WO2016021221A1 - 結像光学系及びそれを備えた光学装置 - Google Patents

結像光学系及びそれを備えた光学装置 Download PDF

Info

Publication number
WO2016021221A1
WO2016021221A1 PCT/JP2015/056307 JP2015056307W WO2016021221A1 WO 2016021221 A1 WO2016021221 A1 WO 2016021221A1 JP 2015056307 W JP2015056307 W JP 2015056307W WO 2016021221 A1 WO2016021221 A1 WO 2016021221A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
focusing
imaging optical
cemented
Prior art date
Application number
PCT/JP2015/056307
Other languages
English (en)
French (fr)
Inventor
市川啓介
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2016539857A priority Critical patent/JP6400104B2/ja
Publication of WO2016021221A1 publication Critical patent/WO2016021221A1/ja
Priority to US15/391,928 priority patent/US10114200B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/005Diaphragms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/006Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/16Optical objectives specially designed for the purposes specified below for use in conjunction with image converters or intensifiers, or for use with projectors, e.g. objectives for projection TV
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders

Definitions

  • the present invention relates to an imaging optical system and an optical apparatus provided with the same.
  • wide-angle shooting lens There are a wide-angle lens and a standard lens (hereinafter referred to as "wide-angle shooting lens”) as a shooting lens having an angle of view of around 60 ° to around 50 °.
  • a retrofocus type optical system or a Gaussian type optical system has been widely used as an optical system of a wide-angle photographing lens.
  • the retrofocus type optical system is composed of a front group having negative refractive power and a rear group having positive refractive power.
  • the retrofocus type optical system has a feature that a sufficient back focus can be secured.
  • a Gaussian type optical system has a characteristic set of cemented lenses.
  • One cemented lens has a negative lens on the most image side, and the surface on the most image side has a concave surface on the image side.
  • the surface closest to the object side has a concave surface facing the object side.
  • the Gauss type optical system is divided into two groups, a group on the object side from one cemented lens (hereinafter referred to as "object side group”) and a group on the image side from the other cemented lens (hereinafter “image side group” Can be divided into
  • the center of gravity of the refractive power is closer to the image side of the optical system. That is, in the Gaussian type optical system, both the refractive power of the object side group and the refractive power of the image side group are positive refractive power, but the refractive power is larger in the image side group than in the object side group .
  • the wider the angle of view the stronger the tendency of the refractive power arrangement to become asymmetric. Therefore, in the optical system of the conventional wide-angle photographing lens, coma, astigmatism and lateral chromatic aberration are apt to deteriorate as the angle of view becomes wider.
  • positioning is the alignment of positive refractive power and negative refractive power.
  • the curvature of the lens surface relatively increases as the F-number decreases. Therefore, in the optical system of the conventional wide-angle photographing lens, as the F-number becomes smaller, there is a tendency for more spherical aberration, coma and axial chromatic aberration to occur.
  • the proposed wide-angle shooting lens has an f-number of around 1.4.
  • Patent Document 3 Patent Document 4, Patent Document 5 and Patent Document 6, although the F number is 1.4, it is intended to further reduce the F number or to widen the angle of view. Then, the correction of the various aberrations described above becomes more difficult.
  • the present invention has been made in view of such problems, and has an image forming optical system in which various aberrations are favorably corrected while having a wide angle of view and a small F number, and an optical apparatus provided with the same. Intended to provide.
  • the imaging optical system of the present invention is An imaging optical system which forms a conjugate relationship between a conjugate point on the enlargement side with a long distance and a conjugate point on the reduction side with a short distance,
  • the imaging optical system includes an aperture stop, a first cemented lens, a second cemented lens, and a third cemented lens.
  • the first cemented lens is located on the enlargement side of the aperture stop
  • the second cemented lens is positioned adjacent to the predetermined lens group on the reduction side with respect to the predetermined lens group
  • the third cemented lens is located on the reduction side of the aperture stop
  • the predetermined lens group has negative refractive power and is composed of all lenses included from the lens located on the most enlargement side to the first cemented lens
  • the first cemented lens comprises, in order from the enlargement side, a positive lens and a negative lens, and the surface on the most reduction side has a concave surface facing the reduction side
  • the second cemented lens is composed of, in order from the enlargement side, a negative lens and a positive lens, and the surface on the most enlargement side has a concave surface facing the enlargement side
  • the third cemented lens is characterized by including, in order from the enlargement side, a positive lens and a negative lens.
  • the optical device of the present invention is An optical system and an imaging device disposed on the reduction side,
  • the imaging device has an imaging surface, and converts an image formed on the imaging surface by the optical system into an electrical signal
  • the optical system is characterized in that it is the above-mentioned image forming optical system.
  • the optical device of the present invention is An optical system, and a display element disposed on the reduction side,
  • the display element has a display surface,
  • the image displayed on the display surface is projected to the enlargement side by the optical system,
  • the optical system is characterized in that it is the above-mentioned image forming optical system.
  • an imaging optical system in which various aberrations are well corrected while having a wide angle of view and a small F number, and an optical apparatus provided with the imaging optical system.
  • FIG. 5A is a cross-sectional view of an image forming optical system according to Example 1.
  • FIG. 5A is a lens cross-sectional view at the time of focusing on an infinite distance object, and FIGS. 5B, 5C, 5D and 5E. These are aberration diagrams when focusing on an infinite distance object.
  • FIG. 7A is a cross-sectional view of an image forming optical system according to Example 2, and FIG. 7A is a lens cross-sectional view at the time of focusing on an infinite distance object, and FIGS. 7B, 7C, 7D and 7E. These are aberration diagrams when focusing on an infinite distance object.
  • FIGS. 7B, 7C, 7D and 7E These are aberration diagrams when focusing on an infinite distance object.
  • FIG. 7A and 7B are a cross-sectional view and an aberration diagram of the image forming optical system according to Example 3, and FIG. 7A is a lens cross-sectional view at the time of focusing on an infinite distance object; These are aberration diagrams when focusing on an infinite distance object.
  • FIG. 10A is a cross-sectional view of the imaging optical system according to Example 4.
  • FIG. 10A is a lens cross-sectional view at the time of focusing on an infinite distance object
  • FIGS. 10B, 10C, 10D and 10E These are aberration diagrams when focusing on an infinite distance object.
  • FIG. 14A is a cross-sectional view of the imaging optical system according to Example 5.
  • FIG. 14A is a cross-sectional view of the imaging optical system according to Example 5.
  • FIG. 7A is a lens cross-sectional view at the time of focusing on an infinite distance object
  • FIGS. 7B, 7C, 7D and 7E are aberration diagrams when focusing on an infinite distance object.
  • It is sectional drawing and the aberrational view of the imaging optical system which concerns on Example 6, Comprising: (a) is lens sectional drawing at the time of an infinite point object focusing, (b), (c), (d) and (e) These are aberration diagrams when focusing on an infinite distance object.
  • FIG. 16A is a sectional view of an image forming optical system according to Example 9, and FIG.
  • FIGS. 16A is a lens sectional view at the time of focusing on an infinite distance object
  • FIGS. 16B, 16C, 16D and 16E These are aberration diagrams when focusing on an infinite distance object.
  • It is sectional drawing and the aberrational view of the imaging optical system which concerns on Example 10, Comprising: (a) is a lens sectional view at the time of an infinite distance object focusing, (b), (c), (d) and (e) These are aberration diagrams when focusing on an infinite distance object.
  • FIG. 40A is a sectional view of an image forming optical system according to Example 15, and FIG. 20A is a lens sectional view at the time of focusing on an infinite distance object, and FIGS.
  • FIG. 40A is a cross-sectional view of the imaging optical system according to Example 16, and FIG. 20A is a lens cross-sectional view at the time of focusing on an infinite distance object, and FIGS. These are aberration diagrams when focusing on an infinite distance object. They are a sectional view and an aberrational view of an image forming optical system according to Example 17, wherein (a) is a lens sectional view at the time of focusing on an infinite distance object, (b), (c), (d) and (e) These are aberration diagrams when focusing on an infinite distance object.
  • FIG. 20A is a lens cross-sectional view at the time of focusing on an infinite distance object. These are aberration diagrams when focusing on an infinite distance object.
  • FIG. 20A is a lens cross-sectional view at the time of focusing on an infinite distance object. These are aberration diagrams when focusing on an infinite distance object.
  • FIG. 20A is a lens cross-sectional view at the time of focusing on an infinite distance object. These are aberration diagrams when focusing on an infinite distance object.
  • It is a sectional view of an imaging device. It is a front perspective view showing the appearance of an imaging device. It is a rear perspective view of an imaging device.
  • FIG. 2 is a configuration block diagram of an internal circuit of a main part of the imaging device. It is a sectional view of a projection device.
  • the imaging optical system is an imaging optical system that forms a conjugate relationship between a conjugate point on the enlargement side with a long distance and a conjugate point on the reduction side with a short distance
  • the imaging optical system Has an aperture stop, a first cemented lens, a second cemented lens, and a third cemented lens, the first cemented lens being positioned on the enlargement side of the aperture stop,
  • the second cemented lens is positioned adjacent to the predetermined lens group on the reduction side of the predetermined lens group, the third cemented lens is positioned on the reduction side of the aperture stop, and the predetermined lens group is negative.
  • the first cemented lens is composed of a positive lens and a negative lens in order from the magnification side
  • the surface on the most reduction side has a concave surface facing the reduction side
  • the second cemented lens And a negative lens and a positive lens
  • the surface on the most enlargement side has a concave surface on the enlargement side
  • the third cemented lens is composed of a positive lens and a negative lens in order from the enlargement side It is characterized by
  • the imaging optical system of the present embodiment will be described while comparing the imaging optical system of the present embodiment with a Gauss type optical system.
  • the object side corresponds to the enlargement side
  • the image side corresponds to the reduction side.
  • the Gauss-type optical system comprises a characteristic set of cemented lenses.
  • one cemented lens has a negative lens closest to the image side, and the surface closest to the image side has a concave surface facing the image side.
  • the imaging optical system of the present embodiment also includes a characteristic set of cemented lenses, that is, a first cemented lens and a second cemented lens.
  • the first cemented lens has a negative lens on the most reduction side, and the surface on the most reduction side has a concave surface on the reduction side.
  • the first cemented lens corresponds to one cemented lens.
  • the object side group includes one cemented lens.
  • the predetermined lens group includes the first cemented lens. Therefore, a predetermined lens group corresponds to the object side group.
  • the refractive power is larger in the image side group than in the object side group.
  • both the refractive power of the object side group and the refractive power of the image side group are positive refractive power.
  • the predetermined lens group has negative refractive power. If the distribution state of refractive power is compared with a Gaussian type optical system, in the imaging optical system of this embodiment, negative refractive power is distributed to the object side group.
  • the predetermined lens group can be said to be an object side group when the refractive power is shifted from the positive refractive power to the negative refractive power in the Gaussian type optical system.
  • the refractive power to be shifted may be weak positive refractive power.
  • the refractive power in this case is weaker than the refractive power of the object side group in the Gaussian type optical system.
  • the Gauss type optical system is an optical system having an extremely high potential for aberration correction even if the F number is about 1.4, as long as the angle of view is up to about 50 °.
  • the height of the potential for this aberration correction is based on a unique set of cemented lenses.
  • the imaging optics of the present embodiment a configuration is employed in which the refractive power shift in the object side group and the positive refractive power in the image side group are performed with respect to the Gaussian type optical system. Therefore, the imaging optics of this embodiment are different from the Gaussian type optical system.
  • the imaging optical system of the present embodiment also includes a characteristic set of cemented lenses. Therefore, the imaging optical system of the present embodiment is based on an optical system in which the potential for aberration correction is extremely high. Therefore, in the image forming optical system according to the present embodiment, (I) reducing the F-number while correcting various aberrations well, that is, securing sufficient brightness in the optical system, (II) sufficient It is possible to shorten the focal length of the entire imaging optical system while securing a back focus of the length, and (III) to secure a wide enough angle of view.
  • the refractive power shift in the object side group is to shift the refractive power of the object side group from the original positive refractive power to the negative refractive power in a Gaussian type optical system. Further, the increase of the positive refractive power in the image side group is to make the positive refractive power of the image side group larger than the original refractive power in the Gaussian type optical system.
  • the height of the chief ray in the image side group becomes extremely high.
  • the aberration in the image side group is deteriorated.
  • the predetermined lens group has negative refractive power. Therefore, in order to avoid the deterioration of the aberration in the image side group, it is preferable that the aperture stop be positioned on the reduction side more than the second cemented lens also in the image forming optical system of the present embodiment.
  • the imaging optical system of the present embodiment is based on a Gaussian type optical system. Therefore, the imaging optical system of the present embodiment is also an optical system in which the potential for aberration correction is extremely high. As such, even if the aperture stop is positioned closer to the reduction side than the second cemented lens, it is possible to prevent the deterioration of the aberration to some extent.
  • the aperture stop is positioned closer to the reduction side than the second cemented lens, the position of the aperture stop with respect to a unique set of cemented lenses is different from that of the Gaussian type optical system. Therefore, when the aperture stop is positioned closer to the reduction side than the second cemented lens, it is difficult to correct the aberration at a higher level.
  • the third cemented lens is newly provided.
  • This third cemented lens has a negative lens on the reduction side.
  • the third cemented lens can be made to function as an aplanatic achromatic lens.
  • the third cemented lens in addition to the first cemented lens and the second cemented lens, in the image forming optical system of the present embodiment, spherical aberration and coma aberration which are particularly difficult to correct for aberration.
  • Axial chromatic aberration and lateral chromatic aberration can be corrected to a satisfactory level.
  • a wide angle of view is, for example, an angle of view of 70 ° or more, and a small F number is, for example, about 1.2.
  • the image forming optical system of the present embodiment is an optical system in which the potential for aberration correction is extremely high.
  • the potential of this extremely high aberration correction is obtained by providing the following configuration.
  • the first cemented lens is composed of, in order from the enlargement side, a positive lens and a negative lens, and the surface closest to the reduction side has a concave surface facing the reduction side.
  • the second cemented lens is composed of a negative lens and a positive lens, and the surface closest to the magnification side has a concave surface facing the magnification side.
  • the aperture stop is positioned closer to the reduction side than the second cemented lens. Therefore, the aperture stop is provided in the lens unit on the reduction side with respect to the predetermined lens unit.
  • a more specific configuration of the imaging optical system of the present embodiment is as follows.
  • the first cemented lens is located on the enlargement side of the aperture stop.
  • the second cemented lens is positioned adjacent to the predetermined lens group on the reduction side with respect to the predetermined lens group.
  • the third cemented lens is positioned on the reduction side relative to the aperture stop.
  • the third cemented lens is composed of a positive lens and a negative lens in order from the enlargement side.
  • the lens positioned closest to the magnification side is a first negative lens, and the first negative lens is a meniscus lens.
  • the predetermined lens group is given negative refractive power.
  • a negative lens in particular as the lens located on the most enlargement side.
  • the negative lens disposed closest to the magnification side has a greater influence on the amount of off-axis aberration generated than negative lenses placed at other positions. Therefore, by making the shape of the negative lens a meniscus shape, it is possible to prevent the deterioration of off-axis aberration. As a result, it is possible to realize an imaging optical system in which various aberrations are well corrected while having a wide angle of view and a small F number.
  • R N1F is a paraxial radius of curvature of the enlargement side of the first negative lens
  • R N1 R is the paraxial radius of curvature of the reduction side of the first negative lens
  • conditional expression (1) As the upper limit value of the conditional expression (1) is exceeded, astigmatism or coma aberration is apt to deteriorate. Therefore, it is not preferable to exceed the upper limit value of the conditional expression (1). On the other hand, below the lower limit value of the conditional expression (1), barrel distortion tends to be large.
  • conditional expression (1 ′) be satisfied instead of the conditional expression (1).
  • the lens component is a lens block in which only the expansion side and the reduction side are in contact with air in the optical path, and between the second cemented lens and the third cemented lens It is preferable to have one or more positive lens components.
  • the concept of the lens component includes a single lens, a cemented lens, and a compound lens.
  • a larger positive refractive power is given to the reduction side than the predetermined lens group as compared with the Gaussian type optical system. Then, the aperture stop is positioned on the reduction side of the second cemented lens, and a third cemented lens is newly provided on the reduction side of the aperture stop.
  • the configuration in which the two cemented lenses face each other across the aperture stop has a greater effect on the amount of spherical aberration generation and the amount of coma aberration generation than in the other configurations. Therefore, spherical aberration and coma can be corrected well by arranging one or more positive lens components between the second cemented lens and the third cemented lens. As a result, it is possible to realize an imaging optical system in which various aberrations are well corrected while having a wide angle of view and a small F number.
  • the image forming optical system of the present embodiment has a first positive lens located closest to the second cemented lens, and the following conditional expression (2) is satisfied. 0 ⁇ (R P1F + R P1R ) / (R P1F -R P1R ) ⁇ 3 (2) here, R P1F is a paraxial radius of curvature of the enlargement side of the first positive lens, R P1R is the paraxial radius of curvature of the reduction side of the first positive lens, It is.
  • conditional expression (2) If the upper limit value of the conditional expression (2) is exceeded, spherical aberration and coma aberration are apt to deteriorate. Therefore, it is not preferable to exceed the upper limit value of the conditional expression (2). On the other hand, below the lower limit value of the conditional expression (2), astigmatism tends to deteriorate. In addition, spherical aberration is likely to occur.
  • conditional expression (2) it is good to replace with conditional expression (2) and to satisfy the following conditional expressions (2 '). 0.02 ⁇ (R P1F + R P1R ) / (R P1F -R P1R ) ⁇ 1 (2 ′) Furthermore, in place of the conditional expression (2), it is more preferable to satisfy the following conditional expression (2 ′ ′). 0.04 ⁇ (R P1F + R P1R ) / (R P1F -R P1R ) ⁇ 0.7 (2 ′ ′)
  • the imaging optical system of the present embodiment has a second negative lens and a second positive lens in order from the reduction side, and the second negative lens is a meniscus lens, and It is preferable to satisfy conditional expression (3). 0.01 ⁇ (R P2F + R P2R ) / (R P2F ⁇ R P2R ) ⁇ 3 (3) here, R P2F is the paraxial radius of curvature of the enlargement side of the second positive lens, R P2R is a paraxial radius of curvature of the reduction side of the second positive lens, It is.
  • a larger positive refractive power is given to the reduction side than the predetermined lens group as compared with the Gaussian type optical system.
  • this has a large effect on the generation amount of spherical aberration, the generation amount of coma aberration, and the generation amount of astigmatism.
  • a positive lens and a negative lens are disposed on the reduction side of the second cemented lens.
  • the second negative lens and the second positive lens are disposed in order from the reduction side, and the second negative lens is a meniscus lens.
  • spherical aberration, coma and astigmatism can be corrected well.
  • conditional expression (3) it is preferable to satisfy conditional expression (3).
  • conditional expression (3) it is possible to prevent the deterioration of the on-axis aberration and the deterioration of the off-axis aberration.
  • conditional expression (3) If the upper limit value of the conditional expression (3) is exceeded, spherical aberration and coma aberration are apt to deteriorate. Therefore, it is not preferable to exceed the upper limit value of the conditional expression (3). On the other hand, below the lower limit value of the conditional expression (3), astigmatism tends to deteriorate.
  • conditional expression (3) it is good to replace with conditional expression (3) and to satisfy the following conditional expressions (3 ').
  • R NGF is a paraxial radius of curvature of a surface located on the most enlargement side in a predetermined lens group
  • R NGR is a paraxial radius of curvature of the surface located closest to the reduction side in a predetermined lens group
  • conditional expression (4) it is more preferable to satisfy the conditional expression (4).
  • satisfying the conditional expression (4) it is possible to prevent the deterioration of the off-axis aberration.
  • conditional expression (4) If the upper limit value of the conditional expression (4) is exceeded, barrel distortion tends to be large. Therefore, it is not preferable to exceed the upper limit value of the conditional expression (4). On the other hand, below the lower limit value of the conditional expression (4), astigmatism or coma aberration is apt to deteriorate.
  • the first cemented lens is positioned on the enlargement side of the aperture stop, and the first cemented lens is formed of a positive lens and a negative lens in order from the enlargement side, and the surface on the most reduction side is the reduction side.
  • conditional expression (4) it is preferable to satisfy the following conditional expression (4 ′). -9 ⁇ (R NGF + R NGR ) / (R NGF -R NGR ) ⁇ 10 (4 ') Furthermore, it is more preferable to satisfy the following conditional expression (4 ′ ′) instead of the conditional expression (4). -7 ⁇ (R NGF + R NGR ) / (R NGF -R NGR ) ⁇ 9 (4 ′ ′)
  • R NGR is a paraxial radius of curvature of the surface located closest to the reduction side in a predetermined lens group
  • R C2F is a paraxial radius of curvature of the surface located on the most expansion side in the second cemented lens
  • conditional expression (5) For the predetermined lens group and the second cemented lens, it is more preferable to satisfy the conditional expression (5).
  • satisfying the conditional expression (5) it is possible to prevent the deterioration of the on-axis aberration and the deterioration of the off-axis aberration.
  • conditional expression (5) As the upper limit value of the conditional expression (5) is exceeded, astigmatism tends to be deteriorated. Therefore, it is not preferable to exceed the upper limit value of the conditional expression (5). On the other hand, if the lower limit value of the conditional expression (5) is exceeded, the spherical aberration tends to be large.
  • the first cemented lens is positioned on the enlargement side of the aperture stop, and the first cemented lens is formed of a positive lens and a negative lens in order from the enlargement side, and the surface on the most reduction side is the reduction side.
  • conditional expression (5 ′) be satisfied instead of the conditional expression (5).
  • f is the focal length of the entire imaging optical system when an object at infinity is in focus
  • e N1F is the maximum effective aperture of the enlargement side of the first negative lens
  • conditional expression (A) If the upper limit value of the conditional expression (A) is exceeded, it will be difficult to widen the angle of view. That is, when trying to widen the angle of view, spherical aberration, distortion and astigmatism tend to occur. On the other hand, when the value goes below the lower limit value of the conditional expression (A), the optical system tends to be enlarged in the radial direction.
  • conditional expression (A ′) be satisfied instead of the conditional expression (A).
  • f is the focal length of the entire imaging optical system when focusing on an infinite object
  • e AS is the maximum diameter of the aperture stop
  • Fno is the f-number of the entire imaging optical system when focusing on an infinite object
  • conditional expression (B) If the upper limit value of the conditional expression (B) is exceeded, it will be difficult to widen the angle of view. That is, if the angle of view is increased, it becomes difficult to correct spherical aberration and chromatic aberration. On the other hand, when the value goes below the lower limit value of the conditional expression (B), the optical system tends to be enlarged in the radial direction.
  • conditional expression (B) In place of the conditional expression (B), it is preferable to satisfy the following conditional expression (B ′). 0.2 ⁇ (f / e AS ) / Fno ⁇ 1 (B ') Furthermore, it is more preferable to satisfy the following conditional expression (B ′ ′) instead of the conditional expression (B). 0.3 ⁇ (f / e AS ) / Fno ⁇ 0.9 (B '')
  • T air — max is the largest on-axis air distance between the surface on the most enlargement side of the imaging optical system and the surface on the most reduction side
  • ⁇ d is the on-axis distance from the surface on the most enlargement side of the imaging optical system to the surface on the most reduction side
  • Conditional expression (C) is a conditional expression that is advantageous for securing high optical performance, shortening the overall length of the optical system, and reducing the outer diameter of the imaging system.
  • ⁇ d ie, the on-axis distance from the lens surface located on the most expansion side of the imaging optical system to the lens surface located on the most reduction side, excessively enlarges the air gap between the lenses to achieve optical performance. Securing easily leads to an increase in the overall length of the optical system and an increase in the diameter of the optical system.
  • conditional expression (C) is advantageous for securing the number of lenses necessary for realizing high optical performance while shortening the overall length and reducing the diameter of the optical system.
  • conditional expression (C ′) be satisfied instead of the conditional expression (C). 0.03 ⁇ T air_max / ⁇ d ⁇ 0.2 ( C ′) Furthermore, it is more preferable to satisfy the following conditional expression (C ′ ′) in place of the conditional expression (C). 0.07 ⁇ T air_max / ⁇ d ⁇ 0.16 ( C ′ ′)
  • the image forming optical system of the present embodiment has a first focusing lens group, and the first focusing lens group is disposed closer to the reduction side than the third cemented lens, and is connected at the time of focusing. It is preferable to move along the optical axis of the image optical system and to have negative refractive power.
  • the image forming optical system of the present embodiment satisfies the following conditional expression (D). 0 ⁇ ( RF1F + RF1R ) / ( RF1F- RF1R ) ⁇ 5 (D) here, RF1F is a paraxial radius of curvature of the surface located on the most enlargement side in the first focusing lens group, R F1R is a paraxial radius of curvature of the surface located closest to the reduction side in the first focusing lens group, It is.
  • conditional expression (D) It is preferable not to fall below the lower limit value of the conditional expression (D) and not to exceed the upper limit value of the conditional expression (D) to suppress the fluctuation of spherical aberration and the coma aberration at the time of focusing.
  • conditional expression (D ′) In place of the conditional expression (D), it is preferable to satisfy the following conditional expression (D ′). 0.1 ⁇ ( RF1F + RF1R ) / ( RF1F- RF1R ) ⁇ 4.5 (D ') Furthermore, it is more preferable to satisfy the following conditional expression (D ′ ′) instead of the conditional expression (D). 0.2 ⁇ ( RF1F + RF1R ) / ( RF1F- RF1R ) ⁇ 4 (D '')
  • the first focusing lens group moves to the reduction side at the time of focusing on the near distance object from the state of focusing on the infinity object located on the enlargement side It is preferable to satisfy the following conditional expression (E). -1 ⁇ M F1 / f ⁇ 0 (E) here, M F1 is the maximum movement amount along the optical axis direction at the time of focusing in the first focusing lens group, f is the focal length of the entire imaging optical system when an object at infinity is in focus, It is.
  • the distance to the object for which focusing is possible is shortened so as not to fall below the lower limit value of conditional expression (E), and the upper limit value of conditional expression (E) is not exceeded. It is preferred not to make the overall length too long.
  • conditional expression (E) it is preferable to satisfy the following conditional expression (E ′). -0.8 ⁇ M F1 /f ⁇ -0.05 (E ') Furthermore, it is more preferable to satisfy the following conditional expression (E ′ ′) instead of the conditional expression (E). -0.4 ⁇ M F1 /f ⁇ -0.04 (E '')
  • the imaging optical system of the present embodiment has a second focusing lens group, and the second focusing lens group is disposed on the reduction side with respect to the first focusing lens group, and the focusing is performed. It is preferable to move along the optical axis of the imaging optical system while changing the distance to the first focusing lens unit and to have a positive refractive power.
  • the refractive power of the first focusing lens group is negative refractive power
  • the refractive power of the second focusing lens group positioned on the reduction side of the first focusing lens group is positive refractive power
  • each of the first focusing lens group and the second focusing lens group consists of at most two lenses.
  • this arrangement is advantageous for reducing the load on the drive mechanism and for reducing the size of the imaging optical system.
  • the first focusing lens unit moves to the reduction side at the time of focusing on the near distance object from the state of focusing on the infinity object located on the enlargement side, the enlargement is performed.
  • the second focusing lens unit moves to the enlargement side when focusing on a near distance object after focusing on an infinite object located on the side, and the first focusing lens unit and the second It is preferable that the focusing lens unit satisfies the following conditional expression (F) at the time of focusing.
  • M F1 is the maximum movement amount along the optical axis direction at the time of focusing in the first focusing lens group
  • M F2 is the maximum movement amount along the optical axis direction at the time of focusing in the second focusing lens unit, It is.
  • the moving amount of the second focusing lens unit is suppressed so as not to fall below the lower limit value of the conditional expression (F), thereby focusing on the reduction side (imaging surface) or the enlargement side (screen surface). It is preferable to reduce the change in image size of the image.
  • conditional expression (F) it is preferable to satisfy the following conditional expression (F ′). 0.005 ⁇ M F2 / M F1 ⁇ 1.2 (F ') Furthermore, it is more preferable to satisfy the following conditional expression (F ′ ′) instead of the conditional expression (F). 0.008 ⁇ M F2 / M F1 ⁇ 1 (F '')
  • the first focusing lens unit and the second focusing lens unit satisfy the following conditional expression (G). -3 ⁇ f F1 / f F2 ⁇ -0.5 (G) here, f F1 is the focal length of the first focusing lens group, f F2 is the focal length of the second focusing lens group, It is.
  • the negative refractive power of the first focusing lens unit is sufficiently ensured so as not to fall below the lower limit value of conditional expression (G), and the upper limit value of conditional expression (G) is not exceeded.
  • Such an arrangement is advantageous for both the reduction of aberration variation occurring at the time of focusing within a narrow moving range and the shortening of the distance to an object that can be focused.
  • the first focusing lens unit and the second focusing lens unit satisfy the following conditional expression (H). 5 ⁇ F1 / ⁇ F2 ⁇ 50 (H) here, ⁇ F1 is the lateral magnification of the first focusing lens group when focusing on an infinite object, ⁇ F2 is the lateral magnification of the second focusing lens group at the time of infinity object focusing, It is.
  • conditional expression (H) In place of the conditional expression (H), it is preferable to satisfy the following conditional expression (H ′). 8 ⁇ F1 / ⁇ F2 ⁇ 40 (H ') Furthermore, in place of the conditional expression (H), it is more preferable to satisfy the following conditional expression (H ′ ′). 10 ⁇ F1 / ⁇ F2 ⁇ 35 (H ′ ′)
  • the optical device includes an optical system and an imaging device disposed on the reduction side, and the imaging device has an imaging surface, and an image formed on the imaging surface by the optical system is It is characterized in that it is converted into an electrical signal, and the optical system is the above-mentioned image forming optical system.
  • a wide imaging range can be imaged with low noise and high resolution.
  • the optical device of the present embodiment has an optical system and a display element arranged on the reduction side, the display element has a display surface, and the image displayed on the display surface is an optical system.
  • the optical system is projected on the enlargement side, and the optical system is the above-mentioned imaging optical system.
  • optical device of the present embodiment it is possible to project an image with low noise and high resolution over a wide projection range.
  • imaging optical system and optical device may simultaneously satisfy a plurality of configurations. This is preferable in order to obtain a good imaging optical system and optical device. Moreover, the combination of preferable structure is arbitrary. Further, for each conditional expression, only the upper limit value or the lower limit value of the numerical range of the more limited conditional expression may be limited.
  • Examples 1 to 19 of the imaging optical system will be described based on the drawings.
  • the imaging optical systems of Examples 1 to 19 are all imaging optical systems having an F number of less than 1.5.
  • FIGS. 1 (a) to 19 (a) show lens sectional views in the imaging optical system of each embodiment.
  • the lens sectional view is a lens sectional view at the time of focusing on an infinite distance object.
  • FIG.1 (b)-FIG.19 (b) show the spherical aberration (SA) in the imaging optical system of each Example
  • FIG.1 (c)-FIG.19 (c) are astigmatism (AS) 1 (d) to 19 (d) show distortion (DT)
  • FIGS. 1 (e) to 19 (e) show distortion (DT).
  • SA spherical aberration
  • FIG.1 (c)-FIG.19 (c) are astigmatism (AS) 1 (d) to 19 (d) show distortion (DT)
  • FIGS. 1 (e) to 19 (e) show distortion (DT).
  • Each aberration diagram is an aberration diagram at the time of focusing on an infinite distance object. “ ⁇ ” represents a half angle of view.
  • the front group is indicated by GF
  • the rear group is indicated by GR
  • the cover glass is indicated by C
  • the image plane is indicated by I.
  • the imaging optical system is divided into a front group and a rear group.
  • how to divide the lens groups is not limited to how to divide the front group and the rear group.
  • a parallel flat plate constituting a low pass filter may be disposed between the rear group GR and the image plane I.
  • the surface of the parallel flat plate may be provided with a wavelength range limiting coat for limiting infrared light.
  • a multilayer film for wavelength range limitation may be provided on the surface of the cover glass C. Further, the cover glass C may have a low pass filter action.
  • an imaging element is disposed on the image plane I.
  • a display element is disposed on the image plane I.
  • the configuration of each embodiment will be described on the premise that the imaging optical system is used for imaging. Therefore, the enlargement side is the object side, and the reduction side is the image side.
  • FIG. 1A is a lens cross-sectional view of the image forming optical system according to the first embodiment.
  • 1 (b), (c), (d) and (e) are aberration diagrams of the imaging optical system according to Example 1.
  • FIG. 1A is a lens cross-sectional view of the image forming optical system according to the first embodiment.
  • 1 (b), (c), (d) and (e) are aberration diagrams of the imaging optical system according to Example 1.
  • FIG. 1A is a lens cross-sectional view of the image forming optical system according to the first embodiment.
  • 1 (b), (c), (d) and (e) are aberration diagrams of the imaging optical system according to Example 1.
  • the imaging optical system according to the first embodiment includes, in order from the object side, a front group GF having negative refractive power and a rear group GR having positive refractive power. It is done.
  • the rear group GR includes an aperture stop S.
  • the front group GF includes a negative meniscus lens L1 having a convex surface on the object side, a negative meniscus lens L2 having a convex surface on the object side, a negative meniscus lens L3 having a convex surface on the object side, and a biconvex positive lens L4. And a biconvex positive lens L5 and a biconcave negative lens L6.
  • the biconvex positive lens L5 and the biconcave negative lens L6 are cemented.
  • the rear group GR includes a biconcave negative lens L7, a biconvex positive lens L8, a biconvex positive lens L9, a biconvex positive lens L10, a negative meniscus lens L11 having a convex surface on the image side, and a convex surface on the object side And a biconvex positive lens L13, and a negative meniscus lens L14 having a convex surface facing the image side.
  • the biconcave negative lens L7 and the biconvex positive lens L8 are cemented.
  • the biconvex positive lens L10 and the negative meniscus lens L11 are cemented.
  • the front group GF is a predetermined lens group.
  • a first cemented lens is composed of the biconvex positive lens L5 and the biconcave negative lens L6.
  • a second cemented lens is configured by the biconcave negative lens L7 and the biconvex positive lens L8.
  • a third cemented lens is composed of the biconvex positive lens L10 and the negative meniscus lens L11.
  • the negative meniscus lens L12 moves to the image side along the optical axis.
  • Aspheric surfaces are provided on a total of four surfaces of the image side surface of the negative meniscus lens L3, both surfaces of the negative meniscus lens L12, and the image side surface of the biconvex positive lens L13.
  • FIG. 2A is a lens cross-sectional view of the imaging optical system according to the second embodiment.
  • FIGS. 2B, 2C, 2D, and 2E are aberration diagrams of the imaging optical system according to Example 2.
  • FIG. 2A is a lens cross-sectional view of the imaging optical system according to the second embodiment.
  • FIGS. 2B, 2C, 2D, and 2E are aberration diagrams of the imaging optical system according to Example 2.
  • the image forming optical system according to the second embodiment includes, in order from the object side, a front group GF having negative refractive power and a rear group GR having positive refractive power. It is done.
  • the rear group GR includes an aperture stop S.
  • the front group GF includes a negative meniscus lens L1 having a convex surface on the object side, a negative meniscus lens L2 having a convex surface on the object side, a negative meniscus lens L3 having a convex surface on the object side, and a convex surface on the object side It is composed of a positive meniscus lens L4, a biconvex positive lens L5, and a biconcave negative lens L6.
  • the biconvex positive lens L5 and the biconcave negative lens L6 are cemented.
  • the rear group GR includes a biconcave negative lens L7, a biconvex positive lens L8, a biconvex positive lens L9, a biconvex positive lens L10, a negative meniscus lens L11 having a convex surface on the image side, and a convex surface on the object side And a biconvex positive lens L13, and a negative meniscus lens L14 having a convex surface facing the image side.
  • the biconcave negative lens L7 and the biconvex positive lens L8 are cemented.
  • the biconvex positive lens L10 and the negative meniscus lens L11 are cemented.
  • the front group GF is a predetermined lens group.
  • a first cemented lens is composed of the biconvex positive lens L5 and the biconcave negative lens L6.
  • a second cemented lens is configured by the biconcave negative lens L7 and the biconvex positive lens L8.
  • a third cemented lens is composed of the biconvex positive lens L10 and the negative meniscus lens L11.
  • the negative meniscus lens L12 moves to the image side along the optical axis.
  • Aspheric surfaces are provided on a total of six surfaces: both surfaces of the negative meniscus lens L3, both surfaces of the negative meniscus lens L12, and both surfaces of the biconvex positive lens L13.
  • FIG. 3A is a lens cross-sectional view of the image forming optical system according to the third embodiment.
  • FIGS. 3B, 3C, 3D and 3E are aberration diagrams of the imaging optical system according to Example 3.
  • FIG. 3A is a lens cross-sectional view of the image forming optical system according to the third embodiment.
  • FIGS. 3B, 3C, 3D and 3E are aberration diagrams of the imaging optical system according to Example 3.
  • the imaging optical system according to Example 3 includes, in order from the object side, a front group GF having negative refractive power and a rear group GR having positive refractive power. It is done.
  • the rear group GR includes an aperture stop S.
  • the front group GF includes a negative meniscus lens L1 having a convex surface on the object side, a negative meniscus lens L2 having a convex surface on the object side, a biconvex positive lens L3, and a biconcave negative lens L4. .
  • the biconvex positive lens L3 and the biconcave negative lens L4 are cemented.
  • the rear group GR is a negative meniscus lens having a biconcave negative lens L5, a biconvex positive lens L6, a biconvex positive lens L7, a biconvex positive lens L8, a biconcave negative lens L9, and a convex surface facing the object side It is composed of L10, a biconvex positive lens L11, and a negative meniscus lens L12 having a convex surface facing the image side.
  • the biconcave negative lens L5 and the biconvex positive lens L6 are cemented.
  • the biconvex positive lens L8 and the biconcave negative lens L9 are cemented.
  • the front group GF is a predetermined lens group.
  • a first cemented lens is composed of the biconvex positive lens L3 and the biconcave negative lens L4. Further, a second cemented lens is configured by the biconcave negative lens L5 and the biconvex positive lens L6. A third cemented lens is configured of the biconvex positive lens L8 and the biconcave negative lens L9.
  • the negative meniscus lens L10 moves to the image side along the optical axis.
  • Aspheric surfaces are provided on a total of six surfaces: both surfaces of the negative meniscus lens L2, both surfaces of the negative meniscus lens L10, and both surfaces of the biconvex positive lens L11.
  • FIG. 4A is a lens cross-sectional view of the imaging optical system according to Example 4.
  • FIGS. 4B, 4C, 4D and 4E are aberration diagrams of the imaging optical system according to Example 4.
  • FIG. 4A is a lens cross-sectional view of the imaging optical system according to Example 4.
  • FIGS. 4B, 4C, 4D and 4E are aberration diagrams of the imaging optical system according to Example 4.
  • FIG. 4A is a lens cross-sectional view of the imaging optical system according to Example 4.
  • FIGS. 4B, 4C, 4D and 4E are aberration diagrams of the imaging optical system according to Example 4.
  • the imaging optical system according to Example 4 includes, in order from the object side, a front group GF having negative refractive power and a rear group GR having positive refractive power. It is done.
  • the rear group GR includes an aperture stop S.
  • the front group GF includes a negative meniscus lens L1 having a convex surface on the object side, a negative meniscus lens L2 having a convex surface on the object side, a negative meniscus lens L3 having a convex surface on the object side, and a convex surface on the object side It is composed of a positive meniscus lens L4, a biconvex positive lens L5, and a biconcave negative lens L6.
  • the biconvex positive lens L5 and the biconcave negative lens L6 are cemented.
  • the rear group GR includes a biconcave negative lens L7, a biconvex positive lens L8, a biconvex positive lens L9, a biconvex positive lens L10, a negative meniscus lens L11 having a convex surface facing the image side, and a biconcave negative lens It is composed of L12, a biconvex positive lens L13, and a negative meniscus lens L14 having a convex surface facing the image side.
  • the biconcave negative lens L7 and the biconvex positive lens L8 are cemented.
  • the biconvex positive lens L10 and the negative meniscus lens L11 are cemented.
  • the front group GF is a predetermined lens group.
  • a first cemented lens is composed of the biconvex positive lens L5 and the biconcave negative lens L6.
  • a second cemented lens is configured by the biconcave negative lens L7 and the biconvex positive lens L8.
  • a third cemented lens is composed of the biconvex positive lens L10 and the negative meniscus lens L11.
  • the biconcave negative lens L12 moves to the image side along the optical axis.
  • Aspheric surfaces are provided on a total of six surfaces: both surfaces of the negative meniscus lens L3, both surfaces of the biconcave negative lens L12, and both surfaces of the biconvex positive lens L13.
  • FIG. 5A is a lens cross-sectional view of the imaging optical system according to Example 5.
  • FIG. 5B, 5C, 5D, and 5E are aberration diagrams of the imaging optical system according to Example 5.
  • FIGS. 5B, 5C, 5D, and 5E are aberration diagrams of the imaging optical system according to Example 5.
  • the imaging optical system according to Example 5 includes, in order from the object side, a front group GF having negative refractive power and a rear group GR having positive refractive power. It is done.
  • the rear group GR includes an aperture stop S.
  • the front group GF includes a negative meniscus lens L1 having a convex surface on the object side, a negative meniscus lens L2 having a convex surface on the object side, a negative meniscus lens L3 having a convex surface on the object side, and a biconvex positive lens L4. And a biconcave negative lens L5.
  • the negative meniscus lens L3, the biconvex positive lens L4, and the biconcave negative lens L5 are cemented.
  • the rear group GR includes a biconcave negative lens L6, a biconvex positive lens L7, a biconvex positive lens L8, a biconvex positive lens L9, a negative meniscus lens L10 having a convex surface on the image side, and a convex surface on the object side And a biconvex positive lens L12, and a negative meniscus lens L13 having a convex surface facing the image side.
  • the biconcave negative lens L6 and the biconvex positive lens L7 are cemented.
  • the biconvex positive lens L9 and the negative meniscus lens L10 are cemented.
  • the front group GF is a predetermined lens group.
  • a first cemented lens is configured by the negative meniscus lens L3, the biconvex positive lens L4, and the biconcave negative lens L5.
  • a second cemented lens is configured by the biconcave negative lens L6 and the biconvex positive lens L7.
  • a third cemented lens is composed of the biconvex positive lens L9 and the negative meniscus lens L10.
  • the negative meniscus lens L11 moves to the image side along the optical axis.
  • Aspheric surfaces are provided on a total of five surfaces of the image side surface of the negative meniscus lens L1, both surfaces of the negative meniscus lens L11, and both surfaces of the double convex positive lens L12.
  • FIG. 6A is a lens cross-sectional view of the imaging optical system according to Example 6.
  • FIG. 6 (b), (c), (d) and (e) are aberration diagrams of the imaging optical system according to Example 6.
  • FIG. 6 (b), (c), (d) and (e) are aberration diagrams of the imaging optical system according to Example 6.
  • the imaging optical system according to Example 6 includes, in order from the object side, a front group GF having negative refractive power and a rear group GR having positive refractive power. It is done.
  • the rear group GR includes an aperture stop S.
  • the front group GF includes a negative meniscus lens L1 having a convex surface on the object side, a negative meniscus lens L2 having a convex surface on the object side, a biconvex positive lens L3, and a biconcave negative lens L4. .
  • the biconvex positive lens L3 and the biconcave negative L4 are cemented.
  • the rear group GR is a negative meniscus lens having a biconcave negative lens L5, a biconvex positive lens L6, a biconvex positive lens L7, a biconvex positive lens L8, a biconcave negative lens L9, and a convex surface facing the object side It is composed of L10, a biconvex positive lens L11, and a negative meniscus lens L12 having a convex surface facing the image side.
  • the biconcave negative lens L5 and the biconvex positive lens L6 are cemented.
  • the biconvex positive lens L8 and the biconcave negative lens L9 are cemented.
  • the front group GF is a predetermined lens group.
  • a first cemented lens is configured of the biconvex positive lens L3 and the biconcave negative L4.
  • a second cemented lens is configured by the biconcave negative lens L5 and the biconvex positive lens L6.
  • a third cemented lens is configured of the biconvex positive lens L8 and the biconcave negative lens L9.
  • the negative meniscus lens L10 moves to the image side along the optical axis.
  • Aspheric surfaces are provided on a total of six surfaces: both surfaces of the negative meniscus lens L2, both surfaces of the negative meniscus lens L10, and both surfaces of the biconvex positive lens L11.
  • FIG. 7A is a lens cross-sectional view of the imaging optical system according to Example 7.
  • FIGS. 7B, 7 C, 7 D and 7 E are aberration diagrams of the imaging optical system according to Example 7.
  • FIGS. 7A, 7B, 7 C, 7 D and 7 E are aberration diagrams of the imaging optical system according to Example 7.
  • the image forming optical system according to Example 7 includes, in order from the object side, a front group GF having negative refractive power and a rear group GR having positive refractive power. It is done.
  • the rear group GR includes an aperture stop S.
  • the front group GF includes a negative meniscus lens L1 having a convex surface on the object side, a positive meniscus lens L2 having a convex surface on the object side, a positive meniscus lens L3 having a convex surface on the object side, and a convex surface on the object side And a negative meniscus lens L4.
  • the positive meniscus lens L3 and the negative meniscus lens L4 are cemented.
  • the rear group GR is a negative meniscus lens having a biconcave negative lens L5, a biconvex positive lens L6, a biconvex positive lens L7, a biconvex positive lens L8, a biconcave negative lens L9, and a convex surface facing the object side It is composed of L10, a biconvex positive lens L11, and a negative meniscus lens L12 having a convex surface facing the object side.
  • the biconcave negative lens L5 and the biconvex positive lens L6 are cemented.
  • the biconvex positive lens L8 and the biconcave negative lens L9 are cemented.
  • the front group GF is a predetermined lens group.
  • a first cemented lens is configured by the positive meniscus lens L3 and the negative meniscus lens L4.
  • a second cemented lens is configured by the biconcave negative lens L5 and the biconvex positive lens L6.
  • a third cemented lens is configured of the biconvex positive lens L8 and the biconcave negative lens L9.
  • the negative meniscus lens L10 moves to the image side along the optical axis.
  • Aspheric surfaces are provided on a total of four surfaces of the image side surface of the negative meniscus lens L1, both surfaces of the negative meniscus lens L10, and the object side surface of the biconvex positive lens L11.
  • FIG. 8A is a lens cross-sectional view of the imaging optical system according to Example 8.
  • FIGS. 8B, 8C, 8D, and 8E are aberration diagrams of the imaging optical system according to Example 8.
  • FIGS. 8B, 8C, 8D, and 8E are aberration diagrams of the imaging optical system according to Example 8.
  • the image forming optical system according to Example 8 includes, in order from the object side, a front group GF having negative refractive power and a rear group GR having positive refractive power. It is done.
  • the rear group GR includes an aperture stop S.
  • the front group GF includes a negative meniscus lens L1 having a convex surface on the object side, a negative meniscus lens L2 having a convex surface on the object side, a biconvex positive lens L3, and a biconcave negative lens L4. .
  • the biconvex positive lens L3 and the biconcave negative lens L4 are cemented.
  • the rear group GR is a negative meniscus lens having a biconcave negative lens L5, a biconvex positive lens L6, a biconvex positive lens L7, a biconvex positive lens L8, a biconcave negative lens L9, and a convex surface facing the object side It is composed of L10, a biconvex positive lens L11, and a negative meniscus lens L12 having a convex surface facing the object side.
  • the biconcave negative lens L5 and the biconvex positive lens L6 are cemented.
  • the biconvex positive lens L8 and the biconcave negative lens L9 are cemented.
  • the front group GF is a predetermined lens group.
  • a first cemented lens is composed of the biconvex positive lens L3 and the biconcave negative lens L4. Further, a second cemented lens is configured by the biconcave negative lens L5 and the biconvex positive lens L6. A third cemented lens is configured of the biconvex positive lens L8 and the biconcave negative lens L9.
  • the negative meniscus lens L10 moves to the image side along the optical axis.
  • Aspheric surfaces are provided on a total of six surfaces: both surfaces of the negative meniscus lens L2, both surfaces of the negative meniscus lens L10, and both surfaces of the biconvex positive lens L11.
  • FIG. 9A is a lens cross-sectional view of the image forming optical system according to Example 9.
  • FIGS. 9B, 9C, 9D, and 9E are aberration diagrams of the imaging optical system according to Example 9.
  • FIGS. 9A, 9B, 9C, 9D, and 9E are aberration diagrams of the imaging optical system according to Example 9.
  • the imaging optical system according to Example 9 includes, in order from the object side, a front group GF having negative refractive power and a rear group GR having positive refractive power. It is done.
  • the rear group GR includes an aperture stop S.
  • the front group GF includes a negative meniscus lens L1 having a convex surface on the object side, a positive meniscus lens L2 having a convex surface on the object side, a positive meniscus lens L3 having a convex surface on the object side, and a convex surface on the object side And a negative meniscus lens L4.
  • the positive meniscus lens L3 and the negative meniscus lens L4 are cemented.
  • the rear group GR is a negative meniscus lens having a biconcave negative lens L5, a biconvex positive lens L6, a biconvex positive lens L7, a biconvex positive lens L8, a biconcave negative lens L9, and a convex surface facing the object side It is composed of L10, a biconvex positive lens L11, and a negative meniscus lens L12 having a convex surface facing the object side.
  • the biconcave negative lens L5 and the biconvex positive lens L6 are cemented.
  • the biconvex positive lens L8 and the biconcave negative lens L9 are cemented.
  • the front group GF is a predetermined lens group.
  • a first cemented lens is configured by the positive meniscus lens L3 and the negative meniscus lens L4.
  • a second cemented lens is configured by the biconcave negative lens L5 and the biconvex positive lens L6.
  • a third cemented lens is configured of the biconvex positive lens L8 and the biconcave negative lens L9.
  • the negative meniscus lens L10 moves to the image side along the optical axis.
  • the aspheric surface is provided on a total of five surfaces of the image side surface of the negative meniscus lens L1, both surfaces of the negative meniscus lens L10, and both surfaces of the biconvex positive lens L11.
  • FIG. 10A is a lens cross-sectional view of the imaging optical system according to Example 10.
  • FIG. 10 (b), (c), (d) and (e) are aberration diagrams of the imaging optical system according to Example 10.
  • FIG. 10 (b), (c), (d) and (e) are aberration diagrams of the imaging optical system according to Example 10.
  • the imaging optical system according to Example 10 includes, in order from the object side, a front group GF having negative refractive power and a rear group GR having positive refractive power. It is done.
  • the rear group GR includes an aperture stop S.
  • the front group GF includes a negative meniscus lens L1 having a convex surface facing the object, a biconcave negative lens L2, a biconvex positive lens L3, and a biconcave negative lens L4.
  • the biconvex positive lens L3 and the biconcave negative lens L4 are cemented.
  • the rear group GR includes a biconcave negative lens L5, a biconvex positive lens L6, a biconvex positive lens L7, a biconvex positive lens L8, a negative meniscus lens L9 having a convex surface on the image side, and a convex surface on the object side
  • the negative meniscus lens L10 has a biconvex positive lens L11, a biconvex positive lens L12, a biconcave negative lens L13, and a positive meniscus lens L14 with a convex surface facing the object side.
  • the biconcave negative lens L5 and the biconvex positive lens L6 are cemented.
  • the biconvex positive lens L8 and the negative meniscus lens L9 are cemented.
  • the biconvex positive lens L12 and the biconcave negative lens L13 are cemented.
  • the front group GF is a predetermined lens group.
  • a first cemented lens is composed of the biconvex positive lens L3 and the biconcave negative lens L4. Further, a second cemented lens is configured by the biconcave negative lens L5 and the biconvex positive lens L6. A third cemented lens is composed of the biconvex positive lens L8 and the negative meniscus lens L9.
  • the negative meniscus lens L10 moves to the image side along the optical axis.
  • Aspheric surfaces are provided on a total of four surfaces of both surfaces of the biconcave negative lens L2 and both surfaces of the negative meniscus lens L10.
  • FIG. 11A is a lens cross-sectional view of the image forming optical system according to Example 11.
  • FIG. FIGS. 11 (b), (c), (d) and (e) are aberration diagrams of the imaging optical system according to Example 11.
  • FIGS. 11 (b), (c), (d) and (e) are aberration diagrams of the imaging optical system according to Example 11.
  • the imaging optical system according to Example 11 includes, in order from the object side, a front group GF having negative refractive power and a rear group GR having positive refractive power. It is done.
  • the rear group GR includes an aperture stop S.
  • the front group GF includes a negative meniscus lens L1 having a convex surface on the object side, a negative meniscus lens L2 having a convex surface on the object side, a negative meniscus lens L3 having a convex surface on the object side, and a biconvex positive lens L4. And a biconcave negative lens L5.
  • the biconvex positive lens L4 and the biconcave negative lens L5 are cemented.
  • the rear group GR includes a biconcave negative lens L6, a biconvex positive lens L7, a biconvex positive lens L8, a biconvex positive lens L9, a negative meniscus lens L10 having a convex surface on the image side, and a convex surface on the object side And a positive meniscus lens L12 having a convex surface facing the object side, a biconvex positive lens L13, and a biconcave negative lens L14.
  • the biconcave negative lens L6 and the biconvex positive lens L7 are cemented.
  • the biconvex positive lens L9 and the negative meniscus lens L10 are cemented.
  • the negative meniscus lens L11 and the positive meniscus lens L12 are cemented.
  • the front group GF is a predetermined lens group.
  • a first cemented lens is composed of the biconvex positive lens L4 and the biconcave negative lens L5. Further, a second cemented lens is configured by the biconcave negative lens L6 and the biconvex positive lens L7.
  • a third cemented lens is composed of the biconvex positive lens L9 and the negative meniscus lens L10.
  • the negative meniscus lens L11 and the positive meniscus lens L12 move to the image side along the optical axis.
  • Aspheric surfaces are provided on a total of five surfaces of both surfaces of the negative meniscus lens L3, the object side surface of the negative meniscus lens L11, and both surfaces of the biconvex positive lens L13.
  • FIG. 12A is a lens cross-sectional view of the imaging optical system according to Example 12.
  • FIG. 12 (b), (c), (d) and (e) are aberration diagrams of the imaging optical system according to Example 12.
  • FIG. 12 (b), (c), (d) and (e) are aberration diagrams of the imaging optical system according to Example 12.
  • the imaging optical system according to Example 12 includes, in order from the object side, a front group GF having negative refractive power and a rear group GR having positive refractive power. It is done.
  • the rear group GR includes an aperture stop S.
  • the front group GF includes a negative meniscus lens L1 having a convex surface on the object side, a negative meniscus lens L2 having a convex surface on the object side, a negative meniscus lens L3 having a convex surface on the object side, and a biconvex positive lens L4. And a biconcave negative lens L5.
  • the biconvex positive lens L4 and the biconcave negative lens L5 are cemented.
  • the rear group GR includes a biconcave negative lens L6, a biconvex positive lens L7, a biconvex positive lens L8, a biconvex positive lens L9, a negative meniscus lens L10 having a convex surface on the image side, and a convex surface on the image side And a biconcave negative lens L12, a biconvex positive lens L13, and a negative meniscus lens L14 having a convex surface facing the image side.
  • the biconcave negative lens L6 and the biconvex positive lens L7 are cemented.
  • the biconvex positive lens L9 and the negative meniscus lens L10 are cemented.
  • the positive meniscus lens L11 and the biconcave negative lens L12 are cemented.
  • the front group GF is a predetermined lens group.
  • a first cemented lens is composed of the biconvex positive lens L4 and the biconcave negative lens L5. Further, a second cemented lens is configured by the biconcave negative lens L6 and the biconvex positive lens L7.
  • a third cemented lens is composed of the biconvex positive lens L9 and the negative meniscus lens L10.
  • the positive meniscus lens L11 and the biconcave negative lens L12 move to the image side along the optical axis.
  • Aspheric surfaces are provided on a total of five surfaces: both surfaces of the negative meniscus lens L3, the image side surface of the biconcave negative lens L12, and both surfaces of the biconvex positive lens L13.
  • FIG. 13A is a lens cross-sectional view of the imaging optical system according to Example 13.
  • FIG. 13 (b), (c), (d) and (e) are aberration diagrams of the imaging optical system according to Example 13.
  • FIG. 13 (b), (c), (d) and (e) are aberration diagrams of the imaging optical system according to Example 13.
  • the imaging optical system according to Example 13 includes, in order from the object side, a front group GF having negative refractive power and a rear group GR having positive refractive power. It is done.
  • the rear group GR includes an aperture stop S.
  • the front group GF includes a negative meniscus lens L1 having a convex surface on the object side, a negative meniscus lens L2 having a convex surface on the object side, a biconvex positive lens L3, a biconvex positive lens L4, and a biconcave negative lens L5. And consists of.
  • the biconvex positive lens L4 and the biconcave negative lens L5 are cemented.
  • the rear group GR includes a biconcave negative lens L6, a biconvex positive lens L7, a biconvex positive lens L8, a biconvex positive lens L9, a negative meniscus lens L10 having a convex surface on the image side, and a convex surface on the image side And a biconcave negative lens L12, a biconvex positive lens L13, and a negative meniscus lens L14 having a convex surface facing the image side.
  • the biconcave negative lens L6 and the biconvex positive lens L7 are cemented.
  • the biconvex positive lens L9 and the negative meniscus lens L10 are cemented.
  • the front group GF is a predetermined lens group.
  • a first cemented lens is composed of the biconvex positive lens L4 and the biconcave negative lens L5. Further, a second cemented lens is configured by the biconcave negative lens L6 and the biconvex positive lens L7.
  • a third cemented lens is composed of the biconvex positive lens L9 and the negative meniscus lens L10.
  • the positive meniscus lens L11 and the biconcave negative lens L12 move to the image side along the optical axis.
  • Aspheric surfaces are provided on a total of five surfaces: both surfaces of the negative meniscus lens L2, the object side surface of the positive meniscus lens L11, and both surfaces of the biconvex positive lens L13.
  • FIG. 14A is a lens cross-sectional view of the imaging optical system of the fourteenth embodiment.
  • FIGS. 14B, 14C, 14D and 14E are aberration diagrams of the imaging optical system according to Example 14.
  • FIGS. 14B, 14C, 14D and 14E are aberration diagrams of the imaging optical system according to Example 14.
  • the imaging optical system according to Example 14 includes, in order from the object side, a front group GF having negative refractive power and a rear group GR having positive refractive power, as shown in FIG. 14 (a). It is done.
  • the rear group GR includes an aperture stop S.
  • the front group GF includes a negative meniscus lens L1 having a convex surface on the object side, a negative meniscus lens L2 having a convex surface on the object side, a negative meniscus lens L3 having a convex surface on the image side, and a biconvex positive lens L4. And a biconvex positive lens L5 and a biconcave negative lens L6.
  • the biconvex positive lens L5 and the biconcave negative lens L6 are cemented.
  • the rear group GR includes a biconcave negative lens L7, a biconvex positive lens L8, a biconvex positive lens L9, a positive meniscus lens L10 having a convex surface facing the object side, a biconvex positive lens L11, and a biconcave negative lens It is composed of L12, a biconcave negative lens L13, a biconvex positive lens L14, and a negative meniscus lens L15 having a convex surface facing the image side.
  • the biconcave negative lens L7 and the biconvex positive lens L8 are cemented.
  • the biconvex positive lens L11 and the biconcave negative lens L12 are cemented.
  • the front group GF is a predetermined lens group.
  • a first cemented lens is composed of the biconvex positive lens L5 and the biconcave negative lens L6.
  • a second cemented lens is configured by the biconcave negative lens L7 and the biconvex positive lens L8.
  • a third cemented lens is configured by the biconvex positive lens L11 and the biconcave negative lens L12.
  • the positive meniscus lens L10, the biconvex positive lens L11, the biconcave negative lens L12, and the biconcave negative lens L13 are integrated together along the optical axis toward the object side. While moving, the biconvex positive lens L14 moves to the object side along the optical axis.
  • Aspheric surfaces are provided on five surfaces in total: both surfaces of the negative meniscus lens L2, both surfaces of the positive meniscus lens L10, and the image side surface of the biconcave negative lens L13.
  • FIG. 15A is a lens cross-sectional view of the imaging optical system according to Example 15.
  • FIG. 15 (b), (c), (d) and (e) are aberration diagrams of the imaging optical system according to Example 15.
  • FIG. 15 (b), (c), (d) and (e) are aberration diagrams of the imaging optical system according to Example 15.
  • the imaging optical system according to Example 15 includes, in order from the object side, a front group GF with negative refractive power and a rear group GR with positive refractive power. It is done.
  • the rear group GR includes an aperture stop S.
  • the front group GF includes a negative meniscus lens L1 having a convex surface facing the object, a biconcave negative lens L2, a biconvex positive lens L3, a biconvex positive lens L4, and a biconcave negative lens L5.
  • a biconcave negative lens L2 and the biconvex positive lens L3 are cemented.
  • the biconvex positive lens L4 and the biconcave negative lens L5 are cemented.
  • the rear group GR includes a biconcave negative lens L6, a biconvex positive lens L7, a biconvex positive lens L8, a positive meniscus lens L9 having a convex surface facing the object side, a biconvex positive lens L10, and a biconcave negative lens It is composed of L11, a biconcave negative lens L12, a biconvex positive lens L13, and a negative meniscus lens L14 having a convex surface facing the image side.
  • the biconcave negative lens L6 and the biconvex positive lens L7 are cemented.
  • the biconvex positive lens L10 and the biconcave negative lens L11 are cemented.
  • the front group GF is a predetermined lens group.
  • a first cemented lens is composed of the biconvex positive lens L4 and the biconcave negative lens L5. Further, a second cemented lens is configured by the biconcave negative lens L6 and the biconvex positive lens L7. Further, a third cemented lens is configured of the biconvex positive lens L10 and the biconcave negative lens L11.
  • the positive meniscus lens L9, the biconvex positive lens L10, the biconcave negative lens L11, and the biconcave negative lens L12 are integrated to the object side along the optical axis.
  • the biconvex positive lens L13 moves to the object side along the optical axis.
  • Aspheric surfaces are provided on five surfaces in total: both surfaces of the negative meniscus lens L1, both surfaces of the positive meniscus lens L9, and the image side surface of the biconcave negative lens L12.
  • the imaging optical system according to Example 16 includes, in order from the object side, a front group GF having negative refractive power and a rear group GR having positive refractive power. It is done.
  • the rear group GR includes an aperture stop S.
  • the front group GF includes a negative meniscus lens L1 having a convex surface on the object side, a negative meniscus lens L2 having a convex surface on the object side, a biconvex positive lens L3, and a biconcave negative lens L4. .
  • the biconvex positive lens L3 and the biconcave negative lens L4 are cemented.
  • the rear group GR includes a biconcave negative lens L5, a biconvex positive lens L6, a biconvex positive lens L7, a biconvex positive lens L8, a negative meniscus lens L9 having a convex surface on the image side, and a convex surface on the object side And a biconvex positive lens L11, and a negative meniscus lens L12 having a convex surface facing the image side.
  • the biconcave negative lens L5 and the biconvex positive lens L6 are cemented.
  • the biconvex positive lens L8 and the negative meniscus lens L9 are cemented.
  • the front group GF is a predetermined lens group.
  • a first cemented lens is composed of the biconvex positive lens L3 and the biconcave negative lens L4. Further, a second cemented lens is configured by the biconcave negative lens L5 and the biconvex positive lens L6. A third cemented lens is composed of the biconvex positive lens L8 and the negative meniscus lens L9.
  • the negative meniscus lens L10 moves to the image side along the optical axis
  • the biconvex positive lens L11 moves to the object side along the optical axis.
  • Aspheric surfaces are provided on a total of six surfaces: both surfaces of the negative meniscus lens L2, both surfaces of the negative meniscus lens L10, and both surfaces of the biconvex positive lens L11.
  • the imaging optical system according to Example 17 includes, in order from the object side, a front group GF having negative refractive power and a rear group GR having positive refractive power, as shown in FIG. 17A. It is done.
  • the rear group GR includes an aperture stop S.
  • the front group GF includes a negative meniscus lens L1 having a convex surface on the object side, a negative meniscus lens L2 having a convex surface on the object side, a negative meniscus lens L3 having a convex surface on the object side, and a biconvex positive lens L4. And a biconcave negative lens L5.
  • the biconvex positive lens L4 and the biconcave negative lens L5 are cemented.
  • the rear group GR includes a biconcave negative lens L6, a biconvex positive lens L7, a biconvex positive lens L8, a biconvex positive lens L9, a negative meniscus lens L10 having a convex surface on the image side, and a convex surface on the object side And a biconvex positive lens L12, and a biconcave negative lens L13.
  • the biconcave negative lens L6 and the biconvex positive lens L7 are cemented.
  • the biconvex positive lens L9 and the negative meniscus lens L10 are cemented.
  • the front group GF is a predetermined lens group.
  • a first cemented lens is composed of the biconvex positive lens L4 and the biconcave negative lens L5. Further, a second cemented lens is configured by the biconcave negative lens L6 and the biconvex positive lens L7.
  • a third cemented lens is composed of the biconvex positive lens L9 and the negative meniscus lens L10.
  • the negative meniscus lens L11 moves to the image side along the optical axis
  • the biconvex positive lens L12 moves to the object side along the optical axis.
  • Aspheric surfaces are provided on a total of six surfaces: both surfaces of the negative meniscus lens L2, both surfaces of the negative meniscus lens L11, and both surfaces of the biconvex positive lens L12.
  • the imaging optical system according to Example 18 includes, in order from the object side, a front group GF having negative refractive power and a rear group GR having positive refractive power. It is done.
  • the rear group GR includes an aperture stop S.
  • the front group GF includes a negative meniscus lens L1 having a convex surface on the object side, a negative meniscus lens L2 having a convex surface on the object side, a biconvex positive lens L3, and a biconcave negative lens L4. .
  • the biconvex positive lens L3 and the biconcave negative lens L4 are cemented.
  • the rear group GR includes a biconcave negative lens L5, a biconvex positive lens L6, a biconvex positive lens L7, a biconvex positive lens L8, a negative meniscus lens L9 having a convex surface on the image side, and a convex surface on the object side And a negative meniscus lens L11 having a convex surface on the object side, a biconvex positive lens L12, and a negative meniscus lens L13 having a convex surface on the image side.
  • the biconcave negative lens L5 and the biconvex positive lens L6 are cemented.
  • the biconvex positive lens L8 and the negative meniscus lens L9 are cemented.
  • the negative meniscus lens L11 and the biconvex positive lens L12 are cemented.
  • the first lens group G1 is a predetermined lens group.
  • a first cemented lens is composed of the biconvex positive lens L3 and the biconcave negative lens L4. Further, a second cemented lens is configured by the biconcave negative lens L5 and the biconvex positive lens L6. A third cemented lens is composed of the biconvex positive lens L8 and the negative meniscus lens L9.
  • the negative meniscus lens L10 moves to the image side along the optical axis, and the negative meniscus lens L11 and the biconvex positive lens L12 move along the optical axis. Move to the side.
  • Aspheric surfaces are provided on five surfaces in total: both surfaces of the negative meniscus lens L2, both surfaces of the negative meniscus lens L10, and the object side surface of the biconvex positive lens L12.
  • the imaging optical system according to Example 19 includes, in order from the object side, a front group GF having negative refractive power and a rear group GR having positive refractive power. It is done.
  • the rear group GR includes an aperture stop S.
  • the front group GF includes a negative meniscus lens L1 having a convex surface on the object side, a negative meniscus lens L2 having a convex surface on the object side, a biconvex positive lens L3, and a biconcave negative lens L4. .
  • the biconvex positive lens L3 and the biconcave negative lens L4 are cemented.
  • the rear group GR includes a biconcave negative lens L5, a biconvex positive lens L6, a biconvex positive lens L7, a biconvex positive lens L8, a negative meniscus lens L9 having a convex surface facing the image side, and a biconcave negative lens It is composed of L10, a negative meniscus lens L11 having a convex surface facing the object side, a biconvex positive lens L12, and a biconcave negative lens L13.
  • the biconcave negative lens L5 and the biconvex positive lens L6 are cemented.
  • the biconvex positive lens L8 and the negative meniscus lens L9 are cemented.
  • the biconcave negative lens L10 and the negative meniscus lens L11 are cemented.
  • the first lens group G1 is a predetermined lens group.
  • a first cemented lens is composed of the biconvex positive lens L3 and the biconcave negative lens L4. Further, a second cemented lens is configured by the biconcave negative lens L5 and the biconvex positive lens L6. A third cemented lens is composed of the biconvex positive lens L8 and the negative meniscus lens L9.
  • the biconcave negative lens L10 and the negative meniscus lens L11 move to the image side along the optical axis, and the biconvex positive lens L12 moves along the optical axis Move to the object side.
  • Aspheric surfaces are provided on a total of six surfaces: both surfaces of the negative meniscus lens L2, the object side surface of the biconcave negative lens L10, the image side surface of the negative meniscus lens L11, and both surfaces of the biconvex positive lens L12.
  • r 1, r 2,... Are the radius of curvature of each lens surface
  • d 1, d 2,... Are the thicknesses or air gaps of each lens
  • nd 1, nd 2 The refractive index of the lens, .nu.d1, .nu.d2, ... is the Abbe number of each lens
  • the * mark is an aspheric surface.
  • f is the focal length of the entire imaging optical system, FNO. Is an F number, ⁇ is a half angle of view, IH is an image height, and FB is a back focus.
  • the total length is obtained by adding the back focus to the distance from the lens front surface to the lens final surface.
  • the back focus is the air conversion of the distance from the lens final surface to the paraxial image surface.
  • the unit of the angle is degrees.
  • infinity is at the time of focusing on an infinite object
  • near distance is at the time of focusing on a short object.
  • the value at the near distance is the distance from the object to the image.
  • the aspheric surface shape is expressed by the following equation, assuming that the optical axis direction is z and the direction orthogonal to the optical axis is y, the conical coefficient is k, and the aspheric coefficient is A4, A6, A8, and A10. .
  • z (y 2 / r) / [1 + ⁇ 1-(1 + k) (y / r) 2 ⁇ 1/2 ] + A4y 4 + A6y 6 + A8y 8 + A10y 10
  • “e ⁇ n” (n is an integer) indicates “10 ⁇ n ”.
  • the symbols of these specification values are common to the numerical data of the embodiments described later.
  • Numerical embodiment 1 Unit mm Surface data surface number r d nd d d Object ⁇ ⁇ 1 55.000 1.50 1.48749 70.23 2 15.910 4.92 3 22.804 1.50 1.49700 81.61 4 13.911 5.69 5 46.637 1.50 1.74320 49.34 6 * 18.515 3.21 7 129.872 2.66 2.00100 29.13 8 -86.634 0.40 9 33.953 4.06 2.00100 29.13 10 -103.511 1.00 1.54814 45.79 11 18.116 7.11 12-43.091 1.20 1.84666 23.78 13 18.546 6.63 1.72000 43.69 14-54. 065 1.
  • Numerical embodiment 2 Unit mm Surface data surface number r d nd d d Object ⁇ ⁇ 1 83.044 1.50 1.48749 70.23 2 20.661 2.17 3 23.930 1.50 1.49700 81.61 4 16.138 5.37 5 * 21.611 1.50 1.80610 40.92 6 * 11.913 2.85 7 24.962 3.44 2.00100 29.13 8 53.374 0.40 9 34.784 5.15 2.00100 29.13 10 -53.257 1.00 1.54814 45.79 11 14.970 11.39 12 -28.403 1.20 1.85478 24.80 13 20.951 6.03 1.72000 43.69 14 -33.655 0.80 15 (F-stop) ⁇ 0.40 16 49.077 5.33 1.91082 35.25 17-31.682 0.40 18 45.282 6.08 1.49700 81.61 19-19.966 1.20 2.00100 29.13 20-55.421 2.40 21 * -342.302 1.20 1.74320 49.34 22 * 41.214
  • Numerical embodiment 4 Unit mm Surface data surface number r d nd d Object ⁇ ⁇ 1 45.098 1.50 1.48749 70.23 2 18.539 1.95 3 21.083 1.50 1.72916 54.68 4 14.117 4.99 5 * 19.014 1.50 1.80610 40.92 6 * 10.725 2.91 7 25.870 3.45 2.00100 29.13 8 77.203 0.53 9 41.845 4.43 2.00100 29.13 10 -39.803 1.00 1.54814 45.79 11 14.737 8.27 12-25.729 1.20 1.85478 24.80 13 22.371 4.87 1.72000 43.69 14-30.252 0.84 15 (F-stop) ⁇ 0.40 16 50.721 4.61 1.91082 35.25 17-27.243 0.40 18 62.166 5.01 1.49700 81.61 19-17.526 1.20 2.00100 29.13 20 -39.549 2.40 21 * -637.328 1.20 1.74320 49.34 22 * 36.803 6.73
  • Numerical embodiment 6 Unit mm Surface data surface number r d nd d d Object ⁇ ⁇ 1 60.000 1.50 1.59522 67.74 2 12.478 5.84 3 * 40.000 1.00 1.49700 81.61 4 * 14.598 3.16 5 35.972 3.92 2.00100 29.13 6-42.320 1.00 1.43875 94.93 7 414.837 4.27 8-27.030 1.20 1.80518 25.42 9 18.406 5.66 1.49700 81.61 10 -30.278 1.40 11 (F-stop) 1.00 12 68.685 4.59 2.00100 29.13 13-26.820 0.40 14 36.721 5.71 1.59522 67.74 15-19.927 1.20 1.84666 23.78 16 694.790 2.80 17 * 75.396 1.20 1.72903 54.04 18 * 17.574 5.84 19 * 41.636 6.00 1.72903 54.04 20 *-16.928 0.40 21 -32.103 1.40 1.84666 23.78
  • Numerical embodiment 7 Unit mm Surface data surface number r d nd d d Object ⁇ ⁇ 1 5148.256 1.50 1.48749 70.23 2 * 18.807 6.39 3 42.326 3.23 1.84666 23.78 4 346.117 0.40 5 24.689 3.11 2.00100 29.13 6 55.765 1.00 1.66680 33.05 7 14.112 8.98 8-15.886 1.20 1.69895 30.13 9 31.567 7.04 1.49700 81.61 10-20.543 1.40 11 (F-stop) 1.00 12 87.111 5.41 2.00100 29.13 13-35.861 0.40 14 35.014 6.91 1.64000 60.08 15-28.217 1.20 1.84666 23.78 16 127.412 2.10 17 * 61.800 1.20 1.69680 55.53 18 * 22.454 7.85 19 41.243 6.36 1.49700 81.61 20 * -18.974 0.40 21 27.365 2.00 1.84666 23.78 22
  • Numerical embodiment 8 Unit mm Surface data surface number r d nd d d Object ⁇ ⁇ 1 50.000 1.50 1.59522 67.74 2 16.786 4.17 3 * 51.357 1.00 1.49700 81.61 4 * 19.813 2.49 5 46.028 3.31 2.00100 29.13 6-55.727 1.00 1.43875 94.93 7 39.491 6.62 8-25.698 1.20 1.80518 25.42 9 27.710 5.68 1.49700 81.61 10-24. 016 1.
  • Numerical embodiment 9 Unit mm Surface data surface number r d nd d Object ⁇ ⁇ 1 116.266 1.50 1.51633 64.14 2 * 25.717 3.68 3 60.055 3.25 2.00100 29.13 4 549.816 0.40 5 25.750 4.30 2.00100 29.13 6 73.371 2.59 1.69895 30.13 7 15.387 10.67 8-16.516 1.20 1.72825 28.46 9 31.039 8.00 1.49700 81.61 10-22.028 1.40 11 (F-stop) 1.00 12 110.340 5.84 2.00100 29.13 13-36.817 0.40 14 32.663 7.08 1.72916 54.68 15 -38.391 1.20 2.00069 25.46 16 148.534 2.10 17 * 59.611 1.20 1.74320 49.34 18 * 20.525 7.68 19 * 73.228 5.69 1.49700 81.61 20 *-19.916 0.40 21 23.197 2.00 2.00100 29.13 22 20.305 14.24 23
  • Numerical embodiment 10 Unit mm Surface data surface number r d nd d d Object ⁇ ⁇ 1 44.574 1.50 1.48749 70.23 2 15.584 8.50 3 * -659.095 1.20 1.49700 81.61 4 * 25.626 1.71 5 29.244 6.27 2.00069 25.46 6 -34.706 1.20 1.58144 40.75 7 23.314 4.79 8-26.565 1.20 1.85478 24.80 9 25.266 6.29 1.69680 55.53 10 -35.206 0.20 11 61.090 4.37 1.72916 54.68 12-42.527 0.20 13 49.281 5.00 1.69680 55.53 14 -104.266 1.50 1.85478 24.80 15-156.094 0.60 16 (aperture) ⁇ 3.40 17 * 113.215 1.20 1.85400 40.39 18 * 24.921 9.08 19 67.113 3.70 1.72916 54.68 20-45.
  • Numerical embodiment 12 Unit mm Surface data surface number r d nd d d Object ⁇ ⁇ 1 45.722 1.50 1.48749 70.23 2 17.855 7.13 3 36.016 1.50 1.49700 81.61 4 15.632 4.52 5 * 18.581 1.50 1.80610 40.92 6 * 11.935 1.94 7 24.600 7.59 2.00100 29.13 8-31.878 2.38 1.54814 45.79 9 16.765 8.06 10-26. 687 1. 20 1. 85478 24.
  • Numerical embodiment 16 Unit mm Surface data surface number r d nd d d Object ⁇ ⁇ 1 94.461 1.50 1.48749 70.23 2 17.060 4.00 3 * 24.648 1.50 1.49700 81.61 4 * 15.578 2.77 5 28.855 5.84 2.00100 29.14 6-68.444 1.01 1.51633 64.14 7 14.314 8.87 8-19.049 1.20 1.85478 24.80 9 21.984 6.04 1.72916 54.68 10-30.416 1.40 11 (F-stop) 1.00 12 90.026 5.97 2.00100 29.14 13 -30.555 0.40 14 28.214 8.26 1.49700 81.61 15 -24.399 1.20 2.00100 29.14 16 -96.064 Adjustable 17 * 80.276 1.20 1.88202 37.22 18 * 25.036 variable 19 * 31.
  • Numerical embodiment 18 Unit mm Surface data surface number r d nd d Object ⁇ ⁇ 1 54.301 1.50 1.48749 70.23 2 17.105 4.00 3 * 22.655 1.50 1.49700 81.61 4 * 13.783 5.65 5 47.419 4.91 2.00100 29.14 6 -40.946 1.50 1.49700 81.61 7 17.739 6.17 8-18.916 1.20 1.85478 24.80 9 22.938 5.88 1.72916 54.68 10 -30.236 1.43 11 (F-stop) 1.00 12 86.514 5.50 2.00100 29.14 13-30.725 0.40 14 31.726 7.58 1.49700 81.61 15-23.755 1.20 2.00100 29.14 16-72.101 Variable 17 * 58.976 1.20 1.88202 37.22 18 * 23.004 Variable 19 35.206 1.50 1.85478 24.80 20 21.523 7.64 1.69350 53.21 21 * -23.391 Variable 22 -89.135 1.
  • Numerical embodiment 19 Unit mm Surface data surface number r d nd d d Object ⁇ ⁇ 1 56.666 1.50 1.48749 70.23 2 17.381 4.00 3 * 26.130 1.50 1.49700 81.61 4 * 14.593 5.45 5 36.407 5.70 2.00100 29.14 6-43.000 1.07 1.51633 64.14 7 17.284 6.73 8-16.026 1.20 1.85478 24.80 9 31.874 5.80 1.72916 54.68 10 -24.566 1.40 11 (F-stop) 1.00 12 74.674 5.36 2.00100 29.14 13-35.
  • Examples of the optical device according to the present embodiment include an imaging device and a projection device. Hereinafter, specific examples of the imaging device and the projection device will be described.
  • FIG. 16 is a cross-sectional view of a single-lens mirrorless camera as an imaging device.
  • a photographing optical system 2 is disposed in a lens barrel of a single-lens mirrorless camera 1.
  • the mount unit 3 enables the taking optical system 2 to be detachably attached to the body of the single-lens mirrorless camera 1.
  • a screw type mount, a bayonet type mount, or the like is used as the mount portion 3.
  • a bayonet type mount is used in the body of the single-lens mirrorless camera 1 disposed in the body of the single-lens mirrorless camera 1, an imaging element surface 4 and a back monitor 5 are disposed.
  • the imaging device a compact CCD or CMOS is used.
  • the photographing optical system 2 of the single-lens mirrorless camera 1 for example, the imaging optical systems shown in the above-mentioned first to nineteenth embodiments are used.
  • FIG. 17 and FIG. 18 show conceptual diagrams of the configuration of the imaging device.
  • FIG. 17 is a front perspective view showing the appearance of a single-lens mirrorless camera 40 as an imaging device
  • FIG. 18 is a rear perspective view of the same.
  • the imaging optical system shown in the above-mentioned first to nineteenth embodiments is used for the photographing optical system 41 of the single-lens mirrorless camera 40.
  • the single-lens mirrorless camera 40 of this embodiment includes a photographing optical system 41 located on the photographing optical path 42, a shutter button 45, a liquid crystal display monitor 47, and the like, and the shutter button 45 disposed above the single-lens mirrorless camera 40.
  • the photographing is performed through the photographing optical system 41, for example, the imaging optical system of the first embodiment.
  • An object image formed by the photographing optical system 41 is formed on an image pickup element (photoelectric conversion surface) provided in the vicinity of the imaging surface.
  • the object image received by the imaging device is displayed as an electronic image on the liquid crystal display monitor 47 provided on the back of the camera by the processing means. Also, the captured electronic image can be recorded in the storage means.
  • FIG. 19 is a block diagram showing an internal circuit of a main part of the single-eye mirrorless camera 40.
  • the above-mentioned processing means is composed of, for example, the CDS / ADC unit 24, the temporary storage memory 17, the image processing unit 18 and the like, and the storage means is composed of the storage medium unit 19 and the like.
  • the single-lens mirror-less camera 40 is connected to the operation unit 12, the control unit 13 connected to the operation unit 12, and the control signal output port of the control unit 13 via buses 14 and 15.
  • the imaging drive circuit 16, the temporary storage memory 17, the image processing unit 18, the storage medium unit 19, the display unit 20, and the setting information storage memory unit 21 are provided.
  • the temporary storage memory 17, the image processing unit 18, the storage medium unit 19, the display unit 20, and the setting information storage memory unit 21 can mutually input and output data via the bus 22. Further, a CCD 49 and a CDS / ADC unit 24 are connected to the imaging drive circuit 16.
  • the operation unit 12 includes various input buttons and switches, and notifies the control unit 13 of event information input from the outside (camera user) via these.
  • the control unit 13 is a central processing unit including, for example, a CPU, incorporates a program memory (not shown), and controls the entire single-lens mirrorless camera 40 in accordance with a program stored in the program memory.
  • the CCD 49 is an image pickup device which is drive-controlled by the image pickup drive circuit 16, converts the light amount of each pixel of the object image formed through the photographing optical system 41 into an electric signal, and outputs the electric signal to the CDS / ADC unit 24.
  • the CDS / ADC unit 24 amplifies the electrical signal input from the CCD 49, performs analog / digital conversion, and performs raw video data (Bayer data, hereinafter referred to as RAW data) that has only been subjected to this amplification and digital conversion. Are output to the temporary storage memory 17.
  • the temporary storage memory 17 is a buffer made of, for example, an SDRAM or the like, and is a memory device that temporarily stores the RAW data output from the CDS / ADC unit 24.
  • the image processing unit 18 reads out the RAW data stored in the temporary storage memory 17 or the RAW data stored in the storage medium unit 19, and includes distortion correction based on the image quality parameter designated by the control unit 13. It is a circuit that electrically performs various image processing.
  • the storage medium unit 19 detachably mounts, for example, a card type or stick type recording medium including a flash memory, and RAW data transferred from the temporary storage memory 17 or the image processing unit 18 to these flash memories. The image data subjected to the image processing is recorded and held.
  • the display unit 20 is configured by a liquid crystal display monitor 47 or the like, and displays captured RAW data, image data, an operation menu, and the like.
  • the setting information storage memory unit 21 is provided with a ROM unit in which various image quality parameters are stored in advance, and a RAM unit which stores the image quality parameters read from the ROM unit by the input operation of the operation unit 12.
  • the imaging optical system of the present invention by adopting the imaging optical system of the present invention as the imaging optical system 41, a wide imaging range can be imaged with low noise and high resolution.
  • the imaging optical system of the present invention can also be used in an imaging apparatus of the type having a quick return mirror.
  • FIG. 20 is a cross-sectional view of a projector as a projection device.
  • the projector 100 includes a light source unit 110, an illumination unit 120, an image forming unit 130, and a projection unit 140.
  • the light source unit 110 has a light source 111 and a reflecting member 112. Illumination light is emitted from the light source 111.
  • the illumination light is white light.
  • the illumination light is reflected by the reflection member 112 and enters the illumination unit 120.
  • the illumination unit 120 includes a first dichroic mirror 121, a second dichroic mirror 122, a third dichroic mirror 123, a first reflecting member 124, and a second reflecting member 125.
  • the first dichroic mirror 121 transmits light in a red wavelength range (hereinafter, referred to as “red light”), and reflects light in other wavelength ranges.
  • the second dichroic mirror 122 reflects light in the green wavelength range (hereinafter referred to as “green light”) and transmits light in the other wavelength ranges.
  • the third dichroic mirror 123 reflects light in the blue wavelength range (hereinafter referred to as “blue light”) and transmits light in the other wavelength ranges.
  • the red light, the green light and the blue light enter the image forming unit 130.
  • a normal plane reflecting mirror may be used.
  • the image forming unit 130 includes a first display element 131, a second display element 132, and a third display element 133.
  • Red light is emitted to the first display element 131 via the first reflection member 124.
  • the second display element 132 is irradiated with green light. Blue light is emitted to the third display element 133 via the second reflection member 125.
  • the same image is displayed on the first display element 131, the second display element 132, and the third display element 133.
  • a red image is displayed on the first display element 131
  • a green image is displayed on the second display element 132
  • a blue image is displayed on the third display element 133.
  • the projection unit 140 has a dichroic prism 141 and a projection optical system 142.
  • the light emitted from the first display element 131, the second display element 132, and the third display element 133 is synthesized by the dichroic prism 141.
  • the dichroic prism 141 combines three images.
  • the projection optical system 142 projects the three combined images at predetermined positions.
  • the projection optical system 142 for example, the imaging optical systems shown in the above-mentioned first to nineteenth embodiments are used.
  • the image forming unit 130 may be a light valve such as a DMD (digital mirror device).
  • the light from the light source unit 110 may be reflected by the light valve, and the image from the light valve may be enlarged and projected by the projection unit 140.
  • the projector 100 configured as described above, by adopting the imaging optical system of the present invention as the projection optical system 142, it is possible to project an image with low noise and high resolution in a wide projection range.
  • the imaging optical system according to the present invention is suitable for an imaging optical system in which various aberrations are well corrected while having a wide angle of view and a small F number.
  • the optical device according to the present invention is suitable for an imaging device for imaging a wide imaging range with low noise and high resolution, and a projection device for projecting an image with low noise and high resolution on a wide projection range.
  • GF front group GR rear group S brightness (aperture) aperture I image plane 1 single-lens mirrorless camera 2 shooting optical system 3 lens barrel mount 4 imaging element surface 5 back monitor 12 operation unit 13 controller 14 15 bus 16 imaging Driving circuit 17 temporary storage memory 18 image processing unit 19 storage medium unit 20 display unit 21 setting information storage memory unit 22 bus 24 CDS / ADC unit 40 single lens mirrorless camera 41 photographing optical system 42 photographing optical path 45 shutter button 47 liquid crystal display monitor 49 CCD Reference Signs List 100 projector 110 light source unit 111 light source 112 reflecting member 120 illuminating unit 121 first dichroic mirror 122 second dichroic mirror 123 third dichroic mirror 124 first reflecting member 125 second reflecting member 130 image forming unit 131 first Display element 132 Second display element 133 Third display element 140 Projection unit 141 Dichroic prism 142 Projection optical system

Abstract

結像光学系は、開口絞りSと、第1の接合レンズと、第2の接合レンズと、第3の接合レンズと、を有し、第1の接合レンズは、開口絞りよりも拡大側に位置し、第2の接合レンズは、所定のレンズ群と隣接して縮小側に位置し、第3の接合レンズは、開口絞りSよりも縮小側に位置し、所定のレンズ群は負の屈折力を有し、最も拡大側に位置するレンズから第1の接合レンズまでの間にあるすべてのレンズで構成され、第1の接合レンズは、正レンズと負レンズとで構成され、最も縮小側の面が縮小側に凹面を向けており、第2の接合レンズは、負レンズと正レンズとで構成され、最も拡大側の面が拡大側に凹面を向けており、第3の接合レンズは、正レンズと負レンズとで構成されている。

Description

結像光学系及びそれを備えた光学装置
 本発明は、結像光学系及びそれを備えた光学装置に関する。
 60°前後から50°前後の画角を有する撮影レンズとして、広角レンズや標準レンズ(以下、「広角撮影レンズ」という)がある。広角撮影レンズの光学系には、従来、レトロフォーカスタイプの光学系又はガウスタイプの光学系が広く用いられてきた。
 レトロフォーカスタイプの光学系は、負の屈折力を有する前群と正の屈折力を有する後群とから構成されている。レトロフォーカスタイプの光学系は、十分な長さのバックフォーカスが確保できるという特徴を有している。
 一方、ガウスタイプの光学系は、特徴的な一組の接合レンズを有する。一方の接合レンズは、最も像側に負レンズを有し、最も像側の面が像側に凹面を向けている。また、他方の接合レンズは、最も物体側の面が物体側に凹面を向けている。
 ガウスタイプの光学系を2つの群に分けると、一方の接合レンズから物体側の群(以下、「物体側群」という)と他方の接合レンズから像側の群(以下、「像側群」という)とに分けることができる。
 なお、ガウスタイプの光学系では、屈折力の重心が光学系の像側寄りにある。すなわち、ガウスタイプの光学系では、物体側群の屈折力と像側群の屈折力は共に正の屈折力であるが、物体側群よりも像側群の方で屈折力が大きくなっている。
 従来の広角撮影レンズの光学系では、画角が広くなるほど、屈折力配置が非対称になる傾向が強くなる。そのため、従来の広角撮影レンズの光学系では、画角が広くなるほど、コマ収差、非点収差及び倍率色収差が悪化し易い。なお、屈折力配置とは、正の屈折力と負の屈折力の並び方のことである。
 また、従来の広角撮影レンズの光学系では、Fナンバーが小さくなるほど、相対的にレンズ面の曲率が大きくなる。そのため、従来の広角撮影レンズの光学系では、Fナンバーが小さくなるほど、球面収差、コマ収差及び軸上色収差が多く発生する傾向があった。
 また、従来の広角撮影レンズの光学系では、正の屈折力を有する後群の有効口径が大型化するといった問題もあった。
 これらの問題を解決した広角撮影レンズが、各種提案されている。提案されている広角撮影レンズでは、Fナンバーが1.4程度になっている。画角が広くFナンバーが小さい広角撮影レンズの光学系として、特許文献1~6に開示された光学系がある。
特開2012-226309号公報 特開2004-101880号公報 特開2009-109723号公報 特開2010-039340号公報 特開2010-097207号公報 特開2011-059290号公報
 特許文献1や特許文献2の光学系ではFナンバーが1.24であるため、Fナンバーが小さい光学系が実現できている。しかしながら、画角が63.6°であるため、特許文献1や特許文献2の光学系では、画角が十分に広い光学系が実現できていない。
 また、特許文献3、特許文献4、特許文献5及び特許文献6の光学系では、Fナンバーが1.4であるが、これ以上Fナンバーを小さくしようとするか、又は画角を広くしようとすると、上述した諸収差の補正がさらに困難となる。
 本発明は、このような課題に鑑みてなされたものであって、広い画角と小さいFナンバーを有しながらも、諸収差が良好に補正された結像光学系及びそれを備えた光学装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明の結像光学系は、
 距離が長い方の拡大側の共役点と距離が短い方の縮小側の共役点との共役関係を形成する結像光学系であって、
 結像光学系は、開口絞りと、第1の接合レンズと、第2の接合レンズと、第3の接合レンズと、を有し、
 第1の接合レンズは、開口絞りよりも拡大側に位置し、
 第2の接合レンズは、所定のレンズ群よりも縮小側に、所定のレンズ群と隣接して位置し、
 第3の接合レンズは、開口絞りよりも縮小側に位置し、
 所定のレンズ群は負の屈折力を有し、最も拡大側に位置するレンズから第1の接合レンズまでに含まれるすべてのレンズで構成され、
 第1の接合レンズは、拡大側から順に、正レンズと負レンズとで構成され、最も縮小側の面が縮小側に凹面を向けており、
 第2の接合レンズは、拡大側から順に、負レンズと正レンズとで構成され、最も拡大側の面が拡大側に凹面を向けており、
 第3の接合レンズは、拡大側から順に、正レンズと負レンズとで構成されていることを特徴とする。
 また、本発明の光学装置は、
 光学系と、縮小側に配置された撮像素子と、を有し、
 撮像素子は撮像面を有し、且つ光学系によって撮像面上に形成された像を電気信号に変換し、
 光学系が上述の結像光学系であることを特徴とする。
 また、本発明の光学装置は、
 光学系と、縮小側に配置された表示素子と、を有し、
 表示素子は表示面を有し、
 表示面上に表示された画像は、光学系によって拡大側に投影され、
 光学系が上述の結像光学系であることを特徴とする。
 本発明によれば、広い画角と小さいFナンバーを有しながらも、諸収差が良好に補正された結像光学系及びそれを備えた光学装置を提供することができる。
実施例1に係る結像光学系の断面図と収差図であって、(a)は、無限遠物体合焦時のレンズ断面図、(b)、(c)、(d)及び(e)は、無限遠物体合焦時の収差図である。 実施例2に係る結像光学系の断面図と収差図であって、(a)は、無限遠物体合焦時のレンズ断面図、(b)、(c)、(d)及び(e)は、無限遠物体合焦時の収差図である。 実施例3に係る結像光学系の断面図と収差図であって、(a)は、無限遠物体合焦時のレンズ断面図、(b)、(c)、(d)及び(e)は、無限遠物体合焦時の収差図である。 実施例4に係る結像光学系の断面図と収差図であって、(a)は、無限遠物体合焦時のレンズ断面図、(b)、(c)、(d)及び(e)は、無限遠物体合焦時の収差図である。 実施例5に係る結像光学系の断面図と収差図であって、(a)は、無限遠物体合焦時のレンズ断面図、(b)、(c)、(d)及び(e)は、無限遠物体合焦時の収差図である。 実施例6に係る結像光学系の断面図と収差図であって、(a)は、無限遠物体合焦時のレンズ断面図、(b)、(c)、(d)及び(e)は、無限遠物体合焦時の収差図である。 実施例7に係る結像光学系の断面図と収差図であって、(a)は、無限遠物体合焦時のレンズ断面図、(b)、(c)、(d)及び(e)は、無限遠物体合焦時の収差図である。 実施例8に係る結像光学系の断面図と収差図であって、(a)は、無限遠物体合焦時のレンズ断面図、(b)、(c)、(d)及び(e)は、無限遠物体合焦時の収差図である。 実施例9に係る結像光学系の断面図と収差図であって、(a)は、無限遠物体合焦時のレンズ断面図、(b)、(c)、(d)及び(e)は、無限遠物体合焦時の収差図である。 実施例10に係る結像光学系の断面図と収差図であって、(a)は、無限遠物体合焦時のレンズ断面図、(b)、(c)、(d)及び(e)は、無限遠物体合焦時の収差図である。 実施例11に係る結像光学系の断面図と収差図であって、(a)は、無限遠物体合焦時のレンズ断面図、(b)、(c)、(d)及び(e)は、無限遠物体合焦時の収差図である。 実施例12に係る結像光学系の断面図と収差図であって、(a)は、無限遠物体合焦時のレンズ断面図、(b)、(c)、(d)及び(e)は、無限遠物体合焦時の収差図である。 実施例13に係る結像光学系の断面図と収差図であって、(a)は、無限遠物体合焦時のレンズ断面図、(b)、(c)、(d)及び(e)は、無限遠物体合焦時の収差図である。 実施例14に係る結像光学系の断面図と収差図であって、(a)は、無限遠物体合焦時のレンズ断面図、(b)、(c)、(d)及び(e)は、無限遠物体合焦時の収差図である。 実施例15に係る結像光学系の断面図と収差図であって、(a)は、無限遠物体合焦時のレンズ断面図、(b)、(c)、(d)及び(e)は、無限遠物体合焦時の収差図である。 実施例16に係る結像光学系の断面図と収差図であって、(a)は、無限遠物体合焦時のレンズ断面図、(b)、(c)、(d)及び(e)は、無限遠物体合焦時の収差図である。 実施例17に係る結像光学系の断面図と収差図であって、(a)は、無限遠物体合焦時のレンズ断面図、(b)、(c)、(d)及び(e)は、無限遠物体合焦時の収差図である。 実施例18に係る結像光学系の断面図と収差図であって、(a)は、無限遠物体合焦時のレンズ断面図、(b)、(c)、(d)及び(e)は、無限遠物体合焦時の収差図である。 実施例19に係る結像光学系の断面図と収差図であって、(a)は、無限遠物体合焦時のレンズ断面図、(b)、(c)、(d)及び(e)は、無限遠物体合焦時の収差図である。 撮像装置の断面図である。 撮像装置の外観を示す前方斜視図である。 撮像装置の後方斜視図である。 撮像装置の主要部の内部回路の構成ブロック図である。 投影装置の断面図である。
 以下に、本発明に係る結像光学系及びそれを備えた光学装置の実施形態及び実施例を、図面に基づいて詳細に説明する。なお、この実施形態及び実施例によりこの発明が限定されるものではない。
 本実施形態の結像光学系は、距離が長い方の拡大側の共役点と距離が短い方の縮小側の共役点との共役関係を形成する結像光学系であって、結像光学系は、開口絞りと、第1の接合レンズと、第2の接合レンズと、第3の接合レンズと、を有し、第1の接合レンズは、開口絞りよりも拡大側に位置し、第2の接合レンズは、所定のレンズ群よりも縮小側に、所定のレンズ群と隣接して位置し、第3の接合レンズは、開口絞りよりも縮小側に位置し、所定のレンズ群は負の屈折力を有し、最も拡大側に位置するレンズから第1の接合レンズまでに含まれるすべてのレンズで構成され、第1の接合レンズは、拡大側から順に、正レンズと負レンズとで構成され、最も縮小側の面が縮小側に凹面を向けており、第2の接合レンズは、拡大側から順に、負レンズと正レンズとで構成され、最も拡大側の面が拡大側に凹面を向けており、第3の接合レンズは、拡大側から順に、正レンズと負レンズとで構成されていることを特徴とする。
 本願実施形態の結像光学系とガウスタイプの光学系とを比較しながら、本願実施形態の結像光学系について説明する。以下の説明では、拡大側に物体側が対応し、縮小側に像側が対応する。
 上述のように、ガウスタイプの光学系は、特徴的な一組の接合レンズを備えている。ここで、一方の接合レンズは、最も像側に負レンズを有し、最も像側の面が像側に凹面を向けている。
 一方、本実施形態の結像光学系も、特徴的な一組の接合レンズ、すなわち、第1の接合レンズと第2の接合レンズとを備えている。ここで、第1の接合レンズは最も縮小側に負レンズを有し、最も縮小側の面が縮小側に凹面を向けている。よって、第1の接合レンズが一方の接合レンズに対応する。
 また、ガウスタイプの光学系では、物体側群が一方の接合レンズを含んでいる。これに対して、本実施形態の結像光学系では、所定のレンズ群が第1の接合レンズを含んでいる。よって、所定のレンズ群が物体側群に対応する。
 上述のように、ガウスタイプの光学系では、物体側群よりも像側群の方で屈折力が大きくなっている。ただし、物体側群の屈折力も像側群の屈折力も、共に正の屈折力である。
 これに対して、本実施形態の結像光学系では、所定のレンズ群は負の屈折力を有している。屈折力の配分状態をガウスタイプの光学系で例えると、本実施形態の結像光学系では、物体側群に負の屈折力が配分されている状態になっている。
 このように、所定のレンズ群は、ガウスタイプの光学系において、正の屈折力から負の屈折力に屈折力をシフトさせたときの物体側群ということができる。なお、シフトさせる屈折力は、弱い正の屈折力であっても良い。但し、この場合の屈折力は、ガウスタイプの光学系における物体側群の屈折力よりも弱い屈折力である。
 また、ガウスタイプの光学系は、画角が50°程度までであれば、Fナンバーが1.4程度であっても収差補正のポテンシャルが極めて高い光学系である。この収差補正に対するポテンシャルの高さは、特徴的な一組の接合レンズに基づいている。
 ここで、本実施形態の結像光学では、ガウスタイプの光学系に対して、物体側群における屈折力シフトと像側群における正の屈折力の増大を行った構成を採用している。そのため、本実施形態の結像光学はガウスタイプの光学系とは異なる。
 しかしながら、本実施形態の結像光学系も、特徴的な一組の接合レンズを備えている。よって、本実施形態の結像光学系は、収差補正のポテンシャルが極めて高い光学系をベースにしている。そのため、本実施形態の結像光学系では、諸収差を良好に補正しつつ、(I)Fナンバーを小さくすること、すなわち、光学系において十分な明るさを確保すること、(II)十分な長さのバックフォーカスを確保しつつ、結像光学系全系の焦点距離を短くすること、(III)十分な広さの画角を確保すること、ができる。
 なお、物体側群における屈折力シフトとは、ガウスタイプの光学系において、物体側群の屈折力を、本来の正の屈折力から負の屈折力にシフトさせることである。また、像側群における正の屈折力の増大とは、ガウスタイプの光学系において、像側群の正の屈折力を本来の屈折力より大きくすることである。
 また、物体側群における屈折力シフトを実施すると、像側群で主光線の高さが著しく高くなる。その結果、像側群での収差が悪化する。この収差の悪化を避けるためには、他方の接合レンズよりも像側に、開口絞りを移動させることが好ましい。
 上述のように、本実施形態の結像光学系でも、所定のレンズ群が負の屈折力を有している。そこで、像側群での収差が悪化を避けるために、本実施形態の結像光学系においても、第2の接合レンズよりも縮小側に、開口絞りを位置させることが好ましい。
 上述のように、本実施形態の結像光学系は、ガウスタイプの光学系をベースにしている。よって、本実施形態の結像光学系も、収差補正のポテンシャルが極めて高い光学系になっている。このようなことから、第2の接合レンズよりも縮小側に開口絞りを位置させても、収差の悪化をある程度は防ぐことができる。
 しかしながら、第2の接合レンズよりも縮小側に開口絞りを位置させると、特徴的な一組の接合レンズに対する開口絞りの位置が、ガウスタイプの光学系と異なってしまう。そのため、第2の接合レンズよりも縮小側に開口絞りを位置させた場合、収差をより高いレベルで補正することは難しい。
 そこで、本実施形態の結像光学系では、第3の接合レンズを新たに設けている。この第3の接合レンズは、縮小側に負レンズを有する。例えば、この負レンズに正レンズを組み合わせることで、第3の接合レンズにアプラナティック色消しレンズの役目を持たせることができる。
 このように、第1の接合レンズと第2の接合レンズに加え、第3の接合レンズを設けることで、本実施形態の結像光学系では、特に収差補正が困難となる球面収差、コマ収差、軸上色収差及び倍率色収差を、満足できるレベルまで補正することができる。
 その結果、本実施形態の結像光学系によれば、広い画角と小さいFナンバーを有しながらも、諸収差が良好に補正された結像光学系を実現することができる。なお、広い画角とは、例えば70°以上の画角で、小さいFナンバーとは、例えば、1.2程度である。
 なお、上述のように、本実施形態の結像光学系は、収差補正のポテンシャルが極めて高い光学系である。本実施形態の結像光学系では、以下の構成を備えることで、この極めて高い収差補正のポテンシャルを得ている。第1の接合レンズは、拡大側から順に、正レンズと負レンズとで構成され、最も縮小側の面が縮小側に凹面を向けている。第2の接合レンズは、負レンズと正レンズとで構成され、最も拡大側の面が拡大側に凹面を向けている。
 また、本実施形態の結像光学系では、第2の接合レンズよりも縮小側に、開口絞りを位置させている。そのため、開口絞りは、所定のレンズ群よりも縮小側のレンズ群内に設けられている。
 また、本実施形態の結像光学系のより具体的な構成は以下のようになる。第1の接合レンズは、開口絞りよりも拡大側に位置している。また、第2の接合レンズは、所定のレンズ群よりも縮小側に、所定のレンズ群と隣接して位置している。また、第3の接合レンズは、開口絞りよりも縮小側に位置している。また、第3の接合レンズは、拡大側から順に、正レンズと負レンズとで構成されている。
 また、本実施形態の結像光学系では、最も拡大側に位置するレンズは第1の負レンズであり、第1の負レンズはメニスカスレンズであることが好ましい。
 上述のように、本実施形態の結像光学系では、所定のレンズ群に負の屈折力を持たせている。そのためには、特に最も拡大側に位置するレンズを負レンズにすることが好ましい。ただし、最も拡大側に配置した負レンズは、他の位置に配置した負レンズに比べて、軸外収差の発生量に対する影響が大きい。そこで、負レンズの形状をメニスカス形状にすることで、軸外収差の悪化を防止することができる。その結果、広い画角と小さいFナンバーを有しながらも、諸収差が良好に補正された結像光学系を実現できる。
 また、本実施形態の結像光学系では、以下の条件式(1)を満足することが好ましい。
 1<(RN1F+RN1R)/(RN1F-RN1R)<10   (1)
 ここで、
 RN1Fは、第1の負レンズの拡大側面の近軸曲率半径、
 RN1Rは、第1の負レンズの縮小側面の近軸曲率半径、
である。
 条件式(1)を満足することで、軸外収差の悪化を防止することができる。
 条件式(1)の上限値を上回ると、非点収差又はコマ収差が悪化し易い。よって、条件式(1)の上限値を上回ることは好ましくない。一方、条件式(1)の下限値を下回ると、樽型歪曲収差が大きくなり易い。
 なお、条件式(1)に代えて、以下の条件式(1’)を満足すると良い。
 1<(RN1F+RN1R)/(RN1F-RN1R)<4   (1’)
 さらに、条件式(1)に代えて、以下の条件式(1’’)を満足するとなお良い。
 1<(RN1F+RN1R)/(RN1F-RN1R)<2.8   (1’’)
 また、本実施形態の結像光学系では、レンズ成分は、光路中にて拡大側面と縮小側面のみが空気に接するレンズブロックであって、第2の接合レンズと第3の接合レンズとの間に、正レンズ成分を1枚又は複数枚有していることが好ましい。なお、レンズ成分の概念には、単レンズ、接合レンズ、複合レンズが含まれる。
 上述のように、本実施形態の結像光学系では、所定のレンズ群よりも縮小側に、ガウスタイプの光学系に比べて、より大きな正の屈折力を与えている。そして、第2の接合レンズよりも縮小側に開口絞りを位置させ、開口絞りよりも縮小側に第3の接合レンズを新たに設けている。
 しかしながら、開口絞りを挟んで2つの接合レンズが対向する構成は、他の構成に比べて、球面収差の発生量とコマ収差の発生量に対する影響が大きい。そこで、第2の接合レンズと第3の接合レンズとの間に、正レンズ成分を1枚又は複数枚配置することで、球面収差とコマ収差を良好に補正することができる。その結果、広い画角と小さいFナンバーを有しながらも、諸収差が良好に補正された結像光学系を実現できる。
 また、本実施形態の結像光学系は、第2の接合レンズに対して最も近くに位置する第1の正レンズを有し、以下の条件式(2)を満足することが好ましい。
 0<(RP1F+RP1R)/(RP1F-RP1R)<3   (2)
 ここで、
 RP1Fは、第1の正レンズの拡大側面の近軸曲率半径、
 RP1Rは、第1の正レンズの縮小側面の近軸曲率半径、
である。
 条件式(2)を満足することで、軸上収差の悪化と軸外収差の悪化を防止することができる。
 条件式(2)の上限値を上回ると、球面収差とコマ収差が悪化し易い。よって、条件式(2)の上限値を上回ることは好ましくない。一方、条件式(2)の下限値を下回ると、非点収差が悪化し易い。また、球面収差が発生し易い。
 なお、条件式(2)に代えて、以下の条件式(2’)を満足すると良い。
 0.02<(RP1F+RP1R)/(RP1F-RP1R)<1   (2’)
 さらに、条件式(2)に代えて、以下の条件式(2’’)を満足するとなお良い。
 0.04<(RP1F+RP1R)/(RP1F-RP1R)<0.7   (2’’)
 また、本実施形態の結像光学系は、縮小側から順に、第2の負レンズと、第2の正レンズと、を有しており、第2の負レンズはメニスカスレンズであり、以下の条件式(3)を満足することが好ましい。
 0.01<(RP2F+RP2R)/(RP2F-RP2R)<3   (3)
 ここで、
 RP2Fは、第2の正レンズの拡大側面の近軸曲率半径、
 RP2Rは、第2の正レンズの縮小側面の近軸曲率半径、
である。
 上述のように、本実施形態の結像光学系では、所定のレンズ群よりも縮小側に、ガウスタイプの光学系に比べて、より大きな正の屈折力を与えている。しかしながら、このようにすることは、球面収差の発生量、コマ収差の発生量及び非点収差の発生量に対する影響が大きい。
 そこで、第2の接合レンズよりも縮小側に、正レンズと負レンズを配置する。具体的には、縮小側から順に、第2の負レンズと第2の正レンズを配置し、第2の負レンズをメニスカスレンズにする。このようにすることで、球面収差、コマ収差及び非点収差を良好に補正することができる。その結果、広い画角と小さいFナンバーを有しながらも、諸収差が良好に補正された結像光学系を実現できる。
 更に、条件式(3)を満足することが好ましい。条件式(3)を満足することで、軸上収差の悪化と軸外収差の悪化を防止することができる。
 条件式(3)の上限値を上回ると、球面収差とコマ収差が悪化し易い。よって、条件式(3)の上限値を上回ることは好ましくない。一方、条件式(3)の下限値を下回ると、非点収差が悪化し易い。
 なお、条件式(3)に代えて、以下の条件式(3’)を満足すると良い。
 0.1<(RP2F+RP2R)/(RP2F-RP2R)<1   (3’)
 さらに、条件式(3)に代えて、以下の条件式(3’’)を満足するとなお良い。
 0.19<(RP2F+RP2R)/(RP2F-RP2R)<0.6   (3’’)
 また、本実施形態の結像光学系では、以下の条件式(4)を満足することが好ましい。
 -10<(RNGF+RNGR)/(RNGF-RNGR)<20   (4)
 ここで、
 RNGFは、所定のレンズ群において最も拡大側に位置する面の近軸曲率半径、
 RNGRは、所定のレンズ群において最も縮小側に位置する面の近軸曲率半径、
である。
 所定のレンズ群については、条件式(4)を満足することがより好ましい。条件式(4)を満足することで、軸外収差の悪化を防止することができる。
 条件式(4)の上限値を上回ると、樽型歪曲収差が大きくなり易い。よって、条件式(4)の上限値を上回ることは好ましくない。一方、条件式(4)の下限値を下回ると、非点収差又はコマ収差が悪化し易い。
 このとき、第1の接合レンズを開口絞りよりも拡大側に位置させ、第1の接合レンズを、拡大側から順に、正レンズと負レンズとで構成し、最も縮小側の面を縮小側に凹面を向け、所定のレンズ群に負の屈折力を持たせることで、広い画角と小さいFナンバーを有しながらも、諸収差が良好に補正された結像光学系を実現することができる。
 なお、条件式(4)に代えて、以下の条件式(4’)を満足すると良い。
 -9<(RNGF+RNGR)/(RNGF-RNGR)<10   (4’)
 さらに、条件式(4)に代えて、以下の条件式(4’’)を満足するとなお良い。
 -7<(RNGF+RNGR)/(RNGF-RNGR)<9   (4’’)
 また、本実施形態の結像光学系では、以下の条件式(5)を満足することが好ましい。
 -1.5<(RNGR+RC2F)/(RNGR-RC2F)<5   (5)
 ここで、
 RNGRは、所定のレンズ群において最も縮小側に位置する面の近軸曲率半径、
 RC2Fは、第2の接合レンズにおいて最も拡大側に位置する面の近軸曲率半径、
である。
 所定のレンズ群と第2の接合レンズについては、条件式(5)を満足することがより好ましい。条件式(5)を満足することで、軸上収差の悪化と軸外収差の悪化を防止することができる。
 条件式(5)の上限値を上回ると、非点収差が悪化し易い。よって、条件式(5)の上限値を上回ることは好ましくない。一方、条件式(5)の下限値を下回ると、球面収差が大きくなり易い。
 このとき、第1の接合レンズを開口絞りよりも拡大側に位置させ、第1の接合レンズを、拡大側から順に、正レンズと負レンズとで構成し、最も縮小側の面を縮小側に凹面を向け、所定のレンズ群に負の屈折力を持たせることで、広い画角と小さいFナンバーを有しながらも、諸収差が良好に補正された結像光学系を実現することができる。
 なお、条件式(5)に代えて、以下の条件式(5’)を満足すると良い。
 -0.8<(RNGR+RC2F)/(RNGR-RC2F)<2   (5’)
 さらに、条件式(5)に代えて、以下の条件式(5’’)を満足するとなお良い。
 -0.45<(RNGR+RC2F)/(RNGR-RC2F)<0.9   (5’’)
 また、本実施形態の結像光学系では、以下の条件式(A)を満足することが好ましい。
 0<f/eN1F<2   (A)
 ここで、
 fは、無限遠物体合焦時の結像光学系全系の焦点距離、
 eN1Fは、第1の負レンズの拡大側面の最大有効口径、
である。
 条件式(A)の上限値を上回ると、画角を広げることが困難になる。すなわち、画角を広げようとすると、球面収差、歪曲収差及び非点収差が発生し易い。一方、条件式(A)の下限値を下回ると、光学系が径方向に大型化し易い。
 なお、条件式(A)に代えて、以下の条件式(A’)を満足すると良い。
 0.1<f/eN1F<1.5   (A’)
 さらに、条件式(A)に代えて、以下の条件式(A’’)を満足するとなお良い。
 0.2<f/eN1F<1   (A’’)
 また、本実施形態の結像光学系では、以下の条件式(B)を満足することが好ましい。
 0<(f/eAS)/Fno<2   (B)
 ここで、
 fは、無限物体合焦時の結像光学系全系の焦点距離、
 eASは、開口絞りの最大直径、
 Fnoは、無限物体合焦時の結像光学系全系のFナンバー、
である。
 条件式(B)の上限値を上回ると、画角を広くすることが困難になる。すなわち、画角を広げようとすると、球面収差と色収差の補正が困難になる。一方、条件式(B)の下限値を下回ると、光学系が径方向に大型化し易い。
 なお、条件式(B)に代えて、以下の条件式(B’)を満足すると良い。
 0.2<(f/eAS)/Fno<1   (B’)
 さらに、条件式(B)に代えて、以下の条件式(B’’)を満足するとなお良い。
 0.3<(f/eAS)/Fno<0.9   (B’’)
 また、本実施形態の結像光学系では、以下の条件式(C)を満足することが好ましい。
 0<Tair_max/Σd≦0.27   (C)
 ここで、
 Tair_maxは、結像光学系の最も拡大側に位置する面から最も縮小側に位置する面までの間で最も大きい軸上空気間隔、
 Σdは、結像光学系の最も拡大側に位置する面から最も縮小側に位置する面までの軸上距離、
である。
 条件式(C)は、高い光学性能の確保、光学系の全長の短縮化及び結像学系の外径の小径化に有利となる条件式である。
 レンズ同士の空気間隔を適度に広くすることは、光学性能の向上に繋がる。ただし、Σd、すなわち、結像光学系の最も拡大側に位置するレンズ面から最も縮小側に位置するレンズ面までの軸上距離に対して、レンズ同士の空気間隔を過剰に広げて光学性能を確保することは、光学系の全長の増加と光学系の大口径化につながり易い。
 そこで、条件式(C)を満足することで、光学系の全長の短縮化と小径化を行いつつ、高い光学性能の実現に必要なレンズ枚数の確保に有利となる。
 なお、条件式(C)に代えて、以下の条件式(C’)を満足すると良い。
 0.03<Tair_max/Σd≦0.2(C’)
 さらに、条件式(C)に代えて、以下の条件式(C’’)を満足するとなお良い。
 0.07<Tair_max/Σd≦0.16(C’’)
 また、本実施形態の結像光学系は、第1の合焦レンズ群を有し、第1の合焦レンズ群は、第3の接合レンズよりも縮小側に配置され、フォーカスの際に結像光学系の光軸に沿って移動し、且つ、負の屈折力を有することが好ましい。
 このようにすることで、縮小側(撮像面)もしくは拡大側(スクリーン面)でのフォーカスの際の像の大きさの変化を小さくできる。また、無限遠物体へのフォーカスの際に、合焦レンズ群の変動による非点収差の悪化や球面収差の悪化を抑えることができる。
 また、本実施形態の結像光学系は、以下の条件式(D)を満足することが好ましい。
 0<(RF1F+RF1R)/(RF1F-RF1R)<5   (D)
 ここで、
 RF1Fは、第1の合焦レンズ群において最も拡大側に位置する面の近軸曲率半径、
 RF1Rは、第1の合焦レンズ群において最も縮小側に位置する面の近軸曲率半径、
である。
 条件式(D)の下限値を下回らないようにすると共に、条件式(D)の上限値を上回らないようにして、フォーカスの際の球面収差の変動やコマ収差の変動を抑えることが好ましい。
 なお、条件式(D)に代えて、以下の条件式(D’)を満足すると良い。
 0.1<(RF1F+RF1R)/(RF1F-RF1R)<4.5   (D’)
 さらに、条件式(D)に代えて、以下の条件式(D’’)を満足するとなお良い。
 0.2<(RF1F+RF1R)/(RF1F-RF1R)<4   (D’’)
 また、本実施形態の結像光学系では、拡大側に位置する無限遠物体にフォーカスした状態から近距離物体へのフォーカスの際に、第1の合焦レンズ群は縮小側に移動し、且つ、以下の条件式(E)を満足することが好ましい。
 -1<MF1/f<0   (E)
 ここで、
 MF1は、第1の合焦レンズ群におけるフォーカスの際の光軸方向に沿った最大移動量、
 fは、無限遠物体合焦時の結像光学系全系の焦点距離、
である。
 条件式(E)の下限値を下回らないようにしてフォーカスが可能となる物体までの距離の短縮化を行い、且つ、条件式(E)の上限値を上回らないようにして結像光学系の全長が長くなりすぎないようにすることが好ましい。
 なお、条件式(E)に代えて、以下の条件式(E’)を満足すると良い。
 -0.8<MF1/f<-0.05   (E’)
 さらに、条件式(E)に代えて、以下の条件式(E’’)を満足するとなお良い。
 -0.4<MF1/f<-0.04   (E’’)
 また、本実施形態の結像光学系は、第2の合焦レンズ群を有し、第2の合焦レンズ群は、第1の合焦レンズ群よりも縮小側に配置され、フォーカスの際に第1の合焦レンズ群との距離を変えながら結像光学系の光軸に沿って移動し、且つ、正の屈折力を有することが好ましい。
 第1の合焦レンズ群の屈折力が負屈折力で、第1の合焦レンズ群よりも縮小側に位置する第2の合焦レンズ群の屈折力が正屈折力であるので、このようにすることは、射出瞳を縮小側の像面から離しつつも、結像光学系を小型化することに有利である。また、このようにすることは、フォーカスの際の収差変動の低減とフォーカスが可能となる物体までの距離の短縮化との両立に有利となる。
 また、本実施形態の結像光学系では、第1の合焦レンズ群と第2の合焦レンズ群は、各々、多くとも2枚のレンズからなることが好ましい。
 このようにすることで、合焦レンズ群を軽量化できる。そのため、このようにすることは、駆動機構の負担軽減や、結像光学系の小型化に有利となる。
 また、本実施形態の結像光学系では、拡大側に位置する無限遠物体にフォーカスした状態から近距離物体へのフォーカスの際に、第1の合焦レンズ群は縮小側に移動し、拡大側に位置する無限遠物体にフォーカスした状態から近距離物体へのフォーカスの際に、第2の合焦レンズ群は拡大側に移動し、且つ、第1の合焦レンズ群と第2の合焦レンズ群は、フォーカスの際に以下の条件式(F)を満足することが好ましい。
 0<MF2/MF1<1.5   (F)
 ここで、
 MF1は、第1の合焦レンズ群におけるフォーカスの際の光軸方向に沿った最大移動量、
 MF2は、第2の合焦レンズ群におけるフォーカスの際の光軸方向に沿った最大移動量、
である。
 条件式(F)の下限値を下回らないように第2の合焦レンズ群を移動させることで、第1の合焦レンズ群の移動に伴って変動する軸外収差を良好に補正できる。一方、条件式(F)の下限値を下回らないようにして第2の合焦レンズ群の移動量を抑え、これにより、縮小側(撮像面)もしくは拡大側(スクリーン面)でのフォーカスの際の像の大きさの変化を低減することが好ましい。
 なお、条件式(F)に代えて、以下の条件式(F’)を満足すると良い。
 0.005<MF2/MF1<1.2   (F’)
 さらに、条件式(F)に代えて、以下の条件式(F’’)を満足するとなお良い。
 0.008<MF2/MF1<1   (F’’)
 また、本実施形態の結像光学系では、第1の合焦レンズ群と第2の合焦レンズ群は以下の条件式(G)を満足することが好ましい。
 -3<fF1/fF2<-0.5   (G)
 ここで、
 fF1は、第1の合焦レンズ群の焦点距離、
 fF2は、第2の合焦レンズ群の焦点距離、
である。
 条件式(G)の下限値を下回らないようにして第1の合焦レンズ群の負の屈折力を十分に確保し、且つ、条件式(G)の上限値を上回らないようにして第1の合焦レンズ群の負の屈折力が過剰になることを抑える。このようにすることは、狭い移動範囲内にてフォーカスの際に発生する収差変動の低減と、フォーカスが可能となる物体までの距離の短縮化の双方に有利となる。
 なお、条件式(G)に代えて、以下の条件式(G’)を満足すると良い。
 -2.8<fF1/fF2<-0.8   (G’)
 さらに、条件式(G)に代えて、以下の条件式(G’’)を満足するとなお良い。
 -2.5<fF1/fF2<-1   (G’’)
 また、本実施形態の結像光学系では、第1の合焦レンズ群と第2の合焦レンズ群は以下の条件式(H)を満足することが好ましい。
 5<βF1/βF2<50   (H)
 ここで、
 βF1は、無限遠物体合焦時の第1の合焦レンズ群の横倍率、
 βF2は、無限遠物体合焦時の第2の合焦レンズ群の横倍率、
である。
 条件式(H)の上限値を上回るか、又は条件式(H)の下限値を下回ると、フォーカスの際の球面収差の変動、コマ収差の変動及び非点収差の変動が許容できないレベルになる。
 なお、条件式(H)に代えて、以下の条件式(H’)を満足すると良い。
 8<βF1/βF2<40   (H’)
 さらに、条件式(H)に代えて、以下の条件式(H’’)を満足するとなお良い。
 10<βF1/βF2<35   (H’’)
 また、本実施形態の光学装置は、光学系と、縮小側に配置された撮像素子と、を有し、撮像素子は撮像面を有し、且つ光学系によって撮像面上に形成された像を電気信号に変換し、光学系が上述の結像光学系であることを特徴とする。
 本実施形態の光学装置によれば、広い撮影範囲を、低ノイズ、高解像度で撮像することができる。
 また、本実施形態の光学装置は、光学系と、縮小側に配置された表示素子と、を有し、表示素子は表示面を有し、表示面上に表示された画像は、光学系によって拡大側に投影され、光学系が上述の結像光学系であることを特徴とする。
 本実施形態の光学装置によれば、広い投影範囲に、低ノイズ、高解像度で像を投影することができる。
 なお、上述の結像光学系や光学装置は、複数の構成を同時に満足してもよい。このようにすることが、良好な結像光学系や光学装置を得る上で好ましい。また、好ましい構成の組み合わせは任意である。また、各条件式について、より限定した条件式の数値範囲の上限値又は下限値のみを限定しても構わない。
 以下に、結像光学系の実施例を、図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。
 以下、結像光学系の実施例1~19を図面に基づいて説明する。実施例1~19の結像光学系は、いずれもFナンバーが1.5を下回る結像光学系である。
 図1(a)~図19(a)は、各実施例の結像光学系におけるレンズ断面図を示している。なお、レンズ断面図は、無限遠物体合焦時のレンズ断面図である。
 また、図1(b)~図19(b)は、各実施例の結像光学系における球面収差(SA)を示し、図1(c)~図19(c)は非点収差(AS)を示し、図1(d)~図19(d)は歪曲収差(DT)を示し、図1(e)~図19(e)は歪曲収差(DT)を示している。なお、各収差図は、無限遠物体合焦時の収差図である。また“ω”は半画角を表している。
 また、各実施例のレンズ断面図では、前群をGF、後群をGR、カバーガラスをC、像面をIで示してある。なお、これらのレンズ断面図では、結像光学系を前群と後群とに分けている。しかしながら、レンズ群の分け方は、前群と後群という分け方に限られない。
 また、図示しないが、後群GRと像面Iとの間に、ローパスフィルタを構成する平行平板が配置されていても良い。なお、平行平板の表面に、赤外光を制限する波長域制限コートを施しても良い。また、カバーガラスCの表面に波長域制限用の多層膜を施してもよい。また、そのカバーガラスCにローパスフィルタ作用を持たせるようにしてもよい。
 また、結像光学系を撮像に用いる場合、像面Iには撮像素子が配置される。一方、結像光学系を投影に用いる場合、像面Iには表示素子が配置される。各実施例の構成の説明では、結像光学系を撮像に用いることを前提に説明する。よって、拡大側を物体側、縮小側を像側とする。
 実施例1に係る結像光学系について説明する。図1(a)は、実施例1に係る結像光学系のレンズ断面図である。図1(b)、(c)、(d)及び(e)は実施例1に係る結像光学系の収差図である。
 実施例1に係る結像光学系は、図1(a)に示すように、物体側から順に、負の屈折力を有する前群GFと、正の屈折力を有する後群GRと、で構成されている。後群GRは開口絞りSを含んでいる。
 前群GFは、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、物体側に凸面を向けた負メニスカスレンズL3と、両凸正レンズL4と、両凸正レンズL5と、両凹負レンズL6と、で構成されている。ここで、両凸正レンズL5と両凹負レンズL6とが接合されている。
 後群GRは、両凹負レンズL7と、両凸正レンズL8と、両凸正レンズL9と、両凸正レンズL10と、像側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と、両凸正レンズL13と、像側に凸面を向けた負メニスカスレンズL14と、で構成されている。ここで、両凹負レンズL7と両凸正レンズL8とが接合されている。また、両凸正レンズL10と負メニスカスレンズL11とが接合されている。
 ここで、前群GFが所定のレンズ群である。また、両凸正レンズL5と両凹負レンズL6とで、第1の接合レンズが構成されている。また、両凹負レンズL7と両凸正レンズL8とで、第2の接合レンズが構成されている。また、両凸正レンズL10と負メニスカスレンズL11とで、第3の接合レンズが構成されている。
 また、無限遠物体から近距離物体への合焦時に、負メニスカスレンズL12が光軸に沿って像側へ移動する。
 非球面は、負メニスカスレンズL3の像側面と、負メニスカスレンズL12の両面と、両凸正レンズL13の像側面と、の合計4面に設けられている。
 次に、実施例2に係る結像光学系について説明する。図2(a)は、実施例2に係る結像光学系のレンズ断面図である。図2(b)、(c)、(d)及び(e)は実施例2に係る結像光学系の収差図である。
 実施例2に係る結像光学系は、図2(a)に示すように、物体側から順に、負の屈折力を有する前群GFと、正の屈折力を有する後群GRと、で構成されている。後群GRは開口絞りSを含んでいる。
 前群GFは、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、物体側に凸面を向けた負メニスカスレンズL3と、物体側に凸面を向けた正メニスカスレンズL4と、両凸正レンズL5と、両凹負レンズL6と、で構成されている。ここで、両凸正レンズL5と両凹負レンズL6とが接合されている。
 後群GRは、両凹負レンズL7と、両凸正レンズL8と、両凸正レンズL9と、両凸正レンズL10と、像側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と、両凸正レンズL13と、像側に凸面を向けた負メニスカスレンズL14と、で構成されている。ここで、両凹負レンズL7と両凸正レンズL8とが接合されている。また、両凸正レンズL10と負メニスカスレンズL11とが接合されている。
 ここで、前群GFが所定のレンズ群である。また、両凸正レンズL5と両凹負レンズL6とで、第1の接合レンズが構成されている。また、両凹負レンズL7と両凸正レンズL8とで、第2の接合レンズが構成されている。また、両凸正レンズL10と負メニスカスレンズL11とで、第3の接合レンズが構成されている。
 また、無限遠物体から近距離物体への合焦時に、負メニスカスレンズL12が光軸に沿って像側へ移動する。
 非球面は、負メニスカスレンズL3の両面と、負メニスカスレンズL12の両面と、両凸正レンズL13の両面と、の合計6面に設けられている。
 次に、実施例3に係る結像光学系について説明する。図3(a)は、実施例3に係る結像光学系のレンズ断面図である。図3(b)、(c)、(d)及び(e)は実施例3に係る結像光学系の収差図である。
 実施例3に係る結像光学系は、図3(a)に示すように、物体側から順に、負の屈折力を有する前群GFと、正の屈折力を有する後群GRと、で構成されている。後群GRは開口絞りSを含んでいる。
 前群GFは、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、両凸正レンズL3と、両凹負レンズL4と、で構成されている。ここで、両凸正レンズL3と両凹負レンズL4とが接合されている。
 後群GRは、両凹負レンズL5と、両凸正レンズL6と、両凸正レンズL7と、両凸正レンズL8と、両凹負レンズL9と、物体側に凸面を向けた負メニスカスレンズL10と、両凸正レンズL11と、像側に凸面を向けた負メニスカスレンズL12と、で構成されている。ここで、両凹負レンズL5と両凸正レンズL6とが接合されている。また、両凸正レンズL8と両凹負レンズL9とが接合されている。
 ここで、前群GFが所定のレンズ群である。また、両凸正レンズL3と両凹負レンズL4とで、第1の接合レンズが構成されている。また、両凹負レンズL5と両凸正レンズL6とで、第2の接合レンズが構成されている。また、両凸正レンズL8と両凹負レンズL9とで、第3の接合レンズが構成されている。
 また、無限遠物体から近距離物体への合焦時に、負メニスカスレンズL10が光軸に沿って像側へ移動する。
 非球面は、負メニスカスレンズL2の両面と、負メニスカスレンズL10の両面と、両凸正レンズL11の両面と、の合計6面に設けられている。
 次に、実施例4に係る結像光学系について説明する。図4(a)は、実施例4に係る結像光学系のレンズ断面図である。図4(b)、(c)、(d)及び(e)は実施例4に係る結像光学系の収差図である。
 実施例4に係る結像光学系は、図4(a)に示すように、物体側から順に、負の屈折力を有する前群GFと、正の屈折力を有する後群GRと、で構成されている。後群GRは開口絞りSを含んでいる。
 前群GFは、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、物体側に凸面を向けた負メニスカスレンズL3と、物体側に凸面を向けた正メニスカスレンズL4と、両凸正レンズL5と、両凹負レンズL6と、で構成されている。ここで、両凸正レンズL5と両凹負レンズL6とが接合されている。
 後群GRは、両凹負レンズL7と、両凸正レンズL8と、両凸正レンズL9と、両凸正レンズL10と、像側に凸面を向けた負メニスカスレンズL11と、両凹負レンズL12と、両凸正レンズL13と、像側に凸面を向けた負メニスカスレンズL14と、で構成されている。ここで、両凹負レンズL7と両凸正レンズL8とが接合されている。また、両凸正レンズL10と負メニスカスレンズL11とが接合されている。
 ここで、前群GFが所定のレンズ群である。また、両凸正レンズL5と両凹負レンズL6とで、第1の接合レンズが構成されている。また、両凹負レンズL7と両凸正レンズL8とで、第2の接合レンズが構成されている。また、両凸正レンズL10と負メニスカスレンズL11とで、第3の接合レンズが構成されている。
 また、無限遠物体から近距離物体への合焦時に、両凹負レンズL12が光軸に沿って像側へ移動する。
 非球面は、負メニスカスレンズL3の両面と、両凹負レンズL12の両面と、両凸正レンズL13の両面と、の合計6面に設けられている。
 次に、実施例5に係る結像光学系について説明する。図5(a)は、実施例5に係る結像光学系のレンズ断面図である。図5(b)、(c)、(d)及び(e)は実施例5に係る結像光学系の収差図である。
 実施例5に係る結像光学系は、図5(a)に示すように、物体側から順に、負の屈折力を有する前群GFと、正の屈折力を有する後群GRと、で構成されている。後群GRは開口絞りSを含んでいる。
 前群GFは、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、物体側に凸面を向けた負メニスカスレンズL3と、両凸正レンズL4と、両凹負レンズL5と、で構成されている。ここで、負メニスカスレンズL3、両凸正レンズL4及び両凹負レンズL5が接合されている。
 後群GRは、両凹負レンズL6と、両凸正レンズL7と、両凸正レンズL8と、両凸正レンズL9と、像側に凸面を向けた負メニスカスレンズL10と、物体側に凸面を向けた負メニスカスレンズL11と、両凸正レンズL12と、像側に凸面を向けた負メニスカスレンズL13と、で構成されている。ここで、両凹負レンズL6と両凸正レンズL7とが接合されている。また、両凸正レンズL9と負メニスカスレンズL10とが接合されている。
 ここで、前群GFが所定のレンズ群である。また、負メニスカスレンズL3、両凸正レンズL4及び両凹負レンズL5で、第1の接合レンズが構成されている。また、両凹負レンズL6と両凸正レンズL7とで、第2の接合レンズが構成されている。また、両凸正レンズL9と負メニスカスレンズL10とで、第3の接合レンズが構成されている。
 また、無限遠物体から近距離物体への合焦時に、負メニスカスレンズL11が光軸に沿って像側へ移動する。
 非球面は、負メニスカスレンズL1の像側面と、負メニスカスレンズL11の両面と、両凸正レンズL12の両面と、の合計5面に設けられている。
 次に、実施例6に係る結像光学系について説明する。図6(a)は、実施例6に係る結像光学系のレンズ断面図である。図6(b)、(c)、(d)及び(e)は実施例6に係る結像光学系の収差図である。
 実施例6に係る結像光学系は、図6(a)に示すように、物体側から順に、負の屈折力を有する前群GFと、正の屈折力を有する後群GRと、で構成されている。後群GRは開口絞りSを含んでいる。
 前群GFは、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、両凸正レンズL3と、両凹負レンズL4と、で構成されている。ここで、両凸正レンズL3と両凹負L4とが接合されている。
 後群GRは、両凹負レンズL5と、両凸正レンズL6と、両凸正レンズL7と、両凸正レンズL8と、両凹負レンズL9と、物体側に凸面を向けた負メニスカスレンズL10と、両凸正レンズL11と、像側に凸面を向けた負メニスカスレンズL12と、で構成されている。ここで、両凹負レンズL5と両凸正レンズL6とが接合されている。また、両凸正レンズL8と両凹負レンズL9とが接合されている。
 ここで、前群GFが所定のレンズ群である。また、両凸正レンズL3と両凹負L4とで、第1の接合レンズが構成されている。また、両凹負レンズL5と両凸正レンズL6とで、第2の接合レンズが構成されている。また、両凸正レンズL8と両凹負レンズL9とで、第3の接合レンズが構成されている。
 また、無限遠物体から近距離物体への合焦時に、負メニスカスレンズL10が光軸に沿って像側へ移動する。
 非球面は、負メニスカスレンズL2の両面と、負メニスカスレンズL10の両面と、両凸正レンズL11の両面と、の合計6面に設けられている。
 次に、実施例7に係る結像光学系について説明する。図7(a)は、実施例7に係る結像光学系のレンズ断面図である。図7(b)、(c)、(d)及び(e)は実施例7に係る結像光学系の収差図である。
 実施例7に係る結像光学系は、図7(a)に示すように、物体側から順に、負の屈折力を有する前群GFと、正の屈折力を有する後群GRと、で構成されている。後群GRは開口絞りSを含んでいる。
 前群GFは、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた正メニスカスレンズL2と、物体側に凸面を向けた正メニスカスレンズL3と、物体側に凸面を向けた負メニスカスレンズL4と、で構成されている。ここで、正メニスカスレンズL3と負メニスカスレンズL4とが接合されている。
 後群GRは、両凹負レンズL5と、両凸正レンズL6と、両凸正レンズL7と、両凸正レンズL8と、両凹負レンズL9と、物体側に凸面を向けた負メニスカスレンズL10と、両凸正レンズL11と、物体側に凸面を向けた負メニスカスレンズL12と、で構成されている。ここで、両凹負レンズL5と両凸正レンズL6とが接合されている。また、両凸正レンズL8と両凹負レンズL9とが接合されている。
 ここで、前群GFが所定のレンズ群である。また、正メニスカスレンズL3と負メニスカスレンズL4とで、第1の接合レンズが構成されている。また、両凹負レンズL5と両凸正レンズL6とで、第2の接合レンズが構成されている。また、両凸正レンズL8と両凹負レンズL9とで、第3の接合レンズが構成されている。
 また、無限遠物体から近距離物体への合焦時に、負メニスカスレンズL10が光軸に沿って像側へ移動する。
 非球面は、負メニスカスレンズL1の像側面と、負メニスカスレンズL10の両面と、両凸正レンズL11の物体側面と、の合計4面に設けられている。
 次に、実施例8に係る結像光学系について説明する。図8(a)は、実施例8に係る結像光学系のレンズ断面図である。図8(b)、(c)、(d)及び(e)は実施例8に係る結像光学系の収差図である。
 実施例8に係る結像光学系は、図8(a)に示すように、物体側から順に、負の屈折力を有する前群GFと、正の屈折力を有する後群GRと、で構成されている。後群GRは開口絞りSを含んでいる。
 前群GFは、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、両凸正レンズL3と、両凹負レンズL4と、で構成されている。ここで、両凸正レンズL3と両凹負レンズL4とが接合されている。
 後群GRは、両凹負レンズL5と、両凸正レンズL6と、両凸正レンズL7と、両凸正レンズL8と、両凹負レンズL9と、物体側に凸面を向けた負メニスカスレンズL10と、両凸正レンズL11と、物体側に凸面を向けた負メニスカスレンズL12と、で構成されている。ここで、両凹負レンズL5と両凸正レンズL6とが接合されている。また、両凸正レンズL8と両凹負レンズL9とが接合されている。
 ここで、前群GFが所定のレンズ群である。また、両凸正レンズL3と両凹負レンズL4とで、第1の接合レンズが構成されている。また、両凹負レンズL5と両凸正レンズL6とで、第2の接合レンズが構成されている。また、両凸正レンズL8と両凹負レンズL9とで、第3の接合レンズが構成されている。
 また、無限遠物体から近距離物体への合焦時に、負メニスカスレンズL10が光軸に沿って像側へ移動する。
 非球面は、負メニスカスレンズL2の両面と、負メニスカスレンズL10の両面と、両凸正レンズL11の両面と、の合計6面に設けられている。
 次に、実施例9に係る結像光学系について説明する。図9(a)は、実施例9に係る結像光学系のレンズ断面図である。図9(b)、(c)、(d)及び(e)は実施例9に係る結像光学系の収差図である。
 実施例9に係る結像光学系は、図9(a)に示すように、物体側から順に、負の屈折力を有する前群GFと、正の屈折力を有する後群GRと、で構成されている。後群GRは開口絞りSを含んでいる。
 前群GFは、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた正メニスカスレンズL2と、物体側に凸面を向けた正メニスカスレンズL3と、物体側に凸面を向けた負メニスカスレンズL4と、で構成されている。ここで、正メニスカスレンズL3と負メニスカスレンズL4とが接合されている。
 後群GRは、両凹負レンズL5と、両凸正レンズL6と、両凸正レンズL7と、両凸正レンズL8と、両凹負レンズL9と、物体側に凸面を向けた負メニスカスレンズL10と、両凸正レンズL11と、物体側に凸面を向けた負メニスカスレンズL12と、で構成されている。ここで、両凹負レンズL5と両凸正レンズL6とが接合されている。また、両凸正レンズL8と両凹負レンズL9とが接合されている。
 ここで、前群GFが所定のレンズ群である。また、正メニスカスレンズL3と負メニスカスレンズL4とで、第1の接合レンズが構成されている。また、両凹負レンズL5と両凸正レンズL6とで、第2の接合レンズが構成されている。また、両凸正レンズL8と両凹負レンズL9とで、第3の接合レンズが構成されている。
 また、無限遠物体から近距離物体への合焦時に、負メニスカスレンズL10が光軸に沿って像側へ移動する。
 非球面は、負メニスカスレンズL1の像側面と、負メニスカスレンズL10の両面と、両凸正レンズL11の両面と、の合計5面に設けられている。
 次に、実施例10に係る結像光学系について説明する。図10(a)は、実施例10に係る結像光学系のレンズ断面図である。図10(b)、(c)、(d)及び(e)は実施例10に係る結像光学系の収差図である。
 実施例10に係る結像光学系は、図10(a)に示すように、物体側から順に、負の屈折力を有する前群GFと、正の屈折力を有する後群GRと、で構成されている。後群GRは開口絞りSを含んでいる。
 前群GFは、物体側に凸面を向けた負メニスカスレンズL1と、両凹負レンズL2と、両凸正レンズL3と、両凹負レンズL4と、で構成されている。ここで、両凸正レンズL3と両凹負レンズL4とが接合されている。
 後群GRは、両凹負レンズL5と、両凸正レンズL6と、両凸正レンズL7と、両凸正レンズL8と、像側に凸面を向けた負メニスカスレンズL9と、物体側に凸面を向けた負メニスカスレンズL10と、両凸正レンズL11と、両凸正レンズL12と、両凹負レンズL13と、物体側に凸面を向けた正メニスカスレンズL14と、で構成されている。ここで、両凹負レンズL5と両凸正レンズL6とが接合されている。また、両凸正レンズL8と負メニスカスレンズL9とが接合されている。また、両凸正レンズL12と両凹負レンズL13とが接合されている。
 ここで、前群GFが所定のレンズ群である。また、両凸正レンズL3と両凹負レンズL4とで、第1の接合レンズが構成されている。また、両凹負レンズL5と両凸正レンズL6とで、第2の接合レンズが構成されている。また、両凸正レンズL8と負メニスカスレンズL9とで、第3の接合レンズが構成されている。
 また、無限遠物体から近距離物体への合焦時に、負メニスカスレンズL10が光軸に沿って像側へ移動する。
 非球面は、両凹負レンズL2の両面と、負メニスカスレンズL10の両面と、の合計4面に設けられている。
 次に、実施例11に係る結像光学系について説明する。図11(a)は、実施例11に係る結像光学系のレンズ断面図である。図11(b)、(c)、(d)及び(e)は実施例11に係る結像光学系の収差図である。
 実施例11に係る結像光学系は、図11(a)に示すように、物体側から順に、負の屈折力を有する前群GFと、正の屈折力を有する後群GRと、で構成されている。後群GRは開口絞りSを含んでいる。
 前群GFは、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、物体側に凸面を向けた負メニスカスレンズL3と、両凸正レンズL4と、両凹負レンズL5と、で構成されている。ここで、両凸正レンズL4と両凹負レンズL5とが接合されている。
 後群GRは、両凹負レンズL6と、両凸正レンズL7と、両凸正レンズL8と、両凸正レンズL9と、像側に凸面を向けた負メニスカスレンズL10と、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた正メニスカスレンズL12と、両凸正レンズL13と、両凹負レンズL14と、で構成されている。ここで、両凹負レンズL6と両凸正レンズL7とが接合されている。また、両凸正レンズL9と負メニスカスレンズL10とが接合されている。また、負メニスカスレンズL11と正メニスカスレンズL12とが接合されている。
 ここで、前群GFが所定のレンズ群である。また、両凸正レンズL4と両凹負レンズL5とで、第1の接合レンズが構成されている。また、両凹負レンズL6と両凸正レンズL7とで、第2の接合レンズが構成されている。また、両凸正レンズL9と負メニスカスレンズL10とで、第3の接合レンズが構成されている。
 また、無限遠物体から近距離物体への合焦時に、負メニスカスレンズL11と正メニスカスレンズL12とが光軸に沿って像側へ移動する。
 非球面は、負メニスカスレンズL3の両面と、負メニスカスレンズL11の物体側面と、両凸正レンズL13の両面と、の合計5面に設けられている。
 次に、実施例12に係る結像光学系について説明する。図12(a)は、実施例12に係る結像光学系のレンズ断面図である。図12(b)、(c)、(d)及び(e)は実施例12に係る結像光学系の収差図である。
 実施例12に係る結像光学系は、図12(a)に示すように、物体側から順に、負の屈折力を有する前群GFと、正の屈折力を有する後群GRと、で構成されている。後群GRは開口絞りSを含んでいる。
 前群GFは、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、物体側に凸面を向けた負メニスカスレンズL3と、両凸正レンズL4と、両凹負レンズL5と、で構成されている。ここで、両凸正レンズL4と両凹負レンズL5とが接合されている。
 後群GRは、両凹負レンズL6と、両凸正レンズL7と、両凸正レンズL8と、両凸正レンズL9と、像側に凸面を向けた負メニスカスレンズL10と、像側に凸面を向けた正メニスカスレンズL11と、両凹負レンズL12と、両凸正レンズL13と、像側に凸面を向けた負メニスカスレンズL14と、で構成されている。ここで、両凹負レンズL6と両凸正レンズL7とが接合されている。また、両凸正レンズL9と負メニスカスレンズL10とが接合されている。また、正メニスカスレンズL11と両凹負レンズL12とが接合されている。
 ここで、前群GFが所定のレンズ群である。また、両凸正レンズL4と両凹負レンズL5とで、第1の接合レンズが構成されている。また、両凹負レンズL6と両凸正レンズL7とで、第2の接合レンズが構成されている。また、両凸正レンズL9と負メニスカスレンズL10とで、第3の接合レンズが構成されている。
 また、無限遠物体から近距離物体への合焦時に、正メニスカスレンズL11と両凹負レンズL12とが光軸に沿って像側へ移動する。
 非球面は、負メニスカスレンズL3の両面と、両凹負レンズL12の像側面と、両凸正レンズL13の両面と、の合計5面に設けられている。
 次に、実施例13に係る結像光学系について説明する。図13(a)は、実施例13に係る結像光学系のレンズ断面図である。図13(b)、(c)、(d)及び(e)は実施例13に係る結像光学系の収差図である。
 実施例13に係る結像光学系は、図13(a)に示すように、物体側から順に、負の屈折力を有する前群GFと、正の屈折力を有する後群GRと、で構成されている。後群GRは開口絞りSを含んでいる。
 前群GFは、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、両凸正レンズL3と、両凸正レンズL4と、両凹負レンズL5と、で構成されている。ここで、両凸正レンズL4と両凹負レンズL5とが接合されている。
 後群GRは、両凹負レンズL6と、両凸正レンズL7と、両凸正レンズL8と、両凸正レンズL9と、像側に凸面を向けた負メニスカスレンズL10と、像側に凸面を向けた正メニスカスレンズL11と、両凹負レンズL12と、両凸正レンズL13と、像側に凸面を向けた負メニスカスレンズL14と、で構成されている。ここで、両凹負レンズL6と両凸正レンズL7とが接合されている。また、両凸正レンズL9と負メニスカスレンズL10とが接合されている。
 ここで、前群GFが所定のレンズ群である。また、両凸正レンズL4と両凹負レンズL5とで、第1の接合レンズが構成されている。また、両凹負レンズL6と両凸正レンズL7とで、第2の接合レンズが構成されている。また、両凸正レンズL9と負メニスカスレンズL10とで、第3の接合レンズが構成されている。
 また、無限遠物体から近距離物体への合焦時に、正メニスカスレンズL11と両凹負レンズL12とが光軸に沿って像側へ移動する。
 非球面は、負メニスカスレンズL2の両面と、正メニスカスレンズL11の物体側面と、両凸正レンズL13の両面と、の合計5面に設けられている。
 次に、実施例14に係る結像光学系について説明する。図14(a)は、実施例14に係る結像光学系のレンズ断面図である。図14(b)、(c)、(d)及び(e)は実施例14に係る結像光学系の収差図である。
 実施例14に係る結像光学系は、図14(a)に示すように、物体側から順に、負の屈折力を有する前群GFと、正の屈折力を有する後群GRと、で構成されている。後群GRは開口絞りSを含んでいる。
 前群GFは、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、像側に凸面を向けた負メニスカスレンズL3と、両凸正レンズL4と、両凸正レンズL5と、両凹負レンズL6と、で構成されている。ここで、両凸正レンズL5と両凹負レンズL6とが接合されている。
 後群GRは、両凹負レンズL7と、両凸正レンズL8と、両凸正レンズL9と、物体側に凸面を向けた正メニスカスレンズL10と、両凸正レンズL11と、両凹負レンズL12と、両凹負レンズL13と、両凸正レンズL14と、像側に凸面を向けた負メニスカスレンズL15と、で構成されている。ここで、両凹負レンズL7と両凸正レンズL8とが接合されている。また、両凸正レンズL11と両凹負レンズL12とが接合されている。
 ここで、前群GFが所定のレンズ群である。また、両凸正レンズL5と両凹負レンズL6とで、第1の接合レンズが構成されている。また、両凹負レンズL7と両凸正レンズL8とで、第2の接合レンズが構成されている。また、両凸正レンズL11と両凹負レンズL12とで、第3の接合レンズが構成されている。
 また、無限遠物体から近距離物体への合焦時に、正メニスカスレンズL10、両凸正レンズL11、両凹負レンズL12及び両凹負レンズL13が一体となって光軸に沿って物体側に移動すると共に、両凸正レンズL14が光軸に沿って物体側へ移動する。
 非球面は、負メニスカスレンズL2の両面と、正メニスカスレンズL10の両面と、両凹負レンズL13の像側面と、の合計5面に設けられている。
 次に、実施例15に係る結像光学系について説明する。図15(a)は、実施例15に係る結像光学系のレンズ断面図である。図15(b)、(c)、(d)及び(e)は実施例15に係る結像光学系の収差図である。
 実施例15に係る結像光学系は、図15(a)に示すように、物体側から順に、負の屈折力を有する前群GFと、正の屈折力を有する後群GRと、で構成されている。後群GRは開口絞りSを含んでいる。
 前群GFは、物体側に凸面を向けた負メニスカスレンズL1と、両凹負レンズL2と、両凸正レンズL3と、両凸正レンズL4と、両凹負レンズL5と、で構成されている。ここで、両凹負レンズL2と両凸正レンズL3とが接合されている。また、両凸正レンズL4と両凹負レンズL5とが接合されている。
 後群GRは、両凹負レンズL6と、両凸正レンズL7と、両凸正レンズL8と、物体側に凸面を向けた正メニスカスレンズL9と、両凸正レンズL10と、両凹負レンズL11と、両凹負レンズL12と、両凸正レンズL13と、像側に凸面を向けた負メニスカスレンズL14と、で構成されている。ここで、両凹負レンズL6と両凸正レンズL7とが接合されている。また、両凸正レンズL10と両凹負レンズL11とが接合されている。
 ここで、前群GFが所定のレンズ群である。また、両凸正レンズL4と両凹負レンズL5とで、第1の接合レンズが構成されている。また、両凹負レンズL6と両凸正レンズL7とで、第2の接合レンズが構成されている。また、両凸正レンズL10と両凹負レンズL11とで、第3の接合レンズが構成されている。
 また、無限遠物体から近距離物体への合焦時に、正メニスカスレンズL9、両凸正レンズL10、両凹負レンズL11及び両凹負レンズL12が一体となって光軸に沿って物体側に移動すると共に、両凸正レンズL13が光軸に沿って物体側へ移動する。
 非球面は、負メニスカスレンズL1の両面と、正メニスカスレンズL9の両面と、両凹負レンズL12の像側面と、の合計5面に設けられている。
 実施例16に係る結像光学系は、図16(a)に示すように、物体側から順に、負の屈折力を有する前群GFと、正の屈折力を有する後群GRと、で構成されている。後群GRは開口絞りSを含んでいる。
 前群GFは、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、両凸正レンズL3と、両凹負レンズL4と、で構成されている。ここで、両凸正レンズL3と両凹負レンズL4とが接合されている。
 後群GRは、両凹負レンズL5と、両凸正レンズL6と、両凸正レンズL7と、両凸正レンズL8と、像側に凸面を向けた負メニスカスレンズL9と、物体側に凸面を向けた負メニスカスレンズL10と、両凸正レンズL11と、像側に凸面を向けた負メニスカスレンズL12と、で構成されている。ここで、両凹負レンズL5と両凸正レンズL6とが接合されている。また、両凸正レンズL8と負メニスカスレンズL9とが接合されている。
 ここで、前群GFが所定のレンズ群である。また、両凸正レンズL3と両凹負レンズL4とで、第1の接合レンズが構成されている。また、両凹負レンズL5と両凸正レンズL6とで、第2の接合レンズが構成されている。また、両凸正レンズL8と負メニスカスレンズL9とで、第3の接合レンズが構成されている。
 また、無限遠物体から近距離物体への合焦時に、負メニスカスレンズL10が光軸に沿って像側へ移動すると共に、両凸正レンズL11が光軸に沿って物体側に移動する。
 非球面は、負メニスカスレンズL2の両面と、負メニスカスレンズL10の両面と、両凸正レンズL11の両面と、の合計6面に設けられている。
 実施例17に係る結像光学系は、図17(a)に示すように、物体側から順に、負の屈折力を有する前群GFと、正の屈折力を有する後群GRと、で構成されている。後群GRは開口絞りSを含んでいる。
 前群GFは、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、物体側に凸面を向けた負メニスカスレンズL3と、両凸正レンズL4と、両凹負レンズL5と、で構成されている。ここで、両凸正レンズL4と両凹負レンズL5とが接合されている。
 後群GRは、両凹負レンズL6と、両凸正レンズL7と、両凸正レンズL8と、両凸正レンズL9と、像側に凸面を向けた負メニスカスレンズL10と、物体側に凸面を向けた負メニスカスレンズL11と、両凸正レンズL12と、両凹負レンズL13と、で構成されている。ここで、両凹負レンズL6と両凸正レンズL7とが接合されている。また、両凸正レンズL9と負メニスカスレンズL10とが接合されている。
 ここで、前群GFが所定のレンズ群である。また、両凸正レンズL4と両凹負レンズL5とで、第1の接合レンズが構成されている。また、両凹負レンズL6と両凸正レンズL7とで、第2の接合レンズが構成されている。また、両凸正レンズL9と負メニスカスレンズL10とで、第3の接合レンズが構成されている。
 また、無限遠物体から近距離物体への合焦時に、負メニスカスレンズL11が光軸に沿って像側へ移動すると共に、両凸正レンズL12が光軸に沿って物体側に移動する。
 非球面は、負メニスカスレンズL2の両面と、負メニスカスレンズL11の両面と、両凸正レンズL12の両面と、の合計6面に設けられている。
 実施例18に係る結像光学系は、図18(a)に示すように、物体側から順に、負の屈折力を有する前群GFと、正の屈折力を有する後群GRと、で構成されている。後群GRは開口絞りSを含んでいる。
 前群GFは、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、両凸正レンズL3と、両凹負レンズL4と、で構成されている。ここで、両凸正レンズL3と両凹負レンズL4とが接合されている。
 後群GRは、両凹負レンズL5と、両凸正レンズL6と、両凸正レンズL7と、両凸正レンズL8と、像側に凸面を向けた負メニスカスレンズL9と、物体側に凸面を向けた負メニスカスレンズL10と、物体側に凸面を向けた負メニスカスレンズL11と、両凸正レンズL12と、像側に凸面を向けた負メニスカスレンズL13と、で構成されている。ここで、両凹負レンズL5と両凸正レンズL6とが接合されている。また、両凸正レンズL8と負メニスカスレンズL9とが接合されている。また、負メニスカスレンズL11と両凸正レンズL12とが接合されている。
 ここで、第1レンズ群G1が所定のレンズ群である。また、両凸正レンズL3と両凹負レンズL4とで、第1の接合レンズが構成されている。また、両凹負レンズL5と両凸正レンズL6とで、第2の接合レンズが構成されている。また、両凸正レンズL8と負メニスカスレンズL9とで、第3の接合レンズが構成されている。
 また、無限遠物体から近距離物体への合焦時に、負メニスカスレンズL10が光軸に沿って像側へ移動すると共に、負メニスカスレンズL11と両凸正レンズL12とが光軸に沿って物体側に移動する。
 非球面は、負メニスカスレンズL2の両面と、負メニスカスレンズL10の両面と、両凸正レンズL12の物体側面と、の合計5面に設けられている。
 実施例19に係る結像光学系は、図19(a)に示すように、物体側から順に、負の屈折力を有する前群GFと、正の屈折力を有する後群GRと、で構成されている。後群GRは開口絞りSを含んでいる。
 前群GFは、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、両凸正レンズL3と、両凹負レンズL4と、で構成されている。ここで、両凸正レンズL3と両凹負レンズL4とが接合されている。
 後群GRは、両凹負レンズL5と、両凸正レンズL6と、両凸正レンズL7と、両凸正レンズL8と、像側に凸面を向けた負メニスカスレンズL9と、両凹負レンズL10と、物体側に凸面を向けた負メニスカスレンズL11と、両凸正レンズL12と、両凹負レンズL13と、で構成されている。ここで、両凹負レンズL5と両凸正レンズL6とが接合されている。また、両凸正レンズL8と負メニスカスレンズL9とが接合されている。また、両凹負レンズL10と負メニスカスレンズL11とが接合されている。
 ここで、第1レンズ群G1が所定のレンズ群である。また、両凸正レンズL3と両凹負レンズL4とで、第1の接合レンズが構成されている。また、両凹負レンズL5と両凸正レンズL6とで、第2の接合レンズが構成されている。また、両凸正レンズL8と負メニスカスレンズL9とで、第3の接合レンズが構成されている。
 また、無限遠物体から近距離物体への合焦時に、両凹負レンズL10と負メニスカスレンズL11とが光軸に沿って像側へ移動する共に、両凸正レンズL12が光軸に沿って物体側に移動する。
 非球面は、負メニスカスレンズL2の両面と、両凹負レンズL10の物体側面と、負メニスカスレンズL11の像側面と、両凸正レンズL12の両面と、の合計6面に設けられている。
 次に、上記各実施例の結像光学系を構成する光学部材の数値データを掲げる。なお、各実施例の数値データにおいて、r1、r2、…は各レンズ面の曲率半径、d1、d2、…は各レンズの肉厚または空気間隔、nd1、nd2、…は各レンズのd線での屈折率、νd1、νd2、…は各レンズのアッベ数、*印は非球面である。また、各種データにおいて、fは結像光学系全系の焦点距離、FNO.はFナンバー、ωは半画角、IHは像高、FBはバックフォーカスである。なお、全長は、レンズ最前面からレンズ最終面までの距離にバックフォーカスを加えたものである。バックフォーカスは、レンズ最終面から近軸像面までの距離を空気換算して表したものである。また、角度の単位は°(度)である。また、無限遠は無限遠物体合焦時、近距離は近距離物体合焦時である。また、近距離における値は、物体から像までの距離である。
 また、非球面形状は、光軸方向をz、光軸に直交する方向をyにとり、円錐係数をk、非球面係数をA4、A6、A8、A10としたとき、次の式で表される。
 z=(y2/r)/[1+{1-(1+k)(y/r)21/2
    +A4y4+A6y6+A8y8+A10y10
 また、非球面係数において、「e-n」(nは整数)は、「10-n」を示している。なお、これら諸元値の記号は後述の実施例の数値データにおいても共通である。
数値実施例1
単位  mm

面データ
面番号         r          d         nd       νd
   物面        ∞         ∞
      1      55.000      1.50     1.48749    70.23
      2      15.910      4.92
      3      22.804      1.50     1.49700    81.61
      4      13.911      5.69
      5      46.637      1.50     1.74320    49.34
      6*     18.515      3.21
      7     129.872      2.66     2.00100    29.13
      8     -86.634      0.40
      9      33.953      4.06     2.00100    29.13
     10    -103.511      1.00     1.54814    45.79
     11      18.116      7.11
     12     -43.091      1.20     1.84666    23.78
     13      18.546      6.63     1.72000    43.69
     14     -54.065      1.40
     15(絞り)  ∞        1.00
     16      65.628      6.75     1.91082    35.25
     17     -28.862      0.40
     18      39.343      7.33     1.49700    81.61
     19     -20.569      1.20     2.00100    29.13
     20     -53.055      2.10
     21*     76.582      1.20     1.74320    49.34
     22*     22.423      6.05
     23      44.175      6.76     1.61881    63.85
     24*    -17.602      0.40
     25     -52.627      1.50     1.80518    25.42
     26 -117478.336     11.34
     27        ∞        2.66     1.51633    64.14
     28        ∞        1.00
   像面        ∞

非球面データ
第6面
k=0.000
A4=-1.84370e-05,A6=-5.06577e-08,A8=-3.20158e-10,A10=-1.50045e-12
第21面
k=0.000
A4=1.32953e-05,A6=-6.53919e-08,A8=3.20080e-10
第22面
k=0.000
A4=3.17365e-05,A6=-6.64637e-08,A8=5.90911e-10
第24面
k=0.000
A4=4.95207e-05,A6=-7.03512e-08,A8=2.17058e-10

各種データ
    f              12.37
    FNO.         1.29
    2ω            91.80
    IH            11.15
    FB (in air)   14.09
    全長 (in air)   91.57

群焦点距離
  GF=-31.65   GR=21.51
数値実施例2
単位  mm

面データ
面番号         r          d         nd       νd
   物面        ∞         ∞
      1      83.044      1.50     1.48749    70.23
      2      20.661      2.17
      3      23.930      1.50     1.49700    81.61
      4      16.138      5.37
      5*     21.611      1.50     1.80610    40.92
      6*     11.913      2.85
      7      24.962      3.44     2.00100    29.13
      8      53.374      0.40
      9      34.784      5.15     2.00100    29.13
     10     -53.257      1.00     1.54814    45.79
     11      14.970     11.39
     12     -28.403      1.20     1.85478    24.80
     13      20.951      6.03     1.72000    43.69
     14     -33.655      0.80
     15(絞り)  ∞        0.40
     16      49.077      5.33     1.91082    35.25
     17     -31.682      0.40
     18      45.282      6.08     1.49700    81.61
     19     -19.966      1.20     2.00100    29.13
     20     -55.421      2.40
     21*   -342.302      1.20     1.74320    49.34
     22*     41.214      7.06
     23*     47.308      5.70     1.69350    53.21
     24*    -19.021      0.40
     25     -62.081      2.00     1.80000    29.84
     26   -1714.984     11.27
     27        ∞        2.66     1.51633    64.14
     28        ∞        1.00
   像面        ∞

非球面データ
第5面
k=0.000
A4=-3.99414e-05,A6=-5.18429e-08,A8=6.69658e-14
第6面
k=-0.577
A4=-4.36841e-05,A6=-1.95530e-07,A8=3.83789e-11
第21面
k=0.000
A4=6.67877e-05,A6=-1.58982e-07,A8=4.64529e-10
第22面
k=0.000
A4=7.70376e-05,A6=-5.50923e-08,A8=5.33851e-10
第23面
k=0.000
A4=-1.24954e-05,A6=8.81283e-08,A8=9.00353e-12
第24面
k=0.000
A4=4.48788e-05,A6=-4.00730e-08,A8=3.07057e-10

各種データ
    f              12.22
    FNO.         1.28
    2ω            92.31
    IH            11.15
    FB (in air)   14.02
    全長 (in air)   90.50

群焦点距離
  GF=-30.68   GR=20.34
数値実施例3
単位  mm

面データ
面番号         r          d         nd       νd
   物面        ∞         ∞
      1      50.000      1.50     1.59522    67.74
      2      13.648      7.82
      3*     92.631      1.00     1.49700    81.61
      4*     15.753      4.52
      5      62.631      3.78     2.00100    29.13
      6     -43.739      1.00     1.43875    94.93
      7    1300.324      9.40
      8    -152.146      1.20     1.80518    25.42
      9      16.490      5.57     1.49700    81.61
     10     -54.381      4.05
     11(絞り)  ∞        1.00
     12      50.450      4.38     2.00100    29.13
     13     -32.930      0.40
     14      34.206      5.53     1.59522    67.74
     15     -20.364      1.20     1.84666    23.78
     16     232.456      2.32
     17*    107.461      1.20     1.72903    54.04
     18*     18.009      6.43
     19*     46.207      5.77     1.72903    54.04
     20*    -15.866      0.40
     21     -35.028      1.00     1.84666    23.78
     22    -267.948     11.35
     23        ∞        2.66     1.51633    64.14
     24        ∞        1.00
   像面        ∞

非球面データ
第3面
k=0.000
A4=-1.36094e-05,A6=-6.27185e-08
第4面
k=0.000
A4=-4.47225e-05,A6=-2.03357e-07,A8=-4.22299e-10
第17面
k=0.000
A4=1.20627e-05,A6=-2.61967e-07,A8=8.60374e-10
第18面
k=0.000
A4=3.74036e-05,A6=-2.14913e-07
第19面
k=0.000
A4=5.78649e-06,A6=8.61366e-08,A8=-2.43718e-10
第20面
k=0.000
A4=6.44174e-05,A6=-3.77935e-08,A8=5.92557e-10

各種データ
    f              12.37
    FNO.         1.41
    2ω            91.71
    IH            11.15
    FB (in air)   14.10
    全長 (in air)   83.58

群焦点距離
  GF=-51.99   GR=22.03
数値実施例4
単位  mm

面データ
面番号         r          d         nd       νd
   物面        ∞         ∞
      1      45.098      1.50     1.48749    70.23
      2      18.539      1.95
      3      21.083      1.50     1.72916    54.68
      4      14.117      4.99
      5*     19.014      1.50     1.80610    40.92
      6*     10.725      2.91
      7      25.870      3.45     2.00100    29.13
      8      77.203      0.53
      9      41.845      4.43     2.00100    29.13
     10     -39.803      1.00     1.54814    45.79
     11      14.737      8.27
     12     -25.729      1.20     1.85478    24.80
     13      22.371      4.87     1.72000    43.69
     14     -30.252      0.84
     15(絞り)  ∞        0.40
     16      50.721      4.61     1.91082    35.25
     17     -27.243      0.40
     18      62.166      5.01     1.49700    81.61
     19     -17.526      1.20     2.00100    29.13
     20     -39.549      2.40
     21*   -637.328      1.20     1.74320    49.34
     22*     36.803      6.73
     23*     41.788      6.17     1.69350    53.21
     24*    -16.602      0.40
     25     -35.183      2.00     1.84666    23.78
     26    -230.322     11.35
     27        ∞        2.66     1.51633    64.14
     28        ∞        1.00
   像面        ∞

非球面データ
第5面
k=0.000
A4=-6.79321e-05,A6=-8.02738e-08
第6面
k=-0.560
A4=-7.49950e-05,A6=-3.46303e-07,A8=2.25935e-10
第21面
k=0.000
A4=6.91286e-05,A6=-2.58182e-07,A8=9.71591e-10
第22面
k=0.000
A4=8.55270e-05,A6=-1.70347e-07,A8=9.97225e-10
第23面
k=0.000
A4=2.63288e-06,A6=7.98087e-08,A8=7.17631e-12
第24面
k=0.000
A4=7.02984e-05,A6=-4.69949e-08,A8=5.44468e-10

各種データ
    f              12.22
    FNO.         1.43
    2ω            92.38
    IH            11.15
    FB (in air)   14.11
    全長 (in air)   83.58

群焦点距離
  GF=-27.24   GR=19.39
数値実施例5
単位  mm

面データ
面番号         r          d         nd       νd
   物面        ∞         ∞
      1      55.000      1.50     1.51633    64.14
      2*     18.170      4.00
      3      28.573      1.50     1.43875    94.93
      4      15.059      5.57
      5      39.782      1.50     1.49700    81.61
      6      21.771      6.21     2.00100    29.13
      7    -163.886      1.00     1.51633    64.14
      8      15.085      7.58
      9     -20.995      1.20     1.84666    23.78
     10      20.978      6.12     1.72916    54.68
     11     -34.822      1.40
     12(絞り)  ∞        1.00
     13      83.738      6.07     1.90366    31.32
     14     -27.721      0.40
     15      22.240      8.81     1.43875    94.93
     16     -22.947      1.20     2.00100    29.13
     17     -60.576      2.10
     18*    108.640      1.20     1.74320    49.34
     19*     22.708      6.73
     20*     45.350      6.49     1.72903    54.04
     21*    -18.174      0.40
     22     -32.398      1.50     1.80518    25.42
     23     -99.166     11.33
     24        ∞        2.66     1.51633    64.14
     25        ∞        1.00
   像面        ∞

非球面データ
第2面
k=0.000
A4=-6.23121e-06,A6=1.18132e-08,A8=-1.23403e-10
第18面
k=0.000
A4=4.49362e-05,A6=-2.70140e-07,A8=3.65234e-10
第19面
k=0.000
A4=6.80175e-05,A6=-1.65974e-07,A8=-4.13549e-10
第20面
k=0.000
A4=-8.97352e-07,A6=7.39063e-08,A8=-2.52588e-10
第21面
k=0.000
A4=3.80931e-05,A6=-7.73568e-09,A8=1.28690e-10

各種データ
    f              14.43
    FNO.         1.25
    2ω            82.08
    IH            11.15
    FB (in air)   14.08
    全長 (in air)   87.56

各群焦点距離
  GF=-37.44   GR=20.49
数値実施例6
単位  mm

面データ
面番号         r          d         nd       νd
   物面        ∞         ∞
      1      60.000      1.50     1.59522    67.74
      2      12.478      5.84
      3*     40.000      1.00     1.49700    81.61
      4*     14.998      3.16
      5      35.972      3.92     2.00100    29.13
      6     -42.320      1.00     1.43875    94.93
      7     414.837      4.27
      8     -27.030      1.20     1.80518    25.42
      9      18.406      5.66     1.49700    81.61
     10     -30.278      1.40
     11(絞り)  ∞        1.00
     12      68.685      4.59     2.00100    29.13
     13     -26.820      0.40
     14      36.721      5.71     1.59522    67.74
     15     -19.927      1.20     1.84666    23.78
     16     694.790      2.80
     17*     75.396      1.20     1.72903    54.04
     18*     17.574      5.84
     19*     41.636      6.00     1.72903    54.04
     20*    -16.928      0.40
     21     -32.103      1.40     1.84666    23.78
     22    -107.619     11.35
     23        ∞        2.66     1.51633    64.14
     24        ∞        1.00
   像面        ∞

非球面データ
第3面
k=0.000
A4=-2.55995e-05,A6=-8.99603e-08
第4面
k=0.000
A4=-5.23687e-05,A6=-2.97602e-07,A8=-1.85881e-10
第17面
k=0.000
A4=-4.88103e-06,A6=-1.26125e-07,A8=5.63953e-10
第18面
k=0.000
A4=1.93156e-05,A6=-1.60732e-07
第19面
k=0.000
A4=1.68798e-05,A6=1.86070e-08,A8=2.04658e-11
第20面
k=0.000
A4=5.56507e-05,A6=-3.84768e-08,A8=5.56560e-10

各種データ
    f              14.28
    FNO.         1.41
    2ω            83.51
    IH            11.15
    FB (in air)   14.10
    全長 (in air)   73.58

群焦点距離
  GF=-187.16   GR=21.14
数値実施例7
単位  mm

面データ
面番号         r          d         nd       νd
   物面        ∞         ∞
      1    5148.256      1.50     1.48749    70.23
      2*     18.807      6.39
      3      42.326      3.23     1.84666    23.78
      4     346.117      0.40
      5      24.689      3.11     2.00100    29.13
      6      55.765      1.00     1.66680    33.05
      7      14.112      8.98
      8     -15.886      1.20     1.69895    30.13
      9      31.567      7.04     1.49700    81.61
     10     -20.543      1.40
     11(絞り)  ∞        1.00
     12      87.111      5.41     2.00100    29.13
     13     -35.861      0.40
     14      35.014      6.91     1.64000    60.08
     15     -28.217      1.20     1.84666    23.78
     16     127.412      2.10
     17*     61.800      1.20     1.69680    55.53
     18*     22.454      7.85
     19      41.243      6.36     1.49700    81.61
     20*    -18.974      0.40
     21      27.365      2.00     1.84666    23.78
     22      22.950     13.74
     23        ∞        2.66     1.51633    64.14
     24        ∞        1.00
   像面        ∞

非球面データ
第2面
k=0.000
A4=-7.77095e-06,A6=-3.61202e-08,A8=8.79759e-11,A10=-5.37766e-13
第17面
k=0.000
A4=7.47784e-06,A6=-1.60739e-07,A8=3.61719e-10
第18面
k=0.000
A4=2.12764e-05,A6=-1.70569e-07,A8=1.89648e-10,A10=4.41707e-13
第20面
k=0.000
A4=3.68441e-05,A6=-4.88703e-08,A8=2.31428e-10

各種データ
    f              17.53
    FNO.         1.29
    2ω            70.49
    IH            11.15
    FB (in air)   16.49
    全長 (in air)   85.58

群焦点距離
  GF=-63.42   GR=21.06
数値実施例8
単位  mm

面データ
面番号         r          d         nd       νd
   物面        ∞         ∞
      1      50.000      1.50     1.59522    67.74
      2      16.786      4.17
      3*     51.357      1.00     1.49700    81.61
      4*     19.813      2.49
      5      46.028      3.31     2.00100    29.13
      6     -55.727      1.00     1.43875    94.93
      7      39.491      6.62
      8     -25.698      1.20     1.80518    25.42
      9      27.710      5.68     1.49700    81.61
     10     -24.016      1.40
     11(絞り)  ∞        1.00
     12     108.354      4.48     2.00100    29.13
     13     -29.617      0.40
     14      24.807      6.00     1.59522    67.74
     15     -36.499      1.20     1.84666    23.78
     16      62.738      2.10
     17*     35.827      1.20     1.72903    54.04
     18*     16.512      5.50 
     19*     52.670      4.64     1.72903    54.04
     20*    -23.182      0.40
     21     123.676      2.84     1.84666    23.78
     22      37.648     12.71
     23        ∞        2.66     1.51633    64.14
     24        ∞        1.00
   像面        ∞

非球面データ
第3面
k=0.000
A4=-3.26020e-05,A6=-7.50663e-08
第4面
k=0.000
A4=-9.81172e-06,A6=-9.11363e-08,A8=2.46376e-10
第17面
k=0.000
A4=-7.48122e-06,A6=-1.48889e-07,A8=5.33611e-10
第18面
k=0.000
A4=1.01588e-05,A6=-1.82412e-07
第19面
k=0.000
A4=2.03136e-05,A6=2.24409e-08,A8=1.17085e-10
第20面
k=0.000
A4=3.46499e-05,A6=-5.41179e-08,A8=4.32985e-10

各種データ
    f              17.53
    FNO.         1.42
    2ω            72.05
    IH            11.15
    FB (in air)   15.46
    全長 (in air)   73.58

群焦点距離
  GF=-64.97   GR=21.25
数値実施例9
単位  mm

面データ
面番号         r          d         nd       νd
   物面        ∞         ∞
      1     116.266      1.50     1.51633    64.14
      2*     25.717      3.68
      3      60.055      3.25     2.00100    29.13
      4     549.816      0.40
      5      25.750      4.30     2.00100    29.13
      6      73.371      2.59     1.69895    30.13
      7      15.387     10.67
      8     -16.516      1.20     1.72825    28.46
      9      31.039      8.00     1.49700    81.61
     10     -22.028      1.40
     11(絞り)  ∞        1.00
     12     110.340      5.84     2.00100    29.13
     13     -36.817      0.40
     14      32.663      7.08     1.72916    54.68
     15     -38.391      1.20     2.00069    25.46
     16     148.534      2.10
     17*     59.611      1.20     1.74320    49.34
     18*     20.525      7.68
     19*     73.228      5.69     1.49700    81.61
     20*    -19.916      0.40
     21      23.197      2.00     2.00100    29.13
     22      20.305     14.24
     23        ∞        2.66     1.51633    64.14
     24        ∞        1.00
   像面        ∞

非球面データ
第2面
k=0.000
A4=-2.54908e-06,A6=-1.26063e-08,A8=2.84478e-11,A10=-9.00492e-14
第17面
k=0.000
A4=2.07770e-06,A6=-1.50101e-07,A8=3.10129e-10
第18面
k=0.000
A4=1.40527e-05,A6=-1.50608e-07,A8=-2.97060e-11,A10=4.02049e-13
第19面
k=0.000
A4=1.44890e-06,A6=4.50889e-08,A8=-1.12829e-10
第20面
k=0.000
A4=2.07584e-05,A6=-6.95062e-09,A8=1.34767e-10

各種データ
    f              24.74
    FNO.         1.29
    2ω            48.82
    IH            11.15
    FB (in air)   17.00
    全長 (in air)   88.58

群焦点距離
  GF=-238.21   GR=23.08
数値実施例10
単位  mm

面データ
面番号         r          d         nd       νd
   物面        ∞         ∞
      1      44.574      1.50     1.48749    70.23
      2      15.584      8.50
      3*   -659.095      1.20     1.49700    81.61
      4*     25.626      1.71
      5      29.244      6.27     2.00069    25.46
      6     -34.706      1.20     1.58144    40.75
      7      23.314      4.79
      8     -26.565      1.20     1.85478    24.80
      9      25.266      6.29     1.69680    55.53
     10     -35.206      0.20
     11      61.090      4.37     1.72916    54.68
     12     -42.527      0.20
     13      49.281      5.00     1.69680    55.53
     14    -104.266      1.50     1.85478    24.80
     15    -156.094      0.60
     16(絞り)  ∞        3.40
     17*    113.215      1.20     1.85400    40.39
     18*     24.921      9.08
     19      67.113      3.70     1.72916    54.68
     20     -45.208      0.20
     21      29.445      4.61     2.00100    29.13
     22     -60.934      1.20     1.85478    24.80
     23      19.276      1.83
     24      37.289      2.70     1.72916    54.68
     25    2981.268     11.34
     26        ∞        2.66     1.51633    64.14
     27        ∞        1.00
   像面        ∞

非球面データ
第3面
k=0.000
A4=-1.71558e-05,A6=-1.08272e-08,A8=-3.91577e-11
第4面
k=0.000
A4=-2.61471e-06,A6=-3.46749e-08,A8=1.55161e-11
第17面
k=0.000
A4=-6.00990e-06,A6=5.45326e-09
第18面
k=0.000
A4=-1.45040e-09,A6=6.67983e-10

各種データ
    f              17.27
    FNO.         1.29
    2ω            72.93
    IH            11.15
    FB (in air)   14.10
    全長 (in air)   86.56

群焦点距離
  GF=-59.77   GR=22.46
数値実施例11
単位  mm

面データ
面番号         r          d         nd       νd
   物面        ∞         ∞
      1      47.643      1.50     1.48749    70.23
      2      18.906      6.89
      3      34.644      1.50     1.49700    81.61
      4      14.800      5.23
      5*     17.187      1.50     1.80610    40.92
      6*     11.161      2.41
      7      23.928      8.36     2.00100    29.13
      8     -30.498      1.00     1.54814    45.79
      9      17.470      7.52
     10     -24.084      1.20     1.85478    24.80
     11      20.703      5.93     1.72000    43.69
     12     -37.961      0.80
     13(絞り)  ∞        0.40
     14      54.341      5.44     1.91082    35.25
     15     -30.412      0.40
     16      39.754      7.01     1.49700    81.61
     17     -19.594      1.20     2.00100    29.13
     18     -38.465      2.40
     19*    414.161      1.00     1.90366    31.32
     20      18.000      2.30     1.85478    24.80
     21      25.940      6.12
     22*     33.842      6.35     1.69350    53.21
     23*    -18.468      0.40
     24    -276.994      2.00     1.80000    29.84
     25      85.548     11.94
     26        ∞        2.66     1.51633    64.14
     27        ∞        1.00
   像面        ∞

非球面データ
第5面
k=0.000
A4=-8.57246e-05,A6=-1.03782e-08,A8=-1.94414e-10
第6面
k=-0.692
A4=-7.83164e-05,A6=-1.21507e-07,A8=1.96340e-10
第19面
k=0.000
A4=-1.55962e-05,A6=-6.30133e-09,A8=2.61539e-10
第22面
k=0.000
A4=-5.62796e-06,A6=9.16059e-09,A8=8.83497e-11
第23面
k=0.000
A4=4.94331e-05,A6=-6.53931e-08,A8=4.43411e-10

各種データ
    f              12.22
    FNO.         1.28
    2ω            92.46
    IH            11.15
    FB (in air)   14.70
    全長 (in air)   93.58

群焦点距離
  GF=-31.67   GR=20.42
数値実施例12
単位  mm

面データ
面番号         r          d         nd       νd
   物面        ∞         ∞
      1      45.722      1.50     1.48749    70.23
      2      17.855      7.13
      3      36.016      1.50     1.49700    81.61
      4      15.632      4.52
      5*     18.581      1.50     1.80610    40.92
      6*     11.935      1.94
      7      24.600      7.59     2.00100    29.13
      8     -31.878      2.38     1.54814    45.79
      9      16.765      8.06
     10     -26.687      1.20     1.85478    24.80
     11      23.196      5.57     1.72000    43.69
     12     -32.692      0.80
     13(絞り)  ∞        0.40
     14      53.958      5.01     1.91082    35.25
     15     -30.706      0.55
     16      60.710      5.80     1.49700    81.61
     17     -19.901      1.20     2.00100    29.13
     18     -41.858      2.42
     19    -234.486      3.86     1.84666    23.78
     20     -18.422      1.01     1.76182    26.52
     21*     29.085      6.88
     22*     36.524      6.22     1.69350    53.21
     23*    -19.090      0.41
     24     -51.703      2.00     1.84666    23.78
     25    -133.252     11.37
     26        ∞        2.66     1.51633    64.14
     27        ∞        1.00
   像面        ∞

非球面データ
第5面
k=0.000
A4=-8.59295e-05,A6=-1.94871e-08,A8=-6.46329e-11
第6面
k=-0.634
A4=-8.64751e-05,A6=-1.30688e-07,A8=3.42520e-10
第21面
k=0.000
A4=1.79113e-05,A6=3.98127e-08,A8=-9.48115e-11
第22面
k=0.000
A4=-3.31913e-06,A6=3.95668e-08,A8=-5.21567e-11
第23面
k=0.000
A4=4.54848e-05,A6=-2.78523e-08,A8=1.95054e-10

各種データ
    f              12.22
    FNO.         1.28
    2ω            92.43
    IH            11.15
    FB (in air)   14.13
    全長 (in air)   93.58

群焦点距離
  GF=-28.27   GR=20.95
数値実施例13
単位  mm

面データ
面番号         r          d         nd       νd
   物面        ∞         ∞
      1      55.000      1.50     1.69350    53.21
      2      13.167      6.25
      3*     16.098      1.50     1.80610    40.92
      4*     10.905      2.73
      5      54.248      3.41     2.00100    29.13
      6     -75.122      0.68
      7      93.731      3.44     2.00100    29.13
      8     -36.465      1.00     1.54814    45.79
      9      16.566      7.86
     10     -19.643      1.20     1.85478    24.80
     11     879.391      4.00     1.72000    43.69
     12     -21.663      1.38
     13(絞り)  ∞        0.40
     14     104.934      3.50     1.91082    35.25
     15     -34.726      0.40
     16      36.885      5.93     1.43700    95.10
     17     -21.076      1.20     2.00100    29.13
     18     -30.000      4.40
     19*    -46.884      2.00     1.80610    40.88
     20     -22.514      0.40
     21     -44.553      1.00     1.80518    25.42
     22      21.983      7.49
     23*     40.051      5.40     1.69350    53.21
     24*    -20.046      0.40
     25     -42.305      2.00     1.84666    23.78
     26     -47.276     11.35
     27        ∞        2.66     1.51633    64.14
     28        ∞        1.00
   像面        ∞

非球面データ
第3面
k=0.000
A4=-2.15321e-04,A6=6.74789e-07,A8=-2.02453e-09
第4面
k=-1.199
A4=-1.89475e-04,A6=7.86895e-07,A8=-2.24144e-09
第19面
k=0.000
A4=-3.76948e-05,A6=2.87051e-08
第23面
k=0.000
A4=-6.59625e-06,A6=3.35290e-09,A8=7.61971e-13
第24面
k=0.000
A4=2.69835e-05,A6=-3.17904e-08,A8=1.35926e-10

各種データ
    f              12.22
    FNO.         1.41
    2ω            92.51
    IH            11.15
    FB (in air)   14.10
    全長 (in air)   83.58

群焦点距離
  GF=-27.11   GR=22.74
数値実施例14
単位  mm

面データ
面番号         r          d         nd       νd
   物面        ∞         ∞
      1      80.982      1.55     1.48749    70.23
      2      31.093     11.04
      3*     70.066      2.06     1.49700    81.61
      4*     23.874     20.90
      5     -44.198      2.00     1.58267    46.42
      6    -364.034      0.41
      7     121.274     10.00     1.84666    23.78
      8    -143.318      4.33
      9      53.195      8.29     1.69680    55.53
     10     -49.889      1.51     1.80518    25.42
     11     231.869      5.78
     12     -45.268      1.52     1.69895    30.13
     13      46.454      8.54     1.49700    81.61
     14     -77.694      0.40
     15      90.149      8.00     1.84666    23.78
     16     -78.759      1.20
     17(絞り)  ∞        可変
     18*     29.688      9.46     1.49700    81.61
     19*    155.316      0.40
     20      32.436      9.37     1.43875    94.93
     21     -61.296      1.50     1.64769    33.79
     22      31.260      4.02
     23    -106.774      1.50     1.88202    37.22
     24*    543.118      可変
     25      54.280     12.50     1.43875    94.93
     26     -30.008      可変
     27     -41.745      2.00     1.68893    31.07
     28    -130.259      6.91
     29        ∞        2.40     1.51633    64.14
     30        ∞        1.00
   像面        ∞

非球面データ
第3面
k=0.000
A4=-5.73100e-07,A6=7.04995e-10,A8=-1.97070e-13,A10=2.50300e-16
第4面
k=-0.552
第18面
k=0.000
A4=8.41210e-07,A6=-6.21950e-10,A8=2.00464e-12,A10=-4.10109e-17
第19面
k=0.000
A4=-2.36410e-07,A6=-7.81928e-09,A8=9.23546e-12,A10=-3.63943e-15
第24面
k=0.000
A4=2.16711e-05,A6=2.40883e-08,A8=5.51538e-11,A10=-1.85095e-13

各種データ
    f               24.48
    FNO.          1.41
    2ω             91.37
    IH             22.50
    FB (in air)     9.49
    全長 (in air)   154.18

           無限遠    近距離(145mm)
    d17    6.06      3.30
    d24    4.81      4.50
    d26    5.54      8.61

群焦点距離
  GF=-172.31   GR=43.64
数値実施例15
単位  mm

面データ
面番号         r          d         nd       νd
   物面        ∞         ∞
      1*     72.832      2.06     1.51633    64.14
      2*     33.439     16.38
      3     -53.919      2.00     1.64769    33.79
      4      83.979      8.11     2.00069    25.46
      5    -107.153      1.97
      6      58.391     11.82     1.69680    55.53
      7     -43.427      1.50     1.74077    27.79
      8      97.492     10.12
      9     -40.473      1.50     1.69895    30.13
     10      82.697      8.74     1.43875    94.93
     11     -70.821      0.76
     12     221.816      8.63     1.84666    23.78
     13     -65.844      1.20
     14(絞り)  ∞        可変
     15*     35.187     12.00     1.49700    81.61
     16*    157.338      0.44
     17      32.095     12.00     1.43875    94.93
     18    -270.555      2.59     1.64769    33.79
     19      37.108      4.29
     20    -140.818      2.00     1.88202    37.22
     21*    282.542      可変
     22     178.092      5.96     1.65160    58.55
     23     -63.320      可変
     24     -50.420      2.00     1.84666    23.78
     25    -126.917     13.95
     26        ∞        2.40     1.51633    64.14
     27        ∞        1.00
   像面        ∞

非球面データ
第1面
k=0.000
A4=1.16574e-06,A6=-1.51769e-09,A8=1.19325e-12
第2面
k=0.000
A4=7.45073e-07,A6=-1.98214e-09,A8=5.16275e-13
第15面
k=0.000
A4=1.21497e-06,A6=3.62905e-10,A8=1.07171e-12
第16面
k=0.000
A4=1.75742e-07,A6=-1.99527e-09,A8=5.36732e-13
第21面
k=0.000
A4=1.26443e-05,A6=1.21726e-08,A8=1.20869e-11,A10=2.14183e-14

各種データ
    f               49.00
    FNO.          1.41
    2ω             48.78
    IH             22.50
    FB (in air)    16.53
    全長 (in air)   154.18

           無限遠    近距離(295mm)
    d14   12.67      3.30
    d21    4.50     10.72
    d23    4.43      7.58

群焦点距離
  GF=-1257.02   GR=55.35
数値実施例16
単位  mm

面データ
面番号         r          d         nd       νd
  物面        ∞          ∞
      1      94.461      1.50     1.48749    70.23
      2      17.060      4.00
      3*     24.648      1.50     1.49700    81.61
      4*     15.578      2.77
      5      28.855      5.84     2.00100    29.14
      6     -68.444      1.01     1.51633    64.14
      7      14.314      8.87
      8     -19.049      1.20     1.85478    24.80
      9      21.984      6.04     1.72916    54.68
     10     -30.416      1.40
     11(絞り)  ∞        1.00
     12      90.026      5.97     2.00100    29.14
     13     -30.555      0.40
     14      28.214      8.26     1.49700    81.61
     15     -24.399      1.20     2.00100    29.14
     16     -96.064      可変
     17*     80.276      1.20     1.88202    37.22
     18*     25.036      可変
     19*     31.198      7.41     1.59201    67.02
     20*    -19.644      可変
     21     -73.364      1.50     1.85478    24.80
     22    -233.212     11.19
     23        ∞        2.66     1.51633    64.14
     24        ∞        1.00
   像面        ∞

非球面データ
第3面
k=0.000
A4=1.89045e-05,A6=-2.89706e-07,A8=5.75790e-10
第4面
k=0.000
A4=1.02371e-05,A6=-3.76732e-07,A8=2.44918e-10
第17面
k=0.000
A4=2.64635e-05,A6=-3.91852e-08,A8=9.64945e-11
第18面
k=0.000
A4=3.16821e-05,A6=-1.05829e-08,A8=7.52656e-12
第19面
k=0.000
A4=-8.36939e-06,A6=2.75938e-08,A8=-2.50887e-11
第20面
k=0.000
A4=4.45445e-05,A6=-4.44198e-08,A8=2.03637e-10

各種データ
    f               14.43
    FNO.          1.29
    2ω             82.76
    IH             11.15
    FB (in air)    13.94
    全長 (in air)    87.07

           無限遠    近距離
     d16    2.10      3.69
     d18    7.85      5.20
     d20    2.10      3.17

群焦点距離
  GF=-35.04     GR=20.71
数値実施例17
単位  mm

面データ
面番号         r          d         nd       νd
  物面        ∞          ∞
      1      39.248      1.50     1.48749    70.23
      2      17.000      4.00
      3*     24.002      1.50     1.49700    81.61
      4*     14.349      4.51
      5      65.084      1.50     1.43700    95.00
      6      22.522      0.81
      7      25.834      5.03     2.00100    29.14
      8     -61.404      1.00     1.51633    64.14
      9      15.190      7.21
     10     -20.209      1.20     1.84666    23.78
     11      21.020      5.71     1.72916    54.68
     12     -33.368      1.40
     13(絞り)  ∞        1.00
     14      91.934      5.42     2.00100    29.14
     15     -28.949      0.40
     16      28.443      7.32     1.49700    81.61
     17     -24.446      1.20     2.00100    29.14
     18    -100.478      可変
     19*     71.730      1.20     1.88202    37.22
     20*     24.866      可変
     21*     33.158      6.93     1.59201    67.02
     22*    -19.644      可変
     23    -127.949      1.50     1.84666    23.78
     24     494.026     11.46
     25        ∞        2.66     1.51633    64.14
     26        ∞        1.00
   像面        ∞

非球面データ
第3面
k=0.000
A4=1.15247e-05,A6=-2.93936e-07,A8=5.98745e-10
第4面
k=0.000
A4=8.69902e-06,A6=-3.66102e-07,A8=-8.05586e-11
第19面
k=0.000
A4=3.09849e-05,A6=-7.67649e-08,A8=1.52039e-10
第20面
k=0.000
A4=3.80996e-05,A6=-5.06882e-08,A8=6.79340e-11
第21面
k=0.000
A4=-7.46752e-06,A6=2.20795e-08,A8=-3.76506e-12
第22面
k=0.000
A4=4.26645e-05,A6=-4.46638e-08,A8=2.07315e-10

各種データ
    f               14.43
    FNO.          1.29
    2ω             82.90
    IH             11.15
    FB (in air)    14.21
    全長 (in air)    87.58

           無限遠    近距離
     d18    2.10      5.18
     d20    8.84      4.73
     d22    2.10      3.13

各群焦点距離
  GF=-33.73     GR=20.94
数値実施例18
単位  mm

面データ
面番号         r          d         nd       νd
  物面        ∞          ∞
      1      54.301      1.50     1.48749    70.23
      2      17.105      4.00
      3*     22.655      1.50     1.49700    81.61
      4*     13.783      5.65
      5      47.419      4.91     2.00100    29.14
      6     -40.946      1.50     1.49700    81.61
      7      17.739      6.17
      8     -18.916      1.20     1.85478    24.80
      9      22.938      5.88     1.72916    54.68
     10     -30.236      1.43
     11(絞り)  ∞        1.00
     12      86.514      5.50     2.00100    29.14
     13     -30.725      0.40
     14      31.726      7.58     1.49700    81.61
     15     -23.755      1.20     2.00100    29.14
     16     -72.101      可変
     17*     58.976      1.20     1.88202    37.22
     18*     23.004      可変
     19      35.206      1.50     1.85478    24.80
     20      21.523      7.64     1.69350    53.21
     21*    -23.391      可変
     22     -89.135      1.50     1.85478    24.80
     23    -355.544     10.81
     24        ∞        2.66     1.51633    64.14
     25        ∞        1.00
   像面        ∞

非球面データ
第3面
k=0.000
A4=4.11853e-05,A6=-5.16604e-07,A8=1.05864e-09
第4面
k=0.000
A4=4.38670e-05,A6=-6.01995e-07,A8=-1.18982e-10
第17面
k=0.000
A4=-8.15788e-06,A6=1.62936e-07,A8=-2.77428e-10
第18面
k=0.000
A4=-5.38507e-06,A6=1.41312e-07,A8=-6.87814e-11
第21面
k=0.000
A4=3.31222e-05,A6=-3.47713e-08,A8=4.91193e-11

各種データ
    f               14.43
    FNO.          1.28
    2ω             82.67
    IH             11.15
    FB (in air)    13.57
    全長 (in air)    86.94

           無限遠    近距離
     d16    2.10      4.37
     d18    7.69      5.40
     d21    2.31      2.33

各群焦点距離
  GF=-36.39     GR=20.71
数値実施例19
単位  mm

面データ
面番号         r          d         nd       νd
  物面        ∞          ∞
      1      56.666      1.50     1.48749    70.23
      2      17.381      4.00
      3*     26.130      1.50     1.49700    81.61
      4*     14.593      5.45
      5      36.407      5.70     2.00100    29.14
      6     -43.000      1.07     1.51633    64.14
      7      17.284      6.73
      8     -16.026      1.20     1.85478    24.80
      9      31.874      5.80     1.72916    54.68
     10     -24.566      1.40
     11(絞り)  ∞        1.00
     12      74.674      5.36     2.00100    29.14
     13     -35.918      0.40
     14      38.381      7.78     1.49700    81.61
     15     -21.723      1.20     2.00100    29.14
     16     -51.835      可変
     17*   -876.835      1.90     1.49700    81.61
     18    4834.356      1.01     1.88202    37.22
     19*     34.099      可変
     20*     26.746      7.90     1.59201    67.02
     21*    -19.467      可変
     22    -101.033      1.50     1.85478    24.80
     23     665.463     11.44
     24        ∞        2.66     1.51633    64.14
     25        ∞        1.00
   像面        ∞

非球面データ
第3面
k=0.000
A4=3.02491e-05,A6=-2.96892e-07,A8=7.24372e-10
第4面
k=0.000
A4=2.08903e-05,A6=-3.62573e-07,A8=-1.14396e-10
第17面
k=0.000
A4=4.34401e-05,A6=-7.16017e-08,A8=2.37592e-10
第19面
k=0.000
A4=2.76916e-05,A6=-1.05004e-08,A8=3.38439e-11
第20面
k=0.000
A4=-1.95186e-05,A6=2.00819e-08,A8=-8.54673e-12
第21面
k=0.000
A4=4.36333e-05,A6=-5.29835e-08,A8=2.29440e-10

各種データ
    f               14.43
    FNO.          1.28
    2ω             80.38
    IH             11.15
    FB (in air)    14.19
    全長 (in air)    87.58

           無限遠    近距離
     d16    2.10      3.56
     d19    6.79      4.14
     d21    2.10      3.29

各群焦点距離
  GF=-42.06     GR=20.49
 次に、各実施例における条件式(1)~(5)、(A)~(H)の値を掲げる。-(ハイフン)は対応値がないことを示す。
        条件式           実施例1    実施例2    実施例3
(1)(RN1F+RN1R)/(RN1F-RN1R)     1.814       1.662       1.751
(2)(RP1F+RP1R)/(RP1F-RP1R)     0.389       0.215       0.210
(3)(RP2F+RP2R)/(RP2F-RP2R)     0.430       0.426       0.489
(4)(RNGF+RNGR)/(RNGF-RNGR)     1.982       1.440      -1.080
(5)(RNGR+RC2F)/(RNGR-RC2F)    -0.408      -0.310       0.791
(A)f/eN1F                   0.320       0.290       0.373
(B)(f/eAS)/Fno              0.40        0.43        0.42
(C)Tair_max/Σd              0.09        0.15        0.14
(D)(RF1F+RF1R)/(RF1F-RF1R)     1.828029    0.785073    1.402645
(E)MF1/f                    -           -           -
(F)MF2/MF1                   -           -           -
(G)fF1/fF2                   -           -           -
(H)βF1F2                 -           -           -

        条件式           実施例4    実施例5    実施例6
(1)(RN1F+RN1R)/(RN1F-RN1R)     2.396       1.987       1.525
(2)(RP1F+RP1R)/(RP1F-RP1R)     0.301       0.503       0.438
(3)(RP2F+RP2R)/(RP2F-RP2R)     0.431       0.428       0.422
(4)(RNGF+RNGR)/(RNGF-RNGR)     1.971       1.756      -1.338
(5)(RNGR+RC2F)/(RNGR-RC2F)    -0.272      -0.164       0.878
(A)f/eN1F                   0.329       0.378       0.508
(B)(f/eAS)/Fno              0.45        0.49        0.49
(C)Tair_max/Σd              0.12        0.10        0.10
(D)(RF1F+RF1R)/(RF1F-RF1R)     0.890813    1.528507    1.607846
(E)MF1/f                    -         -           -
(F)MF2/MF1                   -         -           -
(G)fF1/fF2                   -         -           -
(H)βF1F2                 -         -           -

        条件式          実施例7    実施例8    実施例9
(1)(RN1F+RN1R)/(RN1F-RN1R)    1.007       2.011        1.568
(2)(RP1F+RP1R)/(RP1F-RP1R)    0.417       0.571        0.500
(3)(RP2F+RP2R)/(RP2F-RP2R)    0.370       0.389        0.572
(4)(RNGF+RNGR)/(RNGF-RNGR)    1.005       8.516        1.305
(5)(RNGR+RC2F)/(RNGR-RC2F)   -0.059       0.212       -0.035
(A)f/eN1F                  0.484       0.670        0.638
(B)(f/eAS)/Fno             0.55        0.55         0.72
(C)Tair_max/Σd             0.13        0.11         0.15
(D)(RF1F+RF1R)/(RF1F-RF1R)    2.14135     2.709746     2.05027
(E)MF1/f                    -           -           -
(F)MF2/MF1                   -           -           -
(G)fF1/fF2                   -           -           -
(H)βF1F2                 -           -           -

        条件式           実施例10  実施例11  実施例12
(1)(RN1F+RN1R)/(RN1F-RN1R)     2.075       2.316       2.281
(2)(RP1F+RP1R)/(RP1F-RP1R)     0.179       0.282       0.275
(3)(RP2F+RP2R)/(RP2F-RP2R)     0.195       0.294       0.313
(4)(RNGF+RNGR)/(RNGF-RNGR)     3.193       2.158       2.158
(5)(RNGR+RC2F)/(RNGR-RC2F)    -0.065      -0.159      -0.228
(A)f/eN1F                   0.535       0.292       0.294
(B)(f/eAS)/Fno              0.63        0.43        0.44
(C)Tair_max/Σd              0.13        0.10        0.10
(D)(RF1F+RF1R)/(RF1F-RF1R)     1.564509    1.133635    0.779297
(E)MF1/f                    -           -           -
(F)MF2/MF1                   -           -           -
(G)fF1/fF2                   -           -           -
(H)βF1F2                 -           -           -

        条件式           実施例13  実施例14  実施例15
(1)(RN1F+RN1R)/(RN1F-RN1R)     1.630       2.247       2.698
(2)(RP1F+RP1R)/(RP1F-RP1R)     0.503       0.067       0.542
(3)(RP2F+RP2R)/(RP2F-RP2R)     0.333       0.288       0.475
(4)(RNGF+RNGR)/(RNGF-RNGR)     1.862      -2.073      -6.907
(5)(RNGR+RC2F)/(RNGR-RC2F)    -0.085       0.673       0.413
(A)f/eN1F                   0.384       0.366       0.913
(B)(f/eAS)/Fno              0.43        0.40        0.67
(C)Tair_max/Σd              0.11        0.14        0.12
(D)(RF1F+RF1R)/(RF1F-RF1R)     0.361576     -           -
(E)MF1/f                    -           -           -
(F)MF2/MF1                   -           -           -
(G)fF1/fF2                   -           -           -
(H)βF1F2                 -           -           -

        条件式          実施例16  実施例17  実施例18
(1)(RN1F+RN1R)/(RN1F-RN1R)    1.441       2.528       1.920
(2)(RP1F+RP1R)/(RP1F-RP1R)    0.493       0.521       0.476
(3)(RP2F+RP2R)/(RP2F-RP2R)    0.227       0.256        -
(4)(RNGF+RNGR)/(RNGF-RNGR)    1.357       2.263       1.970
(5)(RNGR+RC2F)/(RNGR-RC2F)   -0.142      -0.142      -0.032
(A)f/eN1F                  0.408       0.434       0.417
(B)(f/eAS)/Fno             0.48        0.48        0.48
(C)Tair_max/Σd             0.12        0.12        0.10
(D)(RF1F+RF1R)/(RF1F-RF1R)    1.906425    2.061199    2.279022
(E)MF1/f                  -0.10979    -0.21327    -0.15693
(F)MF2/MF1                 0.67446     0.335847    0.010212
(G)fF1/fF2                -1.93581    -1.99379    -1.89977
(H)βF1F2              15.99804    14.3338     12.60128

        条件式           実施例19
(1)(RN1F+RN1R)/(RN1F-RN1R)     1.885
(2)(RP1F+RP1R)/(RP1F-RP1R)     0.350
(3)(RP2F+RP2R)/(RP2F-RP2R)     0.158
(4)(RNGF+RNGR)/(RNGF-RNGR)     1.878
(5)(RNGR+RC2F)/(RNGR-RC2F)     0.038
(A)f/eN1F                   0.398
(B)(f/eAS)/Fno              0.49
(C)Tair_max/Σd              0.09
(D)(RF1F+RF1R)/(RF1F-RF1R)     0.925135
(E)MF1/f                   -0.10074
(F)MF2/MF1                  0.817175
(G)fF1/fF2                 -1.86532
(H)βF1F2               31.81157
 本実施形態の光学装置としては、例えば、撮像装置や投影装置がある。以下、撮像装置と投影装置の具体例を説明する。
 図16は、撮像装置としての一眼ミラーレスカメラの断面図である。図16において、一眼ミラーレスカメラ1の鏡筒内には撮影光学系2が配置される。マウント部3は、撮影光学系2を一眼ミラーレスカメラ1のボディに着脱可能とする。マウント部3としては、スクリュータイプのマウントやバヨネットタイプのマウント等が用いられる。この例では、バヨネットタイプのマウントを用いている。また、一眼ミラーレスカメラ1のボディには、撮像素子面4、バックモニタ5が配置されている。なお、撮像素子としては、小型のCCD又はCMOS等が用いられている。
 そして、一眼ミラーレスカメラ1の撮影光学系2として、例えば上記実施例1~19に示した結像光学系が用いられる。
 図17、図18は、撮像装置の構成の概念図を示す。図17は撮像装置としての一眼ミラーレスカメラ40の外観を示す前方斜視図、図18は同後方斜視図である。この一眼ミラーレスカメラ40の撮影光学系41に、上記実施例1~19に示した結像光学系が用いられている。
 この実施形態の一眼ミラーレスカメラ40は、撮影用光路42上に位置する撮影光学系41、シャッターボタン45、液晶表示モニター47等を含み、一眼ミラーレスカメラ40の上部に配置されたシャッターボタン45を押圧すると、それに連動して撮影光学系41、例えば実施例1の結像光学系を通して撮影が行われる。撮影光学系41によって形成された物体像が、結像面近傍に設けられた撮像素子(光電変換面)上に形成される。この撮像素子で受光された物体像は、処理手段によって電子画像としてカメラ背面に設けられた液晶表示モニター47に表示される。また、撮影された電子画像は記憶手段に記録することができる。
 図19は、一眼ミラーレスカメラ40の主要部の内部回路を示すブロック図である。なお、以下の説明では、前述した処理手段は、例えばCDS/ADC部24、一時記憶メモリ17、画像処理部18等で構成され、記憶手段は、記憶媒体部19等で構成される。
 図19に示すように、一眼ミラーレスカメラ40は、操作部12と、この操作部12に接続された制御部13と、この制御部13の制御信号出力ポートにバス14及び15を介して接続された撮像駆動回路16並びに一時記憶メモリ17、画像処理部18、記憶媒体部19、表示部20、及び設定情報記憶メモリ部21を備えている。
 上記の一時記憶メモリ17、画像処理部18、記憶媒体部19、表示部20、及び設定情報記憶メモリ部21は、バス22を介して相互にデータの入力、出力が可能とされている。また、撮像駆動回路16には、CCD49とCDS/ADC部24が接続されている。
 操作部12は、各種の入力ボタンやスイッチを備え、これらを介して外部(カメラ使用者)から入力されるイベント情報を制御部13に通知する。制御部13は、例えばCPUなどからなる中央演算処理装置であって、不図示のプログラムメモリを内蔵し、プログラムメモリに格納されているプログラムにしたがって、一眼ミラーレスカメラ40全体を制御する。
 CCD49は、撮像駆動回路16により駆動制御され、撮影光学系41を介して形成された物体像の画素ごとの光量を電気信号に変換し、CDS/ADC部24に出力する撮像素子である。
 CDS/ADC部24は、CCD49から入力する電気信号を増幅し、かつ、アナログ/デジタル変換を行って、この増幅とデジタル変換を行っただけの映像生データ(ベイヤーデータ、以下RAWデータという。)を一時記憶メモリ17に出力する回路である。
 一時記憶メモリ17は、例えばSDRAM等からなるバッファであり、CDS/ADC部24から出力されるRAWデータを一時的に記憶するメモリ装置である。画像処理部18は、一時記憶メモリ17に記憶されたRAWデータ又は記憶媒体部19に記憶されているRAWデータを読み出して、制御部13にて指定された画質パラメータに基づいて歪曲収差補正を含む各種画像処理を電気的に行う回路である。
 記憶媒体部19は、例えばフラッシュメモリ等からなるカード型又はスティック型の記録媒体を着脱自在に装着して、これらのフラッシュメモリに、一時記憶メモリ17から転送されるRAWデータや画像処理部18で画像処理された画像データを記録して保持する。
 表示部20は、液晶表示モニター47などにて構成され、撮影したRAWデータ、画像データや操作メニューなどを表示する。設定情報記憶メモリ部21には、予め各種の画質パラメータが格納されているROM部と、操作部12の入力操作によってROM部から読み出された画質パラメータを記憶するRAM部が備えられている。
 このように構成された一眼ミラーレスカメラ40では、撮影光学系41として本発明の結像光学系を採用することで、広い撮影範囲を、低ノイズ、高解像度で撮像することができる。なお、本発明の結像光学系は、クイックリターンミラーを持つタイプの撮像装置にも用いることができる。
 図20は、投影装置としてのプロジェクタの断面図である。図20に示すように、プロジェクタ100は、光源部110と、照明部120と、画像形成部130と、投射部140と、を有する。
 光源部110は、光源111と反射部材112とを有する。光源111からは照明光が出射する。照明光は白色光である。照明光は反射部材112で反射され、照明部120に入射する。
 照明部120は、第1のダイクロイックミラー121と、第2のダイクロイックミラー122と、第3のダイクロイックミラー123と、第1の反射部材124と、第2の反射部材125と、を有する。
 第1のダイクロイックミラー121では、赤色の波長域の光(以下、「赤色光」という)が透過され、それ以外の波長域の光は反射される。第2のダイクロイックミラー122では、緑色の波長域の光(以下、「緑色光」という)が反射され、それ以外の波長域の光は透過される。第3のダイクロイックミラー123では、青色の波長域の光(以下、「青色光」という)が反射され、それ以外の波長域の光は透過される。赤色光、緑色光および青色光は、画像形成部130に入射する。なお、第3のダイクロイックミラー123の代わりに、通常の平面反射鏡を用いても良い。
 画像形成部130は、第1の表示素子131と、第2の表示素子132と、第3の表示素子133と、を有する。
 第1の表示素子131には、第1の反射部材124を介して赤色光が照射される。第2の表示素子132には緑色光が照射される。第3の表示素子133には、第2の反射部材125を介して青色光が照射される。
 ここで、第1の表示素子131、第2の表示素子132及び第3の表示素子133には、同じ画像が表示されている。よって、第1の表示素子131では赤色の画像が表示され、第2の表示素子132では緑色の画像が表示され、第3の表示素子133では青色の画像が表示される。
 第1の表示素子131、第2の表示素子132及び第3の表示素子133から出射した光は、投射部140に入射する。
 投射部140は、ダイクロイックプリズム141と、投影光学系142と、を有する。
 第1の表示素子131、第2の表示素子132及び第3の表示素子133から出射した光は、ダイクロイックプリズム141で合成される。上述のように、画像形成部130では、赤色の画像、緑色の画像及び青色の画像が表示されている。ダイクロイックプリズム141によって、3つの画像が合成される。
 投影光学系142は、合成された3つの画像を所定の位置に投影する。この投影光学系142に、例えば上記実施例1~19に示した結像光学系が用いられている。
 なお、画像形成部130は、DMD(デジタルミラーデバイス)等のライトバルブとしても良い。この場合、光源部110からの光をライトバルブで反射させ、ライトバルブからの画像を、投射部140にて拡大投影するように構成すれば良い。
 このように構成されたプロジェクタ100では、投影光学系142として本発明の結像光学系を採用することで、広い投影範囲に、低ノイズ、高解像度で像を投影することができる。
 以上のように、本発明に係る結像光学系は、広い画角と小さいFナンバーを有しながらも、諸収差が良好に補正された結像光学系に適している。また、本発明に係る光学装置は、広い撮影範囲を、低ノイズ、高解像度で撮像する撮像装置や、広い投影範囲に、低ノイズ、高解像度で像を投影する投影装置に適している。
 GF 前群
 GR 後群
 S 明るさ(開口)絞り
 I 像面
 1 一眼ミラーレスカメラ
 2 撮影光学系
 3 鏡筒のマウント部
 4 撮像素子面
 5 バックモニタ
 12 操作部
 13 制御部
 14、15 バス
 16 撮像駆動回路
 17 一時記憶メモリ
 18 画像処理部
 19 記憶媒体部
 20 表示部
 21 設定情報記憶メモリ部
 22 バス
 24 CDS/ADC部
 40 一眼ミラーレスカメラ
 41 撮影光学系
 42 撮影用光路
 45 シャッターボタン
 47 液晶表示モニター
 49 CCD
 100 プロジェクタ
 110 光源部
 111 光源
 112 反射部材
 120 照明部
 121 第1のダイクロイックミラー
 122 第2のダイクロイックミラー
 123 第3のダイクロイックミラー
 124 第1の反射部材
 125 第2の反射部材
 130 画像形成部
 131 第1の表示素子
 132 第2の表示素子
 133 第3の表示素子
 140 投射部
 141 ダイクロイックプリズム
 142 投影光学系

Claims (21)

  1.  距離が長い方の拡大側の共役点と距離が短い方の縮小側の共役点との共役関係を形成する結像光学系であって、
     前記結像光学系は、開口絞りと、第1の接合レンズと、第2の接合レンズと、第3の接合レンズと、を有し、
     前記第1の接合レンズは、前記開口絞りよりも拡大側に位置し、
     前記第2の接合レンズは、所定のレンズ群よりも縮小側に、前記所定のレンズ群と隣接して位置し、
     前記第3の接合レンズは、前記開口絞りよりも縮小側に位置し、
     前記所定のレンズ群は負の屈折力を有し、最も拡大側に位置するレンズから前記第1の接合レンズまでに含まれるすべてのレンズで構成され、
     前記第1の接合レンズは、拡大側から順に、正レンズと負レンズとで構成され、最も縮小側の面が縮小側に凹面を向けており、
     前記第2の接合レンズは、拡大側から順に、負レンズと正レンズとで構成され、最も拡大側の面が拡大側に凹面を向けており、
     前記第3の接合レンズは、拡大側から順に、正レンズと負レンズとで構成されていることを特徴とする結像光学系。
  2.  前記最も拡大側に位置するレンズは第1の負レンズであり、
     前記第1の負レンズはメニスカスレンズであることを特徴とする請求項1に記載の結像光学系。
  3.  以下の条件式(1)を満足することを特徴とする請求項2に記載の結像光学系。
     1<(RN1F+RN1R)/(RN1F-RN1R)<10   (1)
     ここで、
     RN1Fは、前記第1の負レンズの拡大側面の近軸曲率半径、
     RN1Rは、前記第1の負レンズの縮小側面の近軸曲率半径、
    である。
  4.  レンズ成分は、光路中にて拡大側面と縮小側面のみが空気に接するレンズブロックであって、
     前記第2の接合レンズと前記第3の接合レンズとの間に、正レンズ成分を1枚又は複数枚有していることを特徴とする請求項1から3のいずれか1項に記載の結像光学系。
  5.  前記第2の接合レンズに対して最も近くに位置する第1の正レンズを有し、
     以下の条件式(2)を満足することを特徴とする請求項1から4のいずれか1項に記載の結像光学系。
     0<(RP1F+RP1R)/(RP1F-RP1R)<3   (2)
     ここで、
     RP1Fは、前記第1の正レンズの拡大側面の近軸曲率半径、
     RP1Rは、前記第1の正レンズの縮小側面の近軸曲率半径、
    である。
  6.  縮小側から順に、第2の負レンズと、第2の正レンズと、を有しており、
     前記第2の負レンズはメニスカスレンズであり、
     以下の条件式(3)を満足することを特徴とする請求項1から5のいずれか1項に記載の結像光学系。
     0.01<(RP2F+RP2R)/(RP2F-RP2R)<3   (3)
     ここで、
     RP2Fは、前記第2の正レンズの拡大側面の近軸曲率半径、
     RP2Rは、前記第2の正レンズの縮小側面の近軸曲率半径、
    である。
  7.  以下の条件式(4)を満足することを特徴とする請求項1から6のいずれか1項に記載の結像光学系。
     -10<(RNGF+RNGR)/(RNGF-RNGR)<20   (4)
     ここで、
     RNGFは、前記所定のレンズ群において最も拡大側に位置する面の近軸曲率半径、
     RNGRは、前記所定のレンズ群において最も縮小側に位置する面の近軸曲率半径、
    である。
  8.  以下の条件式(5)を満足することを特徴とする請求項1から7のいずれか1項に記載の結像光学系。
     -1.5<(RNGR+RC2F)/(RNGR-RC2F)<5   (5)
     ここで、
     RNGRは、前記所定のレンズ群において最も縮小側に位置する面の近軸曲率半径、
     RC2Fは、前記第2の接合レンズにおいて最も拡大側に位置する面の近軸曲率半径、
    である。
  9.  以下の条件式(A)を満足することを特徴とする請求項1から8のいずれか1項に記載の結像光学系。
     0<f/eN1F<2   (A)
     ここで、
     fは、無限遠物体合焦時の前記結像光学系全系の焦点距離、
     eN1Fは、前記第1の負レンズの拡大側面の最大有効口径、
    である。
  10.  以下の条件式(B)を満足することを特徴とする請求項1から9のいずれか1項に記載の結像光学系。
     0<(f/eAS)/Fno<2   (B)
     ここで、
     fは、無限物体合焦時の前記結像光学系全系の焦点距離、
     eASは、前記開口絞りの最大直径、
     Fnoは、無限物体合焦時の前記結像光学系全系のFナンバー、
    である。
  11.  以下の条件式(C)を満足することを特徴とする請求項1から10のいずれか1項に記載の結像光学系。
     0<Tair_max/Σd≦0.27   (C)
     ここで、
     Tair_maxは、前記結像光学系の最も拡大側に位置する面から最も縮小側に位置する面までの間で最も大きい軸上空気間隔、
     Σdは、前記結像光学系の最も拡大側に位置する面から最も縮小側に位置する面までの軸上距離、
    である。
  12.  第1の合焦レンズ群を有し、
     前記第1の合焦レンズ群は、前記第3の接合レンズよりも縮小側に配置され、前記フォーカスの際に前記結像光学系の光軸に沿って移動し、且つ、負の屈折力を有することを特徴とする請求項1から11のいずれか1項に記載の結像光学系。
  13.  前記第1の合焦レンズ群が以下の条件式(D)を満足することを特徴とする請求項12に記載の結像光学系。
     0<(RF1F+RF1R)/(RF1F-RF1R)<5   (D)
     ここで、
     RF1Fは、前記第1の合焦レンズ群において最も拡大側に位置する面の近軸曲率半径、
     RF1Rは、前記第1の合焦レンズ群において最も縮小側に位置する面の近軸曲率半径、
    である。
  14.  拡大側に位置する無限遠物体にフォーカスした状態から近距離物体へのフォーカスの際に、前記第1の合焦レンズ群は縮小側に移動し、且つ、
     以下の条件式(E)を満足することを特徴とする請求項12または13に記載の結像光学系。
     -1<MF1/f<0   (E)
     ここで、
     MF1は、前記第1の合焦レンズ群における前記フォーカスの際の前記光軸方向に沿った最大移動量、
     fは、無限遠物体合焦時の前記結像光学系全系の焦点距離、
    である。
  15.  第2の合焦レンズ群を有し、
     前記第2の合焦レンズ群は、前記第1の合焦レンズ群よりも縮小側に配置され、前記フォーカスの際に前記第1の合焦レンズ群との距離を変えながら前記結像光学系の光軸に沿って移動し、且つ、正の屈折力を有することを特徴とする請求項12から14のいずれか1項に記載の結像光学系。
  16.  前記第1の合焦レンズ群と前記第2の合焦レンズ群は、各々、多くとも2枚のレンズからなることを特徴とする請求項15に記載の結像光学系。
  17.  拡大側に位置する無限遠物体にフォーカスした状態から近距離物体へのフォーカスの際に、前記第1の合焦レンズ群は縮小側に移動し、
     拡大側に位置する無限遠物体にフォーカスした状態から近距離物体へのフォーカスの際に、前記第2の合焦レンズ群は拡大側に移動し、且つ、
     前記第1の合焦レンズ群と前記第2の合焦レンズ群は、前記フォーカスの際に以下の条件式(F)を満足することを特徴とする請求項15または16に記載の結像光学系。
     0<MF2/MF1<1.5   (F)
     ここで、
     MF1は、前記第1の合焦レンズ群における前記フォーカスの際の前記光軸方向に沿った最大移動量、
     MF2は、前記第2の合焦レンズ群における前記フォーカスの際の前記光軸方向に沿った最大移動量、
    である。
  18.  前記第1の合焦レンズ群と前記第2の合焦レンズ群は以下の条件式(G)を満足することを特徴とする請求項15から17のいずれか1項に記載の結像光学系。
     -3<fF1/fF2<-0.5   (G)
     ここで、
     fF1は、前記第1の合焦レンズ群の焦点距離、
     fF2は、前記第2の合焦レンズ群の焦点距離、
    である。
  19.  前記第1の合焦レンズ群と前記第2の合焦レンズ群は以下の条件式(H)を満足することを特徴とする請求項15から18のいずれか1項に記載の結像光学系。
     5<βF1/βF2<50   (H)
     ここで、
     βF1は、無限遠物体合焦時の前記第1の合焦レンズ群の横倍率、
     βF2は、無限遠物体合焦時の前記第2の合焦レンズ群の横倍率、
    である。
  20.  光学系と、縮小側に配置された撮像素子と、を有し、
     前記撮像素子は撮像面を有し、且つ前記光学系によって前記撮像面上に形成された像を電気信号に変換し、
     前記光学系が請求項1から19のいずれか1項に記載の結像光学系であることを特徴とする光学装置。
  21.  光学系と、縮小側に配置された表示素子と、を有し、
     前記表示素子は表示面を有し、
     前記表示面上に表示された画像は、前記光学系によって拡大側に投影され、
     前記光学系が請求項1から19のいずれか1項に記載の結像光学系であることを特徴とする光学装置。
PCT/JP2015/056307 2014-08-05 2015-03-04 結像光学系及びそれを備えた光学装置 WO2016021221A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016539857A JP6400104B2 (ja) 2014-08-05 2015-03-04 結像光学系及びそれを備えた光学装置
US15/391,928 US10114200B2 (en) 2014-08-05 2016-12-28 Imaging optical system and optical apparatus including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014159873 2014-08-05
JP2014-159873 2014-08-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/391,928 Continuation US10114200B2 (en) 2014-08-05 2016-12-28 Imaging optical system and optical apparatus including the same

Publications (1)

Publication Number Publication Date
WO2016021221A1 true WO2016021221A1 (ja) 2016-02-11

Family

ID=55263508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056307 WO2016021221A1 (ja) 2014-08-05 2015-03-04 結像光学系及びそれを備えた光学装置

Country Status (3)

Country Link
US (1) US10114200B2 (ja)
JP (1) JP6400104B2 (ja)
WO (1) WO2016021221A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018021951A (ja) * 2016-08-01 2018-02-08 オリンパス株式会社 単焦点距離レンズ及びそれを用いた光学装置
CN110133827A (zh) * 2019-04-28 2019-08-16 江西联创电子有限公司 超广角镜头
JP2019159187A (ja) * 2018-03-15 2019-09-19 株式会社ニコン 光学系、光学機器及び光学系の製造方法
JP2020181169A (ja) * 2019-04-26 2020-11-05 キヤノン株式会社 光学系及び撮像装置
JP2021006858A (ja) * 2019-06-28 2021-01-21 セイコーエプソン株式会社 投射光学系およびプロジェクター
JP2021157086A (ja) * 2020-03-27 2021-10-07 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co., Ltd レンズ系、撮像装置、及び移動体
WO2022172725A1 (ja) * 2021-02-15 2022-08-18 株式会社ニコン 光学系、光学機器、および光学系の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109459839B (zh) * 2018-12-28 2023-07-21 福建福光天瞳光学有限公司 大通光高分辨率车载光学系统及成像方法
CN109656092B (zh) * 2019-01-07 2024-04-12 中国科学院福建物质结构研究所 一种紫外中继分幅光学系统以及紫外分幅相机
US11460672B2 (en) 2019-06-28 2022-10-04 Zhejiang Sunny Optical Co., Ltd Optical imaging system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61177412A (ja) * 1985-02-04 1986-08-09 Canon Inc ズ−ムレンズの変倍方法
JPH01126614A (ja) * 1987-11-11 1989-05-18 Nikon Corp ズームレンズ
JPH08278445A (ja) * 1995-04-04 1996-10-22 Nikon Corp 防振機能を備えたズームレンズ
JPH11174323A (ja) * 1997-12-05 1999-07-02 Nikon Corp 大口径望遠ズームレンズ
JP2001174704A (ja) * 1999-12-21 2001-06-29 Olympus Optical Co Ltd ズームレンズ
JP2011175185A (ja) * 2010-02-25 2011-09-08 Nikon Corp 変倍光学系、光学機器及び変倍光学系の製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6187121A (ja) * 1984-06-18 1986-05-02 Nippon Kogaku Kk <Nikon> 超近接撮影可能なズ−ムレンズ
US4865434A (en) 1984-10-01 1989-09-12 Canon Kabushiki Kaisha Zoom lens capable of selecting a focal length beyond a standard focal length range
JP4217040B2 (ja) 2002-09-10 2009-01-28 株式会社コシナ 大口径広角レンズ
JP2005284099A (ja) * 2004-03-30 2005-10-13 Nikon Corp 可変焦点距離レンズ
JP4864600B2 (ja) * 2006-08-11 2012-02-01 富士フイルム株式会社 投写型ズームレンズおよび投写型表示装置
JP5111056B2 (ja) 2007-10-30 2012-12-26 キヤノン株式会社 光学系及びそれを有する撮像装置
JP5441377B2 (ja) 2008-08-07 2014-03-12 キヤノン株式会社 単焦点光学系及びそれを有する撮像装置
JP5476881B2 (ja) 2008-09-18 2014-04-23 株式会社ニコン 広角レンズ、光学装置、広角レンズのフォーカシング方法
JP5350001B2 (ja) * 2009-02-17 2013-11-27 キヤノン株式会社 撮影レンズ及びそれを有する撮像装置
JP5399175B2 (ja) 2009-09-09 2014-01-29 コニカミノルタ株式会社 広角レンズ,撮像光学装置及びデジタル機器
JP5495800B2 (ja) * 2010-01-06 2014-05-21 キヤノン株式会社 光学系及びそれを有する撮像装置
US20110317282A1 (en) * 2010-06-23 2011-12-29 Nikon Corporation Imaging lens, optical apparatus equipped therewith and method for manufacturing imaging lens
US9625689B2 (en) * 2010-09-17 2017-04-18 Nikon Corporation Optical system, optical apparatus equipped therewith, and method for manufacturing optical system
JP2012226309A (ja) 2011-04-07 2012-11-15 Panasonic Corp インナーフォーカスレンズ、交換レンズ装置及びカメラシステム
JP2014021256A (ja) * 2012-07-18 2014-02-03 Canon Inc ズームレンズ及びそれを有する撮像装置
JP6300070B2 (ja) 2013-02-22 2018-03-28 パナソニックIpマネジメント株式会社 ズームレンズ系、交換レンズ装置及びカメラシステム
JP6208458B2 (ja) * 2013-04-16 2017-10-04 株式会社ニコン 画像ブレ補正機能を備えたズームレンズ
JP6223026B2 (ja) * 2013-07-10 2017-11-01 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP6383214B2 (ja) * 2014-08-05 2018-08-29 オリンパス株式会社 結像光学系及びそれを備えた光学装置
JP6523289B2 (ja) * 2014-08-05 2019-05-29 オリンパス株式会社 結像光学系及びそれを備えた光学装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61177412A (ja) * 1985-02-04 1986-08-09 Canon Inc ズ−ムレンズの変倍方法
JPH01126614A (ja) * 1987-11-11 1989-05-18 Nikon Corp ズームレンズ
JPH08278445A (ja) * 1995-04-04 1996-10-22 Nikon Corp 防振機能を備えたズームレンズ
JPH11174323A (ja) * 1997-12-05 1999-07-02 Nikon Corp 大口径望遠ズームレンズ
JP2001174704A (ja) * 1999-12-21 2001-06-29 Olympus Optical Co Ltd ズームレンズ
JP2011175185A (ja) * 2010-02-25 2011-09-08 Nikon Corp 変倍光学系、光学機器及び変倍光学系の製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018021951A (ja) * 2016-08-01 2018-02-08 オリンパス株式会社 単焦点距離レンズ及びそれを用いた光学装置
JP2019159187A (ja) * 2018-03-15 2019-09-19 株式会社ニコン 光学系、光学機器及び光学系の製造方法
JP2020181169A (ja) * 2019-04-26 2020-11-05 キヤノン株式会社 光学系及び撮像装置
JP7242411B2 (ja) 2019-04-26 2023-03-20 キヤノン株式会社 光学系及び撮像装置
CN110133827A (zh) * 2019-04-28 2019-08-16 江西联创电子有限公司 超广角镜头
CN110133827B (zh) * 2019-04-28 2021-06-08 江西联创电子有限公司 超广角镜头
JP2021006858A (ja) * 2019-06-28 2021-01-21 セイコーエプソン株式会社 投射光学系およびプロジェクター
US11550132B2 (en) 2019-06-28 2023-01-10 Seiko Epson Corporation Projection optical system and projector
JP2021157086A (ja) * 2020-03-27 2021-10-07 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co., Ltd レンズ系、撮像装置、及び移動体
WO2022172725A1 (ja) * 2021-02-15 2022-08-18 株式会社ニコン 光学系、光学機器、および光学系の製造方法

Also Published As

Publication number Publication date
JPWO2016021221A1 (ja) 2017-05-25
US10114200B2 (en) 2018-10-30
US20170108674A1 (en) 2017-04-20
JP6400104B2 (ja) 2018-10-03

Similar Documents

Publication Publication Date Title
JP6400104B2 (ja) 結像光学系及びそれを備えた光学装置
JP5015514B2 (ja) ズームレンズおよび撮像装置および携帯情報端末装置
JP6537331B2 (ja) 光学系及びそれを有する撮像装置
WO2016021228A1 (ja) 結像光学系及びそれを備えた光学装置
US10197769B2 (en) Single-focus optical system and optical apparatus using the same
US10274705B2 (en) Single-focus optical system and optical apparatus using the same
JP4909089B2 (ja) ズームレンズ及びそれを有する撮像装置
JP6546656B2 (ja) 単焦点光学系及びそれを備えた光学装置
US10191253B2 (en) Single focus optical system and optical apparatus using the same
JP2017062318A (ja) ズームレンズ及びそれを備えた撮像装置
US10191258B2 (en) Single-focus optical system and optical apparatus using the same
JP5448351B2 (ja) ズームレンズおよびそれを有する撮像装置
JP6511044B2 (ja) 複数の撮像光学系の製造方法
JP6523289B2 (ja) 結像光学系及びそれを備えた光学装置
CN109814232B (zh) 成像光学系统、投射型显示装置及摄像装置
JP2016110007A (ja) 撮像レンズ
JP2006194975A (ja) ズームレンズ及びそれを用いた撮像装置
JP6605120B2 (ja) 単焦点光学系及びそれを備えた光学装置
JP2019095607A (ja) 結像レンズおよびカメラおよび携帯情報端末装置
WO2014061391A1 (ja) ズームレンズ及びそれを備えた撮像装置
JP5695433B2 (ja) ズームレンズ及びそれを備えた撮像装置
JP2005321561A (ja) ズームレンズ
US8988782B2 (en) Zoom lens and image pickup apparatus including the same
JP2010060915A (ja) ズームレンズおよびそれを備えた撮像装置
JP6076513B2 (ja) ズームレンズ及びそれを備えた撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15830552

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016539857

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15830552

Country of ref document: EP

Kind code of ref document: A1