WO2016017593A1 - 半導体発光装置の製造方法 - Google Patents

半導体発光装置の製造方法 Download PDF

Info

Publication number
WO2016017593A1
WO2016017593A1 PCT/JP2015/071279 JP2015071279W WO2016017593A1 WO 2016017593 A1 WO2016017593 A1 WO 2016017593A1 JP 2015071279 W JP2015071279 W JP 2015071279W WO 2016017593 A1 WO2016017593 A1 WO 2016017593A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicone resin
group
resin composition
semiconductor light
mass
Prior art date
Application number
PCT/JP2015/071279
Other languages
English (en)
French (fr)
Inventor
岳 吉川
高島 正之
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN201580040447.4A priority Critical patent/CN106575694B/zh
Priority to KR1020177001948A priority patent/KR20170040201A/ko
Priority to US15/329,280 priority patent/US9954152B2/en
Priority to JP2016538344A priority patent/JPWO2016017593A1/ja
Priority to EP15826730.2A priority patent/EP3176840A4/en
Publication of WO2016017593A1 publication Critical patent/WO2016017593A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations

Definitions

  • the present invention relates to a method for manufacturing a semiconductor light emitting device.
  • This application claims priority based on Japanese Patent Application No. 2014-152879 filed in Japan on July 28, 2014, the contents of which are incorporated herein by reference.
  • the cured product of the silicone resin composition has high gas permeability and low barrier property against hydrogen sulfide gas in the air. For this reason, when encapsulated using a cured product of a silicone resin composition, the silver film that is the back reflector of the encapsulated semiconductor light emitting device is corroded by hydrogen sulfide in the air, and the brightness of the semiconductor light emitting device is reduced. There is a problem of doing.
  • the cured silicone resin composition has a refractive index of 1.50 to 1.55 and is uniformly dispersed in the silicone resin at a concentration of 1 to 30% by mass.
  • a curable silicone resin composition characterized by comprising a silicon oxide filler having an average particle diameter of 1 to 10 ⁇ m has been proposed (see Patent Document 1).
  • the silicone resin composition described in Patent Document 1 may not have sufficient crack resistance and heat resistance.
  • This invention is made in view of the said subject, and provides the manufacturing method of an optical semiconductor light-emitting device provided with the sealing part which the crack resistance and heat resistance formed from the hardened
  • the purpose is to do.
  • the present inventors have found that the position of a predetermined peak of the infrared absorption spectrum derived from the Si—O—Si bond changes when the silicone resin composition is thermally cured. Furthermore, by using a predetermined silicone resin composition as a material and controlling the amount of change in the peak position when the silicone resin composition is thermally cured to a predetermined range, a cured product of the silicone resin composition In other words, the inventors have found that the crack resistance and heat resistance of the sealing portion of the optical semiconductor light emitting device or the optical semiconductor sealing member can be improved, and the present invention has been completed.
  • one aspect of the present invention includes a step of thermally curing a silicone resin composition applied to the surface of a semiconductor light emitting element to form a sealing portion provided to cover the surface of the semiconductor light emitting element, 60% by mass or more of the silicone resin composition is a silicone resin in which the silicon atom as a constituent component is substantially only a silicon atom to which three oxygen atoms are bonded, and the thermal curing is performed at 1000 to 1050 cm of the silicone resin.
  • the peak position acm -1 in the infrared absorption spectrum derived from the bond of Si-O-Si at -1, the infrared absorption of Si-O-Si bonds derived in 950 ⁇ 1050 cm -1 of the silicone resin composition after heat curing Provided is a method for manufacturing a semiconductor light emitting device, wherein the peak position bcm ⁇ 1 of the spectrum is performed under conditions that satisfy 5 ⁇ ab ⁇ 20.
  • the condition may satisfy 8 ⁇ ab ⁇ 20.
  • the present invention relates to the following.
  • the silicone resin composition 60 mass% of the silicone resin in which the silicon atoms as constituent components are substantially silicon atoms having substantially three oxygen atoms bonded to the total mass of the solid content of the silicone resin composition.
  • thermosetting the peak position of the infrared absorption spectrum derived from the Si—O—Si bond at 1000 to 1050 cm ⁇ 1 of the silicone resin before thermosetting is acm ⁇ 1, and the silicone resin composition after thermosetting is
  • the peak position of the infrared absorption spectrum derived from the Si—O—Si bond at 950 to 1050 cm ⁇ 1 is bcm ⁇ 1 , it is performed under the conditions satisfying 5 ⁇ ab ⁇ 20.
  • a method for manufacturing a semiconductor light emitting device [2] The manufacturing method according to [1], wherein the condition is a condition satisfying 8 ⁇ ab ⁇ 20.
  • the manufacturing method according to the present invention is useful in manufacturing an optical semiconductor light emitting device including a sealing portion formed from a cured product of a silicone resin composition and having improved crack resistance and heat resistance.
  • the present invention includes, as one embodiment, a step of thermosetting a silicone resin composition applied to the surface of a semiconductor light emitting element to form a sealing portion provided to cover the surface of the semiconductor light emitting element, 60% by mass or more of the silicone resin composition is a silicone resin in which the silicon atom as a constituent component is substantially only a silicon atom to which three oxygen atoms are bonded, and the thermal curing is performed at 1000 to 1050 cm of the silicone resin.
  • a method for manufacturing an optical semiconductor light-emitting device which is performed under a condition that a spectral peak position bcm ⁇ 1 satisfies 5 ⁇ ab ⁇ 20.
  • Another aspect of the present invention is to provide a sealing portion that covers the surface of the semiconductor light emitting element by applying a silicone resin composition to the surface of the conductor light emitting element and thermally curing the applied silicone resin composition.
  • Forming including: In the silicone resin composition, 60 mass% of the silicone resin in which the silicon atoms as constituent components are substantially silicon atoms having substantially three oxygen atoms bonded to the total mass of the solid content of the silicone resin composition. Including above; In the thermosetting, the peak position of the infrared absorption spectrum derived from the Si—O—Si bond at 1000 to 1050 cm ⁇ 1 of the silicone resin before thermosetting is acm ⁇ 1, and the silicone resin composition after thermosetting is When the peak position of the infrared absorption spectrum derived from the Si—O—Si bond at 950 to 1050 cm ⁇ 1 is bcm ⁇ 1 , it is performed under the conditions satisfying 5 ⁇ ab ⁇ 20. It is a manufacturing method of an optical semiconductor light emitting device.
  • a silicon resin as a constituent component is a silicone resin (hereinafter referred to as “resin A”, which is substantially only a silicon atom having three oxygen atoms bonded thereto).
  • resin A which is substantially only a silicon atom having three oxygen atoms bonded thereto.
  • Is used as a material for a sealing portion of an optical semiconductor light emitting device hereinafter also referred to as an optical semiconductor sealing member.
  • “60% by mass or more” means that the resin A is included by 60% by mass or more with respect to the total mass of the solid content of the silicone resin composition.
  • the silicone resin composition preferably contains 80% by mass or more and 100% by mass or less of the resin A, and more preferably 90% by mass or more and 100% by mass or less, based on the total mass of the solid content of the silicone resin composition. More preferably, it is particularly preferably 95% by mass or more and 100% by mass or less.
  • the silicone resin composition will be described.
  • silicone resin composition (Silicone resin) Generally, silicone resins contain repeating units of the formula In the following formulae, R 1 represents an alkyl group or an aryl group, and R 2 independently represents an alkoxy group, an alkenyl group, a hydrogen atom, or a hydroxyl group.
  • a repeating unit including three oxygen atoms bonded to another silicon atom and a silicon atom bonded to R 1 is referred to as a repeating unit A3 (the above formula (A3)).
  • a repeating unit containing two oxygen atoms bonded to other silicon atoms and a silicon atom bonded to R 1 and R 2 is referred to as a repeating unit A2 (the above formula (A2)).
  • a repeating unit including a silicon atom bonded to one oxygen atom bonded to another silicon atom, R 1 and two R 2 is referred to as a repeating unit A1 (the above formula (A1)).
  • the repeating unit A1 constitutes the end of the organopolysiloxane chain.
  • the repeating unit A3 constitutes a branched chain structure composed of one or two organopolysiloxane chains. That is, the repeating unit A3 forms part of the resin network structure or ring structure.
  • the “silicone resin (resin A) in which the constituent silicon atom is substantially only a silicon atom having three bonded oxygen atoms” used in the production method of one embodiment of the present invention is substantially as follows: (1) the repeating unit A3, (2) the repeating unit A2 in which R 2 is an alkoxy group or a hydroxyl group, and (3) the repeating unit A1 in which R 2 is an alkoxy group or a hydroxyl group. It means a silicone resin composed only of at least one repeating unit selected from the group.
  • substantially means to allow mixing of repeating units other than the repeating unit (1), (2) or (3) which is difficult to eliminate in the production of silicone resin.
  • 95 mol% or more should just be a repeating unit of said (1), (2) or (3) with respect to the total number of moles of the repeating unit which comprises a silicone resin.
  • the resin A preferably has an organopolysiloxane structure represented by the following formula (1).
  • a plurality of R 1 and R 2 may be the same kind of group or different from each other.
  • R 1 each independently represents an alkyl group or an aryl group
  • R 2 each independently represents an alkoxy group or a hydroxyl group
  • R 1 and R 2 in the above formula (1) will be described in more detail.
  • R 1 is an alkyl group
  • the alkyl group may be linear, branched, or have a cyclic structure.
  • the number of carbon atoms of the alkyl group is not particularly limited.
  • the number of carbon atoms is preferably 1 to 10, more preferably 1 to 6, and particularly preferably 1 to 3.
  • one or more hydrogen atoms constituting the group may be substituted with another group.
  • substituent of the alkyl group include aryl groups having 6 to 10 carbon atoms such as a phenyl group and a naphthyl group.
  • alkyl group represented by R 1 examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a pentyl group, a neopentyl group, a hexyl group, and an octyl group.
  • an unsubstituted alkyl group such as a nonyl group and a decyl group
  • an aralkyl group such as a phenylmethyl group, a phenylethyl group and a phenylpropyl group.
  • R 1 is an aryl group
  • examples of the aryl group include aryl groups having 6 to 10 carbon atoms.
  • one or more hydrogen atoms constituting the group may be substituted with another group.
  • the substituent for the aryl group include alkyl groups having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, and a butyl group.
  • aryl group represented by R 1 include unsubstituted aryl groups such as a phenyl group and a naphthyl group; alkylaryl groups such as an alkylphenyl group such as a methylphenyl group, an ethylphenyl group, and a propylphenyl group. Groups and the like.
  • R 2 each independently represents an alkoxy group or a hydroxyl group.
  • the alkoxy group may be linear, branched, or have a cyclic structure.
  • the number of carbon atoms of the alkoxy group is not particularly limited, but, for example, preferably 1 to 4 carbon atoms.
  • Specific examples of the alkoxy group represented by R 2 include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobutoxy group, and a tert-butoxy group.
  • the resin A is a resin having an organopolysiloxane structure represented by the formula (1), and R 1 is at least one group selected from the group consisting of a methyl group, an ethyl group, and a phenyl group.
  • R 2 is preferably a resin having at least one group selected from the group consisting of a methoxy group, an ethoxy group, an isopropoxy group, and a hydroxyl group as R 2 ; from R 1 as a methyl group and an ethyl group And a resin having at least one group selected from the group consisting of a methoxy group, an ethoxy group, an isopropoxy group, and a hydroxyl group as R 2.
  • R 1 has at least one group selected from the group consisting of methyl and ethyl as a methoxy group as R 2, ethoxy , And a resin having at least one group and a hydroxyl is selected from the group consisting of isopropoxy group are more preferred.
  • Resin A has a weight average molecular weight of, for example, 1500 to 8000. When the weight average molecular weight is in the above range, the obtained optical semiconductor sealing member tends to have improved barrier properties against hydrogen sulfide gas in addition to improved crack resistance and heat resistance.
  • the weight average molecular weight of the resin A is preferably 1500 to 7000, and more preferably 2000 to 5000.
  • the weight average molecular weight a value generally measured by a gel permeation chromatography (GPC) method can be used. Specifically, after the polymer sample to be measured is dissolved in a soluble solvent, the solution is passed along with the mobile phase solution through a column using a filler having a large number of pores, and the molecular weight of the sample is measured. They are separated according to size and detected using a differential refractometer, UV meter, viscometer, light scattering detector or the like as a detector. In general, the weight average molecular weight is expressed in terms of standard polystyrene. The weight average molecular weight in this specification is indicated by this standard polystyrene conversion value. The column to be used may be appropriately selected according to the assumed molecular weight.
  • GPC gel permeation chromatography
  • the solvent used for dissolving the silicone resin or the silicone oligomer is preferably the same solvent as the mobile phase solvent used in the GPC measurement, specifically tetrahydrofuran, chloroform, toluene, xylene, dichloromethane, dichloroethane, methanol. , Ethanol, isopropyl alcohol and the like.
  • Resin A can be synthesized using an organosilicon compound having a functional group capable of forming a siloxane bond corresponding to each of the above-described repeating units as a starting material.
  • organosilicon compound corresponding to the repeating unit A3 organotrihalosilane, organotrialkoxylane, or the like can be used as a starting material.
  • the silicone resin can be synthesized by reacting such starting materials by a hydrolysis condensation method at a ratio corresponding to the abundance ratio of each repeating unit. The silicone resin synthesized in this way is commercially available.
  • the silicone resin composition used as the material for the optical semiconductor sealing member has a resin A of 60 with respect to the total mass of the solid content of the silicone resin composition.
  • Other components may be included as long as they are contained in an amount of not less than mass%. Examples of other components include silicone oligomers, inorganic particles, phosphors, silane coupling agents, curing catalysts, and the like.
  • R 1 or R 2 may be the same kind of group or different from each other.
  • R 1 independently represents an alkyl group or an aryl group
  • R 2 independently represents an alkyl group, an aryl group, an alkoxy group or a hydroxyl group
  • R 3 each independently represents an alkoxy group.
  • p 2 , q 2 , r 2 , a 2 and b 2 each independently represents an integer of 0 or more, and p 2 , q 2 , r 2 , a 2 and b 2 are simultaneously 0.
  • the value of [p 2 + b 2 ⁇ q 2 ] / [(p 2 + b 2 ⁇ q 2 ) + a 2 ⁇ q 2 + (r 2 + q 2 )] is in the range of 0.3 to 0.7
  • the inner relationship is preferred.
  • the alkyl group as R 1 is preferably an alkyl group having 1 to 3 carbon atoms, and specific examples include a methyl group, an ethyl group, a propyl group, and an isopropyl group.
  • the aryl group as R 1 is preferably an aryl group having 6 to 10 carbon atoms, and specific examples include a phenyl group, a naphthyl group, and a methylphenyl group.
  • the alkoxy group as R 1 is preferably an alkoxy group having 1 to 4 carbon atoms, and specific examples include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, and a tert-butoxy group.
  • the alkoxy group as R 3 is preferably an alkoxy group having 1 to 4 carbon atoms, and specific examples include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, and a tert-butoxy group.
  • the weight average molecular weight of the silicone oligomer may be, for example, less than 1500. There exists a tendency for the crack resistance of the member for optical semiconductor sealing obtained to improve further that the weight average molecular weight of a silicone oligomer is said range.
  • the weight average molecular weight of the silicone oligomer is preferably 200 or more and less than 1500, and more preferably 250 to 1000.
  • the silicone oligomer can be synthesized using an organosilicon compound having a functional group capable of forming a siloxane bond corresponding to each of the above-described repeating units as a starting material.
  • organosilicon compound corresponding to the repeating unit A3 organotrihalosilane, organotrialkoxylane, or the like can be used as a starting material.
  • Silicone oligomers can be synthesized by reacting such starting materials by a hydrolysis-condensation method at a ratio corresponding to the abundance ratio of each repeating unit. The silicone oligomer synthesized in this way is commercially available.
  • the content (solid content) of the silicone oligomer may be 0 to 40 parts by mass with respect to 100 parts by mass of the solid content of the silicone resin composition.
  • the mixing method of the resin A and the silicone oligomer is not particularly limited, and any of known methods that are usually performed when two or more kinds of polymer compounds are mixed may be used.
  • the resin A and the silicone oligomer (including other resins as required) can be mixed by dissolving in an organic solvent simultaneously or sequentially.
  • the resin A and the like are once volatile and It is preferable to substitute in another solvent after dissolving in an organic solvent having high solubility. Specifically, first, the resin A is put into a highly volatile organic solvent (hereinafter, organic solvent P), and dissolved by heating to a temperature near the boiling point of the organic solvent P and stirring. Next, a silicone oligomer is added and mixed and dissolved in the same manner.
  • organic solvent P highly volatile organic solvent
  • solvent Q a solvent having a lower volatility than the organic solvent P
  • solvent Q a solvent having a lower volatility than the organic solvent P
  • the solvent is replaced from the organic solvent P to the solvent Q by heating until the concentration of the organic solvent P becomes 1% or less. It can be carried out.
  • the container may be heated in a reduced pressure state.
  • the residual solvent used when synthesizing Resin A and the silicone oligomer, water remaining unreacted, etc. can be removed together with the solvent substitution, and the resin solution It is effective for stability.
  • the organic solvent P is preferably an organic solvent having a boiling point of less than 100 ° C.
  • ketone solvents such as acetone and methyl ethyl ketone
  • alcohol solvents such as methanol, ethanol, isopropyl alcohol, and normal propyl alcohol
  • hydrocarbon solvents such as hexane, cyclohexane, heptane, and benzene
  • acetate solvents such as diethyl ether and tetrahydrofuran.
  • alcohol solvents are preferable.
  • Solvent Q is preferably an organic solvent having a boiling point of 100 ° C. or higher.
  • the silicone resin composition may contain the fluorescent substance or inorganic particle which emits fluorescence by light.
  • the obtained optical semiconductor sealing member can increase the intensity of light from the light emitting element.
  • the inorganic particles scatter light in the optical semiconductor sealing member to effectively excite the phosphor, and prevent the phosphor from settling in the silicone resin composition.
  • the phosphor and inorganic particles are mixed in the silicone resin composition, the phosphor is likely to settle. Therefore, the inorganic particles are mixed in advance, and the phosphor is mixed and then immediately used for sealing the optical semiconductor element. Is preferred.
  • oxides such as silicon, titanium, zirconium, aluminum, iron and zinc; carbon black, barium titanate, calcium silicate, calcium carbonate and the like are preferable. Of these, silicon oxide, titanium oxide, and aluminum oxide are preferable.
  • Examples of the shape of the inorganic particles include a substantially spherical shape, a plate shape, a column shape, a needle shape, a whisker shape, and a fiber shape.
  • the composition of the inorganic particles may be only one type or two or more types.
  • the inorganic particles A preferably contain two or more types of inorganic particles, the primary particles have an average particle size of 100 to 500 nm, and the primary particles have an average particle size of 5 nm or more and less than 100 nm. More preferably, at least two types of B are included.
  • the average particle diameter of the primary particles can be obtained by an image imaging method or the like in which the particles are directly observed with an electron microscope or the like. Specifically, inorganic particles to be measured in an arbitrary solvent, a solution that is sufficiently dispersed by irradiating ultrasonic waves, etc., is dropped onto a slide glass or the like, or directly inorganic on the adhesive surface of the adhesive tape What is adhered by sprinkling particles is observed with a scanning electron microscope (SEM), a transmission electron microscope (TEM) or the like, and obtained by determining the dimensions from the shape. For example, the projected area of inorganic particles may be obtained, and the diameter of a circle corresponding to this area may be obtained as the particle diameter. In this case, for example, the particle diameter may be obtained for 100 or more (preferably 100) particles, and the average particle diameter may be obtained by arithmetic averaging.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the content of the inorganic particles is not particularly limited, and may be, for example, 0.01 to 100 parts by mass, or 0.1 to 50 parts by mass with respect to 100 parts by mass of the solid content of the silicone resin composition. Also good.
  • the composition and type of the phosphor are not particularly limited.
  • a red phosphor that emits fluorescence in the wavelength range of 570 to 700 nm a green phosphor that emits fluorescence in the range of 490 to 570 nm, and a range of 420 to 480 nm.
  • examples thereof include blue phosphors that emit fluorescence.
  • a plurality of phosphors can be mixed depending on the brightness and chromaticity.
  • the phosphor content is preferably, for example, 5 to 40 masses per 100 mass parts of the solid content of the silicone resin composition.
  • the silane coupling agent has an effect of improving the adhesion between the cured product of the silicone resin composition and the semiconductor light emitting device or package.
  • a silane cup having at least one group selected from the group consisting of vinyl group, epoxy group, styryl group, methacryl group, acrylic group, amino group, ureido group, mercapto group, sulfide group and isocyanate group.
  • a ring agent is preferable, and among them, a coupling agent containing at least one group selected from the group consisting of an epoxy group and a mercapto group is preferable.
  • silane coupling agents include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 3-glycid.
  • Xylpropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, and 3-mercaptopropyltrimethoxysilane are preferred.
  • the content of the silane coupling agent may be, for example, 0.0001 to 1.0 part by mass, for example, 0.001 to 0.5 part by mass with respect to 100 parts by mass of the solid content of the silicone resin composition. There may be.
  • the silane coupling agent may be mixed with the silicone resin composition, but the silane coupling agent is previously attached to the surface of the semiconductor light emitting device or package by coating or dipping treatment, and then the silicone resin composition is added. It may be formed by potting or the like and cured.
  • the curing catalyst is not particularly limited as long as it can accelerate the crosslinking reaction of the silicone resin component.
  • inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid
  • organic acids such as formic acid, acetic acid, succinic acid, citric acid, propionic acid, butyric acid, lactic acid, succinic acid
  • alkaline compounds such as tetraethylammonium.
  • phosphoric acid and acetic acid are preferable.
  • the curing catalyst is added at a predetermined concentration, the curing catalyst can be added to the silicone resin composition in a state diluted with an organic solvent, a silicone monomer or a silicone oligomer that is easily compatible with the silicone resin composition.
  • the content of the curing catalyst can be appropriately adjusted in consideration of the heating temperature, the reaction time, the type of catalyst, and the like during the curing reaction of the silicone resin composition.
  • the content of the curing catalyst with respect to 100 parts by mass of the solid content of the silicone resin composition is, for example, preferably 0.0005 to 20 parts by mass, and more preferably 0.001 to 10 parts by mass.
  • the curing catalyst may be added to the silicone resin composition immediately before the curing reaction, or may be originally contained in the silicone resin composition.
  • the silicone resin composition may further contain a modifying silicone compound different from the resin A and the silicone oligomer, and an additive.
  • modifying silicone compound examples include commercially available general silicone compounds. By adding the modifying silicone compound, for example, flexibility can be imparted to the optical semiconductor sealing member.
  • the content of the modifying silicone compound in the silicone resin composition is preferably, for example, 0.1 to 20 parts by mass (solid content) with respect to 100 parts by mass of the solid content of the silicone resin composition, and preferably 0.5 to 10 masses. Part is more preferred.
  • the additive examples include an antifoaming agent for suppressing bubbles generated when the silicone resin composition is mixed.
  • the content of the antifoaming agent in the silicone resin composition is preferably 0.01 to 5 parts by mass (solid content) and more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the solid content of the silicone resin composition. preferable.
  • the silicone resin composition can be thermally cured by heating.
  • the conditions for thermosetting the silicone resin composition include a method of heating at 40 ° C. to 250 ° C. for 5 minutes to 6 hours.
  • it may be cured by leaving it in an atmosphere at a temperature of 250 ° C. or lower, for example, by leaving it in an atmosphere at a temperature of 40 ° C. to 200 ° C. It may be cured.
  • the time of curing in order to remove the solvent and water present in the silicone resin composition and control the condensation reaction rate of the silicone resin, for example, at 40 ° C. to 60 ° C. for 5 minutes to 30 minutes, then
  • the curing may be carried out stepwise, such as 60 to 100 ° C. for 10 to 60 minutes, and then 140 to 200 ° C. for 30 to 5 hours.
  • thermosetting the Si-O—Si bond at 1000 to 1050 cm ⁇ 1 of the resin A alone contained in the silicone resin composition before thermosetting in an amount of 60% by mass or more based on the total mass of the solid content of the silicone resin composition.
  • the peak position of the infrared absorption spectrum derived from the origin is acm ⁇ 1
  • the peak position of the infrared absorption spectrum derived from the Si—O—Si bond at 950 to 1050 cm ⁇ 1 of the silicone resin composition after thermosetting is bcm ⁇ 1.
  • the process is performed under a condition satisfying 5 ⁇ ab ⁇ 20.
  • the polymerization of the silicone resin in the silicone resin composition is insufficient, and the crack resistance of the sealing portion of the semiconductor light emitting device tends to be insufficient.
  • ab ⁇ 20 the heat resistance of the sealing portion of the semiconductor light emitting device tends to be difficult to obtain. That is, when 5 ⁇ ab, the polymerization of the silicone resin in the silicone resin composition is sufficient, and the crack resistance of the sealing portion of the semiconductor light emitting device is good. If ab ⁇ 20, the heat resistance of the sealing portion of the semiconductor light emitting device is good.
  • the above condition may be a condition satisfying 8 ⁇ ab ⁇ 20 from the viewpoint of further improving the crack resistance of the sealing portion of the semiconductor light emitting device.
  • the peak position bcm ⁇ 1 changes depending on the thermosetting conditions.
  • the peak position bcm ⁇ 1 can be changed by changing the type and addition amount of the curing catalyst.
  • the peak position bcm ⁇ 1 can be changed by changing the temperature of thermosetting.
  • the peak position bcm ⁇ 1 can be changed by changing the composition of the resin A or the silicone resin composition.
  • the solvent concentration in the oven is 1 vol ppm or more and 1000 vol ppm or less, more preferably 1 vol ppm or more and 500 vol ppm or less, It is effective to control so that it becomes preferably 1 vol ppm or more and 100 vol ppm or less.
  • a forced air circulation type oven can be used as the oven. It is also effective to use an oven having a fan motor capacity of 0.1 W / L or more relative to the volume of the oven. It is also effective that the area of the opening of the oven is 0.1 cm 2 / L or more and 0.5 cm 2 / L or less with respect to the volume in the oven.
  • the manufacturing method of the present embodiment it is preferable to perform a preliminary experiment and set conditions satisfying 5 ⁇ ab ⁇ 20, and then manufacture a semiconductor light emitting device according to the conditions.
  • a sealing part is obtained by apply
  • the sealing portion has high crack resistance and heat resistance, and further has high adhesion to a substrate and a package, and has high barrier properties against hydrogen sulfide gas.
  • the semiconductor light-emitting device in which the semiconductor light-emitting element is sealed by the sealing portion described above is less susceptible to cracking or peeling at the interface with the substrate or package, and is a silver that is the back reflector of the semiconductor light-emitting element. It has the advantage that the film is not easily discolored and the luminance is not easily lowered over time.
  • the “semiconductor light emitting device” described in this specification includes not only a visible region but also an element that emits an electromagnetic wave in an infrared region or an ultraviolet region.
  • the semiconductor light-emitting device described in this specification includes a substrate, a silver film disposed on the substrate, a semiconductor light-emitting element disposed on the substrate, and a sealing provided to cover a surface of the semiconductor light-emitting element. A stop portion.
  • One aspect of the present invention is: Applying a silicone resin composition to the surface of the semiconductor light emitting device, and forming a sealing portion that covers the surface of the semiconductor light emitting device by thermosetting the applied silicone resin composition;
  • the silicone resin composition 60 mass% of the silicone resin in which the silicon atoms as constituent components are substantially silicon atoms having substantially three oxygen atoms bonded to the total mass of the solid content of the silicone resin composition.
  • thermosetting the peak position of the infrared absorption spectrum derived from the Si—O—Si bond at 1000 to 1050 cm ⁇ 1 of the silicone resin before thermosetting is acm ⁇ 1, and the silicone resin composition after thermosetting is When the peak position of the infrared absorption spectrum derived from the Si—O—Si bond at 950 to 1050 cm ⁇ 1 is defined as bcm ⁇ 1 , 5 ⁇ ab ⁇ 20, preferably 8 ⁇ ab ⁇ 20.
  • the heating temperature is preferably 40 ° C. to 250 ° C. and the heating time is preferably 5 minutes to 6 hours in thermosetting.
  • the peak position of the infrared absorption spectrum derived from the Si—O—Si bond at 1000 to 1050 cm ⁇ 1 of the resin 1 was measured and found to be 1016.3 cm ⁇ 1 .
  • the infrared absorption spectrum was measured under the following conditions.
  • 354 g of the above resin 1 and 190 g of isopropyl alcohol are put into a flask equipped with a return apparatus installed in a water bath, and the resin is sufficiently stirred by stirring the isopropyl alcohol at a liquid temperature of 80 to 85 ° C. Dissolved in.
  • a forced air circulation type oven was used.
  • the capacity of the fan motor relative to the volume in the oven was 0.37 W / L.
  • the area of the opening part of the oven with respect to the volume in an oven was 0.13 cm ⁇ 2 > / L.
  • the peak position of the infrared absorption spectrum derived from the Si—O—Si bond at 950 to 1050 cm ⁇ 1 of the optical semiconductor sealing member obtained in this example was measured and found to be 1002.8 cm ⁇ 1 .
  • the infrared absorption spectrum was measured in the same manner as in the above resin 1.
  • the difference between the peak position of the infrared absorption spectrum of Resin 1 and the peak position of the optical semiconductor sealing member obtained in this example was 13.5.
  • Example 2 An optical semiconductor sealing member was produced in the same manner as in Example 1 except that the following resin 3 was used instead of the resin 1 as the silicone resin.
  • the abundance ratio of each repeating unit of the resin 3 is shown in Table 3. Me in the table is a methyl group, R is a hydrogen atom or an ethyl group, and the abundance ratio of the hydrogen atom to the ethyl group is 96: 4.
  • Resin 3 is a silicone resin containing substantially only silicon atoms to which three oxygen atoms are bonded.
  • the peak position of the infrared absorption spectrum derived from the Si—O—Si bond at 1000 to 1050 cm ⁇ 1 of the resin 3 was measured and found to be 1018.2 cm ⁇ 1 .
  • the peak position of the infrared absorption spectrum derived from the Si—O—Si bond at 950 to 1050 cm ⁇ 1 of the optical semiconductor sealing member obtained in this example was measured to be 1004.7 cm ⁇ 1 . .
  • the difference between the peak position of the infrared absorption spectrum of the resin 3 and the peak position of the optical semiconductor sealing member obtained in this example was 13.5.
  • Example 3 A semiconductor sealing member was produced in the same manner as in Example 1 except that a mixture of resin 1 and the following resin D1 having a mass ratio of 70:30 was used as the silicone resin.
  • R 1 methyl group
  • R 2 methyl group
  • R 3 corresponds to a hydroxyl group.
  • Me is a methyl group, and n is an integer of 1 or more.
  • the peak position of the infrared absorption spectrum derived from the Si—O—Si bond at 1000 to 1050 cm ⁇ 1 of the resin 1 was 1016.3 as described above.
  • the peak position of the infrared absorption spectrum derived from the Si—O—Si bond at 950 to 1050 cm ⁇ 1 of the optical semiconductor sealing member obtained in this example was measured to be 1004.7 cm ⁇ 1 . .
  • the difference between the peak position of the infrared absorption spectrum of the resin 1 and the peak position of the optical semiconductor sealing member obtained in this example was 11.6.
  • Example 4 A semiconductor sealing member was produced in the same manner as in Example 3 except that a mixture of the resin 1 and the resin D1 having a mass ratio of 60:40 was used as the silicone resin.
  • the peak position of the infrared absorption spectrum derived from the Si—O—Si bond at 1000 to 1050 cm ⁇ 1 of the resin 1 was 1016.3 as described above.
  • the peak position of the infrared absorption spectrum derived from the Si—O—Si bond at 950 to 1050 cm ⁇ 1 of the optical semiconductor sealing member obtained in this example was measured to be 1004.7 cm ⁇ 1 . .
  • the difference between the peak position of the infrared absorption spectrum of the resin 1 and the peak position of the optical semiconductor sealing member obtained in this example was 11.6.
  • the abundance ratio of each repeating unit of the resin 4 is shown in Table 4. Me in the table is a methyl group, R is a hydrogen atom or a methyl group, and the abundance ratio of the hydrogen atom to the methyl group is 76:24.
  • the peak position of the infrared absorption spectrum derived from the Si—O—Si bond at 1000 to 1050 cm ⁇ 1 of the resin 4 was measured and found to be 1006.7 cm ⁇ 1 . Further, the peak position of the infrared absorption spectrum derived from the Si—O—Si bond at 950 to 1050 cm ⁇ 1 of the optical semiconductor sealing member obtained in this comparative example was measured to be 1004.7 cm ⁇ 1 . . Moreover, the difference between the peak position of the infrared absorption spectrum of the resin 4 and the peak position of the optical semiconductor sealing member obtained in this comparative example was 2.0.
  • the peak position of the infrared absorption spectrum derived from the Si—O—Si bond at 1000 to 1050 cm ⁇ 1 of the resin 6 was measured and found to be 1016.3 cm ⁇ 1 .
  • the peak position of the infrared absorption spectrum derived from the Si—O—Si bond at 950 to 1050 cm ⁇ 1 of the optical semiconductor sealing member obtained in this Comparative Example was measured to be 1012.4 cm ⁇ 1 .
  • the difference between the peak position of the infrared absorption spectrum of the resin 6 and the peak position of the optical semiconductor sealing member obtained in this comparative example was 3.9.
  • the abundance ratio of each repeating unit of the resin 6 is shown in Table 6. Me in the table is a methyl group, R is a hydrogen atom or an ethyl group, and the abundance ratio of the hydrogen atom to the ethyl group is 90:10.
  • the resin 6 is a silicone resin containing substantially only silicon atoms to which three oxygen atoms are bonded.
  • the peak position of the infrared absorption spectrum derived from the Si—O—Si bond at 1000 to 1050 cm ⁇ 1 of the resin 6 was measured and found to be 1022.1 cm ⁇ 1 .
  • the peak position of the infrared absorption spectrum derived from the Si—O—Si bond at 950 to 1050 cm ⁇ 1 of the optical semiconductor sealing member obtained in this comparative example was measured to be 1000.9 cm ⁇ 1 . .
  • the difference between the peak position of the infrared absorption spectrum of the resin 6 and the peak position of the optical semiconductor sealing member obtained in this comparative example was 21.2.
  • Example 5 to 9 An optical semiconductor sealing member was obtained in the same manner as in Example 1 except that the amount of the curing catalyst was changed as shown in Table 8.
  • Example 10 to 11 An optical semiconductor sealing member was obtained in the same manner as in Example 1 except that the amount of the curing catalyst was changed as shown in Table 8 and thermal curing was performed as follows.
  • the amount of catalyst added is indicated by mass% of the catalyst (solid content) with respect to the silicone resin composition (including the solvent).
  • Thermosetting was performed by raising the temperature in an oven to 40 ° C. over 10 minutes and then allowing it to stand for 10 minutes, and then raising the temperature to 200 ° C. over 30 minutes and then leaving it for 5 hours.
  • Example 12 to 17 An optical semiconductor sealing member was obtained in the same manner as in Example 1 except that the amount of the curing catalyst was changed as shown in Table 8.
  • a curing catalyst a 0.5 mass% methanol solution of aluminum acetylacetonate (Wako Pure Chemicals, 343-00082) was used.
  • Example 18 to 22 An optical semiconductor sealing member was obtained in the same manner as in Example 1 except that the amount of the curing catalyst was changed as shown in Table 8.
  • a curing catalyst a 15% by mass 2-butoxyethyl acetate solution of a mixture of dimethyl phosphate and monomethyl phosphate (product name: AP-1 manufactured by Daihachi Chemical Industry Co., Ltd.) was used.
  • Thermosetting was performed by raising the temperature in an oven to 40 ° C. over 10 minutes and then allowing it to stand for 10 minutes, and then raising the temperature to 200 ° C. over 30 minutes and then leaving it for 5 hours.
  • FIG. 1 shows a graph of measurement results of light transmittance of the optical semiconductor sealing members of Example 1 and Comparative Example 3. The light transmittance was measured under the following conditions.
  • the present invention is extremely industrially useful because an optical semiconductor light-emitting device including a sealing part with improved crack resistance and heat resistance formed from a cured product of a silicone resin composition can be produced.
  • DESCRIPTION OF SYMBOLS 100 ... Semiconductor light-emitting device, 110 ... Board

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Led Device Packages (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Silicon Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 半導体発光素子の表面にシリコーン樹脂組成物を塗布する工程と、この塗布されたシリコーン樹脂組成物を熱硬化させることによりこの半導体発光素子の表面を覆う封止部を形成する工程と、を含み;このシリコーン樹脂組成物は、構成成分のケイ素原子が、実質的に酸素原子が3つ結合したケイ素原子のみであるシリコーン樹脂を、このシリコーン樹脂組成物の固形分の総質量に対して60質量%以上含み;この熱硬化は、熱硬化前のこのシリコーン樹脂の1000~1050cm-1におけるSi-O-Si結合由来の赤外吸収スペクトルのピーク位置をacm-1とし、熱硬化後のこのシリコーン樹脂組成物の950~1050cm-1におけるSi-O-Si結合由来の赤外吸収スペクトルのピーク位置をbcm-1としたとき、5<a-b<20を満たす条件で行われる、半導体発光装置の製造方法。

Description

半導体発光装置の製造方法
 本発明は、半導体発光装置の製造方法に関する。
 本願は、2014年7月28日に、日本に出願された特願2014-152879号に基づき優先権を主張し、その内容をここに援用する。
 近年、半導体発光素子の封止材としてシリコーン樹脂組成物の硬化物を用いることが提案されている。しかしながら、シリコーン樹脂組成物の硬化物は、ガス透過性が高く、空気中の硫化水素ガスのバリア性が低い。このため、シリコーン樹脂組成物の硬化物を用いて封止した場合、封止された半導体発光素子の背面反射板である銀膜が空気中の硫化水素によって腐食され、半導体発光素子の輝度が低下するという問題がある。
 上記問題を解決するシリコーン樹脂組成物として、硬化後のシリコーン樹脂組成物の屈折率が1.50~1.55のシリコーン樹脂と、シリコーン樹脂中に1~30質量%の濃度で均一に分散された平均粒子径1~10μmの酸化ケイ素フィラーからなることを特徴とする硬化性シリコーン樹脂組成物が提案されている(特許文献1参照。)。
特開2012-41496号公報
 しかしながら、特許文献1に記載のシリコーン樹脂組成物は、耐クラック性及び耐熱性が十分ではない場合がある。
 本発明は、上記課題に鑑みてなされたものであり、シリコーン樹脂組成物の硬化物から形成された耐クラック性及び耐熱性が向上した封止部を備える、光半導体発光装置の製造方法を提供することを目的とする。
 本発明者らは、シリコーン樹脂組成物を熱硬化させると、Si-O-Si結合由来の赤外吸収スペクトルの所定のピークの位置が変化することを見出した。更に、所定のシリコーン樹脂組成物を材料に用い、前記シリコーン樹脂組成物を熱硬化させた場合の上記ピークの位置の変化量を、所定の範囲に制御することにより、シリコーン樹脂組成物の硬化物(即ち、光半導体発光装置の封止部又は光半導体封止用部材)の耐クラック性及び耐熱性を向上させることができることを見出し、本発明を完成させた。
 即ち、本発明の一態様は、半導体発光素子の表面に塗布されたシリコーン樹脂組成物を熱硬化させ、前記半導体発光素子の表面を覆って設けられた封止部を形成する工程を含み、前記シリコーン樹脂組成物の60質量%以上は、構成成分のケイ素原子が、実質的に酸素原子が3つ結合したケイ素原子のみであるシリコーン樹脂であり、前記熱硬化は、前記シリコーン樹脂の1000~1050cm-1におけるSi-O-Si結合由来の赤外吸収スペクトルのピーク位置acm-1と、熱硬化後の前記シリコーン樹脂組成物の950~1050cm-1におけるSi-O-Si結合由来の赤外吸収スペクトルのピーク位置bcm-1とが、5<a-b<20を満たす条件で行われる、半導体発光装置の製造方法を提供する。
 本発明の一態様においては、前記条件が、8<a-b<20を満たす条件としてもよい。
 即ち、本発明は以下に関する。
[1]半導体発光素子の表面にシリコーン樹脂組成物を塗布する工程と、
前記塗布されたシリコーン樹脂組成物を熱硬化させることにより前記半導体発光素子の表面を覆う封止部を形成する工程と、を含み;
 前記シリコーン樹脂組成物は、構成成分のケイ素原子が、実質的に酸素原子が3つ結合したケイ素原子のみであるシリコーン樹脂を、前記シリコーン樹脂組成物の固形分の総質量に対して60質量%以上含み;
 前記熱硬化は、熱硬化前の前記シリコーン樹脂の1000~1050cm-1におけるSi-O-Si結合由来の赤外吸収スペクトルのピーク位置をacm-1とし、熱硬化後の前記シリコーン樹脂組成物の950~1050cm-1におけるSi-O-Si結合由来の赤外吸収スペクトルのピーク位置をbcm-1としたとき、5<a-b<20を満たす条件で行われる、
 半導体発光装置の製造方法。
[2]前記条件が、8<a-b<20を満たす条件である、[1]に記載の製造方法。
 本発明に係る製造方法は、シリコーン樹脂組成物の硬化物から形成された耐クラック性及び耐熱性が向上した封止部を備える、光半導体発光装置を製造するうえで有用である。
本発明に係る光半導体封止用部材の光透過率の測定結果を示すグラフである。 本発明に係る光半導体発光装置の断面図である。
 以下、本発明を詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内であれば種々に変更して実施することができる。
 本発明は、一実施形態として、半導体発光素子の表面に塗布されたシリコーン樹脂組成物を熱硬化させ、前記半導体発光素子の表面を覆って設けられた封止部を形成する工程を含み、前記シリコーン樹脂組成物の60質量%以上は、構成成分のケイ素原子が、実質的に酸素原子が3つ結合したケイ素原子のみであるシリコーン樹脂であり、前記熱硬化は、前記シリコーン樹脂の1000~1050cm-1におけるSi-O-Si結合由来の赤外吸収スペクトルのピーク位置acm-1と、熱硬化後の前記シリコーン樹脂組成物の950~1050cm-1におけるSi-O-Si結合由来の赤外吸収スペクトルのピーク位置bcm-1とが、5<a-b<20を満たす条件で行われる、光半導体発光装置の製造方法を提供する。
 本願発明の別の側面は、導体発光素子の表面にシリコーン樹脂組成物を塗布することと、前記塗布されたシリコーン樹脂組成物を熱硬化させることにより前記半導体発光素子の表面を覆う封止部を形成すること、を含み;
 前記シリコーン樹脂組成物は、構成成分のケイ素原子が、実質的に酸素原子が3つ結合したケイ素原子のみであるシリコーン樹脂を、前記シリコーン樹脂組成物の固形分の総質量に対して60質量%以上含み;
 前記熱硬化は、熱硬化前の前記シリコーン樹脂の1000~1050cm-1におけるSi-O-Si結合由来の赤外吸収スペクトルのピーク位置をacm-1とし、熱硬化後の前記シリコーン樹脂組成物の950~1050cm-1におけるSi-O-Si結合由来の赤外吸収スペクトルのピーク位置をbcm-1としたとき、5<a-b<20を満たす条件で行われる、
 光半導体発光装置の製造方法である。
 本発明の一実施形態である光半導体発光装置の製造方法においては、構成成分であるケイ素原子が、実質的に酸素原子が3つ結合したケイ素原子のみであるシリコーン樹脂(以下、「樹脂A」という場合がある。)を、60質量%以上含むシリコーン樹脂組成物を、光半導体発光装置の封止部(以下、光半導体封止用部材ということもある。)の材料として用いる。ここで、「60質量%以上」とは、シリコーン樹脂組成物の固形分の総質量に対して、樹脂Aを60質量%以上含むことを意味する。シリコーン樹脂組成物は、シリコーン樹脂組成物の固形分の総質量に対して、樹脂Aを80質量%以上、100質量%以下含むことがより好ましく、90質量%以上、100質量%以下含むことが更に好ましく、95質量%以上、100質量%以下含むことが特に好ましい。以下、シリコーン樹脂組成物について説明する。
[シリコーン樹脂組成物]
(シリコーン樹脂)
 一般的に、シリコーン樹脂は下記式の繰り返し単位を含んでいる。下記式中、Rはアルキル基又はアリール基を表し、Rはそれぞれ独立してアルコキシ基、アルケニル基、水素原子、又は水酸基を表す。
Figure JPOXMLDOC01-appb-C000001
 本明細書では、他のケイ素原子と結合している酸素原子3個及びRと結合しているケイ素原子を含む繰り返し単位を、繰り返し単位A3(上記式(A3))という。
 同様に、他のケイ素原子と結合している酸素原子2個、R及びRと結合しているケイ素原子を含む繰り返し単位を、繰り返し単位A2(上記式(A2))という。
 また、他のケイ素原子と結合している酸素原子1個、R及び2個のRと結合しているケイ素原子を含む繰り返し単位を、繰り返し単位A1(上記式(A1))という。
 繰り返し単位A1は、オルガノポリシロキサン鎖の末端を構成している。また、繰り返し単位A3は、1又は2本のオルガノポリシロキサン鎖による分岐鎖構造を構成している。つまり、繰り返し単位A3は、樹脂の網目構造や環構造の一部を形成している。
 本発明の一実施形態の製造方法において用いられる、「構成成分のケイ素原子が、実質的に酸素原子が3つ結合したケイ素原子のみであるシリコーン樹脂(樹脂A)」とは、実質的に、(1)上記繰り返し単位A3、(2)上記繰り返し単位A2においてRがアルコキシ基又は水酸基である繰り返し単位、及び(3)上記繰り返し単位A1においてRがアルコキシ基又は水酸基である繰り返し単位からなる群から選択される少なくとも1つの繰り返し単位のみから構成されるシリコーン樹脂を意味する。
 ここで、「実質的に」とは、シリコーン樹脂の製造上排除することが困難な上記(1)、(2)又は(3)の繰り返し単位以外の繰り返し単位の混入を許容する意味である。例えば、シリコーン樹脂を構成する繰り返し単位の総モル数に対して95モル%以上が上記(1)、(2)又は(3)の繰り返し単位であればよい。
 樹脂Aは、好ましくは下記式(1)で表されるオルガノポリシロキサン構造を有する。
 下記式(1)中、複数あるR及びRは、それぞれ同種の基であってもよく、互いに異なる基であってもよい。下記式(1)中、Rはそれぞれ独立してアルキル基又はアリール基を表し、Rはそれぞれ独立してアルコキシ基又は水酸基を表し、p、q、r、a及びbは、それぞれ独立して0以上の整数を表し、p、q、r、a及びbは、同時に0とはならなず、[a×q]/[(p+b×q)+a×q+(r+q)]=0.5~1.0となる関係が好ましい。
Figure JPOXMLDOC01-appb-C000002
 以下、上記式(1)のR及びRについてより詳細に説明する。
 Rがアルキル基の場合、前記アルキル基は、直鎖状であってもよく、分岐鎖状であってもよく、環状構造を有していてもよい。また、前記アルキル基の炭素数は特に限定されるものではなく、例えば炭素数1~10が好ましく、炭素数1~6がより好ましく、炭素数1~3が特に好ましい。
 前記アルキル基は、前記基を構成する1又は2以上の水素原子が、他の基で置換されていてもよい。前記アルキル基の置換基としては、例えば、フェニル基、ナフチル基等の炭素数6~10のアリール基が挙げられる。
 Rで表されるアルキル基としては、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、オクチル基、ノニル基、デシル基等の無置換のアルキル基、フェニルメチル基、フェニルエチル基、フェニルプロピル基等のアラルキル基が挙げられる。
 Rがアリール基の場合、前記アリール基としては、例えば炭素数6~10のアリール基が挙げられる。また、前記アリール基は、前記基を構成する1又は2以上の水素原子が、他の基で置換されていてもよい。前記アリール基の置換基としては、例えば、メチル基、エチル基、プロピル基、ブチル基等の炭素数1~6のアルキル基が挙げられる。
 Rで表されるアリール基としては、具体的には、フェニル基、ナフチル基等の無置換のアリール基;メチルフェニル基、エチルフェニル基、プロピルフェニル基等のアルキルフェニル基のようなアルキルアリール基等が挙げられる。
 Rはそれぞれ独立してアルコキシ基又は水酸基を表す。Rがアルコキシ基の場合、前記アルコキシ基は、直鎖状であってもよく、分岐鎖状であってもよく、環状構造を有していてもよい。また、前記アルコキシ基の炭素数は特に限定されるものではないが、例えば炭素数1~4が好ましい。Rで表されるアルコキシ基としては、具体的には、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、tert-ブトキシ基が挙げられる。
 樹脂Aとしては、特に、前記式(1)で表されるオルガノポリシロキサン構造を有する樹脂であって、Rとしてメチル基、エチル基、及びフェニル基からなる群より選択される少なくとも1つの基を有しており、Rとしてメトキシ基、エトキシ基、イソプロポキシ基、及び水酸基からなる群より選択される少なくとも1つの基を有している樹脂が好ましく;Rとしてメチル基及びエチル基からなる群から選択される少なくとも1つの基を有しており、Rとしてメトキシ基、エトキシ基、イソプロポキシ基、及び水酸基からなる群より選択される少なくとも1つの基を有している樹脂がより好ましく;Rとしてメチル基及びエチル基からなる群から選択される少なくとも1つの基を有しており、Rとしてメトキシ基、エトキシ基、及びイソプロポキシ基からなる群より選択される少なくとも1つの基と水酸基とを有している樹脂が更に好ましい。
 樹脂Aの重量平均分子量は、例えば1500~8000である。重量平均分子量が上記の範囲であると、得られる光半導体封止用部材は、耐クラック性及び耐熱性の向上に加えて、硫化水素ガスに対するバリア性が向上する傾向がある。樹脂Aの重量平均分子量は、1500~7000が好ましく、2000~5000がより好ましい。
 重量平均分子量は、一般的にゲルパーメーションクロマトグラフィー(GPC)法により測定した値を用いることができる。具体的には、測定対象の高分子サンプルを可溶性の溶媒に溶かした後、細孔(ポア)が数多く存在する充てん剤を用いたカラム内に移動相溶液と共に通液し、カラム内で分子量の大小によって分離させ、それを示差屈折率計やUV計、粘度計、光散乱検出器等を検出器として用いて検出する。重量平均分子量は、標準ポリスチレン換算値で表示することが一般的である。本明細書における重量平均分子量は、この標準ポリスチレン換算値で表示されたものである。使用するカラムは、想定される分子量にしたがって適宜選択すればよい。
 GPC測定において、シリコーン樹脂又はシリコーンオリゴマーを溶解させるために使用する溶媒としては、GPC測定に用いる移動相溶媒と同一溶媒が好ましく、具体的にはテトラヒドロフラン、クロロホルム、トルエン、キシレン、ジクロロメタン、ジクロロエタン、メタノール、エタノール、イソプロピルアルコール等が挙げられる。
 樹脂Aは、上述した各繰り返し単位に対応し、シロキサン結合を生じ得る官能基を有する有機ケイ素化合物を出発原料として合成することができる。例えば、繰り返し単位A3に対応する有機ケイ素化合物としては、オルガノトリハロシランやオルガノトリアルコキシラン等を出発原料とすることができる。シリコーン樹脂は、このような出発原料を、各繰り返し単位の存在比に対応した比で、加水分解縮合法で反応させることにより、合成することができる。また、こうして合成されたシリコーン樹脂は工業的に市販されている。
 本発明の一実施形態である半導体発光装置の製造方法において、光半導体封止用部材の材料として用いるシリコーン樹脂組成物は、シリコーン樹脂組成物の固形分の総質量に対して、樹脂Aを60質量%以上含んでいる限り、他の成分を含んでいてもよい。他の成分としては、例えば、シリコーンオリゴマー、無機粒子、蛍光体、シランカップリング剤、硬化用触媒等が挙げられる。
(シリコーンオリゴマー)
 シリコーンオリゴマーには特に制限はなく、例えば、下記式(2)で表されるオルガノポリシロキサン構造を有するものが挙げられる。前記式(2)中、複数あるR又はRは、それぞれ同種の基であってもよく、互いに異なる基であってもよい。前記式(2)中、Rはそれぞれ独立してアルキル基又はアリール基を表し、Rはそれぞれ独立してアルキル基、アリール基、アルコキシ基又は水酸基を表し、Rはそれぞれ独立してアルコキシ基又は水酸基を表し、p、q、r、a及びbはそれぞれ独立して0以上の整数を表し、p、q、r、a及びbは同時に0にはならず、[p+b×q]/[(p+b×q)+a×q+(r+q)]の値が、0.3~0.7の範囲内となる関係が好ましい。
 Rとしてのアルキル基は、炭素数1~3のアルキル基が好ましく、具体的にはメチル基、エチル基、プロピル基、イソプロピル基が挙げられる。Rとしてのアリール基は、炭素数6~10のアリール基が好ましく、具体的にはフェニル基、ナフチル基、メチルフェニル基が挙げられる。
 Rとしてのアルコキシ基は、炭素数1~4のアルコキシ基が好ましく、具体的にはメトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、tert-ブトキシ基が挙げられる。
 Rとしてのアルコキシ基は、炭素数1~4のアルコキシ基が好ましく、具体的にはメトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、tert-ブトキシ基が挙げられる。
Figure JPOXMLDOC01-appb-C000003
 シリコーンオリゴマーの重量平均分子量は、例えば1500未満であればよい。シリコーンオリゴマーの重量平均分子量が上記の範囲であると、得られる光半導体封止用部材の耐クラック性が更に向上する傾向がある。シリコーンオリゴマーの重量平均分子量は、200以上1500未満が好ましく、250~1000がより好ましい。
 シリコーン樹脂組成物に上記のシリコーンオリゴマーを配合することにより、光半導体封止用部材のガスバリア性を損なうことなく、耐クラック性及び密着性がより向上する傾向がある。シリコーンオリゴマーの添加により、得られる光半導体封止用部材の耐クラック性及び他の材質との密着性が向上する理由は明らかではないが、低分子のシリコーンオリゴマーが、樹脂Aの高分子間を架橋するように結合する結果、可とう性が向上すると共に、シリコーンオリゴマー中の官能基により樹脂全体の極性が増加することによって、他の材質との接着力が向上するためと推察される。
 シリコーンオリゴマーは、上述した各繰り返し単位に対応し、シロキサン結合を生じ得る官能基を有する有機ケイ素化合物を出発原料として合成することができる。例えば、繰り返し単位A3に対応する有機ケイ素化合物としては、オルガノトリハロシランやオルガノトリアルコキシラン等を出発原料とすることができる。シリコーンオリゴマーは、このような出発原料を、各繰り返し単位の存在比に対応した比で、加水分解縮合法で反応させることにより、合成することができる。また、こうして合成されたシリコーンオリゴマーは工業的に市販されている。
 シリコーンオリゴマーの含有量(固形分)は、シリコーン樹脂組成物の固形分100質量部に対して0~40質量部であればよい。
 樹脂Aとシリコーンオリゴマーとの混合方法は特に限定されず、2種類以上の高分子化合物を混合する際に通常行われる公知の方法のいずれを用いてもよい。例えば、樹脂Aとシリコーンオリゴマー(所望によりその他の樹脂を含む)を同時に又は順次に有機溶媒に溶解することで混合することができる。
 好ましくは、より均一に混合させることができ、かつその後の樹脂溶液(即ち、樹脂Aとシリコーンオリゴマーとを溶解させた溶液)の安定性を向上させられる観点から、樹脂A等を一旦揮発性及び溶解性が高い有機溶媒中で溶解した後、別の溶媒に置換することが好ましい。具体的には、まず、揮発性の高い有機溶媒(以下、有機溶媒P)中に樹脂Aを投入し、有機溶媒Pの沸点付近の温度まで加熱し攪拌させることによって溶解させる。次いで、シリコーンオリゴマーを投入して同様にして混合溶解させる。その後、有機溶媒Pよりも揮発性が低い溶媒(以下、溶媒Q)を投入し、有機溶媒Pの濃度が1%以下になるまで加熱することによって、有機溶媒Pから溶媒Qへの溶媒置換を行うことができる。その際、より効率的に溶媒置換を行う手段として、容器内を減圧にした状態で加熱してもよい。
 このような処理を行うことにより、樹脂Aやシリコーンオリゴマーを合成した際に使用した残存溶媒や未反応のまま残った水等が溶媒置換を行うことで同伴して除去することができ、樹脂溶液の安定性に有効である。
 有機溶媒Pとしては、沸点が100℃未満の有機溶媒が好ましい。具体的には、アセトン、メチルエチルケトン等のケトン系溶媒;メタノール、エタノール、イソプロピルアルコール、ノルマルプロピルアルコール等のアルコール系溶媒;ヘキサン、シクロヘキサン、ヘプタン、ベンゼン等の炭化水素系溶媒;酢酸メチル、酢酸エチル等の酢酸エステル系溶媒;ジエチルエーテル、テトラヒドロフラン等のエーテル系溶媒が挙げられる。これらの中でも、アルコール系溶媒が好ましい。
 溶媒Qとしては、沸点が100℃以上の有機溶媒が好ましい。具体的には、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノエチルヘキシルエーテル、エチレングリコールモノフェニルエーテル、エチレングリコールモノベンジルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノヘキシルエーテル、ジエチレングリコールモノエチルヘキシルエーテル、ジエチレングリコールモノフェニルエーテル、ジエチレングリコールモノベンジルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノイソプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノヘキシルエーテル、プロピレングリコールモノエチルヘキシルエーテル、プロピレングリコールモノフェニルエーテル、プロピレングリコールモノベンジルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノイソプロピルエーテル、ジプロピレングリコールモノブチルエーテル、ジプロピレングリコールモノヘキシルエーテル、ジプロピレングリコールモノエチルヘキシルエーテル、ジプロピレングリコールモノフェニルエーテル、ジプロピレングリコールモノベンジルエーテル等のグリコールエーテル系溶媒;エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノイソプロピルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、エチレングリコールモノヘキシルエーテルアセテート、エチレングリコールモノエチルヘキシルエーテルアセテート、エチレングリコールモノフェニルエーテルアセテート、エチレングリコールモノベンジルエーテルアセテート等の、前記記載のグリコールエーテル系溶媒に酢酸基を付加させた、グリコールエステル系溶媒等が挙げられる。これらの中でも、グリコールエステル系が好ましい。
(無機粒子、蛍光体)
 シリコーン樹脂組成物に、光によって蛍光を発する蛍光体又は無機粒子を含有させてもよい。これにより、得られる光半導体封止用部材は、発光素子からの光の強度を高めることが可能になる。上記無機粒子は、光半導体封止用部材中で光を散乱させて蛍光体を効果的に励起させると共に、蛍光体がシリコーン樹脂組成物中で沈降することを防止する。
 シリコーン樹脂組成物に蛍光体及び無機粒子を混合させる場合、蛍光体は沈降しやすいため、あらかじめ無機粒子を混合させておき、蛍光体を混合した後に、速やかに光半導体素子の封止に供することが好ましい。
 無機粒子としては、ケイ素、チタン、ジルコニウム、アルミニウム、鉄、亜鉛等の酸化物;カーボンブラック、チタン酸バリウム、ケイ酸カルシウム、炭酸カルシウム等が好ましい。中でもケイ素の酸化物、チタンの酸化物、及びアルミニウムの酸化物よりが好ましい。
 無機粒子の形状としては、略球状、板状、柱状、針状、ウィスカー状、繊維状等が挙げられる。
 無機粒子の組成は1種類のみであってもよく、2種類以上であってもよい。また、2種類以上の粒径の無機粒子を含むことが好ましく、一次粒子の平均粒子径が100~500nmである無機粒子Aと、一次粒子の平均粒子径が5nm以上、100nm未満である無機粒子Bの少なくとも2種類を含むことがより好ましい。一次粒子の平均粒径が異なる2種類以上の無機粒子を含むことにより、光の散乱による蛍光体の励起効率がより向上し、蛍光体の沈降防止に効果を発揮することができる。
 ここで一次粒子の平均粒子径は、電子顕微鏡等により直接粒子を観察する画像イメージング法等により求めることができる。具体的には、測定対象となる無機粒子を任意の溶媒に、超音波等を照射して充分に分散させた液をスライドガラス等に滴下乾燥させたもの、又は接着テープの接着面に直接無機粒子を振りかける等により付着させたものを、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)等により観察し、その形状から寸法を割り出すことによって得られる。例えば、無機粒子の投影面積を求め、この面積に相当する円の直径を求めて粒子径としてもよい。この場合、例えば、100個以上(好ましくは100個)の粒子について粒子径を求め算術平均することにより平均粒子径とするとよい。
 無機粒子の含有量には特に制限はなく、例えば、シリコーン樹脂組成物の固形分100質量部に対して、0.01~100質量であってもよく、0.1~50質量部であってもよい。
 また、蛍光体の組成や種類には特に制限はなく、例えば、波長570~700nmの範囲で蛍光を発する赤色蛍光体、490~570nmの範囲で蛍光を発する緑色蛍光体、420~480nmの範囲で蛍光を発する青色蛍光体等が挙げられる。また、明るさや色度によって複数の蛍光体を混合させることもできる。蛍光体の含有量には特に制限はなく、発光素子の光量や、半導体発光装置として必要な色度や明るさによって適宜調整することができる。蛍光体の含有量としては、例えば、シリコーン樹脂組成物の固形分100質量部に対して、5~40質量が好ましい。
(シランカップリング剤)
 シランカップリング剤は、シリコーン樹脂組成物の硬化物と半導体発光素子やパッケージとの密着性を向上させる効果がある。シランカップリング剤としては、ビニル基、エポキシ基、スチリル基、メタクリル基、アクリル基、アミノ基、ウレイド基、メルカプト基、スルフィド基及びイソシアネート基からなる群から選ばれる少なくとも一つの基を有するシランカップリング剤が好ましく、中でもエポキシ基及びメルカプト基からなる群から選ばれる少なくとも1つの基を含むカップリング剤が好ましい。
シランカップリング剤としては、具体的には2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、及び3-メルカプトプロピルトリメトキシシランが好ましい。
 シランカップリング剤の含有量は、シリコーン樹脂組成物の固形分100質量部に対して、例えば0.0001~1.0質量部であってもよく、例えば0.001~0.5質量部であってもよい。
  前記シランカップリング剤は、シリコーン樹脂組成物に混合してもよいが、半導体発光素子やパッケージの表面に予め前記シランカップリング剤をコーティングや浸漬処理により付着させておき、その後シリコーン樹脂組成物をポッティング等で形成し、硬化させてもよい。
(硬化用触媒)
 硬化用触媒としては、シリコーン樹脂成分の架橋反応を促進し得るものであれば特に制限はない。例えば、塩酸、硫酸、硝酸、リン酸等の無機酸;蟻酸、酢酸、蓚酸、クエン酸、プロピオン酸、酪酸、乳酸、コハク酸等の有機酸;水酸化アンモニウム、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム等のアルカリ性化合物等が挙げられる。中でも、リン酸、酢酸が好ましい。
 硬化用触媒は、所定の濃度で添加するために、有機溶媒、シリコーン樹脂組成物に馴染みやすいシリコーンモノマーやシリコーンオリゴマー等により希釈した状態でシリコーン樹脂組成物に添加させることができる。
 硬化用触媒の含有量は、シリコーン樹脂組成物の硬化反応時の加熱温度、反応時間、触媒の種類等を考慮して、適宜調整することができる。シリコーン樹脂組成物の固形分100質量部に対する硬化用触媒の含有量は、例えば0.0005~20質量部が好ましく、0.001~10質量部がより好ましい。硬化用触媒は、硬化反応を行う直前にシリコーン樹脂組成物に添加してもよいし、シリコーン樹脂組成物に元々含有させていてもよい。
(その他の添加物)
 シリコーン樹脂組成物は、更に、樹脂A及びシリコーンオリゴマーとは異なる改質用シリコーン化合物、並びに添加剤を含んでいてもよい。
 改質用シリコーン化合物としては、工業的に市販されている一般的なシリコーン化合物を挙げることができる。改質用シリコーン化合物を加えることにより、例えば、光半導体封止用部材に柔軟性を付与することができる。
 シリコーン樹脂組成物における改質用シリコーン化合物の含有量は、シリコーン樹脂組成物の固形分100質量部に対して、例えば0.1~20質量部(固形分)が好ましく、0.5~10質量部がより好ましい。
 上記の添加剤としては、シリコーン樹脂組成物の混合時に発生する気泡を抑制させるための消泡剤等が挙げられる。シリコーン樹脂組成物における消泡剤の含有量は、シリコーン樹脂組成物の固形分100質量部に対して、0.01~5質量部(固形分)が好ましく、0.01~1質量部がより好ましい。
[シリコーン樹脂組成物を熱硬化させる工程]
 シリコーン樹脂組成物は、加熱することにより熱硬化させることができる。シリコーン樹脂組成物を熱硬化させるための条件としては、例えば40℃~250℃で5分間~6時間、加熱する方法が挙げられる。例えば、シリコーン樹脂組成物に硬化用触媒を加えた後、250℃以下の温度の雰囲気内に放置することによって硬化させてもよく、例えば40℃~200℃の温度の雰囲気内に放置することによって硬化させてもよい。また、硬化の際には、シリコーン樹脂組成物中に存在する溶媒や水を除去し、シリコーン樹脂の縮合反応速度を制御するために、例えば、40℃~60℃で5分間~30分間、次いで60℃~100℃で10分間~60分間、その後140℃~200℃で30分間~5時間というように、段階的に硬化させてもよい。
 熱硬化は、熱硬化前のシリコーン樹脂組成物中に、シリコーン樹脂組成物の固形分の総質量に対して60質量%以上含まれる樹脂A単体の1000~1050cm-1におけるSi-O-Si結合由来の赤外吸収スペクトルのピーク位置をacm-1とし、熱硬化後の上記シリコーン樹脂組成物の950~1050cm-1におけるSi-O-Si結合由来の赤外吸収スペクトルのピーク位置をbcm-1としたとき、5<a-b<20を満たす条件で行う。5<a-bであると、シリコーン樹脂組成物中のシリコーン樹脂の重合が不足し、半導体発光装置の封止部の耐クラック性が十分に得られにくい傾向がある。また、a-b<20であると、半導体発光装置の封止部の耐熱性が十分に得られにくい傾向がある。即ち、5<a-bであると、シリコーン樹脂組成物中のシリコーン樹脂の重合が充分であり、半導体発光装置の封止部の耐クラック性が良好となる。また、a-b<20であれば、半導体発光装置の封止部の耐熱性が良好となる。上記条件は、半導体発光装置の封止部の耐クラック性が更に向上する観点から、8<a-b<20を満たす条件であってもよい。
 上記のピーク位置bcm-1は、熱硬化の条件によって変化する。例えば、硬化用触媒の種類や添加量を変化させることにより、上記のピーク位置bcm-1を変化させることができる。あるいは、熱硬化の温度を変えることによっても上記のピーク位置bcm-1を変化させることができる。あるいは、樹脂Aやシリコーン樹脂組成物の組成を変えることによっても上記のピーク位置bcm-1を変化させることができる。
 硬化用触媒の量を増やす、熱硬化の温度を高める等の、シリコーン樹脂組成物をより速く硬化させる条件では、上記のa-bの値が大きくなる傾向にある。
 上記の5<a-b<20を満たすためには、オーブン内で熱硬化させる工程において、オーブン内の溶媒濃度を1vol ppm以上、1000vol ppm以下、より好ましくは1vol ppm以上、500vol ppm以下、更に好ましくは1vol ppm以上、100vol ppm以下となるように制御することが有効である。上記の溶媒濃度を達成するためには、例えば、オーブンとして強制送風循環式のオーブンを使用することが挙げられる。また、オーブン内の容積に対してファンのモーターの容量が0.1W/L以上のオーブンを使用することも有効である。また、オーブン内の容積に対してオーブンの開口部の面積が0.1cm/L以上、0.5cm/L以下とすることも有効である。
 本実施形態の製造方法においては、予備実験を行って、5<a-b<20を満たす条件を設定したうえで、その条件にしたがって半導体発光装置を製造するとよい。
[封止部]
 封止部は、シリコーン樹脂組成物を基板上の半導体発光素子に塗布し、その後前記塗布されたシリコーン樹脂組成物を硬化させることにより得られる。即ち、本願発明の一実施形態である半導体発光装置の製造方法によれば、封止部で封止された半導体発光素子を備える半導体発光装置を製造することができる。上記の封止部は、耐クラック性や耐熱性が高く、更に基板やパッケージとの密着性が高く、かつ硫化水素ガスに対するバリア性が高い。このため、上記の封止部により半導体発光素子が封止されている半導体発光装置は、基板やパッケージとの界面でクラックやハガレが発生しにくい上に、半導体発光素子の背面反射板である銀膜が変色しにくく、経時的な輝度低下が生じにくいという利点を備える。
 なお、本明細書に記載する「半導体発光装置」とは、可視領域だけでなく、赤外領域や紫外領域の電磁波を放射する素子を含む。
 本明細書に記載する半導体発光装置は、基板と、前記基板上に配置された銀膜と、前記基板上に配置された半導体発光素子と、前記半導体発光素子の表面を覆って設けられた封止部と、を含む。
 本発明の一つの側面は、
 半導体発光素子の表面にシリコーン樹脂組成物を塗布する工程、及び
 前記塗布されたシリコーン樹脂組成物を熱硬化させることによって前記半導体発光素子の表面を覆う封止部を形成する工程、を含み;
 前記シリコーン樹脂組成物は、構成成分のケイ素原子が、実質的に酸素原子が3つ結合したケイ素原子のみであるシリコーン樹脂を、前記シリコーン樹脂組成物の固形分の総質量に対して60質量%以上含み;
 前記熱硬化は、熱硬化前の前記シリコーン樹脂の1000~1050cm-1におけるSi-O-Si結合由来の赤外吸収スペクトルのピーク位置をacm-1とし、熱硬化後の前記シリコーン樹脂組成物の950~1050cm-1におけるSi-O-Si結合由来の赤外吸収スペクトルのピーク位置をbcm-1としたとき、5<a-b<20、好ましくは8<a-b<20を満たす条件で行われる、
 半導体発光装置の製造方法である。
 また、前記半導体発光装置の製造方法は、熱硬化において、加熱温度は40℃~250℃であることが好ましく、加熱時間は5分間~6時間であることが好ましい。
 以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に限定されるものではない。
[実施例1]
 シリコーン樹脂として、上記式(1)で表されるオルガノポリシロキサン構造を有する樹脂1(重量平均分子量=3500、前記式(1)中、R=メチル基、R=メトキシ基又は水酸基)を使用した。樹脂1の各繰り返し単位の存在比率を表1に示す。樹脂1は、実質的に酸素原子が3つ結合したケイ素原子のみを含むシリコーン樹脂である。
Figure JPOXMLDOC01-appb-T000004
 樹脂1の1000~1050cm-1におけるSi-O-Si結合由来の赤外吸収スペクトルのピーク位置を測定したところ、1016.3cm-1であった。赤外吸収スペクトルは、次の条件で測定した。
<赤外吸収スペクトル測定>
  装置名       :VARIAN社製 670
  アタッチメント   :GOLDEN GATE ダイアモンドATR
  測定波長      :4000~700cm-1
  分解能       :4cm-1
  バックグラウンド測定:大気
  積算回数      :32回
 ウォーターバス内に設置した還留器付きフラスコ内に、354gの上記樹脂1と、190gのイソプロピルアルコールを投入し、液温が80~85℃でイソプロピルアルコールを還留させながら攪拌して樹脂を充分に溶解させた。
 次いで、上記樹脂1の溶液に、前記式(2)で表されるオルガノポリシロキサン構造を有するシリコーンオリゴマーである樹脂2(重量平均分子量=450、前記式(2)中、R=メチル基、R=メトキシ基、R=メトキシ基)を35g投入し、1時間以上攪拌し溶解させた。樹脂2の各繰り返し単位の存在比率を、表2に示す。
Figure JPOXMLDOC01-appb-T000005
 その後、得られた組成物に、溶媒として123gの酢酸2-ブトキシエチルを加え、シランカップリング剤として0.1gの3-グリシドキシプロピルトリメトキシシランを加えた後、エバポレーターにセットし、前記組成物を温度が70℃、圧力が4kPaの条件に放置し、前記組成物中のイソプロピルアルコール濃度が1質量%以下になるまでイソプロピルアルコールを留去した。
 上記の組成物に、硬化用触媒としてリン酸を15質量%含む、下記式(3)で表されるシリコーンオリゴマー(n=3~7の整数)を2質量%添加し、充分に攪拌混合し、シリコーン樹脂組成物を得た。
Figure JPOXMLDOC01-appb-C000006
 上記のシリコーン樹脂組成物3.8gをアルミニウム製のカップに入れ、オーブン内で10分間かけて40℃に昇温後10分間放置し、続いて30分間かけて150℃に昇温後5時間放置し、シリコーン樹脂組成物を熱硬化させて光半導体封止用部材を得た。
 オーブンとして強制送風循環式のものを使用した。オーブン内の容積に対するファンのモーターの容量は0.37W/Lであった。また、オーブン内の容積に対するオーブンの開口部の面積は0.13cm/Lであった。
 150℃における加熱の終了時に、オーブン内のガスを採取し、ガスクロマトグラフィーにより、溶媒である酢酸2-ブトキシエチル濃度を測定した結果、74vol ppmであった。
 本実施例で得られた光半導体封止用部材の950~1050cm-1におけるSi-O-Si結合由来の赤外吸収スペクトルのピーク位置を測定したところ、1002.8cm-1であった。赤外吸収スペクトルは、上記樹脂1と同様にして測定した。
 樹脂1の赤外吸収スペクトルのピーク位置と、本実施例で得られた光半導体封止用部材のピーク位置との差は、13.5であった。
[実施例2]
 シリコーン樹脂として、樹脂1の代わりに下記樹脂3を使用した以外は、実施例1と同様にして光半導体封止用部材を製造した。
 樹脂3は、前記式(1)で表されるオルガノポリシロキサン構造を有するものである(重量平均分子量=3000、前記式(1)中、R=メチル基、R=水酸基又はエトキシ基)。樹脂3の各繰り返し単位の存在比率を表3に示す。表中のMeはメチル基であり、Rは水素原子又はエチル基であり、水素原子とエチル基の存在比率は96:4である。
 樹脂3は、実質的に酸素原子が3つ結合したケイ素原子のみを含むシリコーン樹脂である。
Figure JPOXMLDOC01-appb-T000007
 樹脂3の1000~1050cm-1におけるSi-O-Si結合由来の赤外吸収スペクトルのピーク位置を測定したところ、1018.2cm-1であった。また、本実施例で得られた光半導体封止用部材の950~1050cm-1におけるSi-O-Si結合由来の赤外吸収スペクトルのピーク位置を測定したところ、1004.7cm-1であった。また、樹脂3の赤外吸収スペクトルのピーク位置と、本実施例で得られた光半導体封止用部材のピーク位置との差は、13.5であった。
[実施例3]
 シリコーン樹脂として、樹脂1と下記樹脂D1との質量比70:30の混合物を使用した以外は、実施例1と同様にして半導体封止用部材を製造した。
 樹脂D1は、下記式(4)で表されるオルガノポリシロキサン構造を有するものであり(重量平均分子量=2100)、前記式(2)において、R=メチル基、R=メチル基、R=水酸基に相当するものである。
Figure JPOXMLDOC01-appb-C000008
 [式中、Meはメチル基であり、nは1以上の整数である。]
 具体的には、ウォーターバス内に設置した還留器付きフラスコ内に、70gの樹脂1と、32gのイソプロピルアルコールを投入し、液温を80~85℃でイソプロピルアルコールを還流させながら攪拌して樹脂を充分に溶解させた。次いで前記樹脂を溶解させた溶液に、前記樹脂D1を30g投入し、1時間以上撹拌し溶解させた。
 その後、得られた組成物に、溶媒として9.9gの酢酸2-ブトキシエチルを加え、シランカップリング剤として0.03gの3-グリシドキシプロピルトリメトキシシランを加えた後、エバポレーターにセットし、前記組成物の温度が80℃、圧力が4kPaの条件に放置し、前記組成物中のイソプロピルアルコール濃度が1質量%以下になるまでイソプロピルアルコールを留去した。
 前記の組成物に、硬化用触媒として15%リン酸溶液を含む、前記式(3)で表されるシリコーンオリゴマー(n=3~7の整数)との混合物を2質量%添加し、充分に攪拌混合し、シリコーン樹脂組成物を得た。
 前記のシリコーン樹脂組成物3.8gをアルミニウム製のカップに入れ、オーブン内で10分間かけて40℃に昇温後10分間放置し、続いて30分間かけて150℃に昇温後5時間放置し、シリコーン樹脂組成物を熱硬化させて光半導体封止用部材を得た。
 樹脂1の1000~1050cm-1におけるSi-O-Si結合由来の赤外吸収スペクトルのピーク位置は、上記した通り1016.3であった。また、本実施例で得られた光半導体封止用部材の950~1050cm-1におけるSi-O-Si結合由来の赤外吸収スペクトルのピーク位置を測定したところ、1004.7cm-1であった。また、樹脂1の赤外吸収スペクトルのピーク位置と、本実施例で得られた光半導体封止用部材のピーク位置との差は、11.6であった。
[実施例4]
 シリコーン樹脂として、樹脂1と樹脂D1との質量比60:40の混合物を使用した以外は、実施例3と同様にして半導体封止用部材を製造した。
 具体的には、実施例3における70gの樹脂1の代わりに60gの樹脂1を使用し、実施例3における30gの樹脂D1の代わりに40gの樹脂D1を使用した。
 樹脂1の1000~1050cm-1におけるSi-O-Si結合由来の赤外吸収スペクトルのピーク位置は、上記した通り1016.3であった。また、本実施例で得られた光半導体封止用部材の950~1050cm-1におけるSi-O-Si結合由来の赤外吸収スペクトルのピーク位置を測定したところ、1004.7cm-1であった。また、樹脂1の赤外吸収スペクトルのピーク位置と、本実施例で得られた光半導体封止用部材のピーク位置との差は、11.6であった。
[比較例1]
 シリコーン樹脂として、樹脂1の代わりに下記樹脂4を使用した以外は、実施例1と同様にして光半導体封止用部材を製造した。
 樹脂4は、前記式(1)で表されるオルガノポリシロキサン構造を有するものである(重量平均分子量=7200、前記式(1)中、R=メチル基、R=水酸基又はメトキシ基)。樹脂4の各繰り返し単位の存在比率を表4に示す。表中のMeはメチル基であり、Rは水素原子又はメチル基であり、水素原子とメチル基の存在比率は76:24である。
Figure JPOXMLDOC01-appb-T000009
 樹脂4の1000~1050cm-1におけるSi-O-Si結合由来の赤外吸収スペクトルのピーク位置を測定したところ、1006.7cm-1であった。また、本比較例で得られた光半導体封止用部材の950~1050cm-1におけるSi-O-Si結合由来の赤外吸収スペクトルのピーク位置を測定したところ、1004.7cm-1であった。また、樹脂4の赤外吸収スペクトルのピーク位置と、本比較例で得られた光半導体封止用部材のピーク位置との差は、2.0であった。
[比較例2]
 シリコーン樹脂として、樹脂1の代わりに下記樹脂5を使用した以外は、実施例1と同様にして光半導体封止用部材を製造した。
 樹脂5は、表5に示す各繰り返し単位を、表5に示す存在比率で含むものである(重量平均分子量=58300)。
Figure JPOXMLDOC01-appb-T000010
 樹脂6の1000~1050cm-1におけるSi-O-Si結合由来の赤外吸収スペクトルのピーク位置を測定したところ、1016.3cm-1であった。また、本比較例で得られた光半導体封止用部材の950~1050cm-1におけるSi-O-Si結合由来の赤外吸収スペクトルのピーク位置を測定したところ、1012.4cm-1であった。また、樹脂6の赤外吸収スペクトルのピーク位置と、本比較例で得られた光半導体封止用部材のピーク位置との差は、3.9であった。
[比較例3]
 シリコーン樹脂として、樹脂1の代わりに下記樹脂6を使用した以外は、実施例1と同様にして光半導体封止用部材を製造した。
 樹脂6は、前記式(1)で表されるオルガノポリシロキサン構造を有するものである(重量平均分子量=2300、前記式(1)中、R=メチル基、R=水酸基又はエトキシ基)。樹脂6の各繰り返し単位の存在比率を表6に示す。表中のMeはメチル基であり、Rは水素原子又はエチル基であり、水素原子とエチル基の存在比率は90:10である。樹脂6は、実質的に酸素原子が3つ結合したケイ素原子のみを含むシリコーン樹脂である。
Figure JPOXMLDOC01-appb-T000011
 樹脂6の1000~1050cm-1におけるSi-O-Si結合由来の赤外吸収スペクトルのピーク位置を測定したところ、1022.1cm-1であった。また、本比較例で得られた光半導体封止用部材の950~1050cm-1におけるSi-O-Si結合由来の赤外吸収スペクトルのピーク位置を測定したところ、1000.9cm-1であった。また、樹脂6の赤外吸収スペクトルのピーク位置と、本比較例で得られた光半導体封止用部材のピーク位置との差は、21.2であった。
[実施例5~9]
 硬化用触媒の量を表8に記載の通りに変更した以外は、実施例1と同様にして、光半導体封止用部材を得た。硬化用触媒としては、触媒としてリン酸を15質量%含む、前記式(3)で表されるシリコーンオリゴマー(n=3~7の整数)を使用した。
[実施例10~11]
 硬化用触媒の量を表8に記載の通りに変更し、熱硬化を以下のように行った以外は、実施例1と同様にして、光半導体封止用部材を得た。硬化用触媒としては、触媒としてリン酸を15質量%含む、前記式(3)で表されるシリコーンオリゴマー(n=3~7の整数)を使用した。
 表8中、触媒添加量は、シリコーン樹脂組成物(溶媒を含む)に対する触媒(固形分)の質量%で示す。
 熱硬化は、オーブン内で10分間かけて40℃に昇温後10分間放置し、続いて30分間かけて200℃に昇温後5時間放置することにより行った。
[実施例12~17]
 硬化用触媒の量を表8に記載の通りに変更した以外は、実施例1と同様にして、光半導体封止用部材を得た。硬化用触媒としては、アルミニウムアセチルアセトネート(和光純薬、343-00082)の0.5質量%メタノール溶液を使用した。
[実施例18~22]
 硬化用触媒の量を表8に記載の通りに変更した以外は、実施例1と同様にして、光半導体封止用部材を得た。硬化用触媒としては、リン酸ジメチルとリン酸モノメチルの混合物(大八化学工業社製、製品名AP-1)の15質量%酢酸2-ブトキシエチル溶液を使用した。
[実施例23]
 硬化用触媒として、リン酸ジメチルとリン酸モノメチルの混合物(大八化学工業社製、製品名AP-1)の15質量%酢酸2-ブトキシエチル溶液を使用し、この硬化用触媒(溶液)をシリコーン樹脂組成物(溶媒を含む)に対して2質量%添加した。触媒(固形分)としては、シリコーン樹脂組成物(溶媒を含む)に対して0.02×0.15=0.003(0.3質量%)添加したことになる。続いて、シリコーン樹脂組成物を以下のように熱硬化した以外は、実施例1と同様にして、光半導体封止用部材を得た。
 熱硬化は、オーブン内で10分間かけて40℃に昇温後10分間放置し、続いて30分間かけて200℃に昇温後5時間放置することにより行った。
(耐クラック性の評価)
 実施例1~23及び比較例1~3の光半導体封止用部材について、オーブンから取り出した光半導体封止用部材を観察することにより、耐クラック性を評価した。耐クラック性の評価基準は次の通りであった。結果を表7及び表8に示す。
 A:光半導体封止用部材にクラックの発生がなかった。
 B:光半導体封止用部材にクラックが発生し、アルミニウム製のカップから取り出すことができなかった。
(耐熱性の評価)
 実施例1~4及び比較例1~3の光半導体封止用部材について、次のようにして耐熱性を評価した。各光半導体封止用部材をオーブンに入れ、60分間かけて200℃に昇温後60時間放置した。その後、各光半導体封止用部材を目視で観察し、耐熱性を評価した。
耐熱性の評価基準は次の通りであった。結果を表7及び表8に示す。
 A:光半導体封止用部材に変化が認められなかった。
 B:光半導体封止用部材に白濁が認められた。
 また、図1に、実施例1及び比較例3の光半導体封止用部材の光透過率の測定結果のグラフを示す。光透過率は、次の条件で測定した。
<光透過率測定>
  装置名       :島津製作所社製 UV-3600
  アタッチメント   :積分球 ISR-3100
  測定波長      :220~800nm
  バックグラウンド測定:大気
  測定速度      :中速
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 本発明は、シリコーン樹脂組成物の硬化物から形成された耐クラック性及び耐熱性が向上した封止部を備える、光半導体発光装置を製造することができるので、産業上極めて有用である。
 100…半導体発光装置、110…基板、120…半導体発光素子、130…封止部、 140…銀膜。

Claims (2)

  1.  半導体発光素子の表面にシリコーン樹脂組成物を塗布する工程と、
    前記塗布されたシリコーン樹脂組成物を熱硬化させることにより前記半導体発光素子の表面を覆う封止部を形成する工程と、を含み;
     前記シリコーン樹脂組成物は、構成成分のケイ素原子が、実質的に酸素原子が3つ結合したケイ素原子のみであるシリコーン樹脂を、前記シリコーン樹脂組成物の固形分の総質量に対して60質量%以上含み;
     前記熱硬化は、熱硬化前の前記シリコーン樹脂の1000~1050cm-1におけるSi-O-Si結合由来の赤外吸収スペクトルのピーク位置をacm-1とし、熱硬化後の前記シリコーン樹脂組成物の950~1050cm-1におけるSi-O-Si結合由来の赤外吸収スペクトルのピーク位置をbcm-1としたとき、5<a-b<20を満たす条件で行われる、
     半導体発光装置の製造方法。
  2.  前記条件が、8<a-b<20を満たす条件である、請求項1に記載の製造方法。
PCT/JP2015/071279 2014-07-28 2015-07-27 半導体発光装置の製造方法 WO2016017593A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580040447.4A CN106575694B (zh) 2014-07-28 2015-07-27 半导体发光装置的制造方法
KR1020177001948A KR20170040201A (ko) 2014-07-28 2015-07-27 반도체 발광 장치의 제조 방법
US15/329,280 US9954152B2 (en) 2014-07-28 2015-07-27 Method for producing semiconductor light-emitting device
JP2016538344A JPWO2016017593A1 (ja) 2014-07-28 2015-07-27 半導体発光装置の製造方法
EP15826730.2A EP3176840A4 (en) 2014-07-28 2015-07-27 Method for producing semiconductor light-emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-152879 2014-07-28
JP2014152879 2014-07-28

Publications (1)

Publication Number Publication Date
WO2016017593A1 true WO2016017593A1 (ja) 2016-02-04

Family

ID=55217493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071279 WO2016017593A1 (ja) 2014-07-28 2015-07-27 半導体発光装置の製造方法

Country Status (7)

Country Link
US (1) US9954152B2 (ja)
EP (1) EP3176840A4 (ja)
JP (1) JPWO2016017593A1 (ja)
KR (1) KR20170040201A (ja)
CN (1) CN106575694B (ja)
TW (1) TWI666793B (ja)
WO (1) WO2016017593A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009164636A (ja) * 2009-04-15 2009-07-23 Suzuka Fuji Xerox Co Ltd 半導体素子および半導体装置
JP2011111468A (ja) * 2009-11-24 2011-06-09 Kaneka Corp 樹脂組成物、その成型体、及び容器
JP2011246680A (ja) * 2010-05-31 2011-12-08 Shin-Etsu Chemical Co Ltd 発光ダイオード用付加硬化型シリコーン樹脂組成物

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7056989B2 (en) * 2001-05-01 2006-06-06 Korea Institute Of Science And Technology Polyalkylaromaticsilsesquioxane and preparation method thereof
JP2007291273A (ja) 2006-04-26 2007-11-08 Asahi Kasei Corp 封止材用組成物及び光学デバイス
BRPI0808819A2 (pt) * 2007-03-12 2014-08-19 Koninkl Philips Electronics Nv Sistema de iluminação e sistema compreendendo o mesmo
JP5316276B2 (ja) * 2009-01-23 2013-10-16 住友電気工業株式会社 窒化物半導体発光素子、エピタキシャル基板、及び窒化物半導体発光素子を作製する方法
JP5505991B2 (ja) * 2010-04-30 2014-05-28 信越化学工業株式会社 高接着性シリコーン樹脂組成物及び当該組成物を使用した光半導体装置
JP5971835B2 (ja) * 2010-08-23 2016-08-17 信越化学工業株式会社 硬化性シリコーン樹脂組成物及びそれを用いた発光ダイオード装置
TWI552848B (zh) * 2011-01-14 2016-10-11 Jx Nippon Oil & Energy Corp Method for manufacturing a mold for fine pattern transfer and a method for manufacturing a diffraction grating using the same, and a method of manufacturing an organic electroluminescent device having the diffraction grating
WO2012111765A1 (ja) * 2011-02-18 2012-08-23 Jnc株式会社 硬化性樹脂組成物及びこれを用いた色変換材料
WO2012119615A1 (en) * 2011-03-09 2012-09-13 Johannes Kepler Universität Linz Silsesquioxane polymers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009164636A (ja) * 2009-04-15 2009-07-23 Suzuka Fuji Xerox Co Ltd 半導体素子および半導体装置
JP2011111468A (ja) * 2009-11-24 2011-06-09 Kaneka Corp 樹脂組成物、その成型体、及び容器
JP2011246680A (ja) * 2010-05-31 2011-12-08 Shin-Etsu Chemical Co Ltd 発光ダイオード用付加硬化型シリコーン樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3176840A4 *

Also Published As

Publication number Publication date
EP3176840A1 (en) 2017-06-07
TWI666793B (zh) 2019-07-21
EP3176840A4 (en) 2018-01-24
US9954152B2 (en) 2018-04-24
CN106575694A (zh) 2017-04-19
JPWO2016017593A1 (ja) 2017-04-27
CN106575694B (zh) 2019-07-16
TW201618338A (zh) 2016-05-16
KR20170040201A (ko) 2017-04-12
US20170229622A1 (en) 2017-08-10

Similar Documents

Publication Publication Date Title
JP6616305B2 (ja) シリコーン系封止材組成物及び半導体発光装置
JP6135675B2 (ja) エポキシおよびアルコキシシリル基含有シルセスキオキサンおよびその組成物
JP6410903B2 (ja) 波長変換シート、積層体および発光装置、並びに、波長変換シートの製造方法
KR20170063676A (ko) 실리콘 수지, uv-led용 밀봉재 조성물, 경화물 및 uv-led용 밀봉재
JP6293433B2 (ja) シリコーン樹脂組成物
WO2015111229A1 (ja) シリコーン樹脂液状組成物
JP6264926B2 (ja) シリコーン樹脂組成物
JP5287116B2 (ja) ポリオルガノシロキサン硬化物及び発光装置の製造方法
JP2016098245A (ja) ポリシルセスキオキサン液体及びその製造方法、led封止用組成物、led封止材、及び半導体発光装置
WO2016017593A1 (ja) 半導体発光装置の製造方法
JP2016098246A (ja) Led封止用組成物、led封止材及び半導体発光装置
JP2017118111A (ja) シリコーン系硬化物、シリコーン系硬化物用組成物、及び半導体発光装置
TWI610985B (zh) 聚矽氧樹脂液狀組成物及其硬化物、使用其之半導體發光元件用密封材及使用其之發光裝置、以及發光裝置之製造方法
JP6454389B2 (ja) 波長変換材料含有縮合型シリコーン組成物の製造方法及び波長変換シートの製造方法
JP6553139B2 (ja) 波長変換材料含有縮合型シリコーン組成物の製造方法及び波長変換シートの製造方法
JP5560982B2 (ja) シラノール縮合触媒、光半導体封止用熱硬化性シリコーン樹脂組成物およびこれを用いる封止体
JP2013209560A (ja) 加熱硬化性樹脂組成物および半導体封止材
JP2021055031A (ja) 縮合型シリコーン樹脂硬化物の製造方法
JP2012255050A (ja) 硬化物製造用キット及び硬化物製造用組成物、並びにその使用
JP2013147577A (ja) Led用保護膜形成用キット、led用保護膜形成用組成物、led用保護膜を有する半導体発光デバイスおよび該半導体デバイスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15826730

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016538344

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177001948

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015826730

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15329280

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE