WO2016016498A1 - Procedimiento de obtención de derivados de pdi - Google Patents

Procedimiento de obtención de derivados de pdi Download PDF

Info

Publication number
WO2016016498A1
WO2016016498A1 PCT/ES2015/070581 ES2015070581W WO2016016498A1 WO 2016016498 A1 WO2016016498 A1 WO 2016016498A1 ES 2015070581 W ES2015070581 W ES 2015070581W WO 2016016498 A1 WO2016016498 A1 WO 2016016498A1
Authority
WO
WIPO (PCT)
Prior art keywords
optionally substituted
alkyl
independently represents
cyi
compound
Prior art date
Application number
PCT/ES2015/070581
Other languages
English (en)
French (fr)
Inventor
Fernando FERNÁNDEZ LÁZARO
Nathalie ZINK LORRE
Enrique FONT SANCHIS
David GUTIÉRREZ MORENO
Ángela SASTRE SANTOS
Original Assignee
Universidad Miguel Hernandez De Elche
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Miguel Hernandez De Elche filed Critical Universidad Miguel Hernandez De Elche
Publication of WO2016016498A1 publication Critical patent/WO2016016498A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D221/00Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00
    • C07D221/02Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00 condensed with carbocyclic rings or ring systems
    • C07D221/04Ortho- or peri-condensed ring systems
    • C07D221/18Ring systems of four or more rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/06Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B5/00Dyes with an anthracene nucleus condensed with one or more heterocyclic rings with or without carbocyclic rings
    • C09B5/62Cyclic imides or amidines of peri-dicarboxylic acids of the anthracene, benzanthrene, or perylene series

Definitions

  • the present invention relates to a process for preparing perilenediimide derivatives of formula I, characterized by being substituted in positions 1, 6, 7 and / or 12 (bay positions).
  • Perylene-3,4,9, 10-tetracarboxylic acid diimides also known as perylenediimides (PDI) or as perylene bisimides (PBI), are very stable compounds both chemically and thermally, and also against electromagnetic radiation.
  • the POIs absorb intensely in the ultraviolet-visible region of the electromagnetic spectrum, so they exhibit very vivid colorations that, depending on the substituents they present, can vary from orange to blue, through red and green.
  • the POIs are highly fluorescent, with quantum fluorescence yields that can reach the unit.
  • Other properties of IDPs include their high electronic affinity and their great ability to transport electrons under the influence of an electric field. Because of all these characteristics, they are widely used in the industry as dyes, pigments in paints and fluorescent agents.
  • IDPs optical, electronic and electro-optical devices
  • the optical, electronic and electro-optical properties of IDPs can be modified depending on the substituents. Important changes in the properties are obtained by introducing, modifying or varying the substituents on the bay positions (1, 6, 7 and / or 12) of the POI.
  • the O- or N-substituted POIs in the bay positions are obtained in two stages.
  • the first is to halogenate (chlorinate or brominate) the unsubstituted PDI.
  • the POI usually with chlorine
  • the PDI usually with bromine
  • the PDI can be dihalogenated to obtain a mixture of two regioisomers, 1, 6-dibromoPDI (minor isomer) and 1, 7-dibromoPDI (majority isomer), which cannot be separated by standard techniques.
  • halogen atoms chlorine or bromine
  • the mixture of isomers 1, 6 (minor) and 1, 7 (majority) is still maintained, although in some cases they can be separated by chromatographic techniques.
  • the present invention relates to a process for preparing the compounds of formula I:
  • each Ri and R3 independently represent hydrogen, halogen, C1-C20 alkyl, C2-C20 alkenyl, C2-C20 alkynyl, -CN, -COR 4 , -C0 2 R 4 , -CONR 4 R 4 , -OR 4 , -OCOR 4 , -OCONR 4 R 4 , -OC0 2 R 4 , -SR 4, -SeR 4 , -NR 4 R 4 , -NR 4 COR 4 , -NR 4 CONR 4 R 4 , -NR 4 C0 2 R 4 , PR 4 R 4 , -SOR, -S0 2 R 4 , -S0 2 NR 4 R 4 or Cyi, where C1-C20 alkyl, C2-C20 alkenyl and C2-C20 alkynyl are independently optionally substituted by one or more R5 and Cyi it is optionally substituted by one or more Re;
  • each R2 independently represents Ci-C 40 alkyl or C 2; where Ci-C 40 alkyl is optionally substituted by one or more R5 and where Cy2 is optionally substituted by one or more R 7 ;
  • each R 4 independently represents hydrogen, C1-C20 alkyl or Cy 4 , where C1-C20 alkyl is optionally substituted by one or more R10 and where Cy 4 is optionally substituted by one or more R11;
  • R 4 groups can be joined by forming with the N atom a saturated 5- to 7-membered heterocycle that may additionally contain a heteroatom selected from N, O and S, and which may be optionally substituted by one or two Rn;
  • each R5 independently represents Cy3, -ORs, -SRs or -NRsRs, where Cy3 is optionally substituted by one or more Re;
  • each R 7 independently represents Ci-C 4 or alkyl, Cy 4 , -ORs, -SRs or -NRsRs, where Ci-C 4 or alkyl is optionally substituted by one or more Rg and where Cy 4 is optionally substituted by one or more Re;
  • each Rs independently represents hydrogen, C1-C6 alkyl or Cy3, where C1-C6 alkyl is optionally substituted by one or more -OH, -OCi-C 4 alkyl, where dC 4 alkyl is optionally substituted by one or more -OH and where Cy3 is optionally substituted by one or more C1-C6 alkyl;
  • each R6 and R11 independently represent Rs, -ORs, -SRs or -NRsRs;
  • each Rg and R10 independently represent -ORs, -SRs, -NRsRs or Cy3, where Cy3 is optionally substituted by one or more C1-C6 alkyl;
  • each Cyi and Cy3 independently represent phenyl or a 5- or 6-membered aromatic heterocycle containing 1 to 3 heteroatoms selected from N, O, S and Se, and where each Cyi and Cy3 can be independently linked to the rest of the molecule through of any available C or N atom;
  • each Cy2 independently represents a saturated, partially unsaturated or aromatic, monocyclic ring of 3 to 7 members or bicyclic of 6 to 1 1 members which can be carbocyclic or heterocyclic, where Cy2 can be attached to the rest of the molecule through any atom of Available C or N, where Cy2 contains 1 to 4 heteroatoms selected from N, O, S and Se, and where one or more atoms of C, S or Se of Cy2 may optionally be oxidized forming groups CO, SO, SO2, SeO or Se0 2 ; Y
  • each Cy 4 independently represents a saturated carboxylic or heterocyclic ring, partially unsaturated or aromatic of 3 to 7 members, optionally containing from 1 to 4 heteroatoms selected from N, O, S and Se, where Cy 4 is attached to the rest of the molecule through any available C or N atom, and where one or more atoms of C, S or Se of Cy 4 may optionally be oxidized forming groups CO, SO, S0 2 , SeO or Se0 2 ,
  • At least one R3 independently represents -OR, -SR, -SeR 4 , -NR 4 R 4 or -PR 4 R 4 ,
  • each Ri and R2 independently have the meaning described for a compound of formula I;
  • Each R12 independently represents hydrogen, halogen, - CN, -COR4, -CO2R4, -CONR4R4, -OR4, -OCOR4, -OCONR4R4, -OCO2R4, -SR 4 , -SeR 4 , -
  • R13 represents -OR 4 , -SR 4 , -SeR 4 , -NR4R4 or -PR4R4; Y
  • each R4 independently has the meaning described for a compound of formula I,
  • At least one R12 independently represents hydrogen or halogen.
  • Another aspect of the present invention relates to a compound selected from:
  • C1-C40 alkyl independently refer to a group straight or branched chain alkyl containing from 1 to 40, from 1 to 20, from 1 to 6 and from 1 to 4 C atoms respectively.
  • C1-C4 alkyl includes the groups methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl and te / f-butyl;
  • C1-C6 alkyl includes the groups of "C1-C4 alkyl” and, among others, pentyl iso-pentyl, sec-pentyl, neo-pentyl, 1, 2- dimethylpropyl, hexyl, iso-hexyl and sec-hexyl;
  • C1-C20 alkyl includes the groups of "d-C6 alkyl” and, among others, heptyl, iso-heptyl, octyl, iso-octyl, 2-ethylhexyl, decyl, nonyl and dodecyl, 2-propylheptyl, 2-butylnonyl and 3-butylnonyl
  • a "C2-C20 alkenyl” group means a linear or branched alkyl chain containing from 2 to 20 C atoms, and which also contains one or more double bonds. Examples include, among others, the groups ethenyl, 1-propenyl, 2-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1,3-butadienyl, 3-pentenyl, 5-pentenyl, 2-hexenyl, 2,4-hexadienyl and 2-propyl-2-hexenyl.
  • C2-C20 alkynyl means a linear or branched alkyl chain containing from 2 to 20 C atoms, and which also contains one or more triple bonds. Examples include the ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3- butynyl and 1,3-butadiinyl groups.
  • Cyi and C3 independently refer to a phenyl or a 5- or 6-membered heteroaryl containing 1 to 3 heteroatoms selected from N, O, S and Se. Cyi and C3 bind to the rest of the molecule through any C or N atom of the available ring. In addition, Cyi and C3 may be optionally substituted as indicated in the definition of formula I, the substituents may be the same or different and may be located at any available position of the ring system.
  • Examples include, among others, phenyl, thienyl, furyl, pyrrolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, imidazolyl, pyrazolyl, 1, 2,3-triazolyl, 1, 2,4-triazolyl, 1, 3,4-oxadiazolyl, 1, 3,4-thiadiazolyl, 1, 2,4-oxadiazolyl, 1, 2,4-thiadiazolyl, pyridyl, pyrazinyl, pyrimidinyl and pyridazinyl.
  • Cy2 refers to a monocyclic ring of 3 to 7 members or bicyclic of 6 to 1 1 members which can be carbocyclic or heterocyclic. When it is heterocyclic, it can contain 1 to 4 heteroatoms selected from N, O, S and Se.
  • the bicyclic rings can be formed by two fused rings through two adjacent C or N atoms, or through two non-adjacent C or N atoms forming a bridge ring, or they can be formed by two rings joined through a single C atom forming an Spiranus ring.
  • the Cy2 group can be saturated, partially unsaturated or aromatic. Cy2 can be attached to the rest of the molecule through any available C or N atom.
  • Cy2 one or more atoms of C, S or Se of Cy2 they can be optionally oxidized forming groups CO, SO, SO2, SeO or SeÜ2.
  • Cy2 may be optionally substituted as indicated in the definition of a compound of formula I, if substituted, the substituents may be the same or different and may be located at any available position of the ring system.
  • Examples include, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, azetidinyl, aziridinyl, oxiranyl, oxetanyl, imidazolidinyl, isothiazolidinyl, isoxazolidinyl, oxazolidinyl, pyrazolidinyl, pyrrolidinyl, thiazolidinyl, dioxanyl, morpholinyl, thiomorpholinyl, 1, 1-dioxothiomorpholinyl, piperazinyl, homopiperazinyl, piperidinyl, pyranyl, tetrahydropyranyl, homopiperidinyl, oxazinyl, oxazolinyl, pyrrolinyl, thiazolinyl, pyrazolinyl, imidazolinyl, isox
  • Cy 4 represents a 3 to 7 member ring, saturated, partially unsaturated or aromatic, which can be carbocyclic or heterocyclic. If it is heterocyclic, it contains 1 to 4 heteroatoms selected from N, O, S and Se, which can be optionally oxidized, forming CO, SO, SO2, SeO or SeÜ2 groups. Cy 4 binds to the rest of the molecule through any available C or N atom. In addition, Cy 4 it may be optionally substituted as indicated in the definition of a compound of formula I, if substituted, the substituents may be the same or different and may be located at any available position of the ring system.
  • Examples include, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, azetidinyl, aziridinyl, oxiranyl, oxetanyl, imidazolidinyl, isothiazolidinyl, isoxazolidinyl, oxazolidinyl, pyrazolidinyl, pyrrolidinyl, thiazolidinyl, dioxanyl, morpholinyl, thiomorpholinyl, 1, 1-dioxothiomorpholinyl, piperazinyl, homopiperazinyl, piperidinyl, pyranyl, tetrahydropyranyl, homopiperidinyl, oxazinyl, oxazolinyl, pyrrolinyl, thiazolinyl, pyrazolinyl, imidazolinyl, isox
  • fluorine source refers to a chemical compound capable of releasing fluoride ions (F " ).
  • examples include, but are not limited to, tetrabutylammonium fluoride (TBAF), tetraphenyl phosphonium fluoride (TPPF), CsF, RbF, KF, NaF , LiF, BaF 2 , SrF 2 , CaF 2 , and MgF 2 .
  • cyclic groups refer to a ring radical in general terms, for example pyridyl, thienyl or indolyl, all possible binding positions are included.
  • pyridyl includes 2-pyridyl, 3-pyridyl and 4-pyridyl
  • thienyl includes 2-thienyl and 3-thienyl.
  • the invention relates to the process described above, wherein the fluorine source is selected from tetrabutylammonium fluoride (TBAF), tetraphenylphosphonium fluoride (TPPF), CsF, RbF, KF, NaF, LiF, BaF 2 , SrF 2 , CaF 2 , and MgF 2 , and preferably where the fluorine source is selected from tetrabutylammonium fluoride (TBAF) and KF.
  • TBAF tetrabutylammonium fluoride
  • TPPF tetraphenylphosphonium fluoride
  • the invention relates to the process described above, where each Ri independently represents hydrogen, halogen, Ci-C 20 alkyl, -OR 4 , -SR 4 , -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where Ci-C 2 or alkyl is optionally substituted by one or more R5 and Cyi is optionally substituted by one
  • each R 2 independently represents Ci-C 4 or optionally substituted alkyl.
  • each R 2 independently represents Cy 2 optionally substituted by one or more R 7.
  • the invention relates to the process described above, where each R3 independently represents hydrogen, halogen, Ci-C 2 or alkyl, -OR 4 , -SR 4 , -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where Ci-C 2 or alkyl is optionally substituted by one or more R5 and Cyi is optionally substituted by one
  • each R 4 independently represents hydrogen, Ci-C 2 or alkyl or Cy 4 , where Ci-C 2 or alkyl is optionally substituted by one or more R10 and where Cy 4 is optionally substituted by one or more Rn.
  • the invention relates to the process described above, where each R 4 independently represents Ci-C 2 or optionally substituted alkyl.
  • the invention relates to the process described above, where two R 4 groups can be joined by forming with the N atom a saturated 5- to 7-membered heterocycle that may additionally contain a heteroatom selected from N, O and S, and which may be optionally substituted by one or two Rn.
  • the invention relates to the method described above, where each R6 independently represents Rs.
  • each R 7 independently represents optionally substituted Ci-C 40 alkyl
  • each Rs independently represents C1-C6 alkyl optionally substituted by one or more -OH, -OCi-C 4 alkyl and where dC 4 alkyl is optionally substituted by one or more -OH.
  • each Rg independently represents -ORs or Cy3, where Cy3 is optionally substituted by one or more C1-C6 alkyl.
  • each River independently represents -ORs or Cy3, where Cy3 is optionally substituted by one or more C1-C6 alkyl.
  • the invention relates to the method described above, where each Rn independently represents Rs.
  • each Cyi independently represents a 5 or 6 membered aromatic heterocycle containing 1 or 2 heteroatoms selected from N, O and S, and where Cyi can be attached to the rest of the molecule through any available C or N atom.
  • each Cyi independently represents:
  • each Cy2 independently represents phenyl. In another embodiment the invention relates to the process described above, where each Cy2 independently represents a saturated, monocyclic ring of 3 to 7 carbocyclic members.
  • each Cy2 independently represents a saturated, monocyclic 3 to 7 heterocyclic ring, where Cy2 can be attached to the rest of the molecule through any available C or N atom, where Cy2 contains 1 to 3 heteroatoms selected from N, O and S, and where one or more C or S atoms of Cy2 can be optionally oxidized to form CO, SO or SO2 groups.
  • each Cy2 independently represents a saturated, monocyclic 3 to 7 heterocyclic ring, where Cy2 can be attached to the rest of the molecule through any available C or N atom, and where Cy2 contains 1 to 3 heteroatoms selected from N, O and S.
  • each Cy3 independently represents phenyl. In another embodiment the invention relates to the process described above, where each Cy3 independently represents a 5 or 6 membered aromatic heterocycle containing 1 or 2 heteroatoms selected from N, O and S, and where Cy3 can be attached to the rest of the molecule through any available C or N atom.
  • each Cy 4 independently represents a saturated heterocyclic ring, of 3 to 7 members, optionally containing 1 to 3 heteroatoms selected from N, O and S, where Cy 4 is attached to the rest of the molecule through any available C or N atom, and where one or more C or S atoms of Cy 4 can be optionally oxidized forming CO, SO or SO2 groups.
  • each Cy 4 independently represents a saturated heterocyclic ring, of 3 to 7 members, optionally containing 1 to 3 heteroatoms selected from N, O and S, and where Cy 4 is bound to the rest of the molecule through any available C or N atom.
  • each R12 independently represents hydrogen, halogen, -OR, -SR, -SeR 4 , -NR 4 R 4 or -PR 4 R 4 .
  • the invention relates to the process described above, wherein the compound of formula I is selected from a compound of formula the:
  • the invention relates to the process described above, wherein the compound of formula I is selected from a compound of formula Ib:
  • R1 and R3 have the meaning described for a compound of formula I.
  • the invention relates to the process described above, wherein the compound of formula I is selected from a compound of formula le:
  • each R1 independently represents hydrogen, halogen, C1-C20 alkyl, -OR 4 , -SR, -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where C1-C20 alkyl is optionally substituted by one or more R5 and Cyi is optionally substituted by one or more Re; Y
  • each R2 independently represents Ci-C 40 alkyl optionally substituted by
  • each R1 independently represents hydrogen, halogen, C1-C20 alkyl, -OR 4 , -SR 4 , -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where C1-C20 alkyl is optionally substituted by one or plus R5 and Cyi is optionally substituted by one or more Re; Y
  • each R2 independently represents Cy2 optionally substituted by one or more R 7 .
  • the invention relates to the process described above, where:
  • each Ri independently represents hydrogen, halogen, C1-C20 alkyl, -OR 4 , -SR 4 , -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where C1-C20 alkyl is optionally substituted by one or plus R5 and Cyi is optionally substituted by one or more Re; Y
  • each R3 independently represents hydrogen, halogen, C1-C20 alkyl, -OR 4 , -SR 4 , -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where C1-C20 alkyl is optionally substituted by one or plus R5 and Cyi is optionally substituted by one
  • each R1 independently represents hydrogen, halogen, C1-C20 alkyl, -OR, -SR, -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where C1-C20 alkyl is optionally substituted by one or more R5 and Cyi is optionally substituted by one or more Re; Y
  • each R 4 independently represents hydrogen, C1-C20 alkyl or Cy 4 , where C1-C20 alkyl is optionally substituted by one or more R10 and where Cy 4 is optionally substituted by one or more R11.
  • each R1 independently represents hydrogen, halogen, C1-C20 alkyl, -OR, -SR, -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where C1-C20 alkyl is optionally substituted by one or more R5 and Cyi is optionally substituted by one or more Re; Y
  • each R 4 independently represents C1-C20 alkyl optionally substituted by
  • each R1 independently represents hydrogen, halogen, C1-C20 alkyl, -OR 4 , -SR 4 , -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where C1-C20 alkyl is optionally substituted by one or plus R5 and Cyi is optionally substituted by one or more Re;
  • Y two R 4 groups can be joined by forming with the N atom a saturated 5- to 7-membered heterocycle that may additionally contain a heteroatom selected from N, O and S, and which may be optionally substituted by one or two Rn.
  • the invention relates to the process described above, where:
  • each Ri independently represents hydrogen, halogen, C1-C20 alkyl, -OR 4 , -SR 4 , -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where C1-C20 alkyl is optionally substituted by one or plus R5 and Cyi is optionally substituted by one or more Re; Y
  • each R6 independently represents Rs.
  • each R1 independently represents hydrogen, halogen, C1-C20 alkyl, -OR 4 , -SR 4 , -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where C1-C20 alkyl is optionally substituted by one or plus R5 and Cyi is optionally substituted by one or more Re; Y
  • Each Cyi independently represents phenyl.
  • each R1 independently represents hydrogen, halogen, C1-C20 alkyl, -OR 4 , -SR 4 , -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where C1-C20 alkyl is optionally substituted by one or plus R5 and Cyi is optionally substituted by one or more Re; Y
  • each Cyi independently represents a 5 or 6-membered aromatic heterocycle containing 1 or 2 heteroatoms selected from N, O and S, and where Cyi can be attached to the rest of the molecule through any available C or N atom.
  • each R1 independently represents hydrogen, halogen, C1-C20 alkyl, -OR 4 , -SR 4 , -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where C1-C20 alkyl is optionally substituted by one or plus R5 and Cyi is optionally substituted by one or more Re; Y
  • Each Cyi independently represents:
  • each Ri independently represents hydrogen, halogen, C1-C20 alkyl, -OR 4 , -SR 4 , -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where C1-C20 alkyl is optionally substituted by one or plus R5 and Cyi is optionally substituted by one or more Re;
  • each R2 independently represents Ci-C 40 alkyl optionally substituted by one or more R5, preferably each R2 independently represents Cy2 optionally substituted by one or more R 7 ;
  • each R3 independently represents hydrogen, halogen, C1-C20 alkyl, -OR, -SR, -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where C1-C20 alkyl is optionally substituted by one or more R5 and Cyi is optionally substituted by one
  • each R1 independently represents hydrogen, halogen, C1-C20 alkyl, -OR 4 , -SR 4 , -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where C1-C20 alkyl is optionally substituted by one or plus R5 and Cyi is optionally substituted by one or more Re;
  • each R2 independently represents Ci-C 4 or alkyl optionally substituted by one or more R5, preferably each R2 independently represents Cy2 optionally substituted by one or more R 7 ;
  • each R3 independently represents hydrogen, halogen, C1-C20 alkyl, -OR 4 , -SR 4 , -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where C1-C20 alkyl is optionally substituted by one or plus R5 and Cyi is optionally substituted by one or more Re; Y
  • each R 4 independently represents hydrogen, C1-C20 alkyl or Cy 4 , where C1-C20 alkyl is optionally substituted by one or more R10 and where Cy 4 is optionally substituted by one or more Rn.
  • the invention relates to the process described above, where:
  • each Ri independently represents hydrogen, halogen, C1-C20 alkyl, -OR 4 , -SR 4 , -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where C1-C20 alkyl is optionally substituted by one or plus R5 and Cyi is optionally substituted by one or more Re;
  • each R2 independently represents Ci-C 40 alkyl optionally substituted by one or more R5, preferably each R2 independently represents Cy2 optionally substituted by one or more R 7 ;
  • each R3 independently represents hydrogen, halogen, C1-C20 alkyl, -OR 4 , -SR 4 , -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where C1-C20 alkyl is optionally substituted by one or plus R5 and Cyi is optionally substituted by one or more Re; Y
  • each R 4 independently represents C1-C20 alkyl optionally substituted by
  • each R1 independently represents hydrogen, halogen, C1-C20 alkyl, -OR 4 , -SR 4 , -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where C1-C20 alkyl is optionally substituted by one or plus R5 and Cyi is optionally substituted by one or more Re;
  • each R2 independently represents Ci-C 4 or alkyl optionally substituted by one or more R5, preferably each R2 independently represents Cy2 optionally substituted by one or more R 7 ;
  • each R3 independently represents hydrogen, halogen, C1-C20 alkyl, -OR 4 , -SR 4 , -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where C1-C20 alkyl is optionally substituted by one or plus R5 and Cyi is optionally substituted by one or more Re;
  • each R 4 independently represents C1-C20 alkyl optionally substituted by
  • R 4 groups can be joined by forming with the N atom a saturated 5- to 7-membered heterocycle that may additionally contain a heteroatom selected from N, O and S, and which may be optionally substituted by one or two Rn.
  • the invention relates to the process described above, where:
  • each Ri independently represents hydrogen, halogen, C1-C20 alkyl, -OR 4 , -SR 4 , -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where C1-C20 alkyl is optionally substituted by one or plus R5 and Cyi is optionally substituted by one or more Re;
  • each R2 independently represents Ci-C 40 alkyl optionally substituted by one or more R5, preferably each R2 independently represents Cy2 optionally substituted by one or more R 7 ;
  • each R3 independently represents hydrogen, halogen, C1-C20 alkyl, -OR 4 , -SR 4 , -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where C1-C20 alkyl is optionally substituted by one or plus R5 and Cyi is optionally substituted by one or more Re;
  • each R 4 independently represents hydrogen, C1-C20 alkyl or Cy 4 , where C1-C20 alkyl is optionally substituted by one or more R10 and where Cy 4 is optionally substituted by one or more Rn;
  • each R6 independently represents Rs.
  • each R1 independently represents hydrogen, halogen, C1-C20 alkyl, -OR 4 , -SR 4 , -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where C1-C20 alkyl is optionally substituted by one or plus R5 and Cyi is optionally substituted by one or more Re;
  • each R2 independently represents Ci-C 4 or alkyl optionally substituted by one or more R5, preferably each R2 independently represents Cy2 optionally substituted by one or more R 7 ;
  • each R3 independently represents hydrogen, halogen, C1-C20 alkyl, -OR 4 , -SR 4 , -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where C1-C20 alkyl is optionally substituted by one or plus R5 and Cyi is optionally substituted by one or more Re;
  • each R 4 independently represents C1-C20 alkyl optionally substituted by
  • each R6 independently represents Rs.
  • the invention relates to the process described above, where:
  • each Ri independently represents hydrogen, halogen, C1-C20 alkyl, -OR 4 , -SR 4 , -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where C1-C20 alkyl is optionally substituted by one or plus R5 and Cyi is optionally substituted by one or more Re;
  • each R2 independently represents Ci-C 40 alkyl optionally substituted by one or more R5, preferably each R2 independently represents Cy2 optionally substituted by one or more R 7 ;
  • each R3 independently represents hydrogen, halogen, C1-C20 alkyl, -OR 4 , -SR 4 , -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where C1-C20 alkyl is optionally substituted by one or plus R5 and Cyi is optionally substituted by one or more Re;
  • each R 4 independently represents C1-C20 alkyl optionally substituted by
  • R 4 groups can be joined by forming with the N atom a saturated 5- to 7-membered heterocycle that may additionally contain a heteroatom selected from N, O and S, and which may be optionally substituted by one or two Rn; and each R6 independently represents Rs.
  • each R1 independently represents hydrogen, halogen, C1-C20 alkyl, -OR 4 , -SR 4 , -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where C1-C20 alkyl is optionally substituted by one or plus R5 and Cyi is optionally substituted by one or more Re;
  • each R2 independently represents Ci-C 4 or alkyl optionally substituted by one or more R5, preferably each R2 independently represents Cy2 optionally substituted by one or more R 7 ;
  • each R3 independently represents hydrogen, halogen, C1-C20 alkyl, -OR 4 , -SR 4 , -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where C1-C20 alkyl is optionally substituted by one or plus R5 and Cyi is optionally substituted by one or more Re;
  • each R 4 independently represents hydrogen, C1-C20 alkyl or Cy 4 , where C1-C20 alkyl is optionally substituted by one or more R10 and where Cy 4 is optionally substituted by one or more Rn; each R6 independently represents Rs; Y
  • Each Cyi independently represents phenyl.
  • each Ri independently represents hydrogen, halogen, C1-C20 alkyl, -OR 4 , -SR 4 , -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where C1-C20 alkyl is optionally substituted by one or plus R5 and Cyi is optionally substituted by one or more Re;
  • each R2 independently represents Ci-C 40 alkyl optionally substituted by one or more R5, preferably each R2 independently represents Cy2 optionally substituted by one or more R 7 ;
  • each R3 independently represents hydrogen, halogen, C1-C20 alkyl, -OR 4 , -SR 4 , -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where C1-C20 alkyl is optionally substituted by one or plus R5 and Cyi is optionally substituted by one or more Re;
  • each R 4 independently represents C1-C20 alkyl optionally substituted by
  • each R6 independently represents Rs; Y
  • Each Cyi independently represents phenyl.
  • each R1 independently represents hydrogen, halogen, C1-C20 alkyl, -OR, -SR, -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where C1-C20 alkyl is optionally substituted by one or more R5 and Cyi is optionally substituted by one or more Re;
  • each R2 independently represents Ci-C 4 or alkyl optionally substituted by one or more R5, preferably each R2 independently represents Cy2 optionally substituted by one or more R 7 ;
  • each R3 independently represents hydrogen, halogen, C1-C20 alkyl, -OR 4 , -SR 4 , -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where C1-C20 alkyl is optionally substituted by one or plus R5 and Cyi is optionally substituted by one or more Re;
  • each R 4 independently represents C1-C20 alkyl optionally substituted by one or more R10; two R 4 groups can be joined by forming with the N atom a saturated 5- to 7-membered heterocycle that may additionally contain a heteroatom selected from N, O and S, and which may be optionally substituted by one or two Rn;
  • each R6 independently represents Rs; Y
  • Each Cyi independently represents phenyl.
  • each Ri independently represents hydrogen, halogen, C1-C20 alkyl, -OR 4 , -SR, -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where C1-C20 alkyl is optionally substituted by one or more R5 and Cyi is optionally substituted by one or more Re;
  • each R2 independently represents Ci-C 40 alkyl optionally substituted by one or more R5, preferably each R2 independently represents Cy2 optionally substituted by one or more R 7 ;
  • each R3 independently represents hydrogen, halogen, C1-C20 alkyl, -OR 4 , -SR 4 , -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where C1-C20 alkyl is optionally substituted by one or plus R5 and Cyi is optionally substituted by one or more Re;
  • each R 4 independently represents hydrogen, C1-C20 alkyl or Cy 4 , where C1-C20 alkyl is optionally substituted by one or more R10 and where Cy 4 is optionally substituted by one or more Rn;
  • each R6 independently represents Rs; Y
  • each Cyi independently represents a 5 or 6-membered aromatic heterocycle containing 1 or 2 heteroatoms selected from N, O and S, and where Cyi can be attached to the rest of the molecule through any available C or N atom.
  • each R1 independently represents hydrogen, halogen, C1-C20 alkyl, -OR 4 , -SR 4 , -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where C1-C20 alkyl is optionally substituted by one or plus R5 and Cyi is optionally substituted by one or more Re;
  • each R2 independently represents Ci-C 4 or alkyl optionally substituted by one or more R5, preferably each R2 independently represents Cy2 optionally substituted by one or more R 7 ;
  • each R3 independently represents hydrogen, halogen, C1-C20 alkyl, -OR 4 , -SR 4 , -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where C1-C20 alkyl is optionally substituted by one or plus R5 and Cyi is optionally substituted by one or more Re;
  • each R 4 independently represents C1-C20 alkyl optionally substituted by
  • each R6 independently represents Rs; Y
  • each Cyi independently represents a 5 or 6-membered aromatic heterocycle containing 1 or 2 heteroatoms selected from N, O and S, and where Cyi can be attached to the rest of the molecule through any available C or N atom.
  • each R1 independently represents hydrogen, halogen, C1-C20 alkyl, -OR, -SR, -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where C1-C20 alkyl is optionally substituted by one or more R5 and Cyi is optionally substituted by one or more Re;
  • each R2 independently represents Ci-C 40 alkyl optionally substituted by one or more R5, preferably each R2 independently represents Cy2 optionally substituted by one or more R 7 ;
  • each R3 independently represents hydrogen, halogen, C1-C20 alkyl, -OR 4 , -SR 4 , -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where C1-C20 alkyl is optionally substituted by one or plus R5 and Cyi is optionally substituted by one or more Re;
  • each R 4 independently represents C1-C20 alkyl optionally substituted by
  • R 4 groups can be joined by forming with the N atom a saturated 5- to 7-membered heterocycle that may additionally contain a heteroatom selected from N, O and S, and which may be optionally substituted by one or two Rn;
  • each R6 independently represents Rs; Y
  • each Cyi independently represents a 5 or 6-membered aromatic heterocycle containing 1 or 2 heteroatoms selected from N, O and S, and where Cyi can be attached to the rest of the molecule through any available C or N atom.
  • the invention relates to the process described above, wherein the compound of formula I is selected from a compound of formula the:
  • each Ri independently represents hydrogen, halogen, C1-C20 alkyl, -OR 4 , -SR 4 , -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where C1-C20 alkyl is optionally substituted by one or plus R5 and Cyi is optionally substituted by one or more Re; Y
  • each R3 independently represents hydrogen, halogen, C1-C20 alkyl, -OR, -SR, -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where C1-C20 alkyl is optionally substituted by one or more R5 and Cyi is optionally substituted by one
  • the invention relates to the process described above, wherein the compound of formula I is selected from a compound of formula Ib:
  • each Ri independently represents hydrogen, halogen, C1-C20 alkyl, -OR 4 , -SR 4 , -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where C1-C20 alkyl is optionally substituted by one or plus R5 and Cyi is optionally substituted by one or more Re; Y
  • each R3 independently represents hydrogen, halogen, C1-C20 alkyl, -OR 4 , -SR 4 , -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where C1-C20 alkyl is optionally substituted by one or plus R5 and Cyi is optionally substituted by one
  • the invention relates to the process described above, wherein the compound of formula I is selected from a compound of formula le:
  • each Ri independently represents hydrogen, halogen, C1-C20 alkyl, -OR 4 , -SR 4 , -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where C1-C20 alkyl is optionally substituted by one or plus R5 and Cyi is optionally substituted by one or more Re; Y
  • each R3 independently represents hydrogen, halogen, C1-C20 alkyl, -OR 4 , -SR 4 , -SeR 4 , -NR 4 R 4 , -PR 4 R 4 or Cyi, where C1-C20 alkyl is optionally substituted by one or plus R5 and Cyi is optionally substituted by one
  • the invention relates to the process described above, wherein the compound of formula I is selected from the list of compounds described in examples 1 to 56.
  • the compounds of the present invention contain one or more basic nitrogen and could therefore form salts with acids, both organic and inorganic.
  • salts include: salts with inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, nitric acid, perchloric acid, sulfuric acid or phosphoric acid; and salts with organic acids, such as methanesulfonic acid, trifluoromethanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, fumaric acid, oxalic acid, acetic acid, maleic acid, ascorbic acid, citric acid, lactic acid, tartaric acid, malonic acid , glycolic acid, succinic acid and propionic acid, among others.
  • Some compounds of the present The invention may contain one or more acidic protons and therefore may also form salts with bases.
  • salts include: salts with inorganic cations such as sodium, potassium, calcium, magnesium, lithium, aluminum, zinc, etc .; and salts formed with pharmaceutically acceptable amines such as ammonia, alkylamines, hydroxyalkylamines, lysine, arginine, / V-methylglucamine, procaine and the like.
  • salts of a compound of formula I can be obtained during the final isolation and purification of the compounds of the invention or they can be prepared by treating a compound of formula I with a sufficient amount of the desired acid or base to give the salt of a conventional form.
  • the salts of the compounds of formula I can in turn be transformed into other salts of compounds of formula I by ion exchange by means of an ion exchange resin.
  • the compounds of the present invention can form complexes with solvents in which they are reacted or from which they are precipitated or crystallized. These complexes are known as solvates.
  • solvate refers to a complex of variable stoichiometry formed by a solute (a compound of formula I or a salt thereof) and a solvent.
  • solvents include pharmaceutically acceptable solvents such as water, ethanol and the like.
  • a complex with water is known as hydrate.
  • Solvates of the compounds of the invention (or their salts), including hydrates, are included within the scope of the invention.
  • the compounds of formula I can exist in different physical forms, that is to say in amorphous form and crystalline forms.
  • the compounds of the present invention may have the ability to crystallize in more than one way, a characteristic known as polymorphism.
  • Polymorphs can be distinguished by several physical properties well known to those skilled in the art such as their x-ray diffractograms, melting points or solubility. All physical forms of the compounds of formula I, including all their polymorphic forms (“polymorphs”), are included within the scope of the present invention.
  • Some compounds of the present invention could exist in the form of several diastereoisomers and / or several optical isomers.
  • the diastereoisomers can be separated by conventional techniques such as chromatography or fractional crystallization.
  • Optical isomers can be resolved by using conventional optical resolution techniques, to give optically pure isomers. This resolution can be performed on synthesis intermediates that are chiral or on products of formula I.
  • Optically pure isomers can also be obtained individually using enantiospecific synthesis.
  • the present invention covers both the individual isomers and their mixtures (for example racemic mixtures or mixtures of diastereoisomers), whether they are obtained by synthesis or by physically mixing them.
  • the method of the present invention allows substituents (R3) to be introduced in the bay positions of a POI at a stage in which a source of fluoride and an alcohol, thiol, selenol, amine or phosphine is involved.
  • some compounds of the present invention can be obtained from other compounds of formula I by transformation reactions of suitable functional groups, in one or more stages, using reactions widely known in organic chemistry under the usual experimental conditions.
  • interconversions can be carried out independently on Ri, R2 and R3 and include: the replacement of a primary or secondary amine by treatment with an alkylating agent under standard conditions, or by reductive amination, that is, by treatment with an aldehyde or ketone in the presence of a reducing agent such as sodium cyanoborohydride or sodium triacetoxyborohydride; the transformation of an amine into a sulfonamide by reaction with a sulfonyl halide, such as sulfonyl chloride, optionally in the presence of catalytic amounts of a base such as 4-dimethylaminopyridine, in a suitable solvent such as dioxane, chloroform, dichloromethane or pyridine , optionally in the presence of a base such as triethyl
  • the compounds of formula II and III may be commercial or prepared by methods widely described in the literature from commercial products or by interconversion reactions of functional groups described above for a compound of formula I, and may be conveniently protected.
  • Example 1 / V, / V'-di- (1 '-hexylheptyl) -1-methoxyperylene-3,4: 9,10-tetracarboxyidiimide (1)
  • compound 6 can be obtained following method 2. Yield: 50% (72% isomer 1.6; 28% isomer 1.7 approx.).
  • Example 8 / V, / V'-di- (1 '-hexylheptyl) -1, 6 (7) -di-s-butoxyperylene-3,4: 9,10-tetracarboxyidiimide (8)
  • Example 11 / V, / V'-di- (1 '-hexylheptyl) -1-decanoxyperylene-3,4: 9,10-tetracarboxyidiimide (11)
  • Example 12 / V, / V'-di- (1 '-hexylheptyl) -1, 6 (7) -didecanoxyperylene-3,4: 9,10-tetracarboxyidiimide (12)
  • Example 13 / V, / V'-di- (1 '-hexylheptyl) -1-phenylmethoxyperylene-3,4: 9,10-tetracarboxyidiimide (13)
  • Example 14 / V, / V'-di- (1 '-hexylheptyl) -1-phenethoxyperylene-3,4: 9,10-tetracarboxyidiimide (14)
  • Example 16 / V, / V'-di- (1 '-hexylheptyl) -1 -butoxy-6 (7) -decanoxyperylene- 3,4: 9,10-tetracarboxyidiimide (16)
  • Compound 19 can be prepared following method 1. Yield: 26%.
  • Example 20 W, W'-di- (r-hexylheptyl) -1.6 (7) -di- (8'-hydroxyoctyloxy) perylene-3,4: 9,10-tetracarboxyidiimid
  • Example 21b V, V'-di- (1'-hexylheptyl) -2,5-dibromo-8,11-dibutoxyperylene-3,4: 9,10-tetracarboxyidiimide (mixture of isomers) (21b)
  • Example 24 W, W'-bis (1'-hexylheptyl) -1,6,7-tri (piperidin-V-yl) perylene-3,4: 9,10-tetracarboxyidiimide (24)
  • Example 25 W, W'-bis (1'-hexylheptyl) -1,12-di (piperidin-V-yl) perylene-3,4: 9,10-tetracarboxidiimide (25)
  • Example 26 W, W'-bis (1'-hexylheptyl) -1, 6 (7) -di (piperidin-V-yl) perylene-3,4: 9,10-tetracarboxyidiimide (26)
  • Example 27 W, W'-bis (1'-hexylheptyl) -1.6 (7) -di (morpholin-V-yl) perylene-3,4: 9,10-tetracarboxyidiimide (27)
  • Compound 27 is obtained following method 3. Amine: Morpholine. Eluent used in column chromatography: dichloromethane to obtain 27 followed by dichloromethane: ethyl acetate (9: 1) to obtain 28. Yield: 22% (50% isomer 1.6; 50% isomer 1,7aprox.).
  • Example 28 V, V'-bis (1'-hexylheptyl) -1,6,7-tri (morpholin-V-yl) perylene-3,4: 9,10-tetracarboxyidiimide (28)
  • Example 29 / V, and V'-bis (1'-hexylheptyl) -1 - (4-methylpiperazin-1-yl) perylene-3,4: 9,10-tetracarboxyidiimide (29)
  • Example 30 W, W'-bis (1'-hexylheptyl) -1, 6-di (4-methylpiperazin-1-yl) perylene-3,4: 9,10-tetracarboxyidiimide (30)
  • Example 31 W, W'-bis (1'-hexylheptyl) -1, 7-di (4-methylpiperazin-1-yl) perylene-3,4: 9,10-tetracarboxyidiimide
  • Example 32 / V, / V'-di- (1 '-hexylheptyl) -1 - (phenylamino) -3.4: 9,10-tetracarboxyidiimide (32)
  • Example 35 W, W'-bis (1'-cyclohexyl) -1,6,7-tri (piperidin-V-yl) perylene-3,4: 9,10-tetracarboxyidiimide (35)
  • Example 37 V, V'-bis (1'-cyclohexyl) -1,12-di (piperidin-V-yl) perylene-3,4: 9,10-tetracarboxyidiimide (37)
  • Example 38 / V, / V'-di- (1 '-hexylheptyl) -1, 6 (7) -dihexylthioperylene-3,4: 9,10-tetracarboxyidiimide (
  • Example 40 / V, / V'-di- (1 '-hexylheptyl) -1-s-butylthioperylene-3,4: 9,10-tetracarboxyidiimide (40)
  • Compound 40 is obtained following method 1. Yield: 33% (50% with method 2 after 3 days).
  • 1 H NMR 300 MHz, CDCb) ⁇ 0.82 (m, 12H), 1.04 (t, 3H), 1.27 (broad s, 32H), 1.61 (m, 3H), 1.75 (m, 1H), 1.86 (m, 4H), 2.25 (m, 4H), 3.66 (m, 2H), 5.20 (m, 2H), 8.65-8.82 ( m, 6H), 8.99 (d, 1H).
  • Example 41 / V, / V'-di- (1 '-hexylheptyl) -1, 6 (7) -di-s-butylthioperylene-3,4: 9,10-tetracarboxyidiimide (41)
  • Example 42 V, V'-di- (1'-hexylheptyl) -1.6 (7) -di- ⁇ -butylthioperylene-3,4: 9,10-tetracarboxyidiimide (42)
  • Example 44 / V, / V'-di- (1 '-hexylheptyl) -1, 6 (7) -dioctylthioperylene-3,4: 9,10-tetracarboxy diimide (44)
  • Example 46 W, W'-di- (1'-hexylheptyl) -1-decylthioperylene-3,4: 9,10-tetracarboxyidiimide (46)
  • Example 47 / V, / V'-di- (1 '-hexylheptyl) -1, 6 (7) -didecylthioperylene-3,4: 9,10-tetracarboxy diimide (47)
  • Example 48 / V, / V'-di- (1'-hexylheptyl) -1, 6 (7) -dibenzylthioperylene-3,4: 9,10-tetracarboxyidiimide (48)
  • Compound 48 is obtained by method 2. Yield: 20% (The proportion of each isomer cannot be determined).
  • 1 H NMR 300 MHz, CD 2 CI 2 ) ⁇ 0.83 (t, 12H), 1.26 (broad s, 32H), 1.85 (m, 4H), 2.27 (m, 4H), 4.40 (s, 4H), 5.17 (m, 2H), 7.16 (m, 6H), 7.26 (m, 4H), 8.58 (broad s, 2H), 8.85 ( d, 4H).
  • Example 50 ⁇ W'-bis-idi ⁇ SS'- ⁇ -butylpheni-l. E j-dihexylthioperylene-S ⁇ i ⁇ l O-tetracarboxyidiimide (50)
  • Example 51 V, V'-bis- (di-2 ', 5'-i-butylphenyl) -1-hexylthioperylene-3,4: 9,10-tetracarboxyidiimide (51)
  • Example 52 / V, / V'-di- (1 '-hexylheptyl) -2,5,8,11 -tetrahexylthioperylene-3,4: 9,10-tetracarboxyidiimide (5
  • Example 53 V, V'-di- (1'-hexylheptyl) -2-bromo-5,8,11-trihexylthioperylene-3,4: 9,10-tetracarboxyidiimide (53)
  • Example 54 W, W'-di- (1'-hexylheptyl) -2,5-dibromo-8,11-dihexylthioperylene-3,4: 9,10-tetracarboxyidiimide (54)
  • Example 55 / V, / V'-di- (1 '-hexylheptyl) -1 -butyloxy-6 (7) -hexylthioperylene-3,4: 9,10- tetracarboxyidiimide (55)
  • Example 56 V, V'-di- (1'-hexylheptyl) -2-butoxy-5,8,11 -trihexylthioperylene-3,4: 9,10-tetracarboxyidiimide (56)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

Procedimiento de obtención de derivados de PDI La presente invención se refiere a un procedimiento de preparación de derivados de perilenodiimida de fórmula I donde el significado para R1, R2 y R3 es el indicado en la descripción. Estos compuestos son útiles para la preparación de colorantes, pigmentos, pinturas, agentes fluorescentes, dispositivos ópticos, dispositivos electrónicos, dispositivos electroópticos, diodos emisores de luz y células fotovoltaicas orgánicas o híbridas.

Description

Procedimiento de obtención de derivados de PDI
DESCRIPCIÓN La presente invención se refiere a un procedimiento de preparación de derivados de perilenodiimida de fórmula I, caracterizados por estar sustituidos en las posiciones 1 , 6, 7 y/o 12 (posiciones bahía).
ESTADO DE LA TÉCNICA
Las diimidas del ácido perileno-3,4,9, 10-tetracarboxílico, también conocidas como perilenodiimidas (PDI) o como perilenobisimidas (PBI), son compuestos muy estables tanto química como térmicamente, y también frente a radiaciones electromagnéticas. Las PDI absorben intensamente en la región ultravioleta-visible del espectro electromagnético, por lo que exhiben coloraciones muy vivas que, dependiendo de los sustituyentes que presenten, puede variar desde el naranja al azul, pasando por el rojo y el verde. Las PDI son altamente fluorescentes, con rendimientos cuánticos de fluorescencia que pueden llegar a alcanzar la unidad. Otras propiedades de las PDI incluyen su alta afinidad electrónica y su gran capacidad para transportar electrones bajo la influencia de un campo eléctrico. Por todas estas características, se usan ampliamente en la industria como colorantes, pigmentos en pinturas y agentes fluorescentes. También se emplean en investigación para el desarrollo de dispositivos ópticos, electrónicos y electroópticos tales como transistores de efecto campo, diodos emisores de luz y dispositivos fotovoltaicos (células solares). Las propiedades ópticas, electrónicas y electroópticas de las PDI pueden modificarse en función de los sustituyentes. Cambios importantes en las propiedades se obtienen al introducir, modificar o variar los sustituyentes sobre las posiciones bahía (1 , 6, 7 y/o 12) de la PDI. La introducción sobre las posiciones bahía (1 , 6, 7 y/o 12) de grupos O- alquilo y O-arilo, unidos a la PDI por el átomo de oxígeno, y azacicloalcanos, unidos a la PDI por el átomo de nitrógeno, ha sido muy empleada.
Las PDI O- o N-sustituidas en las posiciones bahía se obtienen en dos etapas. La primera consiste en halogenar (clorar o bromar) la PDI no sustituida. Se puede tetrahalogenar la PDI (generalmente con cloro) en las posiciones 1 , 6, 7 y 12. Por otro lado, se puede dihalogenar la PDI (generalmente con bromo) obteniendo una mezcla de dos regioisómeros, la 1 ,6-dibromoPDI (isómero minoritario) y la 1 ,7-dibromoPDI (isómero mayoritario), que no se pueden separar por las técnicas habituales.
En una segunda etapa se sustituyen los átomos de halógeno (cloro o bromo), por reacción en medio básico, con alcoholatos, fenolatos o aminas. En el caso de las PDI disustituidas, se sigue manteniendo la mezcla de isómeros 1 ,6 (minoritario) y 1 ,7 (mayoritario), aunque en algunos casos se pueden separar por técnicas cromatográficas. Estas y otras propiedades y características de las PDI se encuentran recogidas en muchas monografías y artículos científicos, tales como (a) F. Würthner. Chem. Commun. 2004, 1564-1579. (b) H. Langhals. Helv. Chim. Acta 2005, 88, 1309-1343. (c) A. Herrmann, K. Mullen. Chem. Lett. 2006, 35, 978-985. (d) F. Würthner. Puré Appl. Chem. 2006, 78, 2341-2349. (e) C. Huang, S. Barlow, S. R. Marder. J. Org. Chem. 2011 , 76, 2386-2407. (f) X. Zhan, A. Facchetti, S. Barlow, T. J. Marks, M. A. Ratner, M. R. Wasielewski, S. R. Marder. Adv. Mater. 2011 , 23, 268-284. (g) C. Li, H. Wonneberger. Adv. Mater. 2012, 24, 613-636.
Por tanto, estos procedimientos han de llevarse a cabo en al menos dos etapas, de las cuales una corresponde a una halogenación (cloración o bromación) de las PDI para funcionalizar las posiciones susceptibles a ser sustituidas. Por otro lado, mediante los procedimientos descritos sólo se pueden obtener las PDI monosustituidas, las disustituidas (como mezcla de regioisómeros, donde predomina el isómero 1 ,7 sobre el 1 ,6) y las tetrasustituidas.
Así pues, sería deseable disponer de un método alternativo, más selectivo y más eficiente, que facilitara la obtención en una sola etapa de los compuestos PDI sustituidos. También sería deseable que el método permitiese preparar, además de PDI monosustituidas, PDI disustituidas en las que el isómero 1 ,6 estuviese en mayor proporción. Finalmente, se necesitaría un método que posibilitara obtener el isómero 1 ,12 y PDI trisustituidas.
DESCRIPCIÓN DE LA INVENCIÓN La presente invención se refiere a un procedimiento de preparación de los compuestos de fórmula I:
Figure imgf000004_0001
donde:
cada Ri y R3 independientemente representan hidrógeno, halógeno, C1-C20 alquilo, C2-C20 alquenilo, C2-C20 alquinilo, -CN, -COR4, -C02R4, -CONR4R4, -OR4, -OCOR4, -OCONR4R4, -OC02R4, -SR 4, -SeR4, -NR4R4, -NR4COR4, -NR4CONR4R4, -NR4C02R4, PR4R4, -SOR , -S02R4, -S02NR4R4 o Cyi , donde C1-C20 alquilo, C2-C20 alquenilo y C2-C20 alquinilo están independientemente opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno o más Re;
cada R2 independientemente representa Ci-C40 alquilo o C 2; donde Ci-C40 alquilo está opcionalmente sustituido por uno o más R5 y donde Cy2 está opcionalmente sustituido por uno o más R7;
cada R4 independientemente representa hidrógeno, C1-C20 alquilo o Cy4, donde C1-C20 alquilo está opcionalmente sustituido por uno o más R10 y donde Cy4 está opcionalmente sustituido por uno o más R11 ;
o dos grupos R4 se pueden unir formando con el átomo de N un heterociclo de 5 a 7 miembros saturado que adicionalmente puede contener un heteroátomo seleccionado de N, O y S, y que puede estar opcionalmente sustituido por uno o dos Rn ;
cada R5 independientemente representa Cy3, -ORs, -SRs o -NRsRs, donde Cy3 está opcionalmente sustituido por uno ó más Re;
cada R7 independientemente representa Ci-C4o alquilo, Cy4, -ORs, -SRs o -NRsRs, donde Ci-C4o alquilo está opcionalmente sustituido por uno o más Rg y donde Cy4 está opcionalmente sustituido por uno o más Re;
cada Rs independientemente representa hidrógeno, C1-C6 alquilo o Cy3, donde C1-C6 alquilo está opcionalmente sustituido por uno o más -OH, -OCi-C4 alquilo, donde d-C4 alquilo está opcionalmente sustituido por uno o más -OH y donde Cy3 está opcionalmente sustituido por uno o más C1-C6 alquilo;
cada R6 y R11 independientemente representan Rs, -ORs, -SRs o -NRsRs;
cada Rg y R10 independientemente representan -ORs, -SRs, -NRsRs o Cy3, donde Cy3 está opcionalmente sustituido por uno o más C1-C6 alquilo;
cada Cyi y Cy3 independientemente representan fenilo o un heterociclo aromático de 5 ó 6 miembros que contiene de 1 a 3 heteroátomos seleccionados de N, O, S y Se, y donde cada Cyi y Cy3 pueden estar independientemente unidos al resto de la molécula a través de cualquier átomo de C o N disponible;
cada Cy2 independientemente representa un anillo saturado, parcialmente insaturado o aromático, monocíclico de 3 a 7 miembros o bicíclico de 6 a 1 1 miembros que puede ser carbocíclico o heterocíclico, donde Cy2 puede estar unido al resto de la molécula a través de cualquier átomo de C o N disponible, donde Cy2 contiene de 1 a 4 heteroátomos seleccionados de N, O, S y Se, y donde uno o más átomos de C, S o Se de Cy2 pueden estar opcionalmente oxidados formando grupos CO, SO, SO2, SeO ó Se02; y
cada Cy4 independientemente representa un anillo carbocíclico o heterocíclico saturado, parcialmente insaturado o aromático de 3 a 7 miembros, que contiene opcionalmente de 1 a 4 heteroátomos seleccionados de N, O, S y Se, donde Cy4 está unido al resto de la molécula a través de cualquier átomo de C o N disponible, y donde uno o más átomos de C, S o Se de Cy4 pueden estar opcionalmente oxidados formando grupos CO, SO, S02, SeO ó Se02,
con la condición de que al menos un R3 independientemente representa -OR , -SR , -SeR4, -NR4R4 o -PR4R4,
que comprende hacer reaccionar un compuesto de fórmula II con un compuesto de fórmula III en presencia de una fuente de flúor:
Figure imgf000006_0001
donde:
cada Ri y R2 tienen independientemente el significado descrito para un compuesto de fórmula I;
cada R12 independientemente representa hidrógeno, halógeno, - CN, -COR4, -CO2R4, -CONR4R4, -OR4, -OCOR4, -OCONR4R4, -OCO2R4, -SR4, -SeR4, -
NR4R4, -NR4COR4, -NR4CONR4R4, -NR4CO2R4, -PR4R4, -SOR4, -SO2R4 o -SO2NR4R4;
R13 representa -OR4, -SR4, -SeR4, -NR4R4 o -PR4R4; y
cada R4 tiene independientemente el significado descrito para un compuesto de fórmula I,
con la condición de que al menos un R12 independientemente representa hidrógeno o halógeno.
Otro aspecto de la presente invención se refiere a un compuesto seleccionado de:
Figure imgf000007_0001
Figure imgf000008_0001
para la preparación de colorantes, pigmentos, pinturas, agentes fluorescentes, dispositivos ópticos, dispositivos electrónicos, dispositivos electroópticos, diodos emisores de luz y células fotovoltaicas orgánicas o híbridas.
A lo largo de la presente invención "C1-C40 alquilo", "C1-C20 alquilo", "C1-C6 alquilo" y "d- C4 alquilo", como grupo o parte de un grupo, independientemente se refieren a un grupo alquilo de cadena lineal o ramificada que contienen de 1 a 40, de 1 a 20, de 1 a 6 y de 1 a 4 átomos de C respectivamente. "C1-C4 alquilo" incluye los grupos metilo, etilo, propilo, isopropilo, butilo, isobutilo, sec-butilo y te/f-butilo; "C1-C6 alquilo" incluye los grupos de "C1-C4 alquilo" y, entre otros, pentilo iso-pentilo, sec-pentilo, neo-pentilo, 1 ,2- dimetilpropilo, hexilo, iso-hexilo y sec-hexilo; "C1-C20 alquilo" incluye los grupos de "d- C6 alquilo" y, entre otros, heptilo, iso-heptilo, octilo, iso-octilo, 2-etilhexilo, decilo, nonilo y dodecilo, 2-propilheptilo, 2-butilnonilo y 3-butilnonilo; "C1-C40 alquilo" incluye los grupos "C1-C20 alquilo" y, entre otros, tridecilo y tetradecilo.
Un grupo "C2-C20 alquenilo" significa una cadena alquílica lineal o ramificada que contiene de 2 a 20 átomos de C, y que además contiene uno o más dobles enlaces. Ejemplos incluyen, entre otros, los grupos etenilo, 1-propenilo, 2-propenilo, isopropenilo, 1-butenilo, 2-butenilo, 3-butenilo, 1 ,3-butadienilo, 3-pentenilo, 5-pentenilo, 2-hexenilo, 2,4-hexadienilo y 2-propil-2-hexenilo.
Un grupo "C2-C20 alquinilo" significa una cadena alquílica lineal o ramificada que contiene de 2 a 20 átomos de C, y que además contiene uno o más triples enlaces. Ejemplos incluyen los grupos etinilo, 1-propinilo, 2-propinilo, 1-butinilo, 2-butinilo, 3- butinilo y 1 ,3-butadiinilo.
Cyi y C3 se refieren de forma independiente a un fenilo o a un heteroarilo de 5 ó 6 miembros que contiene de 1 a 3 heteroátomos seleccionados de N, O, S y Se. Cyi y C3 se unen al resto de la molécula a través de cualquier átomo de C o N del anillo disponible. Además, Cyi y C3 pueden estar opcionalmente sustituidos tal y como se ha indicado en la definición de la fórmula I, los sustituyentes pueden ser iguales o distintos y pueden estar situados en cualquier posición disponible del sistema de anillos. Ejemplos incluyen, entre otros, fenilo, tienilo, furilo, pirrolilo, tiazolilo, isotiazolilo, oxazolilo, isoxazolilo, imidazolilo, pirazolilo, 1 ,2,3-triazolilo, 1 ,2,4-triazolilo, 1 ,3,4- oxadiazolilo, 1 ,3,4-tiadiazolilo, 1 ,2,4-oxadiazolilo, 1 ,2,4-tiadiazolilo, piridilo, pirazinilo, pirimidinilo y piridazinilo.
Cy2 se refiere a un anillo monocíclico de de 3 a 7 miembros o bicíclico de 6 a 1 1 miembros que puede ser carbocíclico o heterocíclico. Cuando es heterocíclico puede contener de 1 a 4 heteroátomos seleccionados de N, O, S y Se. Los anillos bicíclicos pueden estar formados por dos anillos fusionados a través de dos átomos adyacentes de C o N, o a través de dos átomos no adyacentes de C o N formando un anillo con puente, o bien pueden estar formados por dos anillos unidos a través de un sólo átomo de C formando un anillo de tipo espirano. El grupo Cy2 puede ser saturado, parcialmente insaturado o aromático. Cy2 puede estar unido al resto de la molécula a través de cualquier átomo de C ó N disponible. En Cy2 uno o más átomos de C, S o Se de Cy2 pueden estar opcionalmente oxidados formando grupos CO, SO, SO2, SeO ó SeÜ2. Además, Cy2 puede estar opcionalmente sustituido como se ha indicado en la definición de un compuesto de fórmula I, si está sustituido, los sustituyentes pueden ser iguales o distintos y pueden estar situados en cualquier posición disponible del sistema de anillos. Ejemplos incluyen, entre otros, ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo, cicloheptilo, azetidinilo, aziridinilo, oxiranilo, oxetanilo, imidazolidinilo, isotiazolidinilo, isoxazolidinilo, oxazolidinilo, pirazolidinilo, pirrolidinilo, tiazolidinilo, dioxanilo, morfolinilo, tiomorfolinilo, 1 , 1-dioxotiomorfolinilo, piperazinilo, homopiperazinilo, piperidinilo, piranilo, tetrahidropiranilo, homopiperidinilo, oxazinilo, oxazolinilo, pirrolinilo, tiazolinilo, pirazolinilo, imidazolinilo, isoxazolinilo, isotiazolinilo, 2-oxo-pirrolidinilo, 2-oxo- piperidinilo, 4-oxo-piperidinilo, 2-oxo-piperazinilo, 2-oxo-1 ,2-dihidropiridilo, 2-oxo-1 ,2- dihidropirazinilo, 2-oxo-1 ,2-dihidropirimidinilo, 3-oxo-2,3-dihidropiridazilo, fenilo, naftilo, tienilo, furilo, pirrolilo, tiazolilo, isotiazolilo, oxazolilo, isoxazolilo, imidazolilo, pirazolilo, 1 ,2,3-triazolilo, 1 ,2,4-triazolilo, tetrazolilo, 1 ,3,4-oxadiazolilo, 1 ,3,4-tiadiazolilo, 1 ,2,4- oxadiazolilo, 1 ,2,4-tiadiazolilo, piridilo, pirazinilo, pirimidinilo, piridazinilo, benzimidazolilo, benzooxazolilo, benzofuranilo, isobenzofuranilo, indolilo, isoindolilo, benzotiofenilo, benzotiazolilo, quinolinilo, isoquinolinilo, ftalazinilo, quinazolinilo, quinoxalinilo, cinolinilo, naftiridinilo, indazolilo, imidazopiridinilo, pirrolopiridinilo, tienopiridinilo, imidazopirimidinilo, imidazopirazinilo, imidazopiridazinilo, pirazolopirazinilo, pirazolopiridinilo, pirazolopirimidinilo, benzo[1 ,3]dioxolilo, ftalimidilo, 1-0X0-1 , 3-dihidroisobenzofuranilo, 1 ,3-dioxo-1 ,3-dihidroisobenzofuranilo, 2-oxo-2,3- dihidro-1 /-/-indolilo, 1-oxo-2,3-dihidro-1 /-/-isoindolilo, perhidroquinolinilo, 1-oxo- perhidroisoquinolinilo, 1-oxo-1 ,2-dihidroisoquinolinilo, 4-oxo-3,4-dihidroquinazolinilo, 2- aza-biciclo[2.2.1 ]heptanilo, 5-aza-biciclo[2.1.1 ]hexanilo, 2/-/-espiro[benzofuran-3,4'- piperidinilo], 3/-/-espiro[isobenzofuran-1 ,4'-piperidinilo], 1-oxo-2,8- diazaespiro[4.5]decanilo y 1-oxo-2,7-diazaespiro[4.5]decanilo.
En la definición anterior de Cy2, cuando los ejemplos especificados se refieren a un anillo bicíclico en términos generales, se incluyen todas las disposiciones posibles de los átomos.
Cy4 representa un anillo de 3 a 7 miembros, saturado, parcialmente insaturado o aromático, que puede ser carbocíclico o heterocíclico. En caso de ser heterocíclico contiene de 1 a 4 heteroátomos seleccionados de N, O, S y Se que pueden estar opcionalmente oxidados formando grupos CO, SO, SO2, SeO ó SeÜ2. Cy4 se une al resto de la molécula a través de cualquier átomo de C o N disponible. Además, Cy4 puede estar opcionalmente sustituido como se ha indicado en la definición de un compuesto de fórmula I, si está sustituido, los sustituyentes pueden ser iguales o distintos y pueden estar situados en cualquier posición disponible del sistema de anillos. Ejemplos incluyen, entre otros, ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo, cicloheptilo, azetidinilo, aziridinilo, oxiranilo, oxetanilo, imidazolidinilo, isotiazolidinilo, isoxazolidinilo, oxazolidinilo, pirazolidinilo, pirrolidinilo, tiazolidinilo, dioxanilo, morfolinilo, tiomorfolinilo, 1 , 1-dioxotiomorfolinilo, piperazinilo, homopiperazinilo, piperidinilo, piranilo, tetrahidropiranilo, homopiperidinilo, oxazinilo, oxazolinilo, pirrolinilo, tiazolinilo, pirazolinilo, imidazolinilo, isoxazolinilo, isotiazolinilo, 2-oxo-pirrolidinilo, fenilo, tienilo, furilo, pirrolilo, tiazolilo, isotiazolilo, oxazolilo, isoxazolilo, imidazolilo, pirazolilo, 1 ,2,3- triazolilo, 1 ,2,4-triazolilo, tetrazolilo, 1 ,3,4-oxadiazolilo, 1 ,3,4-tiadiazolilo, 1 ,2,4- oxadiazolilo, 1 ,2,4-tiadiazolilo, piridilo, pirazinilo, pirimidinilo y piridazinilo.
El término "fuente de flúor" se refiere a un compuesto químico capaz de liberar iones fluoruro (F"). Ejemplos incluyen, entre otros, fluoruro de tetrabutilamonio (TBAF), fluoruro de tetrafenilfosfonio (TPPF), CsF, RbF, KF, NaF, LiF, BaF2, SrF2, CaF2, y MgF2.
Cuando en las definiciones usadas a lo largo de la presente descripción para grupos cíclicos los ejemplos especificados se refieren a un radical de un anillo en términos generales, por ejemplo piridilo, tienilo o indolilo, se incluyen todas las posiciones de unión posibles. Así, por ejemplo, en las definiciones de Cyi a Cy4, que no incluyen ninguna limitación respecto a la posición de unión, el término piridilo incluye 2-piridilo, 3-piridilo y 4-piridilo; y tienilo incluye 2-tienilo y 3-tienilo. La expresión "opcionalmente sustituido por uno o más" significa la posibilidad de un grupo de estar sustituido por uno o más, preferiblemente por 1 , 2, 3 ó 4 sustituyentes, más preferiblemente por 1 , 2 ó 3 sustituyentes y aún más preferiblemente por 1 ó 2 sustituyentes, siempre que dicho grupo disponga de suficientes posiciones disponibles susceptibles de ser sustituidas. Si están presentes, dichos sustituyentes pueden ser iguales o diferentes y pueden estar situados sobre cualquier posición disponible.
Cuando en una definición de un sustituyente aparecen dos o más grupos con la misma numeración (por ejemplo -NR4R4, -NRsRs, etc.), esto no significa que tengan que ser idénticos. Cada uno de ellos se selecciona independientemente de la lista de posibles significados dada para dicho grupo, y por tanto pueden ser iguales o diferentes. En otra realización la invención se refiere al procedimiento descrito anteriormente, donde la fuente de flúor se selecciona de fluoruro de tetrabutilamonio (TBAF), fluoruro de tetrafenilfosfonio (TPPF), CsF, RbF, KF, NaF, LiF, BaF2, SrF2, CaF2, y MgF2, y preferiblemente donde la fuente de flúor se selecciona de fluoruro de tetrabutilamonio (TBAF) y KF.
En otra realización, la invención se refiere al procedimiento descrito anteriormente, donde cada Ri independientemente representa hidrógeno, halógeno, Ci-C20 alquilo, -OR4, -SR4, -SeR4, -NR4R4, -PR4R4 o Cyi , donde Ci-C2o alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno
En otra realización, la invención se refiere al procedimiento descrito anteriormente, donde cada R2 independientemente representa Ci-C4o alquilo opcionalmente sustituido
Figure imgf000012_0001
En otra realización, la invención se refiere al procedimiento descrito anteriormente, donde cada R2 independientemente representa Cy2 opcionalmente sustituido por uno ó más R7.
En otra realización, la invención se refiere al procedimiento descrito anteriormente, donde cada R3 independientemente representa hidrógeno, halógeno, Ci-C2o alquilo, -OR4, -SR4, -SeR4, -NR4R4, -PR4R4 o Cyi , donde Ci-C2o alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno
En otra realización, la invención se refiere al procedimiento descrito anteriormente, donde cada R4 independientemente representa hidrógeno, Ci-C2o alquilo o Cy4, donde Ci-C2o alquilo está opcionalmente sustituido por uno o más R10 y donde Cy4 está opcionalmente sustituido por uno o más Rn .
En otra realización, la invención se refiere al procedimiento descrito anteriormente, donde cada R4 independientemente representa Ci-C2o alquilo opcionalmente sustituido
Figure imgf000012_0002
En otra realización, la invención se refiere al procedimiento descrito anteriormente, donde dos grupos R4 se pueden unir formando con el átomo de N un heterociclo de 5 a 7 miembros saturado que adicionalmente puede contener un heteroátomo seleccionado de N, O y S, y que puede estar opcionalmente sustituido por uno o dos Rn .
En otra realización, la invención se refiere al procedimiento descrito anteriormente, donde cada R6 independientemente representa Rs.
En otra realización, la invención se refiere al procedimiento descrito anteriormente, donde cada R7 independientemente representa Ci-C40 alquilo opcionalmente sustituido
Figure imgf000013_0001
En otra realización la invención se refiere al procedimiento descrito anteriormente donde cada Rs independientemente representa C1-C6 alquilo opcionalmente sustituido por uno o más -OH, -OCi-C4 alquilo y donde d-C4 alquilo está opcionalmente sustituido por uno o más -OH.
En otra realización la invención se refiere al procedimiento descrito anteriormente donde cada Rg independientemente representa -ORs o Cy3, donde Cy3 está opcionalmente sustituido por uno o más C1-C6 alquilo.
En otra realización la invención se refiere al procedimiento descrito anteriormente donde cada Río independientemente representa -ORs o Cy3, donde Cy3 está opcionalmente sustituido por uno o más C1-C6 alquilo.
En otra realización, la invención se refiere al procedimiento descrito anteriormente, donde cada Rn independientemente representa Rs.
En otra realización la invención se refiere al procedimiento descrito anteriormente, donde cada Cyi independientemente representa fenilo.
En otra realización la invención se refiere al procedimiento descrito anteriormente, donde cada Cyi independientemente representa un heterociclo aromático de 5 ó 6 miembros que contiene 1 ó 2 heteroátomos seleccionados de N, O y S, y donde Cyi puede estar unido al resto de la molécula a través de cualquier átomo de C o N disponible. En otra realización la invención se refiere al procedimiento descrito anteriormente, donde cada Cyi independientemente representa:
Figure imgf000014_0001
En otra realización la invención se refiere al procedimiento descrito anteriormente, donde cada Cy2 independientemente representa fenilo. En otra realización la invención se refiere al procedimiento descrito anteriormente, donde cada Cy2 independientemente representa un anillo saturado, monocíclico de 3 a 7 miembros carbocíclico.
En otra realización la invención se refiere al procedimiento descrito anteriormente, donde cada Cy2 independientemente representa un anillo saturado, monocíclico de 3 a 7 miembros heterocíclico, donde Cy2 puede estar unido al resto de la molécula a través de cualquier átomo de C o N disponible, donde Cy2 contiene de 1 a 3 heteroátomos seleccionados de N, O y S, y donde uno o más átomos de C o S de Cy2 pueden estar opcionalmente oxidados formando grupos CO, SO o SO2.
En otra realización la invención se refiere al procedimiento descrito anteriormente, donde cada Cy2 independientemente representa un anillo saturado, monocíclico de 3 a 7 miembros heterocíclico, donde Cy2 puede estar unido al resto de la molécula a través de cualquier átomo de C o N disponible, y donde Cy2 contiene de 1 a 3 heteroátomos seleccionados de N, O y S.
En otra realización la invención se refiere al procedimiento descrito anteriormente, donde cada Cy3 independientemente representa fenilo. En otra realización la invención se refiere al procedimiento descrito anteriormente, donde cada Cy3 independientemente representa un heterociclo aromático de 5 ó 6 miembros que contiene 1 ó 2 heteroátomos seleccionados de N, O y S, y donde Cy3 puede estar unido al resto de la molécula a través de cualquier átomo de C o N disponible. En otra realización la invención se refiere al procedimiento descrito anteriormente, donde cada Cy4 independientemente representa un anillo heterocíclico saturado, de 3 a 7 miembros, que contiene opcionalmente de 1 a 3 heteroátomos seleccionados de N, O y S, donde Cy4 está unido al resto de la molécula a través de cualquier átomo de C o N disponible, y donde uno o más átomos de C o S de Cy4 pueden estar opcionalmente oxidados formando grupos CO, SO o SO2.
En otra realización la invención se refiere al procedimiento descrito anteriormente, donde cada Cy4 independientemente representa un anillo heterocíclico saturado, de 3 a 7 miembros, que contiene opcionalmente de 1 a 3 heteroátomos seleccionados de N, O y S, y donde Cy4 está unido al resto de la molécula a través de cualquier átomo de C o N disponible.
En otra realización la invención se refiere al procedimiento descrito anteriormente, donde cada Cy4 independientemente representa fenilo.
En otra realización la invención se refiere al procedimiento descrito anteriormente, donde cada R12 independientemente representa hidrógeno, halógeno, -OR , -SR , -SeR4, -NR4R4 o -PR4R4.
En otra realización, la invención se refiere al procedimiento descrito anteriormente, donde el compuesto de fórmula I se selecciona de un compuesto de fórmula la:
Figure imgf000016_0001
donde Ri y R3 tienen el significado descrito para un compuesto de fórmula I.
En otra realización, la invención se refiere al procedimiento descrito anteriormente, donde el compuesto de fórmula I se selecciona de un compuesto de fórmula Ib:
Figure imgf000016_0002
donde R1 y R3 tienen el significado descrito para un compuesto de fórmula I. En otra realización, la invención se refiere al procedimiento descrito anteriormente, donde el compuesto de fórmula I se selecciona de un compuesto de fórmula le:
Figure imgf000017_0001
donde Ri y R3 tienen el significado descrito para un compuesto de fórmula I.
En otra realización la invención se refiere al procedimiento descrito anteriormente, donde:
cada R1 independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR4, -SR , -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno o más Re; y
cada R2 independientemente representa Ci-C40 alquilo opcionalmente sustituido por
Figure imgf000017_0002
En otra realización la invención se refiere al procedimiento descrito anteriormente, donde:
cada R1 independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR4, -SR4, -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno o más Re; y
cada R2 independientemente representa Cy2 opcionalmente sustituido por uno ó más R7. En otra realización la invención se refiere al procedimiento descrito anteriormente, donde:
cada Ri independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR4, -SR4, -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno o más Re; y
cada R3 independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR4, -SR4, -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno
En otra realización la invención se refiere al procedimiento descrito anteriormente, donde:
cada R1 independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR , -SR , -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno o más Re; y
cada R4 independientemente representa hidrógeno, C1-C20 alquilo o Cy4, donde C1-C20 alquilo está opcionalmente sustituido por uno o más R10 y donde Cy4 está opcionalmente sustituido por uno o más R11 .
En otra realización la invención se refiere al procedimiento descrito anteriormente, donde:
cada R1 independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR , -SR , -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno o más Re; y
cada R4 independientemente representa C1-C20 alquilo opcionalmente sustituido por
Figure imgf000018_0001
En otra realización la invención se refiere al procedimiento descrito anteriormente, donde:
cada R1 independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR4, -SR4, -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno o más Re; y dos grupos R4 se pueden unir formando con el átomo de N un heterociclo de 5 a 7 miembros saturado que adicionalmente puede contener un heteroátomo seleccionado de N, O y S, y que puede estar opcionalmente sustituido por uno o dos Rn . En otra realización la invención se refiere al procedimiento descrito anteriormente, donde:
cada Ri independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR4, -SR4, -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno o más Re; y
cada R6 independientemente representa Rs.
En otra realización la invención se refiere al procedimiento descrito anteriormente, donde:
cada R1 independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR4, -SR4, -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno o más Re; y
cada Cyi independientemente representa fenilo.
En otra realización la invención se refiere al procedimiento descrito anteriormente, donde:
cada R1 independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR4, -SR4, -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno o más Re; y
cada Cyi independientemente representa un heterociclo aromático de 5 ó 6 miembros que contiene 1 ó 2 heteroátomos seleccionados de N, O y S, y donde Cyi puede estar unido al resto de la molécula a través de cualquier átomo de C o N disponible.
En otra realización la invención se refiere al procedimiento descrito anteriormente, donde:
cada R1 independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR4, -SR4, -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno o más Re; y cada Cyi independientemente representa:
Figure imgf000020_0001
En otra realización la invención se refiere al procedimiento descrito anteriormente, donde:
cada Ri independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR4, -SR4, -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno o más Re;
cada R2 independientemente representa Ci-C40 alquilo opcionalmente sustituido por uno o más R5, preferentemente cada R2 independientemente representa Cy2 opcionalmente sustituido por uno ó más R7; y
cada R3 independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR , -SR , -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno
En otra realización la invención se refiere al procedimiento descrito anteriormente, donde:
cada R1 independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR4, -SR4, -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno o más Re;
cada R2 independientemente representa Ci-C4o alquilo opcionalmente sustituido por uno o más R5, preferentemente cada R2 independientemente representa Cy2 opcionalmente sustituido por uno ó más R7;
cada R3 independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR4, -SR4, -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno o más Re; y
cada R4 independientemente representa hidrógeno, C1-C20 alquilo o Cy4, donde C1-C20 alquilo está opcionalmente sustituido por uno o más R10 y donde Cy4 está opcionalmente sustituido por uno o más Rn . En otra realización la invención se refiere al procedimiento descrito anteriormente, donde:
cada Ri independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR4, -SR4, -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno o más Re;
cada R2 independientemente representa Ci-C40 alquilo opcionalmente sustituido por uno o más R5, preferentemente cada R2 independientemente representa Cy2 opcionalmente sustituido por uno ó más R7;
cada R3 independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR4, -SR4, -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno o más Re; y
cada R4 independientemente representa C1-C20 alquilo opcionalmente sustituido por
Figure imgf000021_0001
En otra realización la invención se refiere al procedimiento descrito anteriormente, donde:
cada R1 independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR4, -SR4, -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno o más Re;
cada R2 independientemente representa Ci-C4o alquilo opcionalmente sustituido por uno o más R5, preferentemente cada R2 independientemente representa Cy2 opcionalmente sustituido por uno ó más R7;
cada R3 independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR4, -SR4, -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno o más Re;
cada R4 independientemente representa C1-C20 alquilo opcionalmente sustituido por
Figure imgf000021_0002
dos grupos R4 se pueden unir formando con el átomo de N un heterociclo de 5 a 7 miembros saturado que adicionalmente puede contener un heteroátomo seleccionado de N, O y S, y que puede estar opcionalmente sustituido por uno o dos Rn . En otra realización la invención se refiere al procedimiento descrito anteriormente, donde:
cada Ri independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR4, -SR4, -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno o más Re;
cada R2 independientemente representa Ci-C40 alquilo opcionalmente sustituido por uno o más R5, preferentemente cada R2 independientemente representa Cy2 opcionalmente sustituido por uno ó más R7;
cada R3 independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR4, -SR4, -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno o más Re;
cada R4 independientemente representa hidrógeno, C1-C20 alquilo o Cy4, donde C1-C20 alquilo está opcionalmente sustituido por uno o más R10 y donde Cy4 está opcionalmente sustituido por uno o más Rn ; y
cada R6 independientemente representa Rs.
En otra realización la invención se refiere al procedimiento descrito anteriormente, donde:
cada R1 independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR4, -SR4, -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno o más Re;
cada R2 independientemente representa Ci-C4o alquilo opcionalmente sustituido por uno o más R5, preferentemente cada R2 independientemente representa Cy2 opcionalmente sustituido por uno ó más R7;
cada R3 independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR4, -SR4, -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno o más Re;
cada R4 independientemente representa C1-C20 alquilo opcionalmente sustituido por
Figure imgf000022_0001
cada R6 independientemente representa Rs. En otra realización la invención se refiere al procedimiento descrito anteriormente, donde:
cada Ri independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR4, -SR4, -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno o más Re;
cada R2 independientemente representa Ci-C40 alquilo opcionalmente sustituido por uno o más R5, preferentemente cada R2 independientemente representa Cy2 opcionalmente sustituido por uno ó más R7;
cada R3 independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR4, -SR4, -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno o más Re;
cada R4 independientemente representa C1-C20 alquilo opcionalmente sustituido por
Figure imgf000023_0001
dos grupos R4 se pueden unir formando con el átomo de N un heterociclo de 5 a 7 miembros saturado que adicionalmente puede contener un heteroátomo seleccionado de N, O y S, y que puede estar opcionalmente sustituido por uno o dos Rn ; y cada R6 independientemente representa Rs.
En otra realización la invención se refiere al procedimiento descrito anteriormente, donde:
cada R1 independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR4, -SR4, -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno o más Re;
cada R2 independientemente representa Ci-C4o alquilo opcionalmente sustituido por uno o más R5, preferentemente cada R2 independientemente representa Cy2 opcionalmente sustituido por uno ó más R7;
cada R3 independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR4, -SR4, -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno o más Re;
cada R4 independientemente representa hidrógeno, C1-C20 alquilo o Cy4, donde C1-C20 alquilo está opcionalmente sustituido por uno o más R10 y donde Cy4 está opcionalmente sustituido por uno o más Rn ; cada R6 independientemente representa Rs; y
cada Cyi independientemente representa fenilo.
En otra realización la invención se refiere al procedimiento descrito anteriormente, donde:
cada Ri independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR4, -SR4, -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno o más Re;
cada R2 independientemente representa Ci-C40 alquilo opcionalmente sustituido por uno o más R5, preferentemente cada R2 independientemente representa Cy2 opcionalmente sustituido por uno ó más R7;
cada R3 independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR4, -SR4, -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno o más Re;
cada R4 independientemente representa C1-C20 alquilo opcionalmente sustituido por
Figure imgf000024_0001
cada R6 independientemente representa Rs; y
cada Cyi independientemente representa fenilo.
En otra realización la invención se refiere al procedimiento descrito anteriormente, donde:
cada R1 independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR , -SR , -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno o más Re;
cada R2 independientemente representa Ci-C4o alquilo opcionalmente sustituido por uno o más R5, preferentemente cada R2 independientemente representa Cy2 opcionalmente sustituido por uno ó más R7;
cada R3 independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR4, -SR4, -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno o más Re;
cada R4 independientemente representa C1-C20 alquilo opcionalmente sustituido por uno o más R10; dos grupos R4 se pueden unir formando con el átomo de N un heterociclo de 5 a 7 miembros saturado que adicionalmente puede contener un heteroátomo seleccionado de N, O y S, y que puede estar opcionalmente sustituido por uno o dos Rn ;
cada R6 independientemente representa Rs; y
cada Cyi independientemente representa fenilo.
En otra realización la invención se refiere al procedimiento descrito anteriormente, donde:
cada Ri independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR4, -SR , -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno o más Re;
cada R2 independientemente representa Ci-C40 alquilo opcionalmente sustituido por uno o más R5, preferentemente cada R2 independientemente representa Cy2 opcionalmente sustituido por uno ó más R7;
cada R3 independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR4, -SR4, -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno o más Re;
cada R4 independientemente representa hidrógeno, C1-C20 alquilo o Cy4, donde C1-C20 alquilo está opcionalmente sustituido por uno o más R10 y donde Cy4 está opcionalmente sustituido por uno o más Rn ;
cada R6 independientemente representa Rs; y
cada Cyi independientemente representa un heterociclo aromático de 5 ó 6 miembros que contiene 1 ó 2 heteroátomos seleccionados de N, O y S, y donde Cyi puede estar unido al resto de la molécula a través de cualquier átomo de C o N disponible.
En otra realización la invención se refiere al procedimiento descrito anteriormente, donde:
cada R1 independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR4, -SR4, -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno o más Re;
cada R2 independientemente representa Ci-C4o alquilo opcionalmente sustituido por uno o más R5, preferentemente cada R2 independientemente representa Cy2 opcionalmente sustituido por uno ó más R7; cada R3 independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR4, -SR4, -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno o más Re;
cada R4 independientemente representa C1-C20 alquilo opcionalmente sustituido por
Figure imgf000026_0001
cada R6 independientemente representa Rs; y
cada Cyi independientemente representa un heterociclo aromático de 5 ó 6 miembros que contiene 1 ó 2 heteroátomos seleccionados de N, O y S, y donde Cyi puede estar unido al resto de la molécula a través de cualquier átomo de C o N disponible.
En otra realización la invención se refiere al procedimiento descrito anteriormente, donde:
cada R1 independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR , -SR , -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno o más Re;
cada R2 independientemente representa Ci-C40 alquilo opcionalmente sustituido por uno o más R5, preferentemente cada R2 independientemente representa Cy2 opcionalmente sustituido por uno ó más R7;
cada R3 independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR4, -SR4, -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno o más Re;
cada R4 independientemente representa C1-C20 alquilo opcionalmente sustituido por
Figure imgf000026_0002
dos grupos R4 se pueden unir formando con el átomo de N un heterociclo de 5 a 7 miembros saturado que adicionalmente puede contener un heteroátomo seleccionado de N, O y S, y que puede estar opcionalmente sustituido por uno o dos Rn ;
cada R6 independientemente representa Rs; y
cada Cyi independientemente representa un heterociclo aromático de 5 ó 6 miembros que contiene 1 ó 2 heteroátomos seleccionados de N, O y S, y donde Cyi puede estar unido al resto de la molécula a través de cualquier átomo de C o N disponible. En otra realización, la invención se refiere al procedimiento descrito anteriormente, donde el compuesto de fórmula I se selecciona de un compuesto de fórmula la:
Figure imgf000027_0001
donde:
cada Ri independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR4, -SR4, -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno o más Re; y
cada R3 independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR , -SR , -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno
En otra realización, la invención se refiere al procedimiento descrito anteriormente, donde el compuesto de fórmula I se selecciona de un compuesto de fórmula Ib:
Figure imgf000028_0001
donde:
cada Ri independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR4, -SR4, -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno o más Re; y
cada R3 independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR4, -SR4, -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno
En otra realización, la invención se refiere al procedimiento descrito anteriormente, donde el compuesto de fórmula I se selecciona de un compuesto de fórmula le:
Figure imgf000029_0001
donde:
cada Ri independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR4, -SR4, -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno o más Re; y
cada R3 independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR4, -SR4, -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno
En otra realización la invención se refiere al procedimiento descrito anteriormente, donde el compuesto de fórmula I se selecciona de la lista de compuestos descritos en los ejemplos 1 a 56.
Los compuestos de la presente invención contienen uno o más nitrógenos básicos y podrían por tanto formar sales con ácidos, tanto orgánicos como inorgánicos. Ejemplos de dichas sales incluyen: sales con ácidos inorgánicos como ácido clorhídrico, ácido bromhídrico, ácido yodhídrico, ácido nítrico, ácido perclórico, ácido sulfúrico o ácido fosfórico; y sales con ácidos orgánicos, como ácido metanosulfónico, ácido trifluorometanosulfónico, ácido etanosulfónico, ácido bencenosulfónico, ácido p- toluenosulfónico, ácido fumárico, ácido oxálico, ácido acético, ácido maleico, ácido ascórbico, ácido cítrico, ácido láctico, ácido tartárico, ácido malónico, ácido glicólico, ácido succínico y ácido propiónico, entre otros. Algunos compuestos de la presente invención podrían contener uno o más protones ácidos y por tanto podrían formar también sales con bases. Ejemplos de dichas sales incluyen: sales con cationes inorgánicos como sodio, potasio, calcio, magnesio, litio, aluminio, zinc, etc.; y sales formadas con aminas farmacéuticamente aceptables como amoníaco, alquilaminas, hidroxialquilaminas, lisina, arginina, /V-metilglucamina, procaína y similares.
No hay limitación en el tipo de sal que se puede utilizar, con la condición de que cuando se usen con fines terapéuticos sean farmacéuticamente aceptables. Se entiende por sales farmacéuticamente aceptables aquellas sales que, a criterio médico, son adecuadas para el uso en contacto con los tejidos de seres humanos u otros mamíferos sin provocar una toxicidad indebida, irritación, respuesta alérgica o similar. Las sales farmacéuticamente aceptables son ampliamente conocidas por cualquier experto en la materia. Las sales de un compuesto de fórmula I pueden obtenerse durante el aislamiento final y purificación de los compuestos de la invención o bien pueden prepararse por tratamiento de un compuesto de fórmula I con una cantidad suficiente del ácido o la base deseados para dar la sal de una forma convencional. Las sales de los compuestos de fórmula I se pueden transformar a su vez en otras sales de compuestos de fórmula I por intercambio de iones mediante una resina de intercambio iónico.
Los compuestos de fórmula I y sus sales pueden diferir en ciertas propiedades físicas, pero son equivalentes a efectos de la invención. Todas las sales de los compuestos de fórmula I quedan incluidas dentro del ámbito de la invención.
Los compuestos de la presente invención pueden formar complejos con disolventes en los que se hacen reaccionar o desde los que se hacen precipitar o cristalizar. Estos complejos se conocen como solvatos. Tal como se utiliza aquí, el término solvato se refiere a un complejo de estequiometría variable formado por un soluto (un compuesto de fórmula I o una sal del mismo) y un disolvente. Ejemplos de disolventes incluyen los disolventes farmacéuticamente aceptables como agua, etanol y similares. Un complejo con agua se conoce como hidrato. Los solvatos de los compuestos de la invención (o sus sales), incluyendo hidratos, quedan incluidos dentro del ámbito de la invención. Los compuestos de fórmula I pueden existir en diferentes formas físicas, es decir en forma amorfa y formas cristalinas. Asimismo, los compuestos de la presente invención pueden tener la capacidad de cristalizar de más de una forma, una característica que se conoce como polimorfismo. Los polimorfos se pueden diferenciar por varias propiedades físicas bien conocidas por los entendidos en la materia como por ejemplo sus difractogramas de rayos X, puntos de fusión o solubilidad. Todas las formas físicas de los compuestos de fórmula I, incluyendo todas sus formas polimórficas ("polimorfos"), quedan incluidas dentro del ámbito de la presente invención.
Algunos compuestos de la presente invención podrían existir en forma de varios diastereoisómeros y/o varios isómeros ópticos. Los diastereoisómeros pueden separarse mediante técnicas convencionales como la cromatografía o la cristalización fraccionada. Los isómeros ópticos pueden ser resueltos mediante el uso de técnicas convencionales de resolución óptica, para dar los isómeros ópticamente puros. Esta resolución puede realizarse sobre los intermedios de síntesis que sean quirales o bien sobre los productos de fórmula I. Los isómeros ópticamente puros también pueden ser obtenidos individualmente empleando síntesis enantioespecíficas. La presente invención cubre tanto los isómeros individuales como sus mezclas (por ejemplo mezclas racémicas o mezclas de diastereoisómeros), tanto si se obtienen por síntesis como mezclándolos físicamente. Como se ha mencionado anteriormente, el método de la presente invención permite introducir sustituyentes (R3) en las posiciones bahía de una PDI en una etapa en la que interviene una fuente de fluoruro y un alcohol, tiol, selenol, amina o fosfina.
Como será evidente para un experto en la materia, el método preciso utilizado para la preparación de un compuesto dado puede variar en función de su estructura química. Asimismo, en alguno de los procedimientos que se detallan a continuación puede ser necesario o conveniente proteger los grupos reactivos o lábiles mediante grupos protectores convencionales. Tanto la naturaleza de dichos grupos protectores como los procedimientos para su introducción y eliminación son bien conocidos y forman parte del estado de la técnica (véase por ejemplo Greene T.W. y Wuts P.G.M, "Protective Groups in Organic Synthesis", John Wiley & Sons, 4a edición, 2006). Siempre que esté presente algún grupo protector, será necesaria una posterior etapa de desprotección, que se realiza en las condiciones habituales en síntesis orgánica, como las descritas en la referencia mencionada más arriba. Asimismo, algunos compuestos de la presente invención se pueden obtener a partir de otros compuestos de fórmula I mediante reacciones de transformación de grupos funcionales adecuadas, en una o más etapas, utilizando reacciones ampliamente conocidas en química orgánica bajo las condiciones experimentales habituales. Estas interconversiones se pueden llevar a cabo independientemente sobre Ri , R2 y R3 e incluyen: la sustitución de una amina primaria o secundaria por tratamiento con un agente alquilante en condiciones estándar, o bien por aminación reductora, esto es, por tratamiento con un aldehido o cetona en presencia de un agente reductor como el cianoborohidruro sódico o triacetoxiborohidruro de sodio; la transformación de una amina en una sulfonamida por reacción con un haluro de sulfonilo, tal como cloruro de sulfonilo, opcionalmente en presencia de cantidades catalíticas de una base tal como 4-dimetilaminopiridina, en un disolvente adecuado tal como dioxano, cloroformo, diclorometano o piridina, opcionalmente en presencia de una base tal como trietilamina o piridina; la transformación de una amina en una amida bajo condiciones estándar; la alquilación de una amida por tratamiento con un agente alquilante en condiciones básicas; la conversión de un alcohol en un éter o éster bajo condiciones estándar; la alquilación de un tiol para obtener un tioéter, en condiciones estándar; la oxidación parcial o total de un alcohol para obtener cetonas, aldehidos o ácidos carboxílicos en condiciones estándar de oxidación; la reducción de un aldehido o cetona a alcohol, por tratamiento con un agente reductor como borohidruro sódico; la reducción de un ácido carboxílico o de un derivado de ácido carboxílico a alcohol por tratamiento con un agente reductor como hidruro de diisobutilaluminio o LÍAIH4; la reducción de una amida a amina por tratamiento con un agente reductor como LÍAIH4; la oxidación de un tioéter a sulfóxido o sulfona en condiciones estándar; la transformación de un alcohol en un halógeno por tratamiento con SOCI2, PBr3, bromuro de tetrabutilamonio en presencia de P2O5, o Pb; la transformación de un átomo de halógeno en una amina por reacción con una amina, opcionalmente en presencia de un disolvente adecuado, y preferiblemente calentando; y la transformación de una amida primaria en un grupo -CN o viceversa, de un grupo -CN en una amida mediante condiciones estándar. Igualmente, cualquiera de los anillos aromáticos de los compuestos de la presente invención puede experimentar reacciones de sustitución electrófila aromática o sustitución nucleófila aromática, ampliamente descritas en la bibliografía.
Los compuestos de fórmula II y III pueden ser comerciales o prepararse por métodos ampliamente descritos en la bibliografía a partir de productos comerciales o mediante las reacciones de interconversión de grupos funcionales descritas anteriormente para un compuesto de fórmula I, y pueden estar convenientemente protegidos.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención.
EJEMPLOS
A continuación se ilustra la invención mediante unos ensayos realizados por los inventores, que pone de manifiesto la efectividad del producto de la invención. ALCOXI-PDI
Método 1 : Síntesis de 1 -alcoxiperileno-3,4:9,10-tetracarboxidiimida
En un matraz con forma de corazón se disuelven 0,1 mmol de perileno-3,4:9, 10- tetracarboxidiimida en 0,3 ml_ de THF seco. A continuación se añaden 0,4 mmol del alcohol correspondiente y 0,24 mmol de TBAF (disolución 1 M en THF). Se calienta a 70°C bajo atmósfera de argón durante 24 horas. El crudo se disuelve en CH2CI2 y se lava con agua. La fase orgánica se seca con Na2S04, se filtra y se elimina el disolvente a presión reducida. Se purifica mediante cromatografía en columna con gel de sílice y tolueno como eluyente, salvo que se especifique lo contrario.
Método 2: Síntesis de 1 ,6(7)-dialcoxiperileno-3,4:9,10-tetracarboxidiimida
En un matraz de fondo redondo se disuelven 0, 1 mmol de perileno-3,4:9, 10- tetracarboxidiimida en 2 ml_ de THF seco. A continuación se añaden 1 ,2 mmol del alcohol correspondiente y 0,48 mmol de TBAF (disolución 1 M en THF). Se calienta a reflujo de THF bajo atmósfera de argón durante 24 horas. El crudo se disuelve en CH2CI2 y se lava con agua. La fase orgánica se seca con Na2S04, se filtra y se elimina el disolvente a presión reducida. Se purifica mediante cromatografía en columna con gel de sílice y tolueno como eluyente, salvo que se especifique lo contrario.
Método 3: Síntesis de 1 -alcoxiperileno-3,4:9,10-tetracarboxidiimida
En un matraz con forma de corazón se disuelven 0,1 mmol de 1-bromoperileno- 3,4:9, 10-tetracarboxidiimida en 0,3 mL de THF seco. A continuación se añaden 0,4 mmol del alcohol correspondiente y 0,24 mmol de TBAF (disolución 1 M en THF). Se calienta a 70°C bajo atmósfera de argón durante 24 horas. El crudo se disuelve en CH2CI2 y se lava con agua. La fase orgánica se seca con Na2S04, se filtra y se elimina el disolvente a presión reducida. Se purifica mediante cromatografía en columna con gel de sílice y tolueno como eluyente. Método 4: Síntesis de 1 ,6(7)-dialcoxiperileno-3, 4:9, 10-tetracarboxidiimida.
En un matraz de fondo redondo se disuelven 0,1 mmol de 1-butoxiperileno-3, 4:9, 10- tetracarboxidiimida en 2 mL de THF seco. A continuación se añaden 1 ,2 mmol del alcohol correspondiente y 0,48 mmol de TBAF (disolución 1 M en THF). Se calienta a reflujo de THF bajo atmósfera de argón durante 24 horas. El crudo se disuelve en CH2CI2 y se lava con agua. La fase orgánica se seca con Na2S04, se filtra y se elimina el disolvente a presión reducida. Se purifica mediante cromatografía en columna con gel de sílice y tolueno como eluyente.
Método 5: Síntesis de v, v'-di-(1 '-hexilheptil)-2,5,8,11 -tetrabutoxiperileno-3,4:9,10- tetracarboxidiimida, v, V'-di-(1 '-hexilheptil)-2-bromo-5,8,11 -tributoxiperileno- 3,4:9,10-tetracarboxidiimide y /V,/V'-di-(1 '-hexilheptil)-2,5-dibromo-8,11 - dibutoxiperileno-3,4:9,10-tetracarboxidiimida
En un matraz con forma de corazón se disuelven 0,05 mmol de 2,5,8, 11- tetrabromoperileno-3,4:9,10-tetracarboxidiimida en 0,5 mL de THF seco. A continuación se añaden 0,5 mmol del alcohol correspondiente, 0, 15 mmol de CsF y 0,03 mmol de 18-corona-6. Se calienta a 70°C bajo atmósfera de argón durante 24 horas. El crudo se disuelve en CH2CI2 y se lava con agua. La fase orgánica se seca con Na2S04, se filtra y se elimina el disolvente a presión reducida. Se purifica mediante cromatografía en columna con gel de sílice y CH2CI2: Hexano 1 : 1 como eluyente.
Ejemplo 1 : /V,/V'-di-(1 '-hexilheptil)-1 -metoxiperileno-3,4:9,10-tetracarboxidiimida (1 )
Figure imgf000035_0001
1
El compuesto 1 se prepara siguiendo el método 1. Rendimiento: 33%. Se purifica mediante cromatografía en columna con gel de sílice y cloroformo: hexano 4:1 como eluyente. 1 H-RMN (CDC ) δ 0,83 (t, 12H), 1 ,24 (s ancha, 32H), 1 ,87 (m, 4H), 2,25 (m, 4H), 4,34 (s, 3H), 5,20 (m, 2H), 8,57 (m, 6H), 9,49 (d, 1 H); 13C-RMN (CDCb) δ 14,02, 22,57, 26,94, 29,21 , 29,22, 31 ,76, 32,38, 54,61 , 56,84, 120,74, 121 ,46, 121 ,87, 123,01 , 123,41, 124,46, 126,96, 128,39, 128,53, 129,20, 133,92, 134,30, 134,48, 158,29, 163,54, 164,54; EM MALDI-TOF m/z. [M+H+] teórico C51H64N2O5785,48, found 785,46; IR (KBr): 2855, 1695, 1658, 1597, 1462, 1409, 1327, 1262, 1094, 804, 747 crrr1; UV Vis (CH2CI2), λ™χ/ηΓη (log ε): 514 (5,7), 552 (5,9).
Ejemplo 2: /V,/V'-di-(1 '-hexilheptil)-1 ,6(7)-dimetoxiperileno-3,4:9,10- tetracarboxidiimida (2)
Figure imgf000036_0001
2 El compuesto 2 se obtiene siguiendo el método 2. Rendimiento: 6% (50% isómero 1,6; 50% isómero 1,7 aprox.). Se purifica mediante cromatografía en columna con gel de sílice y cloroformo:hexano 4:1 como eluyente. 1H-RMN (CDC ) δ 0,83 (t, 12H), 1,23 (s ancha, 32H), 1,87 (m, 4H), 2,28 (m, 4H), 4,31 (d, 6H), 5,21 (m, 2H), 8,64 (m, 4H), 9,46 (is.omero 1,6) (d, 1H) 9,54 (isómero 1,7) (d, 1H); 13C-RMN (CDCI3) δ 14,03, 22,58, 26,94, 29,21, 29,22, 29,24, 31,75, 31,76, 31,77, 32,42, 54,46, 54,96, 56,85, 119,38, 120,86, 121,56, 121,97, 123,51, 124,54, 127,07, 127,36, 127,92, 128,50, 128,61, 128,68, 129,27, 130,79, 132,58, 133,75, 134,14, 134,41, 157,33, 158,45, 163,88, 164,77; EM MALDI-TOF m/z. [M+H+ ] teórico C51H64N2O5815,49, experimental 815,52; IR (KBr): 2920, 2850, 1695, 1654, 1590, 1456, 1397, 1327, 808, 150 crrr1; UV Vis (CH2CI2), maVnm (log ε): 523 (4,6), 556 (4,7).
Ejemplo 3: v,v'-di-(1'-hexilheptil)-1-etoxiperileno-3,4:9,10-tetracarboxidiimida (3)
Figure imgf000037_0001
3
El compuesto 3 se obtiene siguiendo el método 1. Rendimiento: 36%. 1 H-RMN (CDCb) δ 0,83 (t, 12H), 1 ,24 (s ancha, 32H), 1 ,73 (t, 3H), 1 ,89 (m, 4H), 2,27 (m, 4H), 4,54 (m, 2H), 5,20 (m, 2H), 8,48 (m, 6H), 9,50 (d, 1 H); 13C-RMN (CDCb) δ 14,01 , 15,01 , 22,56, 26,94, 26,95, 29,19, 29,22, 29,65, 31 ,74, 31 ,75, 32,35, 54,56, 54,80, 66,11 , 70,55, 120,31 , 121 ,63, 123,18, 124,20, 126,79, 128,20, 129,06, 133,64, 134,29, 157,56, 163,54, 164,52; EM MALDI-TOF m/z. [M +H+] teórico CsaHeeNaOe 799,50, experimental 799,53; IR (KBr): 2855, 1770, 1662, 1585, 1458, 1323, 1258, 804, 747; UV Vis (CH2CI2), Wnm (log ε): 518 (4,7), 553 (4,8).
Ejemplo 4: /V,/V'-di-(1 '-hexilheptil)-1 ,6(7)-dietoxiperileno-3,4:9,10- tetracarboxidiimida (4)
Figure imgf000038_0001
4
El compuesto 4 se obtiene siguiendo el método 2. Rendimiento: 5% (60% isómero 1,6; 40% isómero 1,7 aprox.).1H-RMN (CDC ) δ 0,83 (t, 12H), 1,23 (s ancha, 32H), 1,74 (t, 6H), 1,86 (m, 4H), 2,27 (m, 4H), 4,57 (c, 4H), 5,20 (m, 2H), 8,39-8,67 (m, 4H), 9,57 (isómero 1,6) (d, 1H), 9,64 isómero 1,7 (d, 1H) ; 13C-RMN (CDCI3) δ 14,02, 15,07, 22,57, 26,91, 29,22, 29,24, 31,75, 31,76, 32,40, 54,48, 66,13, 119,21, 123,86, 127,21, 128,56, 128,64, 129,31, 130,78, 133,91, 133,98, 134 30, 135,87, 136,00, 144,10, 144,68, 150,12, 156,68, 157,68, 163,61, 164,68 ; EM MALDI-TOF m/z. [M+H+] teórico C54H70N2O6843,53, experimental 843,54; IR (KBr): 2920, 2838, 1736, 1706, 1660, 1590, 1333, 796, 750 crrr1;UV Vis (CH2CI2), maJnm (log ε): 531 (4,5), 568 (4,6).
Ejemplo 5: /V,/V'-di-(1 '-hexilheptil)-1 -butoxiperileno-3,4:9,10-tetracarboxidiimida (5)
Figure imgf000039_0001
5
El compuesto 5 se obtiene siguiendo el método 3. Rendimiento: 88%. 1 H-RMN (CDCb) δ 0,82 (t, 12H), 1 , 10 (t, 3H), 1 ,25 (s ancha, 32H), 1 ,68 (m, 2H), 1 ,87 (m, 4H), 2,07 (m, 2H), 2,26 (m, 4H), 4,53 (t, 2H), 5,20 (m, 2H), 8,60 (m, 6H), 9,60 (d, 1 H); 13C-RMN (CDCb) δ 13,86, 14,02, 19,56, 22,57, 26,94, 29,20, 29,23, 29,67, 31 ,37, 31 ,75, 31 ,76, 32,36, 54,57, 70,36, 120,47, 121 ,73, 123,31 , 124,25, 126,90, 128,25, 128,30, 129,16, 133,76, 134,42, 157,82, 163,67, 164,53; EM MALDI-TOF m/z. [M+] teórico C54H70N2O5 826,52, experimental 826,51 ; IR (KBr): 2955, 2926, 2838, 1701 , 1654, 1590, 1456, 1333, 1251 , 814, 755 crrr1 ; UV Vis (CH2CI2), maJnm (log ε): 518 (4,8), 554 (4,9). Alternativamente, el compuesto 5 se obtiene siguiendo el método 1. Rendimiento: 75%.
Ejemplo 6: /V,/V'-di-(1 '-hexilheptil)-1 ,6(7)-dibutoxiperileno-3,4:9,10- tetracarboxidiimida (6)
Figure imgf000040_0001
6
El compuesto 6 se obtiene siguiendo el método 3. Rendimiento: 4%.1H-RMN (CDCb) δ 0,82 (t, 12H), 1,08 (t, 6H), 1,25 (s ancha, 32H), 1,68 (m, 4H), 1,87 (m, 4H), 2,07 (m, 4H), 2,27 (m, 4H), 4,50 (t, 4H), 5,15 (m, 2H), 8,50 (m, 4H), 9,56 (isómero 1,6) (d, 1H), 9,63 (isómero 1,7) (d, 1H) ; 13C-RMN (CDCb) δ 13,85, 14,02, 19,57, 22,57, 22,58, 26,90, 26,92, 29,20, 29,22, 29,25, 29,68, 31,42, 31, 74, 31,75, 31,77, 32,41, 54,43, 54,88, 70,31, 119,06, 120,70, 123,84, 127,17, 127,95, 128,54, 128,70, 129,27, 129,81, 130,76, 134,31, 156,86, 158,02, 163,81, 164,74; EM MALDI-TOF m/z: [M+] teórico CssHysNaOe 898,58, experimental 898,57; IR (KBr): 2955, 2920, 2844, 1695, 1649, 1596, 1467, 1327, 814, 744 crrr1; UV Vis (CH2CI2), maJnm (log ε): 530 (4,2), 569 (4,3).
Alternativamente, el compuesto 6 se puede obtener siguiendo el método 2. Rendimiento: 50% (72% isómero 1,6; 28% isómero 1,7 aprox.).
Ejemplo 7: W,W'-di-(1'-hexilheptil)-1-s-butoxiperileno-3,4:9,10-tetracarboxidiimida (7)
Figure imgf000041_0001
7
El compuesto 7 se obtiene siguiendo el método 1. Rendimiento: 35% ; 1 H-RMN (CDCb) δ 0,83 (t, 12H), 1 , 12 (t, 3H), 1 ,25 (s ancha, 35H), 1 ,87 (m, 4H), 2, 10 (m, 2H), 2,26 (m, 4H), 4,98 (m, 1 H), 5,20 (m, 2H), 8,49-8,66 (m, 6H), 9,72 (d, 1 H) ; 13C-RMN (CDCb) δ 9,83, 14,02, 19,83, 22,57, 26,57, 26,92, 29,20, 29,23, 29,63, 29,68, 31 ,74, 31 ,75, 54,57, 78,78, 121 ,86, 123,44, 124,37, 127, 12, 128,36, 128,68, 129,27, 133,91 , 134,65, 157,75, 163,12, 164,85 ; EM MALDI-TOF m/z. [M+] teórico C54H70N2O5 826,52, experimental 826,53 ;IR (KBr): 2920, 2850, 1695, 1660, 1584, 1403, 1327, 1251 crrr1 ;UV Vis (CH2CI2), maVnm (log ε): 520(4,8), 554 (4,9).
Ejemplo 8: /V,/V'-di-(1 '-hexilheptil)-1 ,6(7)-di-s-butoxiperileno-3,4:9,10- tetracarboxidiimida (8)
Figure imgf000041_0002
8 El compuesto 8 se obtiene siguiendo el método 2. Rendimiento: 6% (58% isómero 1 ,6; 42% isómero 1 ,7 aprox.). 1 H-RMN (CDCb) δ 0,83 (t, 12H), 1 ,09 (t, 6H), 1 ,25 (s ancha, 38H), 1 ,88 (m, 4H), 2,21 (m, 4H), 2,27 (m, 4H), 4,94 (m, 2H), 5,22 (m, 2H), 8,39-8,76 (m, 4H), 9,60 (isómero 1 ,6) (d, 1 H), 9,67 (isómero 1 ,7) (d, 1 H) ; 13C-RMN (CDCb) δ 9,83, 14,02, 14,11 , 19,69, 22,53, 22,68, 26,90, 28,21 , 29,20, 29,36, 29,69, 30,91 , 31 ,23, 31 ,43, 31 ,76, 31 ,92, 32,43, 33,14, 33,21 , 3,80, 33,82, 37,09, 38,14, 39,22, 54,84, 59,57, 114,05, 127,25, 128,08, 128,74, 129,0, 129,28, 129,31 , 129,54, 129,83, 130,15, 130,19, 139,26, 157,43, 163,24, 164,76; EM MALDI-TOF m/z. [M+] teórico CssHysNaOe 898,58, experimental 898,55 ; IR (KBr): 2932, 2844, 1695, 1666, 1601 , 1467, 1321 , 814 crrr1 ; UV Vis (CH2CI2),
Figure imgf000042_0001
(log ε): 525 (4,0), 564 (4,0).
Ejemplo 9: W,W'-di-(1 '-hexilheptil)-1 -/'-butoxiperileno-3,4:9,10-tetracarboxidiimida (9)
Figure imgf000042_0002
El compuesto 9 se obtiene siguiendo el método 1. Rendimiento: 46%. 1 H-RMN (CDCb) δ 0,82 (t, 12H), 1 ,25 (s ancha, 38H), 1 ,89 (m, 4H), 2,27 (m, 4H), 2,44 (m, 2H), 4,30 (d, 2H), 5,20 (m, 2H), 8,59 (m, 6H), 9,63 (d, 1 H); 13C-RMN (CDCb) δ 14,01 , 19,54, 22,57, 22,58, 26,93, 28,56, 29,20, 29,23, 29,66, 31 ,75, 32,36, 54,58, 120,56, 121 ,75, 123,34, 124,26, 126,90, 128,29, 128,32, 129,17, 133,78, 134,43, 157,90, 163,80, 164,85; EM MALDI-TOF m/z. [M+] teórico C54H70N2O5 826,52, experimental 826,51 ; I R (KBr): 2949, 2926, 2850, 1695, 1654, 1584, 1456, 1333, 1263, 808, 744 crrr1 ; UV Vis (CH2CI2), Wnm (log ε): 517 (4,4), 554 (4,6). Ejemplo 10: /V,/V'-di-(1 '-hexilheptil)-1 ,6(7)-di-/-butoxiperileno-3,4:9,10- tetracarboxidiimida (10)
Figure imgf000043_0001
10
El compuesto 10 se obtiene siguiendo el método 2. Rendimiento: 18% (75% isómero 1 ,6; 25% isómero 1 ,7 aprox.). 1 H-RMN (CDCI3) δ 0,84 (t, 12H), 1 ,25 (s ancha, 44H), 1 ,8 (m, 4H), 2,29 (m, 4H), 2,41 (m, 2H), 4,27 (d, 4H), 5,20 (m, 2H), 8,50 (m, 4H), 9,57 (isómero 1 ,6) (d, 1 H), 9,64 (isómero 1 ,7) (d, 1 H); 13C-RMN (CDC ) δ 14,03, 19,56, 22,57, 22,58, 26,88, 26,93, 28,61 , 29,20, 29,23, 29,26, 29,68, 31 ,75, 31 ,76, 32,42, 54,46, 54,89, 119,06, 120,80, 123,85, 127,29, 127,98, 128,74, 129,29, 130,79, 134,29, 156,98, 158, 14, 163,82, 164,91 ; EM MALDI-TOF m/z. [M+] teórico CssHysNaOe 898,58, experimental 898,54; IR (KBr): 2955, 2920, 2858, 1696, 1648, 1596, 1458, 1327, 802, 755 crrr1 ; UV Vis (CH2CI2), maJnm (log ε): 539 (4,5), 570 (4,6).
Ejemplo 11 : /V,/V'-di-(1 '-hexilheptil)-1 -decanoxiperileno-3,4:9,10- tetracarboxidiimida (11 )
Figure imgf000044_0001
El compuesto 11 se obtiene mediante el método 1. Rendimiento: 60%. 1 H-RMN (CDCb) δ 0,82 (t, 15H), 1 ,25 (s ancha, 44H), 1 ,6 (m, 2H), 1 ,87 (m, 4H), 2, 12 (m, 2H), 2,26 (m, 4H), 4,53 (t, 2H), 5,20 (m, 2H), 8,60 (m, 6H), 9,64 (d, 1 H) ; 13C-RMN (CDCb) δ 14,02, 14,08, 22,57, 22,65, 26,30, 2693, 29,20 29,23, 29,28, 29,33, 29,55, 29,56, 31 ,75, 31 ,75, 31 ,87, 32,37, 54,58, 70,69, 120,55, 121 ,80, 123,38, 124,31 , 126,98, 128,33, 128,38, 129,21 , 133,84, 134,51 , 157,89, 163,54, 164,62; EM MALDI-TOF m/z. [M+] teórico C60H82N2O5 910,62, experimental 910,63 ; IR (KBr): 2926, 2844, 1701 , 1660, 1584, 1461 , 1316, 1257, 855, 802, 744 crrr1; UV Vis (CH2CI2), maJnm (log ε): 518 (4,5), 554 (4,6).
Ejemplo 12: /V,/V'-di-(1 '-hexilheptil)-1 ,6(7)-didecanoxiperileno-3,4:9,10- tetracarboxidiimida (12)
Figure imgf000045_0001
El compuesto 12 se obtiene según el método 2. Rendimiento: 20% (74% isómero 1,6; 26% isómero 1,7 aprox.). El tiempo de reacción fue de 72h.1H-RMN (CDCb) δ 0,82 (m, 18H), 1,25 (s ancha, 56H), 1,6 (m, 4H), 1,87 (m, 4H), 2,08 (m, 4H), 2,27 (m, 4H), 4,49 (t, 4H), 5,20 (m, 2H), 8,39-8,67 (m, 4H), 9,57 (isómero 1,6) (d,1H), 9,64 (isómero 1,7) (d, 1H); 13C-RMN (CDCb) δ 14,03, 14,09, 22,58, 22,66, 26,30, 26,93, 29,28, 29,55, 29,69, 31,75, 31,76, 31,77, 31,87, 32,43, 37,10, 54,44, 54,90, 70,65, 119,10, 120,77, 123,88, 127,22, 128,01, 128,74, 130,82, 134,34, 156,91, 158,07, 163,69, 164,88; EM MALDI-TOF m/z. [M+H+] teórico C70H102N2O61067,78, experimental 1067,81; IR (KBr): 2908, 2844, 1701, 1642, 1590, 1461, 1321 crrr1; UV Vis (CH2CI2), maJnm (log ε): 535 (4,6), 571 (4,7).
Ejemplo 13: /V,/V'-di-(1 '-hexilheptil)-1 -fenilmetoxiperileno-3,4:9,10- tetracarboxidiimida (13)
Figure imgf000046_0001
13
El compuesto 13 se obtiene siguiendo el método 1. Rendimiento: 18%.1H-RMN (CDCb) δ 0,83 (t, 12H), 1,25 (s ancha, 32H), 1,88 (m, 4H), 2,27 (m, 4H), 5,18 (m, 2H), 5,59 (s, 2H) 8,62 (m, 6H), 9,58 (d, 1H) ; 13C-RMN (CDCb) δ 14,01, 22,56, 26,91, 29,19, 29,21, 31,74, 32,37, 54,58, 70,56, 72,49, 121,12, 121,98, 123,52, 124,62, 127,04, 128,10, 128,52, 128,76, 128,98, 129,07, 129,22, 134,05, 134,30, 135,06, 157,41, 163,79, 164,66; EM MALDI-TOF m/z. [M+H+] teórico C57H68N2O5861,52, experimental 861,53; IR (KBr): 2920, 2938, 1695, 1636, 1601, 1327, 1257, 802, 744 cm"1; UV Vis (CH2CI2), Wnm (log ε): 514 (4,5), 550 (4,7).
Ejemplo 14: /V,/V'-di-(1 '-hexilheptil)-1 -fenetoxiperileno-3,4:9,10- tetracarboxidiimida (14)
Figure imgf000047_0001
14
El compuesto 14 se obtiene siguiendo el método 1. Rendimiento: 44%. El tiempo de reacción para este compuesto fue de 72 horas. 1 H-RMN (CDCb) δ 0,83 (t, 12H), 1 ,25 (s ancha, 32H), 1 ,90 (m, 4H), 2,26 (m, 4H), 3,42 (t, 2H), 4,75 (m, 2H), 5,20 (m, 2H), 7,33- 7,46 (m, 5H), 8,47 (m, 6H), 9,20 (d, 1 H) ; 13C-RMN (CDCb) δ 14,02, 22,57, 26,93, 26,96, 29,20, 29,23, 29,67, 31 ,75, 31 ,76, 32,36, 32,39, 35,82, 54,61 , 54,88, 71 ,02, 120,70, 121 ,76, 122,87, 123,34, 124,36, 126,82, 127,13, 128,32, 128,67, 128,89, 129,10, 133,84, 134,1 1 , 134,35, 137,42, 157,45, 163,80, 164,57 ; EM MALDI-TOF m/z. [M+] teórico C58H70N2O5 874,53, experimental 874,24 ; IR (KBr): 2955, 2932, 2850, 1695, 1648, 1590, 1421 , 1327, 1263, 808, 744 crrr1 ; UV Vis (CH2CI2), maJnm (log ε): 517 (4,6), 552 (4,78).
Ejemplo 15: AT-di-(1 '-hexilheptil)-1 ,6(7)- difenetoxiperileno-3,4:9,10- tetracarboxidiimida (15)
Figure imgf000048_0001
15
El compuesto 15 se obtiene siguiendo el método 2. Rendimiento: 54% (72% isómero 1 ,6; 28% isómero 1 ,7 aprox.); 1H-RMN (THF-d8) δ 0,84 (t, 12H), 1 ,30 (s ancha, 32H), 1 ,85 (m, 4H), 2,35 (m, 4H), 3,37 (t, 4H), 4,73 (t, 4H), 5,22 (m, 2H), 7,25 (t, 2H), 7,39 (t, 4H), 7,51 (d, 4H), 8,35 (m, 4H), 9,12 (isómero 1 ,6) (d, 1 H), 9,20 (isómero 1 ,7) (d, 1 H); 13C-RMN (CDCIs) δ 14,02, 22,57, 22,59, 26,87, 26,92, 26,96, 29,19, 29,22, 29,26, 29,35, 29,69, 31 ,74, 31 ,76, 31 ,78, 32,39, 32,42, 32,44, 35,85, 54,47, 54,89, 71 ,00, 71 ,06, 119,26, 123,86, 127,04, 127,06, 127,58, 127,82, 128,53, 128,85, 128,89, 130,76, 137,56, 156,47, 157,60; EM MALDI-TOF m/z: [M+] teórico CeeHysNaOe: 994,58, experimental: 994,58; IR (KBr): 2955, 2914, 2850, 1695, 1642, 1590, 1467, 1231 crrr1; UV Vis (CH2CI2), λ™χ/ηΓη (log ε): 534 (4,6), 570 (4,7).
Ejemplo 16: /V,/V'-di-(1 '-hexilheptil)-1 -butoxi-6(7)-decanoxiperileno- 3,4:9,10-tetracarboxidiimida (16)
Figure imgf000049_0001
16
El compuesto 16 se obtiene siguiendo el método 4. Rendimiento: 23% (72% isómero 1,6; 28% isómero 1,7).1H-RMN (CDCb) δ 0,83 (m, 18H), 1,29 (s ancha, 42H), 1,45 (m, 4H), 1,63 (m, 4H), 1,86 (m, 4H), 2,08 (m,2H), 2,28 (m, 4H), 4,49 (t, 4H), 5,20 (m, 2H), 8,55 (m, 4H), 9,56 (isómero 1,6) (d, 1H), 9,65 (isómero 1,7) (d, 1H) ; 13C-RMN (CDCb) δ 14,02, 14,08, 22,57, 22,65, 26,30, 26,90, 26,93, 29,20, 29,22, 29,25, 29,28, 29,31, 29,36, 29,54, 31,75, 31,77, 31,87, 32,42, 54,43, 54,88, 70,63, 119,06, 120,72, 123,85, 127,19, 127,97, 128,56, 128,72, 129,29, 130,45, 130,78, 131,17, 134,32, 156,88, 158,04, 163,70, 164,10, 164,64, 165,14; EM MALDI-TOF m/z. [M+] teórico C64H90N2O6 982,68, experimental 981,54; IR (KBr):2955, 2926, 2844, 1686, 1685, 1596, 1467, 1321, 855, 802, 744 crrr1; UV Vis (CH2CI2), maJnm (log ε): 536 (5,1), 570 (5,2).
Ejemplo 17: /V,/V'-di-(1 '-hexilheptil)-1 -{2'[2"-(2"'-hidroxietoxi)etoxi]etoxi}perileno- 3,4:9,10-tetracarboxidiimida (17)
Figure imgf000050_0001
17
El compuesto 17 se obtiene siguiendo el método 1. Rendimiento: 7% El tiempo de reacción para este compuesto fue de 72 horas. Se purifica mediante cromatografía en columna con gel de sílice y tolueno: metanol 9:1 como eluyente.1H-RMN (CDCb) δ 0,83 (t, 12H), 1,25 (s ancha, 32H), 1,86 (m, 4H), 2,26 (m, 4H), 3,69 (m, 2H), 3,77 (m, 2H), 3,84 (m, 2H), 3,90 (m, 2H), 4,13 (m, 2H), 4,68 (m, 2H), 5,20 (m, 2H), 8,48 (m, 6H), 9,79 (d, 1H); 13C-RMN (CDCb) δ 14,03, 22,57, 26,91, 29,20, 29,21, 29,68, 31,74, 31,75, 32,38, 54,65, 31,74, 68,45, 69,26, 69,54, 70,60, 70,65, 71,00, 71,08, 71,19, 72,44, 72,72, 121,24, 122,01, 123,56, 124,67, 127,11, 128,53, 129,14, 129,25, 134,12, 134,49, 157,59, 163,73, 164,82 ; EM MALDI-TOF m/z. [M+] teórico C56H74N2O8 902,54, experimental 902,55; IR (KBr): 2955, 2926, 2844, 1736, 1683, 1596, 1666, 1461, 1333, 1129, 808, 744 cm1; UV Vis (CH2CI2), maJnm (log ε): 516 (4,6), 551 (4,75).
Ejemplo 18: /V,/V'-di-(1 '-hexilheptil)-1 -(2'-hidroxietioxi)perileno-3,4:9,10- tetracarboxidiimida (18)
Figure imgf000051_0001
18
El compuesto 18 se obtiene siguiendo el método 1. Rendimiento: 43%. El tiempo de reacción para este compuesto fue de 72 horas. Se purifica mediante cromatografía en columna con gel de sílice y tolueno: metanol 9:1 como eluyente. 1 H-RMN (THF-cfe) δ 0,86 (t, 12H), 1 ,35 (s ancha, 32H), 1 ,88 (m, 4H), 2,32 (m, 4H), 4,17 (t, 2H), 4,57 (t, 2H), 5,18 (m, 2H), 8,40 (m, 6H), 9,60 (d, 1 H) ; 13C-RMN (CDC ) δ 14,02, 22,58, 26,97, 29,23, 31 ,76, 32,35, 47,17, 54,67, 61 ,25, 63,03, 69,32, 70,53, 71 ,62, 121 ,78, 122,03, 123,29, 124,45, 126,76, 128,22, 128,47, 129,03, 129,80, 134,14, 134,22, 157,39 ; EM MALDITO F m/z: [M+] teórico CsaHeeNaOe: 814,49, experimental: 814,48; IR (KBr): 3451 , 2955, 2926, 2850, 1695, 1648, 1578, 1339 crrr1 ; UV Vis (CH2CI2), maJnm (log ε): 512 (4,6), 547 (4,7).
Ejemplo 19: /V,/V'-di-(1 '-hexilheptil)-1 -(8'-hidroxioctiloxi)perileno-3,4:9,10- tetracarboxidiimida (19)
Figure imgf000052_0001
19
El compuesto 19 se puede preparar siguiendo el método 1. Rendimiento: 26%.1H-RMN (THF-d8) δ 0,86 (t, 12H), 1,42 (s ancha, 42H), 1,88 (m, 4H), 2,16 (m, 2H), 2,33 (m, 4H), 3,51 (t, 2H), 4,50 (t, 2H), 5,19 (m, 2H), 8,41 (m, 6H), 9,44 (d, 1H) ; 13C-RMN (CDC ) δ 22,57, 25,70, 26,24, 26,92, 29,20, 29,22, 29,25, 29,34, 31,75, 32,38, 32,71, 54,64, 62,90, 70,71, 120,63, 121,91, 123,52, 124,38, 127,06, 128,38, 128,46, 128,64, 129,26, 133,95, 134,63, 157,96 ; EM MALDI-TOF m/z: [M+] teórico CssHysNaOe: 898,58, experimental: 998,61; IR (KBr): 3440, 2958, 2921, 2847, 1699, 1650, 1580, 1323 cm"1; UV Vis (CH2CI2), λ™χ/ηΓη (log ε): 518 (4,8), 554 (4,9).
Ejemplo 20: W,W'-di-(r-hexilheptil)-1,6(7)-di-(8'-hidroxioctiloxi)perileno-3,4:9,10- tetracarboxidiimid
Figure imgf000052_0002
20 El compuesto 20 se obtiene siguiendo el método 2. Rendimiento: 48% (75% isómero 1,6; 25% isómero 1,7 aprox.) ; 1H-RMN (THF-d8) δ 0,85 (t, 12H), 1,40 (s ancha, 52H), 1,86 (m, 4H), 2,12 (m, 4H), 2,35 (m, 4H), 3,50 (t, 4H), 4,49 (t, 4H), 5,20 (m, 2H), 8,27- 8,55 (m, 4H), 9,48 (isómero 1,6) (d, 1H), 9,56 (isómero 1,7) (d, 1H) ; 13C-RMN (CDCb) δ 14.03, 22,58, 25,68, 26,24, 26,91, 26,92, 29,20, 29,22, 29,24, 29,36, 29,68, 31,75, 31,76, 32,40, 32,73, 54,54, 54,92, 62,91, 70,63, 72,23, 123,41, 123,82, 127,17, 127,93, 128,71, 130,73, 131,96, 134,39, 158,08 ; EM MALDI-TOF m/z: [M+] teórico CeeH^NaOs: 1042,70, experimental: 1042,72; IR (KBr): 3444, 2917, 2855, 1699, 1650, 1585 crrr1; UV Vis (CH2CI2), λ™χ/ηπι (log ε): 539 (4,7), 569 (4,7).
/V,/V'-di-(1 '-hexilheptil)-2,5,8,11 -tetrabutoxiperileno-3,4:9,10-
Figure imgf000053_0001
21 El compuesto 21 se obtiene según el método 5. Rendimiento: 8%. 1H-RMN (CDCb) δ 0,83 (t, 12H), 1,05(t, 12H), 1 ,25 (br, 32H), 1,65 (m,8H), 1,86 (m, 4H), 2,04 (m, 8H), 2,23 (m, 4H), 4,44 (m, 8H), 5,19 (m, 2H), 7,99 (s, 4H). 13C-RMN (CDCI3) δ 13,76, 13,96, 19,08, 22,48, 26,90, 29,20, 29,56, 31,24, 31,70, 32,22, 53,27, 53,86, 70,37, 98,82, 109,73, 116,65, 133,87, 162,74. EM MALDI-TOF m/z: [M+H+] teórico C66H94N2O8 1043,70, experimental 1043,71. IR (KBr): 2973, 2920, 2844, 1689, 1648, 1590, 1351, 1257, 855 crrr1. UV Vis (CH2CI2), maJnm (log ε): 412 (4,2), 497 (4,5), 535 (4,6). Ejemplo 21a: V,V'-di-(1'-hexilheptil)-2-bromo-5,8,11-tributoxiperileno-3,4:9,10- tetracarboxidiimide (21a)
Figure imgf000054_0001
21a
El compuesto 21a se obiene según el método 5. Rendimiento: 28%.1H-RMN (CDCb) δ 0,83 (t, 12H), 1,06 (m, 9H), 1,24 (br, 32H), 1,65 (m, 6H), 1,86 (m, 4H), 2,04 (m, 6H), 2,22 (m, 4H), 4,45 (m, 6H), 5,19 (m, 2H), 7,95 (s, 1H), 8,00 (s, 1H), 8,09 (s, 1H), 8,52 (s, 1H). 13C-RMN (CDCb) δ 13,86, 13,89, 14,05, 19,19, 19,21, 22,58, 22,61, 27,00, 27,03, 29,25, 29,33, 31,31, 31,35, 31,38, 31,78, 31,82, 32,27, 32,33, 54,04, 70,40, 70,57, 110,00, 116,46, 120,63, 128,49, 132,08, 133,26, 133,36, 133,95, 134,06, 162,65, 162,83, 162,87 . EM MALDI-TOF m/z: [M+] teórico CeaHssNaOyBr 1048,55, experimental 1048,72. IR (KBr): 2949, 2926, 2862, 2360, 1695, 1642, 1549, 1339, 1251, 1100, 796 crrr1. UV Vis (CH2CI2),
Figure imgf000054_0002
(log ε): 403 (4,3), 496 (4,7), 535 (4,8).
Ejemplo 21b: V,V'-di-(1'-hexilheptil)-2,5-dibromo-8,11-dibutoxiperileno-3,4:9,10- tetracarboxidiimida (mezcla de isómeros) (21b)
Figure imgf000055_0001
21b
El compuesto 21b se obtiene siguiendo el método 5. Rendimiento: 29%. 1H-RMN (CDCb) δ 0,83 (t, 12H), 1,06 (m, 6H), 1,24 (br, 32H), 1,67 (m, 4H), 1,89 (m, 4H), 2,05 (m, 4H), 2,22 (m, 4H), 4,48 (q, 4H), 5,17 (m, 2H), 8,12 (d, 2H), 8,54 (d, 2H).13C-RMN (CDCb) δ 12,86, 13,05, 18,17, 18,19, 21,58, 25,99, 28,24, 28,68, 30,32, 30,77, 31,25, 69,57, 69,70, 110,93, 119,34, 119,45, 127,54, 128,13, 131,03, 131,59, 132,28, 133,28, 133,81, 161,63. EM MALDI-TOF m/z: [M+H+] teórico CssHyeNaOeBra 1055,40, experimental 1055,34. IR (KBr): 2973, 2920, 2844, 1689, 1648, 1590, 1351, 1257, 855 crrr1. UV Vis (CH2CI2), maJnm (log ε): 405 (4,1), 494 (4,5), 530 (4,6).
Ejemplo 22: v,v'-di-(1'-hexilheptil)-1-hidroxiperileno-3,4:9,10-tetracarboxidiimida (22)
Figure imgf000056_0001
22
El compuesto 22 se obtiene siguiendo el método 1. Rendimiento: 40%. Como reactivo se emplea agua en vez de alcohol. Se purifica mediante cromatografía en columna con gel de sílice y hexano: dioxano 4: 1 como eluyente. 1 H-RMN (THF-cfe) δ 0,85 (t, 12H), 1 ,27-1 ,29 (m, 32H), 1 ,88 (m, 4H), 2,32 (m, 4H), 5,21 (m, 2H), 8,08-8,49 (m, 6H), 9,48 (d, 1 H), 1 1 ,03 (s, 1 H) ; 13C-RMN (CDC ) δ 13.94, 14.03, 22.5, 22.60, 26.96, 27.025, 29.18, 29.25, 31.67, 31.80, 32.41 , 70.46, 1 18.70, 121.59, 122.89, 122.92, 122.95, 124.15, 124.24, 126.49, 128.35, 128.98, 129.03, 132.71 , 134.27, 134.32, 140.52, 156.05, 219.99; EM MALDI-TOF m/z: [M -H] teórico C50H61 N2O5: 769,45, experimental: 769,44; IR (KBr): 3552, 2949, 2929, 2847, 1736, 1695, 1658, 1580, 1331 crrr1 ; UV Vis (CH2CI2), maVnm (log ε): 504 (4,6), 541 (4,8).
ALQUILAMINO-PDI Método 1 : Síntesis de 1 -alquil(aril)aminoperileno-3,4:9,10-tetracarboxidiimida Λ/,Λ -disustituida
En un matraz de corazón de 5 mL se añaden 0,2 mmol de perileno-3,4:9, 10- tetracarboxidiimida Λ/,Λ/'-disustituida, 0,48 mL de fluoruro de tetrabutilamonio (disolución 1 M en THF, 0,48 mmol), 0,48 mmol de la amina correspondiente y 4 gotas de THF seco para homogeneizar la mezcla. Se calienta a reflujo de THF bajo atmósfera de argón durante 24 horas. El crudo se disuelve en CH2CI2 y se lava con agua. La fase orgánica se seca con Na2S04, se filtra y se elimina el disolvente a presión reducida. Se purifica mediante cromatografía en columna con gel de sílice usando una mezcla de diclorometano: hexano (1 :1) como eluyente salvo que se indique lo contrario. Método 2: Síntesis de 1 ,6(7)-di[alquil(aril)amino]perileno-3,4:9,10- tetracarboxidiimida /V,/V'-disustituida
En un matraz de fondo redondo de 10 mL se disuelven 0,2 mmol de perileno-3,4:9, 10- tetracarboxidiimida Λ/,Λ/'-disustituida en 4 mL de THF seco. A continuación se añaden 0,48 mmol de la amina correspondiente y 0,48 mL de TBAF (disolución 1 M en THF, 0,48 mmol). Se calienta a reflujo de THF bajo atmósfera de argón durante 24 horas. El crudo se disuelve en CH2CI2 y se lava con agua. La fase orgánica se seca con Na2S04, se filtra y se elimina el disolvente a presión reducida. Se purifica mediante cromatografía en columna con gel de sílice y usando una mezcla de diclorometano:hexano (1 : 1) como eluyente, salvo que se indique lo contrario.
Método 3: 1 ,6,7-tri[alquil(aril)amino]perileno-3,4:9,10-tetracarboxidiimida Ν,Ν'- disustituida y [1 ,12-dialquil(aril)amino]perileno-3, 4:9,10-tetracarboxidiimida Ν,Ν'- disustituida
A un matraz de corazón de 5 mL se añaden 0,2 mmol de perileno-3,4:9, 10- tetracarboxidiimida Λ/,Λ/'-disustituida, 1 ,2 mL de fluoruro de tetrabutilamonio (disolución 1 M en THF, 1 ,2 mmol), 3,2 mmol de la amina correspondiente (16 eq) y 4 gotas de THF seco para homogeneizar la mezcla. Se calienta a reflujo de THF bajo atmósfera de argón durante 24 horas. El crudo se disuelve en CH2CI2 y se lava con agua. La fase orgánica se seca con Na2S04, se filtra y se elimina el disolvente a presión reducida. Se purifica mediante cromatografía en columna con gel de sílice y se usa una mezcla de diclorometano:hexano (1 : 1) como eluyente, salvo que se indique lo contrario. Ejemplo 23: V, V'-bis(1'-hexilheptil)-1 -(piperidin- V-il)perileno-3,4:9,10- tetracarboxidiimida (23)
Figure imgf000058_0001
El compuesto 23 se obtiene siguiendo el método 1. Amina: piperidina. Rendimiento: 53%.1H-RMN (CDC ) δ 0,82 (t, 12H, CH3), 1,27 (s ancha, 34H, CH2 y CH2p¡pend¡na), 1,85 (m, 8H, CH2y CH2 P¡per¡d¡na), 2,26 (m, 4H, CH2), 2,96 (m, 2H, CH2pipeMma), 3,49 (m, 2H, CH2 p¡per¡d¡na), 5,20 (m, 2H, N-CH), 8,57 (m, 6H, ArH), 9,87 (d, 1H, ArH); EM MALDI-TOF m/z: [M+] teórico C55H71N3O4: 837,54, experimental: 837,52; IR (KBr) (cm"1): 2.952, 2.925, 2.854, 1.695, 1.654, 1.589, 1.409, 1.330, 1.249; UV-vis (CHC ) maJnm (log ε): 447 (4,25), 601 (4,35).
Ejemplo 24: W,W'-bis(1'-hexilheptil)-1,6,7-tri(piperidin-V-il)perileno-3,4:9,10- tetracarboxidiimida (24)
Figure imgf000059_0001
24
El compuesto 24 se obtiene según el método 3. Amina: piperidina. Rendimiento: 55%. 1H-RMN (CDC ) δ 0,83 (t, 12H, CH3), 1,26 (s ancha, 40H, CH2y CH2 piperidina), 1,70 (m, 4H, CH2 piperidina ), 1,89 (m, 14H, CH2y CH2 piperidina ), 2,27 (m, 4H, CH2), 2,41 (t, 1H, CH2 piperidina) 3,22 (m, 2H, CH2 piperidina), 3,46 (m, 2H, CH2 piperidina), 3,66 (m, 1H, CH2 piperidina),
4,22 (m, 2H, CH2Per¡d¡na), 5,21 (m, 2H, N-CW), 8,36 (m, 1H, ArH), 8,44 (m, 2H, ArH), 8,57 (m, 1H, ArH), 9,84 (d, 1H, ArH); EM MALDI-TOF m/z: [M+] teórico C65H89N5O4: 1.003,69, experimental: 1.003,68; IR (KBr) (cm"1): 2.925, 2.854, 1.687, 1.650, 1.585, 1.452, 1.438, 1.413, 1.380, 1.334, 1.305, 1.265, 1.257; UV-vis (CHCb) maJnm (log ε): 571 (4,16), 708 (4,52)
Ejemplo 25: W,W'-bis(1'-hexilheptil)-1,12-di(piperidin-V-il)perileno-3,4:9,10- tetracarboxidiimida (25)
Figure imgf000060_0001
25
El compuesto 25 se obtiene según el método 3. Amina. Piperidina. Rendimiento: 13%. 1 H-RMN (CDCb) δ 0,83 (t, 12H, CH3), 1 ,26 (s ancha, 36H, CH2 y CH2 piperidina), 1 ,47 (m, 4H, CH2 piperidina ), 1 ,74 (m, 2H, CH2 piperidina ), 1 ,89 (m, 6H, CH2 y CH2 piperidina ), 2,00 (m, 2H, CH2 piperidina), 2, 13 (t, 2H, CH2 piperidina ), 2,29 (m, 4H, CH2), 3,48 (t, 2H, a-CH2 piperita), 4,32 (m, 2H, CH2 p¡per¡d¡na), 5,24 (m, 2H, N-CW), 8,58 (m, 4H, ArH), 8,64 (m, 2H, ArH). EM MALDI-TOF m/z: [M+] teórico CeoHsoINUCU: 920,62, experimental: 920,39. IR (KBr) (cnr 1): 2.954, 2.925, 2.854, 1.689, 1.652, 1.585, 1.461 , 1.438, 1.41 1 , 1.376, 1.307, 1.259, 806. UV-vis (CHCb) maJnm (log ε): 436 (3,97), 556 (4,01), 676 (4,43).
Ejemplo 26: W,W'-bis(1'-hexilheptil)-1 ,6(7)-di(piperidin- V-il)perileno-3,4:9,10- tetracarboxidiimida (26)
Figure imgf000061_0001
26
El compuesto 26 se obtiene según el método 2. Amina: piperidina. Rendimiento: 30% (67% isómero 1,6; 33% isómero 1,7 aprox.).1H-RMN (CDCb) δ 0,83 (t, 12H, CH3), 1,26 (s ancha, 36H, CH2y CH2pipeMma), 1,80 (m, 12H, CH2y CH2pipeMma), 2,25 (m, 4H, CH2), 2,93 (m, 4H, CH2 piperidina ), 3,39 (m, 2H, CH2 piperidina ), 3,54 (m, 2H, CH2 piperidina ), 5,19 (m, 2H, N-CW), 8,58 (m, 4H, ArH), 9,68 (isómero 1,6) (d, 1H, ArH), 9,74 (isómero 1,7) (d, 1H, ArH). EM MALDI-TOF m/z: [M+] teórico CeoHsoINUCU: 920,62, experimental: 920,39. IR (KBr) (cm-1): 2.924, 2.853, 1.692, 1.653, 1.584, 1.451, 1.411, 1.338, 1.321, 1.249, 1.219, 809. UV-vis (CHCb) maJnm (log ε): 400 (4,04), 435 (3,91), 659 (4,36).
Ejemplo 27: W,W'-bis(1'-hexilheptil)-1,6(7)-di(morfolin-V-il)perileno-3,4:9,10- tetracarboxidiimida (27)
Figure imgf000062_0001
27
El compuesto 27 se obtiene siguiendo el método 3. Amina: Morfolina. Eluyente usado en la cromatografía en columna: diclorometano para obtener 27 seguido de diclorometano:acetato de etilo (9:1) para obtener 28. Rendimiento: 22% (50% isómero 1,6; 50% isómero 1,7aprox.).1H-RMN (CDC ) δ 0,84 (t, 12H, CH3), 1,26 (s ancha, 32H, CH2), 1,86 (m, 4H, CH2), 2,26 (m, 4H, CH2), 3,14 (m, 4H, CH2 morena), 3,30 (d, 2H, CH2 morfolina ), 3,46 (d, 2H, CH2 morfolina ), 3,96 (m, 8H, CH2 morfolina ), 5,19 (m, 2H, H-CH), 8,47 (m, 4H, ArH), 9,84 (isómero 1,6) (d, 1H, ArH), 9,90 (isómero 1,7) (d, 1H, ArH). EM MALDITO F m/z: [M+] teórico CssHyeINUOe: 924,58, experimental: 924,12. IR (KBr) (cnr1): 2.958, 2.923, 2.854, 1.693, 1.652, 1.594, 1.585, 1.413, 1.334, 1.322, 1.259, 1.118, 1.093, 1.024. UV-vis (CHC ) maJnm (log ε): 400 (3,92), 426 (3,95), 640 (4,31).
Ejemplo 28: V,V'-bis(1'-hexilheptil)-1,6,7-tri(morfolin-V-il)perileno-3,4:9,10- tetracarboxidiimida (28)
Figure imgf000063_0001
28
El compuesto 28 se obtiene mediante el método 3. Amina: morfolina. Eluyente usado en la cromatografía en columna: diclorometano para obtener 27 seguido de diclorometano:acetato de etilo (9: 1) para obtener 28. Rendimiento: 40%. 1 H-RMN (CDC ) δ 0,84 (t, 12H, CH3), 1 ,26 (s ancha, 32H, CH2), 1 ,88 (m, 6H, CH2 y CH2 morfolina) , 2,26 (m, 6H, CH2 y CH2 morfolina ), 2,45 (m, 1 H, CH2 morfolina ), 2,65 (m, 1 H, CH2 morfolina), 3, 17 (m, 2H, CH2 morfolina), 3,37 (m, 2H, CH2 morfolina), 3,51 (m, 2H, CH2 morfolina), 3,80 (m, 4H, CH2 morfolina), 4,09 (m, 8H, CH2 morfolina), 5,21 (m, 2H, N-CH), 8,48 (m, 4H, ArH), 9,82 (d, 1 H, ArH). EM MALDI-TOF m/z: [M+] teórico CeaHssNsOy: 1.009,63, experimental: 1.009,09. IR (KBr) (crrr1): 2.954, 2.923, 2.853, 1.689, 1.651 , 1.585, 1.457, 1.415, 1.364, 1.332, 1.305, 1.254, 1.1 14. UV-vis (CHC ) Amax/nm (log ε): 556 (4,23), 681 (4,53).
Ejemplo 29: /V,yV'-bis(1'-hexilheptil)-1 -(4-metilpiperazin-1 -il)perileno-3,4:9,10- tetracarboxidiimida (29)
Figure imgf000064_0001
29
El compuesto 29 se obtiene siguiendo el método 3. Amina: 1-Metilpiperazina. Eluyente usado en la cromatografía en columna: diclorometano:acetato de etilo (1 :2). Rendimiento: 43%. 1 H-RMN (CDC ) δ 0,83 (t, 12H, CH3), 1 ,28 (s ancha, 32H, CH2), 1 ,85 (m, 4H, CH2), 2,23 (m, 4H, CH2), 2,53 (s, 3H, CH3 piperazina ), 2,69 (m, 2H, CH2 piperazina ) ,
3,00 (m, 2H, CH2 piperazina), 3,27 (m, 2H, CH2 piperazina), 3,52 (m, 2H, CH2 piperazina), 5,18 (m,
2H, N-CH), 8,60 (m, 6H, ArH), 9,93 (d, 1 H, ArH). EM MALDI-TOF m/z: [M+] teórico C55H72N4O4: 852,56, experimental: 852,08. IR (KBr) (crrr1): 2.952, 2.925, 2.854, 1.695, 1.654, 1.589, 1.459, 1.409, 1.332, 1.249, 809. UV-vis (CHCb) maJnm (log ε): 446 (3,16), 591 (3,34).
Ejemplo 30: W,W'-bis(1'-hexilheptil)-1 ,6-di(4-metilpiperazin-1 -il)perileno-3,4:9,10- tetracarboxidiimida (30)
Figure imgf000065_0001
30
El compuesto 30 se obtiene siguiendo el método 3 Amina: 1-Metilpiperazina. Rendimiento: 19%. 1 H-RMN (CDC ) δ 0,84 (t, 12H, CH3), 1 ,26 (s ancha, 32H, CH2), 1 ,87 (m, 4H, CH2), 2,25 (m, 4H, CH2), 2,51 (s, 6H, CH3 piperazina ), 2,63 (m, 4H, CH2 piperazina ) , 2,96 (m, 4H, CH2 piperazina ), 3, 18 (m, 4H, CH2 piperazina ), 3,42 (m, 4H, CH2 piperazina ), 5,21 (m, 2H, N-CW), 8,40 (s, 2H, ArH), 8,62 (m, 2H, ArH), 9,77 (d, 2H, ArH). EM MALDI-TOF m/z: [M+] teórico CeoHeaNeO^ 950,64, experimental: 950,40. IR (KBr) (cor1): 2.924, 2.852, 1.693, 1.653, 1.585, 1.460, 1.426, 1.339, 1.319, 1.261 , 1.246, 1.142. UV-vis (CHC ) Amax nm (log ε): 634 (4,30).
Ejemplo 31 : W,W'-bis(1'-hexilheptil)-1 ,7-di(4-metilpiperazin-1 -il)perileno-3,4:9,10- tetracarboxidiimida
Figure imgf000066_0001
31
El compuesto 31 se obtiene siguiendo el método 3. Amina: 1-metilpiperazina. Rendimiento: 5%. 1H-RMN (CDC ) δ 0,83 (t, 12H, CH3), 1,25 (s ancha, 32H, CH2), 1,83 (m, 4H, CH2), 2,23 (m, 4H, CH2), 2,56 (s, 6H, CH3 piperazina ), 2,70 (m, 4H, CH2 piperazina ), 3,02 (m, 4H, CH2 piperazina ), 3,31 (m, 4H, CH2 piperazina ), 3,59 (m, 4H, CH2 piperazina ), 5,18 (m, 2H, N-CW), 8,46 (m, 4H, ArH), 9,69 (d, 2H, ArH). EM MALDI-TOF m/z: [M+] teórico CeoHsaNeCU: 950,64, experimental: 950,89. IR (KBr) (crrr1): 2.954, 2.925, 2.854, 1.693, 1.652, 1.594, 1.583, 1.413, 1.340, 1.324, 1.255. UV-vis (CHC ) maJnm (log ε): 429 (3,82), 661 (3,96).
Ejemplo 32: /V,/V'-di-(1 '-hexilheptil)-1 -(fenilamino)-3,4:9,10-tetracarboxidiimida (32)
Figure imgf000067_0001
32
El compuesto 32 se obtiene mediante el método 1. Amina: Anilina. Rendimiento: 72%. 1H-RMN (CDC ) δ 0,82 (t, 12H, CH3), 1,25 (s ancha, 32H, CH2), 1,85 (m, 4H, CH2), 2,20 (m, 4H, CH2), 5,50 (m, 2H, N-CH), 6,94 (s ancha, 1H, NH) 7,17 (m, 3H, ArH), 7,41 (m, 1H, ArH), 8,50 (m, 4H, ArH), 8,65 (m, 2H, ArH), 9,17 (d, 1H, ArH). EM MALDI-TOF m/z: [M+] teórico CseHeyNsCU: 845,51, experimental: 845,31. IR (KBr) (cor1): 3.319, 2.954, 2.924, 2.854, 1.694, 1.654, 1.589, 1.418, 1.332, 1.270, 1.248. UV-vis (CHC ) maJnm (log ε): 449 (3,81), 606 (3,93). Ejemplo 33: V,V'-bis(1'-ciclohexil)-1,6-di(piperidin-V-il)perileno-3,4:9,10- tetracarboxidiimida (33)
Figure imgf000068_0001
33
El compuesto 33 se obtiene siguiendo el método 1. Amina: Piperidina. Eluyente usado en la cromatografía en columna: diclorometano:hexano (9:1). Rendimiento: 19%. 1H- RMN (CDC ) δ 1,45 (m, 10H, CH2y CH2 p¡perid¡na), 1,77-1,89 (m, 18H, CH2y CH2 p¡perid¡na), 2,58 (m, 4H, CH2), 2,86 (m, 4H, CH2 piperidina), 3,37 (m, 4H, CH2 p¡Perid¡na), 5,05 (m, 2H, N- CH), 8,37 (s, 2H, ArH), 8,58 (d, 2H, ArH), 9,73 (d, 2H, ArH). EM MALDI-TOF m/z: [M+] teórico C46H48N4O4: 720,37, experimental: 719,83. L. Fan, Y. Xu and H. T\an;Tetrahedron Lett.2005, 46, 4443-4447. Ejemplo 34: V,V'-bis(1'-ciclohexil)-1,7-di(piperidin-V-il)perileno-3,4:9,10- tetracarboxidiimida (34)
Figure imgf000068_0002
34
El compuesto 34 se obtiene siguiendo el método 1. Amina: Piperidina. Eluyente usado en la cromatografía en columna: diclorometano:hexano (9:1). Rendimiento: 9%. 1H- RMN (CDCIa) δ 1,46 (m, 10H, CH2 CH2pipeMma), 1,76-1,94 (m, 18H, CH2y CH2p¡perid¡na), 2,58 (m, 4H, CH2), 2,91 (m, 4H, CH2p¡Pend¡na), 3,48 (m, 4H, CH2pipendina), 5,05 (m, 2H, N- CH), 8,38 (d, 2H, ArH), 8,44 (d, 2H, ArH), 9,61 (d, 2H, ArH). EM MALDI-TOF m/z: [M+] teórico C46H48N4O4: 720,37, experimental: 720,21. L. Fan, Y. Xu and H. Tian; Tetrahedron Lett.2005, 46, 4443-4447.
Ejemplo 35: W,W'-bis(1'-ciclohexil)-1,6,7-tri(piperidin-V-il)perileno-3,4:9,10- tetracarboxidiimida (35)
Figure imgf000069_0001
35
El compuesto 35 se obtiene siguiendo el método 1. Amina: Piperidina. Eluyente usado en la cromatografía en columna: diclorometano:hexano (9:1). Rendimiento: 4%. 1H- RMN (CDC ) δ 1,41 (m, 12H, CH2y CH2 piperidina), 1,61-2,19 (m, 26H, CH2y CH2p¡Per¡d¡na), 2,40 (m, 1H, OH2 piperidina ), 2,62 (m, 4H, CH2), 3,20 (m, 2H, CH2 piperidina ), 3,46 (m, 2H, CH2 piperidina ), 3,64 (m, 1H, CH2 piperidina ), 4,19 (m, 2H, CH2 piperidina ), 5,10 (m, 2H, H-CH), 8,34 (s, 1H, ArH), 8,44 (d, 2H, ArH), 8,54 (s, 1H, ArH), 9,83 (d, 1H, ArH). EM MALDI-TOF m/z: [M+] teórico C51H57N5O4: 803,44, experimental: 802,89. IR (KBr) (cor1): 2.927, 2.852, 1.687, 1.650, 1.581, 1.450, 1.440, 1.413, 1.334, 1.305, 1.259, 1.022, 804. UV-vis (CHC ) Amax/nm (log ε): 577 (4,04), 706 (4,37). Ejemplo 36: V,V'-bis(1'-ciclohexil)-1-(piperidin-V-il)perileno-3,4:9,10- tetracarboxidiimida (36)
Figure imgf000070_0001
36
El compuesto 36 se obtiene siguiendo el método 1. Amina: Piperidina. Eluyente usado en la cromatografía en columna: diclorometano:hexano (9:1). Rendimiento: 5%. 1H- RMN (CDC ) δ 1,46 (m, 8H, CH2yCH2pipe dma), 1,76 (m, 8H, CH2y CH2pipe dma), 1,85 (m, 6H, CH2y CH2 piperidina ), 2,58 (m, 4H, CH2), 2,92 (m, 2H, CH2 piperidina ), 3,44 (m, 2H, CH2 p¡per¡d¡na), 5,06 (m, 2H, N-CH), 8,48 (m, 3H, ArH), 8,54 (s, 1H, ArH), 8,59 (d, 1H, ArH), 8,62 (d, 1H, ArH), 9,82 (d, 1H, ArH). EM MALDI-TOF m/z: [M+] teórico C41H39N3O4: 637,29, experimental: 636,96. K-Y. Chen, T-C. Fang and M-J. Chang; Dyes Pigments. 2011, 92, 517-523.
Ejemplo 37: V,V'-bis(1'-ciclohexil)-1,12-di(piperidin-V-il)perileno-3,4:9,10- tetracarboxidiimida (37)
Figure imgf000070_0002
37 El compuesto 37 se obtiene siguiendo el método 1. Amina: Piperidina. Eluyente usado en la cromatografía en columna: diclorometano:hexano (9: 1). Rendimiento: 8%. 1 H- RMN (CDC ) δ 1 ,45 (m, 12H, CH2 y CH2 p¡per¡d¡na) , 1 ,65-2,02 (m, 18H, CH2 y CH2 p¡per¡d¡na) , 2, 11 (m, 2H, CH2 piperidina ), 2,62 (m, 4H, CH2), 3,49 (m, 2H, CH2 piperidina ), 4,30 (m, 2H, CH2 p¡per¡d¡na), 5, 11 (m, 2H, N-CH), 8,54 (m, 4H, ArH), 8,64 (s, 2H, ArH). EM MALDI-TOF m/z: [M+] teórico C46H48N4O4: 720,37, experimental: 719,86. IR (KBr) (cor1): 2.923, 2.852, 1.689, 1.650, 1.585, 1.438, 1.409, 1.375, 1.307, 1.259, 1.022, 804. UV-vis (CHC ) Amax/nm (log ε): 417 (3,79), 437 (3,82), 558 (3,87), 674 (4,20). ALQUILTIO-PDI
Método 1 : Síntesis de 1 -aquiltioperileno-3,4:9,10-tetracarboxidiimida
En un matraz con forma de corazón se disuelven 0,1 mmol de perileno-3,4:9, 10- tetracarboxidiimida en 0,3 ml_ de THF seco. A continuación se añaden 0,4 mmol del tiol correspondiente, 0,24 mmol de fluoruro de potasio y 0,48 mmol de 18-corona-6. Se calienta a 70°C bajo atmósfera de argón durante 24 horas. El crudo se disuelve en CH2CI2 y se lava con agua. La fase orgánica se seca con Na2SÜ4, se filtra y se elimina el disolvente a presión reducida. Se purifica mediante cromatografía en columna con gel de sílice y tolueno como eluyente.
Método 2: Síntesis de 1 ,6(7)-dialquiltioperileno-3,4:9,10-tetracarboxidiimida
En un matraz de fondo redondo se disuelven 0, 1 mmol de perileno-3,4:9, 10- tetracarboxidiimida en 2 ml_ de THF seco. A continuación se añaden 1 ,4 mmol del tiol correspondiente, 0,36 mmol de fluoruro de potasio y 0,72 mmol de 18-corona-6. Se calienta a reflujo de THF bajo atmósfera de argón durante 24 horas. El crudo se disuelve en CH2CI2 y se lava con agua. La fase orgánica se seca con Na2SÜ4, se filtra y se elimina el disolvente a presión reducida. Se purifica mediante cromatografía en columna con gel de sílice y tolueno como eluyente. Método 3: Síntesis de 2,5,8-trialquiltio-11 -bromoperileno-3,4:9,10- tetracarboxidiimida y 2,5-dialquitio-8,11 -dibromoperileno-3,4:9,10- tetracarboxidiimida
En un matraz de fondo redondo se disuelven 0,05 mmol de 2,5,8, 11-tetrabromoperileno- 3,4:9, 10-tetracarboxidiimida en 2 mL de THF seco. A continuación se añaden 0,25 mmol del tiol correspondiente 0,25 mmol de fluoruro de potasio y 0,5 mmol de 18-corona-6. Se calienta a reflujo de THF bajo atmósfera de argón durante 24 horas. El crudo se disuelve en CH2CI2 y se lava con agua. La fase orgánica se seca con Na2SÜ4, se filtra y se elimina el disolvente a presión reducida. Se purifica mediante cromatografía en columna con gel de sílice y diclorometano:hexano 1 : 1 como eluyente.
Método 4: Síntesis de 2,5,8, 11 -tetraalquiltioperileno-3, 4:9, 10-tetracarboxidiimida En un matraz de fondo redondo se disuelven 0,03 mmol de 2,5,8, 11-tetrabromoperileno- 3,4:9, 10-tetracarboxidiimida en 2 mL de THF seco. A continuación se añaden 0,21 mmol del tiol correspondiente, 0,20 mmol de fluoruro de potasio y 0,40 mmol de 18-corona-6. Se calienta a reflujo de THF bajo atmósfera de argón durante 24 horas. El crudo se disuelve en CH2CI2 y se lava con agua. La fase orgánica se seca con Na2S04, se filtra y se elimina el disolvente a presión reducida. Se purifica mediante cromatografía en columna con gel de sílice y cloroformo: hexano 1 :1 como eluyente.
Método 5: Síntesis de 1 -alcoxi-6(7)-alquiltioperileno-3, 4:9, 10-tetracarboxidiimida
En un matraz de fondo redondo se disuelven 0, 1 mmol de 1-alquiltioperileno-3,4:9, 10- tetracarboxidiimida en 2 ml_ de THF seco. A continuación se añaden 1 ,4 mmol del alcohol correspondiente y 0,36 mmol de TBAF (disolución 1 M en THF). Se calienta a reflujo de THF bajo atmósfera de argón durante 24 horas. El crudo se disuelve en CH2CI2 y se lava con agua. La fase orgánica se seca con Na2S04, se filtra y se elimina el disolvente a presión reducida. Se purifica mediante cromatografía en columna con gel de sílice y tolueno como eluyente.
Método 6: síntesis de 2-alcoxi-5,8, 11 -trialquiltioperileno-3, 4:9, 10- tetracarboxidiimida
En un matraz de fondo redondo se disuelven 0,025 mmol de 2-bromo-5,8, 11- trialquiltioperileno-3, 4:9, 10-tetracarboxidiimida en 0,5 mL de THF seco. A continuación se añaden 0, 175 mmol del alcohol correspondiente, 0, 12 mmol de TBAF (disolución 1 M en THF). Se calienta a reflujo de THF bajo atmósfera de argón durante 24 horas. El crudo se disuelve en CH2CI2 y se lava con agua. La fase orgánica se seca con Na2S04, se filtra y se elimina el disolvente a presión reducida. Se purifica mediante cromatografía en columna con gel de sílice y cloroformo: hexano 1 :1 como eluyente.
Método 7: Síntesis de 1 -alquiltioperileno-3, 4:9, 10-tetracarboxidiimida y de 1 ,6(7)- dialquiltioperileno-3, 4:9, 10-tetracarboxidiimida
En un matraz de fondo redondo se disuelven 0, 1 mmol de perileno-3,4:9, 10- tetracarboxidiimida en 2 mL de THF seco. A continuación se añaden 1 ,2 mmol del tiol correspondiente, 0,36 mmol de fluoruro de cesio y 1 ,44 mmol de 18-corona-6. Se calienta a reflujo de THF bajo atmósfera de argón durante 24 horas. El crudo se disuelve en CH2CI2 y se lava con agua. La fase orgánica se seca con Na2S04, se filtra y se elimina el disolvente a presión reducida. Se purifica mediante cromatografía en columna con gel de sílice y tolueno como eluyente.
Ejemplo 38: /V,/V'-di-(1 '-hexilheptil)-1 ,6(7)-dihexiltioperileno-3,4:9,10- tetracarboxidiimida (
Figure imgf000073_0001
38
El compuesto 38 se obtiene mediante el método 7. Rendimiento: 35%. 1 H NMR (300 MHz, CDC ) δ 0,82 (m, 18H), 1 ,25 (s ancha, 40H), 1 ,44 (m, 4H), 1 ,68 (m, 4H), 1 ,87 (m, 4H), 2,28 (m, 4H), 3,22 (t, 4H), 5,20 (m, 2H), 8,68 (s, 2H), 8,76 (s, 2H), 8,85 (m, 2H). 13C NMR (CDCb) δ 13,79, 13,90, 22,26, 22,45, 26,79, 28,27, 28,39, 29,09, 31 ,09, 31 ,63, 32,30, 35,83, 54,67, 121 ,89, 122,60, 125,54, 128,37, 128,81 , 130,59, 131 ,30, 132,32, 132,58, 138,42, 163,57, 164,53. EM MALDI-TOF m/z. [M+] teórico CeaHeeNaC^Sa 986,60, experimental 986,78. IR (KBr): 2949, 2926, 2856, 1695, 1660, 1584, 1461 , 1409, 1321 , 1240, 802, 750 crrr1. UV Vis (CH2CI2), maJnm (log ε): 430(4,2), 565 (4,6).
Alternativamente, el compuesto 38 se obtiene siguiendo el método 2. Rendimiento: 82%. Ejemplo 39: W,W'-di-(1'-hexilheptil)-1-hexiltioperileno-3,4:9,10-tetracarboxidiimida (39)
Figure imgf000074_0001
39
El compuesto 39 se obtiene mediante el método 7. Rendimiento: 32%.1H NMR (300 MHz, CDC ) δ 0,82 (m, 15H), 1,26 (s ancha, 36H), 1,46 (m, 2H), 1,72 (m, 2H), 1,86 (m, 4H), 2,25 (m, 4H), 3,25 (t, 2H), 5,20 (m, 2H), 8,62 (m, 6H), 8,94 (d, 1 H).13C NMR (CDCI3) δ 13,90, 14,01, 22,38, 22,56, 26,91, 26,92, 28,36, 28,53, 29,19, 29,21, 31,22, 31,74, 32,37, 36,18, 54,66, 54,81, 122,34, 122,71, 123,06, 123,46, 126,50, 127,06, 127,77, 128,91, 129,17, 130,45, 131,22, 132,69, 133,34, 133,96, 139,82, 163,51, 164,52. EM MALDI-TOF m/z. [M+] teórico C56H74N2O4S 870,54, experimental 870,59. IR (KBr): 2955, 2920, 2856, 1689, 1660, 1578, 1450, 1391, 1327, 8142, 738 crrr1. UV Vis (CH2CI2), Wnm (log ε): 445(4,2), 543 (4,6).
Alternativamente, el compuesto 39 se obtiene siguiendo el método 1. Rendimiento: 41%.
Ejemplo 40: /V,/V'-di-(1 '-hexilheptil)-1 -s-butiltioperileno-3,4:9,10- tetracarboxidiimida (40)
Figure imgf000075_0001
40
El compuesto 40 se obtiene siguiendo el método 1. Rendimiento: 33% (50% con el método 2 tras 3 días).1H NMR (300 MHz, CDCb) δ 0,82 (m, 12H), 1,04 (t, 3H), 1,27 (s ancha, 32H), 1,61 (m, 3H), 1,75 (m, 1H), 1,86 (m, 4H), 2,25 (m, 4H), 3,66 (m, 2H), 5,20 (m, 2H), 8,65-8,82 (m, 6H), 8,99 (d, 1H).13C NMR (CDCb) δ 11,4, 14,02, 20,47, 22,56, 22,57, 26,91, 29,18, 29,22, 29,41, 29,54, 29,60, 31,74, 31,75, 32,38, 47,04, 54,68, 63,10, 122,45, 123,48, 126,80, 127,11, 127,96, 128,89, 129,79, 130,39, 131,19, 133,52, 134,00, 138,67, 163,63, 164,56. EM MALDI-TOF m/z, [M +H+] teórico C54H70N2O4S 842,51, experimental 842,51. IR (KBr): 2921, 2851, 1695, 1662, 1589, 1462, 1397, 1343, 1241, 1070, 808, 747 crrr1. UV Vis (CH2CI2), maJnm (log ε): 450 (4,0), 535 (4,4).
Ejemplo 41 : /V,/V'-di-(1 '-hexilheptil)-1 ,6(7)-di-s-butiltioperileno-3,4:9,10- tetracarboxidiimida (41)
Figure imgf000076_0001
41
El compuesto 41 se obtiene mediante el método 2. Rendimiento: 20% (no se puede determinar la proporción de cada isómero).1H NMR (300 MHz, CDCb) δ 0,82 (m, 12H), 1,04 (t, 6H), 1,29 (s ancha, 32H), 1,59 (m, 6H), 1,75 (m, 2H), 1,86 (m, 4H), 2,24 (m, 4H), 3,64 (m, 4H), 5,20 (m, 2H), 8,67-8,89 (m, 6H).13C NMR (CDCb) δ 11,43, 11,53, 14,03, 20,49, 22,57, 26,92, 29,21, 29,39, 29,69, 31,75, 32,43, 46,53, 46,58, 54,74, 122,06, 125,79, 125,81, 128,61, 129,40, 129,96, 132,26, 132,70, 133,37, 137,52, 138,73, 163,62, 164,75. EM MALDI-TOF m/z, [M+H+] teórico C58H78N2O4S2 930,54, experimental 930,58. IR (KBr): 2925, 2855, 1695, 1654, 1585, 1458, 1397, 1319, 1249, 1172, 808 crrr1. UV Vis (CH2CI2), maJnm (log ε): 445 (4,0), 557 (4,4).
Ejemplo 42: V,V'-di-(1'-hexilheptil)-1,6(7)-di-í-butiltioperileno-3,4:9,10- tetracarboxidiimida (42)
Figure imgf000077_0001
42
El compuesto 42 se obtiene siguiendo el método 1. Rendimiento: 21% (81% isómero 1,6; 9% isómero 1,7 aprox.).1H NMR (300 MHz, CDC ) δ 0,82 (m, 12H), 1,27 (s ancha, 50H), 1,88 (m, 4H), 2,24 (m, 4H), 5,18 (m, 2H), 8,64 (s, 2H), 8,96 (s, 2H), 9,33 (d, 1H), 9,43 (d, 1H).13C NMR (CDCI3) δ 14,02, 22,57, 26,95, 29,20, 31,04, 31,74, 32,39, 50,88, 54,79, 122,38, 123,16, 127,15, 128,44, 129,41, 130,01, 131,61, 133,61, 13367, 138,05, 139,75, 140,61, 163,46, 164,60. EM MALDI-TOF m/z, [M+H+] teórico C58H78N2O4S2 930,54, experimental 930,62. IR (KBr): 2926, 2850, 1706, 1660, 1584, 1450, 1403, 1316, 1246, 1176, 802 crrr1. UV Vis (CH2CI2), max/nm (log ε): 545 (4,6).
Ejemplo 43: N,N'-d-(1 '-hexilheptil)-1 -í-butiltioperileno-3,4:9,10- tetracarboxidiimida (43)
Figure imgf000078_0001
43
El compuesto 43 se obtiene siguiendo el método 1. Rendimiento: 12%.1H NMR (300 MHz, CDC ) δ 0,82 (m, 12H), 1,27 (s ancha, 41H), 1,87 (m, 4H), 2,24 (m, 4H), 5,18 (m, 2H), 8,65 (m, 5H), 8,96 (s, 1H), 9,80 (d, 1H).13C NMR (CDCI3) δ 14,02, 22,55, 22,57, 26,93, 29,17, 29,21, 29,68, 31,14, 31,74, 32,40, 51,52, 54,74, 122,82, 123,37, 127,16, 128,05, 128,47, 128,78, 130,89, 131,20, 131,88, 133,85, 134,30, 163,66, 164,32. EM MALDI-TOF m/z, [M+] teórico C54H70N2O4S 842,51, experimental 842,53
IR (KBr): 2926, 2862, 1701, 1660, 1578, 1461, 1397, 1333, 1251, 808, 750. UV Vis (CH2CI2), maVnm (log ε): 496 (4,4), 530 (4,6).
Ejemplo 44: /V,/V'-di-(1 '-hexilheptil)-1 ,6(7)-dioctiltioperileno-3,4:9,10- tetracarboxidiimida (44)
Figure imgf000079_0001
44
El compuesto 44 se obtiene siguiendo el método 2. Rendimiento: 71% (75% isómero 1,6; 25% isómero 1,7aprox).1H NMR (300 MHz, CDCb) δ 0,83 (m, 18H), 1,24 (s ancha, 48H), 1,43 (m, 4H), 1,69 (m, 4H), 1,87 (m, 4H), 2,24 (m, 4H), 3,22 (t, 4H), 5,20 (m, 2H), 8,67 (m, 2H), 8,76 (m, 2H), 8,85 (m, 2H).13C NMR (CDCb) δ 14,03, 22,57, 26,92, 28,42, 28,84, 28,87, 29,01, 29,02, 29,19, 29,22, 29,25, 31,69, 31,76, 32,43, 35,98, 54,78, 121,43, 122,00, 123,17, 125,65, 127,82, 128,05, 128,49, 128,93, 130,59, 131,48, 132,43, 132,68, 138,57, 163,59, 164,68. EM MALDI-TOF m/z, [M +H+] teórico C66H94N2O4S21042,67, experimental 1042,71. IR (KBr): 2920, 2838, 1701, 1654, 1592, 1461, 1397, 1321, 1240, 808 crrr1. UV Vis (CH2CI2), maJnm (log ε): 430 (4,2), 564 (4,6).
Ejemplo 45: W,W'-di-(1'-hexilheptil)-1-octiltioperileno-3,4:9,10-tetracarboxidiimida (45)
Figure imgf000080_0001
45
El compuesto 45 se obtiene siguiendo el método 1. Rendimiento: 43%.1H NMR (300 MHz, CDC ) δ 0,82 (m, 15H), 1,25 (s ancha, 40H), 1,46 (m, 2H), 1,72 (m, 2H), 1,87 (m, 4H), 2,24 (m, 4H), 3,25 (t, 2H), 5,18 (m, 2H), 8,64 (m, 6H), 8,96 (d, 1H).13C NMR (CDCI3) δ 14,02, 22,57, 26,91, 28,40, 28,85, 29,02, 29,03, 29,19, 29,22, 31,70, 31,74, 31,75, 32,39, 36,24, 54,68, 122,39, 123,52, 126,54, 127,11, 127,82, 128,94, 129,23, 130,55, 131,28, 132,79, 133,41, 134,03, 134,23, 139,87, 163,59, 164,58. EM MALDI-TOF m/z, [M+H+] teórico CssHysNaCUS 898,57, experimental 898,54. IR (KBr): 2926, 2862, 1706, 1654, 1590, 1456, 1415, 1345, 1246, 802, 750 crrr1. UV Vis (CH2CI2), maJnm (log ε): 445 (4,1), 543 (4,5).
Ejemplo 46: W,W'-di-(1'-hexilheptil)-1-deciltioperileno-3,4:9,10-tetracarboxidiimida (46)
Figure imgf000081_0001
46
El compuesto 46 se obtiene siguiendo el método 1. Rendimiento: 40%.1H NMR (300 MHz, CDC ) δ 0,82 (m, 15H), 1,23 (s ancha, 44H), 1,43 (m, 2H), 1,73 (m, 2H), 1,87 (m, 4H), 2,25 (m, 4H), 3,25 (t, 2H), 5,20 (m, 2H), 8,61 (m, 6H), 8,95 (d, 1 H).13C NMR (CDCI3) δ 14,01, 14,05, 22,56, 22,61, 26,91, 26,92, 28,39, 28,85, 29,07, 29,19, 29,21, 29,22, 29,36, 29,44, 31,74, 31,81, 32,37, 36,20, 54,66, 122,32, 123,44, 126,48, 127,04, 127,75, 128,89, 129,16, 130,42, 131,28, 133,31, 133,94, 134,17, 139,86, 163,51, 164,61. EM MALDI-TOF m/z, [M+ ] teórico CeoHsaNaCUS 926,59, experimental 926,76. IR (KBr): 2961, 2961, 2926, 2850, 1689, 1660, 1601, 1456, 1391, 1339, 1240, 802, 738 crrr1. UV Vis (CH2CI2), λ™χ/ηπι (log ε): 446 (4,3), 542 (4,7).
Ejemplo 47: /V,/V'-di-(1 '-hexilheptil)-1 ,6(7)-dideciltioperileno-3,4:9,10- tetracarboxidiimida (47)
Figure imgf000082_0001
47
El compuesto 47 se obtiene siguiendo el método 2. Rendimiento: 62%. (No se puede determinar la proporción de cada isómero). 1 H NMR (300 MHz, CDCb) δ 0,82 (m, 18H), 1 ,22 (s ancha, 56H), 1 ,4, (m, 4H), 1 ,69 (m, 4H), 1 ,87 (m, 4H), 2,25 (m, 4H), 3,22 (t, 4H), 5,20 (m, 2H), 8,66 (m, 2H), 8,75 (m, 2H), 8,84 (m, 2H). 13C NMR (CDCb) δ 14,02, 14,06, 22,57, 22,62, 26,92, 28,43, 28,85, 29,07, 29,22, 29,36, 29,45, 31 ,76, 31 ,82, 32,42, 35,96, 54,72, 121 ,41 , 121 ,84, 122, 17, 122,66, 123, 15, 125,63, 127,87, 128,04, 128,48, 128,89, 128,95, 129,35, 130,58, 131 ,42, 132,36, 132,67, 138,58, 139,89, 163,66, 164,69. EM MALDI-TOF m/z, [M+ ] teórico C70H102N2O4S2 1098,73, experimental 1098,54. IR (KBr): 2949, 2943, 2838, 1689, 1654, 1584, 1473, 1397, 1321 , 1240, 1321 , 802, 744 crrr1. UV Vis (CH2CI2), maJnm (log ε): 429 (4,3), 566 (4,65).
Ejemplo 48: /V,/V'-di-(1 '-hexilheptil)-1 ,6(7)-dibenciltioperileno-3,4:9,10- tetracarboxidiimida (48)
Figure imgf000083_0001
48
El compuesto 48 se obtiene mediante el método 2. Rendimiento: 20% (No se puede determinar la proporción de cada isómero).1H NMR (300 MHz, CD2CI2) δ 0,83 (t, 12H), 1,26 (s ancha, 32H), 1,85 (m, 4H), 2,27 (m, 4H), 4,40 (s, 4H), 5,17 (m, 2H), 7,16 (m, 6H), 7,26 (m, 4H), 8,58 (s ancha, 2H), 8,85 (d, 4H).13C NMR (CDC ) δ 14,23, 1,29, 23,02, 23,11, 27,29, 29,65, 2965, 30,07, 30,11, 32,22, 32,35, 32,78, 41,27, 125,28, 126,42, 127,98, 128,78, 128,92, 129,59, 133,05, 135,83, 137,51, 163,56, 164,93. EM MALDI-TOF m/z, [M+1+] teórico C64H74N2O4S2999,51, experimental 999,58. IR (KBr): 2938, 2850, 1689, 1654, 1590, 1397, 1321, 1246, 709 crrr1. UV Vis (CH2CI2), maJnm (log ε): 455 (4,1), 531 (4,4), 555 (4,4).
Ejemplo 49: /V,/V'-di-(1 '-hexilheptil)-1 -benciltioperileno-3,4:9,10- tetracarboxidiimida (49)
Figure imgf000084_0001
49
El compuesto 49 se obtiene mediante el método 1. Rendimiento: 30%. 1 H NMR (300 MHz, CDCb) δ 0,83 (t, 12H), 1 ,24 (s ancha, 32H), 1 ,87 (m, 4H), 2,24 (m, 4H), 4,47 (s, 2H), 5, 19 (m, 2H), 7,23 (m, 3H), 7,34 (d, 2H), 8,64 (m, 6H), 8,88 (m, 2H). 13C NMR (CD2CI3) δ 14,23, 14,24, 23,02, 27,33, 29,66, 32,22, 32,78, 41 ,37, 122,89, 123,91 , 127, 16, 127,36, 128,15, 129,04, 129,26, 129,70, 129,76, 133,56, 133,76, 134,23, 34,37, 135,57, 138,81 , 163,80, 164,82. EM MALDI-TOF m/z, [M+H+ ] teórico C57H68N2O4S 877,49, experimental 877,50. IR (KBr): 2920, 2850, 1712, 1642, 1596, 1450, 1327, 1240, 808, 744 crrr1. UV Vis (CH2CI2), maJnm (log ε): 444 (4,3) 542 (4,7).
Ejemplo 50: ^W'-bis-ídi^SS'-í-butilfeni -l .eí j-dihexiltioperileno-S^i^l O- tetracarboxidiimida (50)
Figure imgf000084_0002
50 El compuesto 50 se obtiene mediante el método 2. Rendimiento: 23% (No se puede determinar la proporción de cada isómero). El tiempo de reacción para este compuesto fue de 72 horas. 1 H NMR (300 MHz, CDCb) δ 0,85 (m, 6H), 1 ,30 (d, 44H), 1 ,44 (m, 4H), 1 ,70 (m, 4H), 3,24 (m, 4H), 7,02 (s, 2H), 7,50 (d, 2H), 7,60 (d, 2H), 8,75 (d, 2H), 8,85 (s, 2H), 8,95 (d, 2H). 13C NMR (CDCI3) δ 22,38, 22,62, 22,68, 25,43, 28,44, 28,53, 29,35, 29,56, 25,69, 31 ,22, 31 ,70, 31 ,79, 31 ,92, 34,25, 35,58, 35,95, 47, 18, 63,03, 69,34, 70,54, 121 ,99, 122,06, 122,42, 125,87, 126,37, 127,63, 128,84, 129,10, 129,38, 129,82, 130,27, 130,89, 131 ,23, 132,63, 132,82, 133,15, 138,92, 143,86, 150,17, 164,46, 164,50. EM MALDI-TOF m/z, [M + ] teórica C64H74N2O4S2 998,51 , experimental 988,55. IR (KBr): 2920, 2868, 1706, 1671 , 1596, 1450, 1246, 802 crrr1. UV Vis (CH2CI2), maJnm (log ε): 434 (3,9), 567 (4,3).
Ejemplo 51 : V, V'-bis-(di-2',5'-i-butilfenil)-1 -hexiltioperileno-3,4:9,10- tetracarboxidiimida (51 )
Figure imgf000085_0001
51
El compuesto 51 se obtiene siguiendo el método 1. Rendimiento: 25%. 1 H NMR (300 MHz, CDCb) δ 0,85 (m,3H), 1 ,26 (s, 4H), 1 ,32-1 ,34 (d, 36H), 1 ,47 (m, 2H), 1 ,74 (m, 2H), 3,26 (m, 2H), 7,04 (s, 2H), 7,50 (d, 2H), 7,60 (d, 2H), 8,74 (s, 3H), 8,85 (m, 3H), 9,02 (d, 1 H). 13C NMR (CDCb) δ 13,92, 22,38, 28,43, 28,54, 29,68, 31 ,21 , 31 ,74, 34,24, 35,54, 36,18, 36,24, 122,25, 122,65, 122,84, 123,24, 123,84, 136,34, 126,40, 126,77, 127,47, 127,62, 127,72, 128,19, 128,80, 129,24, 129,40, 130,16, 131 ,26, 131 ,95, 132,46, 132,66, 133,26, 133,89, 134,53, 134,55, 134,75, 140,22, 143,78, 143,81 , 150,16, 164,27, 164,40, 164,50, 164,70. EM MALDI-TOF m/z, [M+ ] teórico C58H62N2O4S 882,44, experimental 882,49. IR (KBr): 2967, 2926, 1706, 1677, 1584, 1403, 1339, 1257, 802, 750 cm"1. UV Vis (CH2CI2), maJnm (log ε): 447 (3,9), 546 (4,4).
Ejemplo 52: /V,/V'-di-(1 '-hexilheptil)-2,5,8,11 -tetrahexiltioperileno-3,4:9,10- tetracarboxidiimida (5
Figure imgf000086_0001
52
El compuesto 52 se obtiene siguiendo el método 4. Rendimiento: 90%. 1H NMR (300 MHz, CDCb) δ 0,83 (t, 12H), 0,93 (t, 12H), 1,30 (s ancha, 52H), 1,65 (m, 4H), 1,94 (m, 12H), 2,25 (m, 4H), 3,20 (t, 8H), 5,23 (m, 2H), 8,37 (s, 4H).13C NMR (CDCb) δ 13,83, 13,89, 13,90, 13,93, 22,34, 22,41, 22,46, 26,99, 27,79, 29,12, 31,42, 31,46, 31,59, 31,64, 32,11, 32,63, 54,81, 116,77, 117,93, 120,13, 124,01, 131,93, 150,47, 163,30, 164,04. EM MALDI-TOF m/z, [M+H+ ] teórico C74H110N2O4S4 1219,73, experimental 1219,77. IR (KBr): 2932, 2844, 1677, 1636, 1555, 1345, 1234, 849, 738 cm"1. UV Vis (CH2CI2), maVnm (log ε): 489 (5,1), 543 (5,1).
Ejemplo 53: V,V'-di-(1'-hexilheptil)-2-bromo-5,8,11-trihexiltioperileno-3,4:9,10- tetracarboxidiimida (53)
Figure imgf000087_0001
El compuesto 53 se obtiene siguiendo el método 3. Rendimiento: 66%.1H NMR (300 MHz, CDCb) δ 0,83 (t, 12H), 0,93 (t, 9H), 1,32 (s ancha, 46H), 1,65 (m, 4H), 1,93 (m, 10H), 2,22 (m, 4H), 3,17 (t, 6H), 5,20 (m, 2H), 8,13 (s, 1H), 8,22 (s,1H), 8,30 (s, 1H), 8,41 (s, 1H).13C NMR (CDCb) δ 14,02, 22,51, 22,59, 27,13, 27,20, 27,82, 28,07, 29,14, 29,23, 29,25, 29,66, 31,57, 31,59, 31,60, 31,61, 31,64, 32,23, 32,54, 32,67, 32,77, 32,85, 55,00, 55,39, 117,96, 118,53, 119,36, 119,67, 120,08, 122,13, 122,43, 128,84, 128,95, 130,30, 131,30, 131,69, 132, 09, 132,19, 132,30, 132,80, 133,29, 150,62, 151,15, 161,21, 163,29. EM MALDI-TOF m/z, [M+H+ ] teórico
Figure imgf000087_0002
1181 ,58 experimental 1181,61. IR (KBr): 2926, 2862, 1683, 1636, 1555, 1456, 1345, 1240, 814, 744 crrr1. UV Vis (CH2CI2), maJnm (log ε): 501 (4,7), 540 (4,8).
Ejemplo 54: W,W'-di-(1'-hexilheptil)-2,5-dibromo-8,11-dihexiltioperileno-3,4:9,10- tetracarboxidiimida (54)
Figure imgf000088_0001
54
El compuesto 54 se obtiene siguiendo el método 3. Rendimiento: 25%.1H NMR (300 MHz, CDC ) δ 0,84 (t, 12H), 0,93 (t, 6H), 1,31 (s ancha, 44H), 1,64 (m, 4H), 1,93 (m, 4H), 2,21 (m, 4H), 3,19 (t, 4H), 5,19 (m, 2H), 8,43 (s, 2H), 8,54 (s, 2H).13C NMR (CDCI3) δ 13,83, 13,90, 13,91, 13,93, 22,34, 22,37, 22,39, 22,46, 23,46, 26,79, 26,93, 27,73, 27,96, 28,16, 27,73, 27,96, 28,16, 28,74, 28,95, 29,08, 31,26, 31,43, 31,54, 31,58, 31,62, 31,62, 32,08, 32,76, 55,32, 119,71, 122,19, 126,10, 129,57, 129,86, 131,31, 131,62, 131,77, 131,95, 132,21, 133,00, 134,45, 151,28, 161,37, 163,29. EM MALDITO F m/z, [M+H+] teórico CeaH^NaCUSaBra 1143,42, experimental 1143,52. IR (KBr): 2958, 2917, 2855, 1695, 1646, 1229, 1025 crrr1. UV Vis (CH2CI2), m nm (log ε): 487 (4,6), 540 (4,5).
Ejemplo 55: /V,/V'-di-(1 '-hexilheptil)-1 -butoxi-6(7)-hexiltioperileno-3,4:9,10- tetracarboxidiimida (55)
Figure imgf000089_0001
55
El compuesto 55 se obtiene siguiendo el método 5. Rendimiento: 25%. 1 H NMR (300 MHz, CDCb) δ 0,83 (t, 15H), 1 ,07 (t, 3H), 1 ,24 (s ancha, 38H), 1 ,66 (m, 4H), 1 ,87 (m, 4H), 2,07 (m, 2H), 2,28 (m, 4H), 3,22, (m, 2H), 4,52 (m, 2H), 5,21 (m, 2H), 8,51 (s ancho, 1 H), 8,64 (s ancho, 2H), 8,79 (m, 2H), 9,52 (isómero 1 ,6) 9,65 (isómero 1 ,7) (d, 1 H). 13C NMR (CDCb) δ 13,83, 13,91 , 14,02, 19,53, 19,57, 22,38, 22,57, 26,92, 28,39, 28,51 , 29,22, 31 ,22, 31 ,39, 31 ,76, 32,42, 35,96, 36,47, 54,67, 70,24, 120,67, 121 ,96, 123,47, 123,87, 125,65, 125,99, 128,21 , 128,49, 128,57, 128,94, 129,22, 129,31 , 129,50, 133,06, 133,30, 137,81 , 138,53, 156,88, 157,24, 157,86, 163,79, 164,87. EM MALDI- TOF m/z, [M+ ] teórico CeoHsaNaOsS 942,59, experimental 942,64. IR (KBr): 2955, 2932, 2862, 1695, 1654, 1607, 1397, 1333, 1228, 808, 750 crrr1. UV Vis (CH2CI2), maJnm (log ε): 566 (4,8).
Ejemplo 56: V, V'-di-(1 '-hexilheptil)-2-butoxi-5,8,11 -trihexiltioperileno-3,4:9,10- tetracarboxidiimida (56)
Figure imgf000090_0001
56
El compuesto 56 se obtiene siguiendo el método 6. Rendimiento: 28%.1H NMR (300 MHz, CDCb) δ 0,83 (t, 12H), 0,93 (t, 9H), 1,06 (t, 3H), 1,25 (s ancha, 32H), 1,39 (s ancha, 14H), 1,64 (m, 4H), 1,94 (s ancha, 12H), 2,04 (m, 2H), 2,24 (m, 4H), 3,20 (s ancha, 6H), 4,45 (t, 2H), 5,24 (m, 2H), 8,07 (s, 1H), 8,34 (s, 1H), 8,36 (s, 1H), 8,40 (s, 1H).13C NMR (CDCb) δ 13,86, 14,02, 14,05, 19,25, 22,53, 22,56, 22,58, 22,60, 27,07, 27,92, 27,96, 29,23, 29,29, 29,69, 31,30, 31,56, 31,57, 31,76, 31,79, 31,92, 32,23, 32,27, 32,58, 32,75, 54,91, 117,64, 118,11, 118,59, 120,21, 123,03, 123,22, 123,93, 125,25, 129,72, 131,99, 132,08, 133,15, 161,55, 162,72, 163,54, 164,28. EM MALDI- TOF m/z. [M+H+] teórico C72H106N2O5S31175,73, experimental 1175,75. IR (KBr): 2914, 2844, 1671, 1636, 1590, 1561, 1479, 1339, 1257, 802 crrr1. UV Vis (CH2CI2), maJnm (log ε): 473 (4,4), 501 (4,5), 540 (4,5).

Claims

REIVINDICACIONES
1.- procedimiento de preparación de fórmula I:
Figure imgf000091_0001
donde:
cada Ri y R3 independientemente representan hidrógeno, halógeno, C1-C20 alquilo, C2-C20 alquenilo, C2-C20 alquinilo, -CN, -COR4, -C02R4, -CONR4R4, -OR4, -OCOR4, -OCONR4R4, -OC02R4, -SR 4, -SeR4, -NR4R4, -NR4COR4, -NR4CONR4R4, -NR4C02R4, PR4R4, -SOR , -S02R4, -S02NR4R4 o Cyi , donde C1-C20 alquilo, C2-C20 alquenilo y C2-C20 alquinilo están independientemente opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno o más Re;
cada R2 independientemente representa Ci-C40 alquilo o C 2; donde Ci-C40 alquilo está opcionalmente sustituido por uno o más R5 y donde Cy2 está opcionalmente sustituido por uno ó más R7;
cada R4 independientemente representa hidrógeno, C1-C20 alquilo o Cy4, donde C1-C20 alquilo está opcionalmente sustituido por uno o más R10 y donde Cy4 está opcionalmente sustituido por uno ó más Rn ;
o dos grupos R4 se pueden unir formando con el átomo de N un heterociclo de 5 a 7 miembros saturado que adicionalmente puede contener un heteroátomo seleccionado de N, O y S, y que puede estar opcionalmente sustituido por uno o dos Rn ;
cada R5 independientemente representa Cy3, -ORs, -SRs o -NRsRs, donde Cy3 está opcionalmente sustituido por uno ó más Re;
cada R7 independientemente representa Ci-C4o alquilo, Cy4, -ORs, -SRs o -NRsRs, donde Ci-C4o alquilo está opcionalmente sustituido por uno o más Rg y donde Cy4 está opcionalmente sustituido por uno o más Re; cada Rs independientemente representa hidrógeno, C1-C6 alquilo o Cy3, donde C1-C6 alquilo está opcionalmente sustituido por uno o más -OH, -OC1-C4 alquilo, donde C1-C4 alquilo está opcionalmente sustituido por uno o más -OH y donde Cy3 está opcionalmente sustituido por uno ó más C1-C6 alquilo;
cada F¾ y Rn independientemente representan Rs, -ORs, -SRs o -NRsRs;
cada Rg y R10 independientemente representan -ORs, -SRs, -NRsRs o Cy3, donde Cy3 está opcionalmente sustituido por uno o más C1-C6 alquilo;
cada Cyi y Cy3 independientemente representan fenilo o un heterociclo aromático de 5 ó 6 miembros que contiene de 1 a 3 heteroátomos seleccionados de N, O, S y Se, y donde cada Cyi y Cy3 pueden estar independientemente unidos al resto de la molécula a través de cualquier átomo de C o N disponible;
cada Cy2 independientemente representa un anillo saturado, parcialmente insaturado o aromático, monocíclico de 3 a 7 miembros o bicíclico de 6 a 1 1 miembros que puede ser carbocíclico o heterocíclico, donde C 2 puede estar unido al resto de la molécula a través de cualquier átomo de C o N disponible, donde Cy2 contiene de 1 a 4 heteroátomos seleccionados de N, O, S y Se, y donde uno o más átomos de C, S o Se de Cy2 pueden estar opcionalmente oxidados formando grupos CO, SO, SO2, SeO ó Se02; y
cada Cy4 independientemente representa un anillo carbocíclico o heterocíclico saturado, parcialmente insaturado o aromático de 3 a 7 miembros, que contiene opcionalmente de 1 a 4 heteroátomos seleccionados de N, O, S y Se, donde Cy4 está unido al resto de la molécula a través de cualquier átomo de C o N disponible, y donde uno o más átomos de C, S o Se de Cy4 pueden estar opcionalmente oxidados formando grupos CO, SO, S02, SeO ó Se02,
con la condición de que al menos un R3 independientemente representa -OR , -SR , -SeR4, -NR4R4 o -PR4R4,
que comprende hacer reaccionar un compuesto de fórmula II con un compuesto de fórmula III en presencia de una fuente de flúor:
Figure imgf000093_0001
donde:
cada Ri y R2 tienen independientemente el significado descrito para un compuesto de fórmula I;
cada R12 independientemente representa hidrógeno, halógeno, - CN, -COR4, -CO2R4, -CONR4R4, -OR4, -OCOR4, -OCONR4R4, -OCO2R4, -SR4, -SeR4, -
NR4R4, -NR4COR4, -NR4CONR4R4, -NR4CO2R4, -PR4R4, -SOR4, -SO2R4 o -SO2NR4R4;
R13 representa -OR4, -SR4, -SeR4, -NR4R4 o -PR4R4; y
cada R4 tiene independientemente el significado descrito para un compuesto de fórmula I,
con la condición de que al menos un R12 independientemente representa hidrógeno o halógeno.
2. - El procedimiento según la reivindicación 1 , donde la fuente de flúor se selecciona de fluoruro de tetrabutilamonio (TBAF), fluoruro de tetrafenilfosfonio (TPPF), CsF, RbF, KF,
NaF, LiF, BaF2, SrF2, CaF2, y MgF2.
3. - El procedimiento según la reivindicación 2, donde la fuente de flúor se selecciona de fluoruro de tetrabutilamonio (TBAF) y KF.
4. - El procedimiento según cualquiera de las reivindicaciones 1 a 3, donde cada R1 independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR4, -SR4, -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno
5.- El procedimiento según cualquiera de las reivindicaciones 1 a 4, donde cada R2 independientemente representa C1-C40 alquilo opcionalmente sustituido por uno o más R5.
6.- El procedimiento según cualquiera de las reivindicaciones 1 a 4, donde cada R2 independientemente representa Cy2 opcionalmente sustituido por uno ó más R7.
7. - El procedimiento según cualquiera de las reivindicaciones 1 a 6, donde cada R3 independientemente representa hidrógeno, halógeno, C1-C20 alquilo, -OR4, -SR4, -SeR4, -NR4R4, -PR4R4 o Cyi , donde C1-C20 alquilo está opcionalmente sustituido por uno o más R5 y Cyi está opcionalmente sustituido por uno
8. - El procedimiento según cualquiera de las reivindicaciones 1 a 7, donde cada R4 independientemente representa hidrógeno, C1-C20 alquilo o Cy4, donde C1-C20 alquilo está opcionalmente sustituido por uno o más R10 y donde Cy4 está opcionalmente sustituido por uno o más Rn .
9. - El procedimiento según cualquiera de las reivindicaciones 1 a 7, donde cada R4 independientemente representa C1-C20 alquilo opcionalmente sustituido por uno o más
10. - El procedimiento según cualquiera de las reivindicaciones 1 a 7, donde dos grupos R4 se pueden unir formando con el átomo de N un heterociclo de 5 a 7 miembros saturado que adicionalmente puede contener un heteroátomo seleccionado de N, O y S, y que puede estar opcionalmente sustituido por uno o dos Rn .
1 1. - El procedimiento según cualquiera de las reivindicaciones 1 a 10, donde cada R6 independientemente representa Rs.
12. - El procedimiento según cualquiera de las reivindicaciones 1 a 1 1 , donde cada R7 independientemente representa Ci-C40 alquilo opcionalmente sustituido por uno o más R9.
13.- El procedimiento según cualquiera de las reivindicaciones 1 a 12, donde cada Rs independientemente representa C1-C6 alquilo opcionalmente sustituido por uno o más -OH, -OC1-C4 alquilo y donde C1-C4 alquilo está opcionalmente sustituido por uno o más -OH.
14. - El procedimiento según cualquiera de las reivindicaciones 1 a 13, donde cada Rg independientemente representa -ORs o Cy3, donde Cy3 está opcionalmente sustituido por uno o más C1-C6 alquilo.
15. - El procedimiento según cualquiera de las reivindicaciones 1 a 14, donde cada R10 independientemente representa -ORs o Cy3, donde Cy3 está opcionalmente sustituido por uno o más C1-C6 alquilo.
16. - El procedimiento según cualquiera de las reivindicaciones 1 a 15, donde cada Rn independientemente representa Rs.
17.- El procedimiento según cualquiera de las reivindicaciones 1 a 16, donde cada Cyi independientemente representa fenilo.
18.- El procedimiento según cualquiera de las reivindicaciones 1 a 16, donde cada Cyi independientemente representa:
Figure imgf000095_0001
19. - El procedimiento según cualquiera de las reivindicaciones 1 a 18, donde cada Cy2 independientemente representa fenilo.
20. - El procedimiento según cualquiera de las reivindicaciones 1 a 18, donde cada Cy2 independientemente representa un anillo saturado, monocíclico de 3 a 7 miembros heterocíclico, donde Cy2 puede estar unido al resto de la molécula a través de cualquier átomo de C o N disponible, y donde Cy2 contiene de 1 a 3 heteroátomos seleccionados de N. O y S.
21. - El procedimiento según cualquiera de las reivindicaciones 1 a 20, donde cada Cy3 independientemente representa fenilo.
22. - El procedimiento según cualquiera de las reivindicaciones 1 a 20, donde cada Cy3 independientemente representa un heterociclo aromático de 5 ó 6 miembros que contiene 1 ó 2 heteroátomos seleccionados de N, O y S, y donde Cy3 puede estar unido al resto de la molécula a través de cualquier átomo de C o N disponible.
23. - El procedimiento según cualquiera de las reivindicaciones 1 a 22, donde cada Cy4 independientemente representa un anillo heterocíclico saturado, de 3 a 7 miembros, que contiene opcionalmente de 1 a 3 heteroátomos seleccionados de N, O y S, y donde Cy4 está unido al resto de la molécula a través de cualquier átomo de C o N disponible.
24. - El procedimiento según cualquiera de las reivindicaciones 1 a 22, donde cada Cy4 independientemente representa fenilo.
25. - El procedimiento según cualquiera de las reivindicaciones 1 a 24, donde cada R12 independientemente representa hidrógeno, halógeno, -OR4, -SR4, -SeR4, -NR4R4 o -PR4R4.
Figure imgf000096_0001
24 25 28
Figure imgf000097_0001
35 37
27.- Uso de un compuesto según la reivindicación 26, para la preparación de colorantes, pigmentos, pinturas, agentes fluorescentes, dispositivos ópticos, dispositivos electrónicos, dispositivos electroópticos, diodos emisores de luz y células fotovoltaicas orgánicas o híbridas.
PCT/ES2015/070581 2014-08-01 2015-07-28 Procedimiento de obtención de derivados de pdi WO2016016498A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201431181 2014-08-01
ES201431181A ES2558260B1 (es) 2014-08-01 2014-08-01 Procedimiento de obtención de derivados de PDI

Publications (1)

Publication Number Publication Date
WO2016016498A1 true WO2016016498A1 (es) 2016-02-04

Family

ID=55176342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/070581 WO2016016498A1 (es) 2014-08-01 2015-07-28 Procedimiento de obtención de derivados de pdi

Country Status (2)

Country Link
ES (1) ES2558260B1 (es)
WO (1) WO2016016498A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9865819B2 (en) 2016-06-06 2018-01-09 Uti Limited Partnership Nitrogen annulated perylene diimides for use as electron transport materials in organic electronic devices
US10647732B2 (en) 2018-01-09 2020-05-12 Uti Limited Partnership N-annulated perylene diimide dimers with active pyrrolic N—H bonds
WO2020100783A1 (ja) * 2018-11-13 2020-05-22 住友化学株式会社 着色組成物

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4845223A (en) * 1985-12-19 1989-07-04 Basf Aktiengesellschaft Fluorescent aryloxy-substituted perylene-3,4,9,10-tetracarboxylic acid diimides
WO2008139452A2 (en) * 2007-05-09 2008-11-20 Yeda Research And Development Co.Ltd Selective bromination of perylene diimides and derivatives thereof under mild conditions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4845223A (en) * 1985-12-19 1989-07-04 Basf Aktiengesellschaft Fluorescent aryloxy-substituted perylene-3,4,9,10-tetracarboxylic acid diimides
WO2008139452A2 (en) * 2007-05-09 2008-11-20 Yeda Research And Development Co.Ltd Selective bromination of perylene diimides and derivatives thereof under mild conditions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
C HUANG ET AL.: "Perylene-3,4,9,10-tetracarboxylic acid diimides: Synthesis, physical properties and use in organic electronics", JOURNAL ORGANIC CHEMISTRY, vol. 76, 2011, pages 2386 - 2407 . *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9865819B2 (en) 2016-06-06 2018-01-09 Uti Limited Partnership Nitrogen annulated perylene diimides for use as electron transport materials in organic electronic devices
US10647732B2 (en) 2018-01-09 2020-05-12 Uti Limited Partnership N-annulated perylene diimide dimers with active pyrrolic N—H bonds
WO2020100783A1 (ja) * 2018-11-13 2020-05-22 住友化学株式会社 着色組成物

Also Published As

Publication number Publication date
ES2558260A1 (es) 2016-02-02
ES2558260B1 (es) 2016-11-10

Similar Documents

Publication Publication Date Title
ES2924698T3 (es) Proceso e intermedios para la preparación de compuestos de naftiridina como inhibidores de quinasa JAK
ES2587013T3 (es) Derivados de ciclohexano espirocíclicos
ES2929737T3 (es) Moduladores del receptor beta 3 adrenérgico útiles para el tratamiento o la prevención de trastornos relacionados con el mismo
ES2944937T3 (es) Tienopirroles en calidad de inhibidores de la histona desmetilasa
ES2233671T3 (es) Derivados de benzimidazol, su preparacion y aplicacion en terapeutica.
ES2634628T3 (es) Derivados tricíclicos de pirido-carboxamida como inhibidores ROCK
ES2587516T3 (es) Proceso de preparación de Apixaban
ES2924193T3 (es) Procesos e intermedios para preparar un medicamento
ES2609578T3 (es) Amino-quinolinas como inhibidores de quinasa
ES2926255T3 (es) Métodos de fabricación de niraparib
ES2960051T3 (es) Proceso para la producción de ozanimod
ES2828696T3 (es) Compuestos cíclicos útiles como moduladores de TNF alfa
ES2443845T3 (es) Sulfonamidas como inhibidores de proteínas de la familia BCL-2 para el tratamiento del cáncer
BR112021011968A2 (pt) Compostos de 3-((3-aminofenil)amino)piperidina-2,6-diona substituídos, composições dos mesmos e métodos de tratamento com os mesmos
ES2803650T3 (es) Compuestos heterocíclicos útiles como inhibidores de TNF
ES2848699T3 (es) Compuestos de 3-oxo-1,4-diazepinilo como activadores de NRF2
CA2942522A1 (en) 5,5-dioxo-11h-benzo[c][2,1]benzothiazepine derivatives and their use as mu-opioid receptor agonists
WO2016016498A1 (es) Procedimiento de obtención de derivados de pdi
ES2806780T3 (es) Compuestos como antagonistas de CRTH2 y usos de los mismos
KR20100134664A (ko) 중추신경계 장애들의 치료를 위한 아자인돌 화합물들
ES2706475T3 (es) Nuevos derivados de bencimidazol como agentes antihistamínicos
JP6491214B2 (ja) 放射性標識のための方法および試薬
PT97396B (pt) Processo para a preparacao de derivados de amina e de composicoes farmaceuticas que os contem
CA3187168A1 (en) Compounds, compositions and methods
BR112020008505A2 (pt) compostos heterocíclicos anti-infecciosos e usos dos mesmos

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15827850

Country of ref document: EP

Kind code of ref document: A1