WO2016017277A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2016017277A1
WO2016017277A1 PCT/JP2015/066277 JP2015066277W WO2016017277A1 WO 2016017277 A1 WO2016017277 A1 WO 2016017277A1 JP 2015066277 W JP2015066277 W JP 2015066277W WO 2016017277 A1 WO2016017277 A1 WO 2016017277A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
refrigerant
oil
heat exchanger
refrigerating machine
Prior art date
Application number
PCT/JP2015/066277
Other languages
English (en)
French (fr)
Inventor
修平 多田
亮 太田
植田 英之
坪江 宏明
遠藤 剛
横関 敦彦
福治 塚田
Original Assignee
日立アプライアンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立アプライアンス株式会社 filed Critical 日立アプライアンス株式会社
Priority to CN201580040423.9A priority Critical patent/CN106605108A/zh
Priority to US15/326,733 priority patent/US20170204314A1/en
Priority to EP15826881.3A priority patent/EP3176520A4/en
Publication of WO2016017277A1 publication Critical patent/WO2016017277A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • C10M105/38Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/16Ethers
    • C10M129/18Epoxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/008Lubricant compositions compatible with refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/003Filters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/122Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/04Ethers; Acetals; Ortho-esters; Ortho-carbonates
    • C10M2207/042Epoxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • C10M2207/2835Esters of polyhydroxy compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/09Characteristics associated with water
    • C10N2020/097Refrigerants
    • C10N2020/101Containing Hydrofluorocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/16Lubrication

Definitions

  • the present invention relates to an air conditioner.
  • Patent Document 1 discloses at least one selected from the group consisting of a refrigerant having R32, which is a kind of hydrofluorocarbon (HFC), as an essential component, and an ether-based refrigerator oil and an ester-based refrigerator oil.
  • a refrigerant having R32 which is a kind of hydrofluorocarbon (HFC)
  • HFC hydrofluorocarbon
  • ether-based refrigerator oil and an ester-based refrigerator oil an ether-based refrigerator oil and an ester-based refrigerator oil.
  • synthetic zeolite is used as a working medium dryer.
  • an alkyl glycidyl ester compound as an acid scavenger is added to a refrigerating machine oil based on a polyol ester oil in refrigerant R410A, R407C or R404A to suppress an increase in refrigerating machine oil acid number, and compressor durability It is described to improve.
  • a polyol ester oil containing an ester group (—O—CO—) or a polyvinyl ether having an ether bond is used as a refrigeration oil for the refrigeration cycle. There is oil.
  • Ester oil typified by polyol ester oil is made by dehydrating condensation of acid and alcohol as raw materials. On the other hand, the presence of moisture causes hydrolysis, which decomposes into raw acid and alcohol.
  • moisture may be mixed in the refrigeration cycle of the air conditioner due to construction work, etc. If acid is generated by hydrolysis as described above, corrosion of the metal part and wear of the sliding part of the compressor are caused. There's a problem. Therefore, in Patent Document 1, moisture is removed by a dryer that adsorbs moisture in the cycle, and generation of acid is avoided.
  • the method using a dryer is effective for removing the initial moisture due to construction work, etc., but the effectiveness of the dryer is reduced for moisture mixed during maintenance such as equipment replacement after the air conditioner is in operation. There is a problem that cannot be removed.
  • an acid scavenger that reacts with an acid generated by hydrolysis and makes the acid harmless to the refrigeration cycle is used as a refrigerating machine oil. There is a method to add to.
  • An object of the present invention is to provide an air conditioner in which the remaining amount of the acid scavenger in the refrigeration cycle is ensured over a long period of time and the reliability is improved.
  • the present invention provides a compressor for compressing a refrigerant, an outdoor heat exchanger for exchanging heat between the refrigerant and outdoor air, an indoor heat exchanger for exchanging heat between the refrigerant and indoor air,
  • a refrigerating machine oil containing a polyol ester oil as a base oil and an alkyl glycidyl ether compound having an epoxy group is used.
  • the present invention it is possible to provide an air conditioner in which the remaining amount of the acid scavenger in the refrigeration cycle is ensured over a long period of time during operation and the reliability is improved.
  • FIG. 1 is a refrigeration cycle system diagram of the air conditioner 1.
  • the air conditioner 1 includes an outdoor unit 10 and an indoor unit 30.
  • the outdoor unit 10 and the indoor unit 30 are connected by a gas connection pipe 2 and a liquid connection pipe 3.
  • the outdoor unit 10 and the indoor unit 30 are connected on a one-to-one basis.
  • a plurality of outdoor units may be connected to a single indoor unit, or a single outdoor unit.
  • a plurality of indoor units may be connected.
  • the outdoor unit 10 includes a compressor 11, a four-way valve 12, an outdoor heat exchanger 13, an outdoor blower 14, an outdoor expansion valve 15, an accumulator 20, a compressor suction pipe 16, and a gas refrigerant pipe 17.
  • a compressor 11 a four-way valve 12
  • an outdoor heat exchanger 13 an outdoor blower 14
  • an outdoor expansion valve 15 an accumulator 20
  • a compressor suction pipe 16 a gas refrigerant pipe 17.
  • the compressor 11 and the accumulator 20 are connected by a compressor suction pipe 16, and the four-way valve 12 and the accumulator 20 are connected by a gas refrigerant pipe 17.
  • Compressor 11 compresses the refrigerant and discharges it to the piping.
  • the outdoor heat exchanger 13 exchanges heat between the refrigerant and the outside air.
  • the outdoor blower 14 supplies outside air to the outdoor heat exchanger 13.
  • the outdoor expansion valve 15 depressurizes the refrigerant to a low temperature.
  • the accumulator 20 is provided to store the liquid return at the time of transition, and adjusts the refrigerant to an appropriate dryness.
  • the indoor unit 30 includes an indoor heat exchanger 31, an indoor blower 32, and an indoor expansion valve 33.
  • the indoor heat exchanger 31 exchanges heat between the refrigerant and the inside air.
  • the indoor blower 32 supplies room air to the indoor heat exchanger 31.
  • the indoor expansion valve 33 can change the flow rate of the refrigerant flowing through the indoor heat exchanger 31 by changing the throttle amount.
  • a solid line arrow in FIG. 1 indicates the flow of the refrigerant in the cooling operation of the air conditioner 1.
  • the four-way valve 12 causes the discharge side of the compressor 11 and the outdoor heat exchanger 13 to communicate with each other and the accumulator 20 and the gas connection pipe 2 to communicate with each other, as indicated by a solid line.
  • the high-temperature and high-pressure gas refrigerant compressed and discharged from the compressor 11 flows into the outdoor heat exchanger 13 via the four-way valve 12 and is cooled and condensed by the outdoor air blown by the outdoor blower 14.
  • the condensed liquid refrigerant passes through the outdoor expansion valve 15 and the liquid connection pipe 3 and is sent to the indoor unit 30.
  • the liquid refrigerant that has flowed into the indoor unit 30 is decompressed by the indoor expansion valve 33, becomes a low-pressure low-temperature gas-liquid two-phase refrigerant, and flows into the indoor heat exchanger 31.
  • the gas-liquid two-layer liquid refrigerant is heated and evaporated by the indoor air blown by the indoor blower 32 to become a gas refrigerant.
  • the room air is cooled by the latent heat of vaporization of the refrigerant, and the cool air is sent into the room.
  • the gas refrigerant is returned to the outdoor unit 10 through the gas connection pipe 2.
  • the gas refrigerant returned to the outdoor unit 10 passes through the four-way valve 12 and the gas refrigerant pipe 17 and flows into the accumulator 20.
  • a series of refrigeration cycles is formed by adjusting to a predetermined refrigerant clearance by the accumulator 20, sucking into the compressor 11 via the compressor suction pipe 16, and compressing again by the compressor 11.
  • the dotted arrows in FIG. 1 indicate the refrigerant flow in the heating operation of the air conditioner 100.
  • the four-way valve 12 causes the discharge side of the compressor 11 and the gas connection pipe 2 to communicate with each other and the accumulator 20 and the outdoor heat exchanger 13 communicate with each other, as indicated by a dotted line.
  • the high-temperature and high-pressure gas refrigerant compressed and discharged from the compressor 11 passes through the four-way valve 12 and the gas connection pipe 2 and is sent to the indoor unit 30.
  • the gas refrigerant that has flowed into the indoor unit 30 flows into the indoor heat exchanger 31, and the refrigerant is cooled and condensed by the indoor air blown by the indoor blower 32 to become high-pressure liquid refrigerant.
  • the room air is heated by the refrigerant, and the warm air is sent into the room.
  • the liquefied refrigerant passes through the indoor expansion valve 33 and the liquid connection pipe 3 and is returned to the outdoor unit 10.
  • the liquid refrigerant that has returned to the outdoor unit 10 is decompressed by a predetermined amount by the outdoor expansion valve 15, enters a low-temperature gas-liquid two-phase state, and flows into the outdoor heat exchanger 13.
  • the refrigerant flowing into the outdoor heat exchanger 13 exchanges heat with the outdoor air blown by the outdoor blower 14, and becomes a low-pressure gas refrigerant.
  • the gas refrigerant flowing out of the outdoor heat exchanger 13 flows into the accumulator 20 through the four-way valve 12 and the gas refrigerant pipe 17, is adjusted to a predetermined refrigerant dryness by the accumulator 20, is sucked into the compressor 11, and again.
  • a series of refrigeration cycles is formed by being compressed by the compressor 11.
  • FIG. 2 shows a cross section of a hermetic compressor which is an example of the structure of a compressor used in an air conditioner.
  • the hermetic compressor includes a scroll method, a rotary method, a reciprocating method, and the like, and will be described below by taking a scroll compressor as an example.
  • a frame 108 and a fixed scroll 106 in which a spiral scroll is formed are fixed in an airtight container 103.
  • a rotating shaft 110 that is rotated by a motor 104 is provided at the center of the frame 108, and a crank pin 111 that is eccentrically rotated by the rotation of the rotating shaft 110 is provided above the rotating shaft.
  • the crank pin 111 is engaged with the bearing portion of the orbiting scroll 107 supported by the frame 108.
  • the orbiting scroll 107 is formed as a spiral scroll that meshes with the fixed scroll 106, and forms a compression chamber 109 that compresses the refrigerant.
  • the gas refrigerant that has circulated through the refrigeration cycle enters the compression chamber 109 through the suction pipe 101.
  • the gas refrigerant in the compression chamber 109 is discharged from the central discharge port 105a into the discharge pressure space while being compressed as the volume of the compression chamber 109 decreases due to the orbiting movement of the orbiting scroll 107.
  • the compressed gas refrigerant in the discharge pressure space is discharged from the discharge pipe 102.
  • an oil passage 113 for supplying oil to lubricate the sliding surfaces of the orbiting scroll 106 and the fixed scroll 107 is formed inside the rotary shaft 110.
  • the refrigerating machine oil is stored in the oil reservoir 112 at the bottom of the compressor.
  • a polyol ester oil having an ester group (—O—CO—) is used as the refrigerating machine oil stored at the bottom of the compressor for lubricating the sliding portion of the compressor.
  • an acid scavenger that reacts with the acid generated by hydrolysis and becomes a harmless substance in the refrigeration cycle is added to the refrigeration oil.
  • an epoxy-based acid scavenger is desirable, and an alkyl glycidyl ether compound which is a reaction product of alcohol and epichlorohydrin represented by [Chemical Formula 1] is employed.
  • an ether compound is used as the acid scavenger, but when an ester compound is used, the ester compound reacts with an acid generated by hydrolysis and also with water before hydrolysis. For this reason, the remaining amount in the refrigeration cycle tends to decrease, and the acid trapping ability is lost in a short period after the air conditioner is operated.
  • the ether compound when added as an acid scavenger, the ether compound has a high reaction rate with the acid generated by hydrolysis which causes a problem in the refrigeration cycle, while the reaction rate with water is low. It can remain in the refrigeration cycle for a long time after operation. Therefore, the acid removal ability by the acid scavenger can be maintained for a long time after the air conditioner is operated.
  • the alkyl glycidyl ether compound becomes a low-viscosity liquid that is easily soluble in the ester oil as the base oil when the carbon number of the alkyl group is 4 to 10, and is dispersible. Increases the high acid scavenging ability.
  • the acid scavenger addition amount is less than this amount, the absolute value of the acid scavenging amount in the refrigerating machine oil will be insufficient.
  • the aforementioned alkyl glycidyl ether compound having 4 to 10 carbon atoms has the property of reducing the viscosity when added to the refrigerating machine oil, and the viscosity of the refrigerating machine oil Due to the decrease, an oil film is not formed at the sliding portion of the compressor and wears, leading to a decrease in reliability.
  • the oil temperature decreases by about 6 mm 2 / s at an oil temperature of 40 ° C.
  • the acid scavenging performance is lowered by polymerization of the acid scavengers.
  • Table 1 shows the results of the heat deterioration test depending on the type of the acid scavenger. Each acid scavenger in the table is adjusted so that the amount of epoxy groups having acid scavenging ability is equal. That is, the theoretical acid scavenging ability is made comparable.
  • Comparative Example 1 is an example in which an alkyl glycidyl ester compound represented by [Chemical Formula 2] was added.
  • Comparative Example 2 is an example in which a cycloglycidyl ether compound represented by [Chemical Formula 3] was added.
  • the heating deterioration test was conducted by heating and accelerating deterioration so as to correspond to the operation of a commercial air conditioner for 10 years.
  • the acid scavenger remaining rate decreases, and the margin of acid scavenging ability disappears after long-term operation.
  • the remaining amount can be secured by using the ether compound as in Example 1, but the acid scavenging ability is low and the increase value of the total acid value is large.
  • FIG. 3 shows the two-layer separation characteristics of the R32 refrigerating machine oil and the conventional refrigerant R410A refrigerating machine oil when a refrigerant containing 70% by mass or more of R32 is used as the working refrigerant of the refrigeration cycle.
  • the upper area of the curves 4a and 4b in the figure indicates the area where the liquid refrigerant and the refrigerating machine oil are compatible, and the lower area indicates the area where the liquid refrigerant and the refrigerating machine oil are separated.
  • FIG. 3 shows the two-layer separation temperature with respect to the oil concentration in each liquid refrigerant.
  • a curve 4b in FIG. 3 is an example of a two-layer separation characteristic of refrigerating machine oil whose molecular structure is adjusted and compatibility is improved for R32.
  • refrigerating machine oil having improved compatibility with R32 (difluoromethane) having a large molecular polarization is likely to take in water (H 2 O) having a large molecular polarization. That is, refrigerating machine oil applied to an air conditioner using a refrigerant containing 70 mass% or more of R32 has high hygroscopicity in the presence of moisture. Therefore, by applying the present invention, even when water is mixed in the refrigeration cycle and refrigeration oil hydrolysis occurs, the added acid scavenger ensures the air conditioner reliability over a long period of time, and the effect of the present invention is achieved. Prominently demonstrated.
  • the added acid scavenger is also used. Heat resistance is required.
  • the acid scavenger of the present invention from the above-mentioned heat deterioration test, the acid scavenger remains in a certain amount or more even under the high temperature and high pressure of the refrigerant R32, and in order to maintain the acid scavenging ability, But the reliability of the air conditioner can be secured for a long time.
  • Refrigerating machine oil which is applied to an air conditioner of the present invention, when the oil temperature is 40 ° C., it is desirable that the viscosity of the refrigerating machine oil is 40mm 2 / s ⁇ 100mm 2 / s.
  • the viscosity is smaller than this range, there is a problem that an oil film cannot be formed at the compressor sliding portion, resulting in poor lubrication, or the compression chamber cannot be sealed and efficiency is lowered. Further, when the viscosity is higher than this range, mechanical loss such as viscous resistance and frictional resistance increases, leading to a reduction in compressor efficiency.
  • FIG. 4 shows an example of the moisture content in the cycle, the acid scavenger amount, and the total acid value when a dryer is installed in the air conditioner of the present invention.
  • Curves 5a, 5b, and 5c represent the amount of water in the cycle during operation, the amount of acid scavenger, and the total acid value, respectively.
  • the total acid value increases due to the moisture mixed during construction work, but the moisture is removed by the dryer installed in the cycle before a large amount of hydrolysis occurs. There is no extreme rise.
  • the acid scavenger of the present invention added to the refrigeration oil can also remove the acid due to moisture in equipment replacement or maintenance, etc., keeping the total acid value below a certain value, air conditioning The reliability of the machine can be secured for a long time.
  • this air conditioner it is desirable to select, for example, synthetic zeolite made of silicic acid and alkali metal aluminate composite salt as the desiccant to be enclosed in the dryer. It is also effective to use a bead type to increase the surface area in order to enhance moisture adsorption.
  • FIG. 5A shows an embodiment for avoiding this problem.
  • the air conditioner 1 is provided with a bypass pipe 19 that is bypassed from the liquid connection pipe 3 that connects the outdoor unit 10 and the indoor unit 30 and connected in parallel, and a dryer 18 is provided in the bypass pipe 19. Thereby, the resistance of the refrigerant flow path is reduced, and moisture and acid can be captured without degrading the performance of the air conditioner 1.
  • the bypass pipe 19 before and after the dryer 18 is provided with an electromagnetic valve 18a for opening and closing the flow path, and it is determined from the temperature and pressure of the liquid connection pipe 3 that only the liquid refrigerant flows. Only when this is done, the solenoid valve 18a is opened, the refrigerant flow is bypassed, and moisture is removed, thereby preventing the piping and valves from being clogged due to the generation of wear powder of the dryer 18.
  • the solenoid valve 18a is closed, and control is performed to open the solenoid valve 18a during the operation after the maintenance is performed, thereby increasing the amount of moisture and acid in the refrigeration cycle.
  • the dryer 18 may be made to function only when it is.
  • 1 air conditioner
  • 2 gas connection pipe
  • 3 liquid connection pipe
  • 10 outdoor unit
  • 11 compressor
  • 12 four-way valve
  • 13 outdoor heat exchanger
  • 14 outdoor blower
  • 15 outdoor expansion valve
  • 16 Compressor suction pipe
  • 18 Dryer
  • 18a Solenoid valve
  • 19 Bypass pipe
  • 30 Indoor unit
  • 31 Indoor heat exchanger
  • 32 Indoor blower
  • 33 Indoor expansion valve
  • 101 Suction pipe
  • 102 Discharge pipe
  • 103 Airtight container
  • 104 Motor
  • 105 Discharge pressure space
  • 105a Discharge port
  • 106 Orbiting scroll
  • 107 Fixed scroll
  • 108 Frame
  • 109 Compression chamber
  • 110 Rotating shaft
  • 111 Crankpin
  • 112 oil sump
  • 113 oil passage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Emergency Medicine (AREA)
  • Health & Medical Sciences (AREA)
  • Lubricants (AREA)

Abstract

 冷凍サイクル内の酸捕捉剤の残存量を運転期間中長期にわたり確保し、信頼性を向上させた空気調和機を提供することを目的とする。 冷媒を圧縮する圧縮機11と、冷媒と室外空気とを熱交換させる室外熱交換器13と、冷媒と室内空気とを熱交換させる室内熱交換器31と、冷媒を減圧させる膨張弁と、が配管接続され冷凍サイクルを構成する空気調和機において、ポリオールエステル油を基油とし、エポキシ基を有するアルキルグリシジルエーテル化合物を含有した冷凍機油が用いられる。

Description

空気調和機
 本発明は、空気調和機に関する。
 本発明の背景技術として、特許文献1には、ハイドロフルオロカーボン(HFC)の一種であるR32を必須成分とする冷媒ならびに、エーテル系冷凍機油およびエステル系冷凍機油からなる群から選ばれる少なくとも1種の冷凍機油を含む作動媒体を有する蒸気圧縮式冷凍装置において、作動媒体のドライヤとして合成ゼオライトを用いることが記載されている。
 また、特許文献2に、冷媒R410A,R407CまたはR404Aにおいてポリオールエステル油を基油とした冷凍機油に酸捕捉剤としてアルキルグリシジルエステル化合物を添加し、冷凍機油酸価上昇を抑制し、圧縮機耐久性を向上させることが記載されている。
WO98/38264号公報 特開2010-139171号公報
 ハイドロフルオロカーボンの一種であるR32を70質量%以上含む冷媒を用いる空気調和機において、その冷凍サイクルの冷凍機油として、エステル基(-O-CO-)を含むポリオールエステル油やエーテル結合を有するポリビニルエーテル油などがある。
 ポリオールエステル油に代表されるエステル油は、原料となる酸とアルコールを脱水縮合して作られる。一方、水分が存在すると加水分解を引き起こし、原料の酸とアルコールに分解してしまう。
 ここで、施工工事等により空気調和機の冷凍サイクル内に水分が混入する場合があり、前述のように加水分解により酸を発生させると、金属部の腐食や圧縮機摺動部の磨耗を引き起こす問題がある。そのため、特許文献1では、サイクル内に水分を吸着するドライヤにより水分を除去し、酸の発生を回避している。
 しかし、ドライヤによる方法では施工工事等による初期の水分除去には有効であるが、空気調和機の稼働後に実施される機器交換等のメンテナンス時に混入する水分に対しては、ドライヤによる効力が低下し除去しきれない問題がある。
 また、サイクル内に混入した水による加水分解への対策としては、特許文献2のように、加水分解により発生した酸と反応し、酸を冷凍サイクルに無害な物質にする酸捕捉剤を冷凍機油に添加する方法がある。
 しかし、冷凍機油の加水分解に伴う酸の発生は酸捕捉剤により抑制されているが、空気調和機の施工後初期の段階で酸捕捉剤が多く消費されてしまうため、長期運転での酸発生に対する耐久性に問題があった。つまり、施工後のメンテナンス時に水分が混入する際に、十分な酸捕捉剤の残存量が確保されず冷凍サイクル内の酸の除去ができなくなる。
 本発明は、冷凍サイクル内の酸捕捉剤の残存量を運転期間中長期にわたり確保し、信頼性を向上させた空気調和機を提供することを目的とする。
 上記課題を解決するために、本発明は、冷媒を圧縮する圧縮機と、冷媒と室外空気とを熱交換させる室外熱交換器と、冷媒と室内空気とを熱交換させる室内熱交換器と、冷媒を減圧させる膨張弁と、が配管接続され冷凍サイクルを構成する空気調和機において、ポリオールエステル油を基油とし、エポキシ基を有するアルキルグリシジルエーテル化合物を含有した冷凍機油が用いられることを特徴とする。
 本発明によれば、冷凍サイクル内の酸捕捉剤の残存量を運転期間中長期にわたり確保し、信頼性を向上させた空気調和機を提供することができる。
本発明に係る空気調和機の冷凍サイクル図である。 本発明に係る空気調和機に用いられる圧縮機の断面図である。 冷凍機油の相溶性の特性を表す図である。 本発明に係る空気調和機の冷凍サイクルにドライヤを接続した場合の水分量と全酸価の関係を示す図である。 本発明の空気調和機におけるドライヤ取り付け位置の例を示す図である。 本発明の空気調和機におけるドライヤ取り付け位置の他の例を示す図である。
 以下、本発明の第1の実施の形態の空気調和機1について、図面に基づいて説明する。図1は、空気調和機1の冷凍サイクル系統図である。空気調和機1は、室外機10と室内機30とを備えている。室外機10と室内機30とは、ガス接続配管2および液接続配管3により接続される。本実施の形態では、室外機10と室内機30とを1対1で接続しているが、一台の室内機に対し複数台の室外機を接続しても良いし、一台の室外機に対し複数台の室内機を接続しても良い。
 室外機10は、圧縮機11と、四方弁12と、室外熱交換器13と、室外送風機14と、室外膨張弁15と、アキュムレータ20と、圧縮機吸入配管16と、ガス冷媒配管17とを有している。
 圧縮機11とアキュムレータ20とは圧縮機吸入配管16により接続され、四方弁12とアキュムレータ20とはガス冷媒配管17により接続されている。
 圧縮機11は、冷媒を圧縮して配管に吐出する。四方弁12を切り替えることで、冷媒の流れが変化し、冷房運転と暖房運転が切り替わる。室外熱交換器13は、冷媒と外気の間で熱交換させる。室外送風機14は、室外熱交換器13に対し外気を供給する。室外膨張弁15は、冷媒を減圧して低温にする。アキュムレータ20は、過渡時の液戻りを貯留するために設けられており、冷媒を適度な乾き度に調整する。
 室内機30は、室内熱交換器31と、室内送風機32と、室内膨張弁33とを備える。室内熱交換器31は、冷媒と内気の間で熱交換させる。室内送風機32は、室内熱交換器31に対し室内空気を供給する。室内膨張弁33は、その絞り量を変化させることにより室内熱交換器31を流れる冷媒の流量を変化させることが可能である。
 次に、空気調和機1における冷房運転について説明する。図1における実線の矢印は、空気調和機1の冷房運転における冷媒の流れを示している。冷房運転において四方弁12は、実線で示すように、圧縮機11の吐出側と室外熱交換器13とを連通させ、アキュムレータ20とガス接続配管2とを連通させる。
 そして、圧縮機11より圧縮され吐出された高温高圧のガス冷媒は、四方弁12を経由して、室外熱交換器13に流入し、室外送風機14により送風された室外空気により冷却されて凝縮される。凝縮した液冷媒は、室外膨張弁15および液接続配管3を通過して、室内機30へ送られる。室内機30に流入した液冷媒は、室内膨張弁33で減圧され、低圧低温の気液二相冷媒になり室内熱交換器31に流入する。室内熱交換器31において、気液二層液冷媒は、室内送風機32によって送風される室内空気により加熱されて蒸発し、ガス冷媒となる。この際に、室内空気が冷媒の蒸発潜熱により冷却され、冷風が室内に送られる。その後、ガス冷媒は、ガス接続配管2を通って、室外機10に戻される。
 室外機10に戻ったガス冷媒は、四方弁12およびガス冷媒配管17を通過し、アキュムレータ20へと流入する。アキュムレータ20で所定の冷媒かわき度に調整され、圧縮機吸入配管16を介して圧縮機11に吸入され、再度圧縮機11で圧縮されることにより、一連の冷凍サイクルが形成される。
 次に、空気調和機1における暖房運転について説明する。図1における点線の矢印は、空気調和機100の暖房運転における冷媒の流れを示している。暖房運転において四方弁12は、点線で示すように、圧縮機11の吐出側とガス接続配管2とを連通させ、アキュムレータ20と室外熱交換器13とを連通させる。
 そして、圧縮機11より圧縮され吐出された高温高圧のガス冷媒は、四方弁12およびガス接続配管2を通過して、室内機30へ送られる。室内機30に流入したガス冷媒は、室内熱交換器31に流入し、室内送風機32により送風された室内空気によって冷媒が冷却されて凝縮し、高圧の液冷媒となる。この際に、室内空気は冷媒によって加熱され、温風が室内に送られる。その後、液化した冷媒は、室内膨張弁33および液接続配管3を通過して、室外機10へと戻される。
 室外機10へ戻った液冷媒は、室外膨張弁15で所定量減圧されて、低温の気液二相状態となり、室外熱交換器13に流入する。室外熱交換器13に流入した冷媒は、室外送風機14により送風された室外空気と熱交換し、低圧のガス冷媒となる。室外熱交換器13から流出したガス冷媒は、四方弁12およびガス冷媒配管17を通って、アキュムレータ20に流入し、アキュムレータ20で所定の冷媒乾き度に調整され、圧縮機11に吸入され、再度圧縮機11で圧縮されることにより一連の冷凍サイクルが形成される。
 図2に空気調和機に用いられる圧縮機の構造の一例である密閉型圧縮機の断面を示す。密閉型圧縮機には、スクロール方式,ロータリ方式,レシプロ方式等があるが、スクロール方式の圧縮機を例に以下説明する。
 圧縮機11は、密閉容器103内にフレーム108と、渦巻き状のスクロールが形成された固定スクロール106とが固定される。このフレーム108の中央にはモータ104により回転駆動する回転軸110を設け、回転軸の上部には回転軸110の回転により偏心回転するクランクピン111が設けられる。このクランクピン111は、フレーム108に支持される旋回スクロール107の軸受部に係合される。旋回スクロール107は、固定スクロール106と噛み合わさる渦巻き状のスクロールが形成され、冷媒を圧縮する圧縮室109を形成する。これらの構造により、回転軸110およびクランクピン111が回転することで、旋回スクロール107が旋回移動し、圧縮室109で冷媒が圧縮される。
 次に冷媒の圧縮過程を説明する。冷凍サイクルを循環してきたガス冷媒は、吸入管101から圧縮室109に入る。圧縮室109内のガス冷媒は、旋回スクロール107の旋回移動により圧縮室109の容積の減少とともに圧縮されながら中央の吐出口105aから吐出圧力空間に吐出される。そして、吐出圧力空間の圧縮されたガス冷媒は、吐出管102から吐出される。
 ここで、回転軸110は内部に、旋回スクロール106と固定スクロール107との摺動面を潤滑するために油を供給する油通路113が形成されている。そして、冷凍機油は、圧縮機底部の油溜り112に貯留されている。
 本実施例では、圧縮機摺動部の潤滑のために圧縮機底部に貯留される冷凍機油にエステル基(-O-CO-)を有する、たとえばポリオールエステル油を用いる。
 この種の冷凍機油は、酸とアルコールを脱水縮合し製造されるため、冷凍機油とともに水分が存在すると、脱水縮合の逆反応にあたる加水分解が発生し酸を発生させてしまう。そして、空気調和機の施工時や配管工事等では、水分混入の危険性があり、冷凍サイクル内で上記のように加水分解が生じることがある。冷凍サイクル内での酸の発生は、金属の腐食や圧縮機摺動部の磨耗の原因となるため、空気調和機の信頼性を損なう虞がある。
 また、冷房能力が7.1kw以上の業務用空気調和機などでは、部品交換のようなメンテナンスも必要となることから空気調和機の設置後も特に水分混入の恐れがある。加えて、業務用空気調和機では、接続される室内機台数も多数となり、総配管長も数10mと長くなる。たとえば、冷房能力が12.5kWの店舗用空気調和機では、総配管長は75mまで許容されている。そのため、施工時に真空引きを行うが、水分が残留する可能性がある。
 そこで本発明の空気調和機では、冷凍機油に対し、加水分解によって発生した酸と反応し、冷凍サイクル内で無害な物質となる酸捕捉剤を添加する。酸捕捉剤としては、エポキシ系の酸捕捉剤が望ましく、〔化1〕に代表されるアルコールとエピクロロヒドリンの反応物であるアルキルグリシジルエーテル化合物を採用する。
Figure JPOXMLDOC01-appb-C000001
 ここで、本実施例では酸捕捉剤にエーテル化合物を用いているがエステル化合物を用いる場合、エステル化合物は加水分解により発生する酸と反応するとともに加水分解前の水とも反応する。このため、冷凍サイクル内での残存量が低下し易く、空気調和機の稼働後に短期間で酸捕捉能力が失われてしまう。
 しかし、エーテル化合物を酸捕捉剤として添加した場合、エーテル化合物は冷凍サイクル内で問題となる加水分解により発生する酸との反応率が高い一方、水との反応率が低いため、空気調和機の稼働後に長期にわたって冷凍サイクル内に残存させることができる。したがって、酸捕捉剤による酸の除去能力を空気調和機の稼働後に長期間持続させることができる。
 また、R32を含むハイドロフルオロカーボン系冷媒中において、アルキルグリシジルエーテル化合物は、アルキル基の炭素数を4~10とした場合に基油であるエステル油に溶けやすい低粘度の液状となり、かつ、分散性が高くなり高い酸捕捉能力を発揮する。
 また、冷凍機油に対して酸捕捉剤は、0.1~1.0質量%添加するのが望ましい。酸捕捉剤添加量がこの量より少量となると冷凍機油中の酸捕捉量の絶対値が不足してしまう。一方で、この添加量より多く酸捕捉剤を添加した場合には、前述の炭素数4~10のアルキルグリシジルエーテル化合物は冷凍機油に添加した場合に粘度を低下させる性質を持ち、冷凍機油の粘度低下の為に圧縮機摺動部にて油膜形成がされず摩耗し信頼性低下へとつながってしまう。例えば、冷凍機油に対し酸捕捉剤を1.0質量%添加した場合、油温度40℃にて6mm2/s程度低下する。また、酸捕捉剤同士の重合によって酸捕捉性能が低下してしまう虞もある。
 〔表1〕に酸捕捉剤の種類による加熱劣化試験の結果を示す。表中の各酸捕捉剤は、酸捕捉能力を持つエポキシ基が等量となるように調整している。すなわち、理論上の酸捕捉能力を同程度にしている。
Figure JPOXMLDOC01-appb-T000002
 加熱劣化試験は冷媒R32とポリオールエステル油を金属触媒とともに圧力容器内に封止し行った。比較例1は、〔化2〕に代表されるアルキルグリシジルエステル化合物を添加した例である。また、比較例2は〔化3〕に代表されるシクログリシジルエーテル化合物を添加した例である。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 加熱劣化試験は、業務用空気調和機が10年運転したことに相当するように、加熱し劣化を加速させ試験した。比較例1では、酸捕捉剤残存率が低下し、酸捕捉能力の余裕度が長期運転後には無くなってしまう。また、比較例2では実施例1と同様にエーテル化合物を使用することで残存量を確保することができているが、酸捕捉能力が低く全酸価の上昇値が大きくなってしまっている。
 一方、本発明の空気調和機に用いる冷凍機油では、比較例1よりも全酸価の上昇は大きくはなっているが冷凍サイクルとして許容できる範囲以内(~0.02 mgKOH/g)に収まっており、かつ、酸捕捉剤も残存させることが可能であることで長期運転後にも酸捕捉能力を保持している。
 冷房能力が7.1kw以上の業務用空気調和機においては、前述の通り、移設や機器交換など水分混入の可能性が施工後にも多くあり、冷凍機油加水分解による酸の発生の可能性は家庭用空気調和機に比べて高い。そのため本発明の通りに酸捕捉剤を添加することで冷凍機油の安定性を長期にわたり確保し、空気調和機の信頼性を確保する。
 図3に、冷凍サイクルの作動冷媒としてR32を70質量%以上含む冷媒を用いた場合においてR32用冷凍機油および従来冷媒R410A用冷凍機油の二層分離の特性を示す。図中の曲線4a、4bの上側の領域は、液冷媒と冷凍機油が相溶する領域を示し、下側の領域は液冷媒と冷凍機油が分離する領域を示している。
 空気調和機内では、液冷媒と冷凍機油は均等に相溶することが望ましい。しかし、冷凍サイクル低温部では、液冷媒と冷凍機油の密度差が大きくなることによって、分離する場合がある。図3は各液冷媒中の油濃度に対する二層分離温度を示している。R32を70質量%以上含む冷媒を用いる空気調和機に対し、従来の冷媒、たとえばR410A用冷凍機油を適用すると、曲線4aのように二層分離温度が高く、空気調和機運転温度範囲での二層分離域が広くなり、冷媒と冷凍機油の相溶性が落ちてしまう。
 室外機に設置される圧縮機内で液冷媒と冷凍機油の二層分離が発生すると、各摺動部に液冷媒が供給され、潤滑不良を起こしてしまう。また、圧縮機運転中に機械的な作用により冷凍機油がミスト状となりサイクル側に吐出されるが、相溶性が低い場合、サイクル低温部配管やタンクで冷凍機油が滞留し、圧縮機への油戻り量が減少する。すると圧縮機内で油が不足し、潤滑不良を起こす。
 そのため、分子分極の大きい、R32(ジフルオロメタン)を冷媒とした空気調和機の場合、冷凍機油の冷媒との相溶性を改善する必要がある。図3の曲線4bは、分子構造を調整しR32用に相溶性を改善させた冷凍機油の二層分離特性例である。
 しかし、分子分極が大きいR32(ジフルオロメタン)との相溶性を改善した冷凍機油は、同じく分子分極の大きい水(HO)を取り込みやすくなる。すなわち、R32を70質量%以上含む冷媒を使用する空気調和機に適用する冷凍機油は、水分共存下で吸湿性が高くなる。そこで本発明を適用することで水分が冷凍サイクル内に混入し冷凍機油加水分解が発生した場合にも、添加された酸捕捉剤により空気調和機信頼性が長期にわたり確保され、本発明の効果が顕著に発揮される。
 またR32を70質量%以上含む冷媒を用いる空気調和機では、従来の冷媒例えばR410Aと比較し断熱指数の違いから、R410Aと同等に空気調和機を運転すると高温となり、添加される酸捕捉剤も耐熱性が要求される。本発明の酸捕捉剤では前述の加熱劣化試験より、冷媒R32の高温高圧下でも酸捕捉剤は一定量以上残存し、酸捕捉能力を保持する為、冷媒にR32を70質量%以上用いた場合でも空気調和機の信頼性を長期にわたり確保することが出来る。
 本発明の空気調和機に適用される冷凍機油は、油温度が40℃のとき、冷凍機油の粘度が40mm2/s~100mm2/sであることが望ましい。この範囲より粘度が小さい場合、圧縮機摺動部において油膜を形成できず潤滑不良の発生や、圧縮室の密閉性を保てず効率低下の発生などの問題がある。また、この範囲よりも粘度が高い場合、粘性抵抗や摩擦抵抗等機械損失が増加し、圧縮機効率低下を招く。
 本実施例では、実施例1の空気調和機に加えて、水分を吸着するドライヤを設置することで、施工時混入するなどした初期水分を除去することにより、冷凍機油加水分解を防止し、空気調和機の運転初期の酸捕捉剤消耗を回避し、酸捕捉剤効果を長期にわたり確保することが可能となる。
 図4に本発明の空気調和機にドライヤを設置した場合のサイクル内水分量、酸捕捉剤量、全酸価の例を示す。曲線5a,5b,5cはそれぞれ、運転中のサイクル内水分量、酸捕捉剤量、全酸価を表している。空気調和機運転初期では、施工工事時に混入した水分により、全酸価が増加していくが、加水分解が多量に起こる前にサイクルに設置したドライヤによって、水分は除去されるため、全酸価の極端な上昇はない。また、運転時間中盤以降は、冷凍機油に添加された本発明の酸捕捉剤により、機器交換やメンテナンス等での水分混入による酸も除去可能で、全酸価を一定値以下に抑え、空気調和機の信頼性を長期にわたり確保することが出来る。
 この空気調和機において、ドライヤに封入する乾燥剤としては、たとえばケイ酸,アルミン酸アルカリ金属複合塩からなる合成ゼオライトが選択するのが望ましい。また、水分吸着性を高める為、ビーズタイプのものを使用し表面積を増やすことも有効である。
 また、ドライヤを空気調和機冷凍サイクルに適用する場合には、液接続配管に装着した場合、冷媒が気液2相流となり、合成ゼオライト同士がこすれあい磨耗粉を発生させ、配管つまりを発生させる恐れがある。ドライヤを液接続配管主流部に設けると、不純物捕捉充填部での圧力損失が増大し、空気調和機1の性能を低下させる恐れがある。
 図5Aに、この問題を回避する実施例を示す。空気調和機1室外機10と室内機30とを接続する液接続配管3からバイパスして並列接続されるバイパス配管19を設け、このバイパス配管19にドライヤ18を設ける。これによって、冷媒流路の抵抗が低減され、空気調和機1の性能を低下させること無く、水分や酸を捕捉することが可能となる。
 また、図5Bのように、前記ドライヤ18の前後の前記バイパス配管19に流路を開閉する電磁弁18aを設け、液接続配管3の温度および圧力より、液冷媒のみの流れであることを判断したときのみ、電磁弁18aを開放し、冷媒流をバイパスさせ、水分を除去することにより、ドライヤ18の磨耗粉の発生による、配管・弁類のつまりを防止することができる。また、所定期間運転を行った後、電磁弁18aを閉めておき、メンテナンスが実施された後の運転時に電磁弁18aを開けるように制御することで、冷凍サイクル内の水分および酸の量が増加したときだけドライヤ18を機能させるようにしても良い。
1:空気調和機、2:ガス接続配管、3:液接続配管、10:室外機、11:圧縮機、12:四方弁、13:室外熱交換器、14:室外送風機、15:室外膨張弁、16:圧縮機吸入配管、18:ドライヤ、18a:電磁弁、19:バイパス配管、30:室内機、31:室内熱交換器、32:室内送風機、33:室内膨張弁、101:吸入管、102:吐出管、103:密閉容器、104:モータ、105:吐出圧力空間、105a:吐出口、106:旋回スクロール、107:固定スクロール、108:フレーム、109:圧縮室、110:回転軸、111:クランクピン、112:油溜り、113:油通路。

Claims (8)

  1.  冷媒を圧縮する圧縮機と、冷媒と室外空気とを熱交換させる室外熱交換器と、冷媒と室内空気とを熱交換させる室内熱交換器と、冷媒を減圧させる膨張弁と、が配管接続され冷凍サイクルを構成する空気調和機において、
     ポリオールエステル油を基油とし、エポキシ基を有するアルキルグリシジルエーテル化合物を含有した冷凍機油が用いられることを特徴とする空気調和機。
  2.  請求項1に記載の空気調和機において、
     前記冷凍サイクルには、R32を70質量%以上含む冷媒が封入されることを特徴とする空気調和機。
  3.  請求項2に記載の空気調和機において、
     前記アルキルグリシジルエーテル化合物は、アルキル基が炭素数4~10であることを特徴とする空気調和機。
  4.  請求項3に記載の空気調和機において、
     前記冷凍機油は、前記アルキルグリシジルエーテル化合物を0.1~1.0質量%含有することを特徴とする空気調和機。
  5.  請求項1に記載の空気調和機において、
     前記冷凍機油は、油温度40℃のときに粘度が40mm/s~100mm/sであることを特徴とする空気調和機。
  6.  請求項1に記載の空気調和機において、
     前記室内熱交換器と前記室外熱交換機とを、前記膨張弁を介して接続する液接続配管と、
     前記液接続配管に並列接続されるバイパス配管と、
     前記バイパス配管に設けられ、前記冷凍サイクル内の水分を吸着するドライヤと、を備えることを特徴とする空気調和機。
  7.  請求項6に記載の空気調和機において、
     前記バイパス配管における前記ドライヤの前後に流路を開閉する電磁弁が設けられることを特徴とする空気調和機。
  8.  請求項1から請求項7のいずれか一つに記載の空気調和機において、
     冷房定格能力が7.1kW以上であることを特徴とする空気調和機。
PCT/JP2015/066277 2014-07-31 2015-06-05 空気調和機 WO2016017277A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580040423.9A CN106605108A (zh) 2014-07-31 2015-06-05 空气调节器
US15/326,733 US20170204314A1 (en) 2014-07-31 2015-06-05 Air conditioner
EP15826881.3A EP3176520A4 (en) 2014-07-31 2015-06-05 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014155692A JP2016033426A (ja) 2014-07-31 2014-07-31 空気調和機
JP2014-155692 2014-07-31

Publications (1)

Publication Number Publication Date
WO2016017277A1 true WO2016017277A1 (ja) 2016-02-04

Family

ID=55217182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066277 WO2016017277A1 (ja) 2014-07-31 2015-06-05 空気調和機

Country Status (5)

Country Link
US (1) US20170204314A1 (ja)
EP (1) EP3176520A4 (ja)
JP (1) JP2016033426A (ja)
CN (1) CN106605108A (ja)
WO (1) WO2016017277A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017145278A1 (ja) * 2016-02-24 2018-10-11 三菱電機株式会社 冷凍装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200339856A1 (en) * 2017-12-18 2020-10-29 Daikin Industries, Ltd. Refrigerating oil for refrigerant or refrigerant composition, method for using refrigerating oil, and use of refrigerating oil
US11162705B2 (en) 2019-08-29 2021-11-02 Hitachi-Johnson Controls Air Conditioning, Inc Refrigeration cycle control
JP6821075B1 (ja) * 2020-04-22 2021-01-27 日立ジョンソンコントロールズ空調株式会社 冷凍サイクル装置
JP7170927B1 (ja) * 2022-04-15 2022-11-14 日立ジョンソンコントロールズ空調株式会社 空気調和機

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014105984A (ja) * 2012-11-30 2014-06-09 Hitachi Appliances Inc 空気調和機
JP2014114354A (ja) * 2012-12-07 2014-06-26 Jx Nippon Oil & Energy Corp 冷凍機油組成物および冷凍機用作動流体組成物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3331102B2 (ja) * 1995-08-16 2002-10-07 株式会社日立製作所 冷凍サイクルの容量制御装置
JP5612250B2 (ja) * 2008-03-07 2014-10-22 出光興産株式会社 冷凍機用潤滑油組成物
CN101851545A (zh) * 2009-03-31 2010-10-06 中国石油化工股份有限公司 一种冷冻机油组合物
US8741822B2 (en) * 2011-02-13 2014-06-03 Trent University Esters for use as a base stock and in lubricant applications
BR122017015604B1 (pt) * 2012-10-31 2021-11-16 Daikin Industries, Ltd. Aparelho de refrigeração
KR20150002980A (ko) * 2013-06-28 2015-01-08 삼성전자주식회사 공기조화기

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014105984A (ja) * 2012-11-30 2014-06-09 Hitachi Appliances Inc 空気調和機
JP2014114354A (ja) * 2012-12-07 2014-06-26 Jx Nippon Oil & Energy Corp 冷凍機油組成物および冷凍機用作動流体組成物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017145278A1 (ja) * 2016-02-24 2018-10-11 三菱電機株式会社 冷凍装置

Also Published As

Publication number Publication date
EP3176520A4 (en) 2018-03-14
CN106605108A (zh) 2017-04-26
US20170204314A1 (en) 2017-07-20
JP2016033426A (ja) 2016-03-10
EP3176520A1 (en) 2017-06-07

Similar Documents

Publication Publication Date Title
WO2016017277A1 (ja) 空気調和機
JP4069733B2 (ja) 空気調和機
WO2009157325A1 (ja) 冷凍サイクル装置及び空気調和装置
JP2016194377A (ja) 冷媒循環装置、冷媒循環方法、冷媒充填方法および冷媒循環装置の運転方法
JP6295423B2 (ja) 圧縮機およびそれを用いた冷凍サイクル装置
US20120131947A1 (en) Refrigeration cycle apparatus
JP2007147212A (ja) 冷凍装置
JP2001241780A (ja) 冷凍空調装置
US20100011791A1 (en) R422d heat transfer systems and r22 systems retrofitted with r422d
CA2711729C (en) Refrigeration system
CN113330092B (zh) 经稳定的热传递组合物、方法和系统
JP2016003645A (ja) スクロール圧縮機および空気調和機
JP6759017B2 (ja) 空気調和機の管理方法
EP1174665B1 (en) Freezer
JP2016114290A (ja) 冷熱機器の冷媒変更方法及び冷熱機器
Cavallini Properties of CO2 as a refrigerant
JPH11108507A (ja) 空気調和機
JP5677282B2 (ja) 冷凍サイクル装置
JP6899360B2 (ja) 冷凍サイクル装置
EP2024468A1 (en) Hermetic compressor and refrigeration system
WO2016113993A1 (ja) 冷凍装置及び密閉型電動圧縮機
CN104033388B (zh) 低压腔旋转式压缩机和制冷设备
JP6821075B1 (ja) 冷凍サイクル装置
JP7500886B1 (ja) 圧縮機及び冷凍サイクル装置
JP7053938B1 (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15826881

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15326733

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015826881

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE