WO2016017335A1 - 水処理システム - Google Patents
水処理システム Download PDFInfo
- Publication number
- WO2016017335A1 WO2016017335A1 PCT/JP2015/068455 JP2015068455W WO2016017335A1 WO 2016017335 A1 WO2016017335 A1 WO 2016017335A1 JP 2015068455 W JP2015068455 W JP 2015068455W WO 2016017335 A1 WO2016017335 A1 WO 2016017335A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- treated
- treated water
- tank
- hollow fiber
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 350
- 239000012528 membrane Substances 0.000 claims abstract description 215
- 238000001914 filtration Methods 0.000 claims abstract description 140
- 239000011261 inert gas Substances 0.000 claims abstract description 76
- 239000007789 gas Substances 0.000 claims abstract description 40
- 239000007788 liquid Substances 0.000 claims abstract description 19
- 239000012510 hollow fiber Substances 0.000 claims description 135
- 238000010992 reflux Methods 0.000 claims description 22
- 239000013049 sediment Substances 0.000 claims description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 10
- 238000007599 discharging Methods 0.000 claims description 8
- 230000007246 mechanism Effects 0.000 claims description 8
- 238000009295 crossflow filtration Methods 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 238000004880 explosion Methods 0.000 abstract description 7
- 239000011148 porous material Substances 0.000 description 20
- 239000003921 oil Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 12
- 239000000126 substance Substances 0.000 description 12
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 11
- 239000004810 polytetrafluoroethylene Substances 0.000 description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- 238000007667 floating Methods 0.000 description 8
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 7
- 230000035699 permeability Effects 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 238000004804 winding Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 6
- 239000002244 precipitate Substances 0.000 description 6
- 238000004140 cleaning Methods 0.000 description 5
- 238000005245 sintering Methods 0.000 description 5
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- -1 polypropylene Polymers 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 3
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 3
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 3
- 238000005273 aeration Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 230000003405 preventing effect Effects 0.000 description 3
- 230000003014 reinforcing effect Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000011001 backwashing Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000005201 scrubbing Methods 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/02—Hollow fibre modules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D17/00—Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
- B01D17/02—Separation of non-miscible liquids
- B01D17/04—Breaking emulsions
- B01D17/047—Breaking emulsions with separation aids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D17/00—Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
- B01D17/08—Thickening liquid suspensions by filtration
- B01D17/085—Thickening liquid suspensions by filtration with membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D65/00—Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
- B01D65/02—Membrane cleaning or sterilisation ; Membrane regeneration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/23—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
- B01F23/232—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
- B01F23/2323—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/30—Injector mixers
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2311/00—Details relating to membrane separation process operations and control
- B01D2311/04—Specific process operations in the feed stream; Feed pretreatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2311/00—Details relating to membrane separation process operations and control
- B01D2311/06—Specific process operations in the permeate stream
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2311/00—Details relating to membrane separation process operations and control
- B01D2311/26—Further operations combined with membrane separation processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2311/00—Details relating to membrane separation process operations and control
- B01D2311/26—Further operations combined with membrane separation processes
- B01D2311/2661—Addition of gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2311/00—Details relating to membrane separation process operations and control
- B01D2311/26—Further operations combined with membrane separation processes
- B01D2311/2661—Addition of gas
- B01D2311/2665—Aeration other than for cleaning purposes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/24—Specific pressurizing or depressurizing means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/26—Specific gas distributors or gas intakes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/50—Specific extra tanks
- B01D2313/501—Permeate storage tanks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2315/00—Details relating to the membrane module operation
- B01D2315/10—Cross-flow filtration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2319/00—Membrane assemblies within one housing
- B01D2319/04—Elements in parallel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/04—Backflushing
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/32—Hydrocarbons, e.g. oil
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2301/00—General aspects of water treatment
- C02F2301/04—Flow arrangements
- C02F2301/046—Recirculation with an external loop
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/16—Regeneration of sorbents, filters
Definitions
- the present invention relates to a water treatment system.
- a water treatment system for removing oil and turbidity from water to be treated containing oil and turbidity using a filtration membrane is known.
- Such a water treatment system is configured to supply water to be treated from one end side of the filtration membrane and to perform filtration with a so-called cross flow that discharges the water to be treated from the other end side of the filtration membrane. Even when water to be treated having a large amount of oil or turbidity is treated, clogging of the filtration membrane can be reduced.
- the water treatment system disclosed in the above publication air is sucked into the water to be treated by an aspirator.
- the water to be treated may decompose combustible gas to generate combustible gas, or the dissolved combustible gas may be gasified due to pressure fluctuation.
- This invention is made
- a water treatment system made to solve the above problems includes a water tank to be treated for storing water to be treated, a cross-flow filtration membrane module for filtering the water to be treated, and a supply pump.
- a water treatment system having an aspirator that mixes gas with the water to be treated, wherein the reflux path returns the gas to the water tank to be treated together with the water to be treated, and the water to be treated is stored in the water tank to be treated.
- the apparatus further includes an upper space that is hermetically filled with an inert gas on the surface, and an air passage that supplies the inert gas from the upper space to the aspirator.
- the water treatment system according to one embodiment of the present invention can prevent explosion even if water to be treated that can generate a combustible gas is filtered.
- Drawing 1 is a mimetic diagram showing the composition of the water treatment system of one embodiment of the present invention.
- a water treatment system includes a water tank for storing water to be treated, a cross-flow filtration membrane module for filtering the water to be treated, and a filtration membrane from the water tank to be treated using a supply pump.
- An aspirator comprising: a supply path for supplying treated water to the module; and a reflux path for returning treated water from the filtration membrane module to the treated water tank, and mixing gas into the treated water supplied by the supply path
- a water treatment system in which the reflux path returns the gas to the water tank to be treated together with the water to be treated, and the water to be treated is hermetically filled with an inert gas on a liquid surface of the water to be treated.
- an air passage for supplying the inert gas from the upper space to the aspirator.
- the water treatment system further includes a vent passage for supplying the inert gas from the upper space to the aspirator, thereby supplying water to be treated containing bubbles of inert gas to the filtration membrane module, and by scrubbing the bubbles. Clogging of the filtration membrane can be suppressed. Furthermore, the said water treatment system circulates to-be-processed water between a to-be-processed water tank and a filtration membrane module by carrying out airtight filling of the inert gas on the liquid level of the to-be-processed water which the said to-be-treated water tank stores. Gaseous oxygen can be excluded from the closed system. For this reason, even if the combustible gas generate
- the filtration membrane module includes an airtight filtration tank, a plurality of hollow fiber membranes disposed in the filtration tank and held in one direction, and both ends of the plurality of hollow fiber membranes.
- a holding member for fixing the portion, the supply path is connected to one end side in the alignment direction of the hollow fiber membrane in the filtration tank, and the reflux path is connected to the other end side in the alignment direction of the hollow fiber membrane in the filtration tank.
- the internal pressure of the filtration tank is preferably higher than atmospheric pressure.
- the ratio of the volume of the upper space to the total internal volume of the water tank to be treated is preferably 1/4 or more and 2/3 or less.
- a raw water channel for newly supplying the treated water to the treated water tank, and a liquid level adjusting mechanism for adjusting the flow rate of the treated water in the raw water channel so as to maintain the liquid level of the treated water tank It is good to have.
- the raw water channel and the liquid level adjustment mechanism it is possible to prevent a decrease in the pressure of the inert gas in the water tank to be treated, so that the amount of the inert gas sucked by the aspirator can be made constant.
- the above inert gas may be mainly composed of nitrogen.
- explosion can be prevented relatively inexpensively because the inert gas contains nitrogen as a main component.
- the filtration membrane can be backwashed easily and reliably by the treated water.
- an inert gas supply unit that introduces the inert gas into the water tank to be treated or the reflux path.
- the inert gas supply unit when the inert gas dissolves into the water to be treated or leaks out of the system and the amount of the inert gas in the system decreases, the inert gas is inactivated in the system. Gas can be replenished easily.
- a suspended matter discharge path for discharging suspended matter near the liquid surface of the treated water from the treated water tank.
- a sediment discharge path for discharging sediment in the treated water from the bottom of the treated water tank.
- the “inert gas” is a gas having a low oxygen concentration or no combustibility and explosiveness even when in contact with a volatile component of oil.
- the volume content of oxygen is 10% or less.
- it refers to a gas of 1% or less.
- the “main component” refers to a component having the largest volume content, preferably a component having a volume content of 50% or more.
- water to be treated is a system for removing oil and turbidity from water to be treated including oil and turbidity.
- water to be treated by the water treatment system include oil-associated water generated in oil fields and the like, and water that has been pretreated by a sand filter or the like may be used as water to be treated.
- the water treatment system of FIG. 1 is filtered by a water tank 1 to be treated for storing water to be treated containing oil and turbidity, a filtration membrane module 2 for filtering the water to be treated by a cross flow method, and a filtration membrane module 2.
- a treated water tank 3 for storing treated water is mainly provided.
- the water treatment system includes a supply path 4 for supplying the water to be treated from the water tank 1 to be treated to the filtration membrane module 2 and a water tank 1 to be treated together with a gas mixed with the water to be treated from the filtration membrane module 2 in the water to be treated.
- a recirculation channel 5 that recirculates to the water, a raw water channel 6 that supplies new water to be treated (hereinafter also referred to as raw water) from a raw water tank (not shown) to the water tank 1 to be treated, and the water to be treated of the water tank 1 to be treated
- An air passage 7 that leads the gas in the upper space formed above the water to the supply passage 4, a treated water passage 8 that guides the treated water from the filtration membrane module 2 to the treated water tank 3, and a treatment from the treated water tank 3
- the active gas supply unit 11 and the water tank 1 to be treated It comprises a suspended solid discharge passage 12 for discharging the suspended solids of the treated water, and a precipitate discharge channel 13 for discharging the precipitate in the water to
- the water tank 1 to be treated is an airtight container.
- This water tank 1 to be treated is formed of metal or resin so as to have strength to withstand internal pressure.
- As a material for forming the water tank 1 to be treated stainless steel, polypropylene, and acrylonitrile-butadiene-styrene copolymer (ABS resin) are particularly preferable from the viewpoint of strength, heat resistance, chemical resistance, and the like.
- ABS resin acrylonitrile-butadiene-styrene copolymer
- the to-be-processed water tank 1 may be provided with a reinforcing member or a leg member for self-supporting on the outside.
- This treated water tank 1 is connected to the side wall at a position away from the bottom of the treated water tank 1 so that the supply path 4 does not allow the sediment in the treated water tank 1 to flow out.
- the amount of water stored in the treated water tank 1 is appropriately selected according to the amount of raw water to be treated, the content of oil or turbidity, and the like. As an example, when the supply amount of treated water from the supply channel 4 to the filtration membrane module 2 is 240 L / hr and the outflow amount of treated water from the filtration membrane module 2 to the treated water channel 8 is 80 L / hr, The amount of water stored in the treated water tank 1 can be, for example, 30L or more and 200L or less.
- the to-be-treated water tank 1 has an upper space in which an inert gas is hermetically filled on the liquid surface of the to-be-treated water to be stored.
- the lower limit of the ratio of the volume of the upper space to the total internal volume of the water tank 1 is preferably 1/4, and more preferably 1/3.
- 2/3 is preferable and 1/2 is more preferable.
- the inert gas cannot be stably supplied to the supply path 4.
- the ratio of the volume of the upper space to the total internal volume of the water tank 1 to be treated exceeds the upper limit, the water tank 1 to be treated may be unnecessarily large.
- the filtration membrane module 2 includes an airtight filtration tank 14 filled with water to be treated, and a plurality of hollow fiber membranes 15 disposed in the filtration tank 14 and held in a state of being aligned in one vertical direction. And an upper holding member 16 for fixing the upper ends of the plurality of hollow fiber membranes 15 and a lower holding member 17 for fixing the lower ends of the hollow fiber membranes 15.
- the filtration tank 14 is a container capable of storing a liquid therein in a pressurized state where the internal pressure is higher than the atmospheric pressure.
- the filtration tank 14 is an airtight cylindrical body that is erected and sealed at both ends.
- the planar shape of the filtration tank 14 is not specifically limited, For example, it can be set as a circle, a polygon, etc.
- a hollow fiber membrane 15 is disposed inside the filtration tank 14 so that the direction of the filtration membrane is aligned with the axial direction of the filtration tank 14.
- the filtration tank 14 is formed of metal or resin so as to have a strength that can withstand the pressure of the water to be treated.
- a material for forming the filtration tank 14 stainless steel, polypropylene, and acrylonitrile-butadiene-styrene copolymer (ABS resin) are particularly preferable from the viewpoints of strength, heat resistance, chemical resistance, and the like.
- ABS resin acrylonitrile-butadiene-styrene copolymer
- the filtration tank 14 may be provided with a reinforcing member or a leg member for self-supporting on the outside.
- the supply path 4 is connected to the lower end of the filtration tank 14, that is, one end side in the alignment direction of the hollow fiber membrane 15 in the filtration tank 14.
- the reflux path 5 is connected to a position slightly below the upper holding member 16 on the side wall. Thereby, the closed system through which the water to be treated circulates between the water tank 1 and the membrane filter module 2 is formed.
- a treated water channel 8 is connected to the upper end of the filtration tank 14.
- the water to be treated containing inert gas bubbles is introduced in a pressurized state further below the lower end portion of the hollow fiber membrane 15, and the water to be treated is supplied into the filtration tank 14. Water rises along the hollow fiber membrane 15 together with the inert gas bubbles and is discharged from the reflux path 5 on the upper end side of the hollow fiber membrane 15. Further, part of the water in the for-treatment water passes through the hollow fiber membrane 15 to become treated water, and is discharged to the treated water channel 8.
- the internal pressure of the filtration tank 14 during steady operation is, for example, 10 kPa or more and 200 kPa or less in terms of gauge pressure.
- the internal pressure of the filtration tank 14 can be adjusted by the output of the supply pump 18 and the pressure of the inert gas filled in the water tank 1 to be treated. Further, in order to obtain the internal pressure of the filtration tank 14, for example, a throttle valve, an orifice or the like may be arranged in the reflux path 5.
- the “internal pressure” of the filtration tank 14 is the average of the pressure at the upper surface of the lower holding member 17, that is, the lower end of the exposed region of the hollow fiber membrane 15, and the pressure at the lower surface of the upper holding member 16, that is, the upper end of the exposed region of the hollow fiber membrane. Mean value.
- the hollow fiber membrane 15 is a porous hollow fiber membrane that allows water to permeate through the inner pores while preventing oil droplets and particulate turbidity contained in the water to be treated.
- the hollow fiber membrane 15 has a cylindrical support layer and a filtration layer laminated on the surface of the support layer.
- the material for forming the support layer and the filtration layer is preferably composed mainly of polytetrafluoroethylene (PTFE).
- PTFE polytetrafluoroethylene
- the main component of the material for forming the support layer and the filtration layer is PTFE, so that the hollow fiber membrane 15 is excellent in mechanical strength and has an aspect ratio that is a ratio of an average length to an average outer diameter of the hollow fiber membrane. Even if it is large, the amount of deflection can be reduced, and the surface of the hollow fiber membrane is not easily damaged by the abrasion of bubbles.
- the forming material of the support layer and the filtration layer may be appropriately blended with other polymers, additives and the like.
- the lower limit of the PTFE number average molecular weight of the support layer and the filtration layer is preferably 500,000, more preferably 2 million. Moreover, as an upper limit of the number average molecular weight of PTFE of a support layer and a filtration layer, 20 million is preferable.
- the number average molecular weight of PTFE is less than the lower limit, the surface of the hollow fiber membrane 15 may be damaged by the abrasion of bubbles, and the mechanical strength of the hollow fiber membrane 15 may be insufficient.
- the number average molecular weight of PTFE exceeds the above upper limit, it may be difficult to form the pores of the hollow fiber membrane 15.
- a tube obtained by extruding PTFE can be used as the support layer.
- the support layer can be given mechanical strength and pores can be easily formed.
- the tube is preferably stretched at a stretching ratio of 50% to 700% in the axial direction and 5% to 100% in the circumferential direction.
- the temperature in the stretching is preferably not higher than the melting point of the tube material, for example, not lower than 0 ° C. and not higher than 300 ° C. Stretching at a low temperature is good for obtaining a porous body having a relatively large pore diameter, and stretching at a high temperature is good for obtaining a porous body having a relatively small pore diameter.
- the stretched porous body can have high dimensional stability by being heat treated at a temperature of 200 ° C. or more and 300 ° C. or less for about 1 to 30 minutes with both ends fixed and stretched.
- the pore size of the porous body can be adjusted by combining conditions such as stretching temperature and stretching ratio.
- the tube forming the support layer can be obtained by, for example, blending a PTFE fine powder with a liquid lubricant such as naphtha, and forming the tube by extrusion or the like and then stretching.
- dimensional stability can be improved by holding and sintering the tube for several tens of seconds to several minutes in a heating furnace maintained at a temperature equal to or higher than the melting point of PTFE fine powder, for example, 350 ° C. or higher and 550 ° C. or lower. it can.
- the average thickness of the support layer is preferably from 0.1 mm to 3 mm.
- the filtration layer can be formed by, for example, winding a PTFE sheet around the support layer and sintering the sheet.
- a sheet as a material for forming the filtration layer, stretching can be easily performed, and the shape and size of the pores can be easily adjusted, and the thickness of the filtration layer can be reduced.
- seat, a support layer and a filtration layer are integrated, and both water_hole
- the sintering temperature is preferably equal to or higher than the melting point of the tube forming the support layer and the sheet forming the filtration layer.
- the sheet for forming the filtration layer is, for example, (1) a method in which an unsintered molded body obtained by extruding a resin is stretched at a temperature below the melting point and then sintered, and (2) the sintered resin molded body is gradually cooled. It can be made by using a method of stretching after increasing the crystallinity.
- the sheet is preferably stretched at a stretching ratio of 50% to 1000% in the longitudinal direction and 50% to 2500% in the lateral direction. In particular, when the stretching ratio in the short direction is within the above range, the mechanical strength in the circumferential direction can be improved when the sheet is wound, and the durability against surface cleaning with bubbles can be improved.
- the filtration layer when forming the filtration layer by winding a sheet around the tube forming the support layer, it is preferable to provide fine irregularities on the outer peripheral surface of the tube.
- irregularities on the outer peripheral surface of the tube By providing irregularities on the outer peripheral surface of the tube in this way, it is possible to prevent positional deviation from the sheet, improve the adhesion between the tube and the sheet, and prevent the filtration layer from peeling off from the support layer by washing with bubbles. it can.
- the number of times the sheet is wound can be adjusted according to the thickness of the sheet, and can be one or more times.
- a plurality of sheets may be wound around the tube.
- the method for winding the sheet is not particularly limited, and a method for winding in a spiral manner may be used in addition to a method for winding the tube in the circumferential direction.
- the size (level difference) of the fine irregularities is preferably 20 ⁇ m or more and 200 ⁇ m or less.
- the fine irregularities are preferably formed on the entire outer peripheral surface of the tube, but may be formed partially or intermittently.
- examples of the method for forming the fine irregularities on the outer peripheral surface of the tube include surface treatment with flame, laser irradiation, plasma irradiation, and dispersion coating of fluorine-based resin. Surface treatment with a flame that can easily form irregularities without giving is preferable.
- non-fired tube and sheet may be used, and the adhesion may be enhanced by sintering after winding the sheet.
- the average thickness of the filtration layer is preferably 5 ⁇ m or more and 100 ⁇ m or less.
- the lower limit of the average outer diameter of the hollow fiber membrane 15 is preferably 2 mm, more preferably 2.1 mm. Moreover, as an upper limit of the average outer diameter of the hollow fiber membrane 15, 6 mm is preferable and 4 mm is more preferable. When the average outer diameter of the hollow fiber membrane 15 is less than the lower limit, the mechanical strength of the hollow fiber membrane 15 may be insufficient. On the other hand, if the average outer diameter of the hollow fiber membrane 15 exceeds the above upper limit, the ratio of the surface area to the cross-sectional area of the hollow fiber membrane 15 may be reduced, resulting in insufficient filtration efficiency, and a surface area that can be rubbed by one bubble. There is a risk of becoming smaller.
- the lower limit of the average inner diameter of the hollow fiber membrane 15 is preferably 0.5 mm, and more preferably 0.9 mm. Moreover, as an upper limit of the average internal diameter of the hollow fiber membrane 15, 4 mm is preferable and 3 mm is more preferable. When the average inner diameter of the hollow fiber membrane 15 is less than the above lower limit, the pressure loss when the filtered water in the hollow fiber membrane 15 is discharged may increase. On the other hand, when the average inner diameter of the hollow fiber membrane 15 exceeds the above upper limit, the thickness of the hollow fiber membrane 15 becomes small, and the mechanical strength and the impurity permeation preventing effect may be insufficient.
- the lower limit of the ratio of the average inner diameter to the average outer diameter of the hollow fiber membrane 15 is preferably 0.3, more preferably 0.4.
- the upper limit of the ratio of the average inner diameter to the average outer diameter of the hollow fiber membrane 15 is preferably 0.8, and more preferably 0.6. If the ratio of the average inner diameter to the average outer diameter of the hollow fiber membrane 15 is less than the above lower limit, the thickness of the hollow fiber membrane 15 may become unnecessarily large and the water permeability of the hollow fiber membrane 15 may be insufficient. .
- the thickness of the hollow fiber membrane 15 may be reduced, and the mechanical strength and the impurity permeation preventing effect may be insufficient.
- the lower limit of the average length of the hollow fiber membrane 15 is preferably 1 m, and more preferably 1.5 m. Further, the upper limit of the average length of the hollow fiber membrane 15 is preferably 5 m, and more preferably 4 m.
- the average length of the hollow fiber membrane 15 is less than the lower limit, the surface area of the hollow fiber membrane 15 that is rubbed while one bubble is supplied from below the filtration membrane module 2 and rises to the water surface decreases, and the hollow fiber membrane The cleaning efficiency of 15 may be insufficient.
- the average length of the hollow fiber membrane 15 exceeds the above upper limit, the hollow fiber membrane 15 may be excessively bent due to its own weight, and the handling property at the time of installing the filtration membrane module 2 is not good. May be sufficient.
- the average length of the hollow fiber membrane 15 is the average length of the exposed region between the upper holding member 16 and the lower holding member 17 of the hollow fiber membrane 15, that is, the lower surface of the upper holding member 16 and the upper surface of the lower holding member 17. And mean distance.
- the lower limit of the ratio of the average length to the average outer diameter (aspect ratio) of the hollow fiber membrane 15 is preferably 200, and more preferably 400. Moreover, as an upper limit of the aspect ratio of the hollow fiber membrane 15, 3000 is preferable and 2500 is more preferable. If the aspect ratio of the hollow fiber membrane 15 is less than the above lower limit, the surface area of the hollow fiber membrane 15 that can be rubbed by one bubble is reduced, which may result in insufficient cleaning efficiency of the hollow fiber membrane 15. On the other hand, when the aspect ratio of the hollow fiber membrane 15 exceeds the above upper limit, the hollow fiber membrane 15 becomes extremely long and the mechanical strength when stretched up and down may be insufficient.
- the lower limit of the porosity of the hollow fiber membrane 15 is preferably 75% and more preferably 78%. Moreover, as an upper limit of the porosity of the hollow fiber membrane 15, 90% is preferable and 85% is more preferable. When the porosity of the hollow fiber membrane 15 is less than the above lower limit, the water permeability is lowered and the filtration capability of the filtration membrane module 2 may be insufficient. On the other hand, when the porosity of the hollow fiber membrane 15 exceeds the above upper limit, the mechanical strength and scratch resistance of the hollow fiber membrane 15 may be insufficient.
- the porosity refers to the ratio of the total volume of pores to the volume of the hollow fiber membrane 15 and can be determined by measuring the density of the hollow fiber membrane 15 in accordance with ASTM-D-792.
- the lower limit of the hole area occupancy of the hollow fiber membrane 15 is preferably 40%. Moreover, as an upper limit of the area occupation rate of the void
- the area occupation ratio of the pores means the ratio of the total area of the pores on the outer peripheral surface (filtration layer surface) of the hollow fiber membrane 15 to the surface area of the hollow fiber membrane 15. It can be obtained by analyzing an electron micrograph.
- the lower limit of the average pore diameter of the hollow fiber membrane 15 is preferably 0.01 ⁇ m. Moreover, as an upper limit of the average diameter of the void
- the average diameter of the pores means the average diameter of the pores on the outer peripheral surface (filtration layer surface) of the hollow fiber membrane 15 and is a pore diameter distribution measuring device (for example, “Porous Material Automatic” It can be measured by a pore size distribution measuring system ").
- the tensile strength of hollow fiber membrane 15 As a minimum of the tensile strength of hollow fiber membrane 15, 50N is preferred and 60N is more preferred. If the tensile strength of the hollow fiber membrane 15 is less than the above lower limit, the durability against surface cleaning with bubbles may be insufficient.
- the upper limit of the tensile strength of the hollow fiber membrane 15 is not particularly limited, but the maximum value of the tensile strength of the hollow fiber membrane that can be manufactured by the current technology is about 150N.
- the “tensile strength” means the maximum tensile stress when a tensile test is performed at a distance between marked lines of 100 mm and a test speed of 100 mm / min in accordance with JIS-K7161: 1994.
- the lower limit of the density (N / A) of the hollow fiber membrane 15 obtained by dividing the number N of the hollow fiber membranes 15 held by the lower holding member 17 by the area A of the hollow fiber membrane 15 is 4 / cm. 2 is preferable, and 6 / cm 2 is more preferable.
- the upper limit of the density of the hollow fiber membrane 15 is preferably 15 / cm 2 and more preferably 12 / cm 2 . When the density of the hollow fiber membranes 15 is less than the lower limit, the filtration efficiency per unit volume of the filtration membrane module 2 may be insufficient. On the other hand, when the density of the hollow fiber membranes 15 exceeds the above upper limit, the interval between the hollow fiber membranes 15 may be reduced, and the surface may not be sufficiently cleaned.
- the “arrangement area of the hollow fiber membrane” means a virtual polygon having the smallest area among virtual polygons including all the hollow fiber membranes 15 included in the filtration membrane module 2 when viewed from the axial direction of the hollow fiber membrane. To do.
- the hollow fiber membrane 15 obtained by dividing the sum S of the cross-sectional areas of the hollow fiber membrane 15 held by the lower holding member 17 by the arrangement area area A of the hollow fiber membrane 15.
- the lower limit of the area ratio (S / A) is preferably 20%, more preferably 25%.
- an upper limit of the area ratio of the said hollow fiber membrane 15 60% is preferable and 55% is more preferable.
- the area ratio of the hollow fiber membrane 15 is less than the lower limit, the filtration efficiency per unit volume of the filtration membrane module 2 may be insufficient.
- the area ratio of the hollow fiber membrane 15 exceeds the above upper limit, the interval between the hollow fiber membranes 15 may be small, and the surface may not be sufficiently cleaned.
- the upper holding member 16 is a member that holds the upper ends of the plurality of hollow fiber membranes 15 and communicates with the holes of each hollow fiber membrane 15 to form a water collection header connected to the treated water channel 8. .
- a water collection header may be formed inside the upper holding member 16, and by dividing the filtration tank 14 by the upper holding member 16, the upper end of the filtration tank 14 is used as a water collection header. Also good.
- the outer shape of the upper holding member 16 is not particularly limited, and the cross-sectional shape can be a polygonal shape, a circular shape, or the like.
- the lower holding member 17 is a member that holds the lower ends of the plurality of hollow fiber membranes 15.
- the lower holding member 17 includes an outer frame 17 a and a plurality of fixing portions 17 b that fix the lower end portion of the hollow fiber membrane 15 and seal the lower end of each hollow fiber membrane 15.
- the fixing portions 17b are formed, for example, in a rod shape, and are arranged substantially in parallel with a certain interval so that water to be treated and bubbles of inert gas can pass therethrough, and a plurality of hollow fibers on the upper side.
- a membrane 15 is provided.
- one end of the hollow fiber membrane 15 may be fixed by the upper holding member 16 and the lower holding member 17, respectively.
- the single hollow fiber membrane 15 is curved in a U shape so that two openings are provided. May be fixed by the upper holding member 16, and the lower end folded (curved) portion may be fixed by the lower holding member 17.
- the outer frame 17a is a member for supporting the fixing portion 17b.
- the length of one side of the outer frame 17a can be, for example, 50 mm or more and 200 mm or less.
- the cross-sectional shape of the outer frame 17a is not particularly limited, and can be a quadrangular shape, other polygonal shapes, a circular shape, or the like.
- the width (length in the short direction) of the fixing portion 17b and the distance between the fixing portions 17b are particularly limited as long as a sufficient number of hollow fiber membranes 15 can be fixed and the bubbles of the inert gas supplied from the supply path 4 can pass therethrough.
- the average width of the fixed portion 17b can be, for example, 3 mm or more and 10 mm or less, and the average interval of the fixed portion 17b can be, for example, 1 mm or more and 10 mm or less.
- the material of the upper holding member 16 and the lower holding member 17 is not particularly limited, and for example, epoxy resin, ABS resin, silicone resin, or the like can be used.
- the method for fixing the hollow fiber membrane 15 to the upper holding member 16 and the lower holding member 17 is not particularly limited, and for example, a method of fixing using an adhesive can be used.
- the upper holding member 16 and the lower holding member 17 are connected by a connecting member.
- a connecting member for example, a metal support rod, a resin casing (outer cylinder), or the like can be used.
- the treated water tank 3 is a container that stores the treated water filtered by the filtration membrane module 2.
- the treated water tank 3 may be an open-air container.
- the treated water tank 3 is disposed to secure treated water used as backwash water, which will be described later, and to temporarily store the treated water and confirm the quality of the treated water.
- the treated water tank 3 is formed of metal or resin.
- the material for forming the treated water tank 3 stainless steel, polypropylene, and acrylonitrile-butadiene-styrene copolymer (ABS resin) are particularly preferable from the viewpoint of strength, heat resistance, chemical resistance, and the like.
- the treated water tank 3 may be provided with a reinforcing member or a leg member for self-supporting on the outside.
- the capacity of the treated water tank 3 may be a capacity that can secure treated water used as backwash water.
- the backwash flow rate is 2 to 10 times the filtration flow rate.
- the supply path 4 is mainly formed by a pipe, and connects the treated water tank 1 and the filtration membrane module 2.
- the supply path 4 generates a negative pressure by the venturi effect by narrowing down the flow path of the water to be treated and the supply pump 18 for delivering the water to be treated, and sucks gas from the aeration path 7 and introduces it into the water to be treated And an aspirator 19.
- the supply pump 18 may be any pump that can deliver the water to be treated.
- the discharge pressure of the supply pump 18 is, for example, 10 kPa or more and 1000 kPa or less.
- the discharge amount of the supply pump 18, that is, the supply amount of the water to be treated to the filtration membrane module 2 is, for example, 20 L / m 2 ⁇ hr or more and 1000 L / m 2 ⁇ hr or less based on the unit area of the hollow fiber membrane 15. Is done.
- the aspirator 19 narrows the cross-sectional area of the water to be treated, thereby generating a negative pressure due to the venturi effect and sucking an inert gas from a later-described vent passage 7 connected to the gas suction port.
- the active gas is mixed in the water to be treated.
- the aspirator 19 is preferably configured to shear the sucked inert gas into fine bubbles.
- generates a fine bubble what is marketed as a microbubble generator can be used, for example.
- the amount of inert gas (volume at atmospheric pressure of 20 ° C.) mixed with the water to be treated per unit volume by the aspirator 19 is, for example, 0.5 NL / L or more and 5 NL / L or less.
- the reflux path 5 is mainly formed by a pipe, and an inert gas supply unit 11 is connected on the way. During steady operation, the inert gas supplied together with the water to be treated from the supply path 4 to the filtration membrane module 2 is basically returned to the water tank 1 along with the water to be treated via the reflux path 5.
- the raw water channel 6 is mainly formed by a pipe.
- a ball tap 20 is disposed in the raw water channel 6.
- the ball tap 20 adjusts the flow rate of the water to be treated in the raw water channel 6 so as to maintain the level of the water level of the water to be treated stored in the water tank 1 to be treated. Functions as an adjustment mechanism.
- the air passage 7 is mainly formed by a pipe, one end is opened to the upper space of the water tank 1 and the other end is connected to a gas suction port of the aspirator 19.
- the aeration path 7 is preferably disposed so as to be separated from the liquid surface of the water tank 1 to be treated and open to a position where the water to be treated which is recirculated from the reflux path 5 is not applied.
- the treated water channel 8 is formed mainly by a pipe and has an on-off valve 21 disposed on the downstream side of the position where the backwash water channel 9 is connected.
- One end of the treated water channel 8 is airtightly connected to the filtration membrane module 2, but the other end may be opened to the atmosphere in the treated water tank 3.
- the on-off valve 21 of the treated water channel 8 is always opened during normal operation, but is closed when the membrane filter module 2 is back-washed using the backwash water channel 9 described later, and has been treated to be used as backwash water. The backflow of water to the treated water tank 3 is prevented.
- the backwash water channel 9 is mainly formed by a pipe, and is disposed on the backwash pump 22 for pumping the treated water stored in the treated water tank 3 and on the downstream side of the backwash pump 22 (the treated water channel 8 side). And an open / close valve 23.
- the backwash pump 22 may be any pump that can pump the treated water.
- the discharge pressure of the backwash pump 22 is, for example, 20 kPa or more and 300 kPa or less.
- the open / close valve 23 of the backwash water channel 9 is always closed during normal operation, and blocks the flow path so that treated water does not flow from the treated water channel 8 into the backwash water channel 9. Moreover, the on-off valve 23 of the backwash water channel 9 is opened during backwashing, and enables the backwash water to be supplied to the filtration membrane module 2.
- the water discharge channel 10 is mainly formed by a pipe, and keeps the amount of treated water stored in the treated water tank 3 constant by causing the treated water stored in the treated water tank 3 to overflow.
- the inert gas supply unit 11 includes a gas cylinder 24 that stores a high-pressure inert gas, and an air supply path 26 that is provided with a supply valve 25 and connects between the gas cylinder 24 and the reflux path 5.
- inert gas As the inert gas supplied by the inert gas supply unit 11, a gas that does not burn combustibles is used because the volume content of oxygen is 10% or less, preferably 1% or less. Moreover, in order that an inert gas may prevent the production
- the inert gas supply unit 11 opens the supply valve 25 before the operation of the water treatment system is started and fills the water tank 1 to be treated with the inert gas, but is normally closed during steady operation.
- the amount of the inert gas filled in the system decreases. May supply an inert gas from the inert gas supply unit 11. The decrease of the inert gas in the system can be determined by detecting the pressure in the water tank 1 to be treated, for example.
- the water treatment system when the inert gas supply unit 11 is filled with the inert gas, the water treatment system has an exhaust path for exhausting air existing in the water tank 1 to be treated, the filtration membrane module 2, the reflux path 5, and the like. You may have.
- the exhaust path by providing the exhaust path, the air in the system can be discharged and replaced with an inert gas, and the oxygen concentration can be more reliably reduced to prevent explosion.
- the floating substance discharge path 12 is mainly formed by a pipe, and an on-off valve 27 is provided.
- This floating substance discharge path 12 is used for discharging floating substances (for example, a separated oil layer) in the vicinity of the surface of the water to be treated in the water tank 1 to be treated by opening the on-off valve 27. .
- the sediment discharge path 13 is mainly formed by a pipe, and an on-off valve 28 is provided. This sediment discharge path 13 is used for discharging sediment (slurry) in the water to be treated in the water tank 1 to be treated by opening the on-off valve 28.
- the said water treatment system supplies the to-be-processed water containing the bubble of an inert gas to the filtration membrane module 2 by providing the ventilation path 7 which supplies an inert gas from the upper space of the to-be-processed water tank 1 to the aspirator 19,
- the clogging of the hollow fiber membrane 15 can be suppressed by the bubble scrub effect.
- the said water treatment system air-processes the to-be-processed water between the to-be-processed water tank 1 and the membrane filter module 2 by airtightly filling the inert gas on the surface of the to-be-processed water which the to-be-treated water tank 1 stores.
- Gaseous oxygen can be excluded from the closed closed system. For this reason, for example, even if the water to be treated generates flammable gas due to decomposition of organic matter in the water to be treated, the oxygen concentration in the system through which the water to be treated circulates is low, so the explosion or combustion of the generated flammable gas Is prevented.
- the water treatment system includes a filtration membrane module including an airtight filtration tank 14 and a plurality of hollow fiber membranes 15 disposed in the filtration tank 14 and held in a state of being aligned in one direction. 2 is used, and external pressure cross-flow filtration is performed to pass the water to be treated from one end side to the other end side of the hollow fiber membrane 15 while maintaining the internal pressure of the filtration tank 14 at a pressure higher than atmospheric pressure.
- a filtration membrane module including an airtight filtration tank 14 and a plurality of hollow fiber membranes 15 disposed in the filtration tank 14 and held in a state of being aligned in one direction. 2 is used, and external pressure cross-flow filtration is performed to pass the water to be treated from one end side to the other end side of the hollow fiber membrane 15 while maintaining the internal pressure of the filtration tank 14 at a pressure higher than atmospheric pressure.
- the water treatment system can maintain the pressure of the inert gas in the water tank 1 to be treated by maintaining the height of the water surface of the water to be treated in the water tank 1 to be treated by the ball tap 20. For this reason, since the quantity of the inert gas which the aspirator 19 suck
- the said water treatment system uses the treated water stored in the treated water tank 3 as backwash water by providing the treated water tank 3, the treated water channel 8, and the backwash water channel 9, and the membrane filter module 2 Can be backwashed.
- the oil and turbidity adhering to the hollow fiber membrane 15 are removed by this backwashing, and the filtration ability of the hollow fiber membrane 15 can be recovered by sending it back to the treated water tank 1 from the reflux path 5.
- the water treatment system includes the inert gas supply unit 11 so that the inert gas can be easily replenished into the system when the inert gas is dissolved in the water to be treated or leaks out of the system.
- the said water treatment system is equipped with the floating substance discharge path 12 and the sediment discharge path 13, and discharges
- the inert gas filled in the system does not decrease, so it is not necessary to supply the inert gas frequently, and the inert gas supply unit may be omitted.
- the air supply path of the inert gas supply unit may be connected to the water tank to be treated.
- the water treatment system may be configured such that the treated water tank is omitted, and the treated water flowing out from the filtration membrane module is discharged as it is to a river or the like.
- a river or the like In this case, for example, city water or the like may be supplied as backwash water.
- the liquid level adjustment mechanism may be omitted.
- the treatment since the amount of treated water stored in the treated water tank is reduced by the amount of treated water discharged from the filtration membrane module, the treatment is terminated when the liquid level of the treated water tank drops to a certain level. And it is good also as a batch process which transfers the concentrated to-be-processed water which remains in a to-be-processed water tank to another processing equipment.
- an evaporator for further concentrating the treated water and disposing it as industrial waste can be considered.
- the liquid level adjustment mechanism may be a mechanism other than the ball tap, such as a combination of a level sensor and a control valve.
- the suspended matter discharge path and the sediment discharge path of the water tank to be treated may be omitted.
- the filtration membrane module of the water treatment system may have a filtration membrane other than the hollow fiber membrane.
- the filtration membrane other than the hollow fiber membrane include a laminated flat membrane, a pleated membrane, and a spiral membrane.
- the alignment direction of the hollow fiber membranes in the filtration membrane module may be a lateral direction.
- the internal pressure of a filtration tank shall be substantially atmospheric pressure, and the to-be-processed water side (outside in a hollow fiber membrane) of a filtration membrane and the filtered water side ( In the hollow fiber membrane, a pressure difference may be generated between the inside and the inside of the water to be filtered so that the water in the water to be treated passes through the filtration membrane (in the hollow fiber membrane, immersion suction type cross-flow filtration).
- the water treatment system is a treated water which passes through the hollow fiber membrane through the filtration layer outside the hollow fiber membrane through the treated water containing inert gas bubbles inside the hollow fiber membrane under pressure.
- the present invention is suitably used for filtering water to be treated containing turbid substances that can be decomposed to produce a combustible gas, such as water associated with petroleum, or water to be treated in which a combustible gas is dissolved at a high concentration. be able to.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
可燃性ガスを発生し得る被処理水を濾過しても爆発を防止できる水処理システムの提供を課題とする。本発明の一態様は、被処理水を貯留する被処理水槽と、上記被処理水を濾過するクロスフロー方式濾過膜モジュールと、供給ポンプを用いて上記被処理水槽から濾過膜モジュールに被処理水を供給する供給路と、上記濾過膜モジュールから被処理水を上記被処理水槽に還流する還流路とを備え、上記供給路が供給される被処理水に気体を混合するアスピレーターを有し、上記還流路が上記気体を被処理水と共に被処理水槽に還流する水処理システムであって、上記被処理水槽が、貯留する被処理水の液面上に不活性ガスが気密充填される上部空間を有し、上記上部空間から上記アスピレーターに上記不活性ガスを供給する通気路をさらに備える。
Description
本発明は、水処理システムに関する。
油や濁質を含む被処理水から濾過膜を用いて油や濁質を除去する水処理システムが公知である。このような水処理システムは、濾過膜の一端側から被処理水を供給し、濾過膜の他端側から被処理水を排出するいわゆるクロスフローで濾過するよう構成することによって、例えば石油随伴水のように油や濁質の量が多い被処理水を処理する場合にも、濾過膜の目詰まりを低減できる。
また、被処理水に気体を混合することで、気泡によるスクラブ効果によって濾過膜の目詰まりを抑制できる。被処理水に気体を混合する方法としては、被処理水の流路を絞ることでベンチュリー効果によって負圧を生成し、被処理水中に気体を吸い込むアスピレーター(エジェクターともいう)を用いる方法が提案されている(特開2009-148673号公報参照)。
上記公報に開示される水処理システムでは、アスピレーターによって大気を吸い込んで被処理水に気体を導入している。しかし、被処理水は、含まれる有機物が分解して可燃性ガスを発生したり、溶存する可燃性ガスが圧力変動によりガス化することがあり、このような被処理水に大気を導入すると濾過膜モジュールの内部で可燃性ガスが爆発を起こすおそれがある。このため、上記公報の水処理システムは、可燃性ガスを発生し得る被処理水には適用できない場合がある。
本発明は、上述のような事情に基づいてなされたものであり、可燃性ガスを発生し得る被処理水を濾過しても爆発を防止できる水処理システムを提供することを課題とする。
上記課題を解決するためになされた本発明の一態様に係る水処理システムは、被処理水を貯留する被処理水槽と、上記被処理水を濾過するクロスフロー方式濾過膜モジュールと、供給ポンプを用いて上記被処理水槽から濾過膜モジュールに被処理水を供給する供給路と、上記濾過膜モジュールから被処理水を上記被処理水槽に還流する還流路とを備え、上記供給路が供給される被処理水に気体を混合するアスピレーターを有し、上記還流路が上記気体を被処理水と共に被処理水槽に還流する水処理システムであって、上記被処理水槽が、貯留する被処理水の液面上に不活性ガスが気密充填される上部空間を有し、上記上部空間から上記アスピレーターに上記不活性ガスを供給する通気路をさらに備える。
本発明の一態様に係る水処理システムは、可燃性ガスを発生し得る被処理水を濾過しても爆発を防止できる。
[本発明の実施形態の説明]
本発明の一態様に係る水処理システムは、被処理水を貯留する被処理水槽と、上記被処理水を濾過するクロスフロー方式濾過膜モジュールと、供給ポンプを用いて上記被処理水槽から濾過膜モジュールに被処理水を供給する供給路と、上記濾過膜モジュールから被処理水を上記被処理水槽に還流する還流路とを備え、上記供給路が供給される被処理水に気体を混合するアスピレーターを有し、上記還流路が上記気体を被処理水と共に被処理水槽に還流する水処理システムであって、上記被処理水槽が、貯留する被処理水の液面上に不活性ガスが気密充填される上部空間を有し、上記上部空間から上記アスピレーターに上記不活性ガスを供給する通気路をさらに備える。
本発明の一態様に係る水処理システムは、被処理水を貯留する被処理水槽と、上記被処理水を濾過するクロスフロー方式濾過膜モジュールと、供給ポンプを用いて上記被処理水槽から濾過膜モジュールに被処理水を供給する供給路と、上記濾過膜モジュールから被処理水を上記被処理水槽に還流する還流路とを備え、上記供給路が供給される被処理水に気体を混合するアスピレーターを有し、上記還流路が上記気体を被処理水と共に被処理水槽に還流する水処理システムであって、上記被処理水槽が、貯留する被処理水の液面上に不活性ガスが気密充填される上部空間を有し、上記上部空間から上記アスピレーターに上記不活性ガスを供給する通気路をさらに備える。
当該水処理システムは、上記上部空間からアスピレーターに上記不活性ガスを供給する通気路をさらに備えることによって、濾過膜モジュールに不活性ガスの気泡を含む被処理水を供給し、気泡のスクラブ効果により濾過膜の目詰まりを抑制できる。さらに、当該水処理システムは、上記被処理水槽が貯留する被処理水の液面上に不活性ガスが気密充填されることによって、被処理水槽及び濾過膜モジュールの間で被処理水を循環させる閉じた系内から気体酸素を排除できる。このため、当該水処理システムは、被処理水から可燃性ガスが発生したとしても、ガス中の酸素濃度を低く維持して爆発を防止できる。
上記濾過膜モジュールが、気密な濾過槽と、この濾過槽内に配設されかつ一方向に引き揃えられた状態で保持される複数本の中空糸膜と、この複数本の中空糸膜の両端部を固定する保持部材とを備え、上記供給路が濾過槽における中空糸膜の引き揃え方向一端側に接続され、上記還流路が濾過槽における中空糸膜の引き揃え方向他端側に接続され、上記濾過槽の内圧が大気圧より高いとよい。このように中空糸膜を用いて外圧クロスフロー方式濾過を行うことで、被処理水の効率のよい濾過が可能であると共に、外気を吸い込むリスクを低減できる。
上記上部空間の容積の上記被処理水槽の全内容積に対する比としては、1/4以上2/3以下が好ましい。このように、上部空間の容積の被処理水槽の全内容積に対する比を上記範囲内とすることによって、被処理水槽を無用に大きくすることなく、濾過膜モジュールに不活性ガスを間断なく供給し続けて濾過膜の目詰まりを確実に抑制できる。
上記被処理水槽に新規に被処理水を供給する原水路と、上記被処理水槽の液面の高さを保持するよう上記原水路における被処理水の流量を調整する液面調整機構とをさらに備えるとよい。このように、原水路及び液面調整機構を備えることによって、被処理水槽内の不活性ガスの圧力低下を防止できるので、アスピレーターが吸引する不活性ガスの量を一定にできる。
上記不活性ガスが窒素を主成分とするとよい。このように、不活性ガスが窒素を主成分とすることによって、比較的安価に爆発を防止できる。
処理済水を貯留する処理済水槽と、上記濾過膜モジュールから処理済水槽へ処理済水を導く処理済水路と、逆洗ポンプを用いて上記処理済水槽から濾過膜モジュールに処理済水を圧送する逆洗水路とをさらに備えるとよい。このように、上記処理済水槽、処理済水路及び逆洗水路を備えることによって、処理済水によって濾過膜を容易かつ確実に逆洗できる。
上記不活性ガスを被処理水槽又は還流路に導入する不活性ガス供給部をさらに備えるとよい。このように、不活性ガス供給部を備えることによって、不活性ガスが被処理水に溶け込んだり、系外に漏出して系内の不活性ガスの量が減少したときに、系内に不活性ガスを容易に補充できる。
上記被処理水槽から被処理水の液面近傍の浮遊物を排出する浮遊物排出路をさらに備えるとよい。このように、上記浮遊物排出路を備えることによって、浮遊物を系外に排出することができ、浮遊物が濾過膜モジュールに供給されて濾過膜を目詰まりさせることを防止できる。
上記被処理水槽の底部から被処理水中の沈殿物を排出する沈殿物排出路をさらに備えるとよい。このように、上記沈殿物排出路を備えることによって、沈殿物を系外に排出することができ、沈殿物が濾過膜モジュールに供給されて濾過膜を目詰まりさせることを防止できる。
ここで、「不活性ガス」とは、酸素濃度が低い、或いは油の揮発成分と接触しても燃焼性及び爆発性がないガスであり、具体的には酸素の体積含有率が10%以下、好ましくは1%以下の気体をいう。「主成分」とは、体積含有率が最も多い成分をいい、好ましくは体積含有率が50%以上である成分をいう。
[本発明の実施形態の詳細]
以下、本発明に係る水処理システムの実施形態について図面を参照しつつ詳説する。
以下、本発明に係る水処理システムの実施形態について図面を参照しつつ詳説する。
図1の水処理システムは、油や濁質を含む被処理水から油や濁質を除去するシステムである。当該水処理システムで処理する被処理水としては、例えば油田等で発生する石油随伴水等が挙げられ、砂濾過装置等によって前処理したものを被処理水としてもよい。
図1の水処理システムは、油や濁質を含む被処理水を貯留する被処理水槽1と、被処理水をクロスフロー方式で濾過する濾過膜モジュール2と、濾過膜モジュール2で濾過された処理済水を貯留する処理済水槽3とを主に備える。
また、当該水処理システムは、被処理水槽1から濾過膜モジュール2に被処理水を供給する供給路4と、濾過膜モジュール2から被処理水を被処理水中に混在する気体と共に被処理水槽1に還流する還流路5と、被処理水槽1に不図示の原水槽等から新規に被処理水(以下、原水と呼ぶことがある)を供給する原水路6と、被処理水槽1の被処理水の上方に形成される上部空間の気体を供給路4に導く通気路7と、濾過膜モジュール2から処理済水槽3へ処理済水を導く処理済水路8と、処理済水槽3から処理済水路8ひいては濾過膜モジュール2に処理済水を圧送する逆洗水路9と、処理済水槽3から処理済水をオーバーフローさせて放出する放水路10と、還流路5に不活性ガスを導入する不活性ガス供給部11と、被処理水槽1内の被処理水の浮遊物を排出する浮遊物排出路12と、被処理水槽1内の被処理水中の沈殿物を排出する沈殿物排出路13とを備える。
<被処理水槽>
被処理水槽1は、気密に形成された容器である。この被処理水槽1は、金属や樹脂によって、内部の圧力に耐える強度を有するよう形成される。被処理水槽1を形成する材料としては、特に、強度、耐熱性、耐薬品性等の観点からステンレス、ポリプロピレン及びアクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)が好ましい。また、被処理水槽1は、外側に補強部材や自立するための脚部材等が設けられてもよい。
被処理水槽1は、気密に形成された容器である。この被処理水槽1は、金属や樹脂によって、内部の圧力に耐える強度を有するよう形成される。被処理水槽1を形成する材料としては、特に、強度、耐熱性、耐薬品性等の観点からステンレス、ポリプロピレン及びアクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)が好ましい。また、被処理水槽1は、外側に補強部材や自立するための脚部材等が設けられてもよい。
この被処理水槽1は、供給路4が、被処理水槽1内の沈殿物を流出させないよう、被処理水槽1の底から離間した位置の側壁に接続され、還流路5及び通気路7がその天壁に接続され、浮遊物排出路12が貯留する被処理水の液面近傍位置の側壁に接続され、沈殿物排出路13が底部に接続されている。
被処理水槽1の貯水量としては、処理すべき原水の量、油や濁質の含有量等に応じて適宜選択される。例として、供給路4から濾過膜モジュール2への被処理水の給水量が240L/hr、濾過膜モジュール2から処理済水路8への処理済水の流出量が80L/hrである場合、被処理水槽1の貯水量は、例えば30L以上200L以下とすることができる。
被処理水槽1は、貯留する被処理水の液面上に不活性ガスが気密充填される上部空間を有する。この上部空間の容積の被処理水槽1の全内容積に対する比の下限としては、1/4が好ましく、1/3がより好ましい。また、上記上部空間の容積の被処理水槽1の全内容積に対する比の上限としては、2/3が好ましく、1/2がより好ましい。上記上部空間の容積の被処理水槽1の全内容積に対する比が上記下限に満たない場合、十分な量の不活性ガスを系内に封入できず、通気路7に被処理水が流入して供給路4に安定して不活性ガスを供給できなくなるおそれがある。一方、上記上部空間の容積の被処理水槽1の全内容積に対する比が上記上限を超える場合、被処理水槽1が無用に大きくなるおそれがある。
<濾過膜モジュール>
濾過膜モジュール2は、被処理水が充填される気密な濾過槽14と、この濾過槽14内に配設されかつ上下一方向に引き揃えられた状態で保持される複数本の中空糸膜15と、この複数本の中空糸膜15の上端部を固定する上部保持部材16と、中空糸膜15の下端部を固定する下部保持部材17とを備える。
濾過膜モジュール2は、被処理水が充填される気密な濾過槽14と、この濾過槽14内に配設されかつ上下一方向に引き揃えられた状態で保持される複数本の中空糸膜15と、この複数本の中空糸膜15の上端部を固定する上部保持部材16と、中空糸膜15の下端部を固定する下部保持部材17とを備える。
(濾過槽)
濾過槽14は、内圧が大気圧より高い加圧状態で内部に液体を貯留可能な容器である。
通常、この濾過槽14は立設され、両端が封止される気密な筒状体である。濾過槽14の平面形状は特に限定されず、例えば円形、多角形等とすることができる。また、濾過槽14の内部には中空糸膜15が濾過槽14の軸方向にその濾過膜の引き揃え方向が一致するよう配設されている。
濾過槽14は、内圧が大気圧より高い加圧状態で内部に液体を貯留可能な容器である。
通常、この濾過槽14は立設され、両端が封止される気密な筒状体である。濾過槽14の平面形状は特に限定されず、例えば円形、多角形等とすることができる。また、濾過槽14の内部には中空糸膜15が濾過槽14の軸方向にその濾過膜の引き揃え方向が一致するよう配設されている。
濾過槽14は、金属や樹脂によって、被処理水の圧力に耐える強度を有するよう形成される。濾過槽14を形成する材料としては、特に、強度、耐熱性、耐薬品性等の観点からステンレス、ポリプロピレン及びアクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)が好ましい。また、濾過槽14は、外側に補強部材や自立するための脚部材等が設けられてもよい。
この濾過槽14の下端、つまり濾過槽14における中空糸膜15の引き揃え方向一端側には、供給路4が接続され、濾過槽14の中空糸膜の引き揃え方向他端側、より詳しくは側壁の上部保持部材16より僅かに下方の位置には、還流路5が接続されている。これにより、被処理水槽1と濾過膜モジュール2との間で被処理水が循環する閉鎖された系が形成される。また、濾過槽14の上端には、処理済水路8が接続されている。
詳しく説明すると、濾過膜モジュール2は、中空糸膜15の下端部よりもさらに下方に不活性ガスの気泡を含む被処理水が加圧状態で導入され、濾過槽14内に供給された被処理水が不活性ガスの気泡と共に中空糸膜15に沿って上昇し、中空糸膜15の上端側の還流路5から排出される。また、被処理水中の水の一部は、中空糸膜15を通過して処理済水となり、処理済水路8に排出される。
定常運転時の濾過槽14の内圧としては、例えばゲージ圧で10kPa以上200kPa以下とされる。濾過槽14の内圧は、供給ポンプ18の出力及び被処理水槽1に充填される不活性ガスの圧力によって調節することができる。また、濾過槽14の内圧を得るために、還流路5に例えば絞り弁、オリフィス等を配置してもよい。濾過槽14の「内圧」とは、下部保持部材17の上面つまり中空糸膜15の露出領域の下端における圧力と、上部保持部材16の下面つまり中空糸膜の露出領域の上端における圧力との平均値を意味する。
(中空糸膜)
中空糸膜15は、内側の空孔に水を透過させる一方、被処理水に含まれる油滴や粒子状の濁質の透過を阻止する多孔質状の中空糸膜である。
中空糸膜15は、内側の空孔に水を透過させる一方、被処理水に含まれる油滴や粒子状の濁質の透過を阻止する多孔質状の中空糸膜である。
中空糸膜15は、円筒状の支持層と、この支持層の表面に積層される濾過層とを有している。このように中空糸膜15を多層構造とすることで、透水性及び機械的強度を両立させ、さらに気泡による表面洗浄効果を大きくできる。
上記支持層及び濾過層の形成材料はポリテトラフルオロエチレン(PTFE)を主成分とするとよい。このように上記支持層及び濾過層の形成材料の主成分をPTFEとすることで、中空糸膜15は機械的強度に優れ、中空糸膜の平均外径に対する平均長さの比であるアスペクト比が大きくても撓み量を小さくでき、また気泡の擦過による中空糸膜表面の損傷等を受け難い。また、この支持層及び濾過層の形成材料は、他のポリマー、添加剤等が適宜配合されていてもよい。
支持層及び濾過層のPTFEの数平均分子量の下限としては、50万が好ましく、200万がより好ましい。また、支持層及び濾過層のPTFEの数平均分子量の上限としては、2000万が好ましい。PTFEの数平均分子量が上記下限に満たない場合、気泡の擦過によって中空糸膜15の表面が損傷するおそれや、中空糸膜15の機械的強度が不十分となるおそれがある。一方、PTFEの数平均分子量が上記上限を超える場合、中空糸膜15の空孔の成形が困難になるおそれがある。
上記支持層は、例えばPTFEを押出成形して得られるチューブを用いることができる。このように支持層として押出成形チューブを用いることで、支持層に機械的強度を持たせることができると共に、空孔も容易に形成することができる。なお、このチューブは軸方向に50%以上700%以下、周方向に5%以上100%以下の延伸率で延伸することが好ましい。
上記延伸における温度は、チューブ素材の融点以下、例えば0℃以上300℃以下とすることが好ましい。比較的空孔の径が大きい多孔質体を得るには低温での延伸がよく、比較的空孔の径が小さい多孔質体を得るには高温での延伸がよい。延伸した多孔質体は、両端を固定し延伸した状態を保って200℃以上300℃以下の温度で1分から30分程度熱処理することで高い寸法安定性が得られる。また、延伸温度や延伸率等の条件を組み合わせることにより、多孔質体の空孔のサイズを調整することができる。
支持層を形成するチューブは、例えばPTFEファインパウダーにナフサ等の液状潤滑剤をブレンドし、押出成形等によりチューブ状とした後に延伸することで得ることができる。また、チューブをPTFEファインパウダーの融点以上の温度、例えば350℃以上550℃以下に保った加熱炉中で、数10秒から数分程度保持し焼結することにより、寸法安定性を高めることができる。
支持層の平均厚さとしては、0.1mm以上3mm以下が好ましい。支持層の平均厚さを上記範囲内とすることで、中空糸膜15に機械的強度及び透水性をバランスよく付与することができる。
上記濾過層は、例えばPTFE製のシートを上記支持層に巻き付けて焼結することで形成することができる。このように濾過層の形成材料としてシートを用いることで、延伸を容易に行うことができ、空孔の形状や大きさの調整が容易となると共に、濾過層の厚さを小さくすることができる。また、シートを巻き付けて焼結することで、支持層と濾過層とが一体化され、両者の空孔を連通させて透水性を向上させることができる。この焼結温度としては、支持層を形成するチューブと濾過層を形成するシートの融点以上が好ましい。
上記濾過層を形成するシートは、例えば(1)樹脂の押出により得られる未焼結成形体を融点以下の温度で延伸しその後焼結する方法、(2)焼結された樹脂成形体を徐冷し結晶化度を高めた後に延伸する方法等を用いて作成することができる。なお、このシートは長手方向に50%以上1000%以下、短手方向に50%以上2500%以下の延伸率で延伸することが好ましい。特に短手方向の延伸率を上記範囲とすることで、シートを巻き付けた際に周方向の機械的強度を向上させることができ、気泡による表面洗浄に対する耐久性を向上させることができる。
また、支持層を形成するチューブにシートを巻き付けることで濾過層を形成する場合、チューブの外周面に微細な凹凸を設けるとよい。このようにチューブの外周面に凹凸を設けることで、シートとの位置ずれを防止できると共に、チューブとシートとの密着性を向上させ、気泡による洗浄で支持層から濾過層が剥離することを防止できる。なお、シートの巻き付け回数はシートの厚さによって調整することができ、1回又は複数回とすることができる。また、チューブに複数のシートを巻き付けてもよい。シートの巻き付け方法としては特に限定されず、チューブの周方向に巻き付ける方法のほか、らせん状に巻き付ける方法を用いてもよい。
上記微細な凹凸の大きさ(高低差)としては20μm以上200μm以下が好ましい。
上記微細な凹凸はチューブ外周面全体に形成されることが好ましいが、部分的又は断続的に形成されていてもよい。また、上記微細な凹凸をチューブ外周面に形成する方法としては、例えば火炎による表面処理、レーザー照射、プラズマ照射、フッ素系樹脂等のディスパージョン塗布等を挙げることができるが、チューブ性状に影響を与えず容易に凹凸を形成できる火炎による表面処理が好ましい。
上記微細な凹凸はチューブ外周面全体に形成されることが好ましいが、部分的又は断続的に形成されていてもよい。また、上記微細な凹凸をチューブ外周面に形成する方法としては、例えば火炎による表面処理、レーザー照射、プラズマ照射、フッ素系樹脂等のディスパージョン塗布等を挙げることができるが、チューブ性状に影響を与えず容易に凹凸を形成できる火炎による表面処理が好ましい。
また、チューブ及びシートとして未焼成のものを用い、シートを巻き付けた後に焼結することでこれらの密着性を高めてもよい。
濾過層の平均厚さとしては、5μm以上100μm以下が好ましい。濾過層の平均厚さを上記範囲内とすることで、中空糸膜15に容易かつ確実に高い濾過性能を付与することができる。
中空糸膜15の平均外径の下限としては、2mmが好ましく、2.1mmがより好ましい。また、中空糸膜15の平均外径の上限としては、6mmが好ましく、4mmがより好ましい。中空糸膜15の平均外径が上記下限に満たない場合、中空糸膜15の機械的強度が不十分となるおそれがある。一方、中空糸膜15の平均外径が上記上限を超える場合、中空糸膜15の断面積に対する表面積の比が小さくなって濾過効率が不十分となるおそれや、1つの気泡が擦過できる表面積が小さくなるおそれがある。
中空糸膜15の平均内径の下限としては、0.5mmが好ましく、0.9mmがより好ましい。また、中空糸膜15の平均内径の上限としては、4mmが好ましく、3mmがより好ましい。中空糸膜15の平均内径が上記下限に満たない場合、中空糸膜15内の濾過済水を排出するときの圧損が大きくなるおそれがある。一方、中空糸膜15の平均内径が上記上限を超える場合、中空糸膜15の厚さが小さくなって機械的強度及び不純物の透過阻止効果が不十分となるおそれがある。
中空糸膜15の平均外径に対する平均内径の比の下限としては、0.3が好ましく、0.4がより好ましい。また、中空糸膜15の平均外径に対する平均内径の比の上限としては、0.8が好ましく、0.6がより好ましい。中空糸膜15の平均外径に対する平均内径の比が上記下限に満たない場合、中空糸膜15の厚さが必要以上に大きくなって中空糸膜15の透水性が不十分となるおそれがある。一方、中空糸膜15の平均外径に対する平均内径の比が上記上限を超える場合、中空糸膜15の厚さが小さくなって機械的強度及び不純物の透過阻止効果が不十分となるおそれがある。
中空糸膜15の平均長さの下限としては、1mが好ましく、1.5mがより好ましい。
また、中空糸膜15の平均長さの上限としては、5mが好ましく、4mがより好ましい。
中空糸膜15の平均長さが上記下限に満たない場合、1つの気泡が濾過膜モジュール2の下方から供給され水面まで上昇する間に擦過する中空糸膜15の表面積が減少し、中空糸膜15の洗浄効率が不十分となるおそれがある。一方、中空糸膜15の平均長さが上記上限を超える場合、中空糸膜15の自重によって中空糸膜15の撓みが大きくなり過ぎるおそれや、濾過膜モジュール2の設置時等における取り扱い性が不十分となるおそれがある。なお、中空糸膜15の平均長さとは、中空糸膜15の上部保持部材16及び下部保持部材17間での露出領域の平均長さ、つまり上部保持部材16の下面と下部保持部材17の上面との平均距離を意味する。
また、中空糸膜15の平均長さの上限としては、5mが好ましく、4mがより好ましい。
中空糸膜15の平均長さが上記下限に満たない場合、1つの気泡が濾過膜モジュール2の下方から供給され水面まで上昇する間に擦過する中空糸膜15の表面積が減少し、中空糸膜15の洗浄効率が不十分となるおそれがある。一方、中空糸膜15の平均長さが上記上限を超える場合、中空糸膜15の自重によって中空糸膜15の撓みが大きくなり過ぎるおそれや、濾過膜モジュール2の設置時等における取り扱い性が不十分となるおそれがある。なお、中空糸膜15の平均長さとは、中空糸膜15の上部保持部材16及び下部保持部材17間での露出領域の平均長さ、つまり上部保持部材16の下面と下部保持部材17の上面との平均距離を意味する。
中空糸膜15の平均外径に対する平均長さの比(アスペクト比)の下限としては、200が好ましく、400がより好ましい。また、中空糸膜15のアスペクト比の上限としては、3000が好ましく、2500がより好ましい。中空糸膜15のアスペクト比が上記下限に満たない場合、1つの気泡が擦過可能な中空糸膜15の表面積が減少することで、中空糸膜15の洗浄効率が不十分となるおそれがある。一方、中空糸膜15のアスペクト比が上記上限を超える場合、中空糸膜15が極度に細長となるため上下に張った際の機械的強度が不十分となるおそれがある。
中空糸膜15の気孔率の下限としては、75%が好ましく、78%がより好ましい。また、中空糸膜15の気孔率の上限としては、90%が好ましく、85%がより好ましい。
中空糸膜15の気孔率が上記下限に満たない場合、透水性が低下し、濾過膜モジュール2の濾過能力が不十分となるおそれがある。一方、中空糸膜15の気孔率が上記上限を超える場合、中空糸膜15の機械的強度及び耐擦過性が不十分となるおそれがある。なお、気孔率とは、中空糸膜15の体積に対する空孔の総体積の割合をいい、ASTM-D-792に準拠して中空糸膜15の密度を測定することで求めることができる。
中空糸膜15の気孔率が上記下限に満たない場合、透水性が低下し、濾過膜モジュール2の濾過能力が不十分となるおそれがある。一方、中空糸膜15の気孔率が上記上限を超える場合、中空糸膜15の機械的強度及び耐擦過性が不十分となるおそれがある。なお、気孔率とは、中空糸膜15の体積に対する空孔の総体積の割合をいい、ASTM-D-792に準拠して中空糸膜15の密度を測定することで求めることができる。
中空糸膜15の空孔の面積占有率の下限としては、40%が好ましい。また、中空糸膜15の空孔の面積占有率の上限としては、60%が好ましい。空孔の面積占有率が上記下限に満たない場合、透水性が低下し、濾過膜モジュール2の濾過能力が不十分となるおそれがある。一方、空孔の面積占有率が上記上限を超える場合、中空糸膜15の表面強度が不十分となり、気泡の擦過によって中空糸膜15の破損等が生じるおそれがある。なお、空孔の面積占有率とは、中空糸膜15の表面積に対する中空糸膜15の外周面(濾過層表面)における空孔の総面積の割合を意味し、中空糸膜15の外周面の電子顕微鏡写真を解析することで求めることができる。
中空糸膜15の空孔の平均径の下限としては、0.01μmが好ましい。また、中空糸膜15の空孔の平均径の上限としては、0.45μmが好ましく、0.1μmがより好ましい。中空糸膜15の空孔の平均径が上記下限に満たない場合、透水性が不十分となるおそれがある。一方、中空糸膜15の空孔の平均径が上記上限を超える場合、被処理水に含まれる不純物の中空糸膜15内部への透過を阻止できないおそれがある。なお、空孔の平均径とは、中空糸膜15の外周面(濾過層表面)の空孔の平均径を意味し、細孔直径分布測定装置(例えばPorus Materials社の「多孔質材料自動細孔径分布測定システム」)により測定することができる。
中空糸膜15の引張強度の下限としては、50Nが好ましく、60Nがより好ましい。
中空糸膜15の引張強度が上記下限に満たない場合、気泡による表面洗浄に対する耐久性が不十分となるおそれがある。なお、中空糸膜15の引張強度の上限は、特に限定されないが、現在の技術で製造し得る中空糸膜の引張強度の最大値は150N程度である。なお、「引張強度」とは、JIS-K7161:1994に準拠し、標線間距離100mm、試験速度100mm/minで引張試験を行った際の最大引張応力を意味する。
中空糸膜15の引張強度が上記下限に満たない場合、気泡による表面洗浄に対する耐久性が不十分となるおそれがある。なお、中空糸膜15の引張強度の上限は、特に限定されないが、現在の技術で製造し得る中空糸膜の引張強度の最大値は150N程度である。なお、「引張強度」とは、JIS-K7161:1994に準拠し、標線間距離100mm、試験速度100mm/minで引張試験を行った際の最大引張応力を意味する。
下部保持部材17が保持する中空糸膜15の本数Nを、中空糸膜15の配設領域面積Aで割った中空糸膜15の存在密度(N/A)の下限としては、4本/cm2が好ましく、6本/cm2がより好ましい。また、上記中空糸膜15の存在密度の上限としては、15本/cm2が好ましく、12本/cm2がより好ましい。中空糸膜15の存在密度が上記下限に満たない場合、濾過膜モジュール2の単位体積当たりの濾過効率が不十分となるおそれがある。一方、中空糸膜15の存在密度が上記上限を超える場合、中空糸膜15の間隔が小さくなって表面の洗浄が十分行えないおそれがある。なお、「中空糸膜の配設領域」とは、中空糸膜の軸方向から見て濾過膜モジュール2が有する全ての中空糸膜15を包含する仮想多角形のうち最も面積の小さいものを意味する。
また、中空糸膜15を中実と仮定した場合の下部保持部材17が保持する中空糸膜15の断面積の総和Sを、中空糸膜15の配設領域面積Aで割った中空糸膜15の面積割合(S/A)の下限としては、20%が好ましく、25%がより好ましい。また、上記中空糸膜15の面積割合の上限としては、60%が好ましく、55%がより好ましい。中空糸膜15の面積割合が上記下限に満たない場合、濾過膜モジュール2の単位体積当たりの濾過効率が不十分となるおそれがある。一方、中空糸膜15の面積割合が上記上限を超える場合、中空糸膜15の間隔が小さくなって表面の洗浄が十分行えないおそれがある。
(上部保持部材)
上部保持部材16は、複数本の中空糸膜15の上端部を保持すると共に、各中空糸膜15の空孔と連通し、処理済水路8に接続される集水ヘッダを形成する部材である。このような集水ヘッダは、上部保持部材16の内部に形成してもよく、上部保持部材16によって濾過槽14を区分することにより濾過槽14の上端部を集水ヘッダとするものであってもよい。上部保持部材16の外形は特に限定されず、断面形状は多角形状、円形状等とすることができる。
上部保持部材16は、複数本の中空糸膜15の上端部を保持すると共に、各中空糸膜15の空孔と連通し、処理済水路8に接続される集水ヘッダを形成する部材である。このような集水ヘッダは、上部保持部材16の内部に形成してもよく、上部保持部材16によって濾過槽14を区分することにより濾過槽14の上端部を集水ヘッダとするものであってもよい。上部保持部材16の外形は特に限定されず、断面形状は多角形状、円形状等とすることができる。
(下部保持部材)
下部保持部材17は、複数本の中空糸膜15の下端部を保持する部材である。上記下部保持部材17は、外枠17aと、中空糸膜15の下端部を固定すると共に各中空糸膜15の下端を封止する複数の固定部位17bとを有する。この固定部位17bは、例えば棒状に形成されており、被処理水及び不活性ガスの気泡が通過できるよう一定の間隔を持って複数略平行に配設され、上方側にそれぞれ複数本の中空糸膜15が配設されている。
下部保持部材17は、複数本の中空糸膜15の下端部を保持する部材である。上記下部保持部材17は、外枠17aと、中空糸膜15の下端部を固定すると共に各中空糸膜15の下端を封止する複数の固定部位17bとを有する。この固定部位17bは、例えば棒状に形成されており、被処理水及び不活性ガスの気泡が通過できるよう一定の間隔を持って複数略平行に配設され、上方側にそれぞれ複数本の中空糸膜15が配設されている。
なお、中空糸膜15は、1本の両端を上部保持部材16及び下部保持部材17でそれぞれ固定してもよいが、1本の中空糸膜15をU字状に湾曲させ、2つの開口部を上部保持部材16で固定し、下端折返(湾曲)部を下部保持部材17で固定してもよい。
外枠17aは、固定部位17bを支持するための部材である。外枠17aの一辺の長さとしては、例えば50mm以上200mm以下とすることができる。また、外枠17aの断面形状は特に限定されず、四角形状やその他の多角形状、円形状等とできる。
固定部位17bの幅(短手方向長さ)及びその間隔は、十分な数の中空糸膜15を固定でき、かつ供給路4から供給される不活性ガスの気泡を通過させることができれば特に限定されない。固定部位17bの平均幅としては、例えば3mm以上10mm以下とすることができ、固定部位17bの平均間隔としては、例えば1mm以上10mm以下とすることができる。
上部保持部材16及び下部保持部材17の材質としては特に限定されず、例えばエポキシ樹脂、ABS樹脂、シリコーン樹脂等を用いることができる。
中空糸膜15の上部保持部材16及び下部保持部材17への固定方法は特に限定されず、例えば接着剤を用いて固定する方法を用いることができる。
また、濾過膜モジュール2の取り扱い(運搬、設置、交換等)を容易にするために、上部保持部材16と下部保持部材17とは連結部材で連結することが好ましい。この連結部材としては、例えば金属製の支持棒や、樹脂製のケーシング(外筒)等を用いることができる。
<処理済水槽>
処理済水槽3は、濾過膜モジュール2で濾過された処理済水を貯留する容器である。この処理済水槽3は、大気開放型の容器であってもよい。この処理済水槽3は、後述する逆洗水として使用する処理済水を確保すると共に、処理済水を一時的に貯留して、処理済水の水質を確認するために配設される。
処理済水槽3は、濾過膜モジュール2で濾過された処理済水を貯留する容器である。この処理済水槽3は、大気開放型の容器であってもよい。この処理済水槽3は、後述する逆洗水として使用する処理済水を確保すると共に、処理済水を一時的に貯留して、処理済水の水質を確認するために配設される。
処理済水槽3は、金属や樹脂によって形成される。処理済水槽3を形成する材料としては、特に、強度、耐熱性、耐薬品性等の観点からステンレス、ポリプロピレン及びアクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)が好ましい。また、処理済水槽3は、外側に補強部材や自立するための脚部材等が設けられてもよい。
処理済水槽3の容量は、逆洗水として使用する処理済水を確保できる容量であればよく、例えば、逆洗流量としては濾過流量の2倍以上、10倍以下とされる。
<供給路>
供給路4は、主にパイプによって形成され、被処理水槽1と濾過膜モジュール2とを接続する。この供給路4は、被処理水を送出する供給ポンプ18と、被処理水の流路を絞り込むことでベンチュリー効果により負圧を生成し、通気路7から気体を吸引して被処理水中に導入するアスピレーター19とを有する。
供給路4は、主にパイプによって形成され、被処理水槽1と濾過膜モジュール2とを接続する。この供給路4は、被処理水を送出する供給ポンプ18と、被処理水の流路を絞り込むことでベンチュリー効果により負圧を生成し、通気路7から気体を吸引して被処理水中に導入するアスピレーター19とを有する。
(供給ポンプ)
供給ポンプ18は、被処理水を送出できるものであればよい。供給ポンプ18の吐出圧としては、例えば10kPa以上1000kPa以下とされる。
供給ポンプ18は、被処理水を送出できるものであればよい。供給ポンプ18の吐出圧としては、例えば10kPa以上1000kPa以下とされる。
供給ポンプ18の吐出量、つまり濾過膜モジュール2への被処理水の供給量としては、中空糸膜15の単位面積を基準として、例えば20L/m2・hr以上1000L/m2・hr以下とされる。
(アスピレーター)
アスピレーター19は、被処理水の流路断面積を絞り込むことで、ベンチュリー効果により負圧を生じさせて気体吸引用のポートに接続された後述する通気路7から不活性ガスを吸引し、この不活性ガスを被処理水中に混合する。
アスピレーター19は、被処理水の流路断面積を絞り込むことで、ベンチュリー効果により負圧を生じさせて気体吸引用のポートに接続された後述する通気路7から不活性ガスを吸引し、この不活性ガスを被処理水中に混合する。
アスピレーター19は、吸引した不活性ガスを剪断して微細な気泡にするよう構成されたものが好ましい。微細な気泡を生成するアスピレーターとしては、例えばマイクロバブル発生装置として市販されているもの等を使用することができる。
アスピレーター19によって単位体積当たりの被処理水に混合される不活性ガスの量(大気圧20℃での体積)としては、例えば0.5NL/L以上5NL/L以下とされる。
<還流路>
還流路5は、主としてパイプにより形成され、途中に不活性ガス供給部11が接続されている。定常運転時、供給路4から濾過膜モジュール2に被処理水と共に供給された不活性ガスは、基本的に全量が還流路5を介して被処理水と共に被処理水槽1に返送される。
還流路5は、主としてパイプにより形成され、途中に不活性ガス供給部11が接続されている。定常運転時、供給路4から濾過膜モジュール2に被処理水と共に供給された不活性ガスは、基本的に全量が還流路5を介して被処理水と共に被処理水槽1に返送される。
<原水路>
原水路6は、主としてパイプによって形成されている。この原水路6には、ボールタップ20が配設される。このボールタップ20は、被処理水槽1に貯留される被処理水の液面の高さを保持するようこの原水路6における被処理水の流量を調整するものであり、当該水処理システムの液面調整機構として機能する。
原水路6は、主としてパイプによって形成されている。この原水路6には、ボールタップ20が配設される。このボールタップ20は、被処理水槽1に貯留される被処理水の液面の高さを保持するようこの原水路6における被処理水の流量を調整するものであり、当該水処理システムの液面調整機構として機能する。
<通気路>
通気路7は、主としてパイプによって形成され、一端が被処理水槽1の上部空間に開口し、他端がアスピレーター19の気体吸引用のポートに接続される。この通気路7は、被処理水槽1の液面から離間し、還流路5から還流される被処理水がかからない位置に開口するよう配設されることが好ましい。
通気路7は、主としてパイプによって形成され、一端が被処理水槽1の上部空間に開口し、他端がアスピレーター19の気体吸引用のポートに接続される。この通気路7は、被処理水槽1の液面から離間し、還流路5から還流される被処理水がかからない位置に開口するよう配設されることが好ましい。
<処理済水路>
処理済水路8は、主としてパイプによって形成され、逆洗水路9が接続される位置の下流側に配設される開閉弁21を有する。この処理済水路8の一端は、濾過膜モジュール2には気密に接続されるが、他端は、処理済水槽3内で大気開放されてもよい。
処理済水路8は、主としてパイプによって形成され、逆洗水路9が接続される位置の下流側に配設される開閉弁21を有する。この処理済水路8の一端は、濾過膜モジュール2には気密に接続されるが、他端は、処理済水槽3内で大気開放されてもよい。
(開閉弁)
処理済水路8の開閉弁21は、定常運転時には常時開放されるが、後述する逆洗水路9を用いて濾過膜モジュール2の逆洗を行うときには閉鎖され、逆洗水として使用される処理済水の処理済水槽3への逆流を防止する。
処理済水路8の開閉弁21は、定常運転時には常時開放されるが、後述する逆洗水路9を用いて濾過膜モジュール2の逆洗を行うときには閉鎖され、逆洗水として使用される処理済水の処理済水槽3への逆流を防止する。
<逆洗水路>
逆洗水路9は、主としてパイプによって形成され、処理済水槽3に貯留される処理済水を圧送する逆洗ポンプ22と、逆洗ポンプ22の下流側(処理済水路8側)に配設される開閉弁23とを有する。
逆洗水路9は、主としてパイプによって形成され、処理済水槽3に貯留される処理済水を圧送する逆洗ポンプ22と、逆洗ポンプ22の下流側(処理済水路8側)に配設される開閉弁23とを有する。
(逆洗ポンプ)
逆洗ポンプ22は、処理済水を圧送できるものであればよい。逆洗ポンプ22の吐出圧としては、例えば20kPa以上300kPa以下とされる。
逆洗ポンプ22は、処理済水を圧送できるものであればよい。逆洗ポンプ22の吐出圧としては、例えば20kPa以上300kPa以下とされる。
(開閉弁)
逆洗水路9の開閉弁23は、定常運転時には常時閉鎖され、処理済水路8から逆洗水路9に処理済水が流れ込まないよう流路を遮断する。また、逆洗水路9の開閉弁23は、逆洗時には開放され、濾過膜モジュール2への逆洗水の供給を可能にする。
逆洗水路9の開閉弁23は、定常運転時には常時閉鎖され、処理済水路8から逆洗水路9に処理済水が流れ込まないよう流路を遮断する。また、逆洗水路9の開閉弁23は、逆洗時には開放され、濾過膜モジュール2への逆洗水の供給を可能にする。
<放水路>
放水路10は、主としてパイプによって形成され、処理済水槽3に貯留される処理済水をオーバーフローさせることによって、処理済水槽3に貯留される処理済水の水量を一定に保持する。
放水路10は、主としてパイプによって形成され、処理済水槽3に貯留される処理済水をオーバーフローさせることによって、処理済水槽3に貯留される処理済水の水量を一定に保持する。
<不活性ガス供給部>
不活性ガス供給部11は、高圧の不活性ガスを貯留するガスボンベ24と、供給弁25が配設され、ガスボンベ24及び還流路5間を接続する給気路26とを有する。
不活性ガス供給部11は、高圧の不活性ガスを貯留するガスボンベ24と、供給弁25が配設され、ガスボンベ24及び還流路5間を接続する給気路26とを有する。
(不活性ガス)
不活性ガス供給部11が供給する不活性ガスとしては、酸素の体積含有率が10%以下、好ましくは1%以下であることにより、可燃物を燃焼させない気体が使用される。また、不活性ガスは、微生物等による酸素の生成を防止するため、生物的活性を有する二酸化炭素の体積含有率が1%以下であることがより好ましい。このような不活性ガスの主成分としては、例えば窒素、アルゴン等が挙げられ、中でも安価な窒素が好ましい。
不活性ガス供給部11が供給する不活性ガスとしては、酸素の体積含有率が10%以下、好ましくは1%以下であることにより、可燃物を燃焼させない気体が使用される。また、不活性ガスは、微生物等による酸素の生成を防止するため、生物的活性を有する二酸化炭素の体積含有率が1%以下であることがより好ましい。このような不活性ガスの主成分としては、例えば窒素、アルゴン等が挙げられ、中でも安価な窒素が好ましい。
不活性ガス供給部11は、当該水処理システムの運転開始前に供給弁25を開放して被処理水槽1内に不活性ガスを充填するが、定常運転時には通常閉鎖される。また、当該水処理システムにおいて、不活性ガスが外部に漏出したり、不活性ガスが被処理水に少しずつ溶け込んだりして、システム内に充填されている不活性ガスの量が減少した場合には、不活性ガス供給部11から不活性ガスを補給してもよい。システム内の不活性ガスの減少は、例えば被処理水槽1内の圧力を検出することによって判定できる。
また、当該水処理システムは、不活性ガス供給部11により不活性ガスを充填する際に、被処理水槽1、濾過膜モジュール2、還流路5等の内部に存在する空気を排気する排気路を有してもよい。このように、排気路を設けることによって、系内の空気を排出して不活性ガスで置換することができ、酸素濃度をより確実に低減して爆発を防止できる。
<浮遊物排出路>
浮遊物排出路12は、主としてパイプによって形成され、開閉弁27が配設されている。この浮遊物排出路12は、開閉弁27が開放されることによって、被処理水槽1内の被処理水の液面近傍の浮遊物(例えば分離した油の層)を排出するために使用される。
浮遊物排出路12は、主としてパイプによって形成され、開閉弁27が配設されている。この浮遊物排出路12は、開閉弁27が開放されることによって、被処理水槽1内の被処理水の液面近傍の浮遊物(例えば分離した油の層)を排出するために使用される。
<沈殿物排出路>
沈殿物排出路13は、主としてパイプによって形成され、開閉弁28が配設されている。この沈殿物排出路13は、開閉弁28が開放されることによって、被処理水槽1内の被処理水中の沈殿物(スラリー)を排出するために使用される。
沈殿物排出路13は、主としてパイプによって形成され、開閉弁28が配設されている。この沈殿物排出路13は、開閉弁28が開放されることによって、被処理水槽1内の被処理水中の沈殿物(スラリー)を排出するために使用される。
<利点>
当該水処理システムは、被処理水槽1の上部空間からアスピレーター19に不活性ガスを供給する通気路7を備えることによって、濾過膜モジュール2に不活性ガスの気泡を含む被処理水を供給し、気泡のスクラブ効果により中空糸膜15の目詰まりを抑制できる。
当該水処理システムは、被処理水槽1の上部空間からアスピレーター19に不活性ガスを供給する通気路7を備えることによって、濾過膜モジュール2に不活性ガスの気泡を含む被処理水を供給し、気泡のスクラブ効果により中空糸膜15の目詰まりを抑制できる。
また、当該水処理システムは、被処理水槽1が貯留する被処理水の液面上に不活性ガスが気密充填されることによって、被処理水槽1及び濾過膜モジュール2の間で被処理水を循環させる閉じた系内から気体酸素を排除できる。このため、例えば被処理水の有機物の分解等により被処理水が可燃性ガスを発生したとしても、被処理水が循環する系内の酸素濃度が低いため、発生した可燃性ガスの爆発や燃焼が防止される。
また、当該水処理システムは、気密な濾過槽14と、この濾過槽14内に配設されかつ一方向に引き揃えられた状態で保持される複数本の中空糸膜15とを備える濾過膜モジュール2を使用し、濾過槽14の内圧を大気圧より高い圧力に保持しつつ、中空糸膜15の引き揃え方向一端側から他端側に被処理水を通過させる外圧クロスフロー方式濾過を行うことで、被処理水の効率のよい濾過が可能であると共に、当該水処理システム内を大気圧以上に保つので外気を吸い込むリスクを低減できる。
また、当該水処理システムは、ボールタップ20によって、被処理水槽1内の被処理水の液面の高さを保持することによって、被処理水槽1内の不活性ガスの圧力を維持できる。このため、不活性ガスを追加することなく、アスピレーター19が吸引する不活性ガスの量を一定にできるので、不活性ガスの消費を抑制できる。
また、当該水処理システムは、処理済水槽3、処理済水路8、及び逆洗水路9を備えることによって、処理済水槽3に貯留した処理済水を逆洗水として使用し、濾過膜モジュール2を逆洗できる。この逆洗により中空糸膜15に付着した油や濁質を除去し、還流路5から被処理水槽1に送り返すことで、中空糸膜15の濾過能力を回復できる。
また、当該水処理システムは、不活性ガス供給部11を備えることによって、不活性ガスが被処理水に溶け込んだり、系外に漏出したときに、系内に不活性ガスを容易に補充できる。
また、当該水処理システムは、浮遊物排出路12及び沈殿物排出路13を備えることによって、被処理水槽1内において被処理水から分離される浮遊物や沈殿物を適宜排出して、浮遊物や沈殿物が濾過膜モジュール2に供給されることを防止できる。
[その他の実施形態]
今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記実施形態の構成に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記実施形態の構成に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
当該水処理システムでは、基本的に系内に充填されている不活性ガスが減少しないので、頻繁に不活性ガスを供給する必要はなく、不活性ガス供給部を省略してもよい。
また、不活性ガス供給部の給気路は、被処理水槽に接続されてもよい。
当該水処理システムは、処理済水槽を省略し、濾過膜モジュールから流出する処理済水をそのまま河川等に放水するよう構成してもよい。この場合、例えば市水等を逆洗水として供給できるようにしてもよい。
また、当該水処理システムにおいて、液面調整機構を省略してもよい。この場合、濾過膜モジュールから排出される処理済水の分だけ被処理水槽に貯留する被処理水の水量が減少するので、被処理水槽の液面が一定の高さまで低下したときに処理を終了し、被処理水槽に残留する濃縮された被処理水を他の処理設備に移送するようなバッチ処理としてもよい。他の処理設備としては、例えば被処理水をさらに濃縮して産業廃棄物として処分するためのエバポレーター等が考えられる。
また、当該水処理システムにおいて液面調整機構は、例えばレベルセンサと制御弁との組み合わせ等、ボールタップ以外の機構を用いてもよい。
また、当該水処理システムにおいて、被処理水槽の浮遊物排出路及び沈殿物排出路を省略してもよい。
また、当該水処理システムの濾過膜モジュールは、中空糸膜以外の濾過膜を有するものであってもよい。中空糸膜以外の濾過膜としては、例えば積層平膜、プリーツ膜、スパイラル膜等が挙げられる。
また、濾過膜モジュールにおける中空糸膜の引き揃え方向、つまり被処理水の通水方向は横方向であってもよい。
また、当該水処理システムにおいて、濾過槽の内圧を略大気圧とし、処理済水路に吸引ポンプを配設することにより濾過膜の被処理水側(中空糸膜では外側)と濾過済水側(中空糸膜では内側)との間に圧力差を生じさせて、被処理水中の水に濾過膜を通過させる濾過(中空糸膜では浸漬吸引型クロスフロー方式濾過)を行うようにしてもよい。
また、当該水処理システムは、中空糸膜の内側に不活性ガスの気泡を含む被処理水を加圧状態で通水し、中空糸膜の外側の濾過層から中空糸膜を透過した処理済水を回収する内圧型クロスフロー方式濾過を行うように構成してもよい。
本発明は、例えば石油随伴水等、分解して可燃性ガスを生じ得る濁質を含む被処理水や可燃性ガスが高濃度に溶存している被処理水を濾過するために好適に使用することができる。
1 被処理水槽
2 濾過膜モジュール
3 処理済水槽
4 供給路
5 還流路
6 原水路
7 通気路
8 処理済水路
9 逆洗水路
10 放水路
11 不活性ガス供給部
12 浮遊物排出路
13 沈殿物排出路
14 濾過槽
15 中空糸膜
16 上部保持部材
17 下部保持部材
17a 外枠
17b 固定部位
18 供給ポンプ
19 アスピレーター
20 ボールタップ(液面調整機構)
21 開閉弁
22 逆洗ポンプ
23 開閉弁
24 ガスボンベ
25 供給弁
26 給気路
27 開閉弁
28 開閉弁
2 濾過膜モジュール
3 処理済水槽
4 供給路
5 還流路
6 原水路
7 通気路
8 処理済水路
9 逆洗水路
10 放水路
11 不活性ガス供給部
12 浮遊物排出路
13 沈殿物排出路
14 濾過槽
15 中空糸膜
16 上部保持部材
17 下部保持部材
17a 外枠
17b 固定部位
18 供給ポンプ
19 アスピレーター
20 ボールタップ(液面調整機構)
21 開閉弁
22 逆洗ポンプ
23 開閉弁
24 ガスボンベ
25 供給弁
26 給気路
27 開閉弁
28 開閉弁
Claims (9)
- 被処理水を貯留する被処理水槽と、上記被処理水を濾過するクロスフロー方式濾過膜モジュールと、供給ポンプを用いて上記被処理水槽から濾過膜モジュールに被処理水を供給する供給路と、上記濾過膜モジュールから被処理水を上記被処理水槽に還流する還流路とを備え、上記供給路が供給される被処理水に気体を混合するアスピレーターを有し、上記還流路が上記気体を被処理水と共に被処理水槽に還流する水処理システムであって、
上記被処理水槽が、貯留する被処理水の液面上に不活性ガスが気密充填される上部空間を有し、
上記上部空間から上記アスピレーターに上記不活性ガスを供給する通気路をさらに備える水処理システム。 - 上記濾過膜モジュールが、気密な濾過槽と、この濾過槽内に配設されかつ一方向に引き揃えられた状態で保持される複数本の中空糸膜と、この複数本の中空糸膜の両端部を固定する保持部材とを備え、
上記供給路が濾過槽における中空糸膜の引き揃え方向一端側に接続され、
上記還流路が濾過槽における中空糸膜の引き揃え方向他端側に接続され、
上記濾過槽の内圧が大気圧より高い請求項1に記載の水処理システム。 - 上記上部空間の容積の上記被処理水槽の全内容積に対する比が1/4以上2/3以下である請求項1又は請求項2に記載の水処理システム。
- 上記被処理水槽に新規に被処理水を供給する原水路と、上記被処理水槽の液面の高さを保持するよう上記原水路における被処理水の流量を調整する液面調整機構とをさらに備える請求項1又は請求項2に記載の水処理システム。
- 上記不活性ガスが窒素を主成分とする請求項1又は請求項2に記載の水処理システム。
- 処理済水を貯留する処理済水槽と、上記濾過膜モジュールから処理済水槽へ処理済水を導く処理済水路と、逆洗ポンプを用いて上記処理済水槽から濾過膜モジュールに処理済水を圧送する逆洗水路とをさらに備える請求項1又は請求項2に記載の水処理システム。
- 上記不活性ガスを被処理水槽又は還流路に導入する不活性ガス供給部をさらに備える請求項1又は請求項2に記載の水処理システム。
- 上記被処理水槽から被処理水の液面近傍の浮遊物を排出する浮遊物排出路をさらに備える請求項1又は請求項2に記載の水処理システム。
- 上記被処理水槽の底部から被処理水中の沈殿物を排出する沈殿物排出路をさらに備える請求項1又は請求項2に記載の水処理システム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580029251.5A CN106458650B (zh) | 2014-08-01 | 2015-06-26 | 水处理系统 |
US15/318,463 US10065153B2 (en) | 2014-08-01 | 2015-06-26 | Water treatment system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014157846A JP2016034607A (ja) | 2014-08-01 | 2014-08-01 | 水処理システム |
JP2014-157846 | 2014-08-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016017335A1 true WO2016017335A1 (ja) | 2016-02-04 |
Family
ID=55217240
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/068455 WO2016017335A1 (ja) | 2014-08-01 | 2015-06-26 | 水処理システム |
Country Status (4)
Country | Link |
---|---|
US (1) | US10065153B2 (ja) |
JP (1) | JP2016034607A (ja) |
CN (1) | CN106458650B (ja) |
WO (1) | WO2016017335A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11297847B2 (en) * | 2016-05-25 | 2022-04-12 | Harm Van Alfsen | Liquid treatment system for concentrating raw milk, and method therefor |
CN114699932A (zh) * | 2022-03-23 | 2022-07-05 | 深圳市东方祺胜实业有限公司 | 动态膜过滤器及其用于处理污水的方法 |
US20220355256A1 (en) * | 2021-05-06 | 2022-11-10 | Prosper Technologies, Llc | Oxygen infusion module for wastewater treatment |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2015341570A1 (en) * | 2014-11-07 | 2017-06-08 | Oxy Solutions As | Apparatus for dissolving gas into a liquid |
CN107207289B (zh) * | 2015-02-09 | 2020-09-01 | 住友电气工业株式会社 | 水处理系统以及水处理方法 |
CN113730986A (zh) * | 2021-09-27 | 2021-12-03 | 深圳市兰科环境技术有限公司 | 带悬浮物含油污水处理装置及其冲洗方法和处理方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06285496A (ja) * | 1993-04-07 | 1994-10-11 | Ebara Infilco Co Ltd | 有機性排水の中空糸膜分離生物処理方法および装置 |
JP2002011332A (ja) * | 2000-06-29 | 2002-01-15 | Kuraray Co Ltd | 内圧式のクロスフロー濾過方法および濾過装置 |
JP2009148673A (ja) * | 2007-12-19 | 2009-07-09 | Sekisui Chem Co Ltd | 膜分離装置及び脱塩処理方法 |
JP2010064039A (ja) * | 2008-09-12 | 2010-03-25 | Mitsubishi Rayon Eng Co Ltd | 排水処理装置および排水処理方法 |
JP2010207762A (ja) * | 2009-03-12 | 2010-09-24 | Kubota Corp | 膜型メタン発酵処理装置およびメタン発酵処理方法 |
JP2012205991A (ja) * | 2011-03-29 | 2012-10-25 | Kurita Water Ind Ltd | 有機性排水の処理装置 |
JP2014117645A (ja) * | 2012-12-14 | 2014-06-30 | Sekisui Chem Co Ltd | 水処理装置及び水処理方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100453477C (zh) * | 2002-01-17 | 2009-01-21 | S·T·M工程株式会社 | 活性污泥处理系统 |
EP1838422A4 (en) * | 2004-12-24 | 2009-09-02 | Siemens Water Tech Corp | EASY GAS FLUSHING PROCESS AND APPROPRIATE DEVICE |
KR20120052324A (ko) * | 2009-08-06 | 2012-05-23 | 스미토모덴키고교가부시키가이샤 | 수처리 장치 및 수처리 방법 |
TW201217045A (en) * | 2010-09-27 | 2012-05-01 | Sumitomo Electric Industries | Method for cleaning filter membrane, and membrane filter |
CN102826667B (zh) * | 2012-08-28 | 2013-09-18 | 王曙光 | 应急式气能多功能净化水系统 |
CN203295267U (zh) * | 2013-05-23 | 2013-11-20 | 王延军 | 二氧化碳溶气反应装置 |
JP6465272B2 (ja) * | 2013-11-18 | 2019-02-06 | 東洋エンジニアリング株式会社 | 油水分離器、油水分離方法、およびろ過膜ユニット |
-
2014
- 2014-08-01 JP JP2014157846A patent/JP2016034607A/ja active Pending
-
2015
- 2015-06-26 WO PCT/JP2015/068455 patent/WO2016017335A1/ja active Application Filing
- 2015-06-26 CN CN201580029251.5A patent/CN106458650B/zh active Active
- 2015-06-26 US US15/318,463 patent/US10065153B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06285496A (ja) * | 1993-04-07 | 1994-10-11 | Ebara Infilco Co Ltd | 有機性排水の中空糸膜分離生物処理方法および装置 |
JP2002011332A (ja) * | 2000-06-29 | 2002-01-15 | Kuraray Co Ltd | 内圧式のクロスフロー濾過方法および濾過装置 |
JP2009148673A (ja) * | 2007-12-19 | 2009-07-09 | Sekisui Chem Co Ltd | 膜分離装置及び脱塩処理方法 |
JP2010064039A (ja) * | 2008-09-12 | 2010-03-25 | Mitsubishi Rayon Eng Co Ltd | 排水処理装置および排水処理方法 |
JP2010207762A (ja) * | 2009-03-12 | 2010-09-24 | Kubota Corp | 膜型メタン発酵処理装置およびメタン発酵処理方法 |
JP2012205991A (ja) * | 2011-03-29 | 2012-10-25 | Kurita Water Ind Ltd | 有機性排水の処理装置 |
JP2014117645A (ja) * | 2012-12-14 | 2014-06-30 | Sekisui Chem Co Ltd | 水処理装置及び水処理方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11297847B2 (en) * | 2016-05-25 | 2022-04-12 | Harm Van Alfsen | Liquid treatment system for concentrating raw milk, and method therefor |
US20220355256A1 (en) * | 2021-05-06 | 2022-11-10 | Prosper Technologies, Llc | Oxygen infusion module for wastewater treatment |
US12006239B2 (en) * | 2021-05-06 | 2024-06-11 | Prosper Technologies, Llc | Oxygen infusion module for wastewater treatment |
CN114699932A (zh) * | 2022-03-23 | 2022-07-05 | 深圳市东方祺胜实业有限公司 | 动态膜过滤器及其用于处理污水的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106458650B (zh) | 2019-11-12 |
CN106458650A (zh) | 2017-02-22 |
US20170128887A1 (en) | 2017-05-11 |
JP2016034607A (ja) | 2016-03-17 |
US10065153B2 (en) | 2018-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016017335A1 (ja) | 水処理システム | |
JP6624081B2 (ja) | 水処理システム及び水処理方法 | |
US11352270B2 (en) | Porous membrane for membrane distillation, and method for operating membrane distillation module | |
US9649602B2 (en) | Method of sewage treatment and sewage treatment apparatus | |
WO2012002427A1 (ja) | 浸漬型膜モジュールユニット、及び膜分離活性汚泥処理装置 | |
US20160115057A1 (en) | Filtration device and filtration method using the same | |
WO2016067917A1 (ja) | 濾過モジュール及び濾過装置 | |
WO2014192432A1 (ja) | 濾過モジュール及び濾過装置 | |
JP2018079442A (ja) | サイフォン式散気管、膜分離活性汚泥装置、水処理方法 | |
US20180029907A1 (en) | Water treatment method and water treatment system | |
WO2016088579A1 (ja) | 濾過モジュール及び濾過装置 | |
WO2014192416A1 (ja) | 濾過装置及びこれを用いた濾過方法 | |
JP2012157849A (ja) | 膜分離活性汚泥装置 | |
JP2020089835A (ja) | 洗浄方法及び浸漬式濾過装置 | |
WO2017126349A1 (ja) | 散気管及び濾過ユニット | |
WO2016152336A1 (ja) | 濾過ユニット | |
JP2019188275A (ja) | 濾過装置 | |
JP2016215165A (ja) | 水処理方法及び水処理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15827570 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15318463 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15827570 Country of ref document: EP Kind code of ref document: A1 |