WO2016011963A1 - 锂镍锰氧电池正极材料的制备方法及锂镍锰氧电池正极材料 - Google Patents

锂镍锰氧电池正极材料的制备方法及锂镍锰氧电池正极材料 Download PDF

Info

Publication number
WO2016011963A1
WO2016011963A1 PCT/CN2015/084909 CN2015084909W WO2016011963A1 WO 2016011963 A1 WO2016011963 A1 WO 2016011963A1 CN 2015084909 W CN2015084909 W CN 2015084909W WO 2016011963 A1 WO2016011963 A1 WO 2016011963A1
Authority
WO
WIPO (PCT)
Prior art keywords
valence
compound
lithium
manganese oxide
lithium nickel
Prior art date
Application number
PCT/CN2015/084909
Other languages
English (en)
French (fr)
Inventor
黄俊铭
谢瀚纬
林翔斌
Original Assignee
台湾立凯电能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台湾立凯电能科技股份有限公司 filed Critical 台湾立凯电能科技股份有限公司
Priority to US15/328,587 priority Critical patent/US10128500B2/en
Priority to EP15824250.3A priority patent/EP3174138A4/en
Priority to CN201580037868.1A priority patent/CN106663791A/zh
Priority to KR1020177003148A priority patent/KR101923836B1/ko
Priority to CA2956381A priority patent/CA2956381C/en
Priority to JP2017503914A priority patent/JP6356333B2/ja
Publication of WO2016011963A1 publication Critical patent/WO2016011963A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/54Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [Mn2O4]-, e.g. Li(NixMn2-x)O4, Li(MyNixMn2-x-y)O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/52Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [Mn2O4]2-, e.g. Li2(NixMn2-x)O4, Li2(MyNixMn2-x-y)O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a method for preparing a lithium nickel manganese oxide battery cathode material and a lithium nickel manganese oxide battery cathode material, in particular, a method comprising a valence of 2, a valence of 3, a valence of 4 or a valence of 5
  • the preparation method of the metal ion is to improve the tap density and the storage capacity per unit weight of the lithium nickel manganese oxide battery cathode material by the solid state reaction method.
  • Lithium batteries are widely used because of their safety, memorylessness, and reusability.
  • the prior art discloses that a lithium nickel manganese oxide compound is prepared as a positive electrode material of a lithium battery by using a lithium compound, a nickel compound, and a manganese compound.
  • a lithium nickel manganese oxide compound is prepared by a solid state reaction method, the battery obtained is practical. It is difficult to meet the power consumption requirements of electronic products or electrically driven vehicles. Therefore, in order to increase the total amount of rechargeable batteries and to extend the use time of electronic products or electrically driven vehicles, it is necessary to increase the tap density of the lithium nickel manganese oxide battery cathode material and the amount of electricity per unit weight.
  • the purpose of the present disclosure is to provide a method for preparing a lithium nickel manganese oxide battery cathode material and a lithium nickel manganese oxide battery cathode material, to solve the existing lithium battery prepared by the solid state reaction method for preparing lithium nickel manganese oxide compound.
  • the positive electrode material has a low tap density and a small amount of electricity per unit weight.
  • Another object of the present disclosure is to provide a method for preparing a lithium nickel manganese oxide battery cathode material and a lithium nickel manganese oxide battery cathode material, which comprises adding a valence of 2, a valence of 3, and a valence of 4 or a metal ion compound having a valence of 5 to obtain a finished powder having a primary particle having an octahedral structure, thereby achieving an advantage of increasing the amount of electricity and tap density per unit weight of the obtained lithium nickel manganese oxide battery positive electrode material. Further, the reaction activation energy required to be supplied in the heat treatment stage when preparing the lithium nickel manganese oxide by the solid state reaction method can be further reduced.
  • a broader embodiment of the present disclosure provides a method for preparing a lithium nickel manganese oxide battery cathode material, comprising at least the steps of: (a) providing a nickel compound, a manganese compound, and a first amount of a lithium compound.
  • a second amount of a lithium compound and a compound having a valence of 2, a valence of 3, a valence of 4, or a metal ion having a valence of 5 (b) a nickel compound, a first amount of lithium compound, and a dispersion Mixing with deionized water for a first time to form a first product solution; (c) adding a manganese compound to the first product solution and mixing and stirring for a second time to form a second product solution; (d) pair The second product solution is subjected to a first grinding to form a first precursor solution; (e) a second amount of lithium compound and a valence of 2, a valence of 3, a valence of 4 or a valence of 5 The metal ion compound is mixed with the first precursor solution for a third time, and subjected to a second grinding to form a second precursor solution; and (f) the second precursor solution is calcined to form a lithium nickel manganese oxide battery
  • another broad embodiment of the present disclosure provides a lithium nickel manganese oxide battery cathode material having a chemical formula of Li 1.0+x Ni 0.5 Mn 1.5 V y O 4 , wherein V represents a vanadium ion, x Greater than or equal to -0.1 and less than or equal to 0.1, y is greater than 0 and less than or equal to 0.08.
  • another broad embodiment of the present disclosure provides a method for preparing a lithium nickel manganese oxide battery cathode material, comprising at least the steps of: (a) providing a nickel compound, a manganese compound, a lithium compound, and a valence a compound having a valence of 3, a valence of 4, or a valence of 5; (b) mixing the nickel compound, the lithium compound, and the dispersing agent with deionized water for a first time to form a first generation (c) adding a manganese compound and a compound containing a valence of 2, a valence of 3, a valence of 4 or a metal ion having a valence of 5 to the first product solution and mixing and stirring for a second time to form a second product solution; (d) grinding the second product solution to form a precursor solution; and (e) calcining the precursor solution to form a lithium nickel manganese oxide battery cathode material having a chemical
  • a further embodiment of the present disclosure provides a lithium nickel manganese oxide battery cathode material having a chemical formula of Li 1.0+4x Ni 0.5 Mn 1.5-4x V x O 4 , wherein V represents vanadium ion , x is greater than 0 and less than or equal to 0.1.
  • FIG. 1 is a flow chart of a first preparation method of a positive electrode material for a lithium nickel manganese oxide battery according to the present disclosure.
  • FIG. 2 is a scanning electron microscopic analysis chart of primary particles of a finished powder prepared by adding a vanadium compound.
  • Fig. 3 is a scanning electron microscopic analysis chart of secondary particles of a finished powder prepared by adding a vanadium compound.
  • FIG. 4 is a flow chart of a second method for preparing a positive electrode material for a lithium nickel manganese oxide battery of the present disclosure.
  • Fig. 5 is a graph showing the charge and discharge of a button battery of the finished powder obtained by adding a vanadium compound in the first preparation method or the second preparation method.
  • Fig. 6 is a graph showing the charge and discharge rates of a button battery obtained by adding a vanadium compound in the first preparation method or the second preparation method.
  • Fig. 7 is a graph showing the relationship between the tap density of the finished powder prepared according to the addition ratio of vanadium ions in the first preparation method or the second preparation method.
  • thermogravimetric analysis method and a differential thermal analysis analysis diagram of a finished powder of a lithium nickel manganese oxide battery cathode material prepared by the prior art.
  • Fig. 9 is a thermogravimetric analysis and differential thermal analysis analysis diagram of the finished powder obtained by adding a vanadium compound in the first preparation method or the second preparation method.
  • FIG. 1 is a flow chart of a first preparation method of a positive electrode material for a lithium nickel manganese oxide battery according to the present disclosure.
  • the first preparation method S100 of the lithium nickel manganese oxide battery cathode material of the present disclosure includes the following steps: First, as shown in step S101, a nickel compound, a manganese compound, a first amount of lithium compound, A second quantitative amount of a lithium compound and a compound having a valence of 2, a valence of 3, a valence of 4, or a metal ion having a valence of 5.
  • the compound containing a metal ion having a valence of 2, a valence of 3, a valence of 4 or a valence of 5 may be, but not limited to, a vanadium compound, a niobium compound,
  • a compound of a metal element such as a Manganese compound or an antimony compound is preferably a vanadium compound.
  • the nickel compound can be, but is not limited to, at least one selected from the group consisting of nickel oxide (NiO), nickel carbonate (NiCO 3 ), and combinations thereof.
  • the manganese compound may be, but not limited to, selected from the group consisting of manganese oxide (Mn 2 O 3 ), manganese oxide (MnO), manganese carbonate (MnCO 3 ), and manganese carbonate (Mn 2 (CO 3 ) 3 . And at least one of its group.
  • the first amount of the lithium compound and the second amount of the lithium compound may be, but not limited to, a group selected from the group consisting of lithium hydroxide (LiOH), lithium carbonate (Li 2 CO 3 ), and a composition thereof. At least one of them, and the first amount of the lithium compound and the second amount of the lithium compound may be the same or different compounds.
  • the compound containing a metal ion having a valence of 2, a valence of 3, a valence of 4, or a valence of 5 is selected from the group consisting of Mn 2 O 3 , MnO, MnCO 3 , and Mn 2 (CO 3 ). 3 , V 2 O 5 and at least one of the group members thereof, but not limited thereto.
  • step S102 the nickel compound, the first amount of the lithium compound, and the dispersing agent are mixed with deionized water and stirred for a first time to form a first product solution.
  • the first time required for mixing and stirring is preferably ten minutes, but not limited thereto.
  • step S103 the manganese compound is added to the first product solution and mixed and stirred for a second time to form a second product solution.
  • the second time required for the mixing and stirring is preferably ten minutes, and is not limited thereto.
  • the second product solution is subjected to first grinding to generate a first precursor solution.
  • the second product solution in order to sufficiently react the respective components in the second product solution, the second product solution is placed in a ball mill and continuously milled at a speed of 450 to 650 rpm for 2 to 3 hours.
  • the first precursor solution contains a precursor of lithium nickel manganese oxide.
  • step S105 the second quantitative lithium compound and the compound containing a valence of 2, a valence of 3, a valence of 4, or a metal ion having a valence of 5 are mixed with the first precursor solution.
  • a second grinding is performed to form a second precursor solution.
  • the third time required for the mixing and stirring is preferably ten minutes, and is not limited thereto.
  • the first precursor solution and the second quantitative lithium compound and the compound having a valence of 2, a valence of 3, a valence of 4, or a metal ion having a valence of 5 are sufficiently
  • the reaction is milled through a ball mill and milled at a speed of 350 to 750 revolutions per minute for 2 to 3 hours to complete the second milling and produce a second precursor solution.
  • the second precursor solution is dried, and as shown in step S106, the second precursor solution is calcined to form a lithium nickel manganese oxide battery cathode material, and the lithium nickel manganese oxide battery cathode material has a chemical formula of Li 1.0. +x Ni 0.5 Mn 1.5 M y O 4 , wherein M represents a metal ion having a valence of 2, a valence of 3, a valence of 4 or a valence of 5, and x is greater than or equal to -0.1 and less than or equal to 0.1, y It is greater than 0 and less than or equal to 0.08, and in the present embodiment, M is preferably vanadium ion.
  • the range of x is greater than or equal to -0.1 and less than or equal to 0.1, and y is greater than or equal to -0.05 and less than or equal to 0.05.
  • the calcination placed the preliminary dried second precursor solution in a ceramic crucible and continuously calcined at a temperature of 800 ° C for 10 hours to produce a lithium nickel manganese oxide battery positive electrode having a high tap density and a high unit weight storage amount. material.
  • FIG. 2 is a scanning electron microscope analysis diagram of primary particles of a finished powder prepared by adding a vanadium compound
  • FIG. 3 is a scanning electron of secondary particles of a finished powder prepared by adding a vanadium compound.
  • Microscope analysis chart the compound having a valence of 2, a valence of 3, a valence of 4 or a valence of 5 is a vanadium compound, that is, a vanadium compound is added in step S105 and is prepared in step S106.
  • the obtained lithium nickel manganese oxide battery cathode material has a chemical formula of Li 1.0+x Ni 0.5 Mn 1.5 V y O 4 , x is greater than or equal to -0.1 and less than or equal to 0.1, and y is greater than 0 and less than or equal to 0.08, which is transmitted through the scanning electron
  • the surface topography exhibited by a scanning electron microscope (SEM) is shown in Fig. 2 and Fig. 3, respectively.
  • the primary particles of the battery positive electrode material having the chemical formula of Li 1.0+x Ni 0.5 Mn 1.5 V y O 4 have an octahedral structure, which has an improved tap density and an increase in unit weight.
  • the power storage and other advantages are possible.
  • FIG. 4 is a flow chart of a second method for preparing a positive electrode material for a lithium nickel manganese oxide battery according to the present disclosure.
  • the second preparation method S200 of the lithium nickel manganese oxide battery cathode material of the present disclosure includes the following steps: First, as shown in step S201, a nickel compound, a manganese compound, a lithium compound, and a valence of 2 are provided. A compound having a valence of 3, a valence of 4, or a metal ion having a valence of 5.
  • the compound containing a metal ion having a valence of 2, a valence of 3, a valence of 4 or a valence of 5 may be, but not limited to, a vanadium compound, a niobium compound, a manganese compound (Manganese compound)
  • a compound of a metal element such as an antimony compound, and a vanadium compound is preferred.
  • step S202 the nickel compound, the lithium compound, and the dispersing agent are mixed with deionized water and stirred for a first time to form a first product solution.
  • step S203 a manganese compound and a compound containing a valence of 2, a valence of 3, a valence of 4, or a metal ion having a valence of 5 are added to the first product solution and stirred for a second time.
  • step S204 the second product solution is ground to form a precursor solution.
  • the precursor solution is dried, and as shown in step S205, the precursor solution is calcined to form a lithium nickel manganese oxide battery cathode material, and the lithium nickel manganese oxide battery cathode material has a chemical formula of Li 1.0+4x Ni 0.5 Mn 1.5. -4x M x O 4 , wherein M represents a metal ion having a valence of 2, a valence of 3, a valence of 4, or a valence of 5, x being greater than or equal to 0 and less than or equal to 0.1.
  • the nickel compound, the lithium compound, the manganese compound and the compound having the valence of 2, the valence of 3, the valence of 4 or the valence of 5 are the same as the first preparation method S100. This is not covered here.
  • the first time described in step S202, the second time in step S203, and the calcination described in step S205 are also the same as the first preparation method S100, and will not be further described herein.
  • the grinding employed in step S204 places the second product into a ball mill and continues to grind at a speed of 350 to 450 revolutions per minute for 2 to 3 hours to complete the grinding and generate a precursor solution.
  • a compound having a valence of 2, a valence of 3, a valence of 4 or a valence of 5 is preferably a vanadium compound, that is, added in step S203.
  • the chemical formula of the lithium nickel manganese oxide battery cathode material prepared by the vanadium compound and prepared in step S205 is Li 1.0+4x Ni 0.5 Mn 1.5-4x V x O 4 , wherein V represents a vanadium ion, and x is greater than or equal to 0 and less than or equal to 0.1.
  • the surface morphology exhibited by the scanning electron microscope is similar to that shown in FIG. 2 and FIG. 3, and both are octahedral structures, and the lithium nickel manganese oxide battery cathode material prepared by the second preparation method S200 is also improved.
  • FIG. 5 is a charge and discharge diagram of the button battery of the finished powder prepared by adding a vanadium compound in the first preparation method or the second preparation method
  • FIG. 6 is A graph of charge and discharge rates of a button cell of a finished powder obtained by adding a vanadium compound in the first preparation method or the second preparation method.
  • the first preparation method S100 or the second preparation method S200 is coated on the aluminum substrate with the finished powder of the lithium nickel manganese oxide battery cathode material prepared by adding the vanadium compound, and assembled into a button cell 2032 (coil cell 2032).
  • the test voltage range is 3.2 to 4.9 volts, and the test results are shown in FIG. 5.
  • C-rate charge and discharge rate of 0.5C charging and 1C, 3C, 5C, 7C, 9C and 10C discharge
  • 1C charging rate is charging current At 800 mAh
  • the test results are shown in Figure 6.
  • the lithium nickel manganese oxide battery cathode material prepared by the first preparation method S100 or the second preparation method S200 has good electrical properties, and provides a storage capacity per unit weight higher than that of lithium nickel prepared by the prior art.
  • FIG. 7 is a diagram showing the tap density of the finished powder prepared according to the addition ratio of vanadium ions in the first preparation method or the second preparation method.
  • the lithium nickel manganese oxide battery cathode material prepared by the first preparation method S100 or the second preparation method S200 is tested for tap density according to different addition ratios, and the test results are shown in FIG. 7 .
  • the tap density of the finished powder obtained can be increased by about 25 to 50%.
  • FIG. 8 is a thermogravimetric analysis method and a differential thermal analysis method for the finished powder of the lithium nickel manganese oxide battery cathode material prepared by the prior art
  • FIG. 9 is the first in the disclosure.
  • the finished powder of the lithium nickel manganese oxide battery cathode material was measured by Thermogravimetric Analysis (TG) and Differential Thermal Analysis (DTA), and the test results are shown in FIG.
  • TG Thermogravimetric Analysis
  • DTA Differential Thermal Analysis
  • the finished powder obtained by adding the vanadium compound in the first preparation method or the second preparation method is measured by thermogravimetric analysis and differential thermal analysis, and the test results are shown in FIG. It is apparent from FIGS. 8 and 9 that the reaction activation energy required to be provided in the heat treatment process by the preparation method of the present disclosure is lower than that of the prior art preparation method, and thus the preparation method of the present disclosure can reduce the preparation of lithium by the solid state reaction method.
  • the reaction activation energy required during the heat treatment stage is lower than that of the prior art preparation method, and thus the preparation method of the present disclosure can reduce the preparation of lithium by the solid state reaction method.
  • the lithium nickel manganese oxide battery positive electrode material of the present disclosure is prepared by adding a metal ion having a valence of 2, a valence of 3, a valence of 4 or a valence of 5 to the solid state reaction method.
  • the compound can obtain the finished powder of the octahedral structure of the primary particles, and can increase the storage capacity and the tap density of the unit weight of the obtained lithium nickel manganese oxide battery cathode material, and can further reduce the preparation of lithium by the solid state reaction method.
  • the reaction activation energy to be supplied during the heat treatment stage is to solve the problems of low tap density of the lithium battery positive electrode material prepared by the prior art and small storage capacity per unit weight, thereby improving each unit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本公开关于一种锂镍锰氧电池正极材料的制备方法及电池正极材料,至少包括步骤:提供镍化合物、锰化合物、锂化合物及含有金属离子的化合物;将镍化合物、第一定量的锂化合物及分散剂与去离子水混合搅拌以形成第一生成物溶液;将锰化合物加入第一生成物溶液并混合搅拌以形成第二生成物溶液;对第二生成物溶液进行第一研磨以生成第一前驱物溶液;将第二定量的锂化合物及含有金属离子的化合物与第一前驱物溶液混合搅拌,并进行第二研磨以形成第二前驱物溶液;对第二前驱物溶液进行煅烧,以生成电池正极材料。

Description

锂镍锰氧电池正极材料的制备方法及锂镍锰氧电池正极材料 技术领域
本公开关于一种锂镍锰氧电池正极材料的制备方法及锂镍锰氧电池正极材料,尤指一种通过加入含有价数为2、价数为3、价数为4或价数为5的金属离子的制备方法,以提升固态反应法制备锂镍锰氧电池正极材料的振实密度及单位重量的蓄电量。
背景技术
随着科技的快速发展,为增进生活机能、有效提高能源的使用效率以及减少空气污染,大量的电子产品及电力驱动的交通工具随的孕育而生。锂电池因具有安全性佳、无记忆性以及其可重复使用等等的特性而广泛地被使用。
现有技术公开以锂化合物、镍化合物以及锰化合物制备锂镍锰氧化合物作为锂电池的正极材料,然而,现有技术若以固态反应法制备锂镍锰氧化合物,其所制得的电池实难以满足电子产品或电力驱动的交通工具的耗电需求。因此,为提升充电电池的总电量,以延长电子产品或电力驱动的交通工具的使用时间,有必要提升锂镍锰氧电池正极材料的振实密度及单位重量的蓄电量。
有鉴于此,如何发展一种锂镍锰氧电池正极材料的制备方法及锂镍锰氧电池正极材料,以解决现有技术的缺陷,实为相关技术领域者目前迫切需要解决的课题。
发明内容
本公开的目的在于提供一种锂镍锰氧电池正极材料的制备方法及锂镍锰氧电池正极材料,以解决现有以固态反应法制备锂镍锰氧化合物时,其所制得的锂电池正极材料的振实密度较低且单位重量的蓄电量较小等问题。
本公开的另一目的在于提供一种锂镍锰氧电池正极材料的制备方法及锂镍锰氧电池正极材料,通过在固态反应法中加入含有价数为2、价数为3、价数为4或价数为5的金属离子的化合物以制得一次粒子为八面体结构的成品粉末,以达到增加所制得的锂镍锰氧电池正极材料的单位重量的蓄电量及振实密度的优点,更可降低以固态反应法制备锂镍锰氧化合物时,在热处理阶段所需供给的反应活化能。
根据本公开的构想,本公开的一较广实施方式为提供一种锂镍锰氧电池正极材料的制备方法,至少包括步骤:(a)提供镍化合物、锰化合物、第一定量的锂化合物、第二定量的锂化合物以及含有价数为2、价数为3、价数为4或价数为5的金属离子的化合物;(b)将镍化合物、第一定量的锂化合物及分散剂与去离子水混合搅拌第一时间,以形成第一生成物溶液;(c)将锰化合物加入第一生成物溶液并混合搅拌第二时间,以形成第二生成物溶液;(d)对第二生成物溶液进行第一研磨,以生成第一前驱物溶液;(e)将第二定量的锂化合物 以及含有价数为2、价数为3、价数为4或价数为5的金属离子的化合物与第一前驱物溶液混合搅拌第三时间,并进行第二研磨,以形成第二前驱物溶液;以及(f)对第二前驱物溶液进行煅烧,以生成锂镍锰氧电池正极材料,其化学式为Li1.0+xNi0.5Mn1.5MyO4,其中M代表价数为2、价数为3、价数为4或价数为5的金属离子,x大于或等于-0.1并小于或等于0.1,y大于0并小于或等于0.08。
根据本公开的构想,本公开的另一较广实施方式为提供一种锂镍锰氧电池正极材料,其化学式为Li1.0+xNi0.5Mn1.5VyO4,其中V代表钒离子,x大于或等于-0.1并小于或等于0.1,y大于0并小于或等于0.08。
根据本公开的构想,本公开的又一较广实施方式为提供一种锂镍锰氧电池正极材料的制备方法,至少包括步骤:(a)提供镍化合物、锰化合物、锂化合物以及含有价数为2、价数为3、价数为4或价数为5的金属离子的化合物;(b)将镍化合物、锂化合物及分散剂与去离子水混合搅拌第一时间,以形成第一生成物溶液;(c)将锰化合物及含有价数为2、价数为3、价数为4或价数为5的金属离子的化合物加入第一生成物溶液并混合搅拌第二时间,以形成第二生成物溶液;(d)对第二生成物溶液进行研磨,以生成前驱物溶液;以及(e)对前驱物溶液进行煅烧,以生成锂镍锰氧电池正极材料,其化学式为Li1.0+4xNi0.5Mn1.5-4xMxO4,其中M代表该价数为2、价数为3、价数为4或价数为5的金属离子,x大于0并小于或等于0.1。
根据本公开的构想,本公开的再一较广实施方式为提供一种锂镍锰氧电池正极材料,其化学式为Li1.0+4xNi0.5Mn1.5-4xVxO4,其中V代表钒离子,x大于0并小于或等于0.1。
附图说明
图1为本公开锂镍锰氧电池正极材料的第一种制备方法流程图。
图2为添加钒化合物所制备的成品粉末的一次粒子的扫描式电子显微镜分析图。
图3为添加钒化合物所制备的成品粉末的二次粒子的扫描式电子显微镜分析图。
图4为本公开锂镍锰氧电池正极材料的第二种制备方法流程图。
图5为本公开在第一种制备方法或第二种制备方法中添加钒化合物所制得的成品粉末的扣式电池的充放电性图。
图6为在第一种制备方法或第二种制备方法中添加钒化合物所制得的成品粉末的扣式电池的充放电速率图。
图7为本公开在第一种制备方法或第二种制备方法中依钒离子的添加比例所制得的成品粉末的振实密度关系图。
图8为现有技术所制得的锂镍锰氧电池正极材料的成品粉末的热重分析法及差示热分析法分析图。
图9为本公开在第一种制备方法或第二种制备方法中添加钒化合物所制得的成品粉末的热重分析法及差示热分析法分析图。
【符号说明】
S100:锂镍锰氧电池正极材料的第一种制备方法
S101、S102、S103、S104、S105、S106:步骤
S200:锂镍锰氧电池正极材料的第二种制备方法
S201、S202、S203、S204、S205:步骤
具体实施方式
体现本公开特征与优点的一些典型实施例将在后段的说明中详细叙述。应理解的是本公开能够在不同的方式上具有各种的变化,其皆不脱离本公开的范围,且其中的说明及附图在本质上当作说明的用,而非架构于限制本公开。
请参阅图1,图1为本公开锂镍锰氧电池正极材料的第一种制备方法流程图。如图1所示,本公开的锂镍锰氧电池正极材料的第一种制备方法S100包括步骤如下:首先,如步骤S101所示,提供镍化合物、锰化合物、第一定量的锂化合物、第二定量的锂化合物以及含有价数为2、价数为3、价数为4或价数为5的金属离子的化合物。于本实施例中,含有价数为2、价数为3、价数为4或价数为5的金属离子的化合物可为但不限于钒化合物(Vanadium compound)、铌化合物(Niobium compounds)、锰化合物(Manganese compound)、锑化合物(Antimony compounds)等金属元素的化合物,并以钒化合物为较佳。
于一些实施例中,镍化合物可为但不限于选自氧化镍(NiO)、碳酸镍(NiCO3)及其组成的群族的至少其中之一。于另一些实施例中,锰化合物可为但不限于选自氧化锰(Mn2O3)、氧化亚锰(MnO)、碳酸亚锰(MnCO3)、碳酸锰(Mn2(CO3)3)及其群族的至少其中之一。于又一些实施例中,第一定量的锂化合物及该二定量的锂化合物可为但不限于选自氢氧化锂(LiOH)、碳酸锂(Li2CO3)及其组成的群族的至少其中之一,且第一定量的锂化合物及第二定量的锂化合物可为相同或相异的化合物。于再一些实施例中,含有价数为2、价数为3、价数为4或价数为5的金属离子的化合物选自Mn2O3、MnO、MnCO3、Mn2(CO3)3、V2O5及其组成的群族的至少其中之一,但不以此为限。
其次,如步骤S102所示,将镍化合物、第一定量的锂化合物及分散剂与去离子水混合搅拌第一时间,以形成第一生成物溶液。于本实施例中,混合搅拌所需要的第一时间以十分钟为较佳,但不以此为限。
然后,如步骤S103所示,将锰化合物加入第一生成物溶液并混合搅拌第二时间,以形成第二生成物溶液。于本实施例中,混合搅拌所需要的第二时间以十分钟为较佳,且不以此为限。
接着,如步骤S104所示,对第二生成物溶液进行第一研磨,以生成第一前驱物溶液。于本实施例中,为使第二生成物溶液内的各个成分充分地反应,将第二生成物溶液置入球磨机中,并以每分钟450转至650转的速度持续研磨2至3小时,以完成第一研磨并生成第一前驱物溶液。其中,第一前驱物溶液含有锂镍锰氧化合物的前驱物。
然后,如步骤S105所示,对第二定量的锂化合物以及含有价数为2、价数为3、价数为4或价数为5的金属离子的化合物与第一前驱物溶液混合搅拌第三时间,并进行第二研磨,以形成第二前驱物溶液。于本实施例中,混合搅拌所需要的第三时间以十分钟为较佳,且不以此为限。于一较佳实施例中,为使第一前驱物溶液与第二定量的锂化合物以及含有价数为2、价数为3、价数为4或价数为5的金属离子的化合物充分地反应,透过球磨机进行研磨并以每分钟350转至750转的速度研磨2至3小时,以完成第二研磨并生成第二前驱物溶液。
之后,对第二前驱物溶液进行干燥,再如步骤S106所示,对第二前驱物溶液进行煅烧,以生成锂镍锰氧电池正极材料,该锂镍锰氧电池正极材料的化学式为Li1.0+xNi0.5Mn1.5MyO4,其中M代表价数为2、价数为3、价数为4或价数为5的金属离子,x大于或等于-0.1并小于或等于0.1,y大于0并小于或等于0.08,且于本实施例中,M以钒离子为较佳。于另一些实施例中,当M为锰离子时,x的范围大于或等于-0.1并小于或等于0.1,y大于或等于-0.05并小于或等于0.05。此外,煅烧将初步干燥的第二前驱物溶液置于陶瓷匣钵中,并以摄氏800度的温度持续煅烧10小时,以生成具有高振实密度且具有高单位重量蓄电量的锂镍锰氧电池正极材料。
请参阅图2及图3,图2为添加钒化合物所制备的成品粉末的一次粒子的扫描式电子显微镜分析图;以及图3为添加钒化合物所制备的成品粉末的二次粒子的扫描式电子显微镜分析图。于一较佳实施例中,含有价数为2、价数为3、价数为4或价数为5的金属离子的化合物为钒化合物,即于步骤S105中加入钒化合物并于步骤S106制备得到的锂镍锰氧电池正极材料的化学式为Li1.0+xNi0.5Mn1.5VyO4,x大于或等于-0.1并小于或等于0.1,y大于0并小于等于0.08,其透过扫描电子显微镜(scanning electron microscope,SEM)所呈现的表面形貌分别如图2及图3所示。于本实施例中,如图2所示,化学式为Li1.0+xNi0.5Mn1.5VyO4的电池正极材料的一次粒子呈八面体结构,其具有提高振实密度,且具有提高单位重量的蓄电量等优点。
请参阅图4,图4为本公开锂镍锰氧电池正极材料的第二种制备方法流程图。如图4所示,本公开的锂镍锰氧电池正极材料的第二种制备方法S200包括步骤如下:首先,如步骤S201所示,提供镍化合物、锰化合物、锂化合物以及含有价数为2、价数为3、价数为4或价数为5的金属离子的化合物。其中含有价数为2、价数为3、价数为4或价数为5的金属离子的化合物可为但不限于钒化合物(Vanadium compound)、铌化合物(Niobium compounds)、锰化合物(Manganese compound)、锑化合物(Antimony compounds)等金属元素的化合物,并以钒化合物为较佳。
其次,如步骤S202所示,将镍化合物、锂化合物及分散剂与去离子水混合搅拌第一时间,以形成第一生成物溶液。然后,如步骤S203所示,将锰化合物及含有价数为2、价数为3、价数为4或价数为5的金属离子的化合物加入第一生成物溶液并混合搅拌第二时间,以形成第二生成物溶液。接着,如步骤S204所示,对第二生成物溶液进行研磨, 以生成前驱物溶液。之后,对前驱物溶液进行干燥再如步骤S205所示,对前驱物溶液进行煅烧,以生成锂镍锰氧电池正极材料,锂镍锰氧电池正极材料的化学式为Li1.0+4xNi0.5Mn1.5-4xMxO4,其中M代表该价数为2、价数为3、价数为4或价数为5的金属离子,x大于或等于0并小于或等于0.1。
第二种制备方法S200选用的镍化合物、锂化合物、锰化合物以及含有价数为2、价数为3、价数为4或价数为5的金属离子的化合物与第一种制备方法S100相同,于此不在赘述。其次,步骤S202所述的第一时间、步骤S203所述的第二时间以及步骤S205所述的煅烧亦与第一种制备方法S100相同,于此亦不再赘述。此外,步骤S204所采用的研磨将第二生成物置入球磨机中并以每分钟350转至450转的速度持续研磨2至3小时,以完成该研磨并生成前驱物溶液。
相似地,于第二种制备方法S200中,含有价数为2、价数为3、价数为4或价数为5的金属离子的化合物以钒化合物为较佳,即于步骤S203中加入钒化合物并于步骤S205制备得到的锂镍锰氧电池正极材料的化学式为Li1.0+4xNi0.5Mn1.5-4xVxO4,其中V代表钒离子,x大于或等于0并小于或等于0.1,其透过扫描电子显微镜所呈现的表面形貌与图2及图3所示相似,皆为八面体结构,且由第二种制备方法S200所制备的锂镍锰氧电池正极材料亦具有提高振实密度以及提高单位重量的蓄电量等优点。
请参阅图5及图6,图5为本公开在第一种制备方法或第二种制备方法中添加钒化合物所制得的成品粉末的扣式电池的充放电性图;以及图6为在第一种制备方法或第二种制备方法中添加钒化合物所制得的成品粉末的扣式电池的充放电速率图。将第一种制备方法S100或第二种制备方法S200以加入钒化合物所制备的锂镍锰氧电池正极材料的成品粉末涂布于铝基板上,并组装为扣式电池2032(coil cell 2032),接着再利用充放电机进行0.1库伦充放电2个循环以及2库伦充放电2个循环的电性测试,测试电压范围为3.2至4.9伏特,测试结果如图5所示。然后再利用充放电机进行0.5C充电与1C、3C、5C、7C、9C及10C放电的充放电速率(C-rate),C为电池的容量,如C=800mAh,1C充电速率即充电电流为800mAh,测试结果如图6所示。因此,由第一种制备方法S100或第二种制备方法S200所制备的锂镍锰氧电池正极材料具有良好的电性,其提供的单位重量的蓄电量高于现有技术所制备的锂镍锰氧电池正极材料。
请参阅图7,图7为本公开在第一种制备方法或第二种制备方法中依钒离子的添加比例所制得的成品粉末的振实密度关图。取第一种制备方法S100或第二种制备方法S200所制备的锂镍锰氧电池正极材料依据不同的添加比例进行振实密度的测试,测试结果如图7所示。由图7可知,随着锂镍锰氧电池正极材料所含的钒离子的比例上升,其所制得的成品粉末的振实密度可提高约25至50百分比。
请参阅图8及图9,图8为现有技术所制得的锂镍锰氧电池正极材料的成品粉末的热重分析法及差示热分析法分析图;图9为本公开在第一种制备方法或第二种制备方法中添加钒化合物所制得的成品粉末的的热重分析法及差示热分析法分析图。取现有技术所制得 的锂镍锰氧电池正极材料的成品粉末以热重分析法(Thermogravimetric Analysis,TG)及差示热分析法(Differential Thermal Analysis,DTA)进行量测,测试结果如图8所示。取第一种制备方法或第二种制备方法中添加钒化合物所制得的成品粉末以热重分析法及差示热分析法进行量测,测试结果如图9所示。由图8及图9可明显得知以本公开的制备方法在热处理过程中所需提供的反应活化能比现有技术的制备方法低,因此本公开的制备方法可降低以固态反应法制备锂镍锰氧化合物中,在热处理阶段所需提供的反应活化能。
综上所述,本公开的锂镍锰氧电池正极材料的制备方法,通过在固态反应法中加入含有价数为2、价数为3、价数为4或价数为5的金属离子的化合物以制得一次粒子为八面体结构的成品粉末,可达到增加所制得的锂镍锰氧电池正极材料的单位重量的蓄电量及振实密度的优点,更可降低以固态反应法制备锂镍锰氧化合物时,在热处理阶段所需供给的反应活化能,以解决现有技术所制备的锂电池正极材料的振实密度较低且单位重量的蓄电量较小等问题,借以提升每单位体积的电池所能提供的总电量,延长电子产品或电力驱动的交通工具的使用时间。
本公开得由熟习此技术的人士任施匠思而为诸般修饰,然皆不脱如附申请专利范围所欲保护者。

Claims (11)

  1. 一种锂镍锰氧电池正极材料的制备方法,至少包括步骤:
    (a)提供镍化合物、锰化合物、第一定量的锂化合物、第二定量的锂化合物以及含有价数为2、价数为3、价数为4或价数为5的金属离子的化合物;
    (b)将该镍化合物、该第一定量的锂化合物及分散剂与去离子水混合搅拌一第一时间,以形成一第一生成物溶液;
    (c)将该锰化合物加入该第一生成物溶液并混合搅拌一第二时间,以形成一第二生成物溶液;
    (d)对该第二生成物溶液进行一第一研磨,以生成一第一前驱物溶液;
    (e)将该第二定量的锂化合物以及该含有价数为2、价数为3、价数为4或价数为5的金属离子的化合物与该第一前驱物溶液混合搅拌一第三时间,并进行一第二研磨,以形成一第二前驱物溶液;以及
    (f)对该第二前驱物溶液进行一煅烧,以生成该锂镍锰氧电池正极材料,该锂镍锰氧电池正极材料的化学式为Li1.0+xNi0.5Mn1.5MyO4,其中M代表该价数为2、价数为3、价数为4或价数为5的金属离子,x大于或等于-0.1并小于或等于0.1,y大于0并小于或等于0.08。
  2. 如权利要求1所述的电池复合材料的制备方法,其中该镍化合物选自NiO、NiCO3及其组成的群族的至少其中之一。
  3. 如权利要求1所述的电池复合材料的制备方法,其中该锰化合物选自Mn2O3、MnO、MnCO3、Mn2(CO3)3及其群族的至少其中之一。
  4. 如权利要求1所述的电池复合材料的制备方法,其中该第一定量的锂化合物及该第二定量的锂化合物选自LiOH、Li2CO3及其组成的群族的至少其中之一,且该第一定量的锂化合物及该第二定量的锂化合物可为相同或相异的化合物。
  5. 如权利要求1所述的电池复合材料的制备方法,其中该含有价数为2、价数为3、价数为4或价数为5的金属离子的化合物选自Mn2O3、MnO、MnCO3、Mn2(CO3)3、V2O5及其组成的群族的至少其中之一。
  6. 如权利要求1所述的电池复合材料的制备方法,其中该第一时间、该第二时间及该第三时间各为十分钟。
  7. 如权利要求1所述的电池复合材料的制备方法,其中该第一研磨透过一球磨机并以每分钟450至650转的速度研磨2至3小时完成。
  8. 如权利要求1所述的电池复合材料的制备方法,其中该第二研磨透过一球磨机并以每分钟350至750转的速度研磨2至3小时完成。
  9. 一种锂镍锰氧电池正极材料,其化学式为Li1.0+xNi0.5Mn1.5VyO4,其中V代表钒离子,x大于或等于-0.1并小于或等于0.1,y大于0并小于或等于0.08。
  10. 一种锂镍锰氧电池正极材料的制备方法,至少包括步骤:
    (a)提供镍化合物、锰化合物、锂化合物以及含有价数为2、价数为3、价数为4或价数为5的金属离子的化合物;
    (b)将该镍化合物、该锂化合物及分散剂与去离子水混合搅拌一第一时间,以形成一第一生成物溶液;
    (c)将该锰化合物及该含有价数为2、价数为3、价数为4或价数为5的金属离子的化合物加入该第一生成物溶液并混合搅拌一第二时间,以形成一第二生成物溶液;
    (d)对该第二生成物溶液进行一研磨,以生成一前驱物溶液;以及
    (e)对该前驱物溶液进行一煅烧,以生成该锂镍锰氧电池正极材料,该锂镍锰氧电池正极材料的化学式为Li1.0+4xNi0.5Mn1.5-4xMxO4,其中M代表该价数为2、价数为3、价数为4或价数为5的金属离子,x大于并小于或等于0.1。
  11. 一种锂镍锰氧电池正极材料,其化学式为Li1.0+4xNi0.5Mn1.5-4xVxO4,其中V代表钒离子,x大于0并小于或等于0.1。
PCT/CN2015/084909 2014-07-25 2015-07-23 锂镍锰氧电池正极材料的制备方法及锂镍锰氧电池正极材料 WO2016011963A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/328,587 US10128500B2 (en) 2014-07-25 2015-07-23 Preparation method of lithium nickel manganese oxide cathode material of battery and lithium nickel manganese oxide cathode material of battery
EP15824250.3A EP3174138A4 (en) 2014-07-25 2015-07-23 Method for preparing lithium nickel manganese oxide positive battery electrode material, and lithium nickel manganese oxide positive battery electrode material
CN201580037868.1A CN106663791A (zh) 2014-07-25 2015-07-23 锂镍锰氧电池正极材料的制备方法及锂镍锰氧电池正极材料
KR1020177003148A KR101923836B1 (ko) 2014-07-25 2015-07-23 전지의 리튬 니켈 망간 옥사이드 양극 물질의 제조 방법 및 전지의 리튬 니켈 망간 옥사이드 양극 물질
CA2956381A CA2956381C (en) 2014-07-25 2015-07-23 Preparation method of lithium nickel manganese oxide cathode material of battery and lithium nickel manganese oxide cathode material of battery
JP2017503914A JP6356333B2 (ja) 2014-07-25 2015-07-23 リチウムニッケルマンガン酸化物電池カソード材料の調製方法及びリチウムニッケルマンガン酸化物電池カソード材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462029146P 2014-07-25 2014-07-25
US62/029,146 2014-07-25

Publications (1)

Publication Number Publication Date
WO2016011963A1 true WO2016011963A1 (zh) 2016-01-28

Family

ID=55162527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/084909 WO2016011963A1 (zh) 2014-07-25 2015-07-23 锂镍锰氧电池正极材料的制备方法及锂镍锰氧电池正极材料

Country Status (8)

Country Link
US (1) US10128500B2 (zh)
EP (1) EP3174138A4 (zh)
JP (1) JP6356333B2 (zh)
KR (1) KR101923836B1 (zh)
CN (1) CN106663791A (zh)
CA (1) CA2956381C (zh)
TW (1) TWI571439B (zh)
WO (1) WO2016011963A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110416513A (zh) * 2019-07-23 2019-11-05 中国恩菲工程技术有限公司 碳硅复合材料的制备方法、碳硅复合电极及包含其的电池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI800941B (zh) * 2021-10-06 2023-05-01 芯量科技股份有限公司 製備成分均勻正極材料前驅物的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1476117A (zh) * 2002-08-12 2004-02-18 成都蜀都纳米材料科技发展有限公司 锂锰氧氟复合氧化物锂离子二次电池正极材料
CN102820464A (zh) * 2012-09-03 2012-12-12 济宁市无界科技有限公司 二次锂离子电池用锰基复合正极材料制备方法
CN102969494A (zh) * 2010-10-15 2013-03-13 清华大学 锂镍锰氧化物复合材料及其制备方法以及锂离子电池
CN103904319A (zh) * 2014-03-04 2014-07-02 广东邦普循环科技有限公司 一种动力型镍钴锰酸锂正极材料的制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4447578C2 (de) * 1994-09-30 1999-01-14 Zsw Ternäre Lithium-Mischoxide, Verfahren zu deren Herstellung sowie deren Verwendung
JPH09245836A (ja) * 1996-03-08 1997-09-19 Fuji Photo Film Co Ltd 非水電解質二次電池
IT1283968B1 (it) * 1996-03-29 1998-05-07 Consiglio Nazionale Ricerche Batteria ricaricabile al litio o a ioni-litio in grado di sostenere prolungate ciclazioni.
CA2240805C (en) * 1997-06-19 2005-07-26 Tosoh Corporation Spinel-type lithium-manganese oxide containing heteroelements, preparation process and use thereof
JP2004155631A (ja) * 2002-11-08 2004-06-03 Dainippon Toryo Co Ltd 非水リチウム二次電池用のリチウムマンガン系複酸化物粒子、その製造方法及び非水リチウム二次電池
US7211237B2 (en) * 2003-11-26 2007-05-01 3M Innovative Properties Company Solid state synthesis of lithium ion battery cathode material
FR2879822B1 (fr) * 2004-12-21 2009-05-22 Commissariat Energie Atomique Materiau d'electrode positive optimise pour accumulateurs au lithium, procede pour sa realisation, electrode, accumulateur et batterie mettant en oeuvre ce materiau
JP2010282858A (ja) * 2009-06-05 2010-12-16 Hitachi Ltd リチウムイオン電池
CN102324513A (zh) * 2011-09-19 2012-01-18 奇瑞汽车股份有限公司 一种锂镍锰氧复合正极材料及其制备方法
CN102683668B (zh) 2011-12-19 2016-04-13 中国科学院宁波材料技术与工程研究所 尖晶石镍锰基氧化物正极材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1476117A (zh) * 2002-08-12 2004-02-18 成都蜀都纳米材料科技发展有限公司 锂锰氧氟复合氧化物锂离子二次电池正极材料
CN102969494A (zh) * 2010-10-15 2013-03-13 清华大学 锂镍锰氧化物复合材料及其制备方法以及锂离子电池
CN102820464A (zh) * 2012-09-03 2012-12-12 济宁市无界科技有限公司 二次锂离子电池用锰基复合正极材料制备方法
CN103904319A (zh) * 2014-03-04 2014-07-02 广东邦普循环科技有限公司 一种动力型镍钴锰酸锂正极材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3174138A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110416513A (zh) * 2019-07-23 2019-11-05 中国恩菲工程技术有限公司 碳硅复合材料的制备方法、碳硅复合电极及包含其的电池

Also Published As

Publication number Publication date
US10128500B2 (en) 2018-11-13
CN106663791A (zh) 2017-05-10
EP3174138A4 (en) 2017-07-12
US20170207452A1 (en) 2017-07-20
KR20170030560A (ko) 2017-03-17
TWI571439B (zh) 2017-02-21
CA2956381C (en) 2020-06-09
CA2956381A1 (en) 2016-01-28
KR101923836B1 (ko) 2018-11-29
TW201604135A (zh) 2016-02-01
JP6356333B2 (ja) 2018-07-11
JP2017527958A (ja) 2017-09-21
EP3174138A1 (en) 2017-05-31

Similar Documents

Publication Publication Date Title
CN101855755B (zh) 非水电解液二次电池用Li-Ni类复合氧化物颗粒粉末及其制造方法,和非水电解质二次电池
CN103855380B (zh) 正极活性物质、用于制备其的方法和包含其的锂二次电池
CN103456936B (zh) 钠离子二次电池及其用的层状钛酸盐活性物质、电极材料、正负极和活性物质的制备方法
JP6708326B2 (ja) ナトリウム二次電池用正極材料
CN107665983B (zh) 锂离子电池正极材料及其制备方法和锂离子电池
CN105161693B (zh) 一种高循环锂电多元正极材料ncm及其制备方法
JP4299065B2 (ja) リチウム二次電池用正極材およびその製造方法
JP5308600B1 (ja) 層構造を有するリチウム金属複合酸化物
JP2010092848A (ja) 非水電解質二次電池用Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
JP5606654B2 (ja) リチウム金属複合酸化物
JP2016185903A (ja) リチウムマンガン複合酸化物の製造方法
CN105932251A (zh) 一种金属氧化物包覆锂离子电池正极材料的制备方法及其应用
JP2006318929A (ja) リチウム二次電池用正極活物質及び非水系リチウム二次電池
JP4740415B2 (ja) 電気自動車或いはハイブリッド自動車用リチウム二次電池
JP2006318928A (ja) リチウム二次電池用正極活物質及び非水系リチウム二次電池
JP2004311427A (ja) リチウム二次電池用正極活物質とその製造方法並びに非水系リチウム二次電池
JP4628704B2 (ja) リチウム二次電池用正極材およびその製造方法
TWI571439B (zh) 鋰鎳錳氧電池正極材料之製備方法及鋰鎳錳氧電池正極材料
CN105870420A (zh) 一种锂离子动力电池用磷酸锰锂正极材料及其制备方法
CN112687855A (zh) 正极材料及其制备方法、电极和电池
TWI578601B (zh) 鋰鎳錳氧正極材料之製法
KR20160043862A (ko) 리튬 이차 전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질
CN113690431B (zh) 一种锰酸锂正极材料、其制备方法、改善方法及其用途
KR101623868B1 (ko) 금속 산화물로 코팅된 리튬 망간 산화물의 제조 방법 및 이에 의하여 제조된 금속 산화물로 코팅된 리튬 망간 산화물
CN115050937A (zh) 一种锂离子电池正极材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15824250

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017503914

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2956381

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2015824250

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015824250

Country of ref document: EP

Ref document number: 15328587

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177003148

Country of ref document: KR

Kind code of ref document: A