WO2016024334A1 - 排ガス処理装置 - Google Patents

排ガス処理装置 Download PDF

Info

Publication number
WO2016024334A1
WO2016024334A1 PCT/JP2014/071321 JP2014071321W WO2016024334A1 WO 2016024334 A1 WO2016024334 A1 WO 2016024334A1 JP 2014071321 W JP2014071321 W JP 2014071321W WO 2016024334 A1 WO2016024334 A1 WO 2016024334A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
exhaust gas
exchange tube
gas treatment
chamber
Prior art date
Application number
PCT/JP2014/071321
Other languages
English (en)
French (fr)
Inventor
和正 細谷
誠 柏木
豊司 篠原
興太郎 川村
Original Assignee
株式会社荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社荏原製作所 filed Critical 株式会社荏原製作所
Priority to PCT/JP2014/071321 priority Critical patent/WO2016024334A1/ja
Publication of WO2016024334A1 publication Critical patent/WO2016024334A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/06Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with the heat-exchange conduits forming part of, or being attached to, the tank containing the body of fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material

Definitions

  • the present invention relates to an exhaust gas treatment technology.
  • harmful gases emitted in the semiconductor manufacturing process such as silane (SiH 4 ) gas, halogen-based (NF 3 , ClF 3 , SF 6 , CHF 3 , C 2 F 6 , CF 4, etc.) gas. Is burned.
  • the exhaust gas subjected to the combustion treatment includes solid components (for example, SiO 2 ) and acidic components (HF, HCl, etc.) as combustion by-products depending on the components of the gas to be treated. In order to remove these from the exhaust gas, the exhaust gas is washed.
  • a fan scrubber or a spray tower is known.
  • Such a combustion exhaust gas treatment apparatus requires a large amount of water in order to cool and clean the combustion gas at a high temperature (for example, 1700 ° C.). If such a large amount of water is supplied only by supplying industrial water or tap water, the running cost associated with the water supply increases, leading to an increase in wastewater treatment costs. For this reason, techniques for circulating water and cooling the circulating water using a heat exchanger that exchanges heat between the circulating water and the coolant have been developed (for example, Patent Documents 1 and 2 below).
  • the installation of the heat exchanger causes an increase in the installation space of the exhaust gas treatment device. For this reason, it is required to reduce the amount of water by installing a heat exchanger for cooling the circulating water without increasing the installation space as compared with the case where no heat exchanger is installed. Further, when a specific component (for example, a halogen-based gas) contained in the gas is dissolved in the circulating water and concentrated in the circulation, the acidic concentration of the circulating water increases. For this reason, it is calculated
  • a specific component for example, a halogen-based gas
  • the present invention has been made to solve at least a part of the above-described problems, and can be realized, for example, as the following modes.
  • the first embodiment of the present invention is provided as an exhaust gas treatment apparatus.
  • This exhaust gas treatment device is an exhaust gas treatment unit that treats exhaust gas using thermal energy, an exhaust gas treatment unit that cools the treated exhaust gas using a liquid, and a liquid as a circulating liquid.
  • a heat exchange tube that circulates and a heat exchange tube for cooling the circulating fluid that exchanges heat between the coolant flowing inside the heat exchange tube and the circulating fluid flowing outside the heat exchange tube
  • a tube and a circulating fluid reservoir that stores the circulating fluid are provided.
  • a heat exchange tube is arrange
  • the heat exchange tube is provided inside the circulation path of the circulating liquid, it is not necessary to secure a separate installation space for the heat exchanger. Therefore, the amount of water required for exhaust gas treatment can be reduced without increasing the installation space of the exhaust gas treatment device. Moreover, even if the coolant leaks from the heat exchange tube, the coolant only leaks into the circulation path of the circulating fluid, and the coolant does not leak outside (outside the system). In addition, the piping for guiding the circulating fluid to the heat exchanger, which is required when the heat exchange tube is installed outside the circulating path of the circulating fluid, is no longer necessary, so the extension distance of the circulating fluid piping can be shortened. The number of pipe connections can be reduced. For this reason, the risk of leakage of the circulating fluid can be reduced. Furthermore, since the heat exchange tube can be installed in a relatively large space, a large heat transfer area can be secured and the heat exchange efficiency can be easily improved.
  • the heat exchange tube may be configured such that the coolant flows in the opposite direction to the circulating fluid. According to this form, heat exchange efficiency can be improved.
  • the heat exchange tube performs heat exchange between the cooling liquid flowing inside the heat exchange tube and the circulating liquid flowing in the circulating liquid reservoir.
  • the wall surface of the circulating fluid reservoir has a configuration that also serves as the casing of the heat exchanger.
  • the heat exchange tube and the circulating fluid reservoir constitute a heat exchanger. Therefore, compared with the case where a heat exchange unit is arrange
  • the heat exchange tube installation space may be formed as a meandering flow path through which the circulating fluid meanders.
  • the heat exchange tube may be disposed along the serpentine flow path. According to this form, the heat transfer area of the heat exchange tube can be increased in a small installation space, and the time for circulating water to contact the heat transfer surface can be increased. As a result, the heat exchange efficiency can be increased.
  • the exhaust gas treatment apparatus is a circulating liquid pipe that further accommodates a heat exchange tube therein, and is between the heat exchange tube and the circulating liquid pipe.
  • a circulating fluid pipe for circulating the circulating fluid may be provided.
  • the heat exchange tube may perform heat exchange between the coolant flowing inside the heat exchange tube and the circulating fluid that has flowed into the circulating fluid tube from the circulating fluid reservoir.
  • the circulating fluid pipe may be formed as a meandering flow path in which the circulating fluid meanders. According to this form, there exists an effect similar to a 4th form.
  • the configuration of the circulating fluid reservoir can be simplified.
  • the heat exchange tube may have a plurality of tube groups configured by arranging a plurality of tubes in a plate shape.
  • the plurality of tube groups may be arranged in the heat exchange tube installation space while being separated from each other.
  • the heat exchange tube installation space may be partitioned by a plurality of tube groups, and may be formed as a meandering flow path through which the circulating fluid meanders. According to this form, there exists an effect similar to a 5th form.
  • the exhaust gas treatment device may further include a filter for filtering the circulating fluid used in the exhaust gas treatment unit.
  • the circulating fluid that has passed through the filter may be guided to the heat exchange tube installation space.
  • the circulating fluid reservoir is two or more chambers that are at least partially partitioned in the vertical direction by a partition wall and are adjacent to each other. You may have two or more chambers which chambers communicate.
  • the heat exchange tube installation space may be secured in some of the two or more chambers. According to this form, since the capacity of the circulating fluid storage part can be effectively used in three dimensions, the degree of freedom in installing the heat exchange tube is improved.
  • the heat exchange tube may be formed including a resin material. According to this form, when the acidic gas in exhaust gas melt
  • the circulating fluid reservoir may be separated into a first chamber and a second chamber by a weir.
  • the liquid used upstream of the exhaust gas flow path flows into the first chamber, and the liquid used downstream of the exhaust gas flow path flows into the second chamber. May be.
  • the circulating fluid may flow into the second chamber by overflowing from the first chamber over the weir.
  • the heat exchange tube installation space may be secured in the second chamber.
  • the circulating fluid used on the upstream side of the exhaust gas flow path contains a relatively large amount of solid components, but according to the tenth embodiment, the solid components are precipitated in the first chamber. It can suppress that a solid component adheres to the heat-transfer surface of the heat exchange tube provided in a 2nd chamber.
  • the first chamber may be provided with a first filter as a filter.
  • the liquid flowing into the first chamber may flow into the second chamber after passing through the first filter.
  • the solid component contained in the circulating fluid stored in the first chamber is further suppressed from moving to the second chamber, and as a result, the solid component adheres to the heat transfer surface of the heat exchange tube. Can be further suppressed.
  • a second filter as a filter may be provided above the second chamber.
  • the liquid used on the downstream side of the flow path of the exhaust gas may flow into the second chamber after passing through the second filter. According to such a form, even if a solid component is contained in the liquid used on the downstream side of the flow path of the exhaust gas, the solid component is captured by the second filter, so that the heat transfer surface of the heat exchange tube It can suppress that a solid component adheres.
  • FIG. 1 shows a schematic configuration of an exhaust gas treatment apparatus 10 as a first embodiment.
  • the exhaust gas treatment apparatus 10 is an apparatus that treats exhaust gas discharged in the semiconductor manufacturing process before releasing it into the atmosphere.
  • the exhaust gas treatment device 10 includes an exhaust gas treatment unit 15, a circulation unit 70, and a heat exchange unit 80.
  • the exhaust gas processing unit 15 includes a combustion processing unit 20, a cooling unit 30, and a cleaning unit 40, and performs exhaust gas processing using the circulating water W1.
  • the circulating water W1 may be mere water or water to which a predetermined additive (for example, an alkaline agent that neutralizes acidic gas) is added.
  • the circulation unit 70 includes a circulation water storage unit 50, circulation pipes 71 and 73, and a circulation pump 72, and circulates the circulation water W1.
  • the heat exchange unit 80 performs heat exchange between the circulating water W1 and the cooling water W5.
  • the combustion processing unit 20 mixes the exhaust gas flowing in from above with air and auxiliary combustion gas separately supplied, burns the exhaust gas, and guides it downward.
  • the combustion temperature is 1,700 ° C., for example.
  • the combustion processing unit 20 includes a water flow flange portion 21 and a combustion chamber 22.
  • the combustion chamber 22 has a volume for retaining the exhaust gas for a predetermined time, and the exhaust gas is completely combusted here.
  • solid components SiO 2 or the like
  • acidic gas are generated as combustion by-products.
  • a water film is formed on the inner wall surface 23 of the combustion chamber 22 by the circulating water W1 supplied from the water flow flange portion 21.
  • the inner wall surface 23 can be formed with a comparatively cheap material, and it is not necessary to use expensive heat-resistant materials, such as glass ceramic materials, such as an alumina type.
  • the inner wall surface 23 contacts with waste gas, corrosion of the inner wall surface 23 can be suppressed.
  • the inner wall surface 23 may be coated with a resin material having heat resistance and corrosion resistance such as PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer).
  • the exhaust gas subjected to the combustion process in the combustion processing unit 20 is guided to the cooling unit 30 connected to the lower part of the combustion processing unit 20.
  • the cooling unit 30 the exhaust gas is cooled by the circulating water W ⁇ b> 1 sprayed by the nozzle 31.
  • the exhaust gas cooled in the cooling unit 30 is guided to the cleaning unit 40.
  • a part of the circulating water W1 sprayed in the cooling unit 30 evaporates and is contained in the exhaust gas, but most of the circulating water W1 flows through the bottom surface of the cooling unit 30 and flows into the combustion chamber 22, and then It flows into the first chamber 52 described later.
  • the cleaning unit 40 is configured as a cleaning tower (spray tower) including a plurality of nozzles 41.
  • the solid component and acidic gas contained in the exhaust gas are captured by the circulating water W1 sprayed from the nozzle 41.
  • the type of the cleaning unit 40 is not particularly limited, and can be any type that performs wet cleaning, for example, a fan scrubber.
  • the wet-cleaned exhaust gas is discharged from above the cleaning unit 40.
  • a second filter 43 is provided below the cleaning unit 40, and the circulating water W1 sprayed from the nozzle 41 passes through the second filter 43 and moves downward.
  • the circulating water storage unit 50 is a tank that stores the circulating water W1.
  • the circulating water storage unit 50 can be an arbitrary structure, and may be, for example, a water tank constructed of concrete or a resin container.
  • the circulating water storage unit 50 includes a weir 51 that divides the internal space into two.
  • the circulating water storage unit 50 is separated into a first chamber 52 and a second chamber 53 by a weir 51.
  • the first chamber 52 is disposed directly below the combustion processing unit 20, and the second chamber 53 is disposed directly below the cleaning unit 40.
  • the circulating water W1 that has formed a water film in the combustion processing unit 20 moves downward as it is, flows into the first chamber 52, and is stored.
  • the circulating water W1 in which the water film is formed contains a large amount of solid components (dust) as a by-product in the combustion processing unit 20.
  • a relatively large solid component falls into the first chamber 52 due to its own weight.
  • the solid component contained in the circulating water W1 is precipitated.
  • a first filter 54 is provided in the vicinity of the weir 51.
  • the water level LV1 of the first chamber 52 is higher than the water level LV2 of the second chamber 53.
  • most of the solid components contained in the circulating water W1 stored in the first chamber 52 are removed by precipitation, and most of the remaining components are removed by the first filter 54. After that, it flows into the second chamber 53.
  • the weir 51 has the effect of reducing the filtration load of the first filter 54, in other words, the cleaning frequency.
  • An inspection window that can be opened and closed may be provided on the side surface of the first chamber 52. In this way, it is possible to confirm the state of precipitation of the solid component and the state of adhesion of the first filter 54, and it can be easily cleaned as necessary.
  • the circulating water W1 sprayed by the cleaning unit 40 that is, the circulating water W1 that has passed through the second filter 43 flows into the second chamber 53. Since the circulating water W1 sprayed by the cleaning unit 40 captures the solid component in the exhaust gas, the circulating water W1 contains the solid component. Most of this solid component is captured by the second filter 43.
  • the circulating water W1 stored in the second chamber 53 is cooled by a heat exchange tube 82 (details will be described later) disposed inside the second chamber 53, and then circulated or primary through the circulation path, that is, the circulating water W1.
  • the circulating water W1 supplied to the combustion processing unit 20 is shown as circulating water W2
  • the circulating water W1 supplied to the cleaning unit 40 is shown as circulating water W3.
  • An inspection window that can be opened and closed may be provided on the side surface of the second chamber 53. In this way, it is easy to perform the adhesion state and cleaning work of the second filter 43, the installation, replacement, and cleaning work of the heat exchange tube 82.
  • the circulating water W1 circulated and used in this way is replenished continuously or intermittently with makeup water W4 (for example, industrial water or tap water) from the supply port 74.
  • the circulating water W1 can be cooled by the replenishment of the makeup water W4.
  • the acidic water contained in the exhaust gas dissolves in the circulating water W1, and its concentration gradually increases as the circulating water W1 circulates. Increase in concentration can be suppressed.
  • a part of the circulating water W1 is discharged continuously or intermittently through the discharge port 75. This also prevents the concentration of the acidic gas in the circulating water W1 from rising excessively.
  • the heat exchanging unit 80 includes cooling pipes 81 and 83 and a heat exchange tube 82 disposed between the cooling pipes 81 and 83.
  • the heat exchange unit 80 circulates the cooling water W5 with a circulation pump (not shown).
  • the heat exchange tube 82 is disposed at a position lower than the water level LV2 inside the second chamber 53.
  • heat exchange is performed between the cooling water W5 and the circulating water W1 flowing outside the second heat exchange tube 82 (second chamber 53). Thereby, the circulating water W1 is cooled.
  • FIG. 2 schematically shows a cross-sectional configuration of the circulating water storage unit 50.
  • the combustion chamber connecting short tube 24 connected to the lower end of the combustion processing unit 20 is inserted into the first chamber 52.
  • a precipitation space 55 for precipitating a solid component is secured at the bottom of the first chamber 52.
  • the second chamber 53 has a partition wall 56 that divides the internal space vertically. By this partition wall 56, the second chamber 53 is partitioned into an upper storage chamber 57 and a lower heat exchange tube installation space 60.
  • the storage chamber 57 is mainly for the purpose of storing the circulating water W1
  • the heat exchange tube installation space 60 is mainly for the purpose of installing the heat exchange tube 82.
  • the storage chamber 57 and the heat exchange tube installation space 60 communicate with each other through a communication hole 58, and the circulating water W1 flows from the storage chamber 57 into the heat exchange tube installation space 60 through the communication hole 58.
  • a cleaning unit connection short pipe 44 connected to the lower end of the cleaning unit 40 is inserted.
  • the second chamber 53 may be partitioned into three or more chambers in the vertical direction.
  • the heat exchange tube installation space 60 may be secured in some arbitrary rooms among the three or more rooms.
  • a water level gauge 59 is provided in the storage chamber 57.
  • the cooling water W5 is supplied to the heat exchange tube 82 by a control unit (not shown) that controls the exhaust gas treatment device 10. Is stopped.
  • the control unit monitors the detection result of the water level gauge 59.
  • the leakage of the cooling water W5 may be detected from the change speed.
  • FIG. 3 schematically shows a planar configuration of the circulating water storage unit 50.
  • a region corresponding to the second chamber 53 is shown as a heat exchange tube installation space 60.
  • the heat exchange tube installation space 60 is provided with three partition walls 61, 62, and 63, which are formed as meandering channels in which the flow direction of the circulating water W1 is folded three times on a plane. Yes.
  • the heat exchange tube 82 is disposed along the meandering flow path. According to this configuration, the heat transfer area of the heat exchange tube 82 can be increased in a small installation space, and the time during which the circulating water contacts the heat transfer surface of the heat exchange tube 82 can be increased. As a result, the heat exchange efficiency can be increased.
  • the flow path cross-sectional area of the circulating water W1 becomes small and the flow velocity increases or the circulating water W1 meanders, the flow of the circulating water W1 becomes a turbulent flow, and the heat exchange efficiency is improved.
  • the cooling water W5 flowing inside the heat exchange tube 82 and the circulating water W1 flowing outside the heat exchange tube 82 are circulated in opposite directions.
  • heat exchange efficiency can be improved by making two fluids which heat-exchange into a counter flow.
  • FIG. 4 shows a schematic configuration of the heat exchange tube 82.
  • the heat exchange tube 82 is a multi-tube tube type, and includes a plurality of tubes 84 and a tube weld portion 85 as shown in FIG. Inside the tube 84, the cooling water W5 flows.
  • the tube 84 is made of PFA. For this reason, even if acidic circulating water W1 distribute
  • the material of the tube 84 is not limited to PFA, and may include any resin material having predetermined corrosion resistance, heat transfer property, heat resistance, and pressure resistance.
  • the resin material is PTFE (polytetrafluoroethylene).
  • the tube 84 may be a metal tube whose outer surface is coated with PFA or the like. Even in this way, a certain degree of corrosion resistance can be secured.
  • a plurality of through holes 86 are formed in the tube welding portion 85.
  • the number of through holes 86 is equal to the number of tubes 84.
  • a tube 84 is inserted into each of the through holes 86 in a one-to-one correspondence, and each of the tubes 84 is welded to the tube welding portion 85.
  • Such tube welds 85 are provided at both ends of the tube 84.
  • a gap 87 is formed between the tubes 84 as shown in FIG. According to such a configuration, the circulating water W1 enters the gap 87, whereby the heat exchange efficiency can be improved. And since the flow of the circulating water W1 becomes a turbulent flow by the tube welding part 85, heat exchange efficiency can be improved.
  • a plurality of tube dispersion plates are provided between the two tube welding portions 85.
  • the tube dispersion plate is provided with a plurality of through holes, and a tube 84 is inserted into each of these through holes in a one-to-one correspondence relationship. According to such a tube dispersion plate, the gap 87 can be suitably secured over the extension of the tube 84, and the same effect as the tube welded portion 85 can be obtained.
  • the tube 84 is preferably used by bundling as many tubes as possible with a small diameter. In this way, the heat transfer area can be increased without increasing the volume of the heat exchange tube 82. Moreover, in order to improve heat exchange efficiency, it is desirable that the thickness of the tube 84 be as small as possible. In this embodiment, the tube 84 is thinner than a commercially available PFA tube. If it is set as the structure which uses the some tube 84 like a present Example, the capability of the heat exchange tube 82 can also be changed by changing the number of the tubes 84. FIG. For example, if the standardized tubes 84 are mass-produced and the number of tubes 84 to be used is changed according to the heat load of the exhaust gas treatment device 10, it is possible to flexibly cope with a wide range of exhaust gas treatment conditions.
  • the tube welded portion 85 for bundling the plurality of tubes 84 is screwed into and connected to the turnip, and this coupler is connected to the cooling pipes 81 and 83.
  • the connection form is not particularly limited.
  • the tube welded portion 85 and the coupler may have a flange structure, and these may be flange-connected.
  • the heat exchange tube 82 is provided inside the circulating water storage unit 50 (more specifically, the second chamber 53), a separate installation space for the heat exchange tube 82 is ensured. There is no need to do. Therefore, the amount of water necessary for exhaust gas treatment can be reduced without increasing the installation space of the exhaust gas treatment device 10. Furthermore, since the circulating water storage part 50 has a comparatively large space, it can ensure a large heat-transfer area and it is easy to improve heat exchange efficiency. Moreover, even if the cooling water W5 leaks from the heat exchange tube 82, the cooling water W5 only leaks into the circulation path of the circulating water W1, and the cooling water W5 leaks to the outside (outside the system). Absent.
  • the piping for guiding the circulating water W1 to the heat exchanging tube 82 which is necessary when the heat exchanging tube 82 is provided outside the circulating path of the circulating water W1, is not required, the piping for the circulating water W1 is extended. The distance can be shortened and the number of pipe connections can be reduced. For this reason, the leakage risk of the acidic circulating water W1 can be reduced.
  • the wall surface of the circulating water storage unit 50 has a configuration that also serves as a casing of the heat exchanger.
  • the heat exchange tube 82 and the circulating water storage unit 50 constitute a heat exchanger. Therefore, compared with the case where an existing heat exchange unit is arrange
  • the heat exchange tube 82 and the various heat exchange tube installation spaces 60 described above are used. With this configuration, the heat exchange efficiency of the heat exchange tube 82 is increased, thereby making it possible to achieve both corrosion resistance and heat transfer.
  • the circulating water W1 from which the solid component has been substantially removed by the second filter 43, the weir 51, and the first filter 54 is guided to the heat exchange tube 82, so that the solid component is subjected to heat exchange. Adhering to the heat transfer surface of the tube 82 can be suppressed. As a result, a decrease in heat exchange efficiency of the heat exchange tube 82 can be suppressed, and a cleaning load on the heat exchange tube 82 can be reduced.
  • FIG. 5 shows a part of the configuration of the exhaust gas treatment apparatus as the second embodiment.
  • the exhaust gas treatment apparatus of the second embodiment is different from the first embodiment in that a heat exchanger 282 is provided in place of the heat exchange tube 82 of the first embodiment. It is the same as that of an Example.
  • the heat exchanger 282 includes a heat exchange tube 82 and a circulating water pipe 288. A heat exchange tube 82 is accommodated inside the circulating water pipe 288.
  • the circulating water pipe 288 has a shape curved in the horizontal direction so as to form a meandering flow path, and the heat exchange tube 82 also has a shape following the circulating water pipe 288.
  • the circulating water pipe 288 is connected to the suction port of the circulating pump 72.
  • the shape of the circulating water pipe 288 is not particularly limited, and may be a spiral shape that extends in the vertical direction. Further, the circulating water pipe 288 may be provided with a partition structure inside, and a meandering flow path may be formed therein.
  • the circulating water W1 stored in the circulating water storage unit 50 flows into the circulating water pipe 288, exchanges heat with the cooling water W5 flowing through the heat exchange tube 82, and is then sucked into the circulating pump 72. .
  • Such a configuration can be regarded as a simple shell and tube method. According to such a configuration, the same effect as in the first embodiment can be obtained without providing the partition walls 61 to 63 in the heat exchange tube installation space 60. That is, the structure of the heat exchange tube installation space 60 can be simplified.
  • when installing the heat exchanger 282 in the circulating water storage part 50 after installing the heat exchange tube 82 in the circulating water pipe
  • FIG. 6 shows a part of the configuration of the exhaust gas treatment apparatus as the third embodiment.
  • a first tube group 384a, a second tube group 384b, and header tubes 381a, 382a, 381b, 382b are provided.
  • the points provided are different from those of the first embodiment, and the other points are the same as those of the first embodiment.
  • differences from the first embodiment will be described.
  • the header pipes 381a and 382a are connected to the end of the first tube group 384a.
  • the header pipes 381b and 382b are connected to the end of the second tube group 384b.
  • the cooling water W5 introduced into the header pipe 381b flows through the second tube group 384b and flows into the header pipe 382b.
  • the cooling water W5 that has flowed into the header pipe 382b flows into the header pipe 382a, then flows through the first tube group 384a, and flows into the header pipe 381a.
  • Each of the first tube group 384a and the second tube group 384b is configured by arranging a plurality of tubes in a plate shape. In FIG. 6, the tubes are illustrated as being arranged with a gap, but in actuality, the tubes are arranged with almost no gap.
  • the first tube group 384a and the second tube group 384b are provided to be separated from each other.
  • the circulating water storage unit 50 heat exchange tube installation space 60
  • the meandering flow path of the circulating water W1 is partitioned off by the second tube group 384b.
  • the same effect as in the first embodiment can be obtained without providing the partition walls 61 to 63 in the heat exchange tube installation space 60. That is, the structure of the heat exchange tube installation space 60 can be simplified.
  • variety of the circulation path of the circulating water W1 can be narrowed.
  • the degree of freedom of installation of the first tube group 384a and the second tube group 384b is improved. Moreover, since the flow rate of the circulating water W1 increases and the circulating water W1 becomes a turbulent flow, more efficient heat exchange is possible.
  • the 1st tube group 384a and the 2nd tube group 384b may distribute
  • the tube group should just be provided two or more, for example, may be provided three.
  • C Variations: C-1.
  • Modification 1 A temperature sensor may be provided in the circulation path of the circulating water W1. If the temperature of the circulating water W1 is monitored by the temperature sensor, it can be detected that a fine solid component adheres to the heat exchange tube 82 and the heat exchange efficiency decreases. As a result, the worker can appropriately determine the timing of maintenance (cleaning or the like) of the heat exchange tube 82, and the safety of the exhaust gas treatment device 10 is improved.
  • the embodiments of the present invention have been described above based on some examples. However, the above-described embodiments of the present invention are for facilitating the understanding of the present invention and limit the present invention. It is not a thing. The present invention can be changed and improved without departing from the gist thereof, and the present invention includes the equivalents thereof. In addition, any combination or omission of each constituent element described in the claims and the specification is possible within a range where at least a part of the above-described problems can be solved or a range where at least a part of the effect is achieved. It is.
  • the second filter 43 is omitted when the circulating water W1 sprayed by the cleaning unit 40 flows into the first chamber 52 through the cooling unit 30 or when the solid component contained in the exhaust gas is small.

Abstract

 排ガス処理装置の設置スペースを低減する。 排ガス処理装置は、熱エネルギーを利用して排ガスを処理する排ガス処理部であって、処理された排ガスを、液体を使用して冷却する排ガス処理部と、液体を循環液として循環路内を循環させる循環部と、循環液を冷却するための熱交換チューブであって、熱交換チューブの内部に流れる冷却液と、熱交換チューブの外部に流れる循環液との間で熱交換を行う熱交換チューブと、循環液を貯留する循環液貯留部とを備える。熱交換チューブは、循環液貯留部の内部の少なくとも一部に確保された熱交換チューブ設置空間に配置される。

Description

排ガス処理装置
 本発明は、排ガス処理技術に関する。
 例えば、半導体産業では、半導体製造工程において排出される有害ガス、例えば、シラン(SiH)ガス、ハロゲン系(NF,ClF,SF,CHF,C,CF等)ガスが燃焼処理される。燃焼処理された排ガスには、処理対象ガスの成分によって燃焼副生成物として固体成分(例えば、SiO)や酸性成分(HF,HCl等)が含まれる。これらを排ガスから除去するために、排ガスが洗浄される。洗浄の方式としては、ファンスクラバやスプレー塔などが知られている。
 かかる燃焼式排ガス処理装置では、高温(例えば、1700℃)の燃焼ガスの冷却や洗浄を行うために、多量の水を必要とする。かかる多量の水を工業用水や水道水の供給のみによって賄うと、水供給に係るランニングコストが増大し、しいては、排水処理コストの増大をも招くことになる。このため、水を循環使用するとともに、循環水と冷却液とで熱交換する熱交換器によって循環水を冷却する技術が開発されている(例えば、下記の特許文献1,2)。
特開2008-161861号公報 特開2009-18290号公報
 しかしながら、熱交換器の設置は、排ガス処理装置の設置スペースの増大を招くことになる。このため、熱交換器を設置しない場合と比べて設置スペースを増大させることなく、循環水を冷却するための熱交換器を設置し、省水量化を図ることが求められる。また、ガスに含まれる特定の成分(例えば、ハロゲン系ガス)が循環水中に溶解し、循環中に濃縮されると、循環水の酸性濃度が上昇する。このため、循環水による熱交換器等の腐食を抑制することが求められる。さらに、冷却液や循環水の外部への漏洩のリスクを低減することが望ましい。また、熱交換器の一般的な課題として、熱交換効率の向上が求められ、排ガス処理装置の一般的な課題として、メンテナンスの負担軽減が求められる。これらの問題は、燃焼式排ガス処理装置に限らず、熱エネルギーを利用して排ガスを処理し、処理された排ガスを循環水によって冷却する種々の排ガス処理装置に共通する。
 本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、例えば、以下の形態として実現することが可能である。
 本発明の第1の形態は、排ガス処理装置として提供される。この排ガス処理装置は、熱エネルギーを利用して排ガスを処理する排ガス処理部であって、処理された排ガスを、液体を使用して冷却する排ガス処理部と、液体を循環液として循環路内を循環させる循環部と、循環液を冷却するための熱交換チューブであって、熱交換チューブの内部に流れる冷却液と、熱交換チューブの外部に流れる循環液との間で熱交換を行う熱交換チューブと、循環液を貯留する循環液貯留部とを備える。熱交換チューブは、循環液貯留部の内部の少なくとも一部に確保された熱交換チューブ設置空間に配置される。
 かかる排ガス処理装置によれば、熱交換チューブは、循環液の循環路の内部に設けられるので、熱交換器用の設置スペースを別途確保する必要がない。したがって、排ガス処理装置の設置スペースを増大さることなく、排ガス処理に必要な水量を低減できる。しかも、万が一、冷却液が熱交換チューブから漏洩したとしても、冷却液が循環液の循環路内に漏洩するに過ぎず、冷却液が外部(系外)に漏洩することがない。また、熱交換チューブが循環液の循環路の外部に設けられる場合に必要となる循環液を熱交換器に導くための配管が不要になるので、循環液用の配管の延長距離を短くできるとともに、配管の接続箇所を低減できる。このため、循環液の漏洩リスクを低減できる。さらに、比較的大きなスペースに熱交換チューブを設置できるので、伝熱面積を大きく確保でき、熱交換効率を高めやすい。
 本発明の第2の形態として、第1の形態において、熱交換チューブは、冷却液が循環液と反対の方向に流れるように構成されていてもよい。かかる形態によれば、熱交換効率を向上できる。
 本発明の第3の形態として、第1または第2の形態において、熱交換チューブは、熱交換チューブの内部を流れる冷却液と、循環液貯留部を流れる循環液との間で熱交換を行ってもよい。かかる形態によれば、循環液貯留部の壁面が熱交換器のケーシングを兼ねた構成を有する。換言すれば、熱交換チューブと循環液貯留部とが熱交換器を構成する。したがって、熱交換ユニットを循環液貯留部に配置する場合と比べて、装置構成を簡略化できる。
 本発明の第4の形態として、第3の形態において、熱交換チューブ設置空間は、循環液が蛇行して流れる蛇行流路として形成されていてもよい。熱交換チューブは、蛇行流路に沿って配置されてもよい。かかる形態によれば、小さな設置スペース内で熱交換チューブの伝熱面積を大きくできるとともに、循環水が伝熱面に接触する時間を長くすることができる。その結果、熱交換効率を高めることができる。
 本発明の第5の形態として、第1または第2の形態において、排ガス処理装置は、さらに、熱交換チューブを内部に収容する循環液管であって、熱交換チューブと循環液管との間に循環液を流通させるための循環液管を備えていてもよい。熱交換チューブは、熱交換チューブの内部を流れる冷却液と、循環液貯留部から循環液管に流入した循環液との間で熱交換を行ってもよい。循環液管は、循環液が蛇行して流れる蛇行流路として形成されていてもよい。かかる形態によれば、第4の形態と同様の効果を奏する。しかも、熱交換チューブ設置空間を蛇行流路として形成する必要がないので、循環液貯留部の構成を簡略化できる。
 本発明の第6の形態として、第1ないし第5のいずれかの形態において、熱交換チューブは、複数のチューブがプレート状に配列されて構成されるチューブ群を複数有していてもよい。複数のチューブ群は、相互に離間して熱交換チューブ設置空間に配置されてもよい。熱交換チューブ設置空間は、複数のチューブ群によって仕切られて、循環液が蛇行して流れる蛇行流路として形成されてもよい。かかる形態によれば、第5の形態と同様の効果を奏する。
 本発明の第7形態として、第1ないし第6のいずれかの形態において、排ガス処理装置は、さらに、排ガス処理部で使用された循環液をろ過するフィルタを備えていてもよい。熱交換チューブ設置空間には、フィルタを透過した循環液が導かれてもよい。かかる形態によれば、排ガス処理部において循環液に固体成分が含有されても、当該固体成分がフィルタによって除去された循環液が熱交換チューブ設置空間に導かれる。したがって、固体成分が熱交換チューブの伝熱面に付着することを抑制できる。その結果、熱交換チューブの熱交換効率の低下を抑制できるとともに、熱交換チューブのメンテナンス(清掃)負荷を低減できる。
 本発明の第8の形態として、第1ないし第7のいずれかの形態において、循環液貯留部は、少なくとも一部分が、仕切壁によって上下方向に仕切られた2以上の室であって、隣り合う室同士が連通する2以上の室を有していてもよい。熱交換チューブ設置空間は、2以上の室のうちの一部の室に確保されていてもよい。かかる形態によれば、循環液貯留部の容量を立体的に有効利用できるので、熱交換チューブの設置自由度が向上する。
 本発明の第9の形態として、第1ないし第8のいずれかの形態において、熱交換チューブは、樹脂材料を含んで形成されてもよい。かかる形態によれば、排ガス中の酸性ガスが循環液に溶解する場合に、酸性の循環液によって熱交換チューブが腐食することを抑制できる。
 本発明の第10の形態として、第1ないし第9のいずれかの形態において、循環液貯留部は、堰によって、第1室と第2室とに分離されていてもよい。排ガス処理部で使用される液体のうちの、排ガスの流通経路の上流側で使用された液体が第1室に流入し、排ガスの流通経路の下流側で使用された液体が第2室に流入してもよい。第2室には、第1室から堰を越えてオーバフローして循環液が流入してもよい。熱交換チューブ設置空間は、第2室に確保されてもよい。排ガスの流通経路の上流側で使用された循環液には、相対的に多量の固体成分が含まれるが、第10の実施形態によれば、当該固体成分は、第1室に沈殿するので、第2室に設けられる熱交換チューブの伝熱面に固体成分が付着することを抑制できる。
 本発明の第11の形態として、第7の形態を少なくとも含む第10の形態において、第1室には、フィルタとしての第1のフィルタが設けられていてもよい。第1室に流入した液体は、第1のフィルタを透過した後に、第2室に流入してもよい。かかる形態によれば、第1室に貯留された循環液に含まれる固体成分が第2室に移動することがいっそう抑制され、その結果、熱交換チューブの伝熱面に固体成分が付着することをいっそう抑制できる。
 本発明の第12の形態として、第7の形態を少なくとも含む第10または第11の形態において、第2室の上方には、フィルタとしての第2のフィルタが設けられていてもよい。排ガスの流通経路の下流側で使用された液体は、第2のフィルタを透過した後に、第2室に流入してもよい。かかる形態によれば、排ガスの流通経路の下流側で使用された液体に固体成分が含有されても、当該固体成分は、第2のフィルタで捕捉されるので、熱交換チューブの伝熱面に固体成分が付着することを抑制できる。
本発明の第1実施例としての排ガス処理装置の概略構成を示す説明図である。 循環水貯留部を模式的に示す正面図である。 熱交換チューブ設置空間の内部構成を模式的に示す説明図である。 熱交換チューブの構成を示す説明図である。 第2実施例としての排ガス処理装置の構成の一部分を示す説明図である。 第3実施例としての排ガス処理装置の構成の一部分を示す説明図である。
 A.第1実施例:
 図1は、第1実施例としての排ガス処理装置10の概略構成を示す。本実施例では、排ガス処理装置10は、半導体製造工程において排出される排ガスを、大気に放出する前に処理する装置である。排ガス処理装置10は、排ガス処理部15と、循環部70と、熱交換部80とを備える。排ガス処理部15は、燃焼処理部20と、冷却部30と、洗浄部40とを備えており、循環水W1用を使用して、排ガス処理を行う。循環水W1は、単なる水であってもよいし、所定の添加物(例えば、酸性ガスを中和するアルカリ剤)が添加された水であってもよい。循環部70は、循環水貯留部50と、循環配管71,73と、循環ポンプ72とを備えており、循環水W1を循環させる。熱交換部80は、循環水W1と冷却水W5との熱交換を行う。
 燃焼処理部20は、上方から流入した排ガスを、別途供給される空気および助燃ガスと混合し、排ガスを燃焼して、下方に導く。燃焼温度は、例えば、1,700℃である。この燃焼処理部20は、水流フランジ部21と、燃焼室22とを備える。燃焼室22は、排ガスを所定時間滞留させるための容積を有しており、ここで排ガスが完全燃焼される。かかる排ガスの燃焼によって、固体成分(SiO2等)や酸性ガスが燃焼副生成物として生成される。
 本実施例では、燃焼室22の内壁面23には、水流フランジ部21から供給される循環水W1によって、水膜が形成される。これにより、内壁面23が高温化することを抑制できるので、比較的安価な材料で内壁面23を形成でき、アルミナ系などガラスセラミックス材料等の高価な耐熱材料を使用する必要がない。また、内壁面23が排ガスと接触することが抑制されるので、内壁面23の腐食を抑制できる。内壁面23は、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)等の耐熱性および耐食性を有する樹脂材料でコーティングされていてもよい。こうすれば、循環水W1に酸性ガスが溶解しても、酸性の循環水W1によって内壁面23が腐食することを抑制できる。内壁面23に固体成分が付着しにくくなり、燃焼室22の清掃手間を低減できる。
 燃焼処理部20において燃焼処理された排ガスは、燃焼処理部20の下部に接続された冷却部30に導かれる。冷却部30では、ノズル31によって噴霧された循環水W1によって、排ガスが冷却される。冷却部30において冷却された排ガスは、洗浄部40に導かれる。冷却部30において噴霧された循環水W1の一部は、蒸発して排ガスに含まれるが、循環水W1の大部分は、冷却部30の底面を流れて、燃焼室22に流入し、その後、後述する第1室52に流入する。
 洗浄部40は、本実施例では、複数のノズル41を備えた洗浄塔(スプレー塔)として構成される。ノズル41から噴霧される循環水W1によって、排ガス中に含まれる固体成分や酸性ガスが捕捉される。ただし、洗浄部40の形式は、特に限定するものではなく、湿式洗浄を行う任意の形式、例えば、ファンスクラバとすることができる。湿式洗浄された排ガスは、洗浄部40の上方から排出される。洗浄部40の下方には、第2のフィルタ43が設けられており、ノズル41から噴霧された循環水W1は、第2のフィルタ43を透過して、下方に移動する。
 循環水貯留部50は、循環水W1を貯留するタンクである。循環水貯留部50は、任意の構造体とすることができ、例えば、コンクリートで築造された水槽であってもよいし、樹脂製の容器であってもよい。循環水貯留部50は、その内部空間を2分割する堰51を備えている。循環水貯留部50は、堰51によって、第1室52と第2室53とに分離される。第1室52は、燃焼処理部20の直下に配置されており、第2室53は、洗浄部40の直下に配置されている。
 燃焼処理部20において水膜を形成した循環水W1は、そのまま下方に移動して、第1室52に流入し、貯留される。水膜を形成した循環水W1には、燃焼処理部20における副生成物としての固体成分(粉塵)が多量に含まれる。また、比較的大型の固体成分は、自重によって、第1室52に落下する。第1室52では、循環水W1に含まれる固体成分が沈殿する。また、第1室52には、堰51の近傍に第1のフィルタ54が設けられている。第1室52に貯留された循環水W1の高さが堰51の高さを超えると、第1のフィルタ54を透過した循環水W1が堰51を越えてオーバフローし、第2室53に流入する。このため、第1室52の水位LV1は、第2室53の水位LV2よりも高くなっている。上述の説明からも明らかなように、第1室52に貯留される循環水W1に含まれる固体成分は、その大半が沈殿によって除去され、さらに、残りのほとんどが第1のフィルタ54によって除去された後に、第2室53に流入する。堰51は、第1のフィルタ54のろ過負荷、換言すれば、清掃頻度を低減する効果がある。なお、第1室52の側面には、開閉可能な点検窓を設けてもよい。こうすれば、固体成分の沈殿状況や第1のフィルタ54の付着状況を確認できると共に、必要に応じて容易に清掃できる。
 第2室53には、第1室52からの流入水の他に、洗浄部40で噴霧された循環水W1、すなわち、第2のフィルタ43を透過した循環水W1が流入する。洗浄部40で噴霧された循環水W1は、排ガス中の固体成分を捕捉するので、当該循環水W1には、固体成分が含まれる。この固体成分の大半は、第2のフィルタ43によって捕捉される。第2室53に貯留された循環水W1は、第2室53の内部に配置された熱交換チューブ82(詳細は後述)によって冷却された後、循環路、すなわち、循環水W1を流通または一次貯留するための空間としての循環水貯留部50および循環配管71,73を介して、再び、燃焼処理部20、冷却部30および洗浄部40に供給される。図1では、燃焼処理部20に供給される循環水W1を循環水W2として、洗浄部40に供給される循環水W1を循環水W3として示している。なお、第2室53の側面には、開閉可能な点検窓を設けてもよい。こうすれば、第2のフィルタ43の付着状況および清掃作業や、熱交換チューブ82の設置、交換、清掃作業等を行いやすい。
 このように循環使用される循環水W1は、供給口74から補給水W4(例えば、工業用水や水道水)が連続的または間欠的に補給される。かかる補給水W4の補給によって、循環水W1を冷却できる。また、循環水W1には、排ガス中に含まれる酸性ガスが溶解し、その濃度は循環水W1の循環によって徐々に上昇していくが、補給水W4の補給によれば、循環水W1の酸性濃度の上昇を抑制できる。循環水W1は、排出口75を介して、連続的または間欠的にその一部が排出される。これによっても、循環水W1の酸性ガスの濃度が過剰に上昇することが防止される。
 熱交換部80は、冷却配管81,83と、冷却配管81,83の間に配置された熱交換チューブ82とを備えている。熱交換部80は、循環ポンプ(図示省略)によって、冷却水W5を循環させる。熱交換チューブ82は、上述の通り、第2室53の内部の水位LV2よりも低い位置に配置されている。熱交換チューブ82の内部に冷却水W5が流れることによって、冷却水W5と、熱交換チューブ82の外部(第2室53)を流れる循環水W1との間で熱交換が行われる。これによって、循環水W1は冷却される。
 図2は、循環水貯留部50の断面構成を模式的に示す。図示するように、第1室52には、燃焼処理部20の下端部に接続される燃焼部接続短管24が挿入されている。第1室52の底部には、固体成分が沈殿するための沈殿スペース55が確保されている。
 第2室53は、その内部空間を上下に仕切る仕切壁56を有している。この仕切壁56によって、第2室53は、上側の貯留室57と、下側の熱交換チューブ設置空間60とに仕切られる。貯留室57は、主に、循環水W1の貯留を目的としており、熱交換チューブ設置空間60は、主に、熱交換チューブ82の設置を目的としている。貯留室57と熱交換チューブ設置空間60とは、連通穴58によって連通しており、循環水W1は、連通穴58を介して、貯留室57から熱交換チューブ設置空間60に流入する。第2室53には、洗浄部40の下端部に接続される洗浄部接続短管44が挿入されている。このように第2室53を仕切ることによって、第2室53の容量を立体的に有効利用できるので、熱交換チューブ82の設置自由度が向上する。なお、第2室53は、上下に3室以上に仕切られていてもよい。この場合、熱交換チューブ設置空間60は、3室以上の室のうちの一部の任意の室に確保されていてもよい。
 また、貯留室57には、水位計59が設けられている。本実施例では、水位計59によって検出される水位が所定以上に高くなった場合には、排ガス処理装置10を制御する制御部(図示省略)によって、冷却水W5の熱交換チューブ82への供給が停止される。かかる構成によれば、万が一、冷却水W5が熱交換チューブ82から漏洩して、水位LV2が上昇しても、循環水W1が循環水貯留部50から溢れ出すことがない。冷却水W5が熱交換チューブ82から漏洩した場合には、水位LV2の上昇速度は、通常時の水位変動時のそれよりも速くなるので、制御部は、水位計59の検出結果をモニタリングして、その変化速度から、冷却水W5の漏洩を検知してもよい。
 図3は、循環水貯留部50の平面構成を模式的に示す。図3において、第2室53に対応する領域は、熱交換チューブ設置空間60として示している。図示するように、熱交換チューブ設置空間60には、3つの仕切壁61,62,63が設けられており、循環水W1の流れ方向が平面上で3回折り返される蛇行流路として形成されている。熱交換チューブ82は、この蛇行流路に沿って配置されている。かかる構成によれば、小さな設置スペース内で熱交換チューブ82の伝熱面積を大きくできるとともに、循環水が熱交換チューブ82の伝熱面に接触する時間を長くすることができる。その結果、熱交換効率を高めることができる。また、循環水W1の流路断面積が小さくなって、流速が増大することや、循環水W1が蛇行することによって、循環水W1の流れが乱流となり、熱交換効率が向上する。
 また、図3に示すように、本実施例では、熱交換チューブ82の内部を流れる冷却水W5と、熱交換チューブ82の外部を流れる循環水W1とは、反対方向に流通される。このように、熱交換する2つの流体を対向流とすることによって、熱交換効率を高めることができる。
 図4は、熱交換チューブ82の概略構成を示す。熱交換チューブ82は、本実施例では、多管チューブ式であり、図4(a)に示すように、複数のチューブ84とチューブ溶着部85とを備えている。チューブ84の内部には、冷却水W5が流通する。本実施例では、チューブ84は、PFAによって形成されている。このため、チューブ84の外部(熱交換チューブ設置空間60)に酸性の循環水W1が流通しても、チューブ84の腐食が好適に抑制される。また、PFAによれば、チューブ84の外表面への固体成分の付着も抑制される。こうすれば、チューブ84の交換や清掃の頻度を著しく低減することができ、メンテナンスに係るコストや手間を低減できる。チューブ84の材料は、PFAに限らず、所定の耐腐食性、伝熱性、耐熱性、耐圧性を有する任意の樹脂材料を含んでいればよく、例えば、樹脂材料は、PTFE(ポリテトラフルオロエチレン)であってもよい。また、チューブ84は、その外面がPFA等でコーティングされた金属製のチューブとしてもよい。こうしてもある程度の耐食性を確保できる。
 チューブ溶着部85には、複数の貫通穴86が形成されている。ここでは、貫通穴86の数は、チューブ84の数に等しい。この貫通穴86の各々には、チューブ84が1対1の対応関係で挿入され、チューブ84の各々は、チューブ溶着部85に溶着されている。かかるチューブ溶着部85は、チューブ84の両端に設けられる。これによって、図4(b)に示すように、チューブ84の間には、隙間87が形成される。かかる構成によれば、隙間87に循環水W1が入り込むことによって、熱交換効率を向上できる。しかも、チューブ溶着部85によって循環水W1の流れが乱流になるので、熱交換効率を高めることができる。また、2つのチューブ溶着部85の間には、複数のチューブ分散板が設けられる。チューブ分散板には、複数の貫通穴が設けられており、これらの貫通穴の各々には、チューブ84が1体1の対応関係で挿入される。かかるチューブ分散板によれば、チューブ84の延長に亘って隙間87を好適に確保でき、チューブ溶着部85と同様の効果を奏する。
 チューブ84は、できるだけ小口径のものを多数束ねて使用することが望ましい。こうすれば、熱交換チューブ82の容積を増大させることなく、伝熱面積を増大できる。また、熱交換効率を高めるために、チューブ84の肉厚は、できるだけ小さい方が望ましい。本実施例では、チューブ84には、一般に市販されているPFAチューブよりも薄肉のものを使用している。本実施例のように、複数のチューブ84を使用する構成とすれば、チューブ84の数を変更することによって、熱交換チューブ82の能力を変更することもできる。例えば、規格化したチューブ84を量産しておき、排ガス処理装置10の熱負荷に応じて、使用するチューブ84の数を変えれば、幅広い排ガス処理条件に柔軟に対応することが可能である。
 かかる複数のチューブ84を束ねるチューブ溶着部85は、カブラにねじ込んで接続され、このカプラは、冷却配管81,83に接続される。なお、接続形態は、特に限定するものではなく、例えば、チューブ溶着部85とカプラとがフランジ構造を有し、これらがフランジ接続されてもよい。
 上述した排ガス処理装置10によれば、熱交換チューブ82が循環水貯留部50(より具体的には、第2室53)の内部に設けられるので、熱交換チューブ82用の設置スペースを別途確保する必要がない。したがって、排ガス処理装置10の設置スペースを増大さることなく、排ガス処理に必要な水量を低減できる。さらに、循環水貯留部50は、比較的大きなスペースを有するので、伝熱面積を大きく確保でき、熱交換効率を高めやすい。しかも、万が一、冷却水W5が熱交換チューブ82から漏洩したとしても、冷却水W5が循環水W1の循環路内に漏洩するに過ぎず、冷却水W5が外部(系外)に漏洩することがない。また、熱交換チューブ82が循環水W1の循環路の外部に設けられる場合に必要となる循環水W1を熱交換チューブ82に導くための配管が不要になるので、循環水W1用の配管の延長距離を短くできるとともに、配管の接続箇所を低減できる。このため、酸性の循環水W1の漏洩リスクを低減できる。
 また、排ガス処理装置10によれば、循環水貯留部50の壁面が熱交換器のケーシングを兼ねた構成を有している。換言すれば、熱交換チューブ82と循環水貯留部50とが熱交換器を構成する。したがって、既成の熱交換ユニットを循環水貯留部50に配置する場合と比べて、排ガス処理装置10の装置構成を簡略化できる。
 また、排ガス処理装置10によれば、金属よりも耐食性に優れるが、伝熱性に劣る樹脂材料を熱交換チューブ82に使用する一方で、熱交換チューブ82および熱交換チューブ設置空間60の上述した種々の構成によって、熱交換チューブ82の熱交換効率を高めることで、耐食性と伝熱性との両立を可能にしている。
 さらに、排ガス処理装置10によれば、第2のフィルタ43、堰51および第1のフィルタ54によって固体成分が概ね除去された循環水W1が熱交換チューブ82に導かれるので、固体成分が熱交換チューブ82の伝熱面に付着することを抑制できる。その結果、熱交換チューブ82の熱交換効率の低下を抑制できるとともに、熱交換チューブ82の清掃負荷を低減できる。
 B.第2実施例:
 図5は、第2実施例としての排ガス処理装置の構成の一部分を示す。図5において、第1実施例(図1)と同一の構成要素については、図1と同一の符号を付している。第2実施例の排ガス処理装置は、第1実施例の熱交換チューブ82に代えて、熱交換器282を備えている点が第1実施例と異なっており、その他の点については、第1実施例と同様である。以下、第1実施例と異なる点について説明する。熱交換器282は、熱交換チューブ82と循環水管288とを備えている。循環水管288の内部には、熱交換チューブ82が収容される。循環水管288は、蛇行流路を形成するように水平方向に湾曲した形状を有しており、熱交換チューブ82も循環水管288に追従した形状を有している。循環水管288は、循環ポンプ72の吸込口に接続される。なお、循環水管288の形状は、特に限定されるものではなく、鉛直方向に延びて形成された渦巻き形状であってもよい。また、循環水管288は、内部に仕切構造を備えることによって、その内部に蛇行流路が形成されてもよい。
 循環水貯留部50に貯留された循環水W1は、循環水管288の内部に流入し、熱交換チューブ82の内部を流れる冷却水W5との間で熱交換した後、循環ポンプ72に吸引される。かかる構成は、簡易的なシェルアンドチューブ方式と見なすことができる。かかる構成によれば、熱交換チューブ設置空間60に仕切壁61~63を設けずに、第1実施例と同様の効果を奏する。つまり、熱交換チューブ設置空間60の構造を簡略化できる。また、熱交換器282を循環水貯留部50内に設置する際には、循環水貯留部50の外部において、循環水管288の中に熱交換チューブ82を設置した後、これらを循環水貯留部50内に設置できる。したがって、循環水貯留部50の内部での作業が少なくなり、設置作業を容易にすることができる。
 C.第3実施例:
 図6は、第3実施例としての排ガス処理装置の構成の一部分を示す。第3実施例の排ガス処理装置は、第1実施例の熱交換チューブ82に代えて、第1のチューブ群384aと、第2のチューブ群384bと、ヘッダ管381a,382a,381b,382bとを備えている点が第1実施例と異なっており、その他の点については、第1実施例と同様である。以下、第1実施例と異なる点について説明する。ヘッダ管381a,382aは、第1のチューブ群384aの端部と接続されている。同様に、ヘッダ管381b,382bは、第2のチューブ群384bの端部と接続されている。
 ヘッダ管381bに導入された冷却水W5は、第2のチューブ群384b内を流通し、ヘッダ管382bに流入する。ヘッダ管382bに流入した冷却水W5は、ヘッダ管382aに流入した後、第1のチューブ群384a内を流通し、ヘッダ管381aに流入する。第1のチューブ群384aおよび第2のチューブ群384bは、それぞれ、複数のチューブがプレート状に配列されて構成される。図6では、各チューブは、隙間を空けて配列されているように図示しているが、実際は、ほぼ隙間がない状態で配列されている。
 かかる第1のチューブ群384aおよび第2のチューブ群384bは、相互に離間して設けられており、その結果、循環水貯留部50(熱交換チューブ設置空間60)は、第1のチューブ群384aおよび第2のチューブ群384bによって仕切られ、循環水W1の蛇行流路が形成されている。かかる構成によれば、熱交換チューブ設置空間60に仕切壁61~63を設けずに、第1実施例と同様の効果を奏する。つまり、熱交換チューブ設置空間60の構造を簡略化できる。しかも、第1実施例の熱交換チューブ82と比べて、循環水W1の循環路の幅を狭くできる。その結果、第1のチューブ群384aおよび第2のチューブ群384bの設置の自由度が向上する。また、循環水W1の流速が増大し、循環水W1が乱流となるため、より効率的な熱交換が可能である。なお、第1のチューブ群384aおよび第2のチューブ群384bは、相互に独立して、その内部に冷却水W5を流通させるものであってもよい。また、チューブ群は、2以上設けられていればよく、例えば、3つ設けられていてもよい。
 C.変形例:
 C-1.変形例1:
 循環水W1の循環路内には、温度センサが設けられていてもよい。温度センサによって、循環水W1の温度を監視すれば、熱交換チューブ82に微細な固体成分が付着し、熱交換効率が低下することを検知できる。その結果、作業員は、熱交換チューブ82のメンテナンス(清掃等)のタイミングを好適に判断することができ、また、排ガス処理装置10の安全性が向上する。
 C-2.変形例2:
 上述した実施例は、熱エネルギーを利用して排ガスを処理し、処理された排ガスを循環水によって冷却する種々の排ガス処理装置に適用可能であり、例えば、燃焼式、触媒式、プラズマ式の排ガス処理装置に提供可能である。
 以上、いくつかの実施例に基づいて本発明の実施の形態について説明してきたが、上記した発明の実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明には、その等価物が含まれることはもちろんである。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、特許請求の範囲および明細書に記載された各構成要素の任意の組み合わせ、または、省略が可能である。例えば、洗浄部40で噴霧された循環水W1を、冷却部30を介して第1室52に流入させる場合や、排ガスに含まれる固体成分が少ない場合には、第2のフィルタ43は、省略してもよい。また、熱交換器82に求められる熱交換効率によっては、熱交換効率を向上するための種々の構成の少なくとも一部を省略してもよい。また、循環水貯留部50が堰51を備えていない場合には、循環水貯留部50は、その全体が、上下に仕切られてもよい。
  10…排ガス処理装置
  15…排ガス処理部
  20…燃焼処理部
  21…水流フランジ部
  22…燃焼室
  23…内壁面
  24…燃焼部接続短管
  30…冷却部
  31…ノズル
  40…洗浄部
  41…ノズル
  43…第2のフィルタ
  44…洗浄部接続短管
  50…循環水貯留部
  51…堰
  52…第1室
  53…第2室
  54…第1のフィルタ
  55…沈殿スペース
  56…仕切壁
  57…貯留室
  58…連通穴
  59…水位計
  60…熱交換チューブ設置空間
  61~63…仕切壁
  70…循環部
  71,73…循環配管
  72…循環ポンプ
  74…供給口
  75…排出口
  80…熱交換部
  81…冷却配管
  82…熱交換チューブ
  84…チューブ
  85…チューブ溶着部
  86…貫通穴
  87…隙間
  282…熱交換器
  288…循環水管
  384a…第1のチューブ群
  384b…第2のチューブ群
  381a,382a,381b,382b…ヘッダ管
  W1,W2,W3…循環水
  W4…補給水
  W5…冷却水
  LV1,LV2…水位

Claims (12)

  1.  排ガス処理装置であって、
     熱エネルギーを利用して排ガスを処理する排ガス処理部であって、処理された排ガスを、液体を使用して冷却する排ガス処理部と、
     前記液体を循環液として循環路内を循環させる循環部と、
     前記循環液を冷却するための熱交換チューブであって、該熱交換チューブの内部に流れる冷却液と、該熱交換チューブの外部に流れる前記循環液との間で熱交換を行う熱交換チューブと、
     前記循環液を貯留する循環液貯留部と
     を備え、
     前記熱交換チューブは、前記循環液貯留部の内部の少なくとも一部に確保された熱交換チューブ設置空間に配置される
     排ガス処理装置。
  2.  請求項1に記載の排ガス処理装置であって、
     前記熱交換チューブは、前記冷却液が前記循環液と反対の方向に流れるように構成された
     排ガス処理装置。
  3.  請求項1または請求項2に記載の排ガス処理装置であって、
     前記熱交換チューブは、該熱交換チューブの内部を流れる前記冷却液と、前記循環液貯留部を流れる前記循環液との間で熱交換を行う
     排ガス処理装置。
  4.  請求項3に記載の排ガス処理装置であって、
     前記熱交換チューブ設置空間は、前記循環液が蛇行して流れる蛇行流路として形成されており、
     前記熱交換チューブは、前記蛇行流路に沿って配置される
     排ガス処理装置。
  5.  請求項1または請求項2に記載の排ガス処理装置であって、
     さらに、前記熱交換チューブを内部に収容する循環液管であって、前記熱交換チューブと前記循環液管との間に前記循環液を流通させるための循環液管を備え、
     前記熱交換チューブは、該熱交換チューブの内部を流れる前記冷却液と、前記循環液貯留部から前記循環液管に流入した前記循環液との間で熱交換を行い、
     前記循環液管は、前記循環液が蛇行して流れる蛇行流路として形成されている
     排ガス処理装置。
  6.  請求項1または請求項2に記載の排ガス処理装置であって、
     前記熱交換チューブは、複数のチューブがプレート状に配列されて構成されるチューブ群を複数有しており、
     前記複数のチューブ群は、相互に離間して前記熱交換チューブ設置空間に配置され、
     前記熱交換チューブ設置空間は、前記複数のチューブ群によって仕切られて、前記循環液が蛇行して流れる蛇行流路として形成される
     排ガス処理装置。
  7.  請求項1ないし請求項6のいずれか一項に記載の排ガス処理装置であって、
     さらに、前記排ガス処理部で使用された前記循環液をろ過するフィルタを備え、
     前記熱交換チューブ設置空間には、前記フィルタを透過した前記循環液が導かれる
     排ガス処理装置。
  8.  請求項1ないし請求項7のいずれか一項に記載の排ガス処理装置であって、
     前記循環液貯留部は、少なくとも一部分が、仕切壁によって上下方向に仕切られた2以上の室であって、隣り合う室同士が連通する2以上の室を有し、
     前記熱交換チューブ設置空間は、前記2以上の室のうちの一部の室に確保された
     排ガス処理装置。
  9.  請求項1ないし請求項8のいずれか一項に記載の排ガス処理装置であって、
     前記熱交換チューブは、樹脂材料を含んで形成される
     排ガス処理装置。
  10.  請求項1ないし請求項9のいずれか一項に記載の排ガス処理装置であって、
     前記循環液貯留部は、堰によって、第1室と第2室とに分離されており、
     前記排ガス処理部で使用される前記液体のうちの、前記排ガスの流通経路の上流側で使用された前記液体が前記第1室に流入し、前記排ガスの前記流通経路の下流側で使用された前記液体が前記第2室に流入し、
     前記第2室には、前記第1室から前記堰を越えてオーバフローして前記循環液が流入し、
     前記熱交換チューブ設置空間は、前記第2室に確保される
     排ガス処理装置。
  11.  請求項7を少なくとも引用する請求項10に記載の排ガス処理装置であって、
     前記第1室には、前記フィルタとしての第1のフィルタが設けられ、
     前記第1室に流入した前記液体は、前記第1のフィルタを透過した後に、前記第2室に流入する
     排ガス処理装置。
  12.  請求項7を少なくとも引用する請求項10または請求項11に記載の排ガス処理装置であって、
     前記第2室の上方には、前記フィルタとしての第2のフィルタが設けられ、
     前記排ガスの前記流通経路の前記下流側で使用された前記液体は、前記第2のフィルタを透過した後に、前記第2室に流入する
     排ガス処理装置。
PCT/JP2014/071321 2014-08-12 2014-08-12 排ガス処理装置 WO2016024334A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/071321 WO2016024334A1 (ja) 2014-08-12 2014-08-12 排ガス処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/071321 WO2016024334A1 (ja) 2014-08-12 2014-08-12 排ガス処理装置

Publications (1)

Publication Number Publication Date
WO2016024334A1 true WO2016024334A1 (ja) 2016-02-18

Family

ID=55303978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071321 WO2016024334A1 (ja) 2014-08-12 2014-08-12 排ガス処理装置

Country Status (1)

Country Link
WO (1) WO2016024334A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114346U (ja) * 1974-07-19 1976-02-02
JPH0673678U (ja) * 1993-03-22 1994-10-18 カルソニック株式会社 活魚輸送用水槽装置
JPH0949626A (ja) * 1995-08-07 1997-02-18 Seiwa Kogyo Kk 塩素系ガスを発生する高分子系廃棄物の焼却処理方法並びに焼却炉
JP2000325742A (ja) * 1999-05-21 2000-11-28 Babcock Hitachi Kk 脱硫装置出口ガスからの脱塵と水または水蒸気回収方法と装置
JP2003106576A (ja) * 2001-09-28 2003-04-09 Hitachi Ltd 氷蓄熱式空気調和装置
WO2008075509A1 (ja) * 2006-12-19 2008-06-26 Taiyo Nippon Sanso Corporation 熱交換器
JP2009018290A (ja) * 2007-07-13 2009-01-29 Ebara Corp 排ガス洗浄装置
JP2010121091A (ja) * 2008-11-21 2010-06-03 Mogami Kiko:Kk 廃プラスチック処理装置および処理方法
JP2011133201A (ja) * 2009-12-25 2011-07-07 Rion Tech:Kk 温排水回収熱交換器及び温排水回収熱交換装置
WO2011104878A1 (ja) * 2010-02-26 2011-09-01 株式会社 日立製作所 三流体熱交換器およびそれを用いた空調給湯システム
JP2012218680A (ja) * 2011-04-13 2012-11-12 Calsonic Kansei Corp 複合熱交換器
JP2013208542A (ja) * 2012-03-30 2013-10-10 Babcock Hitachi Kk 排水処理装置と方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114346U (ja) * 1974-07-19 1976-02-02
JPH0673678U (ja) * 1993-03-22 1994-10-18 カルソニック株式会社 活魚輸送用水槽装置
JPH0949626A (ja) * 1995-08-07 1997-02-18 Seiwa Kogyo Kk 塩素系ガスを発生する高分子系廃棄物の焼却処理方法並びに焼却炉
JP2000325742A (ja) * 1999-05-21 2000-11-28 Babcock Hitachi Kk 脱硫装置出口ガスからの脱塵と水または水蒸気回収方法と装置
JP2003106576A (ja) * 2001-09-28 2003-04-09 Hitachi Ltd 氷蓄熱式空気調和装置
WO2008075509A1 (ja) * 2006-12-19 2008-06-26 Taiyo Nippon Sanso Corporation 熱交換器
JP2009018290A (ja) * 2007-07-13 2009-01-29 Ebara Corp 排ガス洗浄装置
JP2010121091A (ja) * 2008-11-21 2010-06-03 Mogami Kiko:Kk 廃プラスチック処理装置および処理方法
JP2011133201A (ja) * 2009-12-25 2011-07-07 Rion Tech:Kk 温排水回収熱交換器及び温排水回収熱交換装置
WO2011104878A1 (ja) * 2010-02-26 2011-09-01 株式会社 日立製作所 三流体熱交換器およびそれを用いた空調給湯システム
JP2012218680A (ja) * 2011-04-13 2012-11-12 Calsonic Kansei Corp 複合熱交換器
JP2013208542A (ja) * 2012-03-30 2013-10-10 Babcock Hitachi Kk 排水処理装置と方法

Similar Documents

Publication Publication Date Title
JP6196481B2 (ja) 排ガス処理装置
JP4937886B2 (ja) 燃焼式排ガス処理装置
JP6336059B2 (ja) 熱交換器及び該熱交換器を用いた排ガス処理装置
KR101508972B1 (ko) 열전도성 플라스틱 냉각관을 구비한 스크러버용 제습장치
TWI307393B (ja)
CN105018953A (zh) 一种加热消泡装置
WO2016024334A1 (ja) 排ガス処理装置
JP6114726B2 (ja) 排ガス用熱交換器
JP2009174780A (ja) エコノマイザ
KR101745908B1 (ko) 스크러버
CN103673687B (zh) 静电式油烟净化器中的冷却装置
RU218778U1 (ru) Скруббер
CN109289229B (zh) 一种开放式冷凝回流装置
JP2022072981A (ja) 排ガス処理設備
CN105600757A (zh) 一种模块化湿法制硫酸用冷凝装置
JP2008190780A (ja) 水冷媒熱交換器
JP5246487B2 (ja) 中和装置、並びに、潜熱回収型給湯装置
CN205759761U (zh) 基于气流清洁的蒸发器
JP2007165653A (ja) 気泡除去方法及び気泡除去装置
CN214051067U (zh) 一种耐腐蚀石墨改性聚丙烯降膜吸收器
KR102468748B1 (ko) 폐열 회수 시스템 및 방법
CN218424627U (zh) 一种罐体结构及cip清洗系统
KR101786924B1 (ko) 스크러버 냉각 및 제습장치
JP2008122033A (ja) 給湯システムのガスクーラ
JP6325511B2 (ja) 熱交換器及び熱交換システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14899829

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14899829

Country of ref document: EP

Kind code of ref document: A1