WO2016021283A1 - スイッチング電源装置 - Google Patents

スイッチング電源装置 Download PDF

Info

Publication number
WO2016021283A1
WO2016021283A1 PCT/JP2015/065183 JP2015065183W WO2016021283A1 WO 2016021283 A1 WO2016021283 A1 WO 2016021283A1 JP 2015065183 W JP2015065183 W JP 2015065183W WO 2016021283 A1 WO2016021283 A1 WO 2016021283A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power supply
detection circuit
switching power
circuit
Prior art date
Application number
PCT/JP2015/065183
Other languages
English (en)
French (fr)
Inventor
鵜野良之
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201580036966.3A priority Critical patent/CN106489232B/zh
Priority to DE112015003619.9T priority patent/DE112015003619T5/de
Priority to JP2016539883A priority patent/JP6327347B2/ja
Publication of WO2016021283A1 publication Critical patent/WO2016021283A1/ja
Priority to US15/396,848 priority patent/US9966844B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter

Definitions

  • the present invention relates to a switching power supply device including a converter.
  • a switching power supply equipped with a converter the voltage and current of the converter are measured in order to detect an abnormality or detect an operating state. Further, an error (deviation) in output voltage caused by factors such as resistance in wiring and variations in reference voltage is stored in a storage device at the time of shipment from a factory and corrected.
  • Patent Document 1 discloses a power supply failure detection circuit that detects an abnormality of a power supply composed of a DC-DC converter and prevents an input voltage from being output to a load side as it is when an abnormality occurs.
  • a sign of a failure of a switch element is detected based on an input current flowing into a switch element connected in series to an output line that outputs to a load side, and a voltage applied to both ends of the switch element.
  • a threshold value calculated based on a load voltage detected at the time of factory shipment is stored in an EEPROM, and the threshold value and the load voltage are compared, thereby detecting an abnormality on the load side with high accuracy.
  • a power supply apparatus is disclosed.
  • the load voltage measured at the time of shipment from the factory is a value obtained by highly accurate measurement. Therefore, even when the correction method as in Patent Document 2 is used, a measurement terminal for measuring the voltage from the outside is required in the middle of the circuit.
  • an object of the present invention is to provide a switching power supply device that can detect a voltage in the middle of a circuit without correcting a voltage detection terminal and can correct the measurement result.
  • the present invention provides a converter that converts an input voltage input to a voltage input unit into a predetermined voltage by turning on and off the switch element, and a first semiconductor element having switch characteristics connected in series to the input side or output side of the converter
  • a first voltage detection circuit that detects a first voltage that is a voltage at a first end of the first semiconductor element connected to the converter; and a second voltage that is a voltage at a second end of the first semiconductor element.
  • Voltage detection circuit sampling means for comparing a detection signal detected by the first voltage detection circuit and the second voltage detection circuit with a reference voltage, and voltage data generated by the sampling means
  • a voltage calculation unit that calculates the measurement values of the first voltage and the second voltage according to a predetermined calculation formula using a storage unit, a storage unit that stores a coefficient of the calculation formula, Communication means for transmitting the measured values of the first voltage and the second voltage calculated by the pressure calculation unit to an external device and receiving the coefficient from the external device, the first voltage detection circuit and the second voltage
  • the detection circuit is the same circuit composed of elements of the same specification, and the reference voltage of the sampling means for sampling the detection signal detected by the first voltage detection circuit and the second voltage detection circuit is the same, and the first circuit
  • the predetermined calculation formula for calculating the measured values of the first voltage and the second voltage and the coefficients used for the calculation formula are the same.
  • the second voltage of the first semiconductor element may be obtained by directly measuring the voltage at the input terminal of the switching power supply device. Further, when the first semiconductor element is connected to the output side of the converter, the second voltage of the first semiconductor element may be directly measured by the voltage at the output terminal of the switching power supply device.
  • This is used in a calculation formula for calculating a measured value from the detection signal of the detection circuit so that the measured value of the directly measured input voltage (or output voltage) matches the measured value obtained from the second voltage detected by the detection circuit. Calculate and store coefficients. Further, by using the same coefficient in the calculation formula for calculating the first voltage measurement value from the detection signal of the detection circuit between the first semiconductor element and the converter, the measurement value of the first voltage with no error (small) can be obtained. It can be calculated. Therefore, the measurement value of the first voltage can be corrected without providing a measurement terminal for directly measuring the first voltage, and a small and highly efficient switching power supply device can be configured.
  • the first voltage detection circuit and the second voltage detection circuit are resistance voltage dividing circuits. In this configuration, the first voltage and the second voltage can be detected with a simple configuration.
  • each resistance element of the resistance voltage dividing circuit has the same manufacturing lot. In this configuration, variation in detection results due to the influence of each element of the detection circuit can be further reduced.
  • each resistance element of the resistance voltage dividing circuit is a single thin film network resistance element. In this configuration, the error due to each element of the detection circuit can be further reduced.
  • the first voltage detection circuit has a first buffer in the output unit
  • the second voltage detection circuit has a second buffer in the output unit. In this configuration, the reference voltage of the resistance voltage dividing circuit can be stably generated, and the error of the voltage detection result can be reduced.
  • each of the first buffer and the second buffer is a circuit having the same configuration having an operational amplifier, and the operational amplifier is an operational amplifier provided in one chip. In this configuration, errors due to the influence of the buffer can be eliminated.
  • the first semiconductor element is preferably a MOS-FET. With this configuration, it is possible to prevent an overvoltage from being output from the switching power supply device by turning off the MOS-FET when the converter fails.
  • the first semiconductor element is preferably a diode. In this configuration, for example, when a battery is connected to the switching power supply device, the reverse flow from the battery can be prevented when the polarity is reversed and the battery is connected.
  • the first semiconductor element is connected to an output side of the converter, a second semiconductor element having a switching characteristic connected to the input side of the converter, and a first end of the second semiconductor element connected to the converter
  • a third voltage detection circuit that detects a third voltage that is a voltage
  • a fourth voltage detection circuit that detects a fourth voltage that is a voltage at a second end of the second semiconductor element
  • the third voltage detection circuit A sampling means for sampling a detection signal detected by the four voltage detection circuit by comparing with a reference voltage; and the third voltage and the fourth voltage according to a predetermined calculation formula using voltage data generated by the sampling means.
  • a voltage calculation unit that calculates a measurement value, a storage unit that stores a coefficient of the calculation formula, and the measurement values of the third voltage and the fourth voltage calculated by the voltage calculation unit are external devices.
  • the reference voltage of the sampling means for sampling the detection signal detected by the circuit and the fourth voltage detection circuit is the same, and the predetermined calculation formula and the calculation formula for calculating the measured values of the third voltage and the fourth voltage
  • the coefficients used for are preferably the same.
  • the measured value can be corrected for both the input voltage and the output voltage of the converter, and a small and highly efficient switching power supply device can be configured.
  • the third voltage detection circuit and the fourth voltage detection circuit are resistance voltage dividing circuits. In this configuration, the third voltage and the fourth voltage can be detected with a simple configuration.
  • each resistance element of the resistance voltage dividing circuit has the same manufacturing lot. In this configuration, variation in detection results due to the influence of each element of the detection circuit can be further reduced.
  • each resistance element of the resistance voltage dividing circuit is a single thin film network resistance element. In this configuration, the error due to each element of the detection circuit can be further reduced.
  • the third voltage detection circuit has a third buffer in the output unit, and the fourth voltage detection circuit has a fourth buffer in the output unit.
  • the reference voltage of the resistance voltage dividing circuit can be stably generated, and the error of the voltage detection result can be reduced.
  • each of the third buffer and the fourth buffer is a circuit having the same configuration having an operational amplifier, and the operational amplifier is an operational amplifier provided in one chip. In this configuration, errors due to the influence of the buffer can be eliminated.
  • the second semiconductor element is preferably a MOS-FET. With this configuration, it is possible to prevent an overvoltage from being output from the switching power supply device by turning off the MOS-FET when the converter fails.
  • the second semiconductor element is preferably a diode. In this configuration, for example, when a battery is connected to the switching power supply device, the reverse flow from the battery can be prevented when the polarity is reversed and the battery is connected.
  • the measurement value of the first voltage can be corrected without providing a measurement terminal for directly measuring the first voltage between the converter and the first semiconductor element in the circuit, and the output voltage accuracy can be reduced with a small size.
  • a high switching power supply device can be configured.
  • Circuit diagram of switching power supply apparatus The figure which shows the case where the microcontroller has one AD converter The figure which shows the case where the microcontroller has two AD converters Circuit diagram of switching power supply apparatus according to Embodiment 2 Circuit diagram of switching power supply apparatus according to Embodiment 3 Circuit diagram of switching power supply apparatus according to Embodiment 4 Circuit diagram of switching power supply apparatus according to Embodiment 5 Circuit diagram of switching power supply apparatus according to Embodiment 6
  • FIG. 1 is a circuit diagram of a switching power supply device 101 according to the first embodiment.
  • the DC power supply E1 is connected to the voltage input parts P11 and P12 of the switching power supply apparatus 101.
  • a battery E2 is connected to the voltage output units P21 and P22 of the switching power supply device 101.
  • the switching power supply device 101 steps down the DC voltage from the DC power supply E1 and outputs it to the battery E2. Battery E2 charges the voltage.
  • Synchronous rectification type step-down converter 10 is connected to voltage input parts P11 and P12 via an input capacitor C1.
  • the step-down converter 10 includes switch elements Q1 and Q2, an inductor L1, and a capacitor C2.
  • the switch elements Q1 and Q2 are n-type MOS-FETs, and are switched by applying a gate signal by a control circuit 11 described later.
  • the switching power supply device 101 includes a resistance voltage dividing circuit that detects an output voltage for feedback control of the step-down converter 10.
  • This resistance voltage dividing circuit is composed of resistors R11 and R12. The output voltage detected by the resistance voltage dividing circuit is input to the control circuit 11.
  • the control circuit 11 includes a reference voltage Vref, an error amplifier 111, a comparator 112, and a triangular wave oscillator 113.
  • the reference voltage Vref is input to the non-inverting input terminal (+) of the error amplifier 111, and the connection point of the resistors R11 and R12 is connected to the inverting input terminal ( ⁇ ).
  • the value of the reference voltage Vref is adjusted by a microcontroller 13 described later.
  • the error amplifier 111 amplifies the error of the voltage input to each input terminal and outputs it to the non-inverting input terminal (+) of the comparator 112.
  • a triangular wave oscillator 113 is connected to the inverting input terminal ( ⁇ ) of the comparator 112.
  • the comparator 112 compares the output voltage from the error amplifier 111 with the output voltage from the triangular wave oscillator 113, and generates a PWM modulation signal having a duty corresponding to the comparison result.
  • the PWM modulation signal generated by the comparator 112 is input to the gate of the switch element Q1. Further, the PWM modulation signal generated by the comparator 112 is inverted by the inverting circuit 114 and input to the gate of the switch element Q2.
  • the control circuit 11 performs switching control of the switch elements Q1 and Q2 so that the output voltage of the step-down converter 10 becomes a specified value based on the voltage detection result by the resistance voltage dividing circuit. For example, when a DC voltage is input from the DC power supply E1, the control circuit 11 performs switching control of the switch elements Q1 and Q2 and outputs a constant voltage from the switching power supply device 101 so that the output voltage of the step-down converter 10 becomes a constant voltage. To do.
  • the switch element Q3 is connected to the output side of the step-down converter 10.
  • the switch element Q3 is an n-type MOS-FET and corresponds to a “first semiconductor element” according to the present invention.
  • Switch element Q3 has its drain connected to step-down converter 10 and its source connected to voltage output unit P21.
  • the switch element Q3 is a protection switch.
  • the switching element Q3 is switching-controlled by the microcontroller 13.
  • the microcontroller 13 turns off the switch element Q3 when the voltage detected by an input side resistance voltage dividing circuit described later exceeds a threshold value.
  • Each input / output side of the switch element Q3 is provided with an input side resistance voltage dividing circuit and an output side resistance voltage dividing circuit.
  • the input-side resistance voltage dividing circuit corresponds to a “first voltage detection circuit” according to the present invention.
  • the input-side resistance voltage dividing circuit includes resistors R21, R22, and R23, and detects an input voltage to the switch element Q3.
  • the output-side resistance voltage dividing circuit corresponds to a “second voltage detection circuit” according to the present invention.
  • the output side resistance voltage dividing circuit includes resistors R31, R32, and R33, and detects an output voltage from the switch element Q3.
  • the input voltage to the switch element Q3 is also the output voltage of the step-down converter 10, and is hereinafter referred to as an intermediate bus voltage.
  • the intermediate bus voltage corresponds to the “first voltage” according to the present invention, and the output voltage corresponds to the “second voltage” according to the present invention.
  • the outputs of the input-side resistance voltage dividing circuit and the output-side resistance voltage dividing circuit are connected to the microcontroller 13 via the buffers Bf1 and Bf2.
  • Buffers Bf1 and Bf2 are voltage follower circuits. By connecting the buffers Bf1 and Bf2 to the output of the resistance voltage dividing circuit, the reference signal of the resistance voltage dividing circuit can be stably output to the microcontroller 13.
  • the input side resistance voltage dividing circuit and the output side resistance voltage dividing circuit are circuits in which the same elements are similarly connected.
  • the resistors R21 and R31 are elements having the same specifications
  • the resistors R22 and R32 are elements having the same specifications
  • the resistors R23 and R33 are elements having the same specifications.
  • the resistors R21, R22, and R23 are connected in series
  • the resistors R31, R32, and R33 are also connected in series.
  • the elements having the same specifications mean that the nominal resistance values are the same, and that the product specifications such as the withstand voltage specifications, the error tolerance and the size are the same, so-called part numbers are the same.
  • it is desirable that the production lot is the same.
  • each of the resistors R21 and R31, the resistors R22 and R32, and the resistors R23 and R33 is desirably a single thin film network resistor element in order to further reduce an error caused by each element of the detection circuit.
  • each circuit includes the detection result of the voltage detected by the circuit.
  • the error due to the influence is almost the same (small). Therefore, when correcting a detection result including an error, correction using the same correction value can be performed for each of the input-side resistance voltage dividing circuit and the output-side resistance voltage dividing circuit. The correction will be described later.
  • the microcontroller 13 is operated by a controller drive power supply VDD, and includes a CPU 131, an AD converter 132, a memory 133, and a DA converter 134.
  • the microcontroller 13 turns on and off the switch element Q3.
  • the microcontroller 13 performs data communication with an external device (not shown) through the external input / output unit P3.
  • the CPU 131 corresponds to a “voltage calculation unit” according to the present invention.
  • the microcontroller 13 performs AD conversion on the reference signals from the input-side resistance voltage dividing circuit and the output-side resistance voltage dividing circuit by the AD converter 132, and detects the intermediate bus voltage and the output voltage.
  • the output voltage AD-converted by the AD converter 132 corresponds to “voltage data” according to the present invention.
  • the AD converter 132 corresponds to “sampling means” according to the present invention.
  • the microcontroller 13 may have one AD converter or two.
  • FIG. 2 is a diagram showing a case where the microcontroller 13 has one AD converter.
  • FIG. 3 is a diagram illustrating a case where the microcontroller 13 has two AD converters.
  • the microcontroller 13 has a multiplexer (MPX) 13 ⁇ / b> A in front of the AD converter 132, and inputs one of the reference signals from the input side resistance voltage dividing circuit and the output side resistance voltage dividing circuit to the AD converter 132. To do.
  • the microcontroller 13 has two AD converters 132A and 132B that are driven by the same reference voltage, and each of the AD converters 132A and 132B includes an input side resistance voltage dividing circuit and an output side resistance voltage dividing circuit. Each is connected.
  • Each of the AD converters 132A and 132B uses a plurality of comparators to compare an analog input signal with a plurality of reference voltages divided from the power supply voltage VDD, and an encoder converts an analog value into a digital value from the comparison result.
  • the reference voltage of the AD converter is the controller drive power supply VDD.
  • another reference voltage generation circuit may be provided as the reference voltage of the AD converters 132A and 132B.
  • the AD converter 132A and the AD converter 132B correspond to “sampling means” according to the present invention.
  • the microcontroller 13 outputs the output voltage data of the switch element Q3 detected by the output side resistance voltage dividing circuit to an external device through the external input / output unit P3.
  • the external device is an evaluation device that evaluates the switching power supply device 101 at the time of factory shipment, for example. This external device calculates the coefficient of the calculation formula used when correcting the voltage measurement value detected by the microcontroller 13 of the switching power supply device 101. The external device calculates the coefficient before the switching power supply device 101 is shipped from the factory, for example. The coefficient correction will be described below.
  • the measured value of the intermediate bus voltage detected by the microcontroller 13 includes an error due to the influence of each element of the resistors R21, R22, and R23 of the input side resistance voltage dividing circuit and an error due to the reference voltage of the AD converter 132. For this reason, the microcontroller 13 needs to correct the measured value of the intermediate bus voltage.
  • the external device measures the output voltage of the switching power supply device 101 from the voltage output units P21 and P22, and the measured value and the output voltage of the switch element Q3 measured by the output side resistance voltage dividing circuit. And compare. Then, the external device calculates a coefficient of an equation for calculating the output voltage measurement value of the step-down converter 10.
  • each element of the input side resistance voltage dividing circuit and the output side resistance voltage dividing circuit, its circuit configuration, and the reference voltage of the AD converter 132 are the same.
  • the detection result of the signal from the input-side resistance voltage divider circuit and the detection result of the signal from the output-side resistance voltage divider circuit include errors due to the influence of the same element. Therefore, if a coefficient is calculated for the output-side resistance voltage dividing circuit, the coefficient can also be used for the input-side resistance voltage dividing circuit.
  • the voltage division ratio by the resistors R31, R32, and R33 and the resolution of the AD converter 132 are known. Further, the output voltage of the switching power supply device 101 measured by the voltage output units P21 and P22, that is, the output voltage of the switch element Q3, is input to the external device. The voltage value measured by this measuring device is y in the above equation. The external device compares the output voltage of the switch element Q3 measured by the measuring device with the output voltage of the switch element Q3 detected from the output-side resistance voltage dividing circuit, and from the comparison result and the known value, The coefficients a and b of the equation are calculated. The external device outputs the calculated coefficients a and b to the microcontroller 13 of the switching power supply device 101.
  • the microcontroller 13 stores the correction values a and b input from the external device in the memory 133. By storing the correction values a and b in the memory 133, highly accurate output voltage and intermediate bus voltage measurement values can be obtained even after shipment.
  • the switching power supply apparatus 101 can correct an error in the measured value of the intermediate bus voltage without providing a measurement terminal for directly measuring the intermediate bus voltage.
  • the buffers Bf1 and Bf2 are provided, but are not essential. However, since the input impedance is increased by providing the buffers Bf1 and Bf2, it is possible to prevent the circuit in the previous stage of the AD converter 132 from affecting the voltage dividing ratio of the resistance voltage dividing circuit. A highly accurate detection result can be obtained.
  • the buffers Bf1 and Bf2 are provided, it is preferable that the buffers Bf1 and Bf2 are operational amplifiers in one IC chip in order to eliminate variations in errors due to the influence of the buffers Bf1 and Bf2.
  • FIG. 4 is a circuit diagram of the switching power supply apparatus 102 according to the second embodiment.
  • the switching power supply apparatus 102 includes a diode D1 instead of the switch element Q3 shown in FIG.
  • the diode D1 corresponds to a “first semiconductor element” according to the present invention.
  • the diode D1 has an anode connected to the step-down converter 10 and a cathode connected to the voltage output unit P21.
  • Other circuit configurations are the same as those in the first embodiment.
  • the diode D1 prevents backflow from the battery E2. In this case, switching control of the diode D1 is unnecessary.
  • FIG. 5 is a circuit diagram of the switching power supply apparatus 103 according to the third embodiment.
  • the switching power supply apparatus 103 includes a step-down converter 10 and a switch element Q3 connected to the output side of the step-down converter 10 as in the first embodiment.
  • the switch element Q3 is connected in the opposite direction to that of the first embodiment.
  • the switch element Q3 has a source connected to the step-down converter 10 and a drain connected to the voltage output unit P21.
  • the switching power supply device 103 includes a current detection circuit 14 provided between the switch element Q3 and the voltage output unit P21.
  • the current detection circuit 14 is a circuit for detecting a backflow from the battery E2.
  • the current detection circuit 14 is a resistor, for example, and detects the direction of the flowing current from the potential difference between both ends of the resistor.
  • the microcontroller 13 detects the backflow by the current detection circuit 14, it turns off the switch element Q3. Thereby, a backflow current can be prevented.
  • the switching element Q3 for preventing the backflow, the conduction loss can be reduced as compared with the case where the diode D1 according to the third embodiment is used.
  • FIG. 6 is a circuit diagram of the switching power supply device 104 according to the fourth embodiment.
  • the switching power supply device 104 includes an insulating step-down converter 20.
  • the step-down converter 20 includes capacitors C3 and C4, switch elements Q5 and Q6, a step-down transformer T1, diodes D2 and D3, and an inductor L2.
  • the switch elements Q5 and Q6 are alternately turned on and off by the control circuit 11.
  • diode D2 on the secondary side of step-down transformer T1 conducts, inductor L2 is excited, capacitor C4 is charged, and voltage is output from step-down converter 20.
  • the switch element Q6 is off and the switch element Q5 is on, the diode D3 conducts, the excitation energy of the inductor L2 is released, and the voltage charged in the capacitor C4 is output from the step-down converter 20.
  • the coefficient is calculated for the output side resistance voltage dividing circuit composed of the resistors R31, R32, and R33 as in the first embodiment, the coefficient is the input side resistance voltage dividing composed of the resistors R21, R22, and R23. It can be used on the circuit to correct the error of the intermediate bus voltage. For this reason, there is no need to provide a measurement terminal for directly measuring the intermediate bus voltage.
  • FIG. 7 is a circuit diagram of the switching power supply apparatus 105 according to the fifth embodiment.
  • a battery E3 is connected to the voltage input units P11 and P12, and a load R is connected to the voltage output units P21 and P22. Then, the voltage of the battery E3 is stepped down and supplied to the load R.
  • the switching power supply device 105 includes the step-down converter 10 as in the first to fourth embodiments.
  • the step-down converter 10 is connected to the voltage input units P11 and P12.
  • the voltage output units P21 and P22 are connected.
  • the diode D4 is connected to the input side of the step-down converter 10.
  • the diode D4 corresponds to a “first semiconductor element” according to the present invention.
  • the diode D4 has an anode connected to the voltage input unit P11 and a cathode connected to the step-down converter 10. The diode D4 prevents reverse flow from the battery E3 when the battery E3 is connected with the polarity reversed.
  • the input side resistance voltage dividing circuit is connected to the anode side of the diode D4, and the output side resistance voltage dividing circuit is connected to the cathode side.
  • the input-side resistance voltage dividing circuit includes resistors R41, R42, and R43, and detects an input voltage to the diode D4.
  • the output-side resistance voltage dividing circuit includes resistors R51, R52, and R53, and detects an output voltage from the diode D4 (hereinafter referred to as an intermediate bus voltage).
  • the intermediate bus voltage corresponds to the “first voltage” according to the present invention
  • the input voltage to the diode D4 corresponds to the “second voltage” according to the present invention.
  • the outputs of the input side resistance voltage dividing circuit and the output side resistance voltage dividing circuit are connected to the microcontroller 13 via the buffers Bf3 and Bf4.
  • Buffers Bf3 and Bf4 are voltage follower circuits.
  • the input side resistance voltage dividing circuit and the output side resistance voltage dividing circuit are circuits in which the same elements are similarly connected.
  • the resistors R41 and R51 are elements having the same specification
  • the resistors R42 and R52 are elements having the same specification
  • the resistors R43 and R53 are elements having the same specification.
  • the resistors R41, R42, and R43 are connected in series, and the resistors R51, R52, and R53 are also connected in series.
  • each of the resistors R41 and R51, the resistors R42 and R52, and the resistors R43 and R53 is desirably a single thin film network resistor element in order to further reduce an error caused by each element of the detection circuit.
  • an expression for calculating the input voltage of the step-down converter 10 from the input voltage to the diode D4 by the input-side resistance voltage dividing circuit and the input voltage of the switching power supply device 105 measured by the voltage input units P11 and P12. Calculate the coefficient. If a coefficient is calculated for the input-side resistance voltage dividing circuit, the coefficient can also be used for the output-side resistance voltage dividing circuit. As a result, as in the first to fourth embodiments, an error in the intermediate bus voltage can be corrected without providing a measurement terminal for directly measuring the intermediate bus voltage.
  • FIG. 8 is a circuit diagram of the switching power supply device 106 according to the sixth embodiment.
  • a battery E4 is connected to the voltage input / output units P41 and P42, and a battery E5 is connected to the voltage input / output units P51 and P52.
  • a load R1 that drives the battery E4 as a power source
  • an alternator / motor hereinafter simply referred to as a motor 21.
  • the voltage input / output units P51 and P52 are connected to a load R2 that drives the battery E5 as a power source.
  • the switching power supply device 106 bi-directionally transmits power from the voltage input / output units P41, P42 to the voltage input / output units P51, P52, or from the voltage input / output units P51, P52 to the voltage input / output units P41, P42.
  • switching power supply device 106 is regarded as a step-down chopper circuit.
  • switching power supply device 106 is regarded as a boost chopper circuit.
  • the switching power supply device 106 includes a step-up / step-down circuit 30.
  • the step-up / step-down circuit 30 includes capacitors C3 and C4, an inductor L3, and switch elements Q4 and Q5.
  • the step-up / step-down circuit 30 steps down the voltage input from the voltage input / output units P41 and P42 and increases the voltage input from the voltage input / output units P51 and P52 by turning on and off the switch elements Q4 and Q5. .
  • the switching power supply device 106 includes a first resistance voltage dividing circuit including resistors R61 and R62 and a second resistance voltage dividing circuit including resistors R63 and R64.
  • the first resistance voltage dividing circuit detects an output voltage of the step-up / step-down circuit 30 for feedback control when performing a boosting operation.
  • the second resistance voltage dividing circuit detects the output voltage of the step-up / step-down circuit 30 for feedback control when performing a step-down operation.
  • the output voltage detected by the first resistance voltage dividing circuit and the second resistance voltage dividing circuit is input to the control circuit 11.
  • the control circuit 11 performs switching control of the switch elements Q4 and Q5 so that the output voltage of the step-up / step-down circuit 30 becomes a specified value based on the voltage detection result by the resistance voltage dividing circuit.
  • a switch element Q6 is connected between the voltage input / output units P41 and P42 and the step-up / step-down circuit 30.
  • the switch element Q6 is a MOS-FET, the source is connected to the voltage input / output unit P41, and the drain is connected to the buck-boost circuit 30.
  • an input-side resistance voltage dividing circuit including resistors R41, R42, and R43 and an output-side resistance voltage dividing circuit including resistors R51, R52, and R53 are connected to the source and drain of the switch element Q6, respectively. ing.
  • the outputs of the input-side resistance voltage dividing circuit and the output-side resistance voltage dividing circuit are connected to the microcontroller 23 via buffers Bf5 and Bf6.
  • the buffers Bf5 and Bf6 are preferably operational amplifiers in one IC chip in order to eliminate error variations due to the influence of the buffers Bf5 and Bf6.
  • Switch element Q6 prevents reverse flow from battery E4 when battery E4 is connected with the polarity reversed.
  • the switch element Q6 corresponds to a “second semiconductor element” according to the present invention.
  • the input-side resistance voltage dividing circuit including the resistors R41, R42, and R43 corresponds to the “fourth voltage detection circuit” according to the present invention.
  • the output-side resistance voltage dividing circuit including the resistors R51, R52, and R53 corresponds to a “third voltage detection circuit” according to the present invention.
  • a switch element Q3 is connected between the voltage input / output units P51 and P52 and the step-up / step-down circuit 30.
  • the switch element Q3 has a source connected to the voltage input / output unit P51 and a drain connected to the buck-boost circuit 30.
  • an input-side resistance voltage dividing circuit including resistors R21, R22, and R23 and an output-side resistance voltage dividing circuit including resistors R31, R32, and R33 are connected to the source and drain of the switch element Q3, respectively. ing.
  • the outputs of the input side resistance voltage dividing circuit and the output side resistance voltage dividing circuit are connected to the microcontroller 23 via a buffer (not shown).
  • the switch element Q3 corresponds to a “first semiconductor element” according to the present invention.
  • the input-side resistance voltage dividing circuit including the resistors R21, R22, and R23 corresponds to the “first voltage detection circuit” according to the present invention.
  • the output-side resistance voltage dividing circuit including the resistors R31, R32, and R33 corresponds to the “second voltage detection circuit” according to the present invention.
  • the microcontroller 23 is operated by the controller driving power supply VDD and includes a CPU, an AD converter, a memory, and a DA converter.
  • the microcontroller 23 turns on and off the switch elements Q3 and Q6.
  • the microcontroller 23 performs data communication with an external device (not shown) through the external input / output unit P6.
  • This AD converter corresponds to “sampling means” according to the present invention.
  • the microcontroller 23 performs the same control as the microcontroller 13 described in the first to fifth embodiments.
  • the microcontroller 23 outputs a voltage detected by an output-side resistance voltage dividing circuit including resistors R31, R32, and R33 to an external device.
  • the voltage measured by the voltage input / output units P51 and P52 by a high-precision measuring device is input to the external device.
  • the external device compares the voltage at the voltage input / output units P51 and P52 measured by the measuring device with the voltage detected by the output side resistance voltage dividing circuit, and compares the comparison result with a known value such as the resistor R31.
  • the external device outputs the calculated coefficients a and b to the microcontroller 23 of the switching power supply device 106.
  • the microcontroller 23 stores the correction values a and b input from the external device in the memory.
  • a voltage hereinafter referred to as a first intermediate bus voltage
  • the microcontroller 23 calculates the correction values a and b stored in the memory. The calculation for correcting the error of the detected first intermediate bus voltage is performed.
  • the microcontroller 23 outputs the voltage detected by the input-side resistance voltage dividing circuit including the resistors R41, R42, and R43 to an external device.
  • the voltage measured by the voltage input / output units P41 and P42 by a high-precision measuring device is input to the external device.
  • the external device compares the voltage at the voltage input / output units P51 and P52 measured by the measuring device with the voltage detected by the input-side resistance voltage dividing circuit, and compares the comparison result with a known value such as the resistor R41. From the above, the coefficients a and b of the above equation are calculated.
  • the external device outputs the calculated coefficients a and b to the microcontroller 23 of the switching power supply device 106.
  • the microcontroller 23 stores the correction values a and b input from the external device in the memory.
  • a voltage hereinafter referred to as a second intermediate bus voltage
  • the microcontroller 23 calculates the correction values a and b stored in the memory. The calculation for correcting the error of the detected second intermediate bus voltage is performed.
  • the switching power supply device 106 does not include the measurement terminal for directly measuring the first intermediate bus voltage and the second intermediate bus voltage, and does not provide the first intermediate bus voltage and the second intermediate bus voltage.
  • the error of the bus voltage measurement value can be corrected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

 スイッチング電源装置(101)は、スイッチ素子(Q1,Q2)のオンオフにより、入力電流を降圧する降圧コンバータ(10)と、降圧コンバータ(10)及び電圧出力部(P21,P22)の間に接続されたスイッチ素子(Q3)とマイクロコントローラ(13)とを備えている。スイッチ素子(Q3)の入出力には、同一仕様の素子で構成された入力側抵抗分圧回路と出力側抵抗分圧回路とが接続されている。マイクロコントローラ(13)は、出力側抵抗分圧回路で検出した電圧と、電圧出力部(P21,P22)で検出された電圧とから外部で演算された、演算式の係数を記憶する。マイクロコントローラ(13)は、入力側抵抗分圧回路で検出した中間バス電圧の測定値を、演算式と、記憶した係数とから補正する。これにより、電圧検出用端子を設けることなく、回路途中の電圧の検出結果を補正できるスイッチング電源装置を提供する。

Description

スイッチング電源装置
 本発明は、コンバータを備えるスイッチング電源装置に関する。
 コンバータを備えるスイッチング電源にあって、異常を検出したり動作状態を検出したりするために、コンバータ部の電圧や電流を測定することが行われている。また、配線中の抵抗や基準電圧のばらつきといった要因により生じた出力電圧の誤差(ズレ)を、工場出荷時に記憶装置に保持して補正することが行われている。
 例えば、特許文献1には、DC-DCコンバータからなる電源の異常を検出して、異常時には入力電圧がそのまま負荷側に出力されることを防止する電源故障検出回路が開示されている。この特許文献1では、負荷側へ出力する出力線に直列接続したスイッチ素子に流れ込む入力電流、及びスイッチ素子の両端に掛かる電圧に基づいてスイッチ素子の故障の前兆を検出する。また、特許文献2には、工場出荷時に検出された負荷電圧に基づいて算出された閾値をEEPROMに記憶させ、当該閾値と負荷電圧とを比較することで、高い精度で負荷側の異常を検出する電源装置が開示されている。
特開2013-78203号公報 特開2009-100496号公報
 しかしながら、一般的に、回路の途中には外部から電圧を測定するための測定用端子を備えていないため、特許文献1のように、スイッチ素子の両端電圧を直接測定して電圧値を補正することができない。また、該スイッチ素子の両端電圧を検出して電圧値を補正しようとする場合、検出用の端子を別途設ける必要がある。このような端子を設けることは、部品点数が増加し、装置が大型化するといった問題がある。
 また、工場出荷時に測定される負荷電圧は、精度の高い測定によって得られる値である。したがって、特許文献2のような補正手法を用いる場合においても、回路の途中に外部から電圧を測定するための測定用端子が必要になってしまう。
 そこで、本発明の目的は、電圧検出用端子を設けることなく、回路の途中における電圧を検出することができ、当該測定結果を補正することができるスイッチング電源装置を提供することにある。
 本発明は、電圧入力部に入力される入力電圧を、スイッチ素子のオンオフにより所定電圧に変換するコンバータと、前記コンバータの入力側又は出力側に直列接続された、スイッチ特性を有する第1半導体素子と、前記コンバータに接続された前記第1半導体素子の第1端の電圧である第1電圧を検出する第1電圧検出回路と、前記第1半導体素子の第2端の電圧である第2電圧を検出する第2電圧検出回路と、前記第1電圧検出回路及び第2電圧検出回路により検出される検出信号を基準電圧と比較してサンプリングするサンプリング手段と、前記サンプリング手段により生成される電圧データを用いて所定の算出式により前記第1電圧及び前記第2電圧の測定値を算出する電圧算出部と、前記算出式の係数を記憶する記憶手段と、前記電圧算出部が算出した前記第1電圧及び前記第2電圧の測定値を外部装置へ送信し前記係数を外部装置から受信する通信手段と、を備え、前記第1電圧検出回路及び前記第2電圧検出回路は、同一仕様の素子で構成された同一回路であり、前記第1電圧検出回路及び第2電圧検出回路により検出される検出信号をサンプリングするサンプリング手段の基準電圧は同一であり、前記第1電圧及び前記第2電圧の測定値を算出する前記所定の算出式及び前記算出式に用いる係数は同一である、ことを特徴とする。
 この構成では、コンバータに接続される第1半導体素子の両端子電圧(第1電圧及び第2電圧)を検出した場合、検出用回路の各素子の影響による検出結果に誤差は含むものの、誤差のばらつきが無い(小さい)。このため、両端子電圧それぞれに対して、同様に誤差の影響がなくなるように測定値の算出を行うことができる。第1半導体素子がコンバータの入力側に接続されている場合には、第1半導体素子の第2電圧はスイッチング電源装置の入力端子の電圧を直接測定すればよい。また、第1半導体素子がコンバータの出力側に接続されている場合には、第1半導体素子の第2電圧はスイッチング電源装置の出力端子の電圧を直接測定すればよい。
 この直接測定した入力電圧(又は出力電圧)測定値と、検出回路で検出した第2電圧から得られる測定値とが一致するように、検出回路の検出信号から測定値を算出する算出式に用いる係数を算出し記憶させる。そして、第1半導体素子とコンバータとの間の検出回路の検出信号から第1電圧測定値を算出する算出式に同様の係数を用いることで、誤差のない(小さい)第1電圧の測定値も算出できる。したがって、第1電圧を直接測定する測定用端子を設けることなく、第1電圧の測定値を補正でき、小型で高効率なスイッチング電源装置を構成することができる。
 前記第1電圧検出回路及び前記第2電圧検出回路は、抵抗分圧回路であることが好ましい。この構成では、簡易な構成で第1電圧及び第2電圧を検出できる。
 前記抵抗分圧回路の各抵抗素子は製造ロットが同じであることが好ましい。この構成では、検出回路の各素子の影響による検出結果のばらつきをより小さくできる。
 前記抵抗分圧回路の各抵抗素子は、一つの薄膜ネットワーク抵抗の素子であることが好ましい。この構成では、検出回路の各素子に起因する誤差をより小さくできる。
 前記第1電圧検出回路は出力部に第1バッファを有し、前記第2電圧検出回路は出力部に第2バッファを有することが好ましい。この構成では、抵抗分圧回路の参照電圧を安定して生成でき、電圧検出結果の誤差を小さくできる。
 前記第1バッファ及び前記第2バッファはそれぞれ、オペアンプを有する同一構成の回路であり、前記オペアンプは一つのチップ内に設けられたオペアンプであることが好ましい。この構成では、バッファの影響による誤差をなくすことができる。
 前記第1半導体素子はMOS-FETであることが好ましい。この構成では、コンバータが故障等したときに、MOS-FETをオフにすることで、スイッチング電源装置から過電圧が出力されることを防止できる。
 前記第1半導体素子はダイオードであることが好ましい。この構成では、例えば、スイッチング電源装置にバッテリを接続する場合において、極性を逆にしてそのバッテリを接続したとき、バッテリからの逆流を防止することができる。
 前記第1半導体素子は前記コンバータの出力側に接続され、前記コンバータの入力側に接続されたスイッチ特性を有する第2半導体素子と、前記コンバータに接続された前記第2半導体素子の第1端の電圧である第3電圧を検出する第3電圧検出回路と、前記第2半導体素子の第2端の電圧である第4電圧を検出する第4電圧検出回路と、前記第3電圧検出回路及び第4電圧検出回路により検出される検出信号を基準電圧と比較してサンプリングするサンプリング手段と、前記サンプリング手段により生成される電圧データを用いて所定の算出式により前記第3電圧及び前記第4電圧の測定値を算出する電圧算出部と、前記算出式の係数を記憶する記憶手段と、前記電圧算出部が算出した前記第3電圧及び前記第4電圧の測定値を外部装置へ送信し前記係数を外部装置から受信する通信手段と、を備え、前記第3電圧検出回路及び前記第4電圧検出回路は、同一仕様の素子で構成された同一回路であり、前記第3電圧検出回路及び第4電圧検出回路により検出される検出信号をサンプリングするサンプリング手段の基準電圧は同一であり、前記第3電圧及び前記第4電圧の測定値を算出する前記所定の算出式及び前記算出式に用いる係数は同一である、ことが好ましい。
 この構成では、コンバータの入力電圧及び出力電圧の何れに対しても、その測定値を補正でき、小型で高効率なスイッチング電源装置を構成することができる。
 前記第3電圧検出回路及び前記第4電圧検出回路は、抵抗分圧回路であることが好ましい。この構成では、簡易な構成で第3電圧及び第4電圧を検出できる。
 前記抵抗分圧回路の各抵抗素子は製造ロットが同じであることが好ましい。この構成では、検出回路の各素子の影響による検出結果のばらつきをより小さくできる。
 前記抵抗分圧回路の各抵抗素子は、一つの薄膜ネットワーク抵抗の素子であることが好ましい。この構成では、検出回路の各素子に起因する誤差をより小さくできる。
 前記第3電圧検出回路は出力部に第3バッファを有し、前記第4電圧検出回路は出力部に第4バッファを有することが好ましい。この構成では、抵抗分圧回路の参照電圧を安定して生成でき、電圧検出結果の誤差を小さくできる。
 前記第3バッファ及び前記第4バッファはそれぞれ、オペアンプを有する同一構成の回路であり、前記オペアンプは一つのチップ内に設けられたオペアンプであることが好ましい。この構成では、バッファの影響による誤差をなくすことができる。
 前記第2半導体素子はMOS-FETであることが好ましい。この構成では、コンバータが故障等したときに、MOS-FETをオフにすることで、スイッチング電源装置から過電圧が出力されることを防止できる。
 前記第2半導体素子はダイオードであることが好ましい。この構成では、例えば、スイッチング電源装置にバッテリを接続する場合において、極性を逆にしてそのバッテリを接続したとき、バッテリからの逆流を防止することができる。
 本発明によれば、回路途中にコンバータと第1半導体素子との間の第1電圧を直接測定する測定用端子を設けることなく、第1電圧の測定値を補正でき、小型で出力電圧精度の高いスイッチング電源装置を構成することができる。
実施形態1に係るスイッチング電源装置の回路図 マイクロコントローラがADコンバータを一つ有している場合を示す図 マイクロコントローラがADコンバータを二つ有している場合を示す図 実施形態2に係るスイッチング電源装置の回路図 実施形態3に係るスイッチング電源装置の回路図 実施形態4に係るスイッチング電源装置の回路図 実施形態5に係るスイッチング電源装置の回路図 実施形態6に係るスイッチング電源装置の回路図
(実施形態1)
 図1は実施形態1に係るスイッチング電源装置101の回路図である。
 スイッチング電源装置101の電圧入力部P11,P12には直流電源E1が接続されている。また、スイッチング電源装置101の電圧出力部P21,P22にはバッテリE2が接続されている。スイッチング電源装置101は、直流電源E1からの直流電圧を降圧し、バッテリE2に出力する。バッテリE2は、その電圧を充電する。
 電圧入力部P11,P12には入力コンデンサC1を介して、同期整流型の降圧コンバータ10が接続されている。降圧コンバータ10は、スイッチ素子Q1,Q2、インダクタL1及びキャパシタC2を備えている。スイッチ素子Q1,Q2はn型MOS-FETであり、後述の制御回路11によりゲート信号が印加されてスイッチング制御される。
 スイッチング電源装置101は、降圧コンバータ10のフィードバック制御のために出力電圧を検出する抵抗分圧回路を備えている。この抵抗分圧回路は、抵抗R11,R12から構成されている。抵抗分圧回路により検出された出力電圧は、制御回路11に入力される。
 制御回路11は、基準電圧Vref、誤差増幅器111、コンパレータ112及び三角波発振器113を備えている。誤差増幅器111の非反転入力端子(+)には基準電圧Vrefが入力され、反転入力端子(-)には抵抗R11,R12の接続点が接続される。この基準電圧Vrefは、後述のマイクロコントローラ13により値が調整される。誤差増幅器111は、各入力端子に入力された電圧の誤差を増幅して、コンパレータ112の非反転入力端子(+)へ出力する。
 コンパレータ112の反転入力端子(-)には、三角波発振器113が接続されている。コンパレータ112は、誤差増幅器111からの出力電圧と、三角波発振器113からの出力電圧とを比較し、比較結果に応じたデューティのPWM変調信号を生成する。スイッチ素子Q1のゲートには、コンパレータ112が生成したPWM変調信号が入力される。また、スイッチ素子Q2のゲートには、コンパレータ112が生成したPWM変調信号が、反転回路114により反転されて入力される。
 制御回路11は、抵抗分圧回路による電圧検出結果に基づいて、降圧コンバータ10の出力電圧が規定値となるように、スイッチ素子Q1,Q2をスイッチング制御する。例えば、直流電源E1から直流電圧が入力された場合、降圧コンバータ10の出力電圧が一定電圧となるよう、制御回路11はスイッチ素子Q1,Q2をスイッチング制御し、スイッチング電源装置101から定電圧を出力する。
 降圧コンバータ10の出力側にはスイッチ素子Q3が接続されている。スイッチ素子Q3はn型MOS-FETであり、本発明に係る「第1半導体素子」に相当する。スイッチ素子Q3は、そのドレインが降圧コンバータ10に接続され、ソースが電圧出力部P21に接続されている。スイッチ素子Q3は保護スイッチである。
 スイッチ素子Q3は、マイクロコントローラ13によりスイッチング制御される。マイクロコントローラ13は、後述の入力側抵抗分圧回路により検出された電圧が閾値を超えた場合、スイッチ素子Q3をオフにする。これにより、降圧コンバータ10のスイッチ素子Q1が故障等によりドレイン・ソース間がショートした場合、バッテリE2へ過電圧が印加されることを防止できる。また、電圧出力部P21,P22に極性を誤って逆にしてバッテリE2が接続としても、スイッチ素子Q3のボディーダイオードに逆バイアスがかかるので、スイッチ素子Q3のオフ時に、バッテリE2から逆流することはない。
 スイッチ素子Q3の入出力側それぞれには、入力側抵抗分圧回路と出力側抵抗分圧回路とを備えている。入力側抵抗分圧回路は、本発明に係る「第1電圧検出回路」に相当する。入力側抵抗分圧回路は抵抗R21,R22,R23を備え、スイッチ素子Q3への入力電圧を検出する。出力側抵抗分圧回路は、本発明に係る「第2電圧検出回路」に相当する。出力側抵抗分圧回路は抵抗R31,R32,R33を備え、スイッチ素子Q3からの出力電圧を検出する。スイッチ素子Q3への入力電圧は、降圧コンバータ10の出力電圧でもあり、以下、中間バス電圧という。中間バス電圧は、本発明に係る「第1電圧」に相当し、出力電圧は、本発明に係る「第2電圧」に相当する。
 入力側抵抗分圧回路、及び出力側抵抗分圧回路の出力は、バッファBf1,Bf2を介して、マイクロコントローラ13に接続されている。バッファBf1,Bf2は電圧フォロア回路である。このバッファBf1,Bf2を抵抗分圧回路の出力に接続することで、抵抗分圧回路の参照信号を安定的にマイクロコントローラ13へ出力できる。
 入力側抵抗分圧回路及び出力側抵抗分圧回路は、同一素子が同様に接続された回路である。具体的には、抵抗R21,R31が同一仕様の素子であり、抵抗R22,R32が同一仕様の素子であり、抵抗R23,R33が同一仕様の素子である。そして、抵抗R21,R22,R23が直列接続され、抵抗R31,R32,R33も直列接続されている。ここで、同一仕様の素子とは、公称抵抗値が同じであることに加え、耐圧仕様や誤差許容範囲やサイズなどの製品仕様が同じ、いわゆる品番が同じであることを意味している。また、製造ロットが同じであることが望ましい。また、抵抗R21,R31、抵抗R22,R32、及び抵抗R23,R33それぞれは、検出回路の各素子に起因する誤差をより小さくするために、一つの薄膜ネットワーク抵抗素子であることが望ましい。
 このように、入力側抵抗分圧回路、及び出力側抵抗分圧回路を、同一仕様の素子で同一構成の回路とすることで、それぞれの回路が電圧を検出した検出結果に含まれる、素子の影響による誤差は略同じ(小さい)である。したがって、誤差を含む検出結果を補正する場合、入力側抵抗分圧回路及び出力側抵抗分圧回路それぞれに対して、同じ補正値を用いた補正を行える。補正については後述する。
 マイクロコントローラ13はコントローラ駆動電源VDDにより動作し、CPU131、ADコンバータ132、メモリ133及びDAコンバータ134を備えている。マイクロコントローラ13は、スイッチ素子Q3をオンオフする。また、マイクロコントローラ13は、外部入出力部P3を通じて、外部装置(不図示)とデータ通信を行う。なお、CPU131は、本発明に係る「電圧算出部」に相当する。
 マイクロコントローラ13は、入力側抵抗分圧回路及び出力側抵抗分圧回路からの参照信号をADコンバータ132によりA-D変換し、中間バス電圧及び出力電圧を検出する。ADコンバータ132によりA-D変換された出力電圧は、本発明に係る「電圧データ」に相当する。また、ADコンバータ132は、本発明に係る「サンプリング手段」に相当する。マイクロコントローラ13は、ADコンバータを一つ有していてもよいし、二つ有していてもよい。
 図2は、マイクロコントローラ13がADコンバータを一つ有している場合を示す図である。図3は、マイクロコントローラ13がADコンバータを二つ有している場合を示す図である。
 図2の場合、マイクロコントローラ13は、ADコンバータ132の前段にマルチプレクサ(MPX)13Aを有し、入力側抵抗分圧回路及び出力側抵抗分圧回路からの参照信号の一方をADコンバータ132へ入力する。図3の場合、マイクロコントローラ13は、同じ基準電圧で駆動する二つのADコンバータ132A,132Bを有し、ADコンバータ132A,132Bそれぞれには、入力側抵抗分圧回路及び出力側抵抗分圧回路のそれぞれが接続される。ADコンバータ132A,132Bそれぞれは、複数のコンパレータで、アナログの入力信号を電源電圧VDDから分圧した複数の基準電圧と比較し、エンコーダで、その比較結果からアナログ値をデジタル値に変換する。なお、本実施例ではADコンバータの基準電圧をコントローラ駆動電源VDDとしているが、これとは別の基準電圧発生回路を備えてADコンバータ132A,132Bの基準電圧としてもよい。
 なお、図3の場合、ADコンバータ132A及びADコンバータ132Bは、本発明に係る「サンプリング手段」に相当する。
 マイクロコントローラ13は、出力側抵抗分圧回路で検出したスイッチ素子Q3の出力電圧データを、外部入出力部P3を通じて外部装置へ出力する。外部装置は、例えば工場出荷時にスイッチング電源装置101の評価を行う評価装置である。この外部装置は、スイッチング電源装置101のマイクロコントローラ13が検出した電圧測定値を補正する際に用いる算出式の係数を算出する。外部装置は、その係数の算出を、例えばスイッチング電源装置101の工場出荷前に行う。以下に、係数の補正について説明する。
 マイクロコントローラ13が検出する中間バス電圧の測定値には、入力側抵抗分圧回路の抵抗R21,R22,R23の各素子の影響による誤差及びADコンバータ132の基準電圧による誤差が含まれている。このため、マイクロコントローラ13は、中間バス電圧の測定値を補正する必要がある。
 この係数を算出する場合、降圧コンバータ10の中間バス電圧を直接測定し、その測定値と、入力側抵抗分圧回路で検出した測定値とを比較する必要がある。しかしながら、一般に、回路の途中に測定用の端子はなく、降圧コンバータ10の中間バス電圧を直接測定することができない。そこで、本実施形態では、外部装置は、電圧出力部P21,P22からスイッチング電源装置101の出力電圧を測定し、その測定値と、出力側抵抗分圧回路で測定した、スイッチ素子Q3の出力電圧とを比較する。そして、外部装置は、降圧コンバータ10の出力電圧測定値を算出する式の係数を算出する。
 前記の通り、入力側抵抗分圧回路と出力側抵抗分圧回路との各素子、及びその回路構成及びADコンバータ132の基準電圧は同じである。すなわち、入力側抵抗分圧回路からの信号の検出結果と、出力側抵抗分圧回路からの信号の検出結果とには、同じ素子の影響に起因した誤差が含まれる。したがって、出力側抵抗分圧回路について係数を算出すれば、その係数は、入力側抵抗分圧回路に対しても用いることができる。
 ここで、出力側抵抗分圧回路により検出された、スイッチ素子Q3の出力電圧の値をx、その出力電圧の補正後の電圧値をyとする。マイクロコントローラ13は、出力側抵抗分圧回路からスイッチ素子Q3の出力電圧を検出すると、y=ax+bの式を用いて、補正後の電圧値を演算する。
 抵抗R31,R32,R33による電圧の分圧比、及びADコンバータ132の分解能は既知である。また、外部装置には、高精度な測定装置により電圧出力部P21,P22で測定されたスイッチング電源装置101の出力電圧、すなわち、スイッチ素子Q3の出力電圧が入力される。この測定装置により測定された電圧値は、前記式のyとなる。外部装置は、測定装置により測定されたスイッチ素子Q3の出力電圧と、出力側抵抗分圧回路から検出したスイッチ素子Q3の出力電圧とを比較し、その比較結果と、既知の値とから、上記式の係数a,bを算出する。外部装置は、算出した係数a,bをスイッチング電源装置101のマイクロコントローラ13へ出力する。
 マイクロコントローラ13は、外部装置から入力した補正値a,bをメモリ133に記憶する。補正値a,bをメモリ133に記憶しておくことにより、出荷後も高精度な出力電圧及び中間バス電圧の測定値が得られる。
 以上説明したように、本実施形態に係るスイッチング電源装置101は、中間バス電圧を直接測定するための測定端子を設けることなく、中間バス電圧測定値の誤差を補正できる。
 なお、本実施形態では、バッファBf1,Bf2を設けているが、必須ではない。ただし、バッファBf1,Bf2を設けることで、入力インピーダンスが高くなるので、ADコンバータ132の前段にある回路が、抵抗分圧回路の分圧比に影響が及ぶことを防止でき、マイクロコントローラ13は、より精度の高い検出結果を得ることができる。なお、バッファBf1,Bf2を設ける場合、バッファBf1,Bf2の影響による誤差のばらつきをなくすために、バッファBf1,Bf2は一つのICチップ内のオペアンプであることが好ましい。
(実施形態2)
 図4は実施形態2に係るスイッチング電源装置102の回路図である。
 この例では、スイッチング電源装置102は、図1に示すスイッチ素子Q3に代えて、ダイオードD1を備えている。ダイオードD1は、本発明に係る「第1半導体素子」に相当する。ダイオードD1は、そのアノードが降圧コンバータ10に接続され、カソードが電圧出力部P21に接続されている。なお、他の回路構成は実施形態1と同様である。ダイオードD1は、バッテリE2からの逆流を防止する。この場合、ダイオードD1のスイッチング制御は不要である。
(実施形態3)
 図5は実施形態3に係るスイッチング電源装置103の回路図である。
 スイッチング電源装置103は、実施形態1と同様、降圧コンバータ10と、降圧コンバータ10の出力側に接続されたスイッチ素子Q3とを備えている。この例では、スイッチ素子Q3は、実施形態1と反対方向に接続されている。詳しくは、スイッチ素子Q3は、そのソースが降圧コンバータ10に接続され、ドレインが電圧出力部P21に接続されている。
 さらに、スイッチング電源装置103は、スイッチ素子Q3及び電圧出力部P21の間に設けられた電流検出回路14を備えている。電流検出回路14は、バッテリE2からの逆流を検出するための回路である。電流検出回路14は例えば抵抗であって、その抵抗の両端の電位差から流れる電流の方向を検出する。マイクロコントローラ13は、電流検出回路14により逆流を検出すると、スイッチ素子Q3をオフにする。これにより、逆流電流を防止できる。逆流防止にスイッチ素子Q3を用いることで、実施形態3に係るダイオードD1を用いた場合と比べ、導通損失を低減できる。
(実施形態4)
 図6は実施形態4に係るスイッチング電源装置104の回路図である。
 この例では、スイッチング電源装置104は、絶縁型の降圧コンバータ20を備えている。降圧コンバータ20は、キャパシタC3,C4、スイッチ素子Q5,Q6、降圧トランスT1、ダイオードD2,D3、インダクタL2を備えている。
 スイッチ素子Q5,Q6は制御回路11により交互にオンオフされる。スイッチ素子Q6がオン、スイッチ素子Q5がオフのとき、降圧トランスT1の2次側のダイオードD2が導通しインダクタL2が励磁されるとともに、キャパシタC4に充電され、降圧コンバータ20から電圧が出力される。スイッチ素子Q6がオフ、スイッチ素子Q5がオンのとき、ダイオードD3が導通し、インダクタL2の励磁エネルギーが放出されるとともに、キャパシタC4に充電された電圧が降圧コンバータ20から出力される。
 この回路構成においても、実施形態1と同様、抵抗R31,R32,R33からなる出力側抵抗分圧回路について係数を算出すれば、その係数は、抵抗R21,R22,R23からなる入力側抵抗分圧回路に対して用いて、中間バス電圧の誤差の補正を行える。このため、中間バス電圧を直接測定するための測定端子を設ける必要がない。
(実施形態5)
 図7は、実施形態5に係るスイッチング電源装置105の回路図である。
 スイッチング電源装置105は、電圧入力部P11,P12にバッテリE3が接続され、電圧出力部P21,P22に負荷Rが接続されている。そして、バッテリE3の電圧を降圧して負荷Rへ供給する。
 スイッチング電源装置105は、実施形態1~4と同様、降圧コンバータ10を備えているが、実施形態1~4では、降圧コンバータ10は、電圧入力部P11,P12側に接続されているのに対し、本実施形態では、電圧出力部P21,P22側に接続されている。
 降圧コンバータ10の入力側にはダイオードD4が接続されている。ダイオードD4は、本発明に係る「第1半導体素子」に相当する。ダイオードD4は、アノードが電圧入力部P11に接続され、カソードが降圧コンバータ10に接続されている。このダイオードD4は、極性を誤って逆にしてバッテリE3が接続されたとき、バッテリE3からの逆流を防止する。
 ダイオードD4のアノード側には入力側抵抗分圧回路が接続され、カソード側には出力側抵抗分圧回路が接続されている。入力側抵抗分圧回路は抵抗R41,R42,R43を備え、ダイオードD4への入力電圧を検出する。出力側抵抗分圧回路は抵抗R51,R52,R53を備え、ダイオードD4からの出力電圧(以下、中間バス電圧という)を検出する。中間バス電圧は、本発明に係る「第1電圧」に相当し、ダイオードD4への入力電圧は、本発明に係る「第2電圧」に相当する。
 入力側抵抗分圧回路及び出力側抵抗分圧回路の出力は、バッファBf3,Bf4を介して、マイクロコントローラ13に接続されている。バッファBf3,Bf4は電圧フォロア回路である。
 入力側抵抗分圧回路及び出力側抵抗分圧回路は、同一素子が同様に接続された回路である。具体的には、抵抗R41,R51が同一仕様の素子であり、抵抗R42,R52が同一仕様の素子であり、抵抗R43,R53が同一仕様の素子である。そして、抵抗R41,R42,R43が直列接続され、抵抗R51,R52,R53も直列接続されている。
 ここで、同一仕様の素子とは、公称抵抗値が同じであることに加え、耐圧仕様や誤差許容範囲やサイズなどの製品仕様が同じ、いわゆる品番が同じであることを意味している。また、製造ロットが同じであることが望ましい。また、抵抗R41,R51、抵抗R42,R52、及び抵抗R43,R53それぞれは、検出回路の各素子に起因する誤差をより小さくするために、一つの薄膜ネットワーク抵抗素子であることが望ましい。
 本実施形態では、入力側抵抗分圧回路によりダイオードD4への入力電圧と、電圧入力部P11,P12で測定したスイッチング電源装置105の入力電圧とから、降圧コンバータ10の入力電圧を算出する式の係数を算出する。入力側抵抗分圧回路について係数を算出すれば、その係数は、出力側抵抗分圧回路に対しても用いることができる。これにより、実施形態1~4と同様に、中間バス電圧を直接測定するための測定端子を設けることなく、中間バス電圧の誤差を補正できる。
(実施形態6)
 図8は、実施形態6に係るスイッチング電源装置106の回路図である。
 スイッチング電源装置106は、電圧入出力部P41,P42にバッテリE4が接続され、電圧入出力部P51,P52にバッテリE5が接続されている。電圧入出力部P41,P42には、バッテリE4を電源として駆動する負荷R1、及び、オルタネータ/モータ(以下,単にモータという)21が接続されている。電圧入出力部P51,P52には、バッテリE5を電源として駆動する負荷R2が接続されている。
 スイッチング電源装置106は、電圧入出力部P41,P42から電圧入出力部P51,P52へ、又は、電圧入出力部P51,P52から電圧入出力部P41,P42へ、双方向へ電力を伝送する。電圧入出力部P41,P42から電圧入出力部P51,P52へ電力を伝送する場合、スイッチング電源装置106は、降圧チョッパ回路とみなされる。また、電圧入出力部P51,P52から電圧入出力部P41,P42へ電力を伝送する場合、スイッチング電源装置106は、昇圧チョッパ回路とみなされる。
 スイッチング電源装置106は昇降圧回路30を備えている。昇降圧回路30は、キャパシタC3,C4、インダクタL3及びスイッチ素子Q4,Q5を備えている。昇降圧回路30は、スイッチ素子Q4,Q5をオンオフすることで、電圧入出力部P41,P42側から入力された電圧を降圧し、電圧入出力部P51,P52側から入力された電圧を昇圧する。
 スイッチング電源装置106は、抵抗R61,R62とからなる第1抵抗分圧回路と、抵抗R63,R64とからなる第2抵抗分圧回路とを備えている。第1抵抗分圧回路は、昇圧動作を行うときのフィードバック制御のために、昇降圧回路30の出力電圧を検出する。第2抵抗分圧回路は、降圧動作を行うときのフィードバック制御のために、昇降圧回路30の出力電圧を検出する。第1抵抗分圧回及び第2抵抗分圧回により検出された出力電圧は、制御回路11に入力される。制御回路11は、抵抗分圧回路による電圧検出結果に基づいて、昇降圧回路30の出力電圧が規定値となるように、スイッチ素子Q4,Q5をスイッチング制御する。
 電圧入出力部P41,P42と昇降圧回路30との間にはスイッチ素子Q6が接続されている。スイッチ素子Q6はMOS-FETであり、ソースが電圧入出力部P41に接続され、ドレインが昇降圧回路30に接続されている。スイッチ素子Q6のソース及びドレインそれぞれには、実施形態5と同様、抵抗R41,R42,R43からなる入力側抵抗分圧回路、及び抵抗R51,R52,R53からなる出力側抵抗分圧回路が接続されている。そして、入力側抵抗分圧回路及び出力側抵抗分圧回路の出力は、バッファBf5,Bf6を介して、マイクロコントローラ23に接続されている。
 なお、バッファBf5,Bf6の影響による誤差のばらつきをなくすために、バッファBf5,Bf6は一つのICチップ内のオペアンプであることが好ましい。
 スイッチ素子Q6は、極性を逆にしてバッテリE4が接続されたとき、バッテリE4からの逆流を防止する。
 スイッチ素子Q6は、本発明に係る「第2半導体素子」に相当する。抵抗R41,R42,R43からなる入力側抵抗分圧回路は、本発明に係る「第4電圧検出回路」に相当する。また、抵抗R51,R52,R53からなる出力側抵抗分圧回路は、本発明に係る「第3電圧検出回路」に相当する。
 電圧入出力部P51,P52と昇降圧回路30との間にはスイッチ素子Q3が接続されている。スイッチ素子Q3は、ソースが電圧入出力部P51に接続され、ドレインが昇降圧回路30に接続されている。スイッチ素子Q3のソース及びドレインそれぞれには、実施形態3と同様、抵抗R21,R22,R23からなる入力側抵抗分圧回路、及び抵抗R31,R32,R33からなる出力側抵抗分圧回路が接続されている。そして、入力側抵抗分圧回路、及び出力側抵抗分圧回路の出力は、不図示のバッファを介して、マイクロコントローラ23に接続されている。
 スイッチ素子Q3は、本発明に係る「第1半導体素子」に相当する。抵抗R21,R22,R23からなる入力側抵抗分圧回路は、本発明に係る「第1電圧検出回路」に相当する。また、抵抗R31,R32,R33からなる出力側抵抗分圧回路は、本発明に係る「第2電圧検出回路」に相当する。
 マイクロコントローラ23は、実施形態1~5と同様に、コントローラ駆動電源VDDにより動作し、CPU、ADコンバータ、メモリ及びDAコンバータを備えている。マイクロコントローラ23は、スイッチ素子Q3,Q6をオンオフする。また、マイクロコントローラ23は、外部入出力部P6を通じて、外部装置(不図示)とデータ通信を行う。このADコンバータは、本発明に係る「サンプリング手段」に相当する。
 このマイクロコントローラ23は、実施形態1~5で説明したマイクロコントローラ13と同様の制御を行う。例えば、マイクロコントローラ23は、抵抗R31,R32,R33からなる出力側抵抗分圧回路で検出した電圧を外部装置へ出力する。その外部装置には、高精度な測定装置により電圧入出力部P51,P52で測定された電圧が入力される。外部装置は、測定装置により測定された電圧入出力部P51,P52での電圧と、出力側抵抗分圧回路で検出した電圧とを比較し、その比較結果と、抵抗R31等の既知の値とから、実施形態1で説明したy=ax+bの式の係数a,bを算出する。外部装置は、算出した係数a,bをスイッチング電源装置106のマイクロコントローラ23へ出力する。
 マイクロコントローラ23は、外部装置から入力した補正値a,bをメモリに記憶する。マイクロコントローラ23は、スイッチング電源装置106の駆動時において、R21等からなる入力側抵抗分圧回路から電圧(以下、第1中間バス電圧という)を検出すると、メモリに記憶した補正値a,bを用いて、検出した第1中間バス電圧の誤差を補正する演算を行う。
 同様に、マイクロコントローラ23は、抵抗R41,R42,R43からなる入力側抵抗分圧回路で検出した電圧を外部装置へ出力する。その外部装置には、高精度な測定装置により電圧入出力部P41,P42で測定された電圧が入力される。外部装置は、測定装置により測定された電圧入出力部P51,P52での電圧と、入力側抵抗分圧回路で検出した電圧とを比較し、その比較結果と、抵抗R41等の既知の値とから、前記式の係数a,bを算出する。外部装置は、算出した係数a,bをスイッチング電源装置106のマイクロコントローラ23へ出力する。
 マイクロコントローラ23は、外部装置から入力した補正値a,bをメモリに記憶する。マイクロコントローラ23は、スイッチング電源装置106の駆動時において、R51等からなる出力側抵抗分圧回路から電圧(以下、第2中間バス電圧という)を検出すると、メモリに記憶した補正値a,bを用いて、検出した第2中間バス電圧の誤差を補正する演算を行う。
 以上説明したように、本実施形態に係るスイッチング電源装置106は、第1中間バス電圧及び第2中間バス電圧を直接測定するための測定端子を設けることなく、第1中間バス電圧及び第2中間バス電圧測定値の誤差を補正できる。
10…降圧コンバータ
11…制御回路
13…マイクロコントローラ
14…電流検出回路
20…降圧コンバータ
23…マイクロコントローラ
30…昇降圧回路
101,102,103,104,105…スイッチング電源装置
111…誤差増幅器
112…コンパレータ
113…三角波発振器
114…反転回路
131…CPU
132…ADコンバータ
132A,132B…ADコンバータ
133…メモリ
134…DAコンバータ
Bf1…バッファ(第1バッファ)
Bf2…バッファ(第2バッファ)
Bf3…バッファ(第2バッファ)
Bf4…バッファ(第1バッファ)
Bf5…バッファ(第4バッファ)
Bf6…バッファ(第3バッファ)
D1,D2,D3,D4…ダイオード
E1,E2,E3,E4,E5,E6…バッテリ
Ein…直流電源
P11,P12…電圧入力部
P21,P22…電圧出力部
P3…外部入出力部
P41,P42…電圧入出力部
P51,P52…電圧入出力部
P6…外部入出力部
Q1,Q2,Q3,Q4,Q5,Q6…スイッチ素子
VDD…基準信号
Vref…基準電圧

Claims (16)

  1.  電圧入力部に入力される入力電圧を、スイッチ素子のオンオフにより所定電圧に変換するコンバータと、
     前記コンバータの入力側又は出力側に直列接続された、スイッチ特性を有する第1半導体素子と、
     前記コンバータに接続された前記第1半導体素子の第1端の電圧である第1電圧を検出する第1電圧検出回路と、
     前記第1半導体素子の第2端の電圧である第2電圧を検出する第2電圧検出回路と、
     前記第1電圧検出回路及び第2電圧検出回路により検出される検出信号を基準電圧と比較してサンプリングするサンプリング手段と、
     前記サンプリング手段により生成される電圧データを用いて所定の算出式により前記第1電圧及び前記第2電圧の測定値を算出する電圧算出部と、
     前記算出式の係数を記憶する記憶手段と、
     前記電圧算出部が算出した前記第1電圧及び前記第2電圧の測定値を外部装置へ送信し前記係数を外部装置から受信する通信手段と、
     を備え、
     前記第1電圧検出回路及び前記第2電圧検出回路は、同一仕様の素子で構成された同一回路であり、
     前記第1電圧検出回路及び第2電圧検出回路により検出される検出信号をサンプリングするサンプリング手段の基準電圧は同一であり、
     前記第1電圧及び前記第2電圧の測定値を算出する前記所定の算出式及び前記算出式に用いる係数は同一である、
     スイッチング電源装置。
  2.  前記第1電圧検出回路及び前記第2電圧検出回路は、抵抗分圧回路である、
     請求項1に記載のスイッチング電源装置。
  3.  前記抵抗分圧回路の各抵抗素子は製造ロットが同じである、請求項2に記載のスイッチング電源装置。
  4.  前記抵抗分圧回路の各抵抗素子は、一つの薄膜ネットワーク抵抗の素子である、請求項2又は3に記載のスイッチング電源装置。
  5.  前記第1電圧検出回路は出力部に第1バッファを有し、
     前記第2電圧検出回路は出力部に第2バッファを有する
     請求項1から4の何れかに記載のスイッチング電源装置。
  6.  前記第1バッファ及び前記第2バッファはそれぞれ、オペアンプを有する同一構成の回路であり、前記オペアンプは一つのチップ内に設けられたオペアンプである、請求項5に記載のスイッチング電源装置。
  7.  前記第1半導体素子はMOS-FETである、請求項1から6の何れかに記載のスイッチング電源装置。
  8.  前記第1半導体素子はダイオードである、請求項1から6の何れかに記載のスイッチング電源装置。
  9.  前記第1半導体素子は前記コンバータの出力側に接続され、
     前記コンバータの入力側に接続されたスイッチ特性を有する第2半導体素子と、
     前記コンバータに接続された前記第2半導体素子の第1端の電圧である第3電圧を検出する第3電圧検出回路と、
     前記第2半導体素子の第2端の電圧である第4電圧を検出する第4電圧検出回路と、
     前記第3電圧検出回路及び第4電圧検出回路により検出される検出信号を基準電圧と比較してサンプリングするサンプリング手段と、
     前記サンプリング手段により生成される電圧データを用いて所定の算出式により前記第3電圧及び前記第4電圧の測定値を算出する電圧算出部と、
     前記算出式の係数を記憶する記憶手段と、
     前記電圧算出部が算出した前記第3電圧及び前記第4電圧の測定値を外部装置へ送信し前記係数を外部装置から受信する通信手段と、
     を備え、
     前記第3電圧検出回路及び前記第4電圧検出回路は、同一仕様の素子で構成された同一回路であり、
     前記第3電圧検出回路及び第4電圧検出回路により検出される検出信号をサンプリングするサンプリング手段の基準電圧は同一であり、
     前記第3電圧及び前記第4電圧の測定値を算出する前記所定の算出式及び前記算出式に用いる係数は同一である、
     請求項1に記載のスイッチング電源装置。
  10.  前記第3電圧検出回路及び前記第4電圧検出回路は、抵抗分圧回路である、
     請求項9に記載のスイッチング電源装置。
  11.  前記抵抗分圧回路の各抵抗素子は製造ロットが同じである、請求項10に記載のスイッチング電源装置。
  12.  前記抵抗分圧回路の各抵抗素子は、一つの薄膜ネットワーク抵抗の素子である、請求項10又は11に記載のスイッチング電源装置。
  13.  前記第3電圧検出回路は出力部に第3バッファを有し、
     前記第4電圧検出回路は出力部に第4バッファを有する、
     請求項9から12の何れかに記載のスイッチング電源装置。
  14.  前記第3バッファ及び前記第4バッファはそれぞれ、オペアンプを有する同一構成の回路であり、前記オペアンプは一つのチップ内に設けられたオペアンプである、請求項13に記載のスイッチング電源装置。
  15.  前記第2半導体素子はMOS-FETである、請求項9から14の何れかに記載のスイッチング電源装置。
  16.  前記第2半導体素子はダイオードである、請求項9から14の何れかに記載のスイッチング電源装置。
PCT/JP2015/065183 2014-08-05 2015-05-27 スイッチング電源装置 WO2016021283A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580036966.3A CN106489232B (zh) 2014-08-05 2015-05-27 开关电源装置
DE112015003619.9T DE112015003619T5 (de) 2014-08-05 2015-05-27 Schaltnetzteil
JP2016539883A JP6327347B2 (ja) 2014-08-05 2015-05-27 スイッチング電源装置
US15/396,848 US9966844B2 (en) 2014-08-05 2017-01-03 Switching power supply apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014159118 2014-08-05
JP2014-159118 2014-08-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/396,848 Continuation US9966844B2 (en) 2014-08-05 2017-01-03 Switching power supply apparatus

Publications (1)

Publication Number Publication Date
WO2016021283A1 true WO2016021283A1 (ja) 2016-02-11

Family

ID=55263562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065183 WO2016021283A1 (ja) 2014-08-05 2015-05-27 スイッチング電源装置

Country Status (5)

Country Link
US (1) US9966844B2 (ja)
JP (1) JP6327347B2 (ja)
CN (1) CN106489232B (ja)
DE (1) DE112015003619T5 (ja)
WO (1) WO2016021283A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017217318A1 (ja) * 2016-06-13 2017-12-21 株式会社小糸製作所 負荷駆動装置、車両用灯具
CN108933527A (zh) * 2017-05-24 2018-12-04 英飞凌科技股份有限公司 用于转换器的输出过电压保护
CN110235300A (zh) * 2017-02-01 2019-09-13 Fdk株式会社 充电装置
JP2021018070A (ja) * 2019-07-17 2021-02-15 株式会社デンソー 組電池監視装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7093540B2 (ja) 2017-04-12 2022-06-30 株式会社奥村鉄工所 自然薯栽培器及び自然薯栽培システム
JP6793907B2 (ja) * 2017-05-18 2020-12-02 住友電装株式会社 マイコン入出力回路
WO2021248333A1 (zh) * 2020-06-09 2021-12-16 华为数字能源技术有限公司 一种降压电路、降压装置和电路控制方法
US11366174B2 (en) * 2020-09-11 2022-06-21 Analog Devices, Inc. Predicting failures in feedback network of power supplies using a secondary servo loop

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08123560A (ja) * 1994-10-27 1996-05-17 Canon Inc 電源装置
JP2009277076A (ja) * 2008-05-15 2009-11-26 Kawasaki Microelectronics Inc バンドギャップリファレンス回路
JP2010274175A (ja) * 2009-05-27 2010-12-09 Denso Corp 電子制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8010985B2 (en) * 2004-06-01 2011-08-30 General Instrument Corporation Method and system for resource management in a video on-demand server
WO2007127741A2 (en) * 2006-04-24 2007-11-08 Sun Microsystems, Inc. Media server system
JP2009100496A (ja) 2007-10-12 2009-05-07 Funai Electric Co Ltd 電圧供給装置
JP4602433B2 (ja) 2008-03-27 2010-12-22 ルネサスエレクトロニクス株式会社 半導体装置およびそれを用いた電源装置
JP5104947B2 (ja) 2009-03-24 2012-12-19 株式会社村田製作所 スイッチング電源装置
TWI435199B (zh) * 2011-07-29 2014-04-21 Realtek Semiconductor Corp 電源供應電路以及電源供應方法
JP5900949B2 (ja) 2011-09-30 2016-04-06 Necプラットフォームズ株式会社 電源故障検出回路および電源故障検出方法
CN103326556B (zh) * 2013-05-14 2015-10-28 上海交通大学 定向功率的单相ac-dc变换电路
CN203896021U (zh) * 2014-06-13 2014-10-22 国家电网公司 一种交直流兼容型车载充电机前级电路和车载充电机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08123560A (ja) * 1994-10-27 1996-05-17 Canon Inc 電源装置
JP2009277076A (ja) * 2008-05-15 2009-11-26 Kawasaki Microelectronics Inc バンドギャップリファレンス回路
JP2010274175A (ja) * 2009-05-27 2010-12-09 Denso Corp 電子制御装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017217318A1 (ja) * 2016-06-13 2017-12-21 株式会社小糸製作所 負荷駆動装置、車両用灯具
US20190110345A1 (en) * 2016-06-13 2019-04-11 Koito Manufacturing Co., Ltd. Load driving apparatus
EP3471252A4 (en) * 2016-06-13 2020-06-17 Koito Manufacturing Co., Ltd. LOAD CONTROL DEVICE AND VEHICLE LIGHTING
US10874009B2 (en) 2016-06-13 2020-12-22 Koito Manufacturing Co., Ltd. Load driving apparatus
CN110235300A (zh) * 2017-02-01 2019-09-13 Fdk株式会社 充电装置
CN108933527A (zh) * 2017-05-24 2018-12-04 英飞凌科技股份有限公司 用于转换器的输出过电压保护
CN108933527B (zh) * 2017-05-24 2023-03-31 英飞凌科技股份有限公司 用于转换器的输出过电压保护
JP2021018070A (ja) * 2019-07-17 2021-02-15 株式会社デンソー 組電池監視装置
JP7192691B2 (ja) 2019-07-17 2022-12-20 株式会社デンソー 組電池監視装置

Also Published As

Publication number Publication date
CN106489232B (zh) 2019-01-11
DE112015003619T5 (de) 2017-04-27
US20170149333A1 (en) 2017-05-25
CN106489232A (zh) 2017-03-08
US9966844B2 (en) 2018-05-08
JPWO2016021283A1 (ja) 2017-04-27
JP6327347B2 (ja) 2018-05-23

Similar Documents

Publication Publication Date Title
JP6327347B2 (ja) スイッチング電源装置
US9231484B2 (en) Switching power supply apparatus
US9570999B2 (en) DC-DC converter and DC-DC converter system thereof
TWI496402B (zh) 電流式降壓轉換器及使用其之電子系統
KR101158651B1 (ko) 전류 검출 회로 및 그 전류 검출 회로를 포함하는 스위칭 조절기
US8963522B2 (en) Current-direction detecting circuit and DC-DC converter
US9599520B2 (en) Method for determining and operating temperature of an electronic component
WO2009031673A1 (en) Charge control circuit
US9568376B2 (en) Temperature detecting circuit and method thereof
US20150194888A1 (en) Power source circuit
JP5029056B2 (ja) 検出回路及び電源システム
EP2613216B1 (en) Semiconductor element for current control, and control device using same
US10389242B2 (en) Voltage and current sensing calibration for switching voltage regulators
JP5516350B2 (ja) 負荷駆動回路
JP5287205B2 (ja) 電源回路及びその動作制御方法
JP2013085382A (ja) スイッチングレギュレータとその制御方法
JP2012257450A (ja) 電圧変換器
JP7491880B2 (ja) 電流センサ
JP5699984B2 (ja) 電流モニタ回路
US9184657B2 (en) DC current sensing utilizing a current transformer
JP2014057421A (ja) Dc−dcコンバータ
JP2016001979A (ja) スイッチングレギュレータ
US9893629B2 (en) Control method for switching power supply circuit and power supply device
JP2012244772A (ja) スイッチング電源装置
JP5447232B2 (ja) 電力算出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15829081

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016539883

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112015003619

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15829081

Country of ref document: EP

Kind code of ref document: A1