WO2016027709A1 - オーステナイト系ステンレス鋼板およびメタルガスケット - Google Patents

オーステナイト系ステンレス鋼板およびメタルガスケット Download PDF

Info

Publication number
WO2016027709A1
WO2016027709A1 PCT/JP2015/072605 JP2015072605W WO2016027709A1 WO 2016027709 A1 WO2016027709 A1 WO 2016027709A1 JP 2015072605 W JP2015072605 W JP 2015072605W WO 2016027709 A1 WO2016027709 A1 WO 2016027709A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
mass
stainless steel
austenitic stainless
cold
Prior art date
Application number
PCT/JP2015/072605
Other languages
English (en)
French (fr)
Inventor
弘泰 松林
中村 定幸
香月 淳一
広田 龍二
Original Assignee
日新製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新製鋼株式会社 filed Critical 日新製鋼株式会社
Priority to US15/503,434 priority Critical patent/US10060003B2/en
Priority to EP15834321.0A priority patent/EP3184662A4/en
Priority to CA2957391A priority patent/CA2957391C/en
Priority to KR1020177007431A priority patent/KR102377582B1/ko
Priority to MX2017001943A priority patent/MX2017001943A/es
Priority to CN201580044095.XA priority patent/CN106687612B/zh
Publication of WO2016027709A1 publication Critical patent/WO2016027709A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/08Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing
    • F16J15/0806Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing characterised by material or surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/08Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing
    • F16J15/0818Flat gaskets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/225Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by hot-rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Definitions

  • the present invention relates to a stainless steel plate for a metal gasket excellent in strength, fatigue characteristics and high temperature softening resistance, and a metal gasket using the same.
  • Engine cylinder head gaskets and exhaust manifold gaskets in automobiles, motorcycles, etc. are exposed to repeated pressure fluctuations under engine-specific high temperatures, high pressures and high vibrations.
  • a cylinder gasket of an automobile engine is subjected to a high pressure during compression, it needs to be in contact with both contact counterparts with a high contact pressure (surface pressure) in order to maintain the sealing performance.
  • a metal gasket used for an engine or an exhaust gas path is generally formed with a bead (continuous raised portion) having a certain height by bead molding by a press. This type of metal gasket ensures high sealing performance by using the top of the bead convex part (hereinafter referred to as “bead head”) by pressing it against the contact material.
  • bead head the top of the bead convex part
  • Patent Documents 1 and 2 disclose metastable austenitic stainless steels having these characteristics improved.
  • Patent Document 3 describes that a martensitic steel type is applied to a gasket.
  • metastable austenitic stainless steel is intended to increase strength by cold rolling.
  • anisotropy occurs in bending workability and fatigue characteristics in the rolling parallel direction (L direction) and the rolling perpendicular direction (C direction) of the plate material.
  • Such anisotropy when used as a metal gasket, becomes an impediment to maintaining a uniform contact surface pressure between the bead head and the contact partner material, and is a cause of performance degradation of the metal gasket.
  • martensitic stainless steel there is no need to impart a high cold rolling rate and work hardening, so that the problem of anisotropy associated with work hardening hardly occurs.
  • the present invention discloses a technique for reducing “anisotropy” of workability and fatigue resistance due to oxide inclusions in an austenitic stainless steel sheet.
  • a technique for imparting “high temperature softening resistance” capable of maintaining high durability in applications of metal gaskets used at high temperatures and preventing “hot rolling cracks” in hot rolling is disclosed.
  • the mass% value of the element in the steel composition is substituted for the location of the element symbol in the formulas (1) and (2), and the oxide system is substituted for the location of MnO and SiO 2 in the formula (3).
  • the converted mass% values of MnO and SiO 2 in the average composition of inclusions are substituted.
  • the Al content of the steel component element is the total Al content.
  • Mass ratio conversion of Al 2 O 3 , SiO 2 and MnO means the content ratio of Al, Si and Mn of oxide inclusions in the mass ratio of single oxides of Al 2 O 3 , SiO 2 and MnO, respectively. It means to convert to.
  • an austenitic stainless steel cold-rolled steel sheet derived from the above hot-rolled steel sheet can be exemplified.
  • the austenitic stainless steel cold-rolled steel sheet has a Vickers hardness of the plate surface (rolled surface) adjusted to 400 to 500 HV, for example.
  • the plate thickness can be set to 0.05 to 0.5 mm, for example, and may be controlled to 0.1 to 0.3 mm.
  • the present invention provides a metal gasket formed from the cold-rolled steel sheet described above, having a bead formed by press molding, and pressing the top of the bead against a contact partner material. After bead molding, an aging treatment is performed, for example, at 100 to 500 ° C. as necessary.
  • Bead head top means the top of the bead convex portion in contact with the contact partner material.
  • the oxide inclusions present in the material have a low melting point and are softened, the oxide inclusions are a steel substrate (matrix) during hot rolling and subsequent cold rolling. In this way, it is avoided that coarse particles remain in the cold-rolled steel sheet that has been stretched in the rolling direction and thinned following the deformation. As a result, the workability and fatigue resistance starting from oxide inclusions are significantly improved.
  • oxide-based inclusions have coarse particles that are partly divided by hot rolling and are distributed close to the rolling direction, which deteriorates the bending workability and fatigue resistance such that the bending ridge line is in the rolling direction. This is a factor causing anisotropy in workability and fatigue resistance.
  • the cold-rolled steel sheet according to the present invention such anisotropy is reduced, and a gasket with high dimensional accuracy is obtained after bead forming. Further, even when the gasket is used, since the fatigue resistance anisotropy is small, the contact surface pressure applied to the top of the bead is maintained evenly. As a result, a metal gasket excellent in leak resistance is realized. Furthermore, since the cold-rolled steel sheet of the present invention is excellent in high temperature softening resistance, it is extremely useful for metal gaskets used at high temperatures.
  • Al 2 O 3, and SiO 2, MnO ternary oxide composition shows the relationship between the wrought of oxide inclusions.
  • the oxide inclusions are actually considered to be complex oxides mainly composed of Al, Si, and Mn. According to the inventors' detailed examination, when the oxide inclusions Al, Si, Mn content is expressed as a composition converted to a single oxide of Al 2 O 3 , SiO 2 , MnO, the oxide It was found that it was possible to specify an effective inclusion composition range for imparting extensibility to the system inclusions.
  • the composition range generally coincided with the range having a relatively low melting point in the Al 2 O 3 , SiO 2 , and MnO ternary oxide equilibrium diagram.
  • FIG. 1 shows the relationship between the ternary oxide composition of Al 2 O 3 , SiO 2 and MnO and the extensibility of oxide inclusions.
  • the plot in the figure shows the results of evaluating the extension state of the oxide inclusions in a cross section (L cross section) parallel to the rolling direction and the plate thickness direction of a cold steel plate on a certain basis for a number of stainless steels. It is displayed. Specifically, the case where the individual oxide inclusion particles are crushed by cold rolling and clearly stretched in the rolling direction is indicated by ⁇ (extensibility; present). Coordinates of each plot, of oxide inclusions Al, the "average composition of oxide inclusions" when converted to the content of Si and Mn to the mass ratio of Al 2 O 3, SiO 2 and MnO, respectively To express.
  • Oxide inclusions have extensibility. MnO ⁇ ⁇ 3SiO 2 +110 (3) As shown in the examples below, when the composition of oxide inclusions is in this region, the anisotropy of bending workability and fatigue resistance is remarkably improved, and it is particularly suitable for metal gaskets that require high performance. A material steel plate is obtained.
  • the composition of oxide inclusions can be controlled mainly by the steel composition and steelmaking conditions. In particular, it is effective to ensure a sufficient Mn content in the steel composition and to limit the Al content. In addition, it is extremely effective to use deoxidation in steelmaking as Si deoxidation instead of Al deoxidation.
  • FIG. 2 illustrates an optical micrograph of oxide inclusions observed in the L cross section at the stage where the hot-rolled annealed steel sheet is cold-rolled at a rolling rate of 40% to a thickness of 0.8 mm.
  • 2A is an example of Comparative Example No. 22 described later
  • FIG. 2B is an example of Invention Example No. 1 described later.
  • oxide inclusions found in an austenitic stainless steel sheet are hard and exist in the steel sheet without being crushed so much by cold rolling as in (a). As the plate thickness decreases, the ratio of the diameter of inclusion particles to the plate thickness increases, which tends to hinder workability and fatigue resistance.
  • the austenitic stainless steel sheet according to the present invention is adjusted to have a soft composition of oxide inclusions, and is crushed by rolling as shown in (b), following the metal flow of the steel substrate in the rolling direction. Expand. As the plate thickness decreases, the degree of extension of oxide inclusions also increases, and the adverse effects on bending workability and fatigue resistance properties become very small.
  • the maximum diameter in the plate thickness direction of the oxide inclusions is preferably 5.0 ⁇ m or less in observation of the L cross section of the steel sheet to be formed, and is preferably 3.0 ⁇ m or less. More preferred. Further, it is more effective that the maximum diameter in the plate thickness direction is extended to 1.0% or less of the plate thickness.
  • Step composition The chemical composition (steel composition) of the steel sheet that is the subject of the present invention will be described.
  • “%” in the steel composition means “% by mass” unless otherwise specified.
  • C is an austenite-forming element and is an element effective for strengthening the austenite phase and the work-induced martensite phase. If the C content is too small, the above-described reinforcing action cannot be sufficiently exhibited. As a result of various studies, the C content needs to be 0.030% or more, and more preferably 0.060% or more. You may manage to C content exceeding 0.100%. However, excessive C content tends to cause grain boundary precipitation of Cr-based carbides during the cooling process, which causes a decrease in corrosion resistance. C content is adjusted in the range of 0.300% or less.
  • Si is added as a deoxidizer during steelmaking. According to the study by the inventors, deoxidation with Si is extremely effective in controlling the composition of oxide inclusions in a soft region. It is necessary to add Si so that the Si content is 0.30% or more. Si has a large effect of hardening the austenite phase and the work-induced martensite phase, and this hardening effect is effective for increasing the strength of the gasket. However, excessive hardening is a factor that decreases workability and toughness. The Si content is limited to a range of 3.20% or less, and may be controlled to 3.00% or less.
  • Mn is an austenite forming element and an important element for softening oxide inclusions. Moreover, when Mn content was raised, it turned out that the improvement effect of the high temperature softening-proof characteristic by ensuring N content enough can be enjoyed. This is because when Mn content is high, among C and N accumulated at the edge (blade part) of the edge dislocation by heating after cold working, N maintains the action of fixing the dislocation to a high temperature. It is inferred that this effect is caused by the fact that it becomes easier. That is, the combined action of Mn and N is considered to make it difficult for the “strain aging” structure to collapse even when heated at high temperatures. This is because, for example, Comparative Example No.
  • the Mn content can also be controlled within a range exceeding 1.00%. However, when the Mn content increases, the burden on steelmaking increases, and depending on the application, corrosion resistance is insufficient. As a result of various studies, the Mn content is allowed up to 17.00%, but is preferably 8.00% or less, and may be controlled within a range of 5.00% or less.
  • Ni is an austenite-generating element, and in the present invention, the Ni content is 1.00% or more. If the Ni content is less than that, it is difficult to adjust the components to obtain an austenite single phase structure in the state after annealing. In the present invention, since Mn is contained as described above, the Ni content can be saved thereby.
  • the Ni content may be set within a range of 8.00% or less.
  • Cr is an essential element for imparting the necessary corrosion resistance as stainless steel. For metal gasket applications, it is desirable to ensure a Cr content of 14.00% or more. However, since Cr is a ferrite-forming element, if the Cr content increases, the amount of austenite-forming elements necessary for obtaining an austenite single-phase structure after annealing also increases, leading to an increase in steel material cost. As a result of various studies, the Cr content is preferably set to a range of 19.00% or less.
  • Cu is an austenite-forming element and is considered to be effective for improving the high temperature softening resistance similarly to Mn.
  • steel with a Cu content of 0.50% or more is targeted.
  • the Cu—Mn phase is likely to precipitate during heating before hot rolling, which causes cracks in hot rolling.
  • N is an austenite-forming element and, like C, is effective for strengthening the austenite phase and the work-induced martensite phase.
  • addition of N is important in order to sufficiently obtain the effect of improving the high temperature softening resistance, which is considered to be a combined effect with Mn as described above.
  • the N content is set to 0.045% or more. If it is less than that, it will be difficult to improve the high temperature softening resistance in a stable manner. It is more effective to set the N content to 0.085% or more. Excessive N content causes nitrides to form during the cooling process after annealing, which causes a decrease in corrosion resistance and fatigue resistance. N content is limited to 0.250% or less.
  • Al is an element having a strong deoxidizing action.
  • the method of refining to contain Al so that the total amount of Al in steel is 0.0001% or more, and Si is mainly deoxidized, rather than deoxidizing Al alone.
  • Increasing the Al content may adversely affect toughness.
  • the total Al content in the steel is limited to 0.0300% or less.
  • V, Nb, Ti, and B are effective elements for improving manufacturability, strength, fatigue resistance, and the like. One or more of these may be added as necessary.
  • V is 0.50% or less
  • Nb is 0.50% or less
  • Ti is 0.30% or less
  • B is 0.020% or less. More effective content ranges are: V: 0.01 to 0.50%, Nb: 0.01 to 0.50%, Ti: 0.01 to 0.30%, B: 0.0005 to 0.5. 020%.
  • Md 30 value determined by equation adjusting the content of each element so that 50.0 or less.
  • Md 30 551-462 (C + N) -9.2Si-8.1Mn-29 (Ni + Cu) -13.7Cr (1)
  • the value of mass% of the element is substituted for the element symbol in the formula (1).
  • Md 30 is an austenite stability index defined as the temperature (° C.) at which 50% of the structure transforms into martensite when a tensile strain of 30% is applied to single-phase austenite.
  • the content of each component element is balanced so that the Md 30 value is 50.0 or less so that the work-induced martensite phase is not excessively induced.
  • ⁇ 1230 -101.5-78.6C + 3.1Si + 0.4Mn-2.4Ni + 7.7Cr-1.5Cu-51.4N (2)
  • ⁇ 1230 is an index representing the amount (volume%) of ⁇ ferrite phase at the center of the slab cross section after heating the slab obtained by continuous casting at 1230 ° C. for 120 min.
  • the Cu—Mn phase is likely to precipitate during heating of the slab before hot rolling, and cracks occur during hot rolling. It becomes a factor to cause.
  • the effect of the Cu—Mn phase on hot rolling cracks correlates with the abundance of the ⁇ ferrite phase, and in the steel type in which the total content of Mn and Cu is 1.4% by mass or more as in the steel of the present invention, ⁇ By adjusting the 1230 value to 8.0 or less, hot rolling cracks can be remarkably prevented.
  • this ⁇ 1230 is a general austenitic stainless steel hot rolling condition (slab heating temperature: 1100 to 1350 ° C.) for an austenitic steel type in which the total content of Mn and Cu is 1.4% by mass or more. ) Is an index that leads to a stable technique for preventing hot rolling cracks when applied, and does not mean that the slab heating temperature before hot rolling should be 1230 ° C.
  • ⁇ Production method ⁇ A typical manufacturing method is illustrated below.
  • the steel adjusted to the above-mentioned chemical composition is melted by normal stainless steel making equipment to obtain a slab. No special treatment is required for high cleanliness.
  • the deoxidation method is preferably Si deoxidation rather than Al single deoxidation. It is more effective to use Al in combination.
  • hot rolling is performed in the same manner as in the production of a normal austenitic stainless steel sheet to obtain a hot rolled steel sheet.
  • the slab heating temperature before hot rolling may be in the range of 1100 to 1350 ° C.
  • the oxide inclusions present in the hot-rolled steel sheet are in the above-described composition range and are softened.
  • cold rolling is performed to reduce the sheet thickness.
  • intermediate annealing is performed during cold rolling.
  • the oxide inclusions that have been softened are crushed by the reduction in cold rolling, and extend in the rolling direction following the metal flow of the steel substrate. What is necessary is just to give temper rolling after finishing annealing, and to make final product board thickness.
  • the plate thickness is, for example, 0.05 to 0.5 mm. In this way, a cold rolled steel sheet derived from the hot rolled steel sheet is obtained.
  • pickling is normally performed after annealing of each said process.
  • the obtained cold-rolled steel sheet has solved the problem of anisotropy in conventional materials due to the presence of coarse oxide inclusions in the rolling direction, including metal gaskets. Suitable for various press working applications.
  • a bead having a certain height is formed by bead press molding.
  • the obtained pressed product can be subjected to an aging treatment at 100 to 500 ° C. as necessary.
  • the above-mentioned “strain aging” effect is obtained, and the material is strengthened. Even when the aging treatment is not performed, the effect of strain aging can be obtained if the material is heated to a high temperature during use as a metal gasket. Since the metal gasket according to the present invention has improved high-temperature softening resistance as described above, it is less likely to cause strength reduction in high-temperature applications, and exhibits excellent durability in combination with the effect of reducing anisotropy of fatigue resistance. .
  • composition analysis of oxide inclusions SEM observation is performed on the cross section (L cross section) parallel to the rolling direction and the plate thickness direction of the sample cut out from each hot rolled steel sheet, and 30 particles are randomly selected from the oxide inclusion particles existing in the L cross section. Was selected, and composition analysis was performed by EDX (energy dispersive X-ray analysis). The content of Al, Si and Mn of each inclusion is converted into the mass ratio of the single oxides Al 2 O 3 , SiO 2 and MnO, respectively, and the value of the mass ratio is averaged for 30 oxide inclusions. The average composition of oxide inclusions in the steel sheet was determined.
  • each hot-rolled steel sheet was subjected to a heat treatment of 1100 ° C. ⁇ soaking 60 seconds, and then the sheet thickness was reduced by cold rolling.
  • intermediate annealing with a soaking temperature of 60 sec in the range of 900 to 1100 ° C. is performed one or more times, and the hardness of the plate surface (rolled surface) becomes 430 to 460 HV at the final plate thickness of 0.2 mm.
  • the temper rolling ratio was set and temper rolling was performed to obtain a cold-rolled steel sheet having a thickness of 0.2 mm.
  • the cold-rolled steel sheet having the temper rolled finish thus obtained was subjected to the following test as a test material.
  • the ratio of the minimum bending radius R and thickness t at which defects such as cracks did not occur outside the curved portion was defined as “bending limit R / t”.
  • the bending limit R / t is 1.5 or less in both the L direction and the C direction, and the ratio of [the bending limit R / t value in the C direction] / [the bending limit R / t value in the L direction] is 1.3 or less.
  • 3B and 3C are drawn with exaggerated dimensions in the thickness direction.
  • a fatigue test was performed in which a swing stress was applied to the simulated bead portion, and a fatigue limit (fatigue limit; N / mm 2 ) at a repetition rate of 10 7 times was obtained.
  • L direction when the both C direction fatigue limit is 300N / mm 2 or more and the difference between the fatigue limit of the L direction and C direction as is 30 N / mm 2 or less, excellent in metal gasket having a bead press formed part It can be evaluated that it exhibits fatigue resistance.
  • FIG. 4 illustrates measurement results for some of the test materials.
  • 4A shows Comparative Example No. 23, and
  • FIG. 4B shows Example No. 1 of the present invention (No. is described in Table 2).
  • a heating time of 120 h an increase in hardness due to strain aging is observed at heating temperatures of 300 ° C. and 400 ° C.
  • the heating temperature becomes high, the material softens. Comparing the softening behavior in the high temperature region of 600 ° C.
  • the softening is remarkably suppressed and the hardness of about 350 HV is maintained even when heated at 800 ° C. ⁇ 120 h. It can be seen that is significantly improved.
  • the heating temperature at which the hardness decreases to 2/3 with respect to the hardness H 0 (HV) of the temper rolled material that is, the heating temperature at which 2 / 3H 0 (HV) is 800 ° C. or higher.
  • HV hardness H 0
  • the metal gasket formed with a bead has excellent high temperature softening resistance. Therefore, the high-temperature oxidation resistance was evaluated at a temperature of 2 / 3H 0 here.
  • the composition of the oxide inclusions is in the above-described soft range, the anisotropy of bending workability and fatigue resistance is small, and good characteristics suitable for metal gaskets.
  • the oxide inclusions were crushed by rolling and expanded in the rolling direction, and the maximum diameter in the thickness direction was 2 ⁇ m or less.
  • the inventive examples also had good high temperature softening resistance.
  • Comparative Examples No. 21 to 24 all had large inclusion work composition and anisotropy in bending workability and fatigue characteristics because the composition was out of the soft region. Since No. 22 had a low Mn content, the high temperature softening resistance was poor even though the N content was sufficiently secured. No. 23 had a low N content, and No. 24 had a low Mn content and a low N content, so these steel sheets also had poor high temperature softening resistance. No. 25 had a low C content, so the temper rolling ratio required for increasing the strength was high and the anisotropy was poor. No. 26 had a ⁇ 1230 value that was too high, and cracking occurred during hot rolling.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Gasket Seals (AREA)

Abstract

【課題】オーステナイト系ステンレス鋼板において酸化物系介在物に起因する加工性や耐疲労特性の異方性を低減する。【解決手段】質量%で、C:0.030~0.300%、Si:0.30~3.20%、Mn:0.90~17.00%、Ni:1.00~8.00%、Cr:14.00~19.00%、Cu:0.50~3.50%、N:0.045~0.250%、Al:0.0001~0.0300%、V:0~0.50%、Nb:0~0.50%、Ti:0~0.30%、B:0~0.010%、残部Feおよび不可避的不純物からなり、酸化物系介在物の換算平均組成がAl:30質量%以下、SiO:60質量%以下、MnO:15質量%以上、かつMnO≧-3SiO+110を満たすオーステナイト系ステンレス鋼熱延鋼板。

Description

オーステナイト系ステンレス鋼板およびメタルガスケット
 本発明は、強度、疲労特性および耐高温軟化特性に優れたメタルガスケット用ステンレス鋼板およびそれを用いたメタルガスケットに関する。
 自動車、オートバイ等におけるエンジンのシリンダヘッドガスケットやエキゾーストマニホールドガスケットは、エンジン特有の高温、高圧、高振動下での繰り返しの圧力変動に曝される。なかでも自動車エンジンのシリンダガスケットでは圧縮時に高圧が加わるので、シール性を維持するためには双方の接触相手材と高い接触圧力(面圧)で接している必要がある。エンジンや排ガス経路に使用されるメタルガスケットには、十分な接触圧力を確保するために、プレスによるビード成形によって一定高さのビード(連続する隆起部)が形成されるのが一般的である。このタイプのメタルガスケットはビード凸部の頂上部(以下「ビード頭頂部」という)を接触相手材に押し当てて使用することにより高いシール性を確保するものであるから、使用時において高強度および高疲労特性を備えている必要がある。
 従来、自動車エンジンやその排ガス経路に適用するガスケットには加工硬化型の準安定オーステナイト系ステンレス鋼(SUS301系など)が多用されている。この種の鋼は冷間圧延で加工誘起マルテンサイトを生成させることによって高強度化を図るものである。ただし、強度レベルを引き上げるためには冷間圧延率を高める必要がある。冷間圧延率の増大は、靭性、耐疲労特性および加工性を低下させる要因となる。特許文献1、2には、これらの特性を改善した準安定オーステナイト系ステンレス鋼が開示されている。一方、冷間圧延率の増大に頼らずに高強度化を図る素材としてマルテンサイト系ステンレス鋼がある。特許文献3には、マルテンサイト系鋼種をガスケットに適用することが記載されている。
特開2003-82441号公報 特開2011-252208号公報 特開2000-109957号公報
 準安定オーステナイト系ステンレス鋼は上述のように冷間圧延によって高強度化を図るものである。強度レベルを高めるために冷間圧延率を増大すると、板材の圧延平行方向(L方向)と圧延直角方向(C方向)において、曲げ加工性や疲労特性に異方性を生じるようになる。このような異方性は、メタルガスケットとして使用される際、ビード頭頂部と接触相手材の接触面圧を均一に維持するための阻害要因となり、メタルガスケットの性能低下の一因となる。一方、マルテンサイト系ステンレス鋼の場合は高い冷間圧延率を付与して加工硬化させる必要もないので、加工硬化に伴う異方性の問題は本質的に生じにくい。
 しかしながら発明者らの調査によれば、過度な冷間圧延を避けて製造されたオーステナイト系ステンレス鋼板や、マルテンサイト系ステンレス鋼板を用いてビード成形を行ったメタルガスケットにおいても、厳しい試験条件で性能を評価すると、材料の異方性に起因すると考えられる性能低下が問題となり得ることがわかった。その主たる要因として、材料(鋼板)中に圧延方向に連なって存在する粗大な酸化物系介在物によって特定方向の加工性や耐疲労特性が低下することが考えられた。
 本発明は、オーステナイト系ステンレス鋼板において酸化物系介在物に起因する加工性や耐疲労特性の「異方性」を低減する技術を開示するものである。また同時に、高温で使用されるメタルガスケットの用途において高い耐久性を維持しうる「耐高温軟化特性」を付与し、かつ熱間圧延での「熱延割れ」を防止する手法を開示する。
 上記の「異方性」の低減は、鋼板中に存在する酸化物系介在物を軟質化することによって解決できることがわかった。また、加工誘起マルテンサイト相が過度に生成されにくい化学組成とすることも異方性の低減や加工性の維持に有効である。「耐高温軟化特性」の向上には、ひずみ時効を担っている侵入型固溶元素(C、N)の転位固着作用が開放されにくい組成とすることが重要であり、そのためにはMn含有量を増量したうえでN含有量を十分に確保する手法が有効であることがわかった。さらに、「熱延割れ」の防止にはδフェライト相の生成量を適正化することが有効である。
 すなわち本発明では、質量%で、C:0.030~0.300%、Si:0.30~3.20%、Mn:0.90~17.00%、Ni:1.00~8.00%、Cr:14.00~19.00%、Cu:0.50~3.50%、N:0.045~0.250%、Al:0.0001~0.0300%、V:0~0.50%、Nb:0~0.50%、Ti:0~0.30%、B:0~0.010%、残部Feおよび不可避的不純物からなり、下記(1)式により定まるMd30値が50.0以下、下記(2)式により定まるδ1230値が8.0以下である鋼組成を有し、金属組織中に観察される酸化物系介在物の平均組成がAl、SiOおよびMnOの質量割合換算でAl:30質量%以下、SiO:60質量%以下、MnO:15質量%以上、かつ下記(3)式を満たすオーステナイト系ステンレス鋼熱延鋼板が提供される。
 Md30=551-462(C+N)-9.2Si-8.1Mn-29(Ni+Cu)-13.7Cr …(1)
 δ1230=-101.5-78.6C+3.1Si+0.4Mn-2.4Ni+7.7Cr-1.5Cu-51.4N …(2)
 MnO≧-3SiO+110 …(3)
 ここで、(1)式および(2)式の元素記号の箇所には鋼組成における当該元素の質量%値が代入され、(3)式のMnOおよびSiOの箇所にはそれぞれ前記酸化物系介在物の平均組成におけるMnOおよびSiOの換算質量%値が代入される。
 上記鋼成分元素のうちV、Nb、Ti、Bは任意添加元素である。鋼成分元素のAlの含有量はトータルAl含有量である。「Al、SiOおよびMnOの質量割合換算」とは、酸化物系介在物のAl、SiおよびMnの含有率をそれぞれAl、SiOおよびMnOの単独酸化物の質量割合に換算することを意味する。
 メタルガスケットへの加工素材に適した鋼板として、上記の熱延鋼板に由来するオーステナイト系ステンレス鋼冷延鋼板を挙げることができる。そのオーステナイト系ステンレス鋼冷延鋼板は、板面(圧延面)のビッカース硬さが例えば400~500HVに調整されている。その板厚は例えば0.05~0.5mmとすることができ、0.1~0.3mmに管理してもよい。
 また、本発明では、上記の冷延鋼板を成形したメタルガスケットであって、プレス成形によるビードを有し、ビード頭頂部を接触相手材に押し当てて使用するメタルガスケットが提供される。ビード成形後には必要に応じて例えば100~500℃で時効処理が施される。「ビード頭頂部」は接触相手材と接触するビード凸部の頂上部を意味する。
 本発明によれば、材料中に存在する酸化物系介在物が低融点化・軟質化されているので、熱間圧延時およびその後の冷間圧延時に酸化物系介在物は鋼素地(マトリックス)の変形に追随して圧延方向に展伸され、薄肉化した冷延鋼板中に粗大粒子のまま残留することが回避される。そのため酸化物系介在物を起点とする加工性や耐疲労特性の低下が顕著に改善される。従来、酸化物系介在物は、熱間圧延によってある程度分断された粗大な粒子が圧延方向に近接して分布するため、曲げ稜線が圧延方向となるような曲げ加工性や耐疲労特性を悪化させ、これが加工性や耐疲労特性に異方性を生じさせる要因となっていた。本発明に従う冷延鋼板ではこのような異方性が軽減され、ビード成形を施した後に寸法精度の高いガスケットが得られる。また、ガスケット使用時においても耐疲労特性の異方性が少ないのでビード頭頂部にかかる接触面圧も均等に維持される。その結果、耐リーク性に優れたメタルガスケットが実現される。さらに、本発明の冷延鋼板は耐高温軟化特性に優れるので、高温で使用されるメタルガスケットの用途に極めて有用である。
Al、SiO、MnO三元系酸化物組成と、酸化物系介在物の展伸性の関係を示す図。 L断面に観察される酸化物系介在物の光学顕微鏡写真。 疲労試験片のビード部付近の形状を模式的に示す図。 調質圧延材後に120hの加熱試験を施した材料について、加熱温度と硬さの関係を例示したグラフ。
〔酸化物系介在物〕
 鋼中に存在する介在物は、高延伸性タイプと難変形性タイプに大別される。前者は主として硫化物系、後者は主として酸化物系である。このうち、難変形性タイプの酸化物系介在物は、冷間圧延時にも展伸されにくく、粗大な粒子として鋼板中に残存する。粗大な酸化物系介在物粒子は加工性や耐疲労特性を劣化させる要因となる。通常、製鋼段階では介在物量の低減(高清浄度化)や小径化を意図した精錬や鋳造が行われる。しかし、過度な高清浄度化は製鋼工程の負荷を増大させ製品コストの増大を招く。そこで本発明では、一般的な清浄度レベルのオーステナイト系ステンレス鋼の溶製において実現可能な技術として、酸化物系介在物をできるだけ低融点化・軟質化させる手法を採用する。
 酸化物系介在物は実際にはAl、Si、Mnを主成分とする複合酸化物であると考えられる。発明者らの詳細な検討によれば、酸化物系介在物のAl、Si、Mnの含有量をAl、SiO、MnOの単独酸化物に換算した組成で表したとき、酸化物系介在物に展伸性を付与するために有効な介在物組成範囲を特定することが可能となることがわかった。その組成範囲は、Al、SiO、MnO三元系酸化物平衡状態図において比較的低融点の組成となる範囲と概ね一致していた。
 図1に、Al、SiO、MnO三元系酸化物組成と、酸化物系介在物の展伸性の関係を示す。図中のプロットは、数多くのステンレス鋼について、冷間鋼板の圧延方向と板厚方向に平行な断面(L断面)における当該酸化物系介在物の展伸状態を一定の基準で評価した結果を表示したものである。具体的には、冷間圧延によって個々の酸化物系介在物粒子が潰されて明らかに圧延方向に引き伸ばされている場合を●印(展伸性;あり)で示した。各プロットの座標は、酸化物系介在物のAl、SiおよびMnの含有率をそれぞれAl、SiOおよびMnOの質量割合に換算したときの「酸化物系介在物の平均組成」を表す。この換算平均組成がAl:30質量%以下、SiO:60質量%以下、MnO:15質量%以上、かつ下記(3)式を満たす領域(図1中に太枠で表示)において酸化物系介在物は展伸性を有する。
 MnO≧-3SiO+110 …(3)
 後述実施例に示すように、酸化物系介在物の組成がこの領域にあるとき、曲げ加工性や耐疲労特性の異方性が顕著に改善され、特に高性能が要求されるメタルガスケットに適した素材鋼板が得られる。
 酸化物系介在物の組成は、主として鋼組成と製鋼条件によってコントロールできる。特に、鋼組成においてMn含有量を十分に確保すること、Al含有量を制限することなどが有効である。そのうえで、製鋼での脱酸をAl脱酸ではなくSi脱酸とすることが極めて効果的である。
 図2に、熱延焼鈍鋼板に圧延率40%で冷間圧延を施し、板厚0.8mmとした段階のL断面に観察される酸化物系介在物の光学顕微鏡写真を例示する。図2(a)は後述比較例No.22、(b)は後述発明例No.1の例である。通常、オーステナイト系ステンレス鋼板に見られる酸化物系介在物は硬質であり、(a)のように冷間圧延によってもあまり潰されずに鋼板中に存在する。板厚が薄くなるほど、板厚に占める介在物粒子の径の割合が増し、加工性や耐疲労特性を阻害する要因となりやすい。一方、本発明に従うオーステナイト系ステンレス鋼板は酸化物系介在物の組成が軟質な範囲に調整されており、(b)のように圧延によって潰され、鋼素地のメタルフローに追随して圧延方向に展伸する。板厚の減少に伴って酸化物系介在物の展伸度も増大し、曲げ加工性や耐疲労特性に対する悪影響は非常に小さくなる。ビードプレス成形を施すメタルガスケット用途では、成形に供する鋼板のL断面の観察において酸化物系介在物の板厚方向最大径が5.0μm以下であることが望ましく、3.0μm以下であることがより好ましい。また、その板厚方向最大径は板厚の1.0%以下にまで展伸されていることがより効果的である。
〔鋼組成〕
 本発明の対象となる鋼板の化学組成(鋼組成)について説明する。以下、鋼組成における「%」は特に断らない限り「質量%」を意味する。
 Cは、オーステナイト生成元素であり、オーステナイト相および加工誘起マルテンサイト相の強化に有効な元素である。C含有量が少なすぎると上記の強化作用が十分に発揮されない。種々検討の結果、C含有量は0.030%以上とする必要があり、0.060%以上とすることがより好ましい。0.100%を超えるC含有量に管理してもよい。ただし、過剰のC含有は冷却過程でCr系炭化物の粒界析出を招きやすく、耐食性低下の要因となる。C含有量は0.300%以下の範囲で調整する。
 Siは、製鋼時に脱酸剤として添加される。発明者らの検討によると、酸化物系介在物の組成を軟質な領域にコントロールするうえで、Siによる脱酸が極めて効果的である。Si含有量が0.30%以上となるようにSiを添加する必要がある。また、Siはオーステナイト相および加工誘起マルテンサイト相を硬質化する作用が大きく、この硬質化作用はガスケットの高強度化に有効である。ただし、過度の硬質化は加工性や靱性の低下要因となる。Si含有量は3.20%以下の範囲に制限され、3.00%以下に管理してもよい。
 Mnは、オーステナイト生成元素であるとともに、酸化物系介在物の軟質化を図るうえで重要な元素である。また、Mn含有量を高めた場合には、N含有量を十分に確保することによる耐高温軟化特性の向上効果が享受できるようになることがわかった。これは、Mn含有量が高い場合に、冷間加工後の加熱によって刃状転位の端部(刃の部分)に集積したC、Nのうち、Nが高温まで転位を固着する作用を持続しやすくなることに起因して生じる効果であると推察される。すなわち、MnとNの複合的な作用によって、「ひずみ時効」の組織状態が高温加熱によっても崩れにくくなるものと考えられる。このことは、例えば後述実施例における比較例No.22(Mn含有量が低く、N含有量が高いもの)では耐高温軟化特性が低いが、各本発明例(Mn含有量、N含有量とも十分に高いもの)において耐高温軟化特性が改善されていることから肯定される。
 発明者らの詳細な検討の結果、加工性や耐疲労特性の異方性を十分に軽減して高性能なガスケットを実現するためには、0.90%以上のMn含有量を確保することが極めて効果的である。それよりMn含有量が低いと、酸化物系介在物の組成を前述の所定範囲にコントロールすることが難しくなり、異方性の小さいガスケットを安定して得ることできない。また、耐高温軟化特性を向上させるうえでも不利となる。Mn含有量は1.00%を超える範囲に管理することもできる。ただし、Mn含有量が多くなると製鋼での負担が増大し、また用途によっては耐食性不足を招く。種々検討の結果、Mn含有量は17.00%まで許容されるが、8.00%以下とすることが好ましく、5.00%以下の範囲に管理してもよい。
 Niは、オーステナイト生成元素であり、本発明ではNi含有量を1.00%以上とする。それよりNi含有量が少ないと、焼鈍後の状態でオーステナイト単相組織を得るための成分調整が難しくなる。本発明では上述のようにMnを含有させるため、それによりNiの含有量を節約することができる。Ni含有量は8.00%以下の範囲で設定すればよい。
 Crは、ステンレス鋼として必要な耐食性を付与するうえで必須の元素である。メタルガスケットの用途では14.00%以上のCr含有量を確保することが望ましい。ただし、Crはフェライト生成元素であるため、Cr含有が増大すると、焼鈍後にオーステナイト単相組織とするために必要なオーステナイト生成元素の量も増大し、鋼材コストの上昇を招く要因となる。種々検討の結果、Cr含有量は19.00%以下の範囲とすることが好ましい。
 Cuは、オーステナイト生成元素であり、Mnと同様に耐高温軟化特性の向上にも有効であると考えられる。本発明ではCu含有量が0.50%以上である鋼を対象とする。ただし、MnとCuを同時に増大させると熱間圧延前の加熱においてCu-Mn相が析出しやすくなり、熱間圧延での割れを招く要因となる。熱間割れを防止するためには後述のように(2)式のδ1230値を一定以下に制限することが有効であるが、それに加えてCu含有量を3.50%以下に制限する必要がある。
 Nは、オーステナイト生成元素であり、Cと同様にオーステナイト相および加工誘起マルテンサイト相の強化に有効である。また、上述のようにMnとの複合的な効果であると考えれる耐高温軟化特性の向上効果を十分に得るためにもNの添加が重要である。種々検討の結果、N含有量は0.045%以上とする。それより少ないと特に耐高温軟化特性を安定して向上させることが難しくなる。0.085%以上のN含有量とすることがより効果的である。過剰のN含有は焼鈍後の冷却過程で窒化物を形成させ、耐食性や耐疲労特性の低下要因となる。N含有量は0.250%以下に制限される。
 Alは、強力な脱酸作用を有する元素である。しかし、発明者らの検討によれば、Al単独脱酸よりも、Si脱酸をメインとし、かつ鋼中のトータルAl量が0.0001%以上となるようにAlを含有させる精錬を行う方が、酸化物系介在物の組成を上述の範囲にコントロールしやすいことがわかった。Al含有量が増大すると靱性に悪影響を及ぼす場合ある。鋼中のトータルAl含有量は0.0300%以下に制限される。
 V、Nb、Ti、Bは、製造性、強度、耐疲労特性などを改善するうえで有効な元素である。必要に応じてこれらの1種以上を添加することができる。Vは0.50%以下、Nbは0.50%以下、Tiは0.30%以下、Bは0.020%以下の含有量範囲とする。より効果的な含有量範囲は、V:0.01~0.50%、Nb:0.01~0.50%、Ti:0.01~0.30%、B:0.0005~0.020%である。
 下記(1)式により定まるMd30値が50.0以下となるように各元素含有量を調整する。
 Md30=551-462(C+N)-9.2Si-8.1Mn-29(Ni+Cu)-13.7Cr …(1)
 ここで、(1)式の元素記号の箇所には当該元素の質量%の値が代入される。Md30は、単相オーステナイトに対して30%の引張り歪を与えた時に、組織の50%がマルテンサイトに変態する温度(℃)として定義されるオーステナイト安定度の指標である。本発明ではMd30値が50.0以下となるように各成分元素の含有量をバランスさせ、加工誘起マルテンサイト相を過度に誘起させないようにする。
 下記(2)式により定まるδ1230値が8.0以下となるように各元素含有量を調整する。
 δ1230=-101.5-78.6C+3.1Si+0.4Mn-2.4Ni+7.7Cr-1.5Cu-51.4N …(2)
 ここで、(2)式の元素記号の箇所には当該元素の質量%の値が代入される。δ1230は、連続鋳造によって得られた鋳片を1230℃×120min加熱した後の鋳片断面中央部におけるδフェライト相の量(体積%)を表す指標である。発明者らの検討によれば、オーステナイト系ステンレス鋼においてMn含有量とCu含有量を同時に増大させると熱間圧延前の鋳片加熱時にCu-Mn相が析出しやすくなり、熱間圧延時に割れを生じる要因となる。Cu-Mn相の熱間圧延割れに及ぼす影響はδフェライト相の存在量と相関があり、本発明対象鋼のようにMnとCuの合計含有量が1.4質量%以上となる鋼種ではδ1230値を8.0以下に調整することによって熱間圧延割れを顕著に防止できる。
 なお、このδ1230は、MnとCuの合計含有量が1.4質量%以上となるオーステナイト系鋼種について、オーステナイト系ステンレス鋼の一般的な熱間圧延条件(鋳片加熱温度:1100~1350℃)を適用したときの熱間圧延割れの安定的な防止手法を導く指標であり、熱間圧延前の鋳片加熱温度を1230℃とすべきことを意味するものではない。
〔製造方法〕
 代表的な製造方法を以下に例示する。上述の化学組成に調整された鋼を通常のステンレス鋼の製鋼設備によって溶製し、鋳片を得る。高清浄度化のための特殊な処理は必要としない。ただし、脱酸方法はAl単独脱酸よりもSi脱酸とすることが望ましい。Al添加も併用することがより効果的である。鋳片に対しては通常のオーステナイト系ステンレス鋼板の製造と同様に熱間圧延を行い、熱延鋼板を得る。熱間圧延前の鋳片加熱温度は1100~1350℃の範囲とすればよい。熱延鋼板中に存在する酸化物系介在物は上述の組成範囲にあり、軟質化されている。
 熱延鋼板に対して焼鈍を施した後、冷間圧延を施して板厚を減じる。必要に応じて冷間圧延の途中で中間焼鈍を施す。軟質化されている酸化物系介在物は冷間圧延での圧下によって潰され、鋼素地のメタルフローに追随して圧延方向に展伸する。仕上焼鈍を施した後に調質圧延を施して、最終的な製品板厚とすればよい。その板厚は例えば0.05~0.5mmである。このようにして上記熱延鋼板に由来する冷延鋼板が得られる。なお、上記各工程の焼鈍後には、通常、酸洗が行われれる。
 得られた冷延鋼板は、粗大な酸化物系介在物が圧延方向に連なって存在することに起因していた従来材での異方性の問題が解消しており、メタルガスケットをはじめとする各種プレス加工用途に適している。メタルガスケットを製造する過程ではビードプレス成形により一定高さのビードが形成される。得られたプレス加工品に対して、必要に応じて100~500℃で時効処理を施すことができる。この時効処理により前述の「ひずみ時効」の効果が得られ、材料が高強度化される。時効処理を施さない場合でも、メタルガスケットとして使用中に材料が高温に昇温されるとひずみ時効の効果が得られる。本発明に従うメタルガスケットは、上述のように耐高温軟化特性が改善されているので高温用途での強度低下が生じにくく、耐疲労特性の異方性低減効果と相まって、優れた耐久性を発揮する。
 表1に示す化学組成の鋼を溶製し、鋳片を得た。脱酸は、本発明対象鋼はいずれもSi脱酸とした。鋳片を1100~1350℃×120minで加熱したのち炉から抽出し、熱間圧延を施して板厚3.0mmの熱延鋼板を得た。
Figure JPOXMLDOC01-appb-T000001
〔酸化物系介在物の組成分析〕
 各熱延鋼板から切り出した試料の圧延方向と板厚方向に平行な断面(L断面)についてSEM観察を行い、L断面内に存在する酸化物系介在物の粒子から無作為に30個の粒子を選択してEDX(エネルギー分散型X線分析)により組成分析を行った。個々の介在物のAl、SiおよびMnの含有率をそれぞれ単独酸化物Al、SiOおよびMnOの質量割合に換算し、その質量割合の値を30個の酸化物系介在物について平均することによって当該鋼板における酸化物系介在物の平均組成を求めた。
 次いで、各熱延鋼板に1100℃×均熱60secの熱処理を施したのち、冷間圧延により板厚を減じた。冷間圧延の途中で900~1100℃の範囲で均熱60secの中間焼鈍を1回または複数回入れて、最終板厚0.2mmにおいて板面(圧延面)の硬さが430~460HVとなるように調質圧延率を設定して調質圧延を行い、板厚0.2mmの冷延鋼板を得た。このようにして得られた調質圧延仕上の冷延鋼板を供試材として以下の試験に供した。
〔硬さ〕
 供試材の板面(圧延面)についてビッカース硬さを測定した。
〔曲げ加工性〕
 調質圧延仕上の冷延鋼板である供試材について、JIS Z2248:2006のVブロック法にて曲げ試験を行った。試験片の長手方向が圧延平行方向となるものをL方向、圧延直角方向となるものをC方向と表示する。L方向の曲げ試験片では曲げ稜線が圧延直角方向となり、C方向の曲げ試験片では曲げ稜線が圧延平行方向となる。湾曲部の外側に裂けきずなどの欠陥が生じない最小の曲げ半径Rと板厚tの比を「曲げ限界R/t」とした。試験数n=3にて曲げ試験を行い、3回のうち最も悪い結果をその試験での成績として採用した。L方向、C方向とも曲げ限界R/tが1.5以下であり、かつ[C方向の曲げ限界R/t値]/[L方向の曲げ限界R/t値]の比が1.3以下であるものは、ビードプレス成形に供するメタルガスケット用の素材鋼板として良好な曲げ加工性を有すると評価できる。
〔耐疲労特性〕
 供試材から長手方向がL方向およびC方向の短冊状試料(幅8mm)をそれぞれ採取し、ビードプレス成形を行って図3(a)、(b)に示す形状の「初期ビード」を有する試験片に加工した。初期ビードの溝幅は約3mm、初期ビード高さは約0.4mmである。この初期ビード部に、メタルガスケットの初期締め相当の圧縮を加えて、図3(c)に示すように残存ビード高さが約0.1mmとなる模擬ビードを有する疲労試験片を作製した。なお、図3(b)、(c)に模式的に示す断面形状は板厚方向の寸法を誇張して描いてある。この疲労試験片を用いて模擬ビード部に両振り応力を付与する疲労試験を行い、繰返し数10回における疲労限(疲れ限度;N/mm)を求めた。L方向、C方向とも疲労限が300N/mm以上であり、かつL方向とC方向の疲労限の差が30N/mm以下であるものは、ビードプレス成形部を有するメタルガスケットにおいて優れた耐疲労特性を呈すると評価できる。
〔耐高温軟化特性〕
 調質圧延ままの各供試材について、300~800℃の範囲における100℃刻みの各温度で120h保持する加熱処理を施し、加熱処理後の板面(圧延面)の硬さを測定した。図4に、一部の供試材についての測定結果を例示する。図4(a)は比較例No.23、(b)は本発明例No.1である(No.は表2に記載のもの)。加熱時間120hの条件ではいずれも300℃、400℃の加熱温度でひずみ時効に起因する硬さの上昇が見られる。加熱温度が高温になると材料が軟化する。600℃以上の高温領域での軟化挙動を比べると、本発明例No.1では軟化が顕著に抑制されて800℃×120h加熱においても350HV程度の硬さを維持しており、耐高温軟化特性が顕著に改善されていることがわかる。この加熱試験において、調質圧延材の硬さH(HV)に対して2/3まで硬さが低下する加熱温度、すなわち2/3H(HV)となる加熱温度が800℃以上であれば、ビード成形されたメタルガスケットとして優れた耐高温軟化特性を有すると判断できる。そこで、ここでは2/3Hとなる温度によって耐高温酸化特性を評価した。
 これらの結果を表2に示す。なお、表2中に記載の「仕上焼鈍」は調質圧延前に行った最終焼鈍を意味する。
Figure JPOXMLDOC01-appb-T000002
 表2からわかるように、本発明例のものは酸化物系介在物の組成が上述の軟質な範囲となり、曲げ加工性および耐疲労特性の異方性が小さく、メタルガスケットに適した良好な特性を有する。これらの供試材(冷延焼鈍鋼板)のL断面を調べると、酸化物系介在物は圧延によって潰されて圧延方向に展伸しており、板厚方向の最大径は2μm以下であった。また、本発明例のものは耐高温軟化特性も良好であった。
 これに対し、比較例No.21~24はいずれも介在物の組成が軟質な領域を外れているため、曲げ加工性および疲労特性の異方性が大きかった。No.22はMn含有量が低いので、N含有量を十分に確保したにもかかわらず耐高温軟化特性が悪かった。No.23はN含有量が低く、またNo.24はMn含有量およびN含有量が低いので、これらの鋼板も耐高温軟化特性が悪かった。No.25はC含有量が低いので高強度化のために必要な調質圧延率が高くなり、異方性に劣った。No.26はδ1230値が高すぎたので熱間圧延で割れが生じた。
 次に、介在物の組成に及ぼす脱酸方法の影響を調べた実験例を紹介する。上述のように、表1に示した本発明対象鋼は製鋼工程での脱酸を「Si脱酸」としたものである。また、比較鋼である鋼Rも「Si脱酸」としたものである。そこで、表1の鋼Dおよび鋼R(いずれもSi脱酸)と同様の鋼組成となるように「Al脱酸」にてそれぞれ鋼D-1およびR-1を溶製し、上記と同様の手法で介在物の組成を調べた。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に例示されるように、同様の鋼組成の鋼を溶製する場合でも、脱酸方法によって介在物組成が大きく変化することがわかる。本発明で規定する軟質な組成の介在物を得るためには、Al脱酸よりもSi脱酸の方が有利である。

Claims (7)

  1.  質量%で、C:0.030~0.300%、Si:0.30~3.20%、Mn:0.90~17.00%、Ni:1.00~8.00%、Cr:14.00~19.00%、Cu:0.50~3.50%、N:0.045~0.250%、Al:0.0001~0.0300%、V:0~0.50%、Nb:0~0.50%、Ti:0~0.30%、B:0~0.010%、残部Feおよび不可避的不純物からなり、下記(1)式により定まるMd30値が50.0以下、下記(2)式により定まるδ1230値が8.0以下である鋼組成を有し、金属組織中に観察される酸化物系介在物の平均組成がAl、SiOおよびMnOの質量割合換算でAl:30質量%以下、SiO:60質量%以下、MnO:15質量%以上、かつ下記(3)式を満たすオーステナイト系ステンレス鋼熱延鋼板。
     Md30=551-462(C+N)-9.2Si-8.1Mn-29(Ni+Cu)-13.7Cr …(1)
     δ1230=-101.5-78.6C+3.1Si+0.4Mn-2.4Ni+7.7Cr-1.5Cu-51.4N …(2)
     MnO≧-3SiO+110 …(3)
     ここで、(1)式および(2)式の元素記号の箇所には鋼組成における当該元素の質量%値が代入され、(3)式のMnOおよびSiOの箇所にはそれぞれ前記酸化物系介在物の平均組成におけるMnOおよびSiOの換算質量%値が代入される。
  2.  請求項1に記載の熱延鋼板に由来するオーステナイト系ステンレス鋼冷延鋼板。
  3.  板面(圧延面)のビッカース硬さが400~500HVである請求項2に記載のオーステナイト系ステンレス鋼冷延鋼板。
  4.  板厚が0.05~0.5mmである請求項2に記載のオーステナイト系ステンレス鋼冷延鋼板。
  5.  板面(圧延面)のビッカース硬さが400~500HVであり、板厚が0.05~0.5mmである請求項2に記載のオーステナイト系ステンレス鋼冷延鋼板。
  6.  請求項2~5のいずれか1項に記載の冷延鋼板を成形したメタルガスケットであって、プレス成形によるビードを有し、ビード頭頂部を接触相手材に押し当てて使用するメタルガスケット。
  7.  請求項2~5のいずれか1項に記載の冷延鋼板を成形したのち100~500℃で時効処理したメタルガスケットであって、プレス成形によるビードを有し、ビード頭頂部を接触相手材に押し当てて使用するメタルガスケット。
PCT/JP2015/072605 2014-08-19 2015-08-10 オーステナイト系ステンレス鋼板およびメタルガスケット WO2016027709A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/503,434 US10060003B2 (en) 2014-08-19 2015-08-10 Austenitic stainless steel sheet and metal gasket
EP15834321.0A EP3184662A4 (en) 2014-08-19 2015-08-10 Austenitic stainless steel sheet and metal gasket
CA2957391A CA2957391C (en) 2014-08-19 2015-08-10 Austenitic stainless steel sheet and metal gasket
KR1020177007431A KR102377582B1 (ko) 2014-08-19 2015-08-10 오스테나이트계 스테인리스 강판 및 메탈 가스켓
MX2017001943A MX2017001943A (es) 2014-08-19 2015-08-10 Lamina de acero inoxidable austenitico y junta metalica.
CN201580044095.XA CN106687612B (zh) 2014-08-19 2015-08-10 奥氏体系不锈钢板和金属密封垫

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014166523A JP6095619B2 (ja) 2014-08-19 2014-08-19 オーステナイト系ステンレス鋼板およびメタルガスケット
JP2014-166523 2014-08-19

Publications (1)

Publication Number Publication Date
WO2016027709A1 true WO2016027709A1 (ja) 2016-02-25

Family

ID=55350654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072605 WO2016027709A1 (ja) 2014-08-19 2015-08-10 オーステナイト系ステンレス鋼板およびメタルガスケット

Country Status (9)

Country Link
US (1) US10060003B2 (ja)
EP (1) EP3184662A4 (ja)
JP (1) JP6095619B2 (ja)
KR (1) KR102377582B1 (ja)
CN (1) CN106687612B (ja)
CA (1) CA2957391C (ja)
MX (1) MX2017001943A (ja)
TW (1) TWI657152B (ja)
WO (1) WO2016027709A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6077693B1 (ja) * 2016-03-09 2017-02-08 日新製鋼株式会社 メタルガスケット用ステンレス鋼
JP6791711B2 (ja) * 2016-10-04 2020-11-25 日本冶金工業株式会社 Fe−Cr−Ni合金およびその製造方法
CN109112430A (zh) * 2017-06-26 2019-01-01 宝钢不锈钢有限公司 一种低成本高强度节镍奥氏体不锈钢及制造方法
CN107604262A (zh) * 2017-08-09 2018-01-19 宁波市镇海甬鼎紧固件制造有限公司 一种高强度304不锈钢及其制备方法
CN110373615B (zh) * 2018-04-13 2022-04-01 宝钢德盛不锈钢有限公司 一种经济型细晶奥氏体不锈钢及其制造方法
KR102385472B1 (ko) * 2020-04-22 2022-04-13 주식회사 포스코 고강도, 고성형의 저원가 오스테나이트계 스테인리스강 및 그 제조방법
EP4166680A4 (en) * 2020-06-15 2023-07-26 NIPPON STEEL Stainless Steel Corporation PRECIPITATION-HARDENING TYPE MARTENSITIC STAINLESS STEEL SHEET HAVING EXCELLENT FATIGUE RESISTANCE
KR20220143758A (ko) * 2020-07-17 2022-10-25 히타치 긴조쿠 가부시키가이샤 스테인리스 강박, 스위치용 스프링, 플렉시블 디스플레이용 기판 및 스테인리스 강박의 제조 방법
CN111961989B (zh) * 2020-08-05 2022-06-03 广西柳钢中金不锈钢有限公司 高氮低镍无铜奥氏体不锈钢的制造方法
CN112063936B (zh) * 2020-08-05 2022-06-03 广西柳钢中金不锈钢有限公司 高氮低镍无铜奥氏体不锈钢

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202643A (ja) * 1990-11-30 1992-07-23 Nkk Corp 高強度、高靭性ステンレス鋼およびその製造方法
JPH07150304A (ja) * 1993-11-29 1995-06-13 Nkk Corp 耐破断性に優れたidブレード基板用ステンレス鋼薄板およびその製造方法
JPH08134595A (ja) * 1994-11-11 1996-05-28 Nippon Steel Corp 耐応力腐食割れ特性に優れた高強度ステンレス鋼板
JP2002371339A (ja) * 2001-04-12 2002-12-26 Nisshin Steel Co Ltd 加工性,冷間鍛造性に優れた軟質ステンレス鋼板
JP2003082441A (ja) * 2001-09-10 2003-03-19 Nisshin Steel Co Ltd メタルガスケット用高強度オーステナイト系ステンレス鋼
JP2011252208A (ja) * 2010-06-03 2011-12-15 Nisshin Steel Co Ltd メタルガスケット用耐熱オーステナイト系ステンレス鋼

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02282424A (ja) * 1989-04-20 1990-11-20 Uchiyama Mfg Corp メタルガスケットの製造方法
DE4406052A1 (de) * 1993-11-30 1995-06-01 Nippon Kokan Kk Rostfreies Stahlblech und Verfahren zu dessen Herstellung
JP2000109957A (ja) 1998-10-05 2000-04-18 Sumitomo Metal Ind Ltd ガスケット用ステンレス鋼およびその製造方法
US20040156737A1 (en) * 2003-02-06 2004-08-12 Rakowski James M. Austenitic stainless steels including molybdenum
JP2002173742A (ja) * 2000-12-04 2002-06-21 Nisshin Steel Co Ltd 形状平坦度に優れた高強度オーステナイト系ステンレス鋼帯およびその製造方法
JP4321066B2 (ja) * 2001-04-27 2009-08-26 住友金属工業株式会社 金属ガスケットとその素材およびそれらの製造方法
JP4379804B2 (ja) * 2004-08-13 2009-12-09 大同特殊鋼株式会社 高窒素オーステナイト系ステンレス鋼
JP4859356B2 (ja) * 2004-08-24 2012-01-25 日本リークレス工業株式会社 メタルガスケットの製造方法
KR101466044B1 (ko) * 2007-03-09 2014-11-27 페더럴-모걸 코오포레이숀 금속 개스킷
JP5177747B2 (ja) * 2008-08-06 2013-04-10 独立行政法人産業技術総合研究所 オーステナイト系ステンレス鋼、及びその水素添加方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202643A (ja) * 1990-11-30 1992-07-23 Nkk Corp 高強度、高靭性ステンレス鋼およびその製造方法
JPH07150304A (ja) * 1993-11-29 1995-06-13 Nkk Corp 耐破断性に優れたidブレード基板用ステンレス鋼薄板およびその製造方法
JPH08134595A (ja) * 1994-11-11 1996-05-28 Nippon Steel Corp 耐応力腐食割れ特性に優れた高強度ステンレス鋼板
JP2002371339A (ja) * 2001-04-12 2002-12-26 Nisshin Steel Co Ltd 加工性,冷間鍛造性に優れた軟質ステンレス鋼板
JP2003082441A (ja) * 2001-09-10 2003-03-19 Nisshin Steel Co Ltd メタルガスケット用高強度オーステナイト系ステンレス鋼
JP2011252208A (ja) * 2010-06-03 2011-12-15 Nisshin Steel Co Ltd メタルガスケット用耐熱オーステナイト系ステンレス鋼

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3184662A4 *

Also Published As

Publication number Publication date
MX2017001943A (es) 2017-05-04
CA2957391C (en) 2022-08-30
US10060003B2 (en) 2018-08-28
CA2957391A1 (en) 2016-02-25
EP3184662A1 (en) 2017-06-28
CN106687612A (zh) 2017-05-17
EP3184662A4 (en) 2018-03-21
JP2016041843A (ja) 2016-03-31
CN106687612B (zh) 2019-08-13
US20170233845A1 (en) 2017-08-17
KR20170054410A (ko) 2017-05-17
TW201615863A (zh) 2016-05-01
KR102377582B1 (ko) 2022-03-24
TWI657152B (zh) 2019-04-21
JP6095619B2 (ja) 2017-03-15

Similar Documents

Publication Publication Date Title
JP6095619B2 (ja) オーステナイト系ステンレス鋼板およびメタルガスケット
JP6124930B2 (ja) マルテンサイト系ステンレス鋼板およびメタルガスケット
US6488786B2 (en) High-strength, high-toughness martensitic stainless steel sheet
KR102244174B1 (ko) 마텐자이트계 스테인리스 강판
JP6128291B2 (ja) マルテンサイト系ステンレス鋼
JPH0820843A (ja) 深絞り成形性と耐二次加工脆性に優れるクロム鋼板およびその製造方法
JP2010189719A (ja) 時効硬化型ばね用ステンレス鋼板
JP4606113B2 (ja) 比例限界応力の高いオーステナイト系ステンレス鋼材および製造法
JP2002030346A (ja) 成形性に優れたCr含有耐熱耐食鋼板の製造方法
JP3420373B2 (ja) 成形加工性に優れるクロム鋼板
JP2002332543A (ja) 疲労特性及び耐高温ヘタリ性に優れたメタルガスケット用高強度ステンレス鋼及びその製造方法
JP6077693B1 (ja) メタルガスケット用ステンレス鋼
JP4314962B2 (ja) 疲労特性に優れた複合組織鋼板およびその製造方法
JP4315049B2 (ja) 強度,疲労強度,耐食性及び耐磨耗性に優れた薄鋼帯板及びその製造方法
JP6095822B1 (ja) マルテンサイト系ステンレス鋼板およびメタルガスケット製造法
JP4419572B2 (ja) 疲労特性に優れた複合組織鋼板の製造方法
JP2005320612A (ja) 無段変速機ベルトの金属帯リング用薄鋼帯板及びその製造方法
JPH05279812A (ja) 耐応力腐食割れ特性に優れた高強度ばね用ステンレス鋼およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15834321

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2957391

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/001943

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 15503434

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015834321

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015834321

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177007431

Country of ref document: KR

Kind code of ref document: A