるように、各カラムA/D変換部161には、自身に対応するカラムの信号線123(信号線123-1乃至信号線123-N)が接続されている。各カラムA/D変換部161は、自身において得られたA/D変換結果を、自身に対応する信号線123を介して水平転送部104に供給する。
 各カラムA/D変換部161は、制御線132を介して制御部111から供給される制御信号(すなわち、制御部111の制御)に基づいて駆動する。
 図4において左から奇数番目のカラムに対応するカラムA/D変換部161(例えば、カラムA/D変換部161-1、カラムA/D変換部161-3、・・・カラムA/D変換部161-(N-1))は、比較部171、アップカウンタ172、キャパシタ173、およびキャパシタ174を有する。また、左から偶数番目のカラムに対応するカラムA/D変換部161(例えば、カラムA/D変換部161-2、カラムA/D変換部161-4、・・・カラムA/D変換部161-N)は、比較部171、キャパシタ173、キャパシタ174、およびダウンカウンタ175を有する。なお、図4においては、Nが偶数の場合の例を示しているが、Nは、奇数であってもよい。その場合、カラムA/D変換部161-Nが左から奇数番目のカラムA/D変換部161となり、カラムA/D変換部161-(N-1)が左から偶数番目のカラムA/D変換部161となる。
 比較部171は、垂直信号線121およびキャパシタ174を介して入力される入力信号(例えば単位画素141から読み出されたアナログ信号)と、参照信号線122およびキャパシタ173を介して入力される参照信号とを比較し(信号レベルの比較を行い)、その比較結果をアップカウンタ172若しくはダウンカウンタ175に出力する。つまり、比較部171は、入力信号と参照信号とのいずれの信号レベルが大きいかを示す信号を出力する。
 例えば、この比較結果を示す信号は、1ビットのデジタルデータである。例えば、参照信号の信号レベルが、入力信号の信号レベルより大きい場合、この比較結果を示す信号の値が「0」となり、逆の場合、値が「1」となる。もちろん、この信号の値の取り方は逆でもよい。また、比較結果を示す信号のビット長は任意であり、複数ビットからなる情報であってもよい。
 キャパシタ173およびキャパシタ174は、容量が固定の(所定の容量を有する)キャパシタである。
 アップカウンタ172およびダウンカウンタ175は、カウント開始から、比較部171から供給される比較結果が反転(比較部171の出力の信号レベルが変化)するまでの時間(例えば、クロック信号のクロック数)をカウントする。そして、アップカウンタ172およびダウンカウンタ175は、比較結果が反転した時点でそれまでのカウント値を、入力信号のA/D変換結果(つまり、単位画素141から読み出された信号のデジタルデータ)として、信号線123を介して水平転送部104に出力する。なお、アップカウンタ172およびダウンカウンタ175が出力するカウント値のビット長(桁数)は、任意である。
 アップカウンタ172とダウンカウンタ175は、カウントタイミングが互いに同一であるが、カウント値の極性が互いに反対のカウンタである。例えば、アップカウンタ172は、全ビット「0」の状態からカウントを開始し、カウントの度にカウント値を「1」ずつ増加させる(インクリメントする)。これに対してダウンカウンタ175は、例えば、全ビット「1」の状態からカウントを開始し、カウントの度にカウント値を「1」ずつ減少させる(デクリメントする)。アップカウンタ172とダウンカウンタ175は、このようなカウントを同一のタイミングで行う。
 アップカウンタ172やダウンカウンタ175の駆動により電源変動が生じるが、イメージセンサ100において、このような構成のカラムA/D変換部161-1乃至カラムA/D変換部161-Nは、その互いの電源変動が影響を及ぼし合う程度に互いの近傍に配置される。
  <カウンタの構成>
 次に、図5を参照して、アップカウンタ172やダウンカウンタ175の構成例について説明する。アップカウンタ172やダウンカウンタ175として、例えば、バイナリカウンタを用いるようにしてもよい。アップカウンタ172は、例えば図5のAのように組み合わされた複数のJKフリップフロップ(例えば、JKフリップフロップ181-1、JKフリップフロップ181-2、JKフリップフロップ181-3、・・・)を有する非同期式のカウンタにより構成されるようにしてもよい。同様に、ダウンカウンタ175は、例えば図5のBのように組み合わされた複数のJKフリップフロップ(例えば、JKフリップフロップ181-1、JKフリップフロップ181-2、JKフリップフロップ181-3、・・・)を有する非同期式のカウンタにより構成されるようにしてもよい。以下において、これらのJKフリップフロップを互いに区別して説明する必要が無い場合、JKフリップフロップ181と称する。
 図5のAに示される構成のカウンタは、カウント値が3ビットであるとすると、図5のCの例のようにカウント値を出力する。また、図5のBに示される構成のカウンタは、カウント値が3ビットであるとすると、図5のDの例のようにカウント値を出力する。A/D変換部103(各カラムA/D変換部161)においては、これらのカウントタイミングが互いに揃えられ、図6の例のようにカウント値を出力する。図6のAは、アップカウンタ172が出力するカウント値(4ビット)の例を示し、図6のBは、ダウンカウンタ175が出力するカウント値(4ビット)の例を示す。このように、アップカウンタ172とダウンカウンタ175は、カウントタイミングが互いに同一であり、かつ、カウント値の極性が互いに反対である。そのため、カウント値の各ビットは、同時刻に互いに逆向きに変動する。例えば、アップカウンタ172のBIT1がロー(Low)からハイ(High)に変化するのと同時に、ダウンカウンタ175のBIT1がハイ(High)からロー(Low)に変化する。他のビットも同様である。
  <電源変動の比較>
 一般的なイメージセンサのように、全てのカラムA/D変換部において同一のカウンタを用いると、図7に示される例のように、VDDとVSSの両方で電源変動が生じるが、それらの変動タイミングが互いにずれており、それぞれ大きな変動となっている。
 これに対して、図4の例のように、アップカウンタ172を有するカラムA/D変換部161と、ダウンカウンタ175を有するカラムA/D変換部161とを用いることにより、図8に示される例のように、VDDとVSSの電源変動のタイミングが一致するので、互いに打ち消し合い、その変動幅が抑制される。
 より具体的に説明すると、一般的なイメージセンサのように、全てのカラムA/D変換部において同一のカウンタを用いる場合、図9のAに示されるように、入出力端子の信号レベルの変化の方向が全カラムで揃っているため、VDDの電源変動とVSSの電源変動が互いに異なるタイミングに集中する。そのため、それらの電源変動がそれぞれ大きなものとなってしまう。
 これに対して、図4の例のように、アップカウンタ172を有するカラムA/D変換部161と、ダウンカウンタ175を有するカラムA/D変換部161とを用いる場合、図9のBに示されるように、入出力端子の信号レベルの変化の方向が全カラムで揃わないため、VDDの電源変動とVSSの電源変動が、図9のAの例におけるVDDの電源変動タイミングと、VSSの電源変動タイミングの両方に分散する。そのため、それぞれの電源変動のピークが抑制される。さらに、VDDの電源変動とVSSの電源変動が同タイミングにおいて発生するため、互いに打ち消し合うので、さらに、電源変動のピークが抑制される。
 このように、電源とGNDが同時かつ反対に動作するため、ミラー効果が生まれる。これによりデカップ容量が大きく見え、従来と同サイズの容量でも電源変動をより抑制することができる。換言するに、変動量を同じで良いなら、デカップ容量をより小さくすることができる。
  <AC特性>
 このように、アップカウンタ172を有するカラムA/D変換部161とダウンカウンタ175を有するカラムA/D変換部161との両方を有するA/D変換部103と、アップカウンタ172を有するカラムA/D変換部161とダウンカウンタ175を有するカラムA/D変換部161との内の一方のみを有する一般的なA/D変換部とでその周波数特性(AC特性)を比較する。
 図10のAは、アップカウンタ172を有するカラムA/D変換部161とダウンカウンタ175を有するカラムA/D変換部161との内の一方のみを有する一般的なA/D変換部を表した回路である。図10のBは、アップカウンタ172を有するカラムA/D変換部161とダウンカウンタ175を有するカラムA/D変換部161との両方を有するA/D変換部103を表した回路である。図10のCは、理想的なローパスフィルタを表した回路である。
 これらの回路を用いて周波数特性をシミュレーションして比較した結果を図10のDに示す。図10のDに示されるグラフにおいて、点線は図10のAに示される回路(すなわち、アップカウンタ172を有するカラムA/D変換部161とダウンカウンタ175を有するカラムA/D変換部161との内の一方のみを有する一般的なA/D変換部)の周波数特性を示す。また、実線は図10のBに示される回路(すなわち、アップカウンタ172を有するカラムA/D変換部161とダウンカウンタ175を有するカラムA/D変換部161との両方を有するA/D変換部103)の周波数特性を示し、一点鎖線は図10のCに示される回路(すなわち、理想的なローパスフィルタ)の周波数特性を示す。
 図10のDのグラフに示されるように、A/D変換部103は、一般的なA/D変換部やさらには理想的なローパスフィルタよりも高周波成分を抑制することができる。特に、上述した一般的なA/D変換部の場合、対向電極にも抵抗があり、高周波のゲインが0.5程度になっていたが、A/D変換部103の場合、理想的なローパスフィルタの場合と同様に、高周波ゲインを略「0」まで抑制することができる。ミラー効果によりデカップ容量の容量値が2倍の場合と等価となるので、カットオフ周波数を半分にすることができる。
 なお、仮に、デカップ容量の対極電源線に抵抗が無い場合、フィルタ効果が低減してしまうが、理想的なローパスフィルタと同様に対極電源線に抵抗が無いものと同様の効果が得られ、高周波成分のゲインをより低く抑えることができる。
  <実負荷での特性>
 次に、互いに同一のカウントタイミングを有し、互いにカウント値の極性が反対のアップカウンタとダウンカウンタの両方を用いる場合の、実負荷の特性のシミュレーションについて説明する。
 シミュレーション条件を図11のAのようにし、図11のBに示されるような構成の回路を用いてシミュレーションを行う。そして、図11のBに示される回路(すなわち、本技術を適用したA/D変換部103を表す回路)のシミュレーション結果と、図11のBに示される回路に含まれるカウンタをアップカウンタのみ若しくはダウンカウンタのみとした回路(すなわち、一般的なA/D変換部を表す回路)のシミュレーション結果とを比較する。
 これらの回路のシミュレーション結果について、図11のBに示される観測点において観測したVDD電圧とVDD電流を比較したものを図12に示す。図12の上側のVDD電圧とVDD電流が、図11のBに示される回路のシミュレーション結果を示し、下側のVDD電圧とVDD電流が、図11のBに示される回路に含まれるカウンタをアップカウンタのみ若しくはダウンカウンタのみとした回路のシミュレーション結果を示す。
 図12に示されるように、図11のBに示される回路(すなわち、本技術を適用したA/D変換部103を表す回路)の方が、図11のBに示される回路に含まれるカウンタをアップカウンタのみ若しくはダウンカウンタのみとした回路(すなわち、一般的なA/D変換部を表す回路)よりも、VDD電圧の変動のピークを抑制することができる。
 また、図11のBに示される観測点において観測したVSS電圧とVSS電流を比較したものを図13に示す。図13の上側のVSS電圧とVSS電流が、図11のBに示される回路のシミュレーション結果を示し、下側のVSS電圧とVSS電流が、図11のBに示される回路に含まれるカウンタをアップカウンタのみ若しくはダウンカウンタのみとした回路のシミュレーション結果を示す。
 図12に示されるように、図11のBに示される回路(すなわち、本技術を適用したA/D変換部103を表す回路)の方が、図11のBに示される回路に含まれるカウンタをアップカウンタのみ若しくはダウンカウンタのみとした回路(すなわち、一般的なA/D変換部を表す回路)よりも、VSS電圧の変動のピークを抑制することができる。
 以上のように、A/D変換部103は、カウンタの駆動による電源変動を抑制することができる。これにより、カラムA/D変換部161(A/D変換部103)は、より正確にA/D変換を行うことができる。そして、イメージセンサ100は、イメージセンサ100において得られる撮像画像の画質の低減を抑制することができる。
 また、これにより、カウンタの動作マージンを低減させることができ、電源電圧を低減させることができる。
  <カウンタの構成の他の例>
 なお、上述したアップカウンタ172およびダウンカウンタ175の構成は、任意であり、図5の例に限定されない。例えば、図5においては、非同期式のアップカウンタおよびダウンカウンタを用いるように説明したが、図14のAに示されるような非同期式のアップダウンカウンタを用いるようにしてもよい。図14のAに示されるように、この非同期式のアップダウンカウンタは、JKフリップフロップ181とセレクタ(セレクタ201-1、セレクタ201-2、・・・)により構成される。各セレクタを互いに区別して説明する必要が無い場合、セレクタ201と称する。
 セレクタ201の構成は任意であるが、例えば、図14のBに示されるような構成としてもよい。図14のBの例において、セレクタ201は、NOT211、AND212、AND213、およびOR214を有し、前段のJKフリップフロップ181の2出力のうちの一方を選択する。このセレクタ201を選択することにより、この非同期式のアップダウンカウンタは、アップカウンタとしてもダウンカウンタとしても動作させることができる。
 つまり、図14のAに示される非同期式のアップダウンカウンタをアップカウンタとして動作させて、それをアップカウンタ172とし、図14のAに示される非同期式のアップダウンカウンタをダウンカウンタとして動作させて、それをダウンカウンタ175としてもよい。このようにすることにより、アップカウンタ172を用いるカラムA/D変換部161の構成と、ダウンカウンタ175を用いるカラムA/D変換部161の構成とを互いに同一とすることができるので、構成の違いにより生じるカラム間の特性の差を抑制することができる。
 また、同期式のカウンタを用いるようにしてもよい。例えば、アップカウンタ172として、図15のAに示されるように組み合わせられた複数のJKフリップフロップ181とAND221を有する同期式のアップカウンタを用いるようにしてもよい。このカウンタのカウント値の波形の例を図15のBに示す。この場合、ダウンカウンタ175についても、同期式のダウンカウンタを用いるようにすればよい。
 また、Dフリップフロップを用いたカウンタを適用するようにしてもよい。例えば、アップカウンタ172として、図16のAに示されるように組み合わせられた複数のDフリップフロップ(Dフリップフロップ231-1、Dフリップフロップ231-2、Dフリップフロップ231-3、・・・)を有する非同期式のアップカウンタを用いるようにしてもよい。以下において、各Dフリップフロップを互いに区別して説明する必要が無い場合、Dフリップフロップ231と称する。このカウンタのカウント値の波形の例を図16のBに示す。この場合、ダウンカウンタ175についても、Dフリップフロップ231を有する非同期式のダウンカウンタを用いるようにすればよい。
 さらに、アップカウンタ172およびダウンカウンタ175として、バイナリカウンタではなく、グレイコードカウンタ(グレイコードを用いたアップカウンタをグレイコードアップカウンタとも称する。各ビットを反転させたダウンカウンタをグレイコードダウンカウンタとも称する。)を用いるようにしてもよい。図17のAに、グレイコードアップカウンタから出力されるカウント値の各ビットの波形の例を示し、図17のBに、グレイコードダウンカウンタから出力されるカウント値の各ビットの波形の例を示す。
 さらに、アップカウンタ172およびダウンカウンタ175として、バイナリカウンタではなく、TDC(Time to Digital Converter)を用いたカウンタ(TDCカウンタとも称する。TDCを用いたアップカウンタをTDCアップカウンタとも称する。TDCを用いたダウンカウンタをTDCダウンカウンタとも称する)を用いるようにしてもよい。図18のAに、TDCアップカウンタから出力されるカウント値の各ビットの波形の例を示し、図18のBに、TDCダウンカウンタから出力されるカウント値の各ビットの波形の例を示す。
 これらのいずれの場合も、アップカウンタ172とダウンカウンタ175との間で、カウントタイミングを互いに同一とし、カウント値の極性を互いに反対とすることにより、A/D変換部103は、カウンタの駆動による電源変動を抑制することができる。
  <カラムA/D変換部の他の構成>
 また、図4を参照して、カラムA/D変換部161の構成例について説明したが、カラムA/D変換部161の構成は任意である。また、カラムA/D変換部161のA/D変換の方式も任意であり、シングルスロープA/D変換方式以外の方式でA/D変換を行うようにしてもよい。
 例えば、カラムA/D変換部161が、積分型のA/D変換方式でA/D変換を行うようにしてもよい。その場合の、カラムA/D変換部161の構成例を図19に示す。
 この場合、図19に示されるように、カラムA/D変換部161-1は、スイッチ241、抵抗242、積分部243、キャパシタ244、比較部245、およびアップカウンタ246を有する。これに対して、カラムA/D変換部161-2は、スイッチ241、抵抗242、積分部243、キャパシタ244、比較部245、およびダウンカウンタ247を有する。
 つまり、図4の例の場合と同様に、アップカウンタ246を有するカラムA/D変換部161と、ダウンカウンタ247を有するカラムA/D変換部161とが、1つずつ交互に並べられている。つまり、このような構成の複数のカラムA/D変換部161が、その互いの電源変動が影響を及ぼし合う程度に互いの近傍に配置されている。そして、アップカウンタ246とダウンカウンタ247は、カウントタイミングを互いに同一とし、カウント値の極性を互いに反対として動作する。
 このようにカラムA/D変換部161が、積分型のA/D変換方式でA/D変換を行う場合であっても、アップカウンタ246とダウンカウンタ247の動作により電源変動が生じる。そのため、上述したような構成とすることにより、VDDとVSSの電源変動のタイミングが一致して互いに打ち消し合うので、電源変動幅が抑制される。つまり、この場合も、A/D変換部103は、カウンタの駆動による電源変動を抑制することができる。
 以上においては、本技術を適用したA/D変換部103をイメージセンサに適用し、画素領域から読み出された画素信号等をA/D変換するように説明したが、本技術を適用したA/D変換部103がA/D変換するアナログ信号は任意であり、画素信号以外の信号をA/D変換することができる。例えば、マイクロホン等から出力される音声信号やモータ出力等であってもよい。すなわち、本技術を適用したA/D変換部103は、イメージセンサ以外の、アナログ信号をA/D変換する任意のデバイスに適用することができる。特に、互いに近傍に配置された複数のA/D変換部を用いて、多数のアナログ信号を並行してA/D変換するようなデバイスに適用するとより大きな効果を得ることができる。
 また、以上においては、カウンタを用いてA/D変換を行うA/D変換部を例に用いて本技術を説明したが、カウンタを用いて行われる処理はA/D変換に限らずどのような処理であってもよい。すなわち、本技術は、複数のカウンタを用いて処理を行う任意の処理部に適用することができる。
  <カウンタの配置>
 なお、以上においては、アップカウンタを有するカラムA/D変換部と、ダウンカウンタを有するカラムA/D変換部とを互いの近傍に配置するように説明したが、それらのカラムA/D変換部の配置位置は、互いの近傍である限り任意である。例えば、図20のAに示されるように、アップカウンタ172を有するカラムA/D変換部161とダウンカウンタ175を有するカラムA/D変換部161とが1つずつ交互に並ぶように1行に配置されるようにしてもよい。また、例えば、図20のBに示されるように、アップカウンタ172を有するカラムA/D変換部161とダウンカウンタ175を有するカラムA/D変換部161とが複数ずつ交互に並ぶように1行に配置されるようにしてもよい。これらの例のように各カラムA/D変換部161を配置することにより、アップカウンタ172とダウンカウンタ175とを互いの近傍に配置することができ、カウンタの駆動による電源変動を抑制することができる。
 なお、カラムA/D変換部の配置位置は、上述した例に限定されない。例えば、カラムA/D変換部を複数行に配置するようにしてもよい。また、アップカウンタ172を有するカラムA/D変換部161とダウンカウンタ175を有するカラムA/D変換部161とが互いに同数でなくてもよい。
 そして、さらに、各カラムA/D変換部161のカウンタを、そのカラムA/D変換部161が配置される領域内の所定の位置に配置するようにしてもよい。例えば、図20の例のように、カラムA/D変換部161の図中下側に、カウンタ(アップカウンタ172若しくはダウンカウンタ175)を配置するようにしてもよい。
 このようにすることにより、図20のAの例の場合、アップカウンタ172およびダウンカウンタ175が1つずつ交互に並ぶように1行に配置される。また、図20のBの例の場合、アップカウンタ172およびダウンカウンタ175が複数ずつ交互に並ぶように1行に配置される。つまり、アップカウンタ172とダウンカウンタ175とを互いのより近傍に配置することができ、カウンタの駆動による電源変動を抑制することができる。
 もちろん、カウンタのカラムA/D変換部内における位置は任意であり、これらの例以外であってもよい。例えば、各カラムA/D変換部(カウンタを用いる何らかの処理部)におけるカウンタの位置が全て同一でなくてもよい。また、各カラムA/D変換部(カウンタを用いる何らかの処理部)が有するカウンタの数が全て同一でなくてもよい。
  <イメージセンサの物理構成>
 なお、本技術を適用する撮像素子は、例えば、半導体基板が封止されたパッケージ(チップ)や、そのパッケージ(チップ)が回路基板に設置されたモジュール等として実現することができる。例えば、パッケージ(チップ)として実現する場合、そのパッケージ(チップ)において撮像素子が、単一の半導体基板により構成されるようにしてもよいし、互いに重畳される複数の半導体基板により構成されるようにしてもよい。
 図21は、本技術を適用した撮像素子であるイメージセンサ100の物理構成の一例を示す図である。
 図21のAに示される例の場合、図1等を参照して説明したイメージセンサ100の回路構成は、全て単一の半導体基板に形成される。図21のAの例の場合、画素・アナログ処理部301、デジタル処理部302、およびフレームメモリ303を囲むように出力部304-1乃至出力部304-4が配置されている。画素・アナログ処理部301は、画素アレイ101やA/D変換部103等のアナログ構成が形成される領域である。出力部304-1乃至出力部304-4は、例えば、I/Oセル等の構成が配置される領域である。
 もちろん、図21のAの構成例は一例であり、各処理部の構成の配置は、この例に限らない。
 図21のBに示される例の場合、図1等を参照して説明したイメージセンサ100の回路構成は、互いに重畳される2枚の半導体基板(積層基板(画素基板311および回路基板312))に形成される。
 画素基板311には、画素・アナログ処理部301、デジタル処理部302、並びに、出力部304-1および出力部304-2が形成される。出力部304-1および出力部304-2は、例えば、I/Oセル等の構成が配置される領域である。
 また、回路基板312には、フレームメモリ303が形成されている。
 上述したように画素基板311および回路基板312は、互いに重畳され、多層構造(積層構造)を形成する。画素基板311に形成される画素・アナログ処理部301と、回路基板312に形成されるフレームメモリ303とは、ビア領域(VIA)313-1とビア領域(VIA)314-1とに形成される貫通ビア(VIA)等を介して互いに電気的に接続されている。同様に、画素基板311に形成されるデジタル処理部302と、回路基板312に形成されるフレームメモリ303とは、ビア領域(VIA)313-2とビア領域(VIA)314-2とに形成される貫通ビア(VIA)等を介して互いに電気的に接続されている。
 このような積層構造のイメージセンサにも本技術を適用することができる。なお、この半導体基板(積層チップ)の数(層数)は任意であり、例えば、図21のCに示されるように、3層以上であってもよい。
 図21のCの例の場合、イメージセンサ100は、半導体基板321、半導体基板322、および半導体基板323を有する。半導体基板321乃至半導体基板323は、互いに重畳され、多層構造(積層構造)を形成する。半導体基板321には、画素・アナログ処理部301が形成され、半導体基板322には、デジタル処理部302、出力部304-1、および出力部304-2が形成され、半導体基板323には、フレームメモリ303が形成されている。各半導体基板の各処理部は、ビア領域(VIA)324-1、ビア領域(VIA)325-1、およびビア領域(VIA)326-1に形成される貫通ビア(VIA)、並びに、ビア領域(VIA)324-2、ビア領域(VIA)325-2、およびビア領域(VIA)326-2に形成される貫通ビア(VIA)を介して互いに電気的に接続されている。
 このような積層構造のイメージセンサにも本技術を適用することができる。もちろん、各半導体基板に形成される処理部は任意であり、図21の例に限定されない。
 <2.第2の実施の形態>
  <エリアA/D変換部>
 例えば、以上においては、A/D変換部103には単位画素列毎にA/D変換部(カラムA/D変換部161)が設けられ、各カラムA/D変換部161が、その単位画素列の各単位画素から読み出される信号をA/D変換するように説明したが、A/D変換部103の構成例はこれに限定されない。例えば、画素アレイ101において、所定数の単位画素毎に画素ユニットが形成され、A/D変換部103にはその画素ユニット毎にA/D変換部(エリアA/D変換部)が設けられ、各エリアA/D変換部が、自身に割り当てられた画素ユニットに属する各単位画素から読み出される信号をA/D変換するようにしてもよい。
 その場合、例えば、図22に示される例のように、画素ユニットとエリアA/D変換部とが互いに同一の半導体基板に形成されるようにしてもよい。図22の例の場合、画素ユニット340-1乃至画素ユニット340-3と、それぞれに対応するエリアA/D変換部341-1乃至エリアA/D変換部341-3が、同一の半導体基板上に形成されている。もちろん、画素ユニットとエリアA/D変換部の数は任意である。
 以下において、画素アレイ101に形成される各画素ユニットを互いに区別して説明する必要が無い場合、画素ユニット340と称し、A/D変換部103に形成される各エリアA/D変換部を互いに区別して説明する必要が無い場合、エリアA/D変換部341と称する。
 また、この場合も、イメージセンサ100の構成が、複数の半導体基板に形成されるようにしてもよい。例えば図23に示されるように、イメージセンサ100が互いに重畳される2枚の半導体基板(積層チップ(画素基板351および回路基板352))を有するようにしてもよい。
 図23の例の場合、画素基板351に、画素領域(すなわち、画素アレイ101)のN個の画素ユニット340(画素ユニット340-1乃至画素ユニット340-N)が形成されている。また、回路基板352の、各画素ユニット340に重畳する位置には、その画素ユニット340に対応するエリアA/D変換部341が形成されている。例えば、回路基板352の、画素基板351における画素ユニット340-Kの位置と同じ位置(画素ユニット340-Kに重畳する位置)には、その画素ユニット340-Kの単位画素から読み出された信号をA/D変換するエリアA/D変換部341-Kが形成されている。
 もちろん、この場合も、イメージセンサ100の半導体基板の数(層数)は任意であり、3層以上であってもよい。
  <カウンタの配置>
 このようなエリアA/D変換部341の場合も、第1の実施の形態のカラムA/D変換部161の場合と同様に、アップカウンタ172とダウンカウンタ175とを互いの近傍に配置するようにしてもよい。すなわち、アップカウンタ172を有するエリアA/D変換部341とダウンカウンタ175を有するエリアA/D変換部341とが互いの近傍に配置されるようにしてもよい。例えば、図24のA、図25のA、図26のAに示されるように、アップカウンタ172を有するエリアA/D変換部341とダウンカウンタ175を有するエリアA/D変換部341とが行方向(図中横方向)に1つずつ交互に並ぶように行列状に配置されるようにしてもよい。また、例えば、図24のB、図25のB、図26のBに示されるように、アップカウンタ172を有するエリアA/D変換部341とダウンカウンタ175を有するエリアA/D変換部341とが行方向および列方向(図中縦方向)に1つずつ交互に並ぶように行列状に配置されるようにしてもよい。
 このように配置することにより、アップカウンタ172とダウンカウンタ175とを互いの近傍に配置することができる。したがって、カウンタの駆動による電源変動を抑制することができる。
 なお、エリアA/D変換部の配置位置は、上述した例に限定されない。例えば、図24乃至図26の例において、アップカウンタ172を有するエリアA/D変換部341の位置とダウンカウンタ175を有するエリアA/D変換部341の位置とを入れ替えるようにしてもよい。また、アップカウンタ172を有するエリアA/D変換部341とダウンカウンタ175を有するエリアA/D変換部341とが列方向(図中縦方向)に1つずつ交互に並ぶように行列状に配置されるようにしてもよい。さらに、アップカウンタ172を有するエリアA/D変換部341とダウンカウンタ175を有するエリアA/D変換部341とが行方向に複数ずつ交互に並ぶように行列状に配置されるようにしてもよい。同様に、アップカウンタ172を有するエリアA/D変換部341とダウンカウンタ175を有するエリアA/D変換部341とが行方向および列方向に複数ずつ交互に並ぶように行列状に配置されるようにしてもよい。さらに、アップカウンタ172を有するエリアA/D変換部341とダウンカウンタ175を有するエリアA/D変換部341とが互いに同数でなくてもよい。
 そして、さらに、各エリアA/D変換部341のカウンタを、そのエリアA/D変換部341が配置される領域内の所定の位置に配置するようにしてもよい。例えば、図24に示されるように、エリアA/D変換部341が行列状に配置され、各エリアA/D変換部341において、カウンタ(アップカウンタ172若しくはダウンカウンタ175)が、そのエリアA/D変換部341自身が配置される領域の図中右側若しくは左側(すなわち、その領域の外縁の右辺近傍若しくは左辺近傍)に配置されるようにしてもよい。
 より具体的には、図24のAの例の場合、アップカウンタ172が図中左側に配置されるエリアA/D変換部341の列と、ダウンカウンタ175が図中右側に配置されるエリアA/D変換部341の列とが1列ずつ交互に並ぶように配置されている。また、図24のBの例の場合、各エリアA/D変換部341のカウンタの位置は図24のAの例と同一であるものの一部のアップカウンタ172とダウンカウンタ175が入れ替えられており、アップカウンタ172を有するエリアA/D変換部341とダウンカウンタ175を有するエリアA/D変換部341とが列方向および行方向に1つずつ交互に並ぶように配置されている。
 また、図25に示される例のように、エリアA/D変換部341が行列状に配置され、各エリアA/D変換部341において、カウンタ(アップカウンタ172若しくはダウンカウンタ175)が、そのエリアA/D変換部341自身が配置される領域の図中右側および下側、図中右側および上側、図中左側および下側、または、図中左側および上側(すなわち、その領域の外縁の右辺および下辺近傍、右辺および上辺近傍、左辺および下辺近傍、または、左辺および上辺近傍)に配置されるようにしてもよい。
 より具体的には、図25のAの例の場合、アップカウンタ172が図中左側および下側に配置されるエリアA/D変換部341とアップカウンタ172が図中左側および上側に配置されるエリアA/D変換部341とが1つずつ交互に並ぶ列と、ダウンカウンタ175が図中右側および下側に配置されるエリアA/D変換部341とダウンカウンタ175が図中右側および上側に配置されるエリアA/D変換部341とが1つずつ交互に並ぶ列とが、1列ずつ交互に並ぶように配置されている。また、図25のBの例の場合、各エリアA/D変換部341のカウンタの位置は図25のAの例と同一であるものの一部のアップカウンタ172とダウンカウンタ175が入れ替えられており、アップカウンタ172を有するエリアA/D変換部341とダウンカウンタ175を有するエリアA/D変換部341とが列方向および行方向に1つずつ交互に並ぶように配置されている。
 また、図26に示される例のように、エリアA/D変換部341が行列状に配置され、各エリアA/D変換部341において、カウンタ(アップカウンタ172若しくはダウンカウンタ175)が、そのエリアA/D変換部341自身が配置される領域の図中右下側、図中右上側、図中左下側、または、図中左上側(すなわち、その領域の外縁の4隅のうちいずれか1つの近傍)に配置されるようにしてもよい。
 より具体的には、図26のAの例の場合、アップカウンタ172が図中左下側に配置されるエリアA/D変換部341とアップカウンタ172が図中左上側に配置されるエリアA/D変換部341とが1つずつ交互に並ぶ列と、ダウンカウンタ175が図中右下側に配置されるエリアA/D変換部341とダウンカウンタ175が図中右上側に配置されるエリアA/D変換部341とが1つずつ交互に並ぶ列とが、1列ずつ交互に並ぶように配置されている。また、図26のBの例の場合、各エリアA/D変換部341のカウンタの位置は図26のAの例と同一であるものの一部のアップカウンタ172とダウンカウンタ175が入れ替えられており、アップカウンタ172を有するエリアA/D変換部341とダウンカウンタ175を有するエリアA/D変換部341とが列方向および行方向に1つずつ交互に並ぶように配置されている。
 これらの例のように各エリアA/D変換部341においてカウンタを所定の位置に配置することにより、アップカウンタ172とダウンカウンタ175とを互いのより近傍に配置することができる。したがって、カウンタの駆動による電源変動を抑制することができる。
 もちろん、カウンタの配置例は任意であり、これらの例以外であってもよい。例えば、図24乃至図26の例において、アップカウンタ172の位置とダウンカウンタ175の位置とを入れ替えるようにしてもよい。また、アップカウンタ172とダウンカウンタ175とが行方向に複数ずつ交互に並ぶように行列状に配置されるようにしてもよい。同様に、アップカウンタ172とダウンカウンタ175とが行方向および列方向に複数ずつ交互に並ぶように行列状に配置されるようにしてもよい。
 また、例えば、アップカウンタ172やダウンカウンタ175がエリアA/D変換部341が配置される領域の図中上側若しくは下側に配置されるようにしてもよい。また、例えば、アップカウンタ172やダウンカウンタ175がエリアA/D変換部341が配置される領域の外縁の任意の3辺の近傍に配置されるようにしてもよい。また、例えば、アップカウンタ172やダウンカウンタ175がエリアA/D変換部341が配置される領域の外縁の任意の複数の隅の近傍に配置されるようにしてもよい。さらに、各エリアA/D変換部(カウンタを用いる何らかの処理部)が有するカウンタの数が全て同一でなくてもよい。
 <3.第3の実施の形態>
  <撮像装置>
 なお、本技術は、撮像素子以外にも適用することができる。例えば、撮像装置のような、撮像素子を有する装置(電子機器等)に本技術を適用するようにしてもよい。図27は、本技術を適用した電子機器の一例としての撮像装置の主な構成例を示すブロック図である。図27に示される撮像装置600は、被写体を撮像し、その被写体の画像を電気信号として出力する装置である。
 図27に示されるように撮像装置600は、光学部611、CMOSイメージセンサ612、画像処理部613、表示部614、コーデック処理部615、記憶部616、出力部617、通信部618、制御部621、操作部622、およびドライブ623を有する。
 光学部611は、被写体までの焦点を調整し、焦点が合った位置からの光を集光するレンズ、露出を調整する絞り、および、撮像のタイミングを制御するシャッタ等よりなる。光学部611は、被写体からの光(入射光)を透過し、CMOSイメージセンサ612に供給する。
 CMOSイメージセンサ612は、入射光を光電変換して画素毎の信号(画素信号)をA/D変換し、CDS(Correlated Double Sampling)等の信号処理を行い、処理後の撮像画像データを画像処理部613に供給する。
 画像処理部613は、CMOSイメージセンサ612により得られた撮像画像データを画像処理する。より具体的には、画像処理部613は、CMOSイメージセンサ612から供給された撮像画像データに対して、例えば、混色補正や、黒レベル補正、ホワイトバランス調整、デモザイク処理、マトリックス処理、ガンマ補正、およびYC変換等の各種画像処理を施す。画像処理部613は、画像処理を施した撮像画像データを表示部614に供給する。
 表示部614は、例えば、液晶ディスプレイ等として構成され、画像処理部613から供給された撮像画像データの画像(例えば、被写体の画像)を表示する。
 画像処理部613は、さらに、画像処理を施した撮像画像データを、必要に応じて、コーデック処理部615に供給する。
 コーデック処理部615は、画像処理部613から供給された撮像画像データに対して、所定の方式の符号化処理を施し、得られた符号化データを記憶部616に供給する。また、コーデック処理部615は、記憶部616に記録されている符号化データを読み出し、復号して復号画像データを生成し、その復号画像データを画像処理部613に供給する。
 画像処理部613は、コーデック処理部615から供給される復号画像データに対して所定の画像処理を施す。画像処理部613は、画像処理を施した復号画像データを表示部614に供給する。表示部614は、例えば、液晶ディスプレイ等として構成され、画像処理部613から供給された復号画像データの画像を表示する。
 また、コーデック処理部615は、画像処理部613から供給された撮像画像データを符号化した符号化データ、または、記憶部616から読み出した撮像画像データの符号化データを出力部617に供給し、撮像装置600の外部に出力させるようにしてもよい。また、コーデック処理部615は、符号化前の撮像画像データ、若しくは、記憶部616から読み出した符号化データを復号して得られた復号画像データを出力部617に供給し、撮像装置600の外部に出力させるようにしてもよい。
 さらに、コーデック処理部615は、撮像画像データ、撮像画像データの符号化データ、または、復号画像データを、通信部618を介して他の装置に伝送させるようにしてもよい。また、コーデック処理部615は、撮像画像データや画像データの符号化データを、通信部618を介して取得するようにしてもよい。コーデック処理部615は、通信部618を介して取得した撮像画像データや画像データの符号化データに対して、適宜、符号化や復号等を行う。コーデック処理部615は、得られた画像データ若しくは符号化データを、上述したように、画像処理部613に供給したり、記憶部616、出力部617、および通信部618に出力したりするようにしてもよい。
 記憶部616は、コーデック処理部615から供給される符号化データ等を記憶する。記憶部616に格納された符号化データは、必要に応じてコーデック処理部615に読み出されて復号される。復号処理により得られた撮像画像データは、表示部614に供給され、その撮像画像データに対応する撮像画像が表示される。
 出力部617は、外部出力端子等の外部出力インターフェイスを有し、コーデック処理部615を介して供給される各種データを、その外部出力インターフェイスを介して撮像装置600の外部に出力する。
 通信部618は、コーデック処理部615から供給される画像データや符号化データ等の各種情報を、所定の通信(有線通信若しくは無線通信)の通信相手である他の装置に供給する。また、通信部618は、所定の通信(有線通信若しくは無線通信)の通信相手である他の装置から、画像データや符号化データ等の各種情報を取得し、それをコーデック処理部615に供給する。
 制御部621は、撮像装置600の各処理部(点線620内に示される各処理部、操作部622、並びに、ドライブ623)の動作を制御する。
 操作部622は、例えば、ジョグダイヤル(商標)、キー、ボタン、またはタッチパネル等の任意の入力デバイスにより構成され、例えばユーザ等による操作入力を受け、その操作入力に対応する信号を制御部621に供給する。
 ドライブ623は、自身に装着された、例えば、磁気ディスク、光ディスク、光磁気ディスク、または半導体メモリなどのリムーバブルメディア624に記憶されている情報を読み出す。ドライブ623は、リムーバブルメディア624からプログラムやデータ等の各種情報を読み出し、それを制御部621に供給する。また、ドライブ623は、書き込み可能なリムーバブルメディア624が自身に装着された場合、制御部621を介して供給される、例えば画像データや符号化データ等の各種情報を、そのリムーバブルメディア624に記憶させることができる。
 以上のような撮像装置600のCMOSイメージセンサ612として、各実施の形態において上述した本技術を適用する。すなわち、CMOSイメージセンサ612として、上述したイメージセンサ100が用いられる。これにより、CMOSイメージセンサ612は、A/D変換部のカウンタの駆動による電源変動を抑制することができ、撮像画像の画質の低減を抑制することができる。したがって撮像装置600は、被写体を撮像することにより、より高画質な撮像画像を得ることができる。
 上述した一連の処理は、ハードウェアにより実行させることもできるし、ソフトウェアにより実行させることもできる。上述した一連の処理をソフトウェアにより実行させる場合には、そのソフトウェアを構成するプログラムが、ネットワークや記録媒体からインストールされる。
 この記録媒体は、例えば、図27に示されるように、装置本体とは別に、ユーザにプログラムを配信するために配布される、プログラムが記録されているリムーバブルメディア624により構成される。このリムーバブルメディア624には、磁気ディスク(フレキシブルディスクを含む)や光ディスク(CD-ROMやDVDを含む)が含まれる。さらに、光磁気ディスク(MD(Mini Disc)を含む)や半導体メモリ等も含まれる。
 その場合、プログラムは、そのリムーバブルメディア624をドライブ623に装着することにより、記憶部616にインストールすることができる。
 また、このプログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することもできる。その場合、プログラムは、通信部618で受信し、記憶部616にインストールすることができる。
 その他、このプログラムは、記憶部616や制御部621内のROM(Read Only Memory)等に、あらかじめインストールしておくこともできる。
 なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
 また、本明細書において、記録媒体に記録されるプログラムを記述するステップは、記載された順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的あるいは個別に実行される処理をも含むものである。
 また、上述した各ステップの処理は、上述した各装置、若しくは、上述した各装置以外の任意の装置において、実行することができる。その場合、その処理を実行する装置が、上述した、その処理を実行するのに必要な機能(機能ブロック等)を有するようにすればよい。また、処理に必要な情報を、適宜、その装置に伝送するようにすればよい。
 また、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、全ての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
 また、以上において、1つの装置(または処理部)として説明した構成を分割し、複数の装置(または処理部)として構成するようにしてもよい。逆に、以上において複数の装置(または処理部)として説明した構成をまとめて1つの装置(または処理部)として構成されるようにしてもよい。また、各装置(または各処理部)の構成に上述した以外の構成を付加するようにしてももちろんよい。さらに、システム全体としての構成や動作が実質的に同じであれば、ある装置(または処理部)の構成の一部を他の装置(または他の処理部)の構成に含めるようにしてもよい。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 例えば、本技術は、1つの機能を、ネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
 また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。
 さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。
 また、本技術は、これに限らず、このような装置またはシステムを構成する装置に搭載するあらゆる構成、例えば、システムLSI(Large Scale Integration)等としてのプロセッサ、複数のプロセッサ等を用いるモジュール、複数のモジュール等を用いるユニット、ユニットにさらにその他の機能を付加したセット等(すなわち、装置の一部の構成)として実施することもできる。
 なお、本技術は以下のような構成も取ることができる。
 (1) 所定のカウンタである第1のカウンタを用いてアナログ信号をA/D変換する第1のA/D変換部と、
 カウントタイミングが前記第1のカウンタと同一であり、かつ、カウント値の極性が前記第1のカウンタと反対である第2のカウンタを用いて、アナログ信号をA/D変換する第2のA/D変換部と
 を備え、
 前記第1のA/D変換部および前記第2のA/D変換部が、互いの電源変動が影響を及ぼし合う程度に互いの近傍に配置される
 信号処理装置。
 (2) 前記第1のカウンタは、アップカウンタであり、
 前記第2のカウンタは、ダウンカウンタである
 (1)に記載の信号処理装置。
 (3) 前記第1のカウンタおよび前記第2のカウンタは、非同期式のカウンタである
 (2)に記載の信号処理装置。
 (4) 前記第1のカウンタおよび前記第2のカウンタは、同期式のカウンタである
 (2)または(3)に記載の信号処理装置。
 (5) 前記第1のカウンタおよび前記第2のカウンタは、JKフリップフロップにより構成される
 (2)乃至(4)のいずれかに記載の信号処理装置。
 (6) 前記第1のカウンタおよび前記第2のカウンタは、Dフリップフロップにより構成される
 (2)乃至(5)のいずれかに記載の信号処理装置。
 (7) 前記第1のカウンタは、アップダウンカウンタをアップカウンタとして駆動させたものであり、
 前記第2のカウンタは、前記アップダウンカウンタをダウンカウンタとして駆動させたものである
 (2)乃至(6)のいずれかに記載の信号処理装置。
 (8) 前記第1のカウンタおよび前記第2のカウンタは、バイナリカウンタである
 (2)乃至(7)のいずれかに記載の信号処理装置。
 (9) 前記第1のカウンタおよび前記第2のカウンタは、グレイコードカウンタである
 (2)乃至(8)のいずれかに記載の信号処理装置。
 (10) 前記第1のカウンタおよび前記第2のカウンタは、TDC(Time to Digital Converter)を用いたカウンタである
 (2)乃至(9)のいずれかに記載の信号処理装置。
 (11) 前記第1のA/D変換部および前記第2のA/D変換部は、シングルスロープA/D変換方式で前記アナログ信号をA/D変換する
 (1)乃至(10)のいずれかに記載の信号処理装置。
 (12) 前記第1のA/D変換部および前記第2のA/D変換部は、積分型A/D変換方式で前記アナログ信号をA/D変換する
 (1)乃至(11)のいずれかに記載の信号処理装置。
 (13) 前記第1のA/D変換部および前記第2のA/D変換部が、1つずつ交互に並ぶように1行に配置される
 (1)乃至(12)のいずれかに記載の信号処理装置。
 (14) 前記第1のA/D変換部および前記第2のA/D変換部が、複数個ずつ交互に並ぶように1行に配置される
 (1)乃至(13)のいずれかに記載の信号処理装置。
 (15) 前記第1のA/D変換部および前記第2のA/D変換が、行方向に1つずつ交互に並ぶように行列状に配置される
 (1)乃至(14)のいずれかに記載の信号処理装置。
 (16) 前記第1のA/D変換部および前記第2のA/D変換部が、行方向および列方向に1つずつ交互に並ぶように行列状に配置される
 (1)乃至(15)のいずれかに記載の信号処理装置。
 (17) 前記第1のA/D変換部および前記第2のA/D変換部は、画素領域内の、自身に割り当てられた単位画素列に属する単位画素から読み出された信号をA/D変換する
 (1)乃至(16)のいずれかに記載の信号処理装置。
 (18) 前記第1のA/D変換部および前記第2のA/D変換部は、画素領域内の、自身に割り当てられた部分領域内の単位画素から読み出された信号をA/D変換する
 (1)乃至(17)のいずれかに記載の信号処理装置。
 (19) 複数の単位画素が行列状に配置される画素アレイと、
 所定のカウンタである第1のカウンタを用いて、前記画素アレイに配置された前記単位画素から読み出されたアナログ信号をA/D変換する第1のA/D変換部と、
 カウントタイミングが前記第1のカウンタと同一であり、かつ、カウント値の極性が前記第1のカウンタと反対である第2のカウンタを用いて、前記画素アレイに配置された前記単位画素から読み出されたアナログ信号をA/D変換する第2のA/D変換部と
 を備え、
 前記第1のA/D変換部および前記第2のA/D変換部が、互いの電源変動が影響を及ぼし合う程度に互いの近傍に配置される
 撮像素子。
 (20) 被写体を撮像する撮像部と、
 前記撮像部による撮像により得られた画像データを画像処理する画像処理部と
 を備え、
 前記撮像部は、
  複数の単位画素が行列状に配置される画素アレイと、
  所定のカウンタである第1のカウンタを用いてアナログ信号をA/D変換する第1のA/D変換部と、
  カウントタイミングが前記第1のカウンタと同一であり、かつ、カウント値の極性が前記第1のカウンタと反対である第2のカウンタを用いて、アナログ信号をA/D変換する第2のA/D変換部と
 を備え、
  前記第1のA/D変換部および前記第2のA/D変換部が、互いの電源変動が影響を及ぼし合う程度に互いの近傍に配置される
 電子機器。
 100 イメージセンサ, 101 画素アレイ, 102 参照電圧発生部, 103 A/D変換部, 104 水平転送部, 111 制御部, 112 垂直走査部, 121 垂直信号線, 122 参照信号線, 123および124 信号線, 125 制御線, 131乃至134 制御線, 141 単位画素, 161 カラムA/D変換部, 171 比較部、 172 アップカウンタ, 173および174 キャパシタ, 175 ダウンカウンタ, 181 JKフリップフロップ, 201 セレクタ, 231 Dフリップフロップ, 241 スイッチ, 242 抵抗, 243 積分部, 244 キャパシタ, 245 比較部, 246 アップカウンタ, 247 ダウンカウンタ, 600 撮像装置, 612 CMOSイメージセンサ

Claims (20)

  1.  所定のカウンタである第1のカウンタを用いてアナログ信号をA/D変換する第1のA/D変換部と、
     カウントタイミングが前記第1のカウンタと同一であり、かつ、カウント値の極性が前記第1のカウンタと反対である第2のカウンタを用いて、アナログ信号をA/D変換する第2のA/D変換部と
     を備え、
     前記第1のA/D変換部および前記第2のA/D変換部が、互いの電源変動が影響を及ぼし合う程度に互いの近傍に配置される
     信号処理装置。
  2.  前記第1のカウンタは、アップカウンタであり、
     前記第2のカウンタは、ダウンカウンタである
     請求項1に記載の信号処理装置。
  3.  前記第1のカウンタおよび前記第2のカウンタは、非同期式のカウンタである
     請求項2に記載の信号処理装置。
  4.  前記第1のカウンタおよび前記第2のカウンタは、同期式のカウンタである
     請求項2に記載の信号処理装置。
  5.  前記第1のカウンタおよび前記第2のカウンタは、JKフリップフロップにより構成される
     請求項2に記載の信号処理装置。
  6.  前記第1のカウンタおよび前記第2のカウンタは、Dフリップフロップにより構成される
     請求項2に記載の信号処理装置。
  7.  前記第1のカウンタは、アップダウンカウンタをアップカウンタとして駆動させたものであり、
     前記第2のカウンタは、前記アップダウンカウンタをダウンカウンタとして駆動させたものである
     請求項2に記載の信号処理装置。
  8.  前記第1のカウンタおよび前記第2のカウンタは、バイナリカウンタである
     請求項2に記載の信号処理装置。
  9.  前記第1のカウンタおよび前記第2のカウンタは、グレイコードカウンタである
     請求項2に記載の信号処理装置。
  10.  前記第1のカウンタおよび前記第2のカウンタは、TDC(Time to Digital Converter)を用いたカウンタである
     請求項2に記載の信号処理装置。
  11.  前記第1のA/D変換部および前記第2のA/D変換部は、シングルスロープA/D変換方式で前記アナログ信号をA/D変換する
     請求項1に記載の信号処理装置。
  12.  前記第1のA/D変換部および前記第2のA/D変換部は、積分型A/D変換方式で前記アナログ信号をA/D変換する
     請求項1に記載の信号処理装置。
  13.  前記第1のA/D変換部および前記第2のA/D変換部が、1つずつ交互に並ぶように1行に配置される
     請求項1に記載の信号処理装置。
  14.  前記第1のA/D変換部および前記第2のA/D変換部が、複数個ずつ交互に並ぶように1行に配置される
     請求項1に記載の信号処理装置。
  15.  前記第1のA/D変換部および前記第2のA/D変換部が、行方向に1つずつ交互に並ぶように行列状に配置される
     請求項1に記載の信号処理装置。
  16.  前記第1のA/D変換部および前記第2のA/D変換部が、行方向および列方向に1つずつ交互に並ぶように行列状に配置される
     請求項1に記載の信号処理装置。
  17.  前記第1のA/D変換部および前記第2のA/D変換部は、画素領域内の、自身に割り当てられた単位画素列に属する単位画素から読み出された信号をA/D変換する
     請求項1に記載の信号処理装置。
  18.  前記第1のA/D変換部および前記第2のA/D変換部は、画素領域内の、自身に割り当てられた部分領域内の単位画素から読み出された信号をA/D変換する
     請求項1に記載の信号処理装置。
  19.  複数の単位画素が行列状に配置される画素アレイと、
     所定のカウンタである第1のカウンタを用いて、前記画素アレイに配置された前記単位画素から読み出されたアナログ信号をA/D変換する第1のA/D変換部と、
     カウントタイミングが前記第1のカウンタと同一であり、かつ、カウント値の極性が前記第1のカウンタと反対である第2のカウンタを用いて、前記画素アレイに配置された前記単位画素から読み出されたアナログ信号をA/D変換する第2のA/D変換部と
     を備え、
     前記第1のA/D変換部および前記第2のA/D変換部が、互いの電源変動が影響を及ぼし合う程度に互いの近傍に配置される
     撮像素子。
  20.  被写体を撮像する撮像部と、
     前記撮像部による撮像により得られた画像データを画像処理する画像処理部と
     を備え、
     前記撮像部は、
      複数の単位画素が行列状に配置される画素アレイと、
      所定のカウンタである第1のカウンタを用いてアナログ信号をA/D変換する第1のA/D変換部と、
      カウントタイミングが前記第1のカウンタと同一であり、かつ、カウント値の極性が前記第1のカウンタと反対である第2のカウンタを用いて、アナログ信号をA/D変換する第2のA/D変換部と
     を備え、
      前記第1のA/D変換部および前記第2のA/D変換部が、互いの電源変動が影響を及ぼし合う程度に互いの近傍に配置される
     電子機器。
PCT/JP2015/072722 2014-08-20 2015-08-11 信号処理装置、撮像素子、並びに、電子機器 WO2016027729A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016544183A JP6699553B2 (ja) 2014-08-20 2015-08-11 信号処理装置、撮像素子、並びに、電子機器
US15/503,119 US10154219B2 (en) 2014-08-20 2015-08-11 Signal processing device, image pickup element, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-167498 2014-08-20
JP2014167498 2014-08-20

Publications (1)

Publication Number Publication Date
WO2016027729A1 true WO2016027729A1 (ja) 2016-02-25

Family

ID=55350674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072722 WO2016027729A1 (ja) 2014-08-20 2015-08-11 信号処理装置、撮像素子、並びに、電子機器

Country Status (3)

Country Link
US (1) US10154219B2 (ja)
JP (1) JP6699553B2 (ja)
WO (1) WO2016027729A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016086293A (ja) * 2014-10-27 2016-05-19 三菱電機株式会社 カウント装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010232747A (ja) * 2009-03-26 2010-10-14 Olympus Corp 固体撮像装置
JP2011259016A (ja) * 2010-06-04 2011-12-22 Sony Corp 固体撮像素子及び撮像装置
WO2013122221A1 (ja) * 2012-02-17 2013-08-22 国立大学法人北海道大学 積分型ad変換装置およびcmosイメージセンサ
JP2013251824A (ja) * 2012-06-01 2013-12-12 Nikon Corp 撮像素子

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6243034B1 (en) * 1998-10-29 2001-06-05 National Instruments Corporation Integrating analog to digital converter with improved resolution
US7129883B2 (en) * 2004-02-23 2006-10-31 Sony Corporation Method and apparatus for AD conversion, semiconductor device for detecting distribution of physical quantity, and electronic apparatus
US7671317B2 (en) * 2007-07-25 2010-03-02 Panasonic Corporation Physical quantity detecting apparatus and method for driving the same
JP4379504B2 (ja) 2007-08-13 2009-12-09 ソニー株式会社 固体撮像素子、およびカメラシステム
JP2009206709A (ja) 2008-02-27 2009-09-10 Sony Corp 固体撮像装置、固体撮像装置の駆動方法および電子機器
JP2011049459A (ja) * 2009-08-28 2011-03-10 Kenwood Corp ケーブル接続構造
JP5637816B2 (ja) * 2010-10-29 2014-12-10 キヤノン株式会社 撮像装置、放射線撮影装置および放射線撮影システム
JP2012151613A (ja) * 2011-01-18 2012-08-09 Panasonic Corp 固体撮像装置及び撮像装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010232747A (ja) * 2009-03-26 2010-10-14 Olympus Corp 固体撮像装置
JP2011259016A (ja) * 2010-06-04 2011-12-22 Sony Corp 固体撮像素子及び撮像装置
WO2013122221A1 (ja) * 2012-02-17 2013-08-22 国立大学法人北海道大学 積分型ad変換装置およびcmosイメージセンサ
JP2013251824A (ja) * 2012-06-01 2013-12-12 Nikon Corp 撮像素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016086293A (ja) * 2014-10-27 2016-05-19 三菱電機株式会社 カウント装置

Also Published As

Publication number Publication date
US10154219B2 (en) 2018-12-11
JPWO2016027729A1 (ja) 2017-06-01
US20170237924A1 (en) 2017-08-17
JP6699553B2 (ja) 2020-05-27

Similar Documents

Publication Publication Date Title
JP6394056B2 (ja) A/d変換装置、グレイコード生成装置、撮像素子、並びに、電子機器
US10567685B2 (en) Signal processing device and method, imaging element, and electronic device
US10582139B2 (en) Signal processing device, imaging element, and electronic apparatus
US20180269243A1 (en) Imaging element and imaging apparatus
JP6691668B2 (ja) 信号処理装置、制御方法、撮像素子、並びに、電子機器
JP6863368B2 (ja) 信号処理装置および方法、撮像素子、並びに電子機器
US11252358B2 (en) Signal processing apparatus, control method, image pickup element, and electronic device
WO2015111460A1 (ja) 固体撮像装置および撮像装置
JP6699553B2 (ja) 信号処理装置、撮像素子、並びに、電子機器
JP2016058763A (ja) 信号処理装置、制御方法、撮像素子、並びに、電子機器
WO2016035587A1 (ja) 信号処理装置、制御方法、撮像素子、並びに、電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15834535

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016544183

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15834535

Country of ref document: EP

Kind code of ref document: A1