WO2016016983A1 - 制御装置及び制御方法 - Google Patents

制御装置及び制御方法 Download PDF

Info

Publication number
WO2016016983A1
WO2016016983A1 PCT/JP2014/070162 JP2014070162W WO2016016983A1 WO 2016016983 A1 WO2016016983 A1 WO 2016016983A1 JP 2014070162 W JP2014070162 W JP 2014070162W WO 2016016983 A1 WO2016016983 A1 WO 2016016983A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel gas
compressor
pressure
value
load
Prior art date
Application number
PCT/JP2014/070162
Other languages
English (en)
French (fr)
Inventor
陽介 中川
直人 米村
和寛 蛇蝮
Original Assignee
三菱重工業株式会社
三菱重工コンプレッサ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 三菱重工コンプレッサ株式会社 filed Critical 三菱重工業株式会社
Priority to PCT/JP2014/070162 priority Critical patent/WO2016016983A1/ja
Priority to JP2016537665A priority patent/JP6140899B2/ja
Priority to US15/305,756 priority patent/US10358985B2/en
Priority to EP14898541.9A priority patent/EP3118438B1/en
Priority to CN201480078174.8A priority patent/CN106232964A/zh
Publication of WO2016016983A1 publication Critical patent/WO2016016983A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/48Control of fuel supply conjointly with another control of the plant
    • F02C9/50Control of fuel supply conjointly with another control of the plant with control of working fluid flow
    • F02C9/54Control of fuel supply conjointly with another control of the plant with control of working fluid flow by throttling the working fluid, by adjusting vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/002Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by varying geometry within the pumps, e.g. by adjusting vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/003Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by throttling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • F04D27/0223Control schemes therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0246Surge control by varying geometry within the pumps, e.g. by adjusting vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/09Purpose of the control system to cope with emergencies
    • F05D2270/091Purpose of the control system to cope with emergencies in particular sudden load loss
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/10Purpose of the control system to cope with, or avoid, compressor flow instabilities
    • F05D2270/101Compressor surge or stall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/301Pressure
    • F05D2270/3011Inlet pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/301Pressure
    • F05D2270/3013Outlet pressure

Definitions

  • the present invention relates to a control device and a control method for a compressor that compresses fuel gas.
  • a fuel gas supply system including a control unit that adjusts the amount of fuel gas supplied to a load device such as a gas turbine so as to keep the discharge pressure of a compressor that compresses fuel gas within a set range.
  • a load device such as a gas turbine
  • the present invention provides a control device and a control method capable of stabilizing a pressure fluctuation more quickly when a sudden load fluctuation occurs in a load device.
  • the control device compresses the fuel gas and supplies the compressed fuel gas to the load device, and the inflow for adjusting the inflow amount of the fuel gas to the compressor
  • a control device for controlling a fuel gas supply system, the first feedforward control value generated based on the load of the load device and a predetermined first conversion process, and the discharge of the compressor A main pressure adjusting unit that controls the inflow amount adjusting means and the anti-surge valve using a feedback control value generated based on a deviation between a set value of pressure and a measured value of the discharge pressure of the compressor; An inlet pressure adjusting unit that controls the inlet pressure adjusting valve using a second feedforward control value generated based on a load of the load device and a second conversion process different from the first conversion process.
  • the inlet pressure adjusting unit has received a notification signal indicating that a load fluctuation per unit time in the load device is equal to or greater than a predetermined fluctuation width.
  • the inlet pressure control valve is controlled based on the second feedforward control value.
  • the design value of the state quantity indicating the state of the fuel gas upstream of the inlet pressure regulating valve, and the fuel gas upstream of the inlet pressure regulating valve And an opening degree correction calculation unit that corrects the second feedforward control value based on the measured value of the state quantity indicating the state.
  • a bias addition unit that corrects by adding a predetermined bias value that is defined in advance to the second feedforward control value generated by the inlet pressure adjustment unit.
  • the inlet pressure adjusting unit sets the second feedforward control value and the pressure of the fuel gas supplied toward the inflow amount adjusting means.
  • the inlet pressure control valve is controlled based on both the inlet feedback control value generated based on the deviation between the measured value and the measured value.
  • a control method includes a compressor that compresses fuel gas and supplies the compressed fuel gas to a load device, and an inflow that adjusts an inflow amount of the fuel gas to the compressor.
  • An amount adjusting means, an antisurge valve for returning the fuel gas discharged from the compressor to the inlet side of the compressor, and an inlet pressure for adjusting the pressure of the fuel gas supplied to the inflow amount adjusting means A control method for controlling a fuel gas supply system, wherein the main pressure adjustment unit generates a first feedforward control value generated based on a load of the load device and a predetermined first conversion process;
  • the inflow amount adjusting means and the anti-surge valve are controlled using a feedback control value generated based on a deviation between a set value of the discharge pressure of the compressor and a measured value of the discharge pressure of the compressor
  • the inlet pressure adjustment unit controls the inlet pressure adjustment valve using a second feedforward control value generated based on a load of the load device and a second conversion process different from the first conversion process.
  • control device and control method it is possible to stabilize the pressure fluctuation more quickly when a sudden load fluctuation occurs in the load device.
  • FIG. 1 is a diagram illustrating a functional configuration of the fuel gas supply system according to the first embodiment.
  • the fuel gas supply system 100 includes a compressor 1 (compressor), an inlet guide valve (hereinafter referred to as IGV5) which is an inflow amount adjusting means, an antisurge valve (hereinafter referred to as ASV7), an inlet pressure.
  • An adjustment valve hereinafter, PCV9 (PCV: Pressure Control Valve)
  • the fuel gas supply system 100 supplies the fuel gas to the gas turbine 15 (load device) that is a supply destination of the compressed fuel gas.
  • the supply amount of the fuel gas is determined by a request signal DEM output from the load command unit 17.
  • the request signal DEM output from the load command unit 17 defines the target value of the load of the gas turbine 15, and the control device 101, which will be described later, receives the request signal DEM, thereby obtaining the target value of the load of the gas turbine 15. A corresponding amount of fuel gas is supplied from the fuel gas supply system 100.
  • the compressor 1 compresses the fuel gas supplied through the PCV 9 and the IGV 5, and supplies the compressed fuel gas to the gas turbine 15 through the header tank 13.
  • the IGV 5 is a valve that is arranged in a pipe connecting the PCV 9 and the compressor 1 to adjust the amount of fuel gas flowing into the compressor 1.
  • the ASV 7 adjusts the flow rate of the fuel gas that returns the compressed fuel gas discharged from the compressor 1 to the inlet side of the compressor 1 (the pipe connecting the PCV 9 and the compressor 1 and upstream of the IGV 5). It is a valve to do.
  • the PCV 9 is a valve that adjusts the pressure of the fuel gas supplied from the outside (fuel gas generation source (not shown)) toward the IGV 5.
  • the control device 101 includes a main pressure adjustment unit 101a and an inlet pressure adjustment unit 101b.
  • a mode in which the header tank 13 is connected to the single gas turbine 15 is illustrated, but the embodiment is not limited thereto, and a mode in which the header tank 13 is connected to the plurality of gas turbines 15. It may be.
  • FIGS. 2 to 4 are respectively a first diagram, a second diagram and a third diagram illustrating the function of the main pressure adjusting unit according to the first embodiment.
  • the function of the main pressure adjusting unit 101a will be described with reference to FIGS. 2 to 4 in addition to FIG.
  • the main pressure adjustment unit 101 a includes function generators 19, 27, and 29, an adder 21, a pressure regulator 23 (PC: PressurePressController), and a flow rate regulator 35 (FC: Flow Controller). ) And a high-level selection unit 31.
  • the load command unit 17 gives a request signal DEM to the function generator 19.
  • This request signal DEM is given as a load factor when the maximum load of the gas turbine 15 is 100%.
  • the function generator 19 inputs the request signal DEM output from the load command unit 17 and executes a first conversion process for converting the request signal DEM into the first feedforward control value MV0.
  • a control signal indicating one feedforward control value MV0 is output.
  • the first feedforward control value MV0 indicated by the control signal output from the function generator 19 is input to the adder 21.
  • the pressure regulator 23 inputs a signal indicating the actual pressure (actual discharge pressure PV1) detected by the pressure gauge 25, which is the pressure of the fuel gas discharged from the compressor 1 toward the gas turbine 15.
  • a control signal indicating a first feedback control value MV1 for causing the discharge pressure PV1 to coincide with a predetermined set value (set pressure SV1) is output.
  • the pressure regulator 23 calculates a first feedback control value MV1 obtained by performing PI (proportional, integral) processing on the deviation between the set pressure SV1 and the detected actual discharge pressure PV1, and this first feedback control.
  • a control signal corresponding to the value MV1 is output to the adder 21.
  • the adder 21 performs an operation of adding the first feedforward control value MV0 and the first feedback control value MV1 to obtain an intermediate control value MV2, and outputs a signal corresponding to the intermediate control value MV2 to the function generator 27 and Output to the function generator 29.
  • the function generator 27 outputs to the IGV 5 a valve control signal based on the function illustrated in FIG. For example, the function generator 27 keeps the IGV opening (the degree of IGV5 valve opening) at 20% (corresponding to the minimum opening) until the first feedforward control value MV0 reaches 50%, As the feedforward control value MV0 increases from 50%, a valve control signal for linearly increasing the IGV opening from 20% to 100% (corresponding to the maximum opening) is formed, and this valve control signal is set to IGV5. Output to.
  • the IGV opening the degree of IGV5 valve opening
  • the function generator 29 outputs a valve control signal based on the function illustrated in FIG. For example, the function generator 29 changes the ASV opening (degree of opening of the valve of ASV7) from 100% (corresponding to the maximum opening) to 0% (minimum opening) until the first feedforward control value MV0 reaches 50%.
  • the intermediate control value MV3 is set so that the ASV opening is held at 0% when the first feedforward control value MV0 is 50% or more, and a signal corresponding to the intermediate control value MV3 is set. Is output to the high-level selection unit 31.
  • the flow rate regulator 35 is a flow rate of the fuel gas supplied from the compressor 1 to the header tank 13 and is a discharge flow rate setting value (set flow rate SV2) defined in advance, and an actual discharge detected by the flow meter 37.
  • a second feedback control value MV4 corresponding to the deviation of the flow rate (actual discharge flow rate PV2) is calculated, and a signal corresponding to the second feedback control value MV4 is output to the high level selection unit 31.
  • the high level selection unit 31 compares the signal indicating the intermediate control value MV3 output from the function generator 29 with the signal indicating the second feedback control value MV4 output from the flow rate regulator 35, and the larger one of them is compared. Is output to the ASV 7 as a valve control signal.
  • the main pressure adjustment unit 101a has the first feedforward control value MV0 generated based on the load of the gas turbine 15 (the load indicated by the request signal DEM) and the first conversion process, and the compressor. IGV5 and the first feedback control value MV1 generated based on the deviation between the set value of the discharge pressure 1 (set pressure SV1) and the measured value of the discharge pressure of the compressor 1 (actual discharge pressure PV1) Control ASV7.
  • the discharge pressure is controlled by a combination of feedforward control and feedback control, so that highly responsive pressure control is possible. Even when a sudden load request is made, fluctuations in the discharge pressure can be suppressed.
  • FIG. 5 is a diagram illustrating the function of the inlet pressure adjusting unit according to the first embodiment.
  • the function of the inlet pressure adjusting unit 101b will be described with reference to FIG. 5 in addition to FIG.
  • the inlet pressure adjustment unit 101 b includes a function generator 20, a pressure regulator 11, and a control switching unit 39.
  • the function generator 20 receives the request signal DEM output from the load command unit 17 and executes a second conversion process for converting the request signal DEM into the second feedforward control value MV5.
  • the control signal which shows 2 feedforward control value MV5 is output.
  • the second feedforward control value MV5 indicated by the control signal output from the function generator 20 is input to the control switching unit 39. Details of the function (FIG. 5) used by the function generator 20 will be described later.
  • the pressure regulator 11 inputs a signal indicating the actual pressure (actual inlet pressure PV3) detected by the pressure gauge 41, which is the pressure of the fuel gas supplied toward the IGV 5, and predefines the actual inlet pressure PV3.
  • a control signal indicating an inlet feedback control value MV6 for matching the set value (set pressure SV3) is output.
  • the pressure regulator 11 calculates an inlet feedback control value MV6 obtained by performing PI (proportional, integral) processing on the deviation between the set pressure SV3 and the detected actual inlet pressure PV3, and this inlet feedback control.
  • a control signal corresponding to the value MV6 is output to the control switching unit 39 and the PCV9.
  • the control switching unit 39 switches whether to control the PCV 9 based on the inlet feedback control value MV6 or based on the second feedforward control value MV5. Specifically, the control switching unit 39 performs control of the PCV 9 based on the inlet feedback control value MV6 (normal mode) during normal times when the load of the gas turbine 15 is stable. On the other hand, the control switching unit 39 controls the PCV 9 based on the second feedforward control value MV5 (emergency mode) when a sudden load fluctuation such as load interruption or trip occurs in the gas turbine 15. Switch to.
  • the control switching unit 39 switches the control of the PCV 9 to the control (normal mode) based on the inlet feedback control value MV6 again after a predetermined time (for example, about 1 to 5 seconds) elapses.
  • the gas turbine 15 outputs a notification signal TRP indicating that the load fluctuation per unit time is equal to or larger than a predetermined fluctuation width when a load interruption or trip occurs.
  • the control switching unit 39 switches the control of the PCV 9 from the normal mode to the emergency mode when receiving the notification signal TRP.
  • the pressure regulator 11 controls the PCV 9 based on the second feedforward control value MV5 input through the control switching unit 39 (emergency mode). However, even in the emergency mode, the pressure regulator 11 continues to acquire the actual inlet pressure PV3 through the pressure gauge 41, calculates the inlet feedback control value MV6, and outputs it to the control switching unit 39. At this time, the inlet feedback control value MV6 is equal to the second feedforward control value MV5. By doing so, it is possible to prevent a seam from being generated in the actual inlet pressure PV3 when switching from the emergency mode to the normal mode again.
  • the function generator 20 always calculates the second feedforward control value MV5 based on the load target value indicated in the request signal DEM and the function shown in FIG. Output it. By doing in this way, the delay until feedforward control is performed with respect to PCV9 from the generation
  • the inlet pressure adjusting unit 101b has a set value (set pressure SV3) and a measured value (actual inlet pressure PV3) of the pressure of the fuel gas supplied toward the IGV 5 in normal time (in normal mode).
  • the PCV 9 is controlled on the basis of the inlet feedback control value MV6 generated on the basis of the deviation. Further, the inlet pressure adjustment unit 101b receives the notification signal TRP indicating that the load fluctuation per unit time in the gas turbine 15 is equal to or larger than a predetermined fluctuation width (in the emergency mode), the second feedforward control value Control of PCV9 based on MV5 is performed.
  • the function generator 20 includes the load target value indicated by the request signal DEM output from the load command unit 17, the PCV opening (the degree of opening of the valve of the PCV 9), Based on the relationship, the second feedforward control value MV5 is calculated.
  • the function generator 20 defines such a relationship that the PCV opening degree decreases as the load target value indicated by the request signal DEM output from the load command unit 17 decreases. More specifically, in the function generator 20, the PCV opening degree changes from 80% to 20% at a first rate when the target load value is in the range of 100 to 60%, and the target load value is 60%.
  • the PCV opening degree is specified with a two-stage rate so that the PCV opening degree changes from 20% to 0% at a second rate smaller than the first rate.
  • the PCV opening indicated by the second feedforward control value MV5 is also instantaneously from 80% to 10 Decrease to%.
  • the function defined by the function generator 20 is not limited to that shown in FIG. 5, and the PCV opening decreases monotonously as the load target value specified by the request signal DEM decreases. It is only necessary to define the relationship to be performed.
  • FIG. 6 is a diagram for explaining the function and effect of the inlet pressure adjusting unit according to the first embodiment.
  • the horizontal axis indicates the elapsed time
  • the vertical axis indicates the change in the opening degree of the PCV 9.
  • FIG. 6 illustrates the fluctuation when a trip occurs at time t0 during operation of the gas turbine 15.
  • the PCV opening is always controlled based on the inlet feedback control value MV6.
  • the load of the gas turbine 15 that is, the consumption amount of the fuel gas
  • the main pressure adjustment unit 101a performs feedback control via the IGV5 and ASV7 so as to maintain the actual discharge pressure PV1 at the set pressure SV1.
  • control is always determined based on the actual discharge pressure PV1 of the discharge pressure to be controlled, so control is not possible for a sudden increase in the discharge pressure. Stable and large undershoot and overshoot may occur. Therefore, the pressure fluctuation range in the header tank 13 is increased, and a predetermined time (elapsed time from time t0 to time t2) is required to stabilize.
  • the opening degree of the PCV 9 is feedback-controlled by the pressure regulator 11 so that the inlet pressure (actual inlet pressure PV3) is kept constant.
  • the opening degree of the PCV 9 gradually decreases from time t0 (changes in the valve closing direction) to reduce the pressure in the header tank 13 as in the example shown by the broken line in FIG. A relatively large undershoot occurs until it is completely stabilized at a predetermined opening degree.
  • control switching unit 39 and the pressure regulator 11 are connected to the gas turbine 15 at time t0 when the trip of the gas turbine 15 occurs.
  • the notification signal TRP is received.
  • the control switching unit 39 and the pressure regulator 11 immediately switch the control of the PCV 9 to the control based on the second feedforward control value MV5.
  • the function generator 20 has a function that defines the relationship between the target value of the load indicated by the request signal DEM output from the load command unit 17 and the PCV opening. is doing. Therefore, for example, when the load of the gas turbine 15 suddenly decreases from 100% to 30% due to a trip, the second feedforward control value MV5 output by the function generator 20 is also instantaneously 80 based on the request signal DEM. % To 10%. Then, at the time t0 when the control switching unit 39 and the pressure regulator 11 receive the notification signal TRP, the control of the PCV 9 is switched to the control based on the second feedforward control value MV5, and the PCV opening is the second feedforward control.
  • the pressure regulator 11 performs control so that the actual inlet pressure PV3 matches the set pressure SV3 in the normal mode.
  • the opening degree of the PCV 9 also changes stably.
  • the pressure regulator 11 is switched to the emergency mode, and the PCV opening is instantly (stepped) according to the trip generated at time t0, and the second feedforward control value MV5. It drops to the opening degree based on.
  • the control switching unit 39 and the pressure regulator 11 are then switched to the operation in the normal mode again after a predetermined time (for example, 1 second) elapses.
  • a predetermined time for example, 1 second
  • the actual inlet pressure PV3 is adjusted to some extent so as to approach the set pressure SV3 by reducing the PCV opening based on the feedforward control.
  • the feedforward control is based on a rough control value by the function generator 20, at this time, an appropriate PCV opening degree at which the actual inlet pressure PV3 coincides with the set pressure SV3 is obtained. Often not.
  • control switching unit 39 and the pressure regulator 11 are finely adjusted based on the feedback control by performing the operation in the normal mode again after 1 second from the occurrence of the trip (time t1), and the actual inlet pressure PV3 Is consistent with the set pressure SV3 and stabilized.
  • undershoot or overshoot occurs due to the feedback control, it is suppressed as compared with the case where there is no feedforward control in the emergency mode (see the solid line in FIG. 6). Therefore, the time required for the pressure in the header tank 13 to stabilize (the elapsed time from time t0 to time t3) is also shortened.
  • the control of the pressure adjustment valve (PCV9) that adjusts the inlet pressure when a sudden load fluctuation such as load interruption or trip occurs The conventional feedback control is switched to the feedforward control corresponding to the load fluctuation.
  • the PCV 9 immediately transitions to the PCV opening that is registered in advance so that the inlet pressure becomes constant. Therefore, since the feedback control is restarted after the opening degree set to some extent according to the sudden load fluctuation is set, the width of fluctuation occurring in the feedback control can be suppressed.
  • FIG. 7 is a diagram illustrating a functional configuration of the fuel gas supply system according to the second embodiment.
  • the same functional configurations as those of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the inlet pressure adjustment unit 101 b of the fuel gas supply system 100 newly includes an opening degree correction calculation unit 43.
  • the opening correction calculation unit 43 corrects the second feedforward control value MV5 calculated by the function generator 20 based on the design value of the state quantity indicating the state of the fuel gas on the upstream side of the PCV 9 and the measured value.
  • the design value and measurement value of the state quantity indicating the state of the fuel gas upstream of the PCV 9 are specifically the design value P 1 and measurement of the fuel gas pressure (upstream pressure) upstream of the PCV 9.
  • Opening correction calculation unit 43 through pressure gauge 45 installed upstream of PCV9, obtains the measured value P 2 of the upstream pressure, also through a temperature sensor 47 installed upstream of PCV9, measuring the upstream temperature to get the value T 2. Further, the opening correction calculation unit 43 acquires the pressure measured through the pressure gauge 45 installed on the upstream side of the PCV 9 and the pressure measured through the pressure gauge 41 installed on the downstream side of the PCV 9. acquires the measured value [Delta] P 2 of the differential pressure between the upstream side and the downstream side of the PCV9.
  • the opening degree correction calculation unit 43 is a difference between a design value P 1 of the upstream pressure defined when the fuel gas supply system 100 is constructed, a temperature T 1 on the upstream side, and the upstream side and the downstream side of the PCV 9.
  • the pressure design value ⁇ P 1 is acquired in advance.
  • the opening correction calculation unit 43 calculates the correction value ⁇ by the following equation (1) using the various design values and measurement values described above.
  • various controls based on the function generator 20 and the pressure regulator 11 are defined based on design values determined in the design on the upstream side (fuel gas generation source) of the fuel gas supply system 100.
  • the actual state quantity (pressure, temperature) of the fuel gas supplied from the upstream side deviates from the design value according to the operating state on the upstream side (fuel gas generation source).
  • the higher the actual temperature on the upstream side of the PCV 9 the measured value T 2 of the upstream temperature
  • the correction value ⁇ calculated based on (1) is calculated to a small value.
  • the opening degree of the PCV 9 is lowered by switching to feed forward control when a trip or the like occurs, if the upstream temperature is high, the PCV opening degree is further reduced by the correction value ⁇ , It functions to suppress the inflow of fuel gas.
  • a more appropriate PCV opening is set when a sudden load fluctuation occurs due to a trip or the like. Can do.
  • the opening correction calculation unit 43 of the fuel gas supply system 100 may include any one or two of the upstream pressure, the upstream temperature, and the differential pressure between the upstream side and the downstream side of the PCV 9.
  • the correction value ⁇ may be calculated based only on the design value and the measurement value.
  • the opening correction calculation unit 43 may calculate the correction value ⁇ based on another state quantity different from the upstream pressure, the upstream temperature, and the differential pressure between the upstream side and the downstream side of the PCV 9. .
  • FIG. 8 is a diagram illustrating a functional configuration of the fuel gas supply system according to the third embodiment.
  • the inlet pressure adjustment unit 101 b of the fuel gas supply system 100 according to the third embodiment newly includes a bias addition unit 49.
  • the bias addition unit 49 adds and corrects a predetermined bias value B (B ⁇ 0) defined in advance to the second feedforward control value MV5 generated by the function generator 20.
  • the bias value B is, for example, a value corresponding to the degree of response delay from when the function generator 20 receives the request signal DEM until the PCV opening setting change in the PCV 9 is completed.
  • FIG. 9 is a diagram for explaining the effect of the inlet pressure adjusting unit according to the third embodiment.
  • the second feedforward control value MV5 is set to change the PCV opening based on the feedforward control at that moment. It is calculated on the assumption that it is ideally completed.
  • a response delay occurs due to a transmission delay of the electric signal and a physical opening / closing operation of the valve in the PCV 9. That is, there is a difference between the timing when the request signal DEM based on the occurrence of a trip or the like is output to the function generator 20 and the timing when the PCV opening setting change based on the feedforward control is actually completed. In the case of the fuel gas supply system 100 according to the first embodiment described above, this delay may cause a slight undershoot in the feedback control after returning from the emergency mode to the normal mode.
  • the opening degree of the PCV 9 is controlled to be further reduced by the bias value B from the second feedforward control value MV5. .
  • the opening degree of PCV9 at the time of occurrence of a trip or the like is set to an opening degree smaller than the initial control value by an amount corresponding to the delay of the response. Therefore, when returning from the emergency mode to the normal mode, the occurrence of undershoot can be further suppressed than in the first embodiment.
  • the bias value B is set to a negative value in order to suppress the undershoot due to the response delay, and the correction is performed so that the opening degree of the PCV 9 is further reduced.
  • overshoot may occur based on response delays or other complex factors.
  • the bias value B may be set to a positive value in advance.
  • FIG. 10 is a diagram illustrating a functional configuration of a fuel gas supply system according to the fourth embodiment.
  • the inlet pressure adjustment unit 101 b of the fuel gas supply system 100 according to the fourth embodiment includes an adder 51.
  • the inlet pressure adjusting unit 101b according to the third embodiment controls the PCV 9 based on both the second feedforward control value MV5 and the inlet feedback control value MV6 (that is, the control value MV7).
  • the fuel gas supply system 100 always performs control based on the control value MV7 regardless of whether or not a trip or the like has occurred.
  • both feedforward control and feedback control are performed at the same time, so that rapid follow-up is realized based on the feedforward control for sudden load fluctuations, and a minute amount with the set pressure is achieved.
  • highly accurate adjustment based on feedback control is realized.
  • the entire configuration of the inlet pressure adjusting unit 101b can be simplified.
  • the inlet feedback control value MV6 starts from zero when taking a value from a predetermined negative value to a predetermined positive value (for example, ⁇ 100 ⁇ MV6 ⁇ 100) according to the specifications of the inlet pressure adjusting unit 101b.
  • a predetermined positive value for example, ⁇ 100 ⁇ MV6 ⁇ 100
  • control apparatus 101 has a computer system therein.
  • Each process of the control device 101 described above is stored in a computer-readable recording medium in the form of a program, and the above process is performed by the computer reading and executing the program.
  • the computer-readable recording medium refers to a magnetic disk, a magneto-optical disk, a CD-ROM (Compact Disc—Read Only Memory), a semiconductor memory, or the like.
  • the computer program may be distributed to the computer via a communication line, and the computer that has received the distribution may execute the program.
  • control device and control method it is possible to stabilize the pressure fluctuation more quickly when a sudden load fluctuation occurs in the load device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Geometry (AREA)
  • Fluid Mechanics (AREA)
  • Feedback Control In General (AREA)

Abstract

 圧縮した燃料ガスを負荷機器(15)に供給する圧縮機(1)と、圧縮機(1)に対する燃料ガスの流入量を調整する流入量調整手段(5)と、圧縮機(1)から吐出される燃料ガスを圧縮機(1)の入口側に戻すためのアンチサージ弁(7)と、流入量調整手段(5)に向けて供給される燃料ガスの圧力を調整する入口圧力調整弁(9)と、を有する燃料ガス供給システム(100)を制御する制御装置(101)は、負荷機器(15)の負荷(DEM)と第1変換処理とに基づいて生成した第1フィードフォワード制御値(MV0)と、圧縮機(1)の吐出圧力の設定値(SV1)と計測値(PV1)との偏差に基づいて生成したフィードバック制御値(MV1)と、を用いて流入量調整手段(5)及びアンチサージ弁(7)を制御する主圧力調整部(101a)と、負荷機器(15)の負荷(DEM)と第2変換処理とに基づいて生成した第2フィードフォワード制御値(MV5)を用いて、入口圧力調整弁(9)を制御する入口圧力調整部(101b)と、を備える。

Description

制御装置及び制御方法
 本発明は、燃料ガスを圧縮する圧縮機の制御装置及び制御方法に関する。
 燃料ガスを圧縮する圧縮機の吐出圧力を設定範囲内に保つようにガスタービン等の負荷機器への燃料ガス供給量を調節する制御手段を備えた燃料ガス供給システムが提案されている。
 しかしながら、従来の燃料ガス供給システムでは、負荷遮断時やガスタービンのトリップ時等のような急激な燃料ガス消費量の変動に適切に対応することができない場合があった。そこで、圧縮機に設けられた入口ガイド弁(IGV:Inlet Guide Vane)の開度を制御することによって圧縮機の吐出圧力を設定圧力に維持させるとともに、いわゆるサージングを回避するために、負荷遮断時等に圧縮機の出口に接続されたアンチサージ弁(ASV:Anti-Surge Valve)(リサイクル弁(RCV:Recycle Control Valve)とも言う)を急開させて、当該圧縮機から吐出される燃料ガスの一部を当該圧縮機の入口側に戻すという技術が提案されている。
 また、上記のような燃料ガス供給システムをさらに発展させ、入口ガイド弁だけでなく、アンチサージ弁も圧縮機の吐出圧制御に活用することで、通常運転時だけでなく、負荷遮断時、圧縮機およびガスタービンのトリップ時等においても良好な制御結果を得ることができる燃料ガス供給システムが提案されている(例えば、特許文献1参照)。
特開2005-076461号公報
 従来の燃料ガス供給システムに比べて改善はされるものの、特許文献1に記載の燃料ガス供給システムによっても、負荷遮断時等の急激な負荷変動が生じた場合には、フィードバック制御対象とする圧力の所定量のオーバーシュート、アンダーシュートが発生し、安定するまでに若干の時間を要していた。
 本発明は、負荷機器における急激な負荷変動が生じた場合における圧力の変動をより早急に安定化させることができる制御装置及び制御方法を提供する。
 本発明の第1の態様によれば、制御装置は、燃料ガスを圧縮し、その圧縮した燃料ガスを負荷機器に供給する圧縮機と、前記圧縮機に対する前記燃料ガスの流入量を調整する流入量調整手段と、前記圧縮機から吐出される燃料ガスを前記圧縮機の入口側に戻すためのアンチサージ弁と、前記流入量調整手段に向けて供給する前記燃料ガスの圧力を調整する入口圧力調整弁と、を有する燃料ガス供給システムを制御する制御装置であって、前記負荷機器の負荷と所定の第1変換処理とに基づいて生成した第1フィードフォワード制御値と、前記圧縮機の吐出圧力の設定値と前記圧縮機の吐出圧力の計測値との偏差に基づいて生成したフィードバック制御値と、を用いて前記流入量調整手段及び前記アンチサージ弁を制御する主圧力調整部と、前記負荷機器の負荷と前記第1変換処理とは異なる第2変換処理とに基づいて生成した第2フィードフォワード制御値を用いて、前記入口圧力調整弁を制御する入口圧力調整部と、を備える。
 本発明の第2の態様によれば、上述の制御装置において、前記入口圧力調整部は、前記負荷機器における単位時間当たりの負荷変動が所定の変動幅以上であることを示す通知信号を受け付けた際に、前記第2フィードフォワード制御値に基づく前記入口圧力調整弁の制御を行う。
 本発明の第3の態様によれば、上述の制御装置において、前記入口圧力調整弁の上流側における燃料ガスの状態を示す状態量の設計値と、前記入口圧力調整弁の上流側における燃料ガスの状態を示す状態量の計測値と、に基づいて前記第2フィードフォワード制御値を補正する開度補正演算部をさらに備える。
 本発明の第4の態様によれば、上述の制御装置において、前記入口圧力調整部が生成した前記第2フィードフォワード制御値に予め規定された所定のバイアス値を加算して補正するバイアス加算部をさらに備える。
 本発明の第5の態様によれば、上述の制御装置において、前記入口圧力調整部は、前記第2フィードフォワード制御値と、前記流入量調整手段に向けて供給する前記燃料ガスの圧力の設定値と計測値との偏差に基づいて生成した入口用フィードバック制御値と、の両方に基づいて前記入口圧力調整弁の制御を行う。
 本発明の第6の態様によれば、制御方法は、燃料ガスを圧縮し、その圧縮した燃料ガスを負荷機器に供給する圧縮機と、前記圧縮機に対する前記燃料ガスの流入量を調整する流入量調整手段と、前記圧縮機から吐出される燃料ガスを前記圧縮機の入口側に戻すためのアンチサージ弁と、前記流入量調整手段に向けて供給する前記燃料ガスの圧力を調整する入口圧力調整弁と、を有する燃料ガス供給システムを制御する制御方法であって、主圧力調整部が、前記負荷機器の負荷と所定の第1変換処理とに基づいて生成した第1フィードフォワード制御値と、前記圧縮機の吐出圧力の設定値と前記圧縮機の吐出圧力の計測値との偏差に基づいて生成したフィードバック制御値と、を用いて前記流入量調整手段及び前記アンチサージ弁を制御するステップと、入口圧力調整部が、前記負荷機器の負荷と前記第1変換処理とは異なる第2変換処理とに基づいて生成した第2フィードフォワード制御値を用いて、前記入口圧力調整弁を制御するステップと、を有する。
 上述の制御装置及び制御方法によれば、負荷機器における急激な負荷変動が生じた場合における圧力の変動をより早急に安定化させることができる。
第1の実施形態に係る燃料ガス供給システムの機能構成を示す図である。 第1の実施形態に係る主圧力調整部の機能を説明する第1の図である。 第1の実施形態に係る主圧力調整部の機能を説明する第2の図である。 第1の実施形態に係る主圧力調整部の機能を説明する第3の図である。 第1の実施形態に係る入口圧力調整部の機能を説明する図である。 第1の実施形態に係る入口圧力調整部による作用効果を説明する図である。 第2の実施形態に係る燃料ガス供給システムの機能構成を示す図である。 第3の実施形態に係る燃料ガス供給システムの機能構成を示す図である。 第3の実施形態に係る入口圧力調整部による作用効果を説明する図である。 第4の実施形態に係る燃料ガス供給システムの機能構成を示す図である。
<第1の実施形態>
 以下、図1~図6を参照しながら第1の実施形態に係る燃料ガス供給システムについて詳細に説明する。
 図1は、第1の実施形態に係る燃料ガス供給システムの機能構成を示す図である。
 図1に示すように、燃料ガス供給システム100は、圧縮機1(コンプレッサ)と、流入量調整手段である入口ガイド弁(以下、IGV5)と、アンチサージ弁(以下、ASV7)と、入口圧力調整弁(以下、PCV9(PCV:Pressure Control Valve))と、ヘッダタンク13と、制御装置101と、を備えている。
 燃料ガス供給システム100は、圧縮した燃料ガスの供給先であるガスタービン15(負荷機器)に当該燃料ガスを供給する。燃料ガスの供給量は、負荷司令部17が出力する要求信号DEMによって定められる。負荷司令部17が出力する要求信号DEMは、ガスタービン15の負荷の目標値を規定しており、後述する制御装置101が当該要求信号DEMを受け付けることで、ガスタービン15の負荷の目標値に応じた量の燃料ガスが燃料ガス供給システム100より供給される。
 圧縮機1は、PCV9、IGV5を通じて供給される燃料ガスを圧縮し、当該圧縮した燃料ガスを、ヘッダタンク13を介してガスタービン15に供給する。
 IGV5は、PCV9と圧縮機1とを接続する配管に配されて、圧縮機1に対する燃料ガスの流入量を調整する弁である。
 ASV7は、圧縮機1から吐出される圧縮された燃料ガスを当該圧縮機1の入口側(PCV9と圧縮機1とを接続する配管であってIGV5の上流側)に戻す燃料ガスの流量を調整する弁である。
 PCV9は、外部(燃料ガスの発生源(図示せず))からIGV5に向けて供給する燃料ガスの圧力を調整する弁である。通常、PCV9は、自己とIGV5とを接続する配管における圧力が予め規定された設定値で一定となるように、後述する圧力調整器11により制御される。
 制御装置101は、主圧力調整部101aと、入口圧力調整部101bと、を有している。
 なお、図1に示す例では、ヘッダタンク13から単一のガスタービン15に接続される態様を示しているが、これに限定されず、ヘッダタンク13から複数のガスタービン15に接続される態様であってもよい。
 図2、図3及び図4は、それぞれ、第1の実施形態に係る主圧力調整部の機能を説明する第1の図、第2の図及び第3の図である。
 以下、図1に加え、図2~図4を参照しながら主圧力調整部101aの機能について説明する。
 図1に示すように、主圧力調整部101aは、関数発生器19、27、29と、加算器21と、圧力調整器23(PC:Pressure Controller)と、流量調整器35(FC:Flow Controller)と、高位選択部31と、を有している。
 ガスタービン15の運転時には、負荷司令部17が関数発生器19に要求信号DEMを与える。この要求信号DEMは、ガスタービン15の最大負荷を100%とした場合の負荷率として与えられる。
 関数発生器19は、図2に例示する関数に基づいて、負荷司令部17が出力する上記要求信号DEMを入力して第1フィードフォワード制御値MV0に変換する第1変換処理を実行し、第1フィードフォワード制御値MV0を示す制御信号を出力する。関数発生器19が出力する制御信号が示す第1フィードフォワード制御値MV0は、加算器21に入力される。
 圧力調整器23は、圧縮機1がガスタービン15に向けて吐出する燃料ガスの圧力であって圧力計25によって検出される実際の圧力(実吐出圧力PV1)を示す信号を入力し、当該実吐出圧力PV1を予め規定された設定値(設定圧力SV1)に一致させるための第1フィードバック制御値MV1を示す制御信号を出力する。具体的には、圧力調整器23は、設定圧力SV1と検出された実吐出圧力PV1の偏差にPI(比例、積分)処理を施した第1フィードバック制御値MV1を演算し、この第1フィードバック制御値MV1に対応する制御信号を加算器21に向けて出力する。
 加算器21は、第1フィードフォワード制御値MV0と第1フィードバック制御値MV1とを加算する演算を実行して中間制御値MV2を求め、この中間制御値MV2に対応する信号を関数発生器27及び関数発生器29に向けて出力する。
 関数発生器27は、図3に例示する関数に基づく弁制御信号をIGV5に出力する。例えば、関数発生器27は、第1フィードフォワード制御値MV0が50%になるまではIGV開度(IGV5の弁の開きの度合い)を20%(最小開度に対応)に保持させ、第1フィードフォワード制御値MV0が50%から増大するに伴って、IGV開度を20%から100%(最大開度に対応)まで直線的に増加させる弁制御信号を形成し、この弁制御信号をIGV5に出力する。
 関数発生器29は、図4に例示する関数に基づく弁制御信号を高位選択部31に出力する。例えば、関数発生器29は、第1フィードフォワード制御値MV0が50%になるまではASV開度(ASV7の弁の開きの度合い)を100%(最大開度に対応)から0%(最小開度に対応)まで直線的に減少させ、第1フィードフォワード制御値MV0が50%以上の時にASV開度を0%に保持させる中間制御値MV3を設定し、この中間制御値MV3に対応する信号を高位選択部31に出力する。
 流量調整器35は、圧縮機1からヘッダタンク13へ供給される燃料ガスの流量であって予め規定された吐出流量の設定値(設定流量SV2)と、流量計37で検出される実際の吐出流量(実吐出流量PV2)と、の偏差に対応する第2フィードバック制御値MV4を演算し、この第2フィードバック制御値MV4に対応する信号を上記高位選択部31に出力する。
 高位選択部31は、関数発生器29から出力される中間制御値MV3を示す信号と、流量調整器35が出力する第2フィードバック制御値MV4を示す信号とを比較し、それらの内の大きい方の信号を弁制御信号としてASV7に出力する。
 以上の構成により、主圧力調整部101aは、ガスタービン15の負荷(要求信号DEMが示す負荷)と、上記第1変換処理と、に基づいて生成した第1フィードフォワード制御値MV0と、圧縮機1の吐出圧力の設定値(設定圧力SV1)と当該圧縮機1の吐出圧力の計測値(実吐出圧力PV1)との偏差に基づいて生成した第1フィードバック制御値MV1と、を用いてIGV5及びASV7を制御する。
 主圧力調整部101aの構成による具体的な作用は、引用文献1に記載されているものと同様であるため、詳細な説明を省略する。主圧力調整部101aの、以上のような機能構成によれば、フィードフォワード制御とフィードバック制御の組合せによって吐出圧力が制御されるので、即応性の高い圧力制御が可能となり、そのため、ガスタービン15に急激な負荷の要求がなされた場合でも、吐出圧力の変動を抑制することができる。
 図5は、第1の実施形態に係る入口圧力調整部の機能を説明する図である。
 以下、図1に加え、図5を参照しながら入口圧力調整部101bの機能について説明する。
 図1に示すように、入口圧力調整部101bは、関数発生器20と、圧力調整器11と、制御切替部39と、を備えている。
 関数発生器20は、図5に例示する関数に基づいて、負荷司令部17が出力する上記要求信号DEMを入力して第2フィードフォワード制御値MV5に変換する第2変換処理を実行し、第2フィードフォワード制御値MV5を示す制御信号を出力する。関数発生器20が出力する制御信号が示す第2フィードフォワード制御値MV5は、制御切替部39に入力される。関数発生器20が用いる関数(図5)の詳細については後述する。
 圧力調整器11は、IGV5に向けて供給する燃料ガスの圧力であって圧力計41によって検出される実際の圧力(実入口圧力PV3)を示す信号を入力し、当該実入口圧力PV3を予め規定された設定値(設定圧力SV3)に一致させるための入口用フィードバック制御値MV6を示す制御信号を出力する。具体的には、圧力調整器11は、設定圧力SV3と検出された実入口圧力PV3の偏差にPI(比例、積分)処理を施した入口用フィードバック制御値MV6を演算し、この入口用フィードバック制御値MV6に対応する制御信号を制御切替部39及びPCV9に向けて出力する。
 制御切替部39は、PCV9の制御を、入口用フィードバック制御値MV6に基づいて行うか、第2フィードフォワード制御値MV5に基づいて行うか、を切り替える。具体的には、制御切替部39は、ガスタービン15の負荷が安定している通常時においては、PCV9の制御を、入口用フィードバック制御値MV6に基づいて行う(通常モード)。一方、制御切替部39は、ガスタービン15において、負荷遮断又はトリップのような急激な負荷変動が生じた場合には、PCV9の制御を、第2フィードフォワード制御値MV5に基づく制御(非常モード)に切り替える。そして、その後、制御切替部39は、予め規定された所定時間(例えば、1~5秒程度)経過後に、再度、PCV9の制御を入口用フィードバック制御値MV6に基づく制御(通常モード)に切り替える。
 なお、ガスタービン15は、負荷遮断又はトリップ等が発生した場合に、単位時間当たりの負荷変動が所定の変動幅以上であることを示す通知信号TRPを出力する。制御切替部39は、当該通知信号TRPを受け付けた場合に、PCV9の制御を通常モードから非常モードに切り替える。
 なお、圧力調整器11は、制御切替部39と同様に通知信号TRPを受け付けると、制御切替部39を通じて入力される第2フィードフォワード制御値MV5に基づいてPCV9の制御を行う(非常モード)。しかし、非常モード時であっても、圧力調整器11は、引き続き、圧力計41を通じて実入口圧力PV3を取得し、入口用フィードバック制御値MV6を演算して制御切替部39に出力しておく。このとき、入口用フィードバック制御値MV6は第2フィードフォワード制御値MV5と等しくなる。このようにすることで、非常モードから再度通常モードへの切り替わり時において、実入口圧力PV3に継ぎ目を生じさせないようにすることができる。
 同様に、関数発生器20は、通常モード時であっても、常に要求信号DEMに示される負荷の目標値と図5に示す関数とに基づいて、第2フィードフォワード制御値MV5を演算して出力しておく。このようにすることで、非常モード時への切り替わりの発生のタイミングから、PCV9に対しフィードフォワード制御がなされるまでの遅延を抑制することができる。
 以上のような構成により、入口圧力調整部101bは、通常時(通常モード時)において、IGV5に向けて供給する燃料ガスの圧力の設定値(設定圧力SV3)と計測値(実入口圧力PV3)との偏差に基づいて生成した入口用フィードバック制御値MV6に基づいてPCV9の制御を行う。また、入口圧力調整部101bは、ガスタービン15における単位時間当たりの負荷変動が所定の変動幅以上であることを示す通知信号TRPを受け付けた場合(非常モード時)において、第2フィードフォワード制御値MV5に基づくPCV9の制御を行う。
 ここで、図5に示すように、関数発生器20は、負荷司令部17から出力される要求信号DEMに示される負荷の目標値と、PCV開度(PCV9の弁の開きの度合い)と、の関係に基づいて、第2フィードフォワード制御値MV5を演算する。関数発生器20は、図5に示すように、負荷司令部17が出力する要求信号DEMに示される負荷の目標値が小さいほど、PCV開度も小さくなるような関係を規定している。より具体的に説明すると、関数発生器20は、負荷の目標値が100~60%の範囲にかけてはPCV開度が80%から20%まで第1のレートで推移し、負荷の目標値が60%~0%の範囲にかけてはPCV開度が20%から0%まで、第1のレートよりも小さい第2のレートで推移するように、2段階のレートをもって規定されている。
 この場合、例えば、トリップの発生によりガスタービン15の負荷の目標値が100%から30%に急激に変動した場合、第2フィードフォワード制御値MV5が示すPCV開度も、80%から瞬時に10%にまで減少する。
 なお、関数発生器20が規定する関数は、図5に示すものに限定されることはなく、要求信号DEMが指定する負荷の目標値の減少方向への推移に対し、PCV開度が単調減少する関係を規定してさえいればよい。
 図6は、第1の実施形態に係る入口圧力調整部による作用効果を説明する図である。
 図6に示すグラフは、横軸に経過時間を示し、縦軸にPCV9の開度の変化を示している。また、図6では、ガスタービン15運転中における時刻t0でトリップが発生した場合の変動を例示している。
 まず、第1の実施形態に係る燃料ガス供給システム100の対比例として、第2フィードフォワード制御値MV5によるフィードフォワード制御がなされない燃料ガス供給システムについて説明する。
 第2フィードフォワード制御値MV5によるフィードフォワード制御がなされない場合、PCV開度は、常に入口用フィードバック制御値MV6に基づいて制御される。
 ここで、時刻t0においてガスタービン15のトリップが発生し、負荷の目標値が急激に低下した場合を考える。この場合、ガスタービン15の負荷(即ち、燃料ガスの消費量)が急激に低下したことで、ヘッダタンク13の圧力(実吐出圧力PV1)は、時刻t0において急激に上昇する。そのため、主圧力調整部101aは、実吐出圧力PV1を設定圧力SV1に維持しようと、IGV5、ASV7を介したフィードバック制御を行う。しかし、IGV5、ASV7を介したフィードバック制御では、常に、制御対象となる吐出圧力の実吐出圧力PV1に基づいて制御が決定されるため、当該吐出圧力の急激な上昇に対しては、制御が不安定となり大きなアンダーシュート、オーバーシュートが発生し得る。したがって、ヘッダタンク13における圧力変動幅が大きくなるとともに、安定するまでに所定の時間(時刻t0から時刻t2までの経過時間)を要する。
 一方、PCV9の開度は、圧力調整器11により入口圧力(実入口圧力PV3)が一定に保たれるようにフィードバック制御がなされている。したがって、PCV9の開度も、図6の破線に示す例のように、ヘッダタンク13の圧力低減のために、時刻t0から徐々に下降(弁を閉める方向に推移)するが、トリップの発生に応じた所定の開度で完全に安定するまでには比較的大きなアンダーシュートが発生する。
 これに対し、第1の実施形態に係る燃料ガス供給システム100の入口圧力調整部101bの場合、ガスタービン15のトリップが発生した時刻t0において、制御切替部39及び圧力調整器11がガスタービン15より通知信号TRPを受け付ける。そうすると、制御切替部39及び圧力調整器11は、直ちに、PCV9の制御を、第2フィードフォワード制御値MV5に基づく制御に切り替える。
 ここで、図5に示したように、関数発生器20は、負荷司令部17から出力される要求信号DEMに示される負荷の目標値と、PCV開度と、の関係を規定した関数を有している。したがって、例えば、トリップによりガスタービン15の負荷が100%から30%にまで急激に低下した場合、関数発生器20が出力する第2フィードフォワード制御値MV5も、要求信号DEMに基づいて瞬時に80%から10%に低下する。そうすると、制御切替部39及び圧力調整器11が通知信号TRPを受け付けた時刻t0において、PCV9の制御が第2フィードフォワード制御値MV5に基づく制御に切り替わるとともに、PCV開度が、第2フィードフォワード制御値MV5に基づいて100%から瞬時に30%まで低減される。このように、急激に低下する負荷の度合いが大きければ大きいほど、PCV9の開度もより閉塞方向に遷移するため、負荷(ガスタービン15)で消費される燃料ガスの量と、上流から圧縮機1の入口側へ流入してくる燃料ガスの流量と、のバランスがとれ、結果として圧縮機1の上流及び下流における燃料ガスの圧力が一定に保たれるように作用する。
 図6の実線の例に示すように、トリップ発生以前(時刻t0以前)において、圧力調整器11は、通常モードにより、実入口圧力PV3が設定圧力SV3に一致するように制御を行っている。実入口圧力PV3が安定している場合、PCV9の開度も安定して推移する。
 そして、時刻t0でトリップが発生すると、圧力調整器11が非常モードに切り替わるとともに、PCV開度は、時刻t0で発生したトリップに合わせて瞬時に(ステップ状に)、第2フィードフォワード制御値MV5に基づく開度にまで低下する。
 制御切替部39及び圧力調整器11は、その後、予め規定された所定時間(例えば、1秒)経過後に、再度、通常モードによる運転に切り替える。この時点では、フィードフォワード制御に基づくPCV開度の低減により、実入口圧力PV3が、設定圧力SV3に近づくようにある程度の調整がなされている。しかし、当該フィードフォワード制御は、関数発生器20による大まかな制御値に基づいたものであるため、この時点では、実入口圧力PV3が設定圧力SV3に一致するような適正なPCV開度とはなっていない場合が多い。したがって、制御切替部39及び圧力調整器11は、トリップ発生から1秒経過後(時刻t1)において、再度、通常モードの運転を行うことにより、フィードバック制御に基づく微調整がなされ、実入口圧力PV3が設定圧力SV3に一致して安定する。当該フィードバック制御によってアンダーシュート若しくはオーバーシュートは発生するものの、非常モード時におけるフィードフォワード制御が無い場合よりも抑制されている(図6実線参照)。したがって、ヘッダタンク13内の圧力が安定するまでに係る時間(時刻t0から時刻t3までの経過時間)も短縮される。
 このように、第1の実施形態に係る燃料ガス供給システムによれば、負荷遮断やトリップ等の急激な負荷変動が生じた場合に、入口圧力を調整する圧力調整弁(PCV9)の制御を、従来のフィードバック制御から当該負荷変動に応じたフィードフォワード制御に切り替える。このようにすることで、急激な負荷変動発生時において、PCV9は、入口圧力が一定となるように事前に見当が付けられたPCV開度に直ちに遷移する。したがって、急激な負荷変動に応じてある程度見当が付けられた開度に設定された後からフィードバック制御が再開されるので、当該フィードバック制御において生じる変動の幅を抑制することができる。
<第2の実施形態>
 以下、図7を参照しながら第2の実施形態に係る燃料ガス供給システムについて詳細に説明する。
 図7は、第2の実施形態に係る燃料ガス供給システムの機能構成を示す図である。
 図7に示す第2の実施形態に係る燃料ガス供給システム100の機能構成のうち、第1の実施形態と同一の機能構成については同一の符号を付してその説明を省略する。
 図7に示すように、第2の実施形態に係る燃料ガス供給システム100の入口圧力調整部101bは、新たに、開度補正演算部43を備えている。
 開度補正演算部43は、PCV9の上流側における燃料ガスの状態を示す状態量の設計値と、計測値と、に基づいて関数発生器20が演算した第2フィードフォワード制御値MV5を補正する。
 ここで、PCV9の上流側における燃料ガスの状態を示す状態量の設計値及び計測値とは、具体的には、PCV9の上流側における燃料ガスの圧力(上流圧力)の設計値P及び計測値P、PCV9の上流側における燃料ガスの温度(上流側温度)の設計値T及び計測値T、及び、PCV9の上流側と下流側との差圧の設計値ΔP及び計測値ΔPである。
 開度補正演算部43は、PCV9の上流側に設置された圧力計45を通じて、上流圧力の計測値Pを取得し、同じくPCV9の上流側に設置された温度センサ47を通じて、上流温度の計測値Tを取得する。更に、開度補正演算部43は、PCV9の上流側に設置された圧力計45を通じて計測される圧力と、PCV9の下流側に設置された圧力計41を通じて計測される圧力と、を取得して、PCV9の上流側と下流側との差圧の計測値ΔPを取得する。
 また、開度補正演算部43は、燃料ガス供給システム100の施工時において規定された上流側圧力の設計値P、上流側の温度T、及び、PCV9の上流側と下流側との差圧の設計値ΔPを予め取得している。
 開度補正演算部43は、以上の各種設計値及び計測値を用いて、以下の式(1)により補正値αを演算する。
Figure JPOXMLDOC01-appb-M000001
 そして、開度補正演算部43は、式(1)により算出した補正値αを第2フィードフォワード制御値MV5に乗算し、算出された補正後第2フィードフォワード制御値MV5a(MV5a=α×MV5)を制御切替部39に出力する。
 ここで、関数発生器20及び圧力調整器11に基づく各種制御は、燃料ガス供給システム100の上流側(燃料ガス発生源)の設計において定められた設計値に基づいて規定されている。しかし、上流側(燃料ガス発生源)における運転状態に応じて、当該上流側から供給される燃料ガスの実際の状態量(圧力、温度)が設計値から乖離することが想定される。
 このような場合であっても、第2の実施形態に係る燃料ガス供給システム100によれば、例えば、PCV9の上流側における実際の温度(上流側温度の計測値T)が高いほど、式(1)に基づいて算出される補正値αは小さい値に算出される。したがって、トリップ等が生じた場合においてフィードフォワード制御に切り替えてPCV9の開度を低下する際、上流側温度が高い場合には、補正値αによりPCV開度が一層低減されて、上流側からの燃料ガスの流入を抑制するように機能する。
 このように、燃料ガス供給システム100が当初の設計値から異なる運転状態となった場合であっても、トリップ等による急激な負荷変動が生じた場合において、一層適切なPCV開度に設定することができる。
 なお、第2の実施形態に係る燃料ガス供給システム100の具体的な態様は、上述のものに限定されることはなく、要旨を逸脱しない範囲内において種々の設計変更等を加えることは可能である。例えば、他の実施形態に係る燃料ガス供給システム100の開度補正演算部43は、上流圧力、上流側温度、PCV9の上流側と下流側との差圧のうち、何れか一つ又は二つの設計値及び計測値のみに基づいて補正値αを算出するものであってもよい。また、開度補正演算部43は、上流圧力、上流側温度及びPCV9の上流側と下流側との差圧とは異なる別の状態量に基づいて補正値αを算出するものであってもよい。
<第3の実施形態>
 以下、図8、図9を参照しながら第3の実施形態に係る燃料ガス供給システムについて詳細に説明する。
 図8は、第3の実施形態に係る燃料ガス供給システムの機能構成を示す図である。
 図8に示す第3の実施形態に係る燃料ガス供給システム100の機能構成のうち、第1の実施形態と同一の機能構成については同一の符号を付してその説明を省略する。
 図8に示すように、第3の実施形態に係る燃料ガス供給システム100の入口圧力調整部101bは、新たに、バイアス加算部49を備えている。
 バイアス加算部49は、関数発生器20が生成した第2フィードフォワード制御値MV5に予め規定された所定のバイアス値B(B<0)を加算して補正する。
 バイアス値Bは、例えば、関数発生器20が要求信号DEMを受け付けてから、PCV9におけるPCV開度の設定変更が完了するまでの応答の遅れの度合いに応じた値である。
 図9は、第3の実施形態に係る入口圧力調整部による作用効果を説明する図である。
 ここで、負荷遮断やトリップ等に基づく要求信号DEMが関数発生器20に向けて出力された際、第2フィードフォワード制御値MV5は、フィードフォワード制御に基づくPCV開度の設定変更がその瞬間に理想的に完了しているという想定で算出されている。しかしながら、実際には、電気信号の伝達遅延やPCV9における弁の物理的な開閉動作に起因して、応答の遅延が生じる。即ち、トリップ等の発生に基づく要求信号DEMが関数発生器20に出力されたタイミングと、実際にフィードフォワード制御に基づくPCV開度の設定変更が完了するタイミングにはずれが生じる。上述した第1の実施形態に係る燃料ガス供給システム100の場合、この遅延により、非常モードから通常モードに復帰した後のフィードバック制御において若干のアンダーシュートが発生し得る。
 しかしながら、第3の実施形態に係る燃料ガス供給システム100によれば、バイアス加算部49が、予め想定される応答の遅延に応じた値のバイアス値Bを第2フィードフォワード制御値MV5に加算して、加算後第2フィードフォワード制御値MV5b(MV5b=MV5+B(B<0))を出力する。
 これにより、図9の実線に示すように、トリップ発生時(時刻t0)において、PCV9の開度は、第2フィードフォワード制御値MV5よりも更にバイアス値Bだけ更に低減された状態に制御される。これにより、トリップ等の発生時におけるPCV9の開度が、応答の遅延を見越した分だけ当初の制御値よりも小さい開度に設定される。したがって、非常モード時から通常モード時に復帰した際、第1の実施形態よりも更にアンダーシュートの発生を抑制することができる。
 なお、第3の実施形態に係る燃料ガス供給システム100の具体的な態様は、上述のものに限定されることはなく、要旨を逸脱しない範囲内において種々の設計変更等を加えることは可能である。ここで、上述の例では、応答の遅延に起因するアンダーシュートを抑制するためにバイアス値Bは負の値とされ、よりPCV9の開度が低減される方向に補正するものとして説明した。しかし、他の実施形態においては、応答の遅延又は他の複合的な要因に基づいて、オーバーシュートが発生する場合も想定される。このような傾向が観測される場合は、バイアス値Bは予め正の値に設定されるものであってもよい。
<第4の実施形態>
 以下、図10を参照しながら第4の実施形態に係る燃料ガス供給システムについて詳細に説明する。
 図10は、第4の実施形態に係る燃料ガス供給システムの機能構成を示す図である。
 図10に示す、第4の実施形態に係る燃料ガス供給システム100の機能構成のうち、第1の実施形態と同一の機能構成については同一の符号を付してその説明を省略する。
 図10に示すように、第4の実施形態に係る燃料ガス供給システム100の入口圧力調整部101bは、加算器51を備えている。
 加算器51は、関数発生器20が生成する第2フィードフォワード制御値MV5と、入口用フィードバック制御値MV6と、を加算した制御値MV7(MV7=MV5+MV6)を算出する。第3の実施形態に係る入口圧力調整部101bは、第2フィードフォワード制御値MV5と入口用フィードバック制御値MV6との両方(即ち、制御値MV7)に基づいてPCV9を制御する。
 このように、第4の実施形態に係る燃料ガス供給システム100は、トリップ等の発生の有無に関わらず、常時、制御値MV7に基づく制御を行う。このようにすることで、フィードフォワード制御とフィードバック制御との両方が同時になされるので、急激な負荷変動に対してはフィードフォワード制御に基づいて高速な追随性が実現され、設定圧力との微小な誤差成分についてはフィードバック制御に基づく精度の高い調整が実現される。
 また、通常時又はトリップ発生時等の各々について制御方法を切り替える必要がないため、入口圧力調整部101bの全体構成を簡素化することができる。
 なお、入口用フィードバック制御値MV6は、入口圧力調整部101bの仕様によって、所定の負の値から所定の正の値までの値をとる場合(例えば、-100≦MV6≦100)と、ゼロから所定の正の値までの値をとる場合(例えば、0≦MV6≦100)と、が想定される。
 入口用フィードバック制御値MV6が所定の負の値から所定の正の値までの制御値をとる場合、加算器51は、上述した通り、制御値MV7を、MV7=MV5+MV6により算出する。一方、入口用フィードバック制御値MV6がゼロから所定の正の値(0≦MV6≦100)までの値をとる場合、加算器51は、第2フィードフォワード制御値MV5を中心としたフィードバック制御を実現するため、制御値MV7を、MV7=MV5+2×(MV6-50)により算出する。
 なお、上述の制御装置101は、内部にコンピュータシステムを有している。そして、上述した制御装置101の各処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。ここで、コンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD-ROM(Compact Disc Read Only Memory)または半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしても良い。
 以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものとする。
 上述の制御装置及び制御方法によれば、負荷機器における急激な負荷変動が生じた場合における圧力の変動をより早急に安定化させることができる。
100 燃料ガス供給システム
101 制御装置
101a 主圧力調整部
101b 入口圧力調整部
1 圧縮機
5 入口ガイド弁(流入量調整手段)
7 アンチサージ弁
9 入口圧力調整弁
11 圧力調整器
13 ヘッダタンク
15 ガスタービン(負荷機器)
17 負荷司令部
19 関数発生器
20 関数発生器
21 加算器
23 圧力調整器
25 圧力計
27 関数発生器
29 関数発生器
31 高位選択部
35 流量調整器
37 流量計
39 制御切替部
41 圧力計
43 開度補正演算部
45 圧力計
47 温度センサ
49 バイアス加算部
51 加算器

Claims (6)

  1.  燃料ガスを圧縮し、その圧縮した燃料ガスを負荷機器に供給する圧縮機と、前記圧縮機に対する前記燃料ガスの流入量を調整する流入量調整手段と、前記圧縮機から吐出される燃料ガスを前記圧縮機の入口側に戻すためのアンチサージ弁と、前記流入量調整手段に向けて供給する前記燃料ガスの圧力を調整する入口圧力調整弁と、を有する燃料ガス供給システムを制御する制御装置であって、
     前記負荷機器の負荷と所定の第1変換処理とに基づいて生成した第1フィードフォワード制御値と、前記圧縮機の吐出圧力の設定値と前記圧縮機の吐出圧力の計測値との偏差に基づいて生成したフィードバック制御値と、を用いて前記流入量調整手段及び前記アンチサージ弁を制御する主圧力調整部と、
     前記負荷機器の負荷と前記第1変換処理とは異なる第2変換処理とに基づいて生成した第2フィードフォワード制御値を用いて、前記入口圧力調整弁を制御する入口圧力調整部と、
     を備える制御装置。
  2.  前記入口圧力調整部は、前記負荷機器における単位時間当たりの負荷変動が所定の変動幅以上であることを示す通知信号を受け付けた際に、前記第2フィードフォワード制御値に基づく前記入口圧力調整弁の制御を行う
     請求項1に記載の制御装置。
  3.  前記入口圧力調整弁の上流側における燃料ガスの状態を示す状態量の設計値と、前記入口圧力調整弁の上流側における燃料ガスの状態を示す状態量の計測値と、に基づいて前記第2フィードフォワード制御値を補正する開度補正演算部をさらに備える
     請求項1又は請求項2に記載の制御装置。
  4.  前記入口圧力調整部が生成した前記第2フィードフォワード制御値に予め規定された所定のバイアス値を加算して補正するバイアス加算部をさらに備える請求項1から請求項3の何れか一項に記載の制御装置。
  5.  前記入口圧力調整部は、
     前記第2フィードフォワード制御値と、前記流入量調整手段に向けて供給する前記燃料ガスの圧力の設定値と計測値との偏差に基づいて生成した入口用フィードバック制御値と、の両方に基づいて前記入口圧力調整弁の制御を行う請求項1から請求項4の何れか一項に記載の制御装置。
  6.  燃料ガスを圧縮し、その圧縮した燃料ガスを負荷機器に供給する圧縮機と、前記圧縮機に対する前記燃料ガスの流入量を調整する流入量調整手段と、前記圧縮機から吐出される燃料ガスを前記圧縮機の入口側に戻すためのアンチサージ弁と、前記流入量調整手段に向けて供給する前記燃料ガスの圧力を調整する入口圧力調整弁と、を有する燃料ガス供給システムを制御する制御方法であって、
     主圧力調整部が、前記負荷機器の負荷と所定の第1変換処理とに基づいて生成した第1フィードフォワード制御値と、前記圧縮機の吐出圧力の設定値と前記圧縮機の吐出圧力の計測値との偏差に基づいて生成したフィードバック制御値と、を用いて前記流入量調整手段及び前記アンチサージ弁を制御するステップと、
     入口圧力調整部が、前記負荷機器の負荷と前記第1変換処理とは異なる第2変換処理とに基づいて生成した第2フィードフォワード制御値を用いて、前記入口圧力調整弁を制御するステップと、
     を有する制御方法。
PCT/JP2014/070162 2014-07-31 2014-07-31 制御装置及び制御方法 WO2016016983A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2014/070162 WO2016016983A1 (ja) 2014-07-31 2014-07-31 制御装置及び制御方法
JP2016537665A JP6140899B2 (ja) 2014-07-31 2014-07-31 制御装置及び制御方法
US15/305,756 US10358985B2 (en) 2014-07-31 2014-07-31 Control device and control method
EP14898541.9A EP3118438B1 (en) 2014-07-31 2014-07-31 Control device and control method
CN201480078174.8A CN106232964A (zh) 2014-07-31 2014-07-31 控制装置及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/070162 WO2016016983A1 (ja) 2014-07-31 2014-07-31 制御装置及び制御方法

Publications (1)

Publication Number Publication Date
WO2016016983A1 true WO2016016983A1 (ja) 2016-02-04

Family

ID=55216924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070162 WO2016016983A1 (ja) 2014-07-31 2014-07-31 制御装置及び制御方法

Country Status (5)

Country Link
US (1) US10358985B2 (ja)
EP (1) EP3118438B1 (ja)
JP (1) JP6140899B2 (ja)
CN (1) CN106232964A (ja)
WO (1) WO2016016983A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107269401A (zh) * 2016-03-30 2017-10-20 通用电气公司 燃气轮机的可变流量压缩机
WO2018151213A1 (ja) * 2017-02-16 2018-08-23 三菱重工コンプレッサ株式会社 制御装置、気体圧縮システム、制御方法およびプログラム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105917099A (zh) * 2014-07-31 2016-08-31 三菱重工业株式会社 压缩机控制装置、压缩机控制系统及压缩机控制方法
US11137164B2 (en) 2017-05-15 2021-10-05 Carrier Corporation Control systems and methods for heat pump systems
CN107725460B (zh) * 2017-11-21 2023-11-03 江苏徐工工程机械研究院有限公司 风机控制系统和抑尘车
EP3862549A1 (en) 2020-02-05 2021-08-11 General Electric Company Method for operating a power plant, and power plant

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005076461A (ja) * 2003-08-28 2005-03-24 Mitsubishi Heavy Ind Ltd 圧縮機の制御方法
JP2006316687A (ja) * 2005-05-12 2006-11-24 Mitsubishi Heavy Ind Ltd 流体の圧送方法、圧送装置、燃料ガス供給装置及びガス輸送ラインの中継基地

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3979904A (en) * 1974-08-08 1976-09-14 Westinghouse Electric Corporation Combined cycle electric power plant and a gas turbine having improved liquid fuel flow detection
JP3137498B2 (ja) * 1992-06-16 2001-02-19 株式会社神戸製鋼所 ガスタービン用燃料ガス供給装置およびその制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005076461A (ja) * 2003-08-28 2005-03-24 Mitsubishi Heavy Ind Ltd 圧縮機の制御方法
JP2006316687A (ja) * 2005-05-12 2006-11-24 Mitsubishi Heavy Ind Ltd 流体の圧送方法、圧送装置、燃料ガス供給装置及びガス輸送ラインの中継基地

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107269401A (zh) * 2016-03-30 2017-10-20 通用电气公司 燃气轮机的可变流量压缩机
WO2018151213A1 (ja) * 2017-02-16 2018-08-23 三菱重工コンプレッサ株式会社 制御装置、気体圧縮システム、制御方法およびプログラム

Also Published As

Publication number Publication date
US10358985B2 (en) 2019-07-23
EP3118438A1 (en) 2017-01-18
EP3118438A4 (en) 2017-06-28
EP3118438B1 (en) 2018-07-11
JP6140899B2 (ja) 2017-06-07
US20170044997A1 (en) 2017-02-16
JPWO2016016983A1 (ja) 2017-04-27
CN106232964A (zh) 2016-12-14

Similar Documents

Publication Publication Date Title
JP6140899B2 (ja) 制御装置及び制御方法
JP6187890B2 (ja) 制御装置及び制御方法
JP6166482B2 (ja) 圧縮機制御装置、圧縮機制御システム及び圧縮機制御方法
US10655868B2 (en) Device for controlling number of operating heat source devices, heat source system, control method, and program
JP5495938B2 (ja) ガスタービン燃料の制御機構及びガスタービン
US9755253B2 (en) Fuel cell system
JP2007071144A (ja) 燃料流量制御装置及び発電システム並びに燃料流量制御方法
US11125242B2 (en) Compressor system and method of controlling the same
JP2014156991A (ja) ボイラの供給水量制御システムおよび供給水量制御方法
CN108699970B (zh) 燃料控制装置、燃烧器、燃气涡轮、燃料控制方法以及记录介质
JP2015102071A (ja) 燃料調整器、燃焼器、ガスタービン、ガスタービンシステム、燃料調整器制御方法、及びプログラム
JP7269204B2 (ja) ガスタービン及びその燃料流量調整方法
JP2006170194A (ja) 圧縮機の制御装置及びこれを有するガスタービン発電プラント
KR101770534B1 (ko) 제어 장치 및 제어 방법
JP2009162165A (ja) 圧縮機の制御装置、及び圧縮機の制御方法
WO2018151213A1 (ja) 制御装置、気体圧縮システム、制御方法およびプログラム
JP7474541B1 (ja) 流量制御装置
JP6193827B2 (ja) 燃料供給装置、燃焼器、ガスタービン、及び燃料供給方法
JP6413145B2 (ja) ガスタービン設備、その制御装置、及びガスタービン設備の制御方法
JP2013044251A (ja) ガスタービンの燃料制御装置
JP2020085396A (ja) 燃料調整装置、燃料調整方法
JP2009235949A (ja) 蒸気タービン制御装置及び制御方法
JP6477268B2 (ja) 流量制御装置、流量制御システム、流量制御プログラム、及び流量制御方法
JP6056057B2 (ja) 整圧装置の安定化方法
JP2008217247A (ja) 給水ポンプ過流量防止装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14898541

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016537665

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014898541

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014898541

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15305756

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE