JP4859356B2 - メタルガスケットの製造方法 - Google Patents

メタルガスケットの製造方法 Download PDF

Info

Publication number
JP4859356B2
JP4859356B2 JP2004243898A JP2004243898A JP4859356B2 JP 4859356 B2 JP4859356 B2 JP 4859356B2 JP 2004243898 A JP2004243898 A JP 2004243898A JP 2004243898 A JP2004243898 A JP 2004243898A JP 4859356 B2 JP4859356 B2 JP 4859356B2
Authority
JP
Japan
Prior art keywords
plate
metal plate
metal
metal gasket
annular bead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004243898A
Other languages
English (en)
Other versions
JP2006063998A (ja
Inventor
浩満 佐々木
憲史 三角
崇 矢島
将史 宮下
隆 桂井
忠夫 西山
康則 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Nippon Leakless Industry Co Ltd
Original Assignee
Honda Motor Co Ltd
Nippon Leakless Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Nippon Leakless Industry Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004243898A priority Critical patent/JP4859356B2/ja
Priority to PCT/JP2005/015252 priority patent/WO2006022247A1/ja
Priority to EP05774602A priority patent/EP1795785B1/en
Priority to CNB2005800276792A priority patent/CN100562678C/zh
Priority to US11/660,790 priority patent/US20080047636A1/en
Publication of JP2006063998A publication Critical patent/JP2006063998A/ja
Application granted granted Critical
Publication of JP4859356B2 publication Critical patent/JP4859356B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/08Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing
    • F16J15/0818Flat gaskets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/08Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing
    • F16J15/0818Flat gaskets
    • F16J15/0825Flat gaskets laminated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/08Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing
    • F16J15/0818Flat gaskets
    • F16J2015/0856Flat gaskets with a non-metallic coating or strip

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gasket Seals (AREA)
  • Heat Treatment Of Articles (AREA)

Description

この発明は、特に内燃機関のシリンダーヘッド用メタルガスケットの製造に用いて好適な、メタルガスケットの製造方法に関するものである。
メタルガスケットとしては例えば、金属板としてのステンレス板の表面上にラバーコーティング層を敷設されてなる少なくとも一枚の基板であって、内燃機関のシリンダーブロックの各シリンダーボアに対応して形成された流体通路孔としてのシリンダー孔と、前記各シリンダー孔の周囲に形成された山形断面形状の環状ビードとを有する基板を単板で、または複数枚積層されて具えるシリンダーヘッド用メタルガスケットが知られている。
かかるシリンダーヘッド用メタルガスケットは、内燃機関のシリンダーブロックとシリンダーヘッドとのデッキ面間に介挿されて、シリンダーヘッドをシリンダーブロックに固定する締付けボルトで締め付けられ、環状ビードが弾性的に潰されてその反発力でシリンダーヘッドおよびシリンダーブロックのデッキ面に強固に当接することで、各シリンダーボアに対応するシリンダー孔の周囲にシール線を形成して、シリンダーボア内の高温高圧の燃焼ガスが外部に漏れ出すのを阻止するものであり、内燃機関の高出力化のための燃焼ガス最高圧の高圧化に伴い、基板の環状ビードに対応する部分の板厚をガスケット周辺部より厚くした副板を基板に重ねて段差構造とすることで、環状ビードの線圧を高めてシール性能を向上させることが一般化している。またメタルガスケットを構成するステンレス板の表面上に敷設されたラバーコーティング層は、シリンダーヘッドおよびシリンダーブロックのデッキ面に残る微細なツールマークや傷内に入り込んでそれらを埋めることで、環状ビードのシール性能を高める役割を果たす。
ところで近年は、内燃機関のさらなる軽量化およびコンパクト化に伴い、上記段差構造の必要段差量を減らしあるいは段差を無くして環状ビードの線圧を低くしても高圧の燃焼ガス最高圧をシール可能なメタルガスケットが求められているが、この要求を満たすために、環状ビードが潰されてもへたりにくいように高硬度の金属板を使用するとともに環状ビードの立ち上がり角度を大きくすると、環状ビードのプレス加工時に環状ビードの裾の部分にクラックや微細な荒れが生じ、その微細な荒れは、ガスケットが内燃機関に組み込まれて燃焼ガスの繰り返し圧力によってシリンダーブロックとシリンダーヘッドとのデッキ面間隙間が開いたり閉じたりするいわゆる口開きの繰り返しで交番荷重が加わるとクラックに発展する場合があるという問題があった。
これがため本願出願人等は先に特許文献1にて、基板の金属板として当初は硬度が低いが時効硬化温度としては比較的低い200℃〜350℃程度の処理温度で時効硬化して硬度が高まる低温時効硬化特性を持つステンレス板を用いるとともに、環状ビードのプレス加工をラバーコーティング層の加熱処理(焼成)の前に行うようにして、環状ビードのプレス加工時にはその低い硬度で環状ビードの部分のクラックや荒れの発生を防止し、その後のラバーコーティング層の加熱処理で併せて金属板を時効硬化させることで、潰されてもへたりにくい環状ビードを持つメタルガスケットをもたらすことを提案した。
国際公開WO02/088410号パンフレット
しかして上記従来のメタルガスケットの製造方法につき本願発明者がさらに研究を重ねたところ、改良することが望ましい以下の点を見出した。すなわち、内燃機関用のメタルガスケットでは、上述した燃焼ガスの繰り返し圧力による口開きの繰り返しで環状ビードが潰されたり少し復元したりするのを繰り返すこと等から、環状ビードにガスケットの延在方向へも僅かな繰り返し往復摺動(いわゆるフレッチング)を生ずるので、ラバーコーティング層が基板の金属板に強固に接着されていないとラバーコーティング層の一部のラバー材がその金属板から剥離する場合があり、剥離したラバー材は冷却水に混入し、冷却水路の狭い部分を詰らせて冷却性能を低下させる可能性がある。
それゆえ近年のメタルガスケットでは、コイル材(フープ材)から繰り出すステンレス板の表面上に連続処理で、先ず下地を塗布してそれを約300℃で60秒程度加熱して焼成し、その下地の上に接着剤を塗布してそれを約150℃で90秒程度加熱して乾燥させた後約300℃で90秒程度加熱して焼成し、その接着剤の上にラバー材を塗布してそれを約150℃で90秒程度加熱して乾燥させた後約270℃で90秒程度加熱して焼成することでラバーコーティング層をステンレス板に強固に接着し、そのラバーコーティング層上に摩耗防止のためPTFE(ポリテトラフロロエチレン)を塗布してそれを約100℃で10秒程度加熱して乾燥させ、最後にそのステンレス板を所定寸法に切断して、基板のプレス成形のためのブランク材とする場合がある。
このことから、ラバーコーティング層の加熱処理の前に環状ビードをプレス加工するとしても、そのプレス加工が上記下地焼成や接着剤焼成の後であると、それらの焼成で既にステンレス板が時効硬化していて環状ビードの裾の部分のクラックや荒れの発生を有効に防止し得ない可能性があるということが判明した。また、金属板の時効硬化処理温度は、高すぎると疲労破壊の原因となる粗大な析出物を生じ易くなるので低いほど好ましいのに対し、上記のようにラバーコーティング層の加熱処理は通常250℃以上で行われるが、下地焼成は200℃以上250℃未満で1分程度の加熱でも済む。そして一旦時効硬化が生じた後は、多少高い温度で再加熱しても実際上影響はないことが判明している。
この発明は、本願発明者の上記知見に基づいて先の従来技術の課題を有利に解決することを目的とするものであり、この発明のメタルガスケットの製造方法は、金属板の表面上に下地および接着剤を介してラバーコーティング層を敷設されてなる基板であって、少なくとも流体通路孔とその流体通路孔を囲繞する環状ビードとを有する基板を具えるメタルガスケットを製造するに際し、前記基板の金属板として低温時効硬化特性を持つ金属板を用い、前記下地を平坦な前記基板の金属板へ塗布してその金属板の低温時効硬化温度より低い温度で乾燥させた後、その金属板に前記環状ビードのプレス加工を行い、その後に、前記基板の金属板の低温時効硬化温度にて前記下地を焼成しつつその金属板を時効硬化させることを特徴とするものである。
かかるこの発明のメタルガスケットの製造方法によれば、金属板の表面上に下地および接着剤を介してラバーコーティング層を敷設されてなる基板のその金属板として低温時効硬化特性を持つ金属板を用い、前記下地を前記基板の金属板へ塗布してその金属板の低温時効硬化温度より低い温度で乾燥させることで下地をある程度定着させた後、その金属板に前記環状ビードのプレス加工を行い、その後に、前記基板の金属板の低温時効硬化温度にて前記下地を焼成しつつその金属板を時効硬化させるから、未だ硬度が低い状態で金属板に環状ビードをプレス加工するので環状ビードの立ち上がり角度を大きくしても環状ビードの裾の部分のクラックや荒れの発生を有効に防止することができ、その後の下地焼成で併せて金属板を時効硬化させて硬度を高めるので、潰されてもへたりにくい環状ビードを持つメタルガスケットをもたらすことができる。
しかもこの発明のメタルガスケットの製造方法によれば、低温時効硬化特性を持つ金属板を用い、ラバーコーティング層の加熱処理よりも温度を低め得る下地焼成で時効硬化処理を行うから、疲労破壊の原因となる粗大な析出物の発生を防止し得て、耐久性に優れたメタルガスケットをもたらすことができる。
さらに、下地を塗布する際に金属板に既に環状ビードの凸部があると、乾燥前の下地がその凸部の斜面に沿って流れ易いため凸部の裾付近は下地が溜まり易いので下地の塗布状態にばらつきが生じ易い処、この発明のメタルガスケットの製造方法によれば、下地の塗布を平坦な金属板上へ行い、その下地を乾燥させてある程度定着させた後、その金属板に環状ビードのプレス加工を行うことから、金属板への環状ビードのプレス加工後に下地を塗布する場合と比較して下地のたれや溜まりがないため下地の塗布状態にばらつきが生じないので、ラバーコーティング層の接着強度を常に安定した強度にすることができる。
なお、この発明のメタルガスケットの製造方法においては、前記基板の金属板の低温時効硬化温度にて前記下地を焼成しつつその金属板を時効硬化させた後、前記環状ビードのプリセットを行うこととすると好ましい。このようにすれば、ブランク板にプレス成形した環状ビードをプレス型で一旦押してそのビードの反発力で戻らせるプリセットを行う前に下地の焼成を済ませているので、このプリセットの際にプレス型で擦れても下地が剥がれるのを防止することができる。
また、この発明のメタルガスケットの製造方法においては、前記メタルガスケットがさらに、ラバーコーティング層を持たない金属板からなる副板であって、少なくとも流体通路孔とその流体通路孔を囲繞する環状ビードとを有する副板を具えている場合に、前記副板の金属板として低温時効硬化特性を持つ金属板を用い、前記副板の金属板に前記環状ビードのプレス加工を行った後に、前記副板の金属板の低温時効硬化温度にてその金属板を時効硬化させることとすると好ましい。このようにすれば、基板の環状ビードと副板の環状ビードとが積層されるので、基板と副板との個々の環状ビードの立ち上がり角度をさほど大きくしなくてもガスケットとしての環状ビード部分の弾性的な潰れ量を大きくし得て、流体通路孔内の高い圧力でガスケット装着面間の隙間が大きくなった場合でも環状ビードの線圧を維持して高いシール性能を発揮することができる。
さらに、この発明のメタルガスケットの製造方法においては、前記低温時効硬化特性を持つ金属板を時効硬化させる処理条件は、温度が200℃以上で250℃未満、時間が1分以上で5分以下であるとすると好ましい。このようにすれば、ラバーコーティング層の加熱処理よりも温度が低い下地焼成で時効硬化処理を行うから、疲労破壊の原因となる粗大な析出物の発生を防止し得て、耐久性に優れたメタルガスケットをもたらすことができる。
さらに、この発明のメタルガスケットの製造方法においては、前記低温時効硬化特性を持つ金属板は、その金属板の製造の最終段階での調質圧延により多量のマルテンサイト変態を誘起した(例えばマルテンサイトと残部オーステナイトとの複合組織の場合に面積比で40%以上、またはマルテンサイト単相組織)、例えばSUS301L相当の準安定オーステナイト系ステンレス鋼板であると好ましい。かかるステンレス鋼板は比較的安価であり、しかも調質圧延で誘起したマルテンサイト相からは比較的低温度での時効硬化処理によりクロム窒化物が析出するから、そのマルテンサイト相が多量であることで、時効硬化前の当該ステンレス板はHV480程度の硬度を持つのに対し時効硬化後の当該ステンレス板はHV500以上の極めて高い硬度を持つことができる。
そして、この発明のメタルガスケットの製造方法においては、前記メタルガスケットは、内燃機関のシリンダーヘッド用メタルガスケットであると好ましい。内燃機関のシリンダーヘッド用メタルガスケットは、特に高温かつ高圧の流体ガスに晒されるため環状ビードがへたり易いのに対し、この発明の方法で製造すれば、そのような過酷な条件でも高いシール性能を長期間維持し得るガスケットが期待できるからである。
以下に、この発明の実施の形態を実施例によって、図面に基づき詳細に説明する。ここに、図1は、この発明のメタルガスケットの製造方法を内燃機関のシリンダーヘッド用メタルガスケットの製造工程に適用した一実施例を示す工程図、図2は、その実施例のメタルガスケットの製造方法で製造するシリンダーヘッド用メタルガスケットのシリンダー孔からガスケット外周縁にかけての断面形状を示す断面図、そして図3は、その実施例のメタルガスケットの製造方法で用いる低温時効硬化特性を持つ金属板としてのステンレス鋼板の時効処理温度と硬度との関係を示す関係線図であり、図中符号1はメタルガスケット、2は基板としての主板、3は副板をそれぞれ示す。
上記実施例の方法で製造するシリンダーヘッド用メタルガスケット1は、図2に示すように、互いに対応するビードが互いに同一方向に突出する向きで互いに重ねられる基板としての二枚の主板2を具えており、これらの主板2は各々、外向きの面および内向きの面の両表面上に例えば層厚15μmで硬度81Hs(ショア硬さ)のNBRからなるラバーコーティング層を敷設された低温時効硬化特性を持つステンレス鋼板(例えば板厚0.2mmでSUS 301L相当の基本成分組成を持つ準安定オーステナイト系ステンレス鋼板)からなり、内燃機関のシリンダーブロックの複数のシリンダーボアにそれぞれ対応して形成された複数のシリンダー孔2aと、各シリンダー孔2aの周囲に形成された山形断面形状(いわゆるフルビード形状)の環状ビード2bと、上記内燃機関のシリンダーブロックの冷却水ジャケットおよびシリンダーヘッドの冷却水孔の位置に対応して各環状ビード2bの外側周辺部に形成された図示しない複数の冷却水孔と、複数の環状ビード2bおよびそれらの周囲に位置する複数の冷却水孔を全体的に囲繞する位置に形成された片斜面形断面形状(いわゆるハーフビード形状)の外周ビード2cとを有している。
さらに上記実施例の方法で製造するシリンダーヘッド用メタルガスケット1は、図2に示すように、二枚の主板2間に挟まれる一枚の副板3を具えており、この副板3はその両表面上にラバーコーティング層を持たないが主板2と同様の低温時効硬化特性を持つステンレス鋼板(例えば板厚0.15mmでSUS 301L相当の基本成分組成を持つ、準安定オーステナイト系ステンレス鋼板)からなり、その副板3は主板2と同様、内燃機関のシリンダーブロックの複数のシリンダーボアにそれぞれ対応して形成された複数のシリンダー孔3aと、各シリンダー孔2aの周囲に形成された山形断面形状(いわゆるフルビード形状)の環状ビード3bと、上記内燃機関のシリンダーブロックの冷却水ジャケットおよびシリンダーヘッドの冷却水孔の位置に対応して各環状ビード3bの外側周辺部に形成された図示しない複数の冷却水孔とを有するが、主板2の外周ビード2cに相当する外周ビードは有していない。
なお、この実施例の方法で主板2および副板3に用い得る上記準安定オーステナイト系ステンレス鋼板は、質量%で、C:0.03%以下、Si:1.0%以下、Mn:2.0%以下、Cr:16.0%以上18.0%以下、Ni:6.0%以上8.0以下、N:0.25%以下、場合によりNb:0.30%以下、残部Feおよび不可避不純物から本質的に成る化学組成を有し、かつそのステンレス鋼板製造の最終段階での調質圧延により調質された、面積比で40%以上のマルテンサイトと残部オーステナイトとの複合組織またはマルテンサイト単相組織からなるものであり、その詳細については、前述の国際公開WO02/088410号パンフレットに記載されているので、ここでは省略する。
かかる三枚積層構造のシリンダーヘッド用メタルガスケット1を製造するに際し、この実施例のメタルガスケットの製造方法では、図1に示すように、主板2については先ずステップS1で、ステンレスコイル材(フープ材)から上記ステンレス鋼板を連続的に繰り出して、ステップS2で、そのステンレス鋼板の両表面に通常の材料からなる下地をローラーで塗布し、続くステップS3で、その下地を100℃で90秒間加熱することで連続的に乾燥させて上記ステンレス鋼板の両表面上に一応定着させ、次いでステップS4で、そのステンレス鋼板に対し順送プレス型により連続的に、個別の主板2に対応した所定寸法のブランク板への切断加工(ブランクカット)と、そのブランク板への後工程での位置決め用のノック孔とボア下孔とのプレス加工とを行う。
そしてこれ以降は連続的でなくバッチ処理になり、次にステップS5で、プレス型により、上記ブランク板の各ボア下孔の周囲に上記環状ビード2bをプレス成形するとともに、上記ブランク板の周辺部に上記外周ビード2cをプレス成形し、続くステップS6で、そのブランク板を200℃で1分間加熱して、そのブランク板の両表面上の下地を焼成すると同時にそのブランク板を時効硬化させる。ここで、上記ステンレス鋼板は図3に示すように、時効処理温度200℃から250℃で1分から5分程度加熱することで、概ねビッカース硬度HV520となるので、上記加熱によりブランク板ひいては主板2はHV520という極めて高い硬度を持つことになる。
次いでこの実施例の方法では、ステップS7で、ブランク板にプレス成形した各環状ビード2bと外周ビード2cとをプレス型で一旦押してそれらのビードの反発力で戻らせるプリセットを行う。なお、この実施例の方法では、このプリセット前に下地の焼成を済ませているので、このプリセットで下地が剥がれる心配はない。次いでこの方法では、ステップS8で、先ず上記ブランク板の片側の表面の下地上に通常の材料からなる接着剤を塗布し、続くステップS9で、その塗布した接着剤を130℃で10分間加熱して乾燥させ、それをもう一度ステップS8へ戻して、今度は上記ブランク板の反対側の表面の下地上に上記接着剤を塗布し、続くステップS9で、その塗布した接着剤を130℃で10分間加熱して乾燥させ、その後ステップS10で、その両表面の下地上の接着剤を200℃で5分間加熱して焼成する。
次いでこの方法では、ステップS11で、先ず上記ブランク板の片側の表面の接着剤上に上述の如き材料からなるラバー材を塗布し、続くステップS12で、その塗布したラバー材を130℃で30分間加熱して乾燥させ、それをもう一度ステップS11へ戻して、今度は上記ブランク板の反対側の表面の接着剤上に上記ラバー材を塗布し、続くステップS12で、その塗布したラバー材を130℃で30分間加熱して乾燥させ、その後ステップS13で、その両表面の接着剤上のラバー材を250℃で5分間加熱して焼成することで、上記ブランク材の両表面上に強固に接着されたラバーコーティング層を形成する。
次いでこの方法では、ステップS14で、先ず上記ブランク板の片側のラバーコーティング層上に通常の材料からなるPTFE(ポリテトラフロロエチレン)を塗布し、続くステップS15で、その塗布したPTFEを100℃で10秒間加熱して乾燥させ、それをもう一度ステップS14へ戻して、今度は上記ブランク板の反対側のラバーコーティング層上に上記PTFEを塗布し、続くステップS15で、その塗布したPTFEを100℃で10秒間加熱して乾燥させ、その後ステップS16で、プレス型により、上記ブランク材を主板2の外形に切断するとともに、その主板2に各シリンダー孔2aを孔抜き成形し、さらに上記冷却水孔や締付けボルト用のボルト孔、鳩目孔等をピアス加工する。
この一方、副板3については、ラバーコーティング層は設けないので、先ずステップS17で、先のステップS1と同様に、ステンレスコイル材(フープ材)から上記ステンレス鋼板を連続的に繰り出して、続くステップS18で、先のステップS4と同様に、そのステンレス鋼板に対し順送プレス型により連続的に、個別の副板3に対応した所定寸法のブランク板への切断加工(ブランクカット)と、そのブランク板への後工程での位置決め用のノック孔とボア下孔とのプレス加工とを行う。
そしてこれ以降は連続的でなくバッチ処理になり、次にステップS19で、先のステップS5と同様に、プレス型により、上記ブランク板の各ボア下孔の周囲に上記環状ビード3bをプレス成形し、続くステップS20で、先のステップS6と同様に、そのブランク板を200℃で1分間加熱して、そのブランク板を時効硬化させる。ここで、上記ステンレス鋼板は図3に示すように、時効処理温度200℃から250℃で1分から5分程度加熱することで、概ねビッカース硬度HV520となるので、上記加熱によりブランク板ひいては副板3はHV520という極めて高い硬度を持つことになる。
次いでこの実施例の方法では、ステップS21で、先のステップS7と同様に、ブランク板にプレス成形した各環状ビード3bをプレス型で一旦押してそれらのビードの反発力で戻らせるプリセットを行う。なお、この実施例の方法ではこのプリセット前に下地の焼成を済ませているので、このプリセットで下地が剥がれる心配はない。次いでこの方法では、ステップS22で、先のステップS16と同様に、プレス型により、上記ブランク材を副板3の外形に切断するとともに、その副板3に各シリンダー孔3aを孔抜き成形し、さらに上記冷却水孔や締付けボルト用のボルト孔、鳩目孔等をピアス加工する。
このようにして主板2と副板3とを形成した後は、ステップS23で、二枚の主板2をそれらの対応する環状ビード2b同士および外周ビード2c同士が互いに同一方向(図2では上方)へ突出する向きで重ね合わせるとともに、それらの主板2の間に副板3をその環状ビード3bが主板2の環状ビード2bと逆方向(図2では下方)へ突出する向きで介挿し、それら三枚のガスケット構成板2,3を互いに鳩目で加締めて固定することで、図2に示す如きシリンダーヘッド用メタルガスケットを形成する。
かかる実施例のメタルガスケットの製造方法によれば、ステンレス鋼板の表面上に下地および接着剤を介してラバーコーティング層を敷設されてなる主板2のそのステンレス鋼板として低温時効硬化特性を持つ準安定オーステナイト系ステンレス鋼板を用い、前記下地を主板2のステンレス鋼板へ塗布してそのステンレス鋼板の低温時効硬化温度より低い温度である100℃で乾燥させることで下地をある程度定着させた後、そのステンレス鋼板に環状ビード2bのプレス加工を行い、その後に、主板2のステンレス鋼板の低温時効硬化温度範囲内である200℃にて前記下地を焼成しつつそのステンレス鋼板を時効硬化させるから、未だ硬度が低いHV480程度の状態でステンレス鋼板に環状ビード2bをプレス加工するので環状ビード2bの立ち上がり角度を大きくしても環状ビード2bの裾の部分のクラックや荒れの発生を有効に防止することができ、その後の下地焼成で併せてステンレス鋼板を時効硬化させて硬度をHV520程度まで高めるので、潰されてもへたりにくい環状ビード2bを持つメタルガスケットをもたらすことができる。
しかもこの実施例のメタルガスケットの製造方法によれば、低温時効硬化特性を持つステンレス鋼板を用い、ラバーコーティング層の加熱処理よりも温度を低め得る下地焼成で時効硬化処理を行うから、疲労破壊の原因となる粗大な析出物の発生を防止し得て、耐久性に優れたメタルガスケットをもたらすことができる。
さらにこの実施例のメタルガスケットの製造方法によれば、下地の塗布を平坦なステンレス鋼板上へ行い、その下地を乾燥させてある程度定着させた後、そのステンレス鋼板に環状ビード2bのプレス加工を行うことから、ステンレス鋼板への環状ビード2bのプレス加工後に下地を塗布する場合と比較して下地のたれや溜まりがないため、下地の塗布状態にばらつきが生じないので、ラバーコーティング層の接着強度を常に安定した強度にすることができる。
図4(a)〜(c)および図5(a),(b)は、下地塗布をビード成形前に行ったメタルガスケットに対応させて平坦なステンレス鋼板に下地を均一に塗布し、その上に接着剤を介してラバーコーティング層を接着した複数の成形前塗布対応試料片(成形前と表示)と、下地塗布をビード成形後に行ったメタルガスケットに対応させて平坦なステンレス鋼板に下地を薄めてばらつかせて塗布し、その上に接着剤を介してラバーコーティング層を接着した複数の成形後塗布対応試料片(成形後と表示)とについて、各種条件で引っ張り試験を実施した結果の接着強度を示すものである。
ここで、図4(a)は、常態でのそれら試料片の引っ張り試験結果、図4(b)は、エンジンの冷却液用のロングライフクーラント(LLC)「CCI」50%、水50%の浸漬液(100℃)にそれら試料片を120時間浸漬し、その後常温で行ったそれら試料片の引っ張り試験結果、図4(c)は、ロングライフクーラント「CCI」100%の浸漬液(100℃)にそれら試料片を120時間浸漬し、その後常温で行ったそれら試料片の引っ張り試験結果をそれぞれ示しており、また図5(a)は、温水(95℃)にそれら試料片を120時間浸漬し、その後常温で行ったそれら試料片の引っ張り試験結果、図5(b)は、200℃の空気中にそれら試料片を72時間放置し、その後常温で行ったそれら試料片の引っ張り試験結果をそれぞれ示している。
これらの試験結果から、各種条件下で、成形前塗布対応試料片は成形後塗布対応試料片と比較して安定した接着強度を有していることが明らかになり、このことからも、この実施例のメタルガスケットの製造方法によれば、ラバーコーティング層の接着強度を常に安定した強度にし得るということは明らかである。
さらにこの実施例のメタルガスケットの製造方法によれば、メタルガスケット1がさらに、ラバーコーティング層を持たないステンレス鋼板からなり、少なくとも流体通路孔としてのシリンダー孔3aとそのシリンダー孔3aを囲繞する環状ビード3bとを有する副板3を具えている場合に、その副板3のステンレス鋼板として低温時効硬化特性を持つ準安定オーステナイト系ステンレス鋼板を用い、その副板3のステンレス鋼板に環状ビード3bのプレス加工を行った後に、その副板3のステンレス鋼板の低温時効硬化温度範囲内である200℃にてそのステンレス鋼板を時効硬化させることから、主板2の環状ビード2bと副板3の環状ビード3bとが積層されるので、主板2と副板3との個々の環状ビード2b,3bの立ち上がり角度をさほど大きくしなくてもガスケット1としての環状ビード部分の弾性的な潰れ量を大きくし得て、シリンダーボア内の燃焼ガスの高い圧力でデッキ面間の隙間が大きくなった場合でも環状ビード2b,3bの線圧を維持して高いシール性能を発揮することができる。
さらにこの実施例のメタルガスケットの製造方法によれば、低温時効硬化特性を持つステンレス鋼板を時効硬化させる処理条件が、温度が200℃以上で250℃未満、時間が1分以上で5分以下であることから、ラバーコーティング層の加熱処理よりも温度が低い下地焼成で時効硬化処理を行うので、疲労破壊の原因となる粗大な析出物の発生を防止し得て、耐久性に優れたメタルガスケット1をもたらすことができる。
さらにこの実施例のメタルガスケットの製造方法によれば、低温時効硬化特性を持つステンレス鋼板は、その製造の最終段階での調質圧延により多量のマルテンサイト変態を誘起した(例えばマルテンサイトと残部オーステナイトとの複合組織の場合に面積比で40%以上、またはマルテンサイト単相組織)準安定オーステナイト系ステンレス鋼板であり、かかるステンレス鋼板は比較的安価であるためガスケットの材料費を廉価に抑えることができ、しかも調質圧延で誘起したマルテンサイト相からは比較的低温度での時効硬化処理によりクロム窒化物が析出するから、そのマルテンサイト相が多量であることで、時効硬化前の当該ステンレス板はHV480程度の硬度を持つのに対し時効硬化後の当該ステンレス板はHV500以上の極めて高い硬度を持つことができる。
そしてこの実施例のメタルガスケットの製造方法によれば、内燃機関のシリンダーヘッド用のメタルガスケット1を製造でき、内燃機関のシリンダーヘッド用メタルガスケットは特に高温かつ高圧の流体ガスに晒されるため環状ビードがへたり易い処、この実施例の方法で製造したメタルガスケット1はへたりにくいため低い線圧でも高いシール性能を発揮し得るから、上記のような過酷な条件でも高いシール性能を長期間維持し得るメタルガスケットをもたらすことができる。
以上、図示例に基づき説明したが、この発明は上述の例に限定されるものでなく、例えば、副板3を省いて、一枚または二枚の主板2でメタルガスケットを構成しても良く、また低温時効硬化特性を持つ金属板として、ステンレス板以外のもの、例えばアルミ合金板や、銅合金板等を用いても良い。そしてこの発明の方法で製造するメタルガスケットは、シリンダーヘッド用に限られず、内燃機関の吸気系や排気系のマニホールド用等や、内燃機関以外の用途のものであっても良い。
かくしてこの発明のメタルガスケットの製造方法によれば、未だ硬度が低い状態で金属板に環状ビードをプレス加工するので環状ビードの立ち上がり角度を大きくしても環状ビードの裾の部分のクラックや荒れの発生を有効に防止することができ、その後の下地焼成で併せて金属板を時効硬化させて硬度を高めるので、潰されてもへたりにくい環状ビードを持つメタルガスケットをもたらすことができる。しかも、低温時効硬化特性を持つ金属板を用い、ラバーコーティング層の加熱処理よりも温度を低め得る下地焼成で時効硬化処理を行うから、疲労破壊の原因となる粗大な析出物の発生を防止し得て、耐久性に優れたメタルガスケットをもたらすことができる。
この発明のメタルガスケットの製造方法を内燃機関のシリンダーヘッド用メタルガスケットの製造工程に適用した一実施例を示す工程図である。 上記実施例のメタルガスケットの製造方法で製造するシリンダーヘッド用メタルガスケットのシリンダー孔からガスケット外周縁にかけての断面形状を示す断面図である。 上記実施例のメタルガスケットの製造方法で用いる低温時効硬化特性を持つ金属板としてのステンレス鋼板の時効処理温度と硬度との関係を示す関係線図である。 (a)は常態での試料片の引っ張り試験結果、(b)はロングライフクーラント50%、水50%の浸漬液(100℃)に試料片を120時間浸漬した後常温で行った試料片の引っ張り試験結果、(c)はロングライフクーラント100%の浸漬液(100℃)に試料片を120時間浸漬した後常温で行った試料片の引っ張り試験結果をそれぞれ示す特性図である。 (a)は温水(95℃)に試料片を120時間浸漬した後常温で行った試料片の引っ張り試験結果、(b)は200℃の空気中に試料片を72時間放置した後常温で行った試料片の引っ張り試験結果をそれぞれ示す特性図である。
符号の説明
1 シリンダーヘッド用メタルガスケット
2 主板
2a シリンダー孔
2b 環状ビード
2c 外周ビード
3 副板
3a シリンダー孔
3b 環状ビード

Claims (7)

  1. 金属板の表面上に下地および接着剤を介してラバーコーティング層を敷設されてなる基板であって、少なくとも流体通路孔とその流体通路孔を囲繞する環状ビードとを有する基板を具えるメタルガスケットを製造するに際し、
    前記基板の金属板として低温時効硬化特性を持つ金属板を用い、
    前記下地を平坦な前記基板の金属板へ塗布してその金属板の低温時効硬化温度より低い温度で乾燥させた後、その金属板に前記環状ビードのプレス加工を行い、その後に、前記基板の金属板の低温時効硬化温度にて前記下地を焼成しつつその金属板を時効硬化させることを特徴とする、メタルガスケットの製造方法。
  2. 前記基板の金属板の低温時効硬化温度にて前記下地を焼成しつつその金属板を時効硬化させた後、前記環状ビードのプリセットを行うことを特徴とする、請求項1記載のメタルガスケットの製造方法。
  3. 前記メタルガスケットはさらに、ラバーコーティング層を持たない金属板からなる副板であって、少なくとも流体通路孔とその流体通路孔を囲繞する環状ビードとを有する副板を具えており、
    前記副板の金属板として低温時効硬化特性を持つ金属板を用い、
    前記副板の金属板に前記環状ビードのプレス加工を行った後に、前記副板の金属板の低温時効硬化温度にてその金属板を時効硬化させることを特徴とする、請求項1または2記載のメタルガスケットの製造方法。
  4. 前記低温時効硬化特性を持つ金属板を時効硬化させる処理条件は、温度が200℃以上で250℃未満、時間が1分以上で5分以下であることを特徴とする、請求項1から3までの何れか記載のメタルガスケットの製造方法。
  5. 前記低温時効硬化特性を持つ金属板は、その金属板の製造の最終段階での調質圧延によって多量のマルテンサイト変態を誘起した準安定オーステナイト系ステンレス鋼板であることを特徴とする、請求項1から4までの何れか記載のメタルガスケットの製造方法。
  6. 前記メタルガスケットは、内燃機関のシリンダーヘッド用メタルガスケットであることを特徴とする、請求項1から5までの何れか記載のメタルガスケットの製造方法。
  7. 前記環状ビードのプリセットを行った後、前記基板の金属板の表面上に接着剤を介してラバーコーティング層を形成し、該ラバーコーティング層上にPTFEの塗布および乾燥を行うことを特徴とする、請求項2又は、請求項2を引用する請求項3から6までの何れか記載のメタルガスケットの製造方法。
JP2004243898A 2004-08-24 2004-08-24 メタルガスケットの製造方法 Expired - Fee Related JP4859356B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004243898A JP4859356B2 (ja) 2004-08-24 2004-08-24 メタルガスケットの製造方法
PCT/JP2005/015252 WO2006022247A1 (ja) 2004-08-24 2005-08-23 メタルガスケットの製造方法
EP05774602A EP1795785B1 (en) 2004-08-24 2005-08-23 Method of manufacturing metal gasket
CNB2005800276792A CN100562678C (zh) 2004-08-24 2005-08-23 金属垫片的制造方法
US11/660,790 US20080047636A1 (en) 2004-08-24 2005-08-23 Method of Manufacturing Metal Gasket

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004243898A JP4859356B2 (ja) 2004-08-24 2004-08-24 メタルガスケットの製造方法

Publications (2)

Publication Number Publication Date
JP2006063998A JP2006063998A (ja) 2006-03-09
JP4859356B2 true JP4859356B2 (ja) 2012-01-25

Family

ID=35967459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004243898A Expired - Fee Related JP4859356B2 (ja) 2004-08-24 2004-08-24 メタルガスケットの製造方法

Country Status (5)

Country Link
US (1) US20080047636A1 (ja)
EP (1) EP1795785B1 (ja)
JP (1) JP4859356B2 (ja)
CN (1) CN100562678C (ja)
WO (1) WO2006022247A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5056985B2 (ja) * 2009-11-18 2012-10-24 住友金属工業株式会社 オーステナイト系ステンレス鋼板およびその製造方法
CN102000945A (zh) * 2010-09-26 2011-04-06 杭州内燃机缸垫有限公司 多品种中小批量生产金属气缸垫的涂层金属板的加工工艺
JP5699039B2 (ja) * 2011-05-26 2015-04-08 日本リークレス工業株式会社 金属ガスケット
CN102278359B (zh) * 2011-06-17 2016-08-24 襄阳汽车轴承股份有限公司 一种系列风力发电机及轴承用垫圈复合加工工艺
US9970548B2 (en) * 2013-03-14 2018-05-15 Federal-Mogul Llc Multi-layer gasket
JP6029611B2 (ja) * 2014-04-02 2016-11-24 日新製鋼株式会社 ガスケット用オーステナイト系ステンレス鋼板およびガスケット
JP6095619B2 (ja) * 2014-08-19 2017-03-15 日新製鋼株式会社 オーステナイト系ステンレス鋼板およびメタルガスケット
JP6452505B2 (ja) * 2015-03-12 2019-01-16 日本リークレス工業株式会社 金属ガスケット素材板及びその製造方法
JP6368835B1 (ja) * 2017-07-18 2018-08-01 石川ガスケット株式会社 ガスケット

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0460426A (ja) * 1990-06-28 1992-02-26 Atsumi Denki Kk 熱線センサおよびその診断方法
JPH06228641A (ja) * 1993-01-29 1994-08-16 Nisshin Steel Co Ltd 耐応力腐食割れ性に優れた内燃機関用ガスケット材の製造方法
JP2730478B2 (ja) * 1994-03-15 1998-03-25 国産部品工業株式会社 メタルガスケット
JP3514118B2 (ja) * 1998-06-16 2004-03-31 Nok株式会社 ゴム積層金属板
JP2000127199A (ja) * 1998-10-30 2000-05-09 Bridgestone Corp 成型体
JP3875481B2 (ja) * 2000-10-24 2007-01-31 本田技研工業株式会社 金属ガスケット用複合素材
JP4321066B2 (ja) * 2001-04-27 2009-08-26 住友金属工業株式会社 金属ガスケットとその素材およびそれらの製造方法
JP2004278719A (ja) * 2003-03-17 2004-10-07 Nippon Leakless Corp シリンダーヘッド用メタルガスケット

Also Published As

Publication number Publication date
EP1795785B1 (en) 2012-11-14
US20080047636A1 (en) 2008-02-28
EP1795785A1 (en) 2007-06-13
JP2006063998A (ja) 2006-03-09
EP1795785A4 (en) 2011-03-09
WO2006022247A1 (ja) 2006-03-02
CN101014789A (zh) 2007-08-08
CN100562678C (zh) 2009-11-25

Similar Documents

Publication Publication Date Title
WO2006022247A1 (ja) メタルガスケットの製造方法
CN101558179B (zh) 金属衬垫及其制造方法
US5310196A (en) Metallic gasket and method of manufacturing the same
EP1128098A2 (en) Metal gasket
JP6367177B2 (ja) シリンダヘッドガスケット及びシリンダヘッドガスケット用ステンレス鋼板
US7665741B2 (en) Laminate-type gasket
JP2015083718A (ja) 金属ガスケットおよびその製造方法
JP2004278719A (ja) シリンダーヘッド用メタルガスケット
MX2007010382A (es) Junta de acero de capas multiples con capa metalica nitrurada.
JP4323456B2 (ja) スペーサエキスパンダ及びその製造方法
EP0486255A2 (en) Metallic gasket
JPH07243530A (ja) メタルガスケット
JP3058510B2 (ja) 金属製ガスケットの製造方法
JPH06109136A (ja) 金属ガスケット
JPH08218157A (ja) 耐久性に優れた金属ガスケットとその製造方法
JPH0225012Y2 (ja)
JPH08218194A (ja) 耐久性に優れた金属ガスケットとその製造方法
JP2011163493A (ja) シリンダヘッドガスケットおよびその製造方法
JPS63264201A (ja) 被覆物の耐剥離性に優れた鋼板とその製造方法
TH35541B (th) วิธีการผลิตปะเก็นโลหะ
TH79637A (th) วิธีการผลิตปะเก็นโลหะ
JPS6188076A (ja) 金属ガスケツト

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060622

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees