WO2016013468A1 - 光ファイバ冷却装置及びレーザ発振器 - Google Patents

光ファイバ冷却装置及びレーザ発振器 Download PDF

Info

Publication number
WO2016013468A1
WO2016013468A1 PCT/JP2015/070291 JP2015070291W WO2016013468A1 WO 2016013468 A1 WO2016013468 A1 WO 2016013468A1 JP 2015070291 W JP2015070291 W JP 2015070291W WO 2016013468 A1 WO2016013468 A1 WO 2016013468A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
fiber
adjustment member
holder
base plate
Prior art date
Application number
PCT/JP2015/070291
Other languages
English (en)
French (fr)
Inventor
政直 村上
クリスチャン シェーファー
Original Assignee
三星ダイヤモンド工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三星ダイヤモンド工業株式会社 filed Critical 三星ダイヤモンド工業株式会社
Priority to CN201580039423.7A priority Critical patent/CN106575850B/zh
Priority to EP15824039.0A priority patent/EP3174169B1/en
Priority to US15/328,485 priority patent/US9923328B2/en
Priority to JP2016535897A priority patent/JPWO2016013468A1/ja
Priority to CA2956124A priority patent/CA2956124C/en
Publication of WO2016013468A1 publication Critical patent/WO2016013468A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0405Conductive cooling, e.g. by heat sinks or thermo-electric elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4266Thermal aspects, temperature control or temperature monitoring
    • G02B6/4268Cooling
    • G02B6/4269Cooling with heat sinks or radiation fins
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/46Processes or apparatus adapted for installing or repairing optical fibres or optical cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/20Light-tight connections for movable optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0407Liquid cooling, e.g. by water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06704Housings; Packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/146External cavity lasers using a fiber as external cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06716Fibre compositions or doping with active elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094049Guiding of the pump light
    • H01S3/094053Fibre coupled pump, e.g. delivering pump light using a fibre or a fibre bundle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping

Definitions

  • the present invention relates to an optical fiber cooling device and a laser oscillator having the same.
  • Laser oscillators using optical fibers are widely used.
  • This laser oscillator oscillates laser light by an optical fiber using excitation light oscillated from a light source.
  • the optical fiber used for this laser oscillator is formed of fluoride glass such as ZBLAN glass doped with a laser active material such as erbium.
  • the laser active substance contained in the optical fiber since the laser active substance contained in the optical fiber generates heat by absorbing the excitation light, the heat generation may damage the optical fiber.
  • the fluoride fiber has lower heat resistance than the quartz fiber.
  • Patent Document 1 a cooling device for cooling an optical fiber has been proposed.
  • an optical fiber is brought into close contact with a surface of a heat sink cooled by a refrigerant by a metal heat radiating member.
  • the metal heat dissipating member is formed in an adhesive thin film and is provided so as to cover the entire optical fiber.
  • the length of the optical fiber for laser is not uniform.
  • the holder that holds the tip of the optical fiber is movable along the optical axis, and after the distance between the tip of the optical fiber and the lens is accurately positioned, the holder is fixed.
  • An object of the present invention is to efficiently cool an entire optical fiber in an optical fiber cooling device in which the tip position of the optical fiber can be adjusted.
  • An optical fiber cooling device includes a cooling base plate, a fiber holder, and an adjustment member.
  • the cooling base plate has an accommodation recess.
  • the fiber holder is disposed in the housing recess of the cooling base plate so as to be movable in the first direction.
  • the fiber holder holds the tip of the optical fiber on the surface and adjusts the tip position of the held optical fiber in the first direction.
  • the adjustment member is disposed in the gap between the fiber holder and the end surface of the receiving recess, and the optical fiber is placed on the surface, and can be moved in the first direction by moving in the second direction intersecting the first direction. It is.
  • the adjustment member abuts both the end face of the housing recess and the end face of the fiber holder.
  • the tip of the optical fiber is held by a fiber holder. Since the fiber holder is movably disposed on the cooling base plate, for example, the distance from the lens can be adjusted with high accuracy. When the fiber holder is moved, there may be a gap between the end face of the fiber holder and the end face of the housing recess of the cooling base plate in which the fiber holder is housed. Therefore, an adjustment member is disposed in the gap between the two, and the fiber holder, the adjustment member, and the cooling base plate are in contact with each other and are disposed without a gap. Therefore, the optical fibers placed on these surfaces are efficiently cooled.
  • At least one of the first contact portion between the end surface of the housing recess and the adjustment member and the second contact portion between the fiber holder and the adjustment member is The contact surfaces are inclined by contact with each other with respect to the first direction.
  • the adjustment member can be moved in the first direction by moving in the second direction.
  • the end surface of the housing recess that contacts the adjusting member is inclined with respect to the first direction.
  • the adjustment member moves in the second direction by moving along the inclined end surface of the housing recess.
  • the adjustment member can be moved in the first direction by moving in the second direction with a simple configuration.
  • the entire bottom surface of the fiber holder and the adjustment member are in contact with the surface of the housing recess.
  • the heat of the optical fiber can be efficiently radiated to the cooling base plate via the fiber holder and the adjusting member.
  • the surfaces of the fiber holder and the adjustment member are flush with the surface of the cooling base plate.
  • the optical fiber can be easily brought into close contact with the surfaces of the cooling base plate, the adjustment member, and the fiber holder, and the optical fiber can be efficiently cooled.
  • a laser oscillator includes an excitation light source, an oscillation optical fiber that receives the excitation light from the excitation light source and outputs laser light, and the above-described optical fiber cooling that cools the oscillation optical fiber. And a device.
  • the optical fiber can be efficiently cooled in the optical fiber cooling device in which the tip position of the optical fiber can be adjusted.
  • the schematic block diagram of a laser oscillator Sectional drawing which shows the 1st end part side of an optical fiber. Sectional drawing which shows the 2nd end part side of an optical fiber.
  • maintenance apparatus Sectional drawing of the cooling device containing a holding
  • FIG. 1 is a schematic configuration diagram of a laser oscillator according to an embodiment of the present invention.
  • the laser oscillator 1 includes an excitation light source 2, first to third lenses 3a, 3b, 3c, first and second dichroic mirrors 4a, 4b, a damper 5, an optical fiber 6, a cooling base plate 7, and a chiller device 8. ing.
  • the cooling base plate 7 and each member mounted on the cooling base plate 7 are housed in a housing (not shown), but are shown with the housing removed in FIG.
  • the excitation light source 2 oscillates excitation light and can be constituted by, for example, a lamp or a semiconductor laser.
  • the excitation light oscillated by the excitation light source 2 is output through the excitation light transmission fiber 2a.
  • the first lens 3a is a lens that functions as a collimating lens, and is disposed between the excitation light transmission fiber 2a and a first window portion 7a of a cooling base plate 7 described later.
  • the first lens 3a converts the excitation light from the excitation light source 2 from a divergent light state to a parallel light state.
  • the second lens 3 b is a lens that functions as a condensing lens and a collimating lens, and is disposed between the first dichroic mirror 4 a and the first end 11 of the optical fiber 6.
  • the second lens 3b collects the excitation light converted into the parallel light by the first lens 3a and guides it to the optical fiber 6, and converts the laser light emitted from the optical fiber 6 into the parallel light.
  • the third lens 3 c is a lens that functions as a condenser lens and a collimating lens, and is disposed between the second dichroic mirror 4 b and the second end portion 12 of the optical fiber 6.
  • the third lens 3 c converts the excitation light and laser light from the optical fiber 6 into a parallel light state, and condenses the laser light from the second dichroic mirror 4 b to guide it to the optical fiber 6.
  • the first dichroic mirror 4a is disposed between the first lens 3a and the second lens 3b.
  • the first dichroic mirror 4a transmits the excitation light from the excitation light source 2 and reflects the laser light from the optical fiber 6 to change the traveling direction.
  • the second dichroic mirror 4b is disposed between the third lens 3c and the damper 5.
  • the second dichroic mirror 4 b is configured to transmit the excitation light from the optical fiber 6 and reflect the laser light from the optical fiber 6.
  • the damper 5 is a member that is disposed on the downstream side of the second dichroic mirror 4b and absorbs the excitation light transmitted through the second dichroic mirror 4b.
  • optical fiber 6 2 is a side sectional view of the optical fiber 6 on the first end 11 side
  • FIG. 3 is a side sectional view of the optical fiber 6 on the second end 12 side.
  • the optical fiber 6 includes a first optical fiber body 6a, a second optical fiber body 6b, a first end cap 6c, a second end cap 6d, and a holding device 15. .
  • the first optical fiber main body 6a is a main part of the optical fiber 6, and laser light is generated in the first optical fiber main body 6a.
  • the first optical fiber body 6a has a first core and a first cladding formed so as to cover the first core.
  • the first core is doped with a laser active material.
  • the first cladding has a lower refractive index than the first core and is not doped with a laser active material.
  • the second optical fiber main body 6b has a second core and a second cladding formed so as to cover the second core.
  • the second optical fiber main body 6b extends coaxially with the first optical fiber main body 6a, and has substantially the same diameter as the diameter of the first optical fiber main body 6a. Since the second core is not doped with a laser active material, it does not generate heat even when excitation light is incident. That is, no laser light is generated in the second optical fiber body 6b.
  • the first end cap 6c is heat-sealed to the other end face of the second optical fiber body 6b.
  • the first end cap 6c is light transmissive to transmit excitation light and laser light, and does not have deliquescence.
  • the second end cap 6d is heat-sealed to the other end face of the first optical fiber body 6a, and has the same configuration as the first end cap 6c.
  • the cooling base plate 7 is formed in a rectangular parallelepiped shape in a plan view, and the second and third lenses 3b and 3c, the first and second dichroic mirrors 4a and 4b, the damper 5, and the holding An optical fiber 6 including the device 15 is mounted.
  • the cooling base plate 7 has a first window portion 7a and a second window portion 7b having light transmittance. Excitation light from the light source 2 enters the cooling base plate 7 through the first window portion 7 a and is guided to the optical fiber 6. Laser light from the optical fiber 6 is output to the outside of the cooling base plate 7 via the second window portion 7b.
  • the cooling base plate 7 has a housing recess 17 on the surface and a flow path 18 (see FIG. 5) through which the refrigerant flows.
  • the housing recess 17 includes a surface 17a that is lower than the surface 7c of the cooling base plate 7 by a predetermined depth, and inclined side surfaces 17b and side surfaces 17c that are side walls.
  • the inclined side surface 17b is formed to be inclined at a predetermined angle with respect to the direction in which the optical axis extends at the end portion of the optical fiber 6 (hereinafter referred to as “first direction”).
  • the side surface 17c is formed in parallel with the first direction. Since the holding device 15 is installed in the housing recess 17, the end of the optical fiber 6 is cooled.
  • the inside of the housing that accommodates the cooling base plate 7 and the like is filled with nitrogen. Moreover, in order to remove the water
  • the chiller device 8 is connected to the cooling base plate 7 via a pipe 8a.
  • the chiller device 8 adjusts the temperature of the refrigerant flowing in the cooling base plate 7. Specifically, the chiller device 8 cools the refrigerant sent from the cooling base plate 7 via the pipe 8a. The refrigerant cooled in the chiller device 8 is returned to the cooling base plate 7 through the pipe 8a.
  • FIG. 4 is a perspective view of the holding device 15 provided at the first end portion 11.
  • FIG. 5 is a schematic sectional view of the holding device 15.
  • the holding device 15 has a function of holding the end of the optical fiber 6 and a function of cooling the held end.
  • the holding device 15 includes a fiber holder 21, an adjustment member 22, and first to third lid members 23, 24, and 25.
  • the cooling base plate 7, the chiller device 8, and the holding device 15 constitute a fiber cooling device.
  • the fiber holder 21 is a copper block-shaped member.
  • a fiber groove for accommodating the optical fiber 6 is formed on one surface of the fiber holder 21, and a heat conducting member 27 such as indium is provided in a part thereof. Further, both end faces 21a and 21b in the first direction of the fiber holder 21 are formed so as to be orthogonal to the first direction.
  • the first lid member 23 can be attached to the surface of the fiber holder 21.
  • a fiber groove for accommodating the optical fiber 6 is formed on the surface of the first lid member 23 on the side facing the fiber holder 21, and a heat conducting member 28 such as indium is provided.
  • the first lid member 23 has four through holes 23a, and the fiber holder 21 has four tap holes 21c at positions corresponding to the through holes 23a of the first lid member 23.
  • the second lid member 24 can be mounted on the surface of the fiber holder 21 and has the same dimensions as the first lid member 23 except that the dimensions are different and the heat conducting member is not provided on the surface of the fiber holder 21 side. It is the same composition.
  • the adjusting member 22 is housed in the housing recess 17 of the cooling base plate 7 together with the fiber holder 21. More specifically, the adjustment member 22 is disposed between the fiber holder 21 and the inclined side surface 17 b of the housing recess 17. A fiber groove for accommodating the optical fiber 6 is formed on the surface of the adjustment member 22. Further, the end surface 22a on the fiber holder 21 side of the adjustment member 22 is formed so as to be orthogonal to the first direction. The entire surface of the end surface 22 a can abut on the end surface 21 b of the fiber holder 21. Further, the end surface 22b on the opposite side of the adjustment member 22 is inclined with respect to the first direction.
  • the inclination angle of the inclined end surface 22 b is the same angle as the inclined side surface 17 b of the housing recess 17.
  • the entire inclined end surface 22 b of the adjustment member 22 can abut on the inclined side surface 17 b of the housing recess 17.
  • the third lid member 25 has the same shape as the adjustment member 22 and can be mounted on the surface of the adjustment member 22.
  • a fiber groove for accommodating the optical fiber 6 is formed on the surface of the third lid member 25 facing the adjustment member 22.
  • the third lid member 25 has four through holes 25a, and the adjustment member 22 has four tap holes 22c at positions corresponding to the through holes 25a of the third lid member 25.
  • the fiber holder 21 and the adjustment member 22 are screwed into the tap holes of the fiber holder 21 and the adjustment member 22 by bolts (not shown) penetrating through the through holes of the lid members 23, 24, 25.
  • the optical fiber 6 can be held in a state where the optical fiber 6 is sandwiched between the cover members 23 to 25.
  • the fiber holder 21 is movable along the optical axis (along the first direction) in order to adjust the distance between the tip of the optical fiber 6 and the second lens 3b.
  • the adjustment member 22 can be moved in the first direction by moving the adjustment member 22 along the inclined side surface 17 b of the housing recess 17. For this reason, after adjusting the position of the fiber holder 21 in the first direction, the adjustment member 22 is moved along the inclined side surface 17b, so that the end surface 21b of the fiber holder 21 and the inclined side surface 17b of the accommodating recess 17 are moved. This gap can be filled with the adjusting member 22.
  • the fiber holder 21 and the adjusting member 22 whose positions are adjusted as described above are fixed to the cooling base plate 7 by an arbitrary method not shown.
  • the fiber holder 21 and the adjustment member 22 may be provided with through holes and fixed with tap hole bolts provided in the cooling base plate 7.
  • the fiber holder 21 is formed as a long hole along the first direction while the through hole provided in the fiber holder 21 is a long hole along the inclined end surface 22b.
  • the adjusting member 22 can be fixed at any position adjusted along the inclined end surface 22b (along the inclined side surface 17b).
  • the thickness of the fiber holder 21 and the adjustment member 22 is such that the surface of the fiber holder 21 and the adjustment member 22 and the surface 7c of the cooling base plate 7 are flush with each other when they are accommodated in the accommodation recess 17. Is set to
  • no housing recess is formed on the second end 12 side of the cooling base plate 7.
  • the tip of the optical fiber 6 is held by the fiber holder 21 and the lid member 23.
  • the second end 12 side may have the same configuration as the first end 11 side.
  • the excitation light oscillated in the excitation light source 2 is output from the excitation light transmission fiber 2a, becomes a parallel light state in the first lens 3a, and enters the accommodating recess 17 of the cooling base plate 7 through the first window 7a. To do.
  • the excitation light that has entered the housing recess 17 passes through the first dichroic mirror 4 a, is collected by the second lens 3 b, and enters the optical fiber 6 from the first end 11 of the optical fiber 6.
  • the excitation light incident on the optical fiber 6 propagates in the first core of the first optical fiber body 6a, and the laser active substance doped in the first core is excited to output laser light. Note that laser light is not output from the second core. And the excitation light radiated
  • the laser light generated in the first core of the first optical fiber body 6a is emitted from the second end 12 of the optical fiber 6 and converted into a parallel light state by the third lens 3c. Then, the laser light is reflected by the second dichroic mirror 4b, condensed by the third lens 3c, and enters the optical fiber 6 from the second end 12 side.
  • the laser light incident on the optical fiber 6 propagates in the first core of the first optical fiber body 6 a and is emitted from the first end 11 of the optical fiber 6.
  • the laser light is converted into a parallel light state by the second lens 3b, and the traveling direction is changed so as to be reflected by the first dichroic mirror 4a toward the second window portion 7b, and to pass through the second window portion 7b.
  • the cooling base plate 7 Through the cooling base plate 7.
  • the first end portion 11 into which the excitation light is particularly introduced becomes high temperature. Therefore, in the holding device 15 of the first end portion 11, the fiber holder 21 is brought into close contact with the cooling base plate 7 via the adjustment member 22 so as to efficiently cool the heat generated at the end portion of the optical fiber 6. Yes.
  • the fiber holder 21 is set at a position as shown on the right side of FIG. 6, and it is assumed that the distance from the second lens 3b is too large at this position. In this case, it is necessary to move the fiber holder 21 to the second lens 3b side (the adjustment width D in FIG. 6). If the adjustment member 22 is left as it is when the fiber holder 21 is moved to the second lens 3b side by the distance D, a gap is generated between the fiber holder 21 and the adjustment member 22. In such a state, the optical fiber 6 positioned on the gap between the two does not come into contact with either the fiber holder 21 or the adjustment member 22, and therefore cannot be efficiently cooled.
  • the adjusting member 22 is moved to the right side in FIG. 6 along the inclined side surface 17 b of the housing recess 17. Then, the adjustment member 22 moves to the right side in FIG. 6 and also moves to the fiber holder 21 side. Then, in a state where the end surface 22a of the adjustment member 22 is in contact with the end surface 21b of the fiber holder 21, the movement of the adjustment member 22 is stopped and fixed to the cooling base plate 7 at that position.
  • the end portion of the optical fiber 6 abuts on the surface of the fiber holder 21 and the adjustment member 22 and the cooling base plate 7 throughout. Therefore, the heat of the optical fiber 6 can be efficiently radiated, and the optical fiber 6 can be prevented from becoming high temperature.
  • the position of the optical axis of the fiber holder 21 does not change even with the above adjustment. That is, as shown in FIG. 6, the distance W from the end face of the cooling base plate 7 is the same before and after adjustment.
  • the end surface on the fiber holder side of the adjustment member is a surface orthogonal to the first direction.
  • the angle is not the same as the inclination angle of the opposite inclined end surface, it is set to an arbitrary angle. Can do. Specific examples of the shape of the adjusting member in this case are shown in FIGS.
  • one end surface 32a of the adjustment member 32 is inclined with respect to the optical axis direction (first direction), and the other end surface 32b is also inclined in the same direction.
  • the inclination angle of one end face 32a is different from the inclination angle of the other end face 32b.
  • the other end surface 32 b has the same inclination angle as that of the inclined side surface 17 b of the housing recess 17 of the cooling base plate 7.
  • the end surface 31 b of the fiber holder 31 on the side in contact with the adjustment member 32 is also formed to be inclined at the same angle as the one end surface 32 a of the adjustment member 32.
  • one end surfaces 42a and 52a of the adjusting members 42 and 52 are inclined with respect to the optical axis direction, and the other end surfaces 42b and 52b are opposite to the end surfaces 42a and 52a. It is inclined in the direction.
  • the end surfaces 41b and 51b of the fiber holders 41 and 51 that are in contact with the adjusting members 42 and 52 are also connected to the one end surfaces 42a and 52a of the adjusting members 42 and 52, respectively. Inclined at the same angle.
  • the surfaces of the fiber holder 21 and the adjustment member 22 and the surface 7c of the cooling base plate 7 are flush with each other, but there may be a step between these surfaces.
  • cooling device including the holding device 15 is applied to the laser oscillator
  • the cooling device of the present invention can be similarly applied when holding and cooling the optical fiber in another optical fiber device.
  • the configuration of the optical fiber to be held is not limited to the above embodiment.
  • the cooling base plate 7 has the flow path 18 through which the refrigerant flows, the flow path 18 is omitted, and the fluid or member in contact with the outer surface of the cooling base plate 7 is passed from the optical fiber 6. It is also possible to dissipate the heat.
  • the optical fiber can be efficiently cooled in the optical fiber cooling device in which the tip position of the optical fiber can be adjusted.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Lasers (AREA)

Abstract

光ファイバの先端位置を調整可能にするとともに、光ファイバ全体を効率よく冷却できるようにする。この冷却装置は、冷却ベース板(7)と、ファイバホルダ(21)と、調整部材(22)と、を備えている。冷却ベース板(7)は、収容凹部(17)を有する。ファイバホルダ(21)は、収容凹部(17)に第1方向に移動自在に配置されている。ファイバホルダ(21)は、光ファイバ(6)の先端部を表面に保持するとともに、光ファイバ(6)の第1方向における先端位置を調整する。調整部材(22)は、ファイバホルダ(21)と収容凹部(17)の端面(17b)との間の隙間に配置されるとともに表面に光ファイバ(6)が載置され、第1方向と交差する第2方向に移動することによって第1方向に移動可能である。調整部材(22)は収容凹部(17)の端面(17b)及びファイバホルダ(21)の端面(21b)の両方に当接する。

Description

光ファイバ冷却装置及びレーザ発振器
 本発明は、光ファイバ冷却装置及びこれを有するレーザ発振器に関する。
 光ファイバを利用したレーザ発振器が広く用いられている。このレーザ発振器は、光源から発振される励起光を利用して、光ファイバによってレーザ光を発振する。このレーザ発振器に用いられる光ファイバは、例えば、エルビウムなどのレーザ活性物質がドープされたZBLANガラスなどのフッ化物ガラスによって形成される。
 ここで、光ファイバに含まれるレーザ活性物質は励起光を吸収することによって発熱するため、この発熱によって光ファイバが損傷する場合がある。特に、フッ化物ファイバでは、石英ファイバと比較して耐熱性が低い。
 そこで、特許文献1に示すように、光ファイバを冷却するための冷却装置が提案されている。この特許文献1の装置では、冷媒によって冷却されるヒートシンクの表面に対して、金属製の放熱部材によって光ファイバを密着させている。金属製の放熱部材は、粘着性を有する薄膜状に形成されており、光ファイバの全体を覆うように設けられている。
特開2012-23274号公報
 一般的に、レーザ用光ファイバは長さが不均一である。一方で、励起光を光ファイバに効率的に導入するためには、光ファイバの先端とレンズとの間の距離と中心軸とを正確に位置決めする必要がある。
 そこで、光ファイバの先端部を保持するホルダを、光軸に沿って移動可能にし、光ファイバ先端とレンズとの間の距離を正確に位置決めした後に、ホルダを固定するようにしている。
 ここで、光ファイバを良好に冷却するためには、光ファイバの全体をヒートシンクやホルダに密着させて、光ファイバで発生した熱を効率よく放熱させることが重要である。このため、ホルダをヒートシンクに設けられた凹部に配置し、ヒートシンクの表面とホルダとの表面とを面一にするとともに、ヒートシンクとホルダとの間を隙間なく密着させることが重要である。
 しかし、前述のようにホルダを光軸に沿って移動させると、ホルダとヒートシンクの凹部端面との間に隙間ができる。このような隙間が生じると、隙間部分を通過する光ファイバは、部分的に冷却されにくい。このため、この隙間部分の光ファイバが高温になり、結果的にレーザ光の出力を上げることができない。
 本発明の課題は、光ファイバの先端位置を調整可能にした光ファイバの冷却装置において、光ファイバ全体を効率よく冷却できるようにすることにある。
 (1)本発明の一側面に係る光ファイバの冷却装置は、冷却ベース板と、ファイバホルダと、調整部材と、を備えている。冷却ベース板は、収容凹部を有する。ファイバホルダは、冷却ベース板の収容凹部に第1方向に移動自在に配置されている。ファイバホルダは、光ファイバの先端部を表面に保持するとともに、保持された光ファイバの第1方向における先端位置を調整する。調整部材は、ファイバホルダと収容凹部の端面との間の隙間に配置されるとともに表面に光ファイバが載置され、第1方向と交差する第2方向に移動することによって第1方向に移動可能である。調整部材は収容凹部の端面及びファイバホルダの端面の両方に当接する。
 ここでは、光ファイバの先端部はファイバホルダに保持されている。ファイバホルダは冷却ベース板上に移動自在に配置されているので、例えばレンズとの距離等を精度よく調整することができる。ファイバホルダを移動した場合、ファイバホルダの端面と、ファイバホルダが収容された冷却ベース板の収容凹部の端面と、の間に隙間が生じる場合がある。そこで、この両者の隙間に調整部材が配置され、ファイバホルダと調整部材と冷却ベース板とが互いに当接し、隙間なく配置されることになる。したがって、これらの表面に載置される光ファイバは効率よく冷却されることになる。
 (2)本発明の別の側面に係る光ファイバの冷却装置では、収容凹部の端面と調整部材との第1当接部、及びファイバホルダと調整部材との第2当接部の少なくとも一方は、第1方向に対して傾斜する端面同士の接触により構成されている。
 ここでは、簡単な構成によって、調整部材を、第2方向に移動させることによって第1方向に移動させることができる。
 (3)本発明のさらに別の側面に係る光ファイバの冷却装置では、収容凹部の調整部材と当接する端面は、第1方向に対して傾斜している。そして、調整部材は収容凹部の傾斜する端面に沿って移動することにより第2方向に移動する。
 ここでは、前記同様に、簡単な構成によって、調整部材を、第2方向に移動させることによって第1方向に移動させることができる。
 (4)本発明のさらに別の側面に係る光ファイバの冷却装置では、ファイバホルダ及び調整部材は、ともに底面全体が収容凹部の表面に接触している。
 ここでは、光ファイバの熱を、ファイバホルダ及び調整部材を介して効率よく冷却ベース板に放熱することができる。
 (5)本発明のさらに別の側面に係る光ファイバの冷却装置では、ファイバホルダ及び調整部材の表面は冷却ベース板の表面と面一である。
 ここでは、冷却ベース板、調整部材、及びファイバホルダのそれぞれの表面に、光ファイバを容易に密着させることができ、効率よく光ファイバを冷却することができる。
 (6)本発明の一側面に係るレーザ発振器は、励起光源と、励起光源からの励起光が導入されレーザ光を出力する発振用光ファイバと、発振用光ファイバを冷却する前述の光ファイバ冷却装置と、を備えている。
 以上のような本発明では、光ファイバの先端位置を調整可能にした光ファイバの冷却装置において、光ファイバを効率よく冷却することができる。
レーザ発振器の概略構成図。 光ファイバの第1端部側を示す断面図。 光ファイバの第2端部側を示す断面図。 保持装置の外観斜視図。 保持装置を含む冷却装置の断面図。 ファイバホルダ及び調整部材の位置調整動作を説明する模式図。 本発明の他の実施形態によるファイバホルダ及び調整部材を示す模式図。 本発明の他の実施形態によるファイバホルダ及び調整部材を示す模式図。
 [レーザ発振器の構成]
 図1は、本発明の一実施形態によるレーザ発振器の概略構成図である。レーザ発振器1は、励起光源2、第1~第3レンズ3a,3b,3c、第1及び第2ダイクロイックミラー4a,4b、ダンパ5、光ファイバ6、冷却ベース板7、並びにチラー装置8を備えている。なお、冷却ベース板7及びこれに搭載された各部材は、図示しない筐体に収容されているが、図1では筐体を取り外して示している。
 励起光源2は、励起光を発振するものであり、例えばランプ又は半導体レーザなどによって構成することができる。励起光源2にて発振された励起光は、励起光伝送ファイバ2aを介して出力される。
 第1レンズ3aは、コリメートレンズとして機能するレンズであり、励起光伝送ファイバ2aと、後述する冷却ベース板7の第1窓部7aとの間に配置されている。第1レンズ3aは、励起光源2からの励起光を発散光の状態から平行光の状態に変換する。
 第2レンズ3bは、集光レンズ及びコリメートレンズとして機能するレンズであり、第1ダイクロイックミラー4aと光ファイバ6の第1端部11との間に配置されている。第2レンズ3bは、第1レンズ3aによって平行光の状態とされた励起光を集光して光ファイバ6に導くとともに、光ファイバ6から放射されたレーザ光を平行光の状態に変換する。
 第3レンズ3cは、集光レンズ及びコリメートレンズとして機能するレンズであり、第2ダイクロイックミラー4bと光ファイバ6の第2端部12との間に配置されている。第3レンズ3cは、光ファイバ6からの励起光及びレーザ光を平行光の状態に変換するとともに、第2ダイクロイックミラー4bからのレーザ光を集光して光ファイバ6に導く。
 第1ダイクロイックミラー4aは、第1レンズ3aと第2レンズ3bとの間に配置されている。第1ダイクロイックミラー4aは、励起光源2からの励起光を透過するとともに、光ファイバ6からのレーザ光を反射して進行方向を変更する。
 第2ダイクロイックミラー4bは、第3レンズ3cとダンパ5との間に配置されている。第2ダイクロイックミラー4bは、光ファイバ6からの励起光を透過するとともに、光ファイバ6からのレーザ光を反射するように構成されている。
 ダンパ5は、第2ダイクロイックミラー4bの下流側に配置されており、第2ダイクロイックミラー4bを透過した励起光を吸収する部材である。
 [光ファイバ6]
 図2は光ファイバ6の第1端部11側の側面断面図であり、図3は光ファイバ6の第2端部12側の側面断面図である。図2及び図3に示すように、光ファイバ6は、第1光ファイバ本体6a、第2光ファイバ本体6b、第1エンドキャップ6c、第2エンドキャップ6d、及び保持装置15を有している。
 第1光ファイバ本体6aは、光ファイバ6のメインとなる部分であって、この第1光ファイバ本体6aにおいてレーザ光が生成される。第1光ファイバ本体6aは、第1コアと、第1コアを覆うように形成された第1クラッドと、を有している。第1コアにはレーザ活性物質がドープされている。第1クラッドは、第1コアよりも屈折率が低く、レーザ活性物質がドープされていない。
 第2光ファイバ本体6bは、一方の端面が第1光ファイバ本体6aの端面に熱融着されている。第2光ファイバ本体6bは、第2コアと、第2コアを覆うように形成された第2クラッドと、を有している。第2光ファイバ本体6bは、第1光ファイバ本体6aと同軸上に延びており、第1光ファイバ本体6aの直径とほぼ同じ直径を有している。第2コアは、レーザ活性物質がドープされていないため、励起光が入射されても発熱しない。すなわち、第2光ファイバ本体6bではレーザ光が生成されない。
 図2に示すように、第1エンドキャップ6cは、第2光ファイバ本体6bの他方の端面に熱融着されている。第1エンドキャップ6cは、励起光及びレーザ光を透過する光透過性であり、且つ潮解性を有さない。
 図3に示すように、第2エンドキャップ6dは、第1光ファイバ本体6aの他方の端面に熱融着されており、第1エンドキャップ6cと同様の構成である。
 [冷却ベース板7及びチラー装置8]
 冷却ベース板7は、図1に示すように、平面視で直方体状に形成されており、第2及び第3レンズ3b,3c、第1及び第2ダイクロイックミラー4a,4b、ダンパ5、並びに保持装置15を含む光ファイバ6が搭載されている。
 冷却ベース板7は、光透過性を有する第1窓部7a及び第2窓部7bを有する。光源2からの励起光は、第1窓部7aを介して冷却ベース板7内に進入し、光ファイバ6に導かれる。光ファイバ6からのレーザ光は、第2窓部7bを介して、冷却ベース板7の外部に出力される。
 また、冷却ベース板7は、表面に収容凹部17を有し、内部に冷媒が流れる流路18(図5参照)を有している。収容凹部17は、冷却ベース板7の表面7cから所定の深さだけ低い表面17aと、側壁である傾斜側面17b及び側面17cを、を有している。傾斜側面17bは、光ファイバ6の端部における光軸の延びる方向(以下、「第1方向」と記す)に対して所定の角度だけ傾斜して形成されている。側面17cは第1方向と平行に形成されている。この収容凹部17に、保持装置15が設置されているため、光ファイバ6の端部が冷却される。
 なお、冷却ベース板7等を収容する筐体の内部は、窒素によって充填されている。また、筐体内の水分を除去するために、筐体内には乾燥剤が入れられている。
 チラー装置8は、冷却ベース板7と配管8aを介して接続されている。チラー装置8は、冷却ベース板7内を流れる冷媒の温度を調整する。具体的には、冷却ベース板7から配管8aを介して送られてきた冷媒をチラー装置8が冷却する。チラー装置8において冷却された冷媒は配管8aを介して冷却ベース板7に戻される。
 [保持装置15]
 図4に、第1端部11に設けられた保持装置15の斜視図を示している。また、図5に保持装置15の断面模式図を示している。保持装置15は、光ファイバ6の端部を保持する機能と、保持された端部を冷却する機能と、を有している。保持装置15は、ファイバホルダ21と、調整部材22と、第1~第3蓋部材23,24,25と、を有している。
 なお、このレーザ発振器においては、冷却ベース板7、チラー装置8、及び保持装置15によってファイバ冷却装置が構成されている。
 ファイバホルダ21は銅製のブロック状の部材である。ファイバホルダ21の一方の表面には、光ファイバ6を収容するためのファイバ用溝が形成されるとともに、その一部にはインジウム等の熱伝導部材27が設けられている。また、ファイバホルダ21の第1方向の両端面21a,21bは、第1方向に対して直交するように形成されている。
 第1蓋部材23は、ファイバホルダ21の表面に装着可能である。第1蓋部材23のファイバホルダ21と対向する側の表面には、光ファイバ6を収容するためのファイバ用溝が形成されるとともに、インジウム等の熱伝導部材28が設けられている。また、第1蓋部材23には、4つの貫通孔23aが形成され、ファイバホルダ21には第1蓋部材23の貫通孔23aに対応する位置に4つのタップ穴21cが形成されている。
 第2蓋部材24は、ファイバホルダ21の表面に装着可能であり、寸法が異なる点、及びファイバホルダ21側の表面に熱伝導部材が設けられていない点を除いて、第1蓋部材23と同様の構成である。
 調整部材22は、ファイバホルダ21とともに冷却ベース板7の収容凹部17に収容されている。より詳細には、調整部材22は、ファイバホルダ21と収容凹部17の傾斜側面17bとの間に配置されている。調整部材22の表面には、光ファイバ6を収容するためのファイバ用溝が形成されている。また、調整部材22のファイバホルダ21側の端面22aは、第1方向に対して直交するように形成されている。この端面22aの全面がファイバホルダ21の端面21bに当接可能である。また、調整部材22の逆側の端面22bは第1方向に対して傾斜している。この傾斜端面22bの傾斜角度は、収容凹部17の傾斜側面17bと同じ角度である。そして、調整部材22の傾斜端面22bの全面が、収容凹部17の傾斜側面17bに当接可能である。
 第3蓋部材25は、調整部材22と同様の形状であり、調整部材22の表面に装着可能である。第3蓋部材25の調整部材22と対向する側の表面には、光ファイバ6を収容するためのファイバ用溝が形成されている。また、第3蓋部材25には、4つの貫通孔25aが形成され、調整部材22には第3蓋部材25の貫通孔25aに対応する位置に4つのタップ穴22cが形成されている。
 以上のような構成により、各蓋部材23,24,25の貫通孔を貫通するボルト(図示せず)をファイバホルダ21及び調整部材22のタップ穴にねじ込むことによって、ファイバホルダ21及び調整部材22と各蓋部材23~25との間に光ファイバ6を挟み込んだ状態で、光ファイバ6を保持することができる。
 また、ファイバホルダ21は、光ファイバ6の先端と第2レンズ3bとの間の距離を調整するために、光軸に沿って(第1方向に沿って)移動可能である。また、調整部材22を収容凹部17の傾斜側面17bに沿って移動させることにより、調整部材22を第1方向に移動させることができる。このため、ファイバホルダ21の第1方向における位置調整を行った後に、調整部材22を傾斜側面17bに沿って移動させることにより、ファイバホルダ21の端面21bと収容凹部17の傾斜側面17bとの間の隙間を、調整部材22によって埋めることができる。
 そして、上述のように位置を調整したファイバホルダ21及び調整部材22を冷却ベース板7に、図示しない任意の方法で固定する。例えば、ファイバホルダ21及び調整部材22に貫通孔を設け、冷却ベース板7に設けたタップ穴のボルトで固定すればよい。この場合、ファイバホルダ21に設けた貫通孔を第1方向に沿った長穴とし、調整部材22に設けた貫通孔を傾斜端面22bに沿った長穴としておくことにより、ファイバホルダ21は第1方向に沿って調整した任意の位置で、調整部材22は傾斜端面22bに沿って(傾斜側面17bに沿って)調整した任意の位置で固定できる。
 ここで、ファイバホルダ21及び調整部材22の厚みは、これらを収容凹部17に収容したとき、ファイバホルダ21及び調整部材22の表面と、冷却ベース板7の表面7cと、が面一になるように設定されている。
 なお、冷却ベース板7の第2端部12側には、この実施形態では収容凹部は形成されていない。そして、ファイバホルダ21及び蓋部材23によって、光ファイバ6の先端部が保持されている。もちろん、第2端部12側についても、第1端部11側と同様の構成にしてもよい。
 [動作]
 励起光源2において発振された励起光は、励起光伝送ファイバ2aから出力され、第1レンズ3aにおいて平行光の状態となり、第1窓部7aを介して冷却ベース板7の収容凹部17内に進入する。収容凹部17内に進入した励起光は、第1ダイクロイックミラー4aを透過し、第2レンズ3bにて集光されて光ファイバ6の第1端部11から光ファイバ6に入射する。
 光ファイバ6に入射した励起光は、第1光ファイバ本体6aの第1コア内を伝播し、第1コアにドープされたレーザ活性物質が励起してレーザ光が出力される。なお、第2コアではレーザ光は出力されない。そして、光ファイバ6の第2端部12から放射された励起光は、第3レンズ3c、第2ダイクロイックミラー4bを透過し、ダンパ5に吸収される。
 一方、第1光ファイバ本体6aの第1コア内で生成されたレーザ光は、光ファイバ6の第2端部12から放射され、第3レンズ3cで平行光の状態に変換される。そして、レーザ光は、第2ダイクロイックミラー4bで反射され、第3レンズ3cで集光されて、第2端部12側から光ファイバ6に入射する。光ファイバ6内に入射したレーザ光は、第1光ファイバ本体6aの第1コア内を伝播し、光ファイバ6の第1端部11から放射される。そして、レーザ光は、第2レンズ3bによって平行光の状態に変換され、第1ダイクロイックミラー4aにて反射されて第2窓部7bに向かうように進行方向が変更され、第2窓部7bを介して冷却ベース板7の外部へ放射される。
 以上のレーザ発振動作において、光ファイバ6において、特に励起光が導入される第1端部11が高温になる。そこで、第1端部11の保持装置15では、ファイバホルダ21を、調整部材22を介して冷却ベース板7に密着させ、光ファイバ6の端部で発生した熱を効率よく冷却するようにしている。
 [ファイバホルダ21の位置調整及び調整部材22のセット]
 前述のように、光ファイバ6の先端位置と第2レンズ3bとの間の距離は、精度よく設定する必要がある。そこで、ファイバホルダ21に光ファイバ6をセットした後に、ファイバホルダ21を光軸方向(第1方向)に沿って移動させ、光ファイバ6の先端位置を調整する。
 例えば、当初、図6の右側に示すような位置にファイバホルダ21がセットされており、この位置では第2レンズ3bとの間の距離が大きすぎるとする。この場合は、ファイバホルダ21を第2レンズ3b側に移動させる必要がある(図6では、調整幅D)。ファイバホルダ21を第2レンズ3b側に距離Dだけ移動させたとき、調整部材22をそのままにしておくと、ファイバホルダ21と調整部材22との間に隙間が生じる。このような状態では、両者の隙間上に位置する光ファイバ6は、ファイバホルダ21及び調整部材22のいずれにも接触しないので、効率よく冷却することができない。
 そこで、図6の左側に示すように、調整部材22を収容凹部17の傾斜側面17bに沿って図6において右側に移動させる。すると、調整部材22は図6において右側に移動するとともにファイバホルダ21側にも移動する。そして、調整部材22の端面22aがファイバホルダ21の端面21bに当接した状態で、調整部材22の移動を停止し、その位置で冷却ベース板7に固定する。
 以上のような調整によって、光ファイバ6の端部は、全体にわたってファイバホルダ21及び調整部材22、さらには冷却ベース板7の表面に当接する。したがって、光ファイバ6の熱を効率よく放熱することができ、光ファイバ6が高温になるのを避けることができる。
 なお、以上の調整によっても、ファイバホルダ21の光軸の位置は変化しない。すなわち、図6で示すように、冷却ベース板7の端面からの距離Wは調整の前後で同じである。
 [他の実施形態]
 本発明は以上のような実施形態に限定されるものではなく、本発明の範囲を逸脱することなく種々の変形又は修正が可能である。
 (1)前記実施形態では、調整部材のファイバホルダ側の端面を第1方向に直交する面としたが、逆側の傾斜端面の傾斜角度と同じ角度でなければ、任意の角度に設定することができる。この場合の調整部材の形状について、図7及び図8に具体例を示している。
 図7に示した例は、調整部材32の一方の端面32aを光軸方向(第1方向)に対して傾斜させるとともに、他方の端面32bについても同方向に傾斜させている。なお、前述のように、一方の端面32aの傾斜角度と、他方の端面32bの傾斜角度と、は異なっている。他方の端面32bは冷却ベース板7の収容凹部17の傾斜側面17bと同じ傾斜角度である。
 なお、この例の場合は、ファイバホルダ31の調整部材32と接触する側の端面31bも、調整部材32の一方の端面32aと同様の角度で傾斜して形成されている。
 また、図8(a)(b)の例は、調整部材42,52の一方の端面42a,52aを光軸方向に対して傾斜させ、他方の端面42b,52bを端面42a,52aとは逆方向に傾斜させている。
 なお、前記同様に、図8に示す例の場合も、ファイバホルダ41,51の調整部材42,52と接触する側の端面41b,51bも、調整部材42,52の一方の端面42a,52aと同様の角度で傾斜して形成されている。
 (2)前記実施形態では、ファイバホルダ21及び調整部材22の表面と冷却ベース板7の表面7cとを面一にしたが、これらの表面の間に段差があってもよい。
 (3)保持装置15を含む冷却装置をレーザ発振器に適用したが、本発明の冷却装置は、他の光ファイバ装置において光ファイバを保持し冷却する際にも同様に適用することができる。
 (4)保持すべき光ファイバの構成は前記実施形態に限定されない。
 (5)冷却ベース板7は内部に冷媒が流れる流路18を有していることとしたが、流路18を省略して、冷却ベース板7の外面に接する流体や部材に光ファイバ6からの熱を放熱することとしてもよい。
 本発明では、光ファイバの先端位置を調整可能にした光ファイバの冷却装置において、光ファイバを効率よく冷却することができる。
 1  レーザ発振器
 2  励起光源
 6  光ファイバ
 15 保持装置
 17 収容凹部
 17b 傾斜側面
 21,31,41,51 ファイバホルダ
 22,32,42,52 調整部材
 22b,32b,42b,52b 傾斜端面

Claims (6)

  1.  収容凹部を有する冷却ベース板と、
     前記冷却ベース板の収容凹部に第1方向に移動自在に配置され、光ファイバの先端部を表面に保持するとともに、保持された光ファイバの前記第1方向における先端位置を調整するためのファイバホルダと、
     前記ファイバホルダと前記収容凹部の端面との間の隙間に配置されるとともに表面に光ファイバが載置され、前記第1方向と交差する第2方向に移動することによって前記第1方向に移動可能であり、前記収容凹部の端面及び前記ファイバホルダの端面の両方に当接する調整部材と、
    を備えた光ファイバの冷却装置。
  2.  前記収容凹部の端面と前記調整部材との第1当接部、及び前記ファイバホルダと前記調整部材との第2当接部の少なくとも一方は、前記第1方向に対して傾斜する端面同士の接触により構成されている、請求項1に記載の光ファイバの冷却装置。
  3.  前記収容凹部の前記調整部材と当接する端面は、前記第1方向に対して傾斜しており、
     前記調整部材は前記収容凹部の傾斜する端面に沿って移動することにより前記第2方向に移動する、
    請求項1又は2に記載の光ファイバの冷却装置。
  4.  前記ファイバホルダ及び前記調整部材は、ともに底面全体が前記収容凹部の表面に接触している、請求項1から3のいずれかに記載の光ファイバの冷却装置。
  5.  前記ファイバホルダ及び前記調整部材の表面は前記冷却ベース板の表面と面一である、請求項1から4のいずれかに記載の光ファイバの冷却装置。
  6.  励起光源と、
     前記励起光源からの励起光が導入され、レーザ光を出力する発振用光ファイバと、
     前記発振用光ファイバを冷却する請求項1から5のいずれかに記載の光ファイバ冷却装置と、
    を備えたレーザ発振器。
PCT/JP2015/070291 2014-07-25 2015-07-15 光ファイバ冷却装置及びレーザ発振器 WO2016013468A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580039423.7A CN106575850B (zh) 2014-07-25 2015-07-15 光纤冷却装置和激光振荡器
EP15824039.0A EP3174169B1 (en) 2014-07-25 2015-07-15 Optical fiber cooling device and laser oscillator
US15/328,485 US9923328B2 (en) 2014-07-25 2015-07-15 Optical fiber cooling device and laser oscillator
JP2016535897A JPWO2016013468A1 (ja) 2014-07-25 2015-07-15 光ファイバ冷却装置及びレーザ発振器
CA2956124A CA2956124C (en) 2014-07-25 2015-07-15 Optical fiber cooling device and laser oscillator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-152012 2014-07-25
JP2014152012 2014-07-25

Publications (1)

Publication Number Publication Date
WO2016013468A1 true WO2016013468A1 (ja) 2016-01-28

Family

ID=55162994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070291 WO2016013468A1 (ja) 2014-07-25 2015-07-15 光ファイバ冷却装置及びレーザ発振器

Country Status (7)

Country Link
US (1) US9923328B2 (ja)
EP (1) EP3174169B1 (ja)
JP (1) JPWO2016013468A1 (ja)
CN (1) CN106575850B (ja)
CA (1) CA2956124C (ja)
TW (1) TWI661627B (ja)
WO (1) WO2016013468A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017168772A (ja) * 2016-03-18 2017-09-21 浜松ホトニクス株式会社 レーザ発振器及びレーザ加工装置
JP2020537758A (ja) * 2017-10-17 2020-12-24 オプトスカンド エービー 光電子集成装置
JPWO2020059433A1 (ja) * 2018-09-21 2021-08-30 三星ダイヤモンド工業株式会社 光ファイバ冷却装置及び光ファイバレーザ装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10942257B2 (en) 2016-12-31 2021-03-09 Innovusion Ireland Limited 2D scanning high precision LiDAR using combination of rotating concave mirror and beam steering devices

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09178977A (ja) * 1995-12-13 1997-07-11 Commiss Energ Atom 光フアイバへのレーザビーム投入接続装置
WO1998045741A1 (en) * 1997-04-08 1998-10-15 Hitachi, Ltd. Optical module, method for manufacturing optical module, and optical transmission device
JP2007081029A (ja) * 2005-09-13 2007-03-29 Toshiba Corp 光ファイバレーザモジュール、光ファイバレーザ発振器、光ファイバレーザ増幅器
JP2007173648A (ja) * 2005-12-23 2007-07-05 Toshiba Corp ファイバレーザ装置及びファイバレーザ冷却構造
JP2010153673A (ja) * 2008-12-26 2010-07-08 Mitsuboshi Diamond Industrial Co Ltd 光ファイバレーザ装置
JP2010182726A (ja) * 2009-02-03 2010-08-19 Mitsuboshi Diamond Industrial Co Ltd 光ファイバ冷却装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04361210A (ja) * 1991-06-10 1992-12-14 Fujitsu Ltd 発光素子アレイまたは受光素子アレイと光ファイバアレイの接続装置及びその実装方法
US7277467B2 (en) * 2001-10-31 2007-10-02 Triquint Technology Holding Co. Externally aligned laser module
JP3858995B2 (ja) * 2002-07-02 2006-12-20 オムロン株式会社 光導波路装置の製造方法
US7723641B2 (en) * 2003-01-10 2010-05-25 Mitsuboshi Diamond Industrial Co., Ltd. Brittle material substrate scribing device and scribing method, and automatic analysis line
JP2004235567A (ja) * 2003-01-31 2004-08-19 Fuji Photo Film Co Ltd レーザモジュール
JP2009212184A (ja) * 2008-03-03 2009-09-17 Mitsubishi Cable Ind Ltd ファイバレーザ装置
WO2009155707A1 (en) * 2008-06-25 2009-12-30 Coractive High-Tech Inc. Energy dissipating packages for high power operation of optical fiber components
CN201725057U (zh) * 2010-05-11 2011-01-26 深圳日海通讯技术股份有限公司 塑料光纤连接器
JP5616150B2 (ja) * 2010-07-16 2014-10-29 株式会社アマダミヤチ アクティブファイバ冷却装置およびそれを備えたファイバレーザ発振器
CN103155309B (zh) * 2010-10-29 2016-06-01 古河电气工业株式会社 光放大装置以及光传送系统
JP5734709B2 (ja) * 2011-03-17 2015-06-17 富士通株式会社 光コネクタ及び電子情報機器
CN203324523U (zh) * 2013-05-23 2013-12-04 纽敦光电科技(上海)有限公司 一种应用于高功率激光光纤耦合的光纤装夹结构
CN203616507U (zh) * 2013-11-13 2014-05-28 中国电子科技集团公司第二十三研究所 一种光纤锥水冷散热封装结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09178977A (ja) * 1995-12-13 1997-07-11 Commiss Energ Atom 光フアイバへのレーザビーム投入接続装置
WO1998045741A1 (en) * 1997-04-08 1998-10-15 Hitachi, Ltd. Optical module, method for manufacturing optical module, and optical transmission device
JP2007081029A (ja) * 2005-09-13 2007-03-29 Toshiba Corp 光ファイバレーザモジュール、光ファイバレーザ発振器、光ファイバレーザ増幅器
JP2007173648A (ja) * 2005-12-23 2007-07-05 Toshiba Corp ファイバレーザ装置及びファイバレーザ冷却構造
JP2010153673A (ja) * 2008-12-26 2010-07-08 Mitsuboshi Diamond Industrial Co Ltd 光ファイバレーザ装置
JP2010182726A (ja) * 2009-02-03 2010-08-19 Mitsuboshi Diamond Industrial Co Ltd 光ファイバ冷却装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3174169A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017168772A (ja) * 2016-03-18 2017-09-21 浜松ホトニクス株式会社 レーザ発振器及びレーザ加工装置
JP6995465B2 (ja) 2016-03-18 2022-01-14 浜松ホトニクス株式会社 レーザ発振器及びレーザ加工装置
JP2020537758A (ja) * 2017-10-17 2020-12-24 オプトスカンド エービー 光電子集成装置
JP7348167B2 (ja) 2017-10-17 2023-09-20 オプトスカンド エービー 光電子集成装置
JPWO2020059433A1 (ja) * 2018-09-21 2021-08-30 三星ダイヤモンド工業株式会社 光ファイバ冷却装置及び光ファイバレーザ装置

Also Published As

Publication number Publication date
US9923328B2 (en) 2018-03-20
CA2956124C (en) 2018-07-24
EP3174169A4 (en) 2018-03-21
EP3174169B1 (en) 2019-04-24
TW201607188A (zh) 2016-02-16
CN106575850B (zh) 2019-06-11
JPWO2016013468A1 (ja) 2017-06-01
CN106575850A (zh) 2017-04-19
US20170214208A1 (en) 2017-07-27
EP3174169A1 (en) 2017-05-31
TWI661627B (zh) 2019-06-01
CA2956124A1 (en) 2016-01-28

Similar Documents

Publication Publication Date Title
WO2016013468A1 (ja) 光ファイバ冷却装置及びレーザ発振器
TWI597909B (zh) Optical fiber, and laser oscillator using the same
KR20130021188A (ko) 레이저 다이오드 광펌핑 모듈을 이용한 펨토초 레이저 장치
JP5166119B2 (ja) ファラデー回転子、光アイソレータおよびレーザ加工装置
JP2011082298A (ja) レーザ光吸収装置及びその固体レーザ装置
JP2016012621A (ja) 光ファイバ保持装置及びこれを有するレーザ発振器
JP6565374B2 (ja) 光ファイバ装置
WO2016208703A1 (ja) 光ファイバ保持装置及びこれを有するレーザ発振器
JP4997543B2 (ja) レーザ集光プリズム
JP2014202902A (ja) ホルダ、レーザ発振装置及びレーザ加工機
JP6695039B2 (ja) 光ファイバ装置
JPWO2016129505A1 (ja) 光ファイバの固定構造
JP2021005659A (ja) ファイバレーザ発振器及びファイバレーザ発振器用筐体
JP2017011238A (ja) 光ファイバ保持装置及びこれを有するレーザ発振器
JP2017017301A (ja) レーザ発振器
JP4713271B2 (ja) レーザ発振方法・レーザ装置およびレーザ装置アレイ
JP2006303195A (ja) レーザモジュール
JP5991539B2 (ja) レーザ発振装置及びレーザ加工機
JP2021005660A (ja) ファイバレーザ発振器
JP2021005658A (ja) ファイバレーザ発振器及びファイバレーザ発振器用筐体
JPH11281803A (ja) 光強度の制限方法及び制限器
JP2012204762A (ja) レーザ加工用のレーザダイオードユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15824039

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016535897

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2956124

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15328485

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015824039

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015824039

Country of ref document: EP