WO2016010070A1 - 電源制御システム - Google Patents

電源制御システム Download PDF

Info

Publication number
WO2016010070A1
WO2016010070A1 PCT/JP2015/070252 JP2015070252W WO2016010070A1 WO 2016010070 A1 WO2016010070 A1 WO 2016010070A1 JP 2015070252 W JP2015070252 W JP 2015070252W WO 2016010070 A1 WO2016010070 A1 WO 2016010070A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
current
power
switch
state
Prior art date
Application number
PCT/JP2015/070252
Other languages
English (en)
French (fr)
Inventor
晃則 丸山
佐竹 周二
悟史 森田
宜範 生田
中村 吉秀
泰行 重實
Original Assignee
矢崎総業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014145177A external-priority patent/JP6374248B2/ja
Priority claimed from JP2015002813A external-priority patent/JP6379046B2/ja
Application filed by 矢崎総業株式会社 filed Critical 矢崎総業株式会社
Priority to CN201580038841.4A priority Critical patent/CN106660497B/zh
Priority to DE112015003256.8T priority patent/DE112015003256B4/de
Publication of WO2016010070A1 publication Critical patent/WO2016010070A1/ja
Priority to US15/391,357 priority patent/US10351084B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for

Definitions

  • the present invention relates to a power supply control system for controlling power supply from a power supply to a load by a controller.
  • the vehicle is equipped with a controller called an electronic control unit (ECU).
  • the ECU detects the state of the switch of the vehicle, the output of the sensor, and the like, and controls the power supply from the power source to the load (electrical component) corresponding to the switch, the sensor, etc. according to the detection results. Since many loads, switches, and sensors are mounted on the vehicle, a plurality of ECUs are mounted on the vehicle accordingly.
  • control for cutting off the power supply path is performed by a monitoring device that monitors the entire power supply system.
  • the threshold value used for this control is set based on the maximum current flowing through the power supply path.
  • the maximum current of the power supply path is set based on the total current flowing through each ECU.
  • control of the power supply to the load by the ECU may become unnecessary depending on the state of the vehicle, such as the position of the ignition switch, for example. Then, the ECU when the control of the power supply to the load is unnecessary for all the control objects causes the operation state of the ECU to shift from the start state (wake state) to the power saving state (sleep state) for power saving. I can keep it.
  • the power consumed by the ECU differs depending on whether it is in the activated state or in the power saving state.
  • the power saving ECU consumes less power than the activated ECU. Therefore, depending on whether or not the magnitude of the current that actually flows through the power supply path to the ECU is appropriate for the state that the ECU should be, for example, the ECU that is to enter the power saving state is in the activated state. It is possible to detect abnormalities that remain.
  • the current flowing through the power supply path is originally smaller than the time when the ECU is in the activated state, because the load to which power is supplied by the control of the ECU is smaller. Therefore, it is suitable for detecting an overcurrent state when the ECU is in an activated state due to the current flowing through the power supply path to the extent that an abnormality has occurred where the ECU that should shift to the power saving state does not shift to the power saving state. There is no change across the threshold.
  • the current flowing through the power supply path It is necessary to switch the threshold used for the comparison to a lower value when the ECU is in the power saving state than when the ECU is in the activated state.
  • each ECU of the vehicle self-reports its operation state to the monitoring device periodically through communication, and the monitoring device periodically updates the threshold value based on the result (Patent Document 1). .
  • the threshold value of the monitoring device can be switched according to the operation state of the ECU.
  • JP2009-81948A JP 2009-081948 A
  • each ECU it is necessary for each ECU to be able to communicate with the monitoring device so that each ECU can self-report the operation state. For this reason, it is necessary for the ECU to have a communication function with the monitoring device in order to reflect the operation state of the ECU in the threshold value used for the cutoff control of the power supply path, which complicates the device configuration.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is when a controller such as an ECU that controls power supply to a load should transition from an activated state (wake state) to a power saving state (sleep state).
  • An object of the present invention is to provide a power supply control system capable of determining an abnormality that does not shift to a power saving state due to an error and remains in a starting state with a simple configuration.
  • a power supply control system is a power supply control system for a controller that controls power supply from a power supply to a load, and is connected to the power supply. Is provided on the power supply path, and is provided on the controller side of the bypass switch on the power supply path.
  • a current measurement unit capable of measuring the current flowing through the power supply path using a shunt resistor while the switch is on, and the power supply path between the power supply and the bypass switch are branched from the power supply path and connected to the controller.
  • a current supply path that forms a circuit in parallel with the resistor In the system off mode in which the current supply switch that can cut off the power supply to the controller from the current supply path by being turned off and the controller that stopped the power supply to the load shifted to the power saving state, the bypass switch is turned on. Abnormal transition from the amount of change in current measured by the current measurement unit to the power saving state of the controller connected to the current supply path having the current supply switch when the current supply switch is turned on or off in the activated state An abnormality determination unit for determining
  • the bypass switch is turned on when determining an abnormal transition to the power saving state of the controller in the system off mode in which the controller stops the power supply to the load and shifts itself to the power saving state. In this state, the current supply switch is turned on.
  • the current supply path has a lower resistance than the power supply path in the middle of which the shunt resistance exists, the current for the controller flows exclusively through the current supply path. That is, supply of dark current to the controller in the power saving state is continued, but the supply path is switched from the power supply path to the current supply path. And since the dark current with respect to the controller stops flowing, the current flowing through the power supply path decreases.
  • the current flowing through the controller can be grasped from the amount of change in the current of the power supply path measured by the current measurement unit when the current supply switch is turned on or off while the bypass switch is on. Then, the abnormality determination unit can determine whether the controller is abnormally shifted to the power saving state depending on whether the grasped current is larger than the normal dark current.
  • the power of the power source can be supplied to the controller through the power supply path.
  • the controller does not have a communication function for notifying whether its own state is a power saving state or a startup state, the current of the power supply path is From this, it is possible to determine an abnormality in the transition of the controller to the power saving state.
  • the power supply control system includes a plurality of sets of current supply paths and current supply switches corresponding to a plurality of controllers, and the abnormality determination unit turns on the bypass switch in the system off mode. In such a state, each set of current supply switches may be sequentially turned on to sequentially determine whether the controller is abnormally shifted to the power saving state.
  • the system when there are multiple controllers, the system can be configured to supply dark current through a path different from the power supply path by the combination of the current supply path and current supply switch corresponding to each controller.
  • FIG. 5 by sequentially turning on each current supply switch while the bypass switch is on, it is possible to individually determine whether the controller is abnormally shifted to the power saving state.
  • the power supply control system when a controller such as an ECU that controls power supply to a load should shift from an activated state (wake state) to a power saving state (sleep state), power saving is caused by an error. It is possible to determine an abnormality that does not shift to the state and remains in the activated state with a simple configuration.
  • FIG. 1 is a circuit diagram illustrating a schematic configuration of a vehicle power supply circuit to which the power supply control system according to the first embodiment is applied.
  • FIG. 2 is a circuit diagram showing a power supply path to the ECU when the monitoring controller performs a power saving state transition abnormality detection process in the power supply circuit of FIG.
  • FIG. 3 is a circuit diagram illustrating a power supply path to the ECU when the monitoring controller performs a power saving state transition abnormality detection process in the power supply circuit of FIG.
  • FIG. 4 is a flowchart showing a procedure of abnormality determination processing performed by the monitoring controller of FIG.
  • FIG. 5 is a flowchart showing the procedure of the channel check process of FIG.
  • FIG. 6 is a flowchart showing the procedure of the channel check process of FIG. FIG.
  • FIG. 7 is a circuit diagram illustrating an example of a circuit configuration of the power supply control system according to the second embodiment.
  • FIG. 8 is a configuration diagram illustrating an example of the overall configuration of the power supply control system according to the second embodiment.
  • FIG. 9 is a flowchart illustrating an example of a processing procedure of dark current abnormality occurrence processing executed in the power supply control system according to the second embodiment.
  • FIG. 10 is a flowchart illustrating an example of a processing procedure of a subroutine related to dark current abnormal system detection processing in the power supply control system according to the second embodiment.
  • FIG. 11 is a flowchart illustrating an example of a processing procedure of a subroutine related to a power-on reset process in the power supply control system according to the second embodiment.
  • FIG. 12 is a table showing the on / off states of the switches when dark current abnormality is detected in the power supply control system according to the second embodiment.
  • FIG. 13 is a chart showing on / off states of the switches at the time of power-on reset in the power supply control system according to the second embodiment.
  • FIG. 14 is a circuit diagram illustrating an example of a circuit configuration of a power supply control system according to the third embodiment.
  • FIG. 15 is a flowchart illustrating an example of a processing procedure of dark current abnormality occurrence processing executed in the power supply control system according to the third embodiment. It is a flowchart which shows the example of the process sequence of the subroutine which concerns on the power-on reset process in the power supply control system which concerns on 3rd Embodiment.
  • FIG. 17 is a circuit diagram illustrating an example of a circuit configuration of a power supply control system according to the fourth embodiment.
  • FIG. 18 is a configuration diagram illustrating an example of the overall configuration of the power supply control system according to the fourth embodiment.
  • FIG. 19 is a schematic configuration diagram showing a schematic configuration of an ECU constituting a part of the power supply control system according to the fourth embodiment.
  • FIG. 20 is a flowchart illustrating an example of a processing procedure of dark current abnormality detection processing using a current sensor executed in the power supply control system according to the fourth embodiment.
  • FIG. 21 is a flowchart illustrating an example of a processing procedure of a power supply system singularization process executed in the power supply control system according to the fourth embodiment.
  • FIG. 22 is a flowchart illustrating an example of a processing procedure of a subroutine relating to dark current abnormal system detection processing in the power supply control system according to the fourth embodiment.
  • FIG. 23 is a flowchart illustrating an example of a subroutine for a power-on reset process in the power supply control system according to the fourth embodiment.
  • FIG. 24 is a flowchart illustrating an example of a processing procedure of dark current abnormality detection processing by the power supply device executed in the power supply control system according to the fourth embodiment.
  • FIG. 25 is a chart showing the on / off states of the switches during dark current measurement in the power supply control system according to the fourth embodiment.
  • FIG. 26 is a chart showing on / off states of the switches at the time of power-on reset in the power supply control system according to the fourth embodiment.
  • FIG. 27 is a chart showing the on / off states of the switches when dark current abnormality is detected in the dark current abnormal system detection processing.
  • FIG. 28 is a chart showing the on / off state of each switch at the time of power-on reset in the power-on reset process.
  • a power supply control system 1 is used by being mounted on a vehicle (not shown), and is a system that controls power supply from a power supply VB to a load 3. Although only one load 3 is omitted in FIG. 1, there are actually a plurality of loads 3.
  • the power supply control system 1 includes electronic control units (ECUs) 5a to 5e, a power supply path 7, individual supply paths 9a to 9d, a switch 11, a bypass switch 13, a current sensor 15, Supply paths 17a to 17d, current supply switches 19a to 19d, and a monitoring controller 21 as an abnormality determination unit are provided.
  • ECUs electronice control units
  • the power supply to each load 3 is controlled by ECUs 5a to 5e as controllers corresponding to the loads 3.
  • the power source VB is a battery mounted on a vehicle (not shown).
  • the power source VB is connected to the ECUs 5a to 5e via the power supply path 7 connected to the power source VB and the individual supply paths 9a to 9d on the downstream side.
  • the power from is supplied.
  • the load 3 is supplied with electric power from the power source VB through a route different from that of the ECUs 5a to 5e.
  • the power supply path from the power source VB to the load 3 is provided with a power supply control switch 11 which is turned on / off by the control of the ECUs 5a to 5e corresponding to the load 3.
  • the switches include a vehicle ignition switch.
  • the data indicating the state of the sensors and switches is, for example, CAN (Control Area).
  • CAN Control Area
  • the data is transferred between the ECUs 5a to 5e via an in-vehicle LAN such as a network.
  • the power supply path 7 is provided with a bypass switch 13 for stopping power supply from the power source VB to the ECUs 5a to 5e via the individual supply paths 9a to 9d. Further, a shunt resistor Rsens is provided at a location between the bypass switch 13 of the power supply path 7 and the branch location of the individual supply paths 9a to 9d. A current sensor 15 as a current measuring unit is connected to both ends of the shunt resistor Rsens sandwiching the bypass switch 13. The current sensor 15 measures the current flowing through the power supply path 7 from the voltage drop at the shunt resistor Rsens.
  • Current supply paths 17a to 17d are branchedly connected to the power supply path 7 between the power supply VB and the bypass switch 13.
  • the current supply paths 17a to 17d are individually connected to the ECUs 5b to 5e, respectively. That is, the current supply paths 17a to 17d are connected in parallel with the power supply path 7, the bypass switch 13, the shunt resistor Rsens, and the series circuit of the individual supply paths 9a to 9d.
  • the current supply path 17a connected to the ECU 5b is branched and connected to the ECU 5a that has the same condition as the ECU 5b for shifting to an activated state (wake state) or a power saving state (sleep state).
  • the current supply paths 17a to 17d are provided with current supply switches 19a to 19d.
  • the bypass switch 13 of the power supply path 7 is normally turned on. Therefore, the electric power of the power source VB is supplied to the ECUs 5a to 5e via the power supply path 7 and the individual supply paths 9a to 9d.
  • the ECUs 5a to 5e to which the power of the power source VB is supplied control the supply of power to the load 3 in the activated state according to the state of sensors (not shown) and switches (not shown). Further, the ECUs 5a to 5e shift to the power saving state when the supply of power to the corresponding load 3 is all stopped.
  • the ECUs 5a to 5e that have shifted to the power saving state return to the activated state when the state of sensors (not shown) or switches (not shown) changes.
  • the bypass switch 13 is turned on by the control of the monitoring controller 21 when the ECUs 5a to 5e are in the activated state.
  • the bypass switch 13 is controlled by the control of the monitoring controller 21. Switched off. As a result, the power supply to the ECUs 5a to 5e via the power supply path 7 and the individual supply paths 9a to 9d is forcibly stopped.
  • the monitoring controller 21 is constituted by, for example, a microcomputer having a port with a built-in A / D converter, and executes various processes according to a predetermined program.
  • the monitoring controller 21 is connected to the power supply path 7 measured by the current sensor 15 when the bypass switch 13 is in the on state and the ECUs 5a to 5e are all in the power saving state.
  • the occurrence of an abnormal state of dark current is determined depending on whether or not the current exceeds a threshold for determining an abnormal state of dark current.
  • Whether or not the system is in the system off mode can be determined by the monitoring controller 21 from the position (LOCK, OFF, ACC, ON, START) of an ignition switch (not shown), for example.
  • the monitoring controller 21 When it is determined that an abnormal state of dark current has occurred, the monitoring controller 21 performs a detection process of an abnormal transition to the power saving state of the ECUs 5a to 5e.
  • the monitoring controller 21 switches the current supply switches 19a to 19d from the off state to the on state one by one while keeping the bypass switch 13 in the on state.
  • the power supply paths of the power source VB to the ECUs 5a to 5e are all the power supply path 7 and the individual supply paths 9a as shown by the thick lines in the circuit diagram of FIG. To 9d.
  • the power supply path of the power source VB to the ECUs 5a and 5b is the power supply path 7 and the individual supply path 9a as shown by the thick lines in the circuit diagram of FIG.
  • the illustration of the load 3, the switch 11, and the like is omitted.
  • the controller 21 for monitoring can recognize the electric current which flows into ECU5a, 5b by detecting the decreasing part from the magnitude
  • the monitoring controller 21 detects a decrease in the current flowing through the power supply path 7 each time the current supply switches 19b to 19d are sequentially turned on. Then, it is confirmed whether or not the detected decrease in current has a magnitude commensurate with the dark current flowing through the corresponding ECUs 5c to 5e. As a result, the monitoring controller 21 can determine whether or not the ECUs 5c to 5e have the abnormal transition to the power saving state.
  • the monitoring controller 21 performs initial setting of the bypass switch 13 (B_SW) and each current supply switch as the ignition switch (not shown) shifts from the LOCK position to the OFF position.
  • 19a to 19d (SW_ [1] to SW_ [4]) are set as a system off mode switch pattern (step S1).
  • the bypass switch 13 (B_SW) is turned on, and the current supply switches 19a to 19d (SW_ [1] to SW_ [4]) are turned off.
  • the monitoring controller 21 determines the transition condition from the power saving state (SLEEP) to the start state (WAKE) in at least one of the ECUs 5a to 5e based on the state of sensors (not shown) and switches (not shown). Whether or not is established is confirmed (step S3).
  • SLEEP power saving state
  • WAKE start state
  • step S3 If the condition is not satisfied (NO in step S3), the process proceeds to step S11 described later. If the condition is satisfied (YES in step S3), the bypass switch 13 (B_SW) and each of the current supply switches 19a to 19d are transferred. (SW_ [1] to SW_ [4]) is set as a switch pattern in the activated state (WAKE) (step S5). In the switch pattern of the activated state (WAKE), the bypass switch 13 (B_SW) is turned off, and the current supply switches 19a to 19d (SW_ [1] to SW_ [4]) are turned on.
  • the “WAKE mid-circuit ground fault determination” process is a process of monitoring the occurrence of an overcurrent state in the load 3 and the ECUs 5a to 5e. This process is performed by, for example, a ground fault determination circuit (not shown) that is provided separately from the power supply control system 1 and determines the ground fault of the power supply path 7 and the individual supply paths 9a to 9d. Therefore, in the “WAKE in-circuit ground fault determination” process in step S7, the monitoring controller 21 needs to respond to an occurrence of an overcurrent state from a ground fault determination circuit (not shown), for example. Perform processing.
  • the monitoring controller 21 determines whether or not a condition for shifting to the system off mode in which the power saving state of all the ECUs 5a to 5e is established from the state of sensors (not shown) and switches (not shown). Confirm (step S9). If not satisfied (NO in step S9), step S9 is repeated until the condition is satisfied. If satisfied (YES in step S9), the process returns to step S1.
  • step S11 when the transition condition from the power saving state (SLEEP) to the activated state (WAKE) is not satisfied (NO) in at least one of the ECUs 5a to 5e, the monitoring controller 21 proceeds to step S11. , “Dark current normality determination” processing is performed.
  • the “dark current normality determination” process is a process of monitoring the occurrence of an abnormal dark current state in the ECUs 5a to 5e. Therefore, the monitoring controller 21 determines the abnormal state of the dark current by comparing the magnitude of the current of the power supply path 7 measured by the current sensor 15 with the threshold value for determining the abnormal state of the dark current.
  • step S11 If the dark current state is normal (YES in step S11), the process returns to step S3. If not normal (NO in step S11), the “channel (Ch) check” process is performed (step S13). .
  • the “channel (Ch) check” process is a process of detecting an abnormal transition to the power saving state of the ECUs 5a to 5e. Accordingly, the monitoring controller 21 switches the current supply switches 19a to 19d from the off state to the on state one by one while keeping the bypass switch 13 in the on state.
  • the monitoring controller 21 recognizes the current flowing through the ECUs 5a to 5e corresponding to the switched current supply switches 19a to 19d from the decrease in the current of the power supply path 7 measured by the current sensor 15 at the time of switching. Further, the monitoring controller 21 determines whether or not the ECU 5a to 5e has an abnormal transition to the power saving state depending on whether or not the recognized current has a magnitude corresponding to the dark current flowing through the corresponding ECU 5c to 5e. Determine whether.
  • the monitoring controller 21 performs an overall initialization process (step S21).
  • the monitoring controller 21 sets the count value Retry of the counter indicating the number of times of shifting to the system off mode to “0”.
  • the monitoring controller 21 performs an initialization process (step S23).
  • the count value i of the counter of the internal memory for example, RAM
  • the bypass switch 13 B_SW
  • the current supply switches 19a to 19d SW_ [1] to SW_ [4]
  • the monitoring controller 21 turns on the bypass switch 13 (B_SW) and turns off the current supply switches 19a to 19d (SW_ [1] to SW_ [4]) in the current state.
  • the voltage drop value of the shunt resistor Rsens (a value obtained by multiplying the measured current value Isens of the current sensor 15 by the resistance value of the shunt resistor Rsens) Vsens is confirmed as the reference voltage Vsens_base (step S25).
  • the monitoring controller 21 switches on the current supply switches 19a to 19d corresponding to the count value i of the counter (step S27), and based on the voltage drop value Vsens of the shunt resistor Rsens at this time, the dark current Iecu [I] is calculated (step S29).
  • the monitoring controller 21 switches the current supply switches 19a to 19d corresponding to the count value i of the counter switched to the on state in step S27 to the off state (step S31). Then, the monitoring controller 21 switches the ECUs 5a to 5e for measuring the dark current Iecu [i] by switching the current supply switches 19a to 19d (SW_ [1] to SW_ [4]) to be turned on ( For determination Ch movement), the count value i of the counter is incremented by “1” (step S33).
  • the monitoring controller 21 checks whether or not the dark current Iecu [i] of all the ECUs 5a to 5e has been measured based on whether or not the counter value i exceeds the maximum value (Ch_max) (step S35). .
  • step S35 If the count value i does not exceed the maximum value (Ch_max) (there are ECUs 5a to 5e that do not measure the dark current Iecu [i]) (NO in step S35), the process returns to step S27. If the count value i exceeds the maximum value (Ch_max) (there are no ECUs 5a to 5e that do not measure the dark current Iecu [i]) (YES in step S35), the monitoring controller 21 Initialization processing of the check circuit for setting the count value i to “1” is performed (step S37).
  • the ECUs 5a to 5e to be subjected to the abnormality determination of the transition to the power saving state to be performed are specified through the individual supply paths 9a to 9d and the current supply switches 19a to 19d connected thereto. This is performed to initialize the count value i to “1”.
  • the monitoring controller 21 uses the dark current Iecu [i] stored in the internal memory corresponding to the count value i of the counter as a threshold value for determining an abnormal state of the dark current. It is confirmed whether or not Ith [i] is exceeded (step S39).
  • the dark current abnormal state determination threshold value Ith [i] is obtained by the ECUs 5a to 5e connected to the individual supply paths 9a to 9d provided with the current supply switches 19a to 19d corresponding to the count value i. It is set based on the value of dark current that flows in a normal case.
  • Each threshold value Ith [i] is stored in the internal memory in association with the count value i.
  • step S39 If the dark current Iecu [i] exceeds the threshold value Ith [i] (YES in step S39), the dark current flowing through the corresponding ECUs 5a to 5e is abnormal and an abnormal transition to the power saving state occurs. As a matter of course, the current supply switches 19a to 19d (SW_ [1] to SW_ [4]) corresponding to the count value i are turned off (step S41).
  • step S39 when the dark current Iecu [i] does not exceed the threshold value Ith [i] (NO in step S39), the dark current flowing through the corresponding ECUs 5a to 5e is normal and an abnormal transition to the power saving state occurs.
  • step S43 the current supply switches 19a to 19d (SW_ [1] to SW_ [4]) corresponding to the count value i are turned on.
  • the monitoring controller 21 increments the count value i of the counter by “1” in order to switch the ECUs 5a to 5e that are the targets of the abnormality determination of the transition to the power saving state (movement of setting Ch) (step S45).
  • the monitoring controller 21 confirms whether or not all ECUs 5a to 5e have made the abnormality determination of the transition to the power saving state by checking whether the count value i of the counter exceeds the maximum value (Ch_max) (step S47). ).
  • step S47 If the count value i does not exceed the maximum value (Ch_max) (there are ECUs 5a to 5e that have not made the determination of abnormal transition to the power saving state) (NO in step S47), the process returns to step S39. If the count value i exceeds the maximum value (Ch_max) (there are no ECUs 5a to 5e that have not made the abnormality determination of the transition to the power saving state) (YES in step S47), the monitoring controller 21 The switch 13 (B_SW) is switched to the off state (step S49).
  • the ECUs 5a to 5e connected to the individual supply paths 9a to 9d provided with the current supply switches 19a to 19d (SW_ [1] to SW_ [4]) turned off in step S41 cause the dark current Iecu [ i] is forcibly shut down by the supply stop.
  • the monitoring controller 21 initializes enough to reset the ECUs 5a to 5e that have been forcibly shut down due to the supply stop of the dark current Iecu [i] from the switching of the bypass switch 13 (B_SW) to the OFF state. It is confirmed whether time has passed (step S51).
  • step S51 is repeated until the initialization time has elapsed, and if the initialization time has elapsed (YES in step S51), the monitoring controller 21 indicates “return confirmation. Is performed (step S53).
  • the “return confirmation” process is a process for returning the ECUs 5a to 5e that have been forcibly shut down to the power saving state.
  • the monitoring controller 21 turns on the bypass switch 13 (B_SW) and supplies each current.
  • the switches 19a to 19d (SW_ [1] to SW_ [4]) are turned off.
  • the monitoring controller 21 performs the “dark current normality determination” process similar to step S11 in FIG. 4 (step S55). In other words, the monitoring controller 21 determines the abnormal state of the dark current by comparing the current magnitude of the power supply path 7 measured by the current sensor 15 with the threshold value for determining the dark current abnormal state.
  • step S55 If the dark current state is not normal (NO in step S55), it is determined that the transition to the system off mode has failed, and the counter value Retry indicating the number of executions of the transition is incremented by “1” ( In step S57, the process returns to step S23 in FIG. On the other hand, if the dark current state is normal (YES in step S55), the “channel (Ch) check” process is terminated, and the process returns to step S3 in FIG.
  • the ECU 5a to 5e connected to the individual supply paths 9a to 9d are put into the power saving state by executing the processes described above, in particular, the processes of steps S23 to S35 (repeating steps S25 to S35). It is determined whether or not a transition abnormality has occurred.
  • the power saving of the ECUs 5a to 5e is performed in the system off mode in which the ECUs 5a to 5e stop the power supply to the load 3 and shift themselves to the power saving state.
  • the current supply switches 19a to 19d are sequentially turned on while the bypass switch 13 remains turned on.
  • the dark current for the ECUs 5a to 5e exclusively flows through the current supply paths 17a to 17d. . That is, the supply of dark current to the ECUs 5a to 5e in the power saving state is continued, but the supply path is switched from the power supply path 7 and the individual supply paths 9a to 9d to the current supply paths 17a to 17d. Then, the current Isens flowing through the power supply path 7 is reduced by the amount that the dark current does not flow to the ECUs 5a to 5e.
  • the dark current flowing through the ECUs 5a to 5e is grasped from the amount of change in the current Isens of the power supply path 7 measured by the current sensor 15 when the current supply switches 19a to 19d are turned on while the bypass switch 13 is on. Can do. Then, depending on whether or not the grasped dark current is larger than the normal dark current, the monitoring controller 21 can determine the abnormal transition to the power saving state of the ECUs 5a to 5e.
  • the power of the power source VB can be supplied to the ECUs 5a to 5e through the power supply path 7 and the individual supply paths 9a to 9d.
  • the ECUs 5a to 5e do not have a communication function for notifying the monitoring controller 21 of whether the self state is the power saving state or the activated state, the ECUs 5a to 5e are in the power saving state for control.
  • the abnormal transition to the power saving state of the ECUs 5a to 5e can be determined from the current Isens of the power supply path 7.
  • the circuit of the current measurement system It is possible to prevent the configuration from becoming complicated, thereby increasing the power consumption of the current measurement system.
  • the power supply control system 1 according to the first embodiment, power is supplied to each of the ECUs 5a to 5e corresponding to the plurality of ECUs 5a to 5e by the combination of the current supply paths 17a to 17d and the current supply switches 19a to 19d.
  • the configuration is such that dark current can be supplied through a path different from the path 7 and the individual supply paths 9a to 9d. For this reason, in the system off mode, the current supply switches 19a to 19d are sequentially turned on while the bypass switch 13 is turned on, whereby the abnormal transition to the power saving state of each ECU 5a to 5e can be individually determined.
  • the first embodiment there are a plurality of loads 3 and correspondingly a plurality of ECUs 5a to 5e as controllers for controlling power supply to the loads 3, but there is only one controller. It is also applicable to.
  • the present invention is applied to a system that controls the power supply to the load 3 mounted on the vehicle has been described as an example.
  • the power supply to the load is controlled by a controller. It can be widely applied to a power supply control system that uses and controls.
  • the power supply control system 1A includes, for example, an activation state that controls operations performed by a plurality of electronic devices (not shown) such as an in-vehicle clock and a security system, and a power saving state that pauses the control Control power (ECU1 to ECU4, ECU10, 11, etc., hereinafter referred to as “ECU”) of a plurality of systems (for example, system1 to system3) that can be transferred, and drive power to ECU1 to ECU4 of each system It is composed of a predetermined number (two in the example shown in FIG.
  • first power supply device P1, second power supply device P2 power supply devices
  • nickel hydride batteries or lithium ion batteries that supply power to each power supply device.
  • drive control device C for controlling the driving of ECU1 to ECU4 and power supply devices P1, P2 Consisting of U or logic IC, and the like.
  • abbreviated as later CPU is a system comprising a 100.
  • each power supply device P1 control device (ECU1 to ECU4, etc.), P2 has a first switch (SW0) that supplies power (or reserve power supply) to the control devices (ECU1 to ECU4, etc.).
  • first switch (SW0) that supplies power (or reserve power supply) to the control devices (ECU1 to ECU4, etc.).
  • second switches (SW1 to SW3) for dividing the system of the control devices (ECU1 to ECU4, etc.).
  • a power line is connected to the connector C3 of the first power supply device P1.
  • a secondary battery 300 is connected via PL1.
  • Power line PL1 branches in power supply device P1, and is connected to external second power supply device P2 via fuse 150 and power line PL2.
  • the first switch SW0 and the second switches SW1 to SW3 are connected in parallel to the power line extended through the fuse 150 via the node N1.
  • the second switches SW1 to SW3 are connected to predetermined control devices (ECU1 to ECU4, etc.) so that the first switch SW0 is maintained in an on state in normal times and energizes the control devices (ECU1 to ECU4, etc.).
  • the on / off state is switched according to various states.
  • the first switch SW0 is connected to a current detection circuit 400 that detects a current flowing through the first switch SW0.
  • the current detection circuit 400 includes a sense resistor R connected in series to the first switch SW0 and a comparator 200 connected via wirings L1 and L2 extending from both ends of the sense resistor R. Composed. A signal output from the comparator 200 based on the voltage drop due to the current flowing through the sense resistor R is input to the A / D (analog-digital conversion) terminal 107 of the CPU 100 via the wiring L4. . With this configuration, the current flowing through the first switch SW0 can be detected.
  • the current detection circuit 400 is not essential. That is, when the current detection circuit 400 is provided as will be described later, it is possible to specify whether any dark current abnormality has occurred in any of the systems (for example, the system 1 to the system 3). When the circuit 400 is not provided, it is possible to determine whether any of the ECUs 1 to 4 can determine whether a dark current abnormality has occurred. A configuration that does not include the current detection circuit 400 will be described later as a third embodiment.
  • backflow prevention diodes D1a to D1c are connected via a node N2, and connected to ECU1 to ECU4 via nodes N4 to N6 and connectors C4 to C6. Has been.
  • ECU1 and ECU are connected at a node N7 outside the first power supply device P1, and belong to the same system.
  • the second switch SW1 is connected between the nodes N1 and N4.
  • the control terminal included in the second switch SW1 is connected to the control signal output terminal 104 of the CPU 100 via the wiring L5.
  • the second switch SW2 is connected between the nodes N1 and N5.
  • the control terminal included in the second switch SW2 is connected to the control signal output terminal 105 of the CPU 100 via the wiring L6.
  • the second switch SW3 is connected between the nodes N1 and N6.
  • the control terminal included in the second switch SW3 is connected to the control signal output terminal 106 of the CPU 100 via the wiring L7.
  • the current sensor SN is connected to the communication terminal 101 of the CPU 100 via the interface I / F 201, the connector C1, and the data line DL1, and the detection result of the charge / discharge current of the secondary battery 300 is received. Yes.
  • the second power supply device P2 is connected to the communication terminal 102 of the CPU 100 via the interface I / F 202, the connector C2, and the data line DL2.
  • system 1 to system 3 A specific example of the system (system 1 to system 3) will be described later with reference to FIG.
  • the CPU 100 is based on the detection result of the discharge current of the secondary battery 300 by the current sensor SN, the on / off state of the first switch SW0 and the second switches SW1 to SW3, and the detection result by the current detection circuit 400.
  • the CPU 100 is based on the detection result of the discharge current of the secondary battery 300 by the current sensor SN, the on / off state of the first switch SW0 and the second switches SW1 to SW3, and the detection result by the current detection circuit 400.
  • the CPU 100 is based on the detection result of the discharge current of the secondary battery 300 by the current sensor SN, the on / off state of the first switch SW0 and the second switches SW1 to SW3, and the detection result by the current detection circuit 400.
  • the systems system 1 to system 3
  • the CPU 100 controls the switching of the on / off state of the first switch SW0 or the second switches SW1 to SW3 so as to cut off the power supply to the system where it is determined that the dark current abnormality has occurred. It has become. Thereby, unnecessary power supply from the secondary battery 300 is prevented, and consumption of the secondary battery 300 (so-called battery exhausted state) can be suppressed in advance. Therefore, when the power supply control system 1A according to the second embodiment is mounted on a vehicle or the like, it is possible to suppress the occurrence of a situation where the engine cannot be started due to battery exhaustion.
  • the CPU 100 performs control so as to perform initialization (power-on reset) for returning the control devices (ECU1 to ECU4, etc.) belonging to the system determined to have an abnormality in dark current to the normal state. It has become.
  • initialization power-on reset
  • control devices ECU1 to ECU4, etc.
  • abnormality can be determined based on the electric current value for every system
  • the current sensor SN is a monitoring device (for example, installed outside) that monitors the charge state of the secondary battery 300 based on the detection result of the charge / discharge current of the secondary battery 300. It may be configured to transmit to a server or the like.
  • power supply devices P1, P2 or control devices may be activated by communication. .
  • the ECU 1 to ECU 4 and the like when the ECU 1 to ECU 4 and the like are activated by detection of the dark current abnormality by the current sensor SN, the ECU 1 to ECU 4 and the like can be configured to notify each power supply device P1 and P2 of the occurrence of the dark current abnormality. .
  • the power supply devices P1 and P2 may control the on / off states of the first switch SW0 and the second switches SW1 to SW3 when the dark current abnormality occurrence signal is received.
  • the power supply devices P1, P2, ECU1 to ECU4, etc. may control the current sensor SN to shift to the sleep state after executing the power-on reset.
  • the power supply devices P1 and P2 detect the current value of each system in a state where no dark current abnormality has occurred and record it in a nonvolatile memory or the like, and use the difference between the recorded result and the detected current value as a reference. Thus, the system in which the dark current abnormality has occurred may be determined. As a result, it is not necessary to increase the accuracy of current detection, and the cost can be reduced.
  • the first switch SW0 and the second switches SW1 to SW1 can be used when the engine cannot be started because the battery runs out even when the dark current is in the normal range due to long-term parking or the like.
  • the occurrence of such a situation can be suppressed in advance by turning off SW3.
  • FIG. 8 is a configuration diagram illustrating an example of the overall configuration of the power supply control system 1A according to the second embodiment.
  • FIG. 8 shows an example in which the power supply control system 1A is constituted by four power supply devices P1 to P4. Note that the number of power supply devices is not limited to two as shown in FIG. 7 and four as shown in FIG. 8, but can be any number.
  • Each of the power supply devices P1 to P4 has the same configuration as the power supply device P1 shown in FIG.
  • the secondary battery 300 and the power supply devices P1 to P4 are connected via the power lines PL1 to PL4.
  • the current sensor SN and the CPU 100 provided in each of the power supply devices P1 to P4 are connected via the data lines DL1 to DL4.
  • the power supply control system 1A having such a configuration, even when an abnormality occurs in an ECU that is not connected to communication in each of the power supply devices P1 to P4, it can be detected. Further, it is possible to determine an abnormality based on the current value for each system, and it is possible to achieve an effect that an abnormality recovery operation of the ECU can be performed by performing a power-on reset.
  • FIG. 9 is a flowchart showing an example of a processing procedure of dark current abnormality occurrence processing executed in the power supply control system 1A according to the second embodiment.
  • FIG. 10 is a flowchart showing an example of a subroutine procedure related to dark current abnormal system detection processing
  • FIG. 11 is a flowchart showing an example of a subroutine procedure related to power-on reset processing.
  • the power supply control system 1A is mounted on the vehicle, and the dark current abnormality process is executed by the CPU 100 of the power supply device P1.
  • step S100 it is first determined in step S100 whether or not a dark current abnormality occurrence signal has been received. That is, when the current sensor SN included in the secondary battery 300 detects a consumption current larger than a preset vehicle dark current (when a dark current abnormality occurs), the detection result indicates the data line DL1. It is determined whether or not a detection result signal (dark current abnormality occurrence signal) has been received.
  • Step S110 If the determination result is “No”, the process is terminated as it is, and if it is “Yes”, the process proceeds to Step S110.
  • step S110 a dark current abnormal system detection processing subroutine is executed.
  • step S1101 on (ON) resetting processing of the first switch SW0 is performed.
  • SW0 maintains the “ON” state.
  • step S1104 SWi off setting processing is executed.
  • the second switch SW1 is turned off, and the other first switch SW0 and the second switches SW2 and SW3 are turned on.
  • step S1105 a current detection process using the detection result of the current detection circuit 400 connected to the first switch SW0 is executed.
  • a dark current abnormality determination process is executed based on the current detection result. That is, when the detection result by the current detection circuit 400 exceeds a preset dark current abnormality threshold value, it is determined as “abnormal”, and when it does not exceed it, it is determined as “normal”.
  • step S1107 If it is determined as “abnormal”, the process proceeds to step S1107 to perform an abnormal system recording process. That is, when it is determined as “abnormal” in the system 1, that fact is stored in, for example, a nonvolatile memory (not shown) connected to the CPU 100, and the process proceeds to step S1108.
  • step S 1106 If it is determined as “normal” in step S 1106, the process proceeds to step S 1108, SWi (ie, SW 1) ON setting processing is executed, and the process proceeds to step S 1109.
  • step S1109 an abnormal system determination end confirmation process for determining whether or not i ⁇ n is performed.
  • the process proceeds to step S1110, the system number “i” is incremented by “1”, and then the process proceeds to step S1104.
  • step S1109 determines whether i ⁇ n is satisfied (in the case of “Yes”), the process proceeds to step S1111 and the processing for setting all the second switches SW1 to SWn to OFF is executed.
  • step S120 it is then determined in step S120 whether a dark current abnormal system has been detected. Then, if it is determined that it has not been detected (in the case of “No”), the processing is ended as it is. On the other hand, when it is determined that it has been detected (in the case of “Yes”), the process proceeds to step S130 and a subroutine of the power-on reset process is executed.
  • step S1302 the first switch SW0 is turned off.
  • step S130 If the determination result is “No”, the process proceeds to step S1308, and if “Yes”, the process proceeds to step S1305.
  • step S1305 an OFF setting process of SWi (here, SW1) is executed.
  • step S1306 a time elapse confirmation process for determining whether a predetermined time (power-on reset time) has elapsed is executed, the process waits until the power-on reset time is reached, and executes the power-on reset when the power-on reset time is reached. Then, the process proceeds to step S1307.
  • step S1307 after performing ON setting processing of SWi, the process proceeds to step S1308.
  • step S1308 a power-on reset end confirmation process is performed to determine whether i ⁇ n.
  • step S1309 the system number “i” is incremented by “1”, and then the process proceeds to step S1304.
  • step S1308 determines whether i ⁇ n is satisfied (in the case of “Yes”), the process proceeds to step S1310, the on-setting process of the first switch SW0 is executed, and then the process proceeds to step S1311. .
  • step S1311 the process of setting all the second switches SW1 to SWn to OFF is executed, and then the process returns to the main process of FIG. 9 to end the process.
  • the power supply control system 1A it is possible to detect even when an abnormality occurs in an ECU that is not connected to communication. Further, it is possible to determine an abnormality based on the current value for each system, and it is possible to obtain an effect that an abnormality recovery operation can be performed by a power-on reset.
  • the current value of each system in a state where no dark current abnormality has occurred is detected and recorded in a nonvolatile memory or the like, and the difference between the recorded result and the detected current value is used as a reference.
  • the system in which the dark current abnormality has occurred is determined, it is not necessary to increase the accuracy of current detection, and the cost can be reduced.
  • FIG. 14 is a circuit diagram illustrating an example of a circuit configuration of a power supply control system 1B according to the third embodiment. Note that in the third embodiment, identical symbols are assigned to configurations similar to those in the second embodiment and redundant descriptions are omitted.
  • the power control system 1B according to the third embodiment is different from the power control system 1A according to the second embodiment in that the current detection circuit 400 in each power supply device (P1 and the like) is omitted. That is, the configuration is such that the sense resistor R connected in series to the first switch SW0 that constitutes the current detection circuit 400 and the comparator 200 are omitted.
  • determination of the system in which the dark current abnormality occurs is not performed, and when the dark current abnormality occurs, each system is subjected to power-on reset processing, and recovery processing from the dark current abnormality is performed. Like to do.
  • FIG. 15 is a flowchart showing an example of a processing procedure of dark current abnormality occurrence processing executed in the power supply control system 1B according to the third embodiment.
  • FIG. 16 is a flowchart showing an example of a subroutine procedure related to the power-on reset process.
  • step S200 it is first determined in step S200 whether or not a dark current abnormality occurrence signal has been received. That is, when the current sensor SN included in the secondary battery 300 detects a consumption current larger than a preset vehicle dark current (when a dark current abnormality occurs), the detection result indicates the data line DL1. It is determined whether or not a detection result signal (dark current abnormality occurrence signal) has been received.
  • step S210 a power-on reset processing subroutine is executed.
  • step S2102 an OFF setting process of the first switch SW0 is performed.
  • step S2105 time elapse confirmation processing for determining whether a predetermined time (power-on reset time) has elapsed is executed, the process waits until the power-on reset time is reached, and executes the power-on reset when the power-on reset time is reached. Then, the process proceeds to step S2106. In step S2106, an ON setting process of SWi (ie, SW1) is executed, and the process proceeds to step S2107.
  • step S2107 determines whether i ⁇ n is satisfied (in the case of “Yes”), the process proceeds to step S2109 to execute the ON setting process of the first switch SW0, and then proceeds to step S2110.
  • step S2110 after executing the process of setting all the second switches SW1 to SWn to OFF, the process returns to the main process of FIG.
  • the power supply control system 1B it is possible to determine (detect) whether any of the ECUs 1 to 4 has a dark current abnormality. Further, it is possible to obtain an effect such that the abnormal return operation of the ECUs 1 to 4 in which the dark current abnormality has occurred due to the power-on reset can be performed.
  • FIG. 17 is a circuit diagram illustrating an example of a circuit configuration of a power supply control system 1C according to the fourth embodiment.
  • the power supply control system 1C pauses the control and an operating state (also referred to as a wake state) for controlling operations performed by a plurality of electronic devices (not shown) such as an in-vehicle clock and a security system, for example.
  • a plurality of control devices ECU1 to ECU4, hereinafter referred to as ECUs
  • a power saving state also referred to as a sleep state
  • each ECU1 to ECU4 receives one or more systems of driving power.
  • Two or more power supply devices to be supplied (in the fourth embodiment, two power supply devices (first power supply device P1 and second power supply device P2)), a nickel metal hydride battery for supplying power to each of the power supply devices P1 and P2, Secondary battery 300 composed of a lithium ion battery or the like, current sensor SN for detecting charge / discharge current of secondary battery 300, control devices ECU1 to ECU4, and power supply device It includes a drive control device (configured by a CPU or logic IC or the like; hereinafter abbreviated as CPU) 100 that controls the drive of P1 and P2, and each power supply device P1 and P2 supplies power to the ECU.
  • a first switch SW0 and second switches SW1 to SW3 for dividing the power supply system of the ECU are provided.
  • a current detection circuit 400 that detects current consumption is provided.
  • the CPU 100 determines whether or not a dark current abnormality has occurred in any of the ECU1 to ECU4 and turns on the first switch SW0 and the second switch SW1. -The off-state is controlled to measure the current consumption of each ECU 1 to ECU 4 belonging to each power supply system, and dark current abnormality occurs in any ECU (ECU 1 to ECU 4) based on the measurement result Judgment is made.
  • control state of the on / off state of the first switch SW0 and the second switch SW1 when the current consumption of each of the ECU1 to ECU4 is measured is as shown in the chart of FIG. 25, for example.
  • FIG. 18 is a configuration diagram illustrating an example of the overall configuration of a power supply control system 1C according to the fourth embodiment.
  • FIG. 18 shows an example in which a power supply control system 1C is configured by two power supply devices P1 and P2. Note that the number of power supply devices is not limited to two, and may be an arbitrary number of three or more, for example.
  • ECU1, ECU4, and ECU2 are connected to the first power supply device P1, respectively.
  • ECU 3, ECU 4 and ECU 1 are connected to the second power supply device P2 via wires L21 to L23, respectively.
  • the current sensor SN and the CPU 100 included in each of the power supply devices P1 and P2 are connected via the data lines DL1 and DL2.
  • the ECU 2 controls the SW0, SW1, SW2, and SW3 as “ON, ON, ON, OFF”. Since the second power supply device P2 does not affect the dark current detection as a result, it may be in an on or off state.
  • SW0, SW1, SW2, and SW3 are controlled as “ON, OFF, ON, ON”. Since the first power supply device P1 does not affect the dark current detection as a result, it may be in an on or off state.
  • the current consumption can be measured without omission for each of the ECUs 1 to 4 belonging to each power supply system, and it is possible to accurately detect which ECU has the dark current abnormality.
  • the CPU 100 controls switching of the on / off state of the first switch SW0 or the second switch SW1 so as to cut off the power supply to the power supply system determined that the dark current abnormality has occurred. Can be.
  • the CPU 100 performs the initialization (power-on reset) so as to return the ECU (any one of the ECUs 1 to 4) belonging to the power supply system determined to have the dark current abnormality to the normal state.
  • the switching of the on / off state of the first switch SW0 or the second switch SW1 can be controlled.
  • control state of the on / off state of the first switch SW0 and the second switch SW1 when the power-on reset of each of the ECU1 to ECU4 is performed is as shown in the chart of FIG. 26, for example.
  • the ECU 2 in the first power supply device P1, SW0, SW1, SW2, and SW3 are controlled as “OFF, ON, ON, OFF”. Since the second power supply device P2 does not affect the power-on reset process as a result, it may be in an on or off state.
  • SW0, SW1, SW2, and SW3 are controlled as “OFF, OFF, ON, ON”. Since the first power supply device P1 does not affect the power-on reset process as a result, it may be in an on or off state.
  • OFF, ON, OFF, ON is SW0, SW1, SW2, SW3 in the first power supply device P1, and “OFF, ON, OFF, ON” is in the second power supply device P2.
  • the power-on reset process can be performed without omission for each of the ECUs 1 to 4 belonging to each power supply system, and the dark current abnormality can be resolved.
  • the secondary battery 300 is connected to the connector C3 of the first power supply device P1 through the power line PL1.
  • Power line PL1 branches in power supply device P1, and is connected to external second power supply device P2 via fuse 150 and power line PL2.
  • the first switch SW0 and the second switches SW1 to SW3 are connected in parallel to the power line extended through the fuse 151 via the node N1.
  • the second switches SW1 to SW3 are connected to predetermined control devices (ECU1 to ECU4, etc.) so that the first switch SW0 is maintained in an on state in normal times and energizes the control devices (ECU1 to ECU4, etc.).
  • the on / off state is switched according to various states.
  • the first switch SW0 is connected to a current detection circuit 400 that detects a current flowing through the first switch SW0.
  • the current detection circuit 400 includes a sense resistor R connected in series to the first switch SW0 and a comparator 200 connected via wirings L2 and L3 extending from both ends of the sense resistor R. Composed. A signal output from the comparator 200 based on the voltage drop due to the current flowing through the sense resistor R is input to the A / D (analog-digital conversion) terminal 107 of the CPU 100 via the wiring L4. . With this configuration, the current flowing through the first switch SW0 can be detected.
  • backflow prevention diodes D1a to D1c are connected via a node N2, and ECU1, ECU2 and ECU4 are connected via nodes N4 to N6 and connectors C4 to C6. It is connected to the.
  • ECU 1 is connected to connector C4
  • ECU 4 is connected to connector C5 via wiring L50
  • ECU 2 is connected to connector 6.
  • ECU3, ECU4, and ECU1 are connected to each other via wirings L21 to L23.
  • one power supply system (one of the power supply device P1 or the power supply device P2) is connected to the ECU2 and ECU3, and two power supply systems (the first power supply system (first one) are connected to the ECU1 and ECU4. Both the first power supply device P1 and the second power supply device P2) are connected.
  • three or more power supply devices When three or more power supply devices are used, three or more power supply systems may be connected to one ECU.
  • the second switch SW1 is connected between the nodes N1 and N4.
  • the control terminal included in the second switch SW1 is connected to the control signal output terminal 104 of the CPU 100 via the wiring L5.
  • the second switch SW2 is connected between the nodes N1 and N5.
  • the control terminal included in the second switch SW2 is connected to the control signal output terminal 105 of the CPU 100 via the wiring L6.
  • the second switch SW3 is connected between the nodes N1 and N6.
  • the control terminal included in the second switch SW3 is connected to the control signal output terminal 106 of the CPU 100 via the wiring L7.
  • the current sensor SN is connected to the communication terminal 101 of the CPU 100 via the interface I / F 201, the connector C1, and the data line DL1, and the detection result of the charge / discharge current of the secondary battery 300 is received. Yes.
  • the communication terminal 102 of the CPU 100 is connected to an interface I / F 202 and another external device (not shown) to the connector C2.
  • the current sensor SN measures the charging / discharging current of the secondary battery 300.
  • any one of the ECUs ECU1 to ECU4. It is possible to detect that (any) has not transitioned to the sleep state.
  • each power supply device P1, P2 controls the first switch SW0 and the second switches SW1 to SW3, measures the current consumption of each ECU (ECU1 to ECU4) connected to each power supply system, It is possible to determine whether an abnormality has occurred in the ECUs (ECU1 to ECU4).
  • FIG. 19 is a schematic configuration diagram showing a schematic configuration of an ECU that constitutes a part of a power supply control system 1C according to the fourth embodiment.
  • ECUs 1 to 4 illustrated in FIGS. 17 and 18 all have the same configuration as the ECU shown in FIG.
  • the ECU includes a connector 40 connected to the first power supply device P1 or the second power supply device P2, and connectors C30 and C40 connected to various external electronic devices.
  • a power supply IC 30 is connected to the connector 40 via diodes D2 and D3 and a capacitor CA10.
  • a CPU 31 that performs various control processes is connected to the power supply IC 30 and is connected to various electronic devices via an interface 32 and connectors C30 and C40.
  • the power supply control system 1C it is possible to detect even when an abnormality occurs in the ECU that is not connected to communication in each of the power supply devices P1 and P2. Further, the ECU can be returned to an abnormal state by performing a power-on reset on the ECU in which the dark current abnormality has occurred.
  • the power supply control system 1C for the ECU1 and the ECU4, two power supply systems (both the first power supply device P1 and the second power supply device P2) are provided in order to increase the reliability of the power supply. Power is being supplied from For this reason, it is difficult to detect abnormal dark current and the power-on reset cannot be executed simply by confirming only the power supply system of each of the individual power supply devices P1 and P2.
  • one of the plurality of power supply devices performs power control of the entire vehicle (for example, the first power supply device).
  • P1 grasps the power supply status of another power supply device (for example, the second power supply device P2 as a sub power supply device) in addition to the power supply status supplied from itself, and the first power supply device P1 receives the second power supply.
  • the power supply of the device P2 can also be controlled.
  • the ECU 1 and the ECU 4 are supplied with power from the first power supply device P1 and the second power supply device P2, and when measuring the consumption current (dark current) of the ECU 1 and the ECU 4 and performing the power-on reset,
  • the first power supply device P1 stops the power supply to the target ECU (ECU1 and ECU4) with respect to the second power supply device P2, and then performs the power supply process as described above.
  • the first power supply device P1 may stop supplying power to the target ECU, and then cause the second power supply device P2 to perform dark current measurement and power-on reset.
  • the current sensor SN is a monitoring device (for example, installed outside) that monitors the charge state of the secondary battery 300 based on the detection result of the charge / discharge current of the secondary battery 300. It may be configured to transmit to a server or the like.
  • power supply devices P1, P2 or control devices may be activated by communication. .
  • the ECU 1 to ECU 4 and the like when the ECU 1 to ECU 4 and the like are activated by detection of the dark current abnormality by the current sensor SN, the ECU 1 to ECU 4 and the like can be configured to notify each power supply device P1 and P2 of the occurrence of the dark current abnormality. .
  • the power supply devices P1 and P2 may control the on / off states of the first switch SW0 and the second switches SW1 to SW3 when the dark current abnormality occurrence signal is received.
  • the power supply devices P1, P2, ECU1 to ECU4, etc. may control the current sensor SN to shift to the sleep state after executing the power-on reset.
  • the first switch SW0 and the second switches SW1 to SW1 can be used when the engine cannot be started because the battery runs out even when the dark current is in the normal range due to long-term parking or the like.
  • the occurrence of such a situation can be suppressed in advance by turning off SW3.
  • FIG. 20 is a flowchart showing an example of a processing procedure of dark current abnormality detection processing using a current sensor executed in the power supply control system 1C according to the fourth embodiment.
  • the power supply control system 1C is mounted on the vehicle, and the dark current abnormality processing is executed by the CPU 100 of the first power supply device P1 shown in FIG.
  • step S300 it is first determined in step S300 whether or not a dark current abnormality occurrence signal has been received. That is, when the current sensor SN included in the secondary battery 300 detects a consumption current larger than a preset vehicle dark current (when a dark current abnormality occurs), the detection result indicates the data line DL1. It is determined whether or not a detection result signal (dark current abnormality occurrence signal) has been received.
  • Step S310 If the determination result is “No”, the process is terminated as it is, and if it is “Yes”, the process proceeds to Step S310.
  • step S310 it is determined whether or not a plurality of power supply targets have been confirmed. That is, it is determined whether or not a plurality of power supply systems are provided as in ECU 1 and ECU 4 shown in FIG.
  • step S320 the subroutine of the power supply system isolation process is executed.
  • each switch (first switch SW0, second switches SW1 to SW3) during dark current measurement is as shown in the chart of FIG. It should be noted that the ECU 3 connected to the first power supply device P1 and the ECU 2 connected to the second power supply device P2 do not affect the dark current detection as a result. Good.
  • each power supply device P1, P2, etc. can be cut off according to the number of power supply devices, that is, the number of power supply systems.
  • step S310 if “No” is determined in step S310, the process proceeds to step S330, and a dark current abnormal system detection processing subroutine is executed.
  • the “dark current abnormality system” here is a concept different from the “power supply system”, and means a system to which the ECU in which the dark current abnormality occurs belongs.
  • step S3301 the first switch SW0 is turned on again. Thereby, as shown in FIG. 27, SW0 maintains the “ON” state in the dark current abnormal system detection processing in each system (system 1 to system 3).
  • step S3304 an SWI off setting process is executed.
  • the second switch SW1 is turned off, and the other first switches SW0, SW2, SW3 are turned on.
  • step S3305 a current detection process using the detection result of the current detection circuit 400 connected to the first switch SW0 is executed.
  • a dark current abnormality determination process is executed based on the current detection result. That is, when the detection result by the current detection circuit 400 exceeds a preset dark current abnormality threshold value, it is determined as “abnormal”, and when it does not exceed it, it is determined as “normal”.
  • step S3307 If it is determined as “abnormal”, the process proceeds to step S3307 to perform an abnormal system recording process. That is, if it is determined as “abnormal” in the system 1, that fact is stored in, for example, a non-volatile memory (not shown) connected to the CPU 100, and the process proceeds to step S3308.
  • step S3306 If it is determined as “normal” in step S3306, the process proceeds to step S3308, the SWi (ie, SW1) ON setting process is executed, and the process proceeds to step S3309.
  • step S3309 when it is determined in step S3309 that i ⁇ n is satisfied (in the case of “Yes”), the process proceeds to step S3311, and after executing the process of setting all the second switches SW1 to SWn to OFF. Returning to the main process of FIG.
  • step S340 it is then determined in step S340 whether a dark current abnormal system has been detected. Then, if it is determined that it has not been detected (in the case of “No”), the processing is ended as it is. On the other hand, when it is determined that it has been detected (in the case of “Yes”), the process proceeds to step S350, and a power-on reset processing subroutine is executed.
  • step S3502 an OFF setting process of the first switch SW0 is performed.
  • step S3508 If the determination result is “No”, the process proceeds to step S3508, and if “Yes”, the process proceeds to step S3505.
  • step S3505 an SWI (here, SW1) off setting process is executed.
  • step S3506 time elapse confirmation processing is performed to determine whether a predetermined time (power-on reset time) has elapsed, and the process waits until the power-on reset time is reached. When the power-on reset time is reached, the power-on reset is performed. Then, the process proceeds to step S3507.
  • a predetermined time power-on reset time
  • step S3507 after performing ON setting processing of SWi, the process proceeds to step S3508.
  • step S3508 an end confirmation process of power-on reset is performed to determine whether i ⁇ n.
  • step S3509 the system number “i” is incremented by “1”, and then the process proceeds to step S3504.
  • step S3508 determines whether i ⁇ n is satisfied (in the case of “Yes”), the process proceeds to step S3510, the first switch SW0 is turned on, and then the process proceeds to step S3511. .
  • step S3511 after executing the process of setting all the second switches SW1 to SWn to OFF, the process returns to the main process of FIG.
  • step S20 it is determined whether or not a plurality of power supply targets have been confirmed. That is, it is determined whether or not a plurality of power supply systems are provided as in ECU 1 and ECU 4 shown in FIG.
  • step S21 When the determination result is “Yes”, the process proceeds to step S21, and after executing the above-described subroutine for the power supply system singulation process, the process proceeds to step S22.
  • step S20 determines whether “No” is determined in step S20 or “No” is determined in step S20. If “No” is determined in step S20, the process proceeds to step S22.
  • step S22 the above dark current abnormal system detection processing subroutine is executed, and then the process proceeds to step S23.
  • step S23 it is determined whether a dark current abnormal system is detected. Then, if it is determined that it has not been detected (in the case of “No”), the processing is ended as it is. On the other hand, if it is determined that it has been detected (in the case of “Yes”), the process proceeds to step S24, the above-described power-on reset process subroutine is executed, and then the process ends.
  • the power supply control system 1C according to the fourth embodiment, it is possible to detect even when an abnormality occurs in the ECU that is not connected to communication.
  • an abnormal recovery operation by power-on reset can be performed for the ECU in which the dark current abnormality has occurred.
  • the power control system 1C according to the fourth embodiment has been described above, but the configuration of each unit can be replaced with any configuration having the same function.
  • the current sensor SN for detecting the charge / discharge current of the secondary battery 300 as shown in FIGS. 17 to 19 may be omitted.
  • the dark current abnormality detection in the power supply control system having such a configuration can be performed using the current detection circuit 400 when a predetermined time elapses after the transition to the sleep state in the power supply devices P1, P2, for example.
  • the processing procedure at this time can be performed, for example, according to the flowchart of FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 電源制御システム(1)は、ECU(5a~5e)の省電力状態への移行異常を判定する際に、バイパススイッチ(13)をオンしたままで電流供給スイッチ(19a~19d)を順次オンする。このときの電力供給路(7)の電流(Isens)の変化量から把握したECU(5a~5e)の暗電流が通常の暗電流の大きさよりも大きいかどうかによって、監視用コントローラ(21)がECU(5a~5e)の省電力状態への移行異常を判定する。また、ECU(5a~5e)の起動状態には、電力供給路(7)及び個別供給路(9a~9d)によりECU(5a~5e)に対して電源(VB)の電力を供給することができる。

Description

電源制御システム
 本発明は、電源から負荷への電力供給をコントローラにより制御する電源制御システムに関する。
 車両には、電子制御ユニット(ECU:Electronic Control Unit)と呼ばれるコントローラが搭載されている。ECUは、車両のスイッチの状態やセンサの出力等を検出し、それらの検出結果に応じてスイッチやセンサ等に対応する負荷(電装品)への電源からの電力供給を制御する。車両には多数の負荷やスイッチ、センサ類が搭載されているので、それに合わせて、車両には複数のECUが搭載される。
 ところで、車両では、電源に接続した電力供給路を流れる電流がしきい値を超えると電力供給路を遮断する制御が、電力供給系の全体を監視する監視装置によって行われる。この制御によって、電源の電力を供給する経路上で過電流状態が発生して電線が損傷するのを防止することができる。この制御に用いるしきい値は、電力供給路を流れる最大電流に基づいて設定される。また、電力供給路の最大電流は、各ECUに対する電力供給路の場合、各ECUを流れる電流の合計に基づいて設定される。
 ここで、負荷に対する電力供給のECUによる制御は、例えばイグニッションスイッチのポジション等、車両の状態次第で不要になる場合がある。そして、負荷に対する電力供給の制御が全ての制御対象について不要であるときのECUは、省電力化のために自身の動作状態を起動状態(ウエイク状態)から省電力状態(スリープ状態)に移行させておくことができる。
 ECUの消費する電力は、起動状態である場合と省電力状態である場合とで異なる。省電力状態のECUは起動状態のECUと比べると消費電力が少ない。このため、ECUに対する電力供給路を実際に流れる電流の大きさがECUの本来あるべき状態に対して見合った大きさであるかどうかによって、例えば、省電力状態に移行すべきECUが起動状態のままとなっているような異常を検出することができる。
 但し、ECUが省電力状態のときは、ECUが起動状態のときよりも、ECUの制御により電力が供給される負荷が少ない分だけ、電力供給路を流れる電流が元々小さい。したがって、省電力状態に移行すべきECUが省電力状態に移行しない異常が発生した程度では、電力供給路を流れる電流に、ECUが起動状態であるときに過電流状態を検出するのに適したしきい値を跨ぐような変化は生じない。
 したがって、例えば、ECUが起動状態であるときに過電流状態の発生を監視し、ECUが省電力状態であるはずのときにECUの異常の発生を監視する場合には、電力供給路を流れる電流との比較に用いるしきい値を、ECUが省電力状態のときにECUが起動状態のときよりも低い値に切り替える必要がある。
 そこで、車両の各ECUが自身の動作状態を定期的に通信により監視装置に自己申告し、その結果から監視装置がしきい値を定期的に更新することが提案されている(特許文献1)。この提案によれば、ECUの動作状態に応じて監視装置のしきい値を切り替えることができる。
 そして、しきい値の切り替えにより、ECUが起動状態から省電力状態に移行しない異常等、起動状態のECUに過電流状態が発生する等の異常よりも電力供給路を流れる電流が少ない状態で起こる異常も、電力供給路を流れる電流から監視装置によって検出することができる。
 このような異常を検出できると、例えばイグニッションスイッチのOFFにより省電力状態に移行するはずのECUが、プログラムの暴走等で起動状態のままクロック動作を続けた場合に、エンジンの停止により充電できない電源の電力をECUが無用に消費する前に、ECUを電源から遮断できるようになる。これは、バッテリ上がりが起きてセルモータによりエンジンを始動できなくなるのを防ぐ上で、極めて有効な対策である。
特開2009-81948号公報(JP 2009-081948 A)
 ところで、上述した従来の提案では、各ECUから監視装置に動作状態を自己申告させるために、各ECUを監視装置と通信可能とする必要がある。このため、ECUの動作状態を、電力供給路の遮断制御に用いるしきい値に反映させるために監視装置との通信機能をECUに持たせる必要があり、装置構成が複雑になる。
 本発明は前記事情に鑑みなされたもので、本発明の目的は、負荷に対する電力供給を制御するECU等のコントローラが起動状態(ウエイク状態)から省電力状態(スリープ状態)に移行すべきときに、エラーにより省電力状態に移行せず起動状態のままとなってしまう異常の判定を簡便な構成で行うことができる電源制御システムを提供することにある。
 上記目的を達成するために、本発明の態様に係る電源制御システムは、電源から負荷への電力供給を制御するコントローラの電源制御システムであって、電源に接続され、コントローラに対する電力供給に伴い電流が流れる電力供給路と、電力供給路上に設けられ、オフされることにより電力供給路からコントローラに対する電力供給を遮断可能なバイパススイッチと、電力供給路上におけるバイパススイッチよりもコントローラ側に設けられ、バイパススイッチのオン中に電力供給路を流れる電流をシャント抵抗を用いて測定可能な電流測定部と、電源とバイパススイッチとの間において電力供給路から分岐され、コントローラに接続されて、バイパススイッチ及びシャント抵抗と並列の回路を構成する電流供給路と、電流供給路上に設けられ、オフされることにより電流供給路からコントローラに対する電力供給を遮断可能な電流供給スイッチと、負荷への電力供給を停止させたコントローラが省電力状態に移行したシステムオフモードにおいて、バイパススイッチをオンさせた状態で電流供給スイッチをオン又はオフさせたときの、電流測定部による測定電流の変化量から、電流供給スイッチを有する電流供給路に接続された前記コントローラの前記省電力状態への移行異常を判定する異常判定部とを備える。
 このような構成により、コントローラが負荷に対する電力供給を停止させて自らも省電力状態に移行するシステムオフモードにおいて、コントローラの省電力状態への移行異常を判定する際に、バイパススイッチがオンされたままの状態で電流供給スイッチがオンされる。
 すると、シャント抵抗が途中に存在する電力供給路よりも電流供給路の方が低抵抗であるため、コントローラに対する電流は専ら電流供給路を流れるようになる。つまり、省電力状態のコントローラへの暗電流の供給は継続されるが、供給経路が電力供給路から電流供給路に切り替わる。そして、コントローラに対する暗電流が流れなくなる分、電力供給路を流れる電流が減る。
 そこで、バイパススイッチのオン中に電流供給スイッチをオン又はオフさせたときの電流測定部が測定する電力供給路の電流の変化量から、コントローラに流れる電流を把握することができる。そして、把握した電流が通常の暗電流の大きさよりも大きいかどうかによって、異常判定部がコントローラの省電力状態への移行異常を判定することができる。
 また、コントローラが負荷に対する電力供給を制御する起動状態にあるときには、電力供給路によりコントローラに対して電源の電力を供給することができる。
 したがって、自己の状態が省電力状態であるか起動状態であるかを通知する通信機能をコントローラが持っていなくても、コントローラが制御上省電力状態となっているときに、電力供給路の電流から、コントローラの省電力状態への移行異常を判定することができる。
 このため、負荷に対する電力供給を制御するコントローラが起動状態から省電力状態に移行すべきときに、エラーにより省電力状態に移行せず起動状態のままとなってしまう異常の判定を簡便な構成で行うことができる。
 さらに、コントローラの省電力状態への移行異常を判定するために、電力供給路の電流とは別に電流供給路を流れる電流を測定する必要がないので、電流測定系の回路構成が複雑化し、それにより電流測定系の消費電力が上昇するのを防止することができる。
 本発明の態様に係る電源制御システムは、複数のコントローラに対応して、電流供給路及び電流供給スイッチの組を複数有しており、異常判定部は、システムオフモードにおいて、バイパススイッチをオンさせた状態で各組の電流供給スイッチを順次オンさせて、各コントローラの省電力状態への移行異常を順次判定してもよい。
 このような構成により、コントローラが複数存在する場合は、各コントローラに対応する電流供給路及び電流供給スイッチの組によって、電力供給路とは別の経路で暗電流を供給できる構成とし、システムオフモードにおいて、バイパススイッチのオン中に各電流供給スイッチを順次オンさせることで、各コントローラの省電力状態への移行異常を個別に判定することができる。
 本発明の態様に係る電源制御システムによれば、負荷に対する電力供給を制御するECU等のコントローラが起動状態(ウエイク状態)から省電力状態(スリープ状態)に移行すべきときに、エラーにより省電力状態に移行せず起動状態のままとなってしまう異常の判定を簡便な構成で行うことができる。
図1は、第1実施形態に係る電源制御システムが適用される車両の電源供給回路の概略構成を示す回路図である。 図2は、図1の電源供給回路において監視用コントローラが省電力状態移行異常の検出処理を行う際のECUに対する電力供給経路を示す回路図である。 図3は、図1の電源供給回路において監視用コントローラが省電力状態移行異常の検出処理を行う際のECUに対する電力供給経路を示す回路図である。 図4は、図1の監視用コントローラが行う異常判定処理の手順を示すフローチャートである。 図5は、図4のチャンネルチェック処理の手順を示すフローチャートである。 図6は、図4のチャンネルチェック処理の手順を示すフローチャートである。 図7は、第2実施形態に係る電源制御システムの回路構成の例を示す回路図である。 図8は、第2実施形態に係る電源制御システムの全体構成の例を示す構成図である。 図9は、第2実施形態に係る電源制御システムで実行される暗電流異常発生時処理の処理手順の例を示すフローチャートである。 図10は、第2実施形態に係る電源制御システムにおける暗電流異常系統検出処理に係るサブルーチンの処理手順の例を示すフローチャートである。 図11は、第2実施形態に係る電源制御システムにおけるパワーオンリセット処理に係るサブルーチンの処理手順の例を示すフローチャートである。 図12は、第2実施形態に係る電源制御システムにおける暗電流異常検出時の各スイッチのオン・オフ状態を示す図表である。 図13は、第2実施形態に係る電源制御システムにおけるパワーオンリセット時の各スイッチのオン・オフ状態を示す図表である。 図14は、第3実施形態に係る電源制御システムの回路構成の例を示す回路図である。 図15は、第3実施形態に係る電源制御システムで実行される暗電流異常発生時処理の処理手順の例を示すフローチャートである。 第3実施形態に係る電源制御システムにおけるパワーオンリセット処理に係るサブルーチンの処理手順の例を示すフローチャートである。 図17は、第4実施形態に係る電源制御システムの回路構成の例を示す回路図である。 図18は、第4実施形態に係る電源制御システムの全体構成の例を示す構成図である。 図19は、第4実施形態に係る電源制御システムの一部を構成するECUの概略構成を示す概略構成図である。 図20は、第4実施形態に係る電源制御システムで実行される電流センサを用いた暗電流異常検出処理の処理手順の例を示すフローチャートである。 図21は、第4実施形態に係る電源制御システムで実行される電源供給系統単独化処理の処理手順の例を示すフローチャートである。 図22は、第4実施形態に係る電源制御システムにおける暗電流異常系統検出処理に係るサブルーチンの処理手順の例を示すフローチャートである。 図23は、第4実施形態に係る電源制御システムにおけるパワーオンリセット処理に係るサブルーチンの処理手順の例を示すフローチャートである。 図24は、第4実施形態に係る電源制御システムで実行される電源装置による暗電流異常検出処理の処理手順の例を示すフローチャートである。 図25は、第4実施形態に係る電源制御システムにおける暗電流計測時の各スイッチのオン・オフ状態を示す図表である。 図26は、第4実施形態に係る電源制御システムにおけるパワーオンリセット時の各スイッチのオン・オフ状態を示す図表である。 図27は、暗電流異常系統検出処理における暗電流異常検出時の各スイッチのオン・オフ状態を示す図表である。 図28は、パワーオンリセット処理におけるパワーオンリセット時の各スイッチのオン・オフ状態を示す図表である。
 (第1実施形態)
 第1実施形態について、図1~6を参照しながら説明する。
 第1実施形態に係る電源制御システム1は、車両(不図示)に搭載して用いられるもので、負荷3に対する電源VBからの電力供給を制御するシステムである。負荷3は、図1では省略して1つのみ示しているが、実際には複数存在している。
 電源制御システム1は、電子制御ユニット(ECU:Electronic Control Unit)5a~5eと、電力供給路7と、個別供給路9a~9dと、スイッチ11と、バイパススイッチ13と、電流センサ15と、電流供給路17a~17dと、電流供給スイッチ19a~19dと、異常判定部としての監視用コントローラ21とを備える。
 第1実施形態に係る電源制御システム1では、各負荷3に対する電力供給は、各負荷3に対応するコントローラとしてのECU5a~5eにより制御される。
 電源VBは、車両(不図示)に搭載されたバッテリであり、電源VBに接続された電力供給路7とその下流側の個別供給路9a~9dとを介して、各ECU5a~5eに電源VBからの電力が供給される。負荷3には、各ECU5a~5eとは別の経路で電源VBからの電力が供給される。
 負荷3に対する電源VBからの電力供給経路には、負荷3に対応するECU5a~5eの制御によってオン・オフされる電力供給制御用のスイッチ11が設けられている。
 各ECU5a~5eには、センサ(不図示)やスイッチ類(不図示)が接続されており、それらの状態に応じて各ECU5a~5eは、対応する負荷3の電力供給経路のスイッチ11をオン・オフさせる。スイッチ類(不図示)には、車両のイグニッションスイッチも含まれている。
 なお、センサやスイッチ類に対応する負荷3に対する電力供給を制御するのが他のECU5a~5eである場合は、センサやスイッチ類の状態を示すデータが、車内に構築された例えばCAN(Control Area Network)等の車内LANを介して各ECU5a~5e間で転送される。
 電力供給路7には、個別供給路9a~9dを経由した各ECU5a~5eに対する電源VBからの電力供給を停止するためのバイパススイッチ13が設けられている。また、電力供給路7のバイパススイッチ13と個別供給路9a~9dの分岐箇所との間の箇所には、シャント抵抗Rsensが設けられている。バイパススイッチ13を挟んだシャント抵抗Rsensの両端には、電流測定部としての電流センサ15が接続されている。電流センサ15は、シャント抵抗Rsensにおける電圧降下から電力供給路7を流れる電流を測定する。
 電力供給路7の電源VBとバイパススイッチ13との間の箇所には、電流供給路17a~17dが分岐接続されている。電流供給路17a~17dは、各ECU5b~5eにそれぞれ個別に接続されている。つまり、電流供給路17a~17dは、電力供給路7、バイパススイッチ13、シャント抵抗Rsens、及び、個別供給路9a~9dの直列回路と並列に接続されている。
 ECU5bに接続された電流供給路17aには、起動状態(ウエイク状態)や省電力状態(スリープ状態)に移行する条件がECU5bと同じECU5aが分岐接続されている。各電流供給路17a~17dには、電流供給スイッチ19a~19dが設けられている。
 電力供給路7のバイパススイッチ13は、通常はオン状態とされている。したがって、電源VBの電力は、電力供給路7や個別供給路9a~9dを介して各ECU5a~5eに供給される。電源VBの電力が供給されるECU5a~5eは、起動状態において、センサ(不図示)やスイッチ類(不図示)の状態に応じて負荷3に対する電力の供給を制御する。また、ECU5a~5eは、対応する負荷3に対する電力の供給を全て停止しているときに、省電力状態に移行する。省電力状態に移行したECU5a~5eは、センサ(不図示)やスイッチ類(不図示)の状態が変化すると起動状態に復帰する。
 バイパススイッチ13は、ECU5a~5eが起動状態であるときには、監視用コントローラ21の制御によりオン状態とされ、ECU5a~5eが全て省電力状態となるシステムオフモードになると、監視用コントローラ21の制御によりオフ状態に切り替えられる。これにより、電力供給路7及び個別供給路9a~9dを経由した各ECU5a~5eに対する電力供給が強制停止される。
 監視用コントローラ21は、例えば、A/D変換器を内蔵したポートを有するマイクロコンピュータによって構成され、予め定められたプログラムにしたがって、各種の処理を実行する。
 例えば、監視用コントローラ21は、バイパススイッチ13がオン状態であり、かつ、各ECU5a~5eが全て省電力状態となったシステムオフモードであるときに、電流センサ15が測定する電力供給路7の電流が暗電流の異常状態判定用のしきい値を超えたか否かによって、暗電流の異常状態の発生を判定する。
 システムオフモードであるか否かは、例えば、イグニッションスイッチ(不図示)のポジション(LOCK、OFF、ACC、ON、START)から、監視用コントローラ21が判断することができる。
 そして、暗電流の異常状態発生と判定した場合に監視用コントローラ21は、ECU5a~5eの省電力状態への移行異常の検出処理を行う。
 省電力状態への移行異常の検出処理では、監視用コントローラ21は、バイパススイッチ13をオン状態としたまま、電流供給スイッチ19a~19dを1つずつ順にオフ状態からオン状態に切り替える。
 電流供給スイッチ19a~19dが全てオフ状態のときには、各ECU5a~5eに対する電源VBの電力の供給経路は、図2の回路図の太線で示すように、全て、電力供給路7及び個別供給路9a~9dとなる。ここで、例えば、電流供給スイッチ19aをオン状態に切り替えると、図3の回路図の太線で示すように、ECU5a,5bに対する電源VBの電力の供給経路が、電力供給路7及び個別供給路9aから電流供給路17aに切り替わる。なお、図2、3の回路図では、負荷3やスイッチ11等の図示を書略している。
 ECU5a,5bに対する電源VBの電力の供給経路が切り替わると、電力供給路7を流れる電流が、ECU5a,5bに供給される電力の電流分だけ減少する。このため、電流センサ15が測定する電力供給路7の電流の大きさからその減少分を検出することで、監視用コントローラ21は、ECU5a,5bに流れる電流を認識することができる。そして、その電流が、省電力状態のECU5a,5bを流れる暗電流に見合った大きさであるか否かによって、監視用コントローラ21は、ECU5a,5bに省電力状態への移行異常が発生しているか否かを判定することができる。
 なお、その後、監視用コントローラ21は、電流供給スイッチ19b~19dを順次オン状態に切り替えながら、その都度、電力供給路7を流れる電流の減少分を検出する。そして、検出した電流の減少分が、対応するECU5c~5eを流れる暗電流に見合った大きさであるか否かを確認する。これにより、監視用コントローラ21は、ECU5c~5eに省電力状態への移行異常が発生しているか否かをそれぞれ判定することができる。
 次に、監視用コントローラ21が行うECU5a~5eの省電力状態への移行異常の検出処理について説明する。
 まず、監視用コントローラ21は、図4のフローチャートに示すように、イグニッションスイッチ(不図示)のLOCKからOFFへのポジション移行等に伴い、初期設定として、バイパススイッチ13(B_SW)及び各電流供給スイッチ19a~19d(SW_[1]~SW_[4])をシステムオフモードのスイッチパターンとする(ステップS1)。システムオフモードのスイッチパターンでは、バイパススイッチ13(B_SW)はオン状態となり、各電流供給スイッチ19a~19d(SW_[1]~SW_[4])はオフ状態となる。
 次に、監視用コントローラ21は、センサ(不図示)やスイッチ類(不図示)の状態等から、ECU5a~5eの少なくとも1つに省電力状態(SLEEP)から起動状態(WAKE)への移行条件が成立したか否かを確認する(ステップS3)。
 条件が成立していない場合は(ステップS3でNO)、後述するステップS11に移行し、条件が成立した場合は(ステップS3でYES)、バイパススイッチ13(B_SW)及び各電流供給スイッチ19a~19d(SW_[1]~SW_[4])を起動状態(WAKE)のスイッチパターンとする(ステップS5)。起動状態(WAKE)のスイッチパターンでは、バイパススイッチ13(B_SW)はオフ状態となり、各電流供給スイッチ19a~19d(SW_[1]~SW_[4])はオン状態となる。
 続いて、監視用コントローラ21は、「WAKE中回路地絡判定」処理を行う(ステップS7)。この「WAKE中回路地絡判定」処理とは、負荷3やECU5a~5eにおける過電流状態の発生監視を行う処理のことである。この処理は、電源制御システム1とは別に設けられた、例えば、電力供給路7や個別供給路9a~9dの地絡を判定する地絡判定回路(不図示)によって行われる。したがって、ステップS7の「WAKE中回路地絡判定」処理において、監視用コントローラ21は、例えば、地絡判定回路(不図示)からの過電流状態の発生通知を受け取った場合にそれに対応した必要な処理等を行う。
 その後、監視用コントローラ21は、センサ(不図示)やスイッチ類(不図示)の状態等から、全てのECU5a~5eの省電力状態となるシステムオフモードへの移行条件が成立したか否かを確認する(ステップS9)。成立していない場合は(ステップS9でNO)、条件が成立するまでステップS9をリピートし、成立した場合は(ステップS9でYES)、ステップS1にリターンする。
 また、ステップS3において、ECU5a~5eの少なくとも1つに省電力状態(SLEEP)から起動状態(WAKE)への移行条件が成立していない場合(NO)に進むステップS11では、監視用コントローラ21は、「暗電流正常判定」処理を行う。
 この「暗電流正常判定」処理とは、ECU5a~5eにおける暗電流の異常状態の発生監視を行う処理のことである。したがって、監視用コントローラ21は、電流センサ15が測定する電力供給路7の電流の大きさと暗電流の異常状態判定用のしきい値との比較による暗電流の異常状態の判定を行う。
 そして、暗電流の状態が正常である場合は(ステップS11でYES)、ステップS3にリターンし、正常でない場合は(ステップS11でNO)、「チャンネル(Ch)チェック」処理を行う(ステップS13)。
 この「チャンネル(Ch)チェック」処理とは、ECU5a~5eの省電力状態への移行異常を検出する処理のことである。したがって、監視用コントローラ21は、バイパススイッチ13をオン状態としたまま、電流供給スイッチ19a~19dを1つずつ順にオフ状態からオン状態に切り替える。
 そして、監視用コントローラ21は、切り替えのときに電流センサ15が測定する電力供給路7の電流の減少分から、切り替えた電流供給スイッチ19a~19dに対応するECU5a~5eに流れる電流を認識する。さらに、監視用コントローラ21は、認識した電流が対応するECU5c~5eを流れる暗電流に見合った大きさであるか否かによって、ECU5a~5eに省電力状態への移行異常が発生しているか否かを判定する。
 次に、ステップS13の「チャンネル(Ch)チェック」処理の具体的な手順の概略を、図5、6のフローチャートを参照して説明する。
 まず、監視用コントローラ21は、図5に示すように、全体初期化処理を行う(ステップS21)。全体初期化処理では、監視用コントローラ21は、システムオフモードへの移行を実行した回数を示すカウンタのカウント値Retryを、「0」に設定する。
 次に、監視用コントローラ21は、初期化処理を行う(ステップS23)。初期化処理では、オフ状態からオン状態に切り替える電流供給スイッチ19a~19dを特定するために設けた内部メモリ(例えばRAM)のカウンタのカウント値iを、電流供給スイッチ19aに対応する「1」に設定し、バイパススイッチ13(B_SW)をオン状態とすると共に、各電流供給スイッチ19a~19d(SW_[1]~SW_[4])をオフ状態とする。
 なお、カウント値i=「2」は電流供給スイッチ19b、カウント値i=「3」は電流供給スイッチ19c、カウント値i=「4」は電流供給スイッチ19dにそれぞれ対応している。したがって、カウント値iの最大値(Ch_max)は、第1実施形態では「4」である。
 続いて、監視用コントローラ21は、バイパススイッチ13(B_SW)をオン状態とすると共に、各電流供給スイッチ19a~19d(SW_[1]~SW_[4])をオフ状態とした、現在の状態におけるシャント抵抗Rsensの電圧降下値(電流センサ15の測定電流値Isensにシャント抵抗Rsensの抵抗値を乗じた値)Vsensを基準電圧Vsens_baseとして確認する(ステップS25)。
 そして、監視用コントローラ21は、カウンタのカウント値iに対応する電流供給スイッチ19a~19dをオン状態に切り替え(ステップS27)、この時点におけるシャント抵抗Rsensの電圧降下値Vsensに基づいて、暗電流Iecu[i]を計算する(ステップS29)。
 なお、暗電流Iecu[i]の計算式は、この時点におけるシャント抵抗Rsensの電圧降下値VsensとステップS25で確認した基準電圧Vsens_baseとの差分をシャント抵抗Rsens(の抵抗値)で除した、
 Iecu[i]=(Vsens_base-Vsens)/Rsens
によって表すことができる。計算した暗電流Iecu[i]は、カウンタのカウント値iに対応付けて内部メモリに記憶する。
 次に、監視用コントローラ21は、ステップS27でオン状態に切り替えた、カウンタのカウント値iに対応する電流供給スイッチ19a~19dを、オフ状態に切り替える(ステップS31)。そして、監視用コントローラ21は、オン状態とする電流供給スイッチ19a~19d(SW_[1]~SW_[4])の切り替えにより、暗電流Iecu[i]を測定する対象のECU5a~5eを切り替える(判定Ch移動)ために、カウンタのカウント値iを「1」インクリメントする(ステップS33)。
 続いて、監視用コントローラ21は、全てのECU5a~5eの暗電流Iecu[i]を測定したかを、カウンタのカウント値iが最大値(Ch_max)を超えたか否かによって確認する(ステップS35)。
 カウント値iが最大値(Ch_max)を超えていない(暗電流Iecu[i]を測定していないECU5a~5eがある)場合は(ステップS35でNO)、ステップS27にリターンする。また、カウント値iが最大値(Ch_max)を超えている(暗電流Iecu[i]を測定していないECU5a~5eがない)場合は(ステップS35でYES)、監視用コントローラ21は、カウンタのカウント値iを「1」に設定するチェック回路の初期化処理を行う(ステップS37)。
 このチェック回路の初期化処理は、これから行う省電力状態への移行異常判定の対象とするECU5a~5eを、それに接続された個別供給路9a~9dや電流供給スイッチ19a~19dを介して特定するカウント値iを、「1」に初期化するために行う。
 次に、監視用コントローラ21は、図6に示すように、カウンタのカウント値iに対応して内部メモリに記憶された暗電流Iecu[i]が、暗電流の異常状態判定用のしきい値Ith[i]を超えているか否かを確認する(ステップS39)。ここで、暗電流の異常状態判定用のしきい値Ith[i]は、カウント値iに対応する電流供給スイッチ19a~19dを設けた個別供給路9a~9dに接続されているECU5a~5eを正常な場合に流れる暗電流の値に基づいて設定されている。各しきい値Ith[i]は、カウント値iに対応付けて内部メモリに記憶されている。
 暗電流Iecu[i]がしきい値Ith[i]を超えている場合は(ステップS39でYES)、対応するECU5a~5eを流れる暗電流が異常で省電力状態への移行異常が生じているものとして、カウント値iに対応する電流供給スイッチ19a~19d(SW_[1]~SW_[4])をオフ状態にする(ステップS41)。
 一方、暗電流Iecu[i]がしきい値Ith[i]を超えていない場合は(ステップS39でNO)、対応するECU5a~5eを流れる暗電流が正常で省電力状態への移行異常が生じていないものとして、カウント値iに対応する電流供給スイッチ19a~19d(SW_[1]~SW_[4])をオン状態にする(ステップS43)。
 続いて、監視用コントローラ21は、省電力状態への移行異常判定の対象とするECU5a~5eを切り替える(設定Ch移動)ために、カウンタのカウント値iを「1」インクリメントする(ステップS45)。
 次に、監視用コントローラ21は、全てのECU5a~5eについて省電力状態への移行異常判定を行ったかを、カウンタのカウント値iが最大値(Ch_max)を超えたか否かによって確認する(ステップS47)。
 カウント値iが最大値(Ch_max)を超えていない(省電力状態への移行異常判定を行っていないECU5a~5eがある)場合は(ステップS47でNO)、ステップS39にリターンする。また、カウント値iが最大値(Ch_max)を超えている(省電力状態への移行異常判定を行っていないECU5a~5eがない)場合は(ステップS47でYES)、監視用コントローラ21は、バイパススイッチ13(B_SW)をオフ状態に切り替える(ステップS49)。
 これにより、ステップS41でオフ状態にした電流供給スイッチ19a~19d(SW_[1]~SW_[4])を設けた個別供給路9a~9dに接続されているECU5a~5eは、暗電流Iecu[i]の供給停止により強制シャットダウンされることになる。
 続いて、監視用コントローラ21は、バイパススイッチ13(B_SW)のオフ状態への切り替えから、暗電流Iecu[i]の供給停止により強制シャットダウンされたECU5a~5eがリセットされるのに十分な初期化時間が経過したか否かを確認する(ステップS51)。
 初期化時間が経過していない場合は(ステップS51でNO)、経過するまでステップS51をリピートし、初期化時間が経過した場合は(ステップS51でYES)、監視用コントローラ21は、「復帰確認」処理を行う(ステップS53)。この「復帰確認」処理とは、強制シャットダウンされたECU5a~5eを省電力状態に戻すための処理であり、監視用コントローラ21は、バイパススイッチ13(B_SW)をオン状態とすると共に、各電流供給スイッチ19a~19d(SW_[1]~SW_[4])をオフ状態とする。
 次に、監視用コントローラ21は、図4のステップS11と同様の、「暗電流正常判定」処理を行う(ステップS55)。即ち、監視用コントローラ21は、電流センサ15が測定する電力供給路7の電流の大きさと暗電流の異常状態判定用のしきい値との比較による暗電流の異常状態の判定を行う。
 そして、暗電流の状態が正常でない場合は(ステップS55でNO)、システムオフモードへの移行が失敗したと判定し、移行の実行回数を示すカウンタのカウント値Retryを「1」インクリメントした後(ステップS57)、図5のステップS23にリターンする。一方、暗電流の状態が正常である場合は(ステップS55でYES)、「チャンネル(Ch)チェック」処理を終了し、図4のステップS3にリターンする。
 以上に説明した処理の、特に、ステップS23乃至ステップS35の処理を(ステップS25乃至ステップS35は繰り返し)実行することで、個別供給路9a~9dに接続されているECU5a~5eに省電力状態への移行異常が発生しているかどうかが判定される。
 このように、第1実施形態に係る電源制御システム1によれば、ECU5a~5eが負荷3に対する電力供給を停止させて自らも省電力状態に移行するシステムオフモードにおいて、ECU5a~5eの省電力状態への移行異常を判定する際に、バイパススイッチ13がオンされたままの状態で電流供給スイッチ19a~19dが順次オンされる。
 すると、シャント抵抗Rsensが途中に存在する電力供給路7よりも電流供給路17a~17dの方が低抵抗であるため、ECU5a~5eに対する暗電流は専ら電流供給路17a~17dを流れるようになる。つまり、省電力状態のECU5a~5eへの暗電流の供給は継続されるが、供給経路が電力供給路7及び個別供給路9a~9dから電流供給路17a~17dに切り替わる。そして、ECU5a~5eに対する暗電流が流れなくなる分、電力供給路7を流れる電流Isensが減る。
 そこで、バイパススイッチ13のオン中に電流供給スイッチ19a~19dをオンさせたときの電流センサ15が測定する電力供給路7の電流Isensの変化量から、ECU5a~5eに流れる暗電流を把握することができる。そして、把握した暗電流が通常の暗電流の大きさよりも大きいかどうかによって、監視用コントローラ21がECU5a~5eの省電力状態への移行異常を判定することができる。
 また、ECU5a~5eが負荷3に対する電力供給を制御する起動状態にあるときには、電力供給路7及び個別供給路9a~9dによりECU5a~5eに対して電源VBの電力を供給することができる。
 したがって、自己の状態が省電力状態であるか起動状態であるかを監視用コントローラ21に通知する通信機能をECU5a~5eが持っていなくても、ECU5a~5eが制御上省電力状態となっているときに、電力供給路7の電流Isensから、ECU5a~5eの省電力状態への移行異常を判定することができる。
 さらに、ECU5a~5eの省電力状態への移行異常を判定するために、電力供給路7の電流とは別に電流供給路17a~17dを流れる電流を測定する必要がないので、電流測定系の回路構成が複雑化し、それにより電流測定系の消費電力が上昇することを防止することができる。
 また、第1実施形態に係る電源制御システム1によれば、複数のECU5a~5eに対応する電流供給路17a~17d及び電流供給スイッチ19a~19dの組によって対応する各ECU5a~5eに、電力供給路7及び個別供給路9a~9dとは別の経路で暗電流を供給できる構成とした。このため、システムオフモードにおいて、バイパススイッチ13のオン中に各電流供給スイッチ19a~19dを順次オンさせることで、各ECU5a~5eの省電力状態への移行異常を個別に判定することができる。
 なお、第1実施形態では、負荷3が複数存在し、それに対応して負荷3に対する電力供給を制御するコントローラとしてのECU5a~5eが複数存在するものとしたが、コントローラが1つだけである場合にも適用可能である。
 また、第1実施形態では、車両に搭載された負荷3に対する電力供給を制御するシステムに適用した場合を例に取って説明したが、車両以外の分野においても、負荷に対する電力供給をコンロローラを用いて制御する電源制御システムに広く適用可能である。
 (第2実施形態)
 図7~13を参照して、第2実施の形態について説明する。
 (第2実施形態に係る電源制御システムの構成例について)
 第2実施形態に係る電源制御システム1Aは、例えば車載の時計やセキュリティシステム等の複数の電子機器(不図示)が行う動作をそれぞれ制御する起動状態と、前記制御を休止する省電力状態とに移行可能な複数系統(例えば、系統1~系統3)の制御装置(ECU1~ECU4、ECU10、11等、以下、制御装置をECUと称する)と、各系統のECU1~ECU4に駆動電力を供給する所定数(図7に示す例では2台)の電源装置(第1電源装置P1,第2電源装置P2)と、各電源装置に電力を供給するニッケル水素電池やリチウムイオン電池等で構成される二次電池300と、この二次電池300の充放電電流を検出する電流センサSNと、ECU1~ECU4および電源装置P1,P2の駆動を制御する駆動制御装置(CPUまたはロジックIC等で構成される。なお、以降CPUと略記する)100とを備えるシステムである。
 さらに、図7に示すように、各電源装置P1制御装置(ECU1~ECU4等),P2は、制御装置(ECU1~ECU4等)への電源供給(あるいは予備電源供給)を行う第1スイッチ(SW0)と、制御装置(ECU1~ECU4等)の系統分けを行う第2スイッチ(SW1~SW3)を備えている。
 より具体的には、第1電源装置P1を例に説明する(即ち、第2電源装置P2等の他の電源装置も同様の構成を有する)と、第1電源装置P1のコネクタC3には電力線PL1を介して二次電池300が接続されている。電力線PL1は、電源装置P1内において分岐され、ヒューズ150および電力線PL2を介して外部の第2電源装置P2に接続されている。
 また、ヒューズ150を介して延設される電力線には、ノードN1を介して第1スイッチSW0および第2スイッチSW1~SW3が並列接続されている。
 なお、他の構成の詳細については後述する。
 そして、第1スイッチSW0は、通常時においてオン状態を維持し各制御装置(ECU1~ECU4等)に通電するように、第2スイッチSW1~SW3は所定の制御装置(ECU1~ECU4等)に接続され各種状態に応じてオン・オフ状態が切り換えられるようにそれぞれ構成されている。
 また、第1スイッチSW0は、第1スイッチSW0を流れる電流を検出する電流検出回路400に接続されている。
 より具体的には、電流検出回路400は、第1スイッチSW0に直列接続されるセンス抵抗Rと、センス抵抗Rの両端から延設される配線L1、L2を介して接続されるコンパレータ200とから構成される。そして、センス抵抗Rに流れる電流による電圧降下に基づいてコンパレータ200から出力される信号は、配線L4を介してCPU100のA/D(アナログ-デジタル変換)端子107に入力されるようになっている。この構成により、第1スイッチSW0に流れる電流を検出することができる。ここで、電流検出回路400は必須ではない。即ち、後述するように電流検出回路400を備える場合には、系統(例えば、系統1~系統3)の何れにおいて暗電流異常が発生しているかまで特定できるという効果が得られ、一方、電流検出回路400を備えない場合には、何れかのECU1~ECU4で暗電流異常が発生しているか否かを判定できるという効果に留まる。なお、電流検出回路400を備えない構成については、第3実施形態として後述する。
 また、センス抵抗Rの第1スイッチSW0と反対側には、ノードN2を介して逆流防止用ダイオードD1a~D1cが接続され、ノードN4~N6およびコネクタC4~C6を介して、ECU1~ECU4に接続されている。
 図7に示す例では、第1電源装置P1の外部のノードN7で、ECU1とECUは接続され、同一系統に属するようになっている。
 また、ノードN1とN4との間には第2スイッチSW1が接続されている。なお、第2スイッチSW1が備える制御端子は、配線L5を介してCPU100の制御信号の出力端子104に接続されている。
 また、ノードN1とN5との間には第2スイッチSW2が接続されている。なお、第2スイッチSW2が備える制御端子は、配線L6を介してCPU100の制御信号の出力端子105に接続されている。
 また、ノードN1とN6との間には第2スイッチSW3が接続されている。なお、第2スイッチSW3が備える制御端子は、配線L7を介してCPU100の制御信号の出力端子106に接続されている。
 また、CPU100の通信用端子101には、インターフェースI/F201、コネクタC1およびデータ線DL1を介して電流センサSNが接続され、二次電池300の充放電電流の検出結果を受信するようになっている。
 また、CPU100の通信用端子102には、インターフェースI/F202、コネクタC2およびデータ線DL2を介して第2電源装置P2が接続されている。
 なお、系統(系統1~系統3)の具体例については、図12を参照して後述する。
 そして、CPU100は、電流センサSNによる二次電池300の放電電流の検出結果と、第1スイッチSW0および第2スイッチSW1~SW3のオン・オフ状態と、電流検出回路400による検出結果とに基いて、系統(系統1~系統3)の何れに暗電流の異常が発生しているかを判定するようになっている。なお、暗電流異常の判定の仕方の詳細については後述する。
 また、CPU100は、暗電流の異常が発生していると判定された系統への電力供給を遮断するように第1スイッチSW0または第2スイッチSW1~SW3のオン・オフ状態の切換えを制御するようになっている。これにより、二次電池300からの不要な電力供給が防止され、二次電池300の消耗(いわゆるバッテリ上がりの状態)を未然に抑制することができる。よって、第2実施形態に係る電源制御システム1Aを車両等に搭載した場合に、バッテリ上がりによりエンジンを始動できないなどの事態の発生を抑制することができる。
 さらに、CPU100は、暗電流の異常が発生していると判定された系統に属する制御装置(ECU1~ECU4等)について正常状態へ復帰させる初期化(パワーオンリセット)を行うように制御するようになっている。なお、各制御の処理手順については後述する。
 このような構成の電源制御システム1Aによれば、通信に接続されていないECUに異常が発生した場合にも検知することができるという効果がある。また、系統ごとの電流値に基いて異常を判定することができる。さらに、パワーオンリセットにより、異常復帰動作を行うことができるなどの効果を得ることができる。
 さらに、第2実施形態に係る電源制御システム1Aにおいて、電流センサSNは、二次電池300の充放電電流の検出結果を二次電池300の充電状態を監視する監視装置(例えば、外部に設置されるサーバ等)に送信するように構成してもよい。
 また、電流センサSNによって、所定の車両暗電流よりも大きい消費電流を検知した場合には、通信により電源装置P1,P2または制御装置(ECU1~ECU4等)を起動させるように構成してもよい。
 また、電流センサSNによる暗電流異常検知により、ECU1~ECU4等が起動した場合には、ECU1~ECU4等は各電源装置P1,P2に暗電流異常の発生を通知するように構成することもできる。
 そして、電源装置P1,P2は、暗電流異常の発生信号を受信した場合には、第1スイッチSW0と第2スイッチSW1~SW3のオン・オフ状態を制御するようにしてもよい。
 また、電源装置P1,P2またはECU1~ECU4等は、パワーオンリセットを実行した後、電流センサSNに対してスリープ状態への移行するよう制御するようにしてもよい。
 また、電源装置P1,P2は、暗電流異常が発生していない状態における各系統の電流値を検出して不揮発性メモリ等に記録し、その記録結果と検出した電流値との差分を基準にして暗電流異常が発生した系統の判定を行うようにしてもよい。これにより、電流検出の高精度化を不要としてコストの低廉化等を図ることができる。
 以上のような構成によれば、長期間の駐車等により、暗電流が正常範囲であってもバッテリ上がりでエンジン始動が不可となるような場合には、第1スイッチSW0と第2スイッチSW1~SW3をオフにして、かかる事態の発生を未然に抑制することができる。
 (第2実施形態に係る電源制御システムの全体構成について)
 図8は、第2実施形態に係る電源制御システム1Aの全体構成の例を示す構成図である。
 図8には、4台の電源装置P1~P4により電源制御システム1Aが構成される例を示す。なお、電源装置の台数は、図7のように2台、図8のように4台の場合に限定されず、任意の数とすることができる。
 各電源装置P1~P4は、図7に示した電源装置P1と同様の構成を有している。
 図8に示す例では、電力系については、二次電池300および電源装置P1~P4が、電力線PL1~PL4を介して接続されている。
 また、信号系については、電流センサSNおよび各電源装置P1~P4が備えるCPU100が、データ線DL1~DL4を介して接続されている。
 このような構成の電源制御システム1Aにより、各電源装置P1~P4において、通信に接続されていないECUに異常が発生した場合にも検知することができる。また、系統ごとの電流値に基いて異常を判定することができ、また、パワーオンリセットを行うことにより、ECUの異常復帰動作を行うことができるなどの効果を奏することができる。
 (暗電流異常発生時処理)
 図9~11に示すフローチャートを参照して、第2実施形態に係る電源制御システム1Aで実行される暗電流異常発生時処理の処理手順の例について説明する。
 ここで、図9は第2実施形態に係る電源制御システム1Aで実行される暗電流異常発生時処理の処理手順の例を示すフローチャートである。
 また、図10は暗電流異常系統検出処理に係るサブルーチンの処理手順の例を示すフローチャート、図11はパワーオンリセット処理に係るサブルーチンの処理手順の例を示すフローチャートである。
 なお、説明の便宜上、電源制御システム1Aは車載され、暗電流異常発生時処理は、電源装置P1のCPU100で実行されているものとする。
 図9のフローチャートに示す暗電流異常発生時処理が開始されると、まずステップS100で暗電流異常の発生信号を受信したか否かが判定される。即ち、二次電池300が備える電流センサSNが、予め設定される車両暗電流よりも大きな消費電流を検出した場合(暗電流異常が発生している場合)に、その検出結果がデータ線DL1を介してCPU100に送信されるが、検出結果の信号(暗電流異常の発生信号)を受信したか否かが判定される。
 そして、判定結果が「No」の場合にはそのまま処理を終了し、「Yes」の場合にはステップS110に移行する。
 ステップS110では、暗電流異常系統検出処理のサブルーチンが実行される。
 ここで、図10のフローチャートを参照して、暗電流異常系統検出処理の処理手順について説明する。なお、暗電流異常系統検出処理の実行時における各スイッチ(第1スイッチSW0、第2スイッチSW1~SW3)のオン・オフ状態は、図12に示す図表の通りである。
 ステップS1101では、第1スイッチSW0のオン(ON)再設定処理が行われる。これにより、図12に示すように、各系統(系統1~系統3)における暗電流異常系統検出処理においてSW0は「ON」状態を維持する。
 次いで、ステップS1102では、第2スイッチSW1~SWn(nは整数。図7に示す例ではn=3)についてオン(ON)設定処理が行われる。これにより、一旦、全ての第2スイッチSW1~SWnはON状態に設定される。
 次にステップS1103では、系統番号「i」を1に設定(系統i=1)してステップS1104に移行する。
 ステップS1104では、SWiのオフ(OFF)設定処理が実行される。これにより、図12における「系統1」について、第2スイッチSW1のみがオフ状態となり、他の第1スイッチSW0、第のスイッチSW2、SW3がオンされた状態となる。
 ステップS1105では、第1スイッチSW0に接続された電流検出回路400の検出結果を用いた電流検出処理が実行され、ステップS1106では、電流検出結果に基づいて暗電流異常判定処理が実行される。即ち、電流検出回路400による検出結果が、予め設定された暗電流異常の閾値を超えた場合を「異常」、超えていない場合を「正常」と判定する。
 そして、「異常」と判定された場合にはステップS1107に移行して、異常系統記録処理を行う。即ち、系統1で「異常」と判定された場合には、その旨を例えばCPU100に接続される不揮発性メモリ(不図示)等に格納してステップS1108に移行する。
 また、ステップS1106で「正常」と判定された場合にはステップS1108に移行して、SWi(即ち、SW1)のON設定処理を実行してステップS1109に移行する。
 ステップS1109では、i≧nとなったか否かを判定する異常系統判定の終了確認処理が行われる。そして、未だi≧nではないと判定された場合(「No」の場合)にはステップS1110に移行し、系統番号「i」を「1」インクリメントしてからステップS1104に移行する。これにより、系統番号「i」が所定数(図7に示す構成ではi=3)に達するまで、ステップS1104~S1109までの処理が繰り返して実行される。
 即ち、図12に示すように、「系統2」について、第2スイッチSW2のみがオフ状態となり、他の第1スイッチSW0、第2スイッチSW1、SW3がオンされた状態における暗電流異常に有無の判定処理等、「系統3」について、第2スイッチSW3のみがオフ状態となり、他の第1スイッチSW0、第2スイッチSW1、SW2がオンされた状態における暗電流異常に有無の判定処理等が順次実行される。
 これにより、何れの系統に暗電流異常が発生しているかを漏れなく検出することができる。
 一方、ステップS1109で、i≧nとなったと判定された場合(「Yes」の場合)にはステップS1111に移行して、全ての第2スイッチSW1~SWnをOFF設定する処理を実行してから図10のメイン処理にリターンする。
 図10のフローチャートに戻って、次いでステップS120で暗電流異常系統が検出されたか否かが判定される。そして、検出されなかったと判定された場合(「No」の場合)には、そのまま処理を終了する。一方、検出されたと判定された場合(「Yes」の場合)には、ステップS130に移行してパワーオンリセット処理のサブルーチンが実行される。
 ここで、図11のフローチャートを参照して、パワーオンリセット処理の処理手順について説明する。なお、パワーオンリセット処理の実行時における各スイッチ(第1スイッチSW0、第2スイッチSW1~SW3)のオン・オフ状態は、図13に示す図表の通りである。
 ステップS1301では、第2スイッチSW1~SWn(nは整数。図7に示す例ではn=3)についてオン(ON)設定処理が行われる。これにより、一旦、全ての第2スイッチSW1~SWnはON状態に設定される。
 次いで、ステップS1302では、第1スイッチSW0のオフ(OFF)設定処理が行われる。
 次にステップS1303では、系統番号「i」を1に設定(系統i=1)してステップS1304に移行する。
 ステップS1304では、系統i(即ち、ここでは系統1)=異常系統であるか否かが判定される。
 判定結果が「No」の場合にはステップS1308に移行し、「Yes」の場合にはステップS1305に移行する。
 ステップS1305では、SWi(ここではSW1)のオフ(OFF)設定処理を実行する。
 これにより、図13に示すように、系統1については、第1スイッチSW0と第2スイッチSW1がOFF、第2スイッチSW2,SW3がONの状態とされる。
 ステップS1306では、所定時間(パワーオンリセット時間)が経過したかを判定する時間経過確認処理が実行され、パワーオンリセット時間に達するまで待機し、パワーオンリセット時間に達するとパワーオンリセットを実行してステップS1307に移行する。
 ステップS1307では、SWiのON設定処理を行ってからステップS1308に移行する。
 ステップS1308では、i≧nとなったか否かを判定するパワーオンリセットの終了確認処理が行われる。
 そして、未だi≧nではないと判定された場合(「No」の場合)にはステップS1309に移行し、系統番号「i」を「1」インクリメントしてからステップS1304に移行する。これにより、系統番号「i」が所定数(図7に示す構成ではi=3)に達するまで、ステップS1304~S1308までの処理が繰り返して実行される。
 即ち、図13に示すように、「系統2」について、第1スイッチSW0と第2スイッチSW2がOFF、第2スイッチSW1,SW3がONの状態におけるパワーオンリセット、「系統3」について、第1スイッチSW0と第2スイッチSW3がOFF、第2スイッチSW1,SW2がONの状態におけるパワーオンリセットが順次実行される。
 これにより、暗電流異常が発生している系統に属するECUについて漏れなくパワーオンリセットを実行することができる。
 一方、ステップS1308で、i≧nとなったと判定された場合(「Yes」の場合)にはステップS1310に移行して、第1スイッチSW0のオン設定処理を実行してからステップS1311に移行する。
 ステップS1311では、全ての第2スイッチSW1~SWnをOFF設定する処理を実行してから図9のメイン処理にリターンして処理を終了する。
 以上述べたように、第2実施形態に係る電源制御システム1Aによれば、通信に接続されていないECUに異常が発生した場合にも検知することができる。また、系統ごとの電流値に基いて異常を判定することができ、さらに、パワーオンリセットにより異常復帰動作を行うことができるなどの効果を得ることができる。
 また、電源装置P1等において、暗電流異常が発生していない状態における各系統の電流値を検出して不揮発性メモリ等に記録し、その記録結果と検出した電流値との差分を基準にして暗電流異常が発生した系統の判定を行うようにした場合には、電流検出の高精度化を不要としてコストの低廉化等を図ることができる。
 (第3実施形態)
 図14~16を参照して、第3実施形態について説明する。
 (第3実施形態に係る電源制御システムの構成例について)
 図14は、第3実施形態に係る電源制御システム1Bの回路構成の例を示す回路図である。なお、第3実施形態において、第2実施形態と同様の構成については、同一符号を付して重複した説明は省略する。第3実施の形態に係る電源制御システム1Bが、第2実施形態に係る電源制御システム1Aと異なる点は、各電源装置(P1等)における電流検出回路400を省略した点である。即ち、電流検出回路400を構成していた第1スイッチSW0に直列接続されていたセンス抵抗Rと、コンパレータ200とを省いた構成となっている。
 このように、電流検出用の抵抗(センス抵抗R)が無いので、第1スイッチSW0の系統からECU(ECU1等)の動作に必要な電力を供給することができる。これにより、第2スイッチSW1~SW3に異常が発生した際には、第1スイッチSW0からの電源供給(バックアップ)を行うことが可能となるという効果を得ることができる。
 なお、第3実施形態では、暗電流異常が発生している系統の判断は行わず、暗電流異常が発生した時点で、各系統をパワーオンリセット処理して、暗電流異常からの復帰処理を行うようにしている。
 (暗電流異常発生時処理)
 図15、16に示すフローチャートを参照して、第3実施形態に係る電源制御システム1Bで実行される暗電流異常発生時処理の処理手順の例について説明する。
 ここで、図15は第3実施形態に係る電源制御システム1Bで実行される暗電流異常発生時処理の処理手順の例を示すフローチャートである。また、図16はパワーオンリセット処理に係るサブルーチンの処理手順の例を示すフローチャートである。
 なお、説明の便宜上、電源制御システム1Bは車載され、暗電流異常発生時処理は、図14に示す電源装置P1のCPU100で実行されているものとする。
 図15のフローチャートに示す暗電流異常発生時処理が開始されると、まずステップS200で暗電流異常の発生信号を受信したか否かが判定される。即ち、二次電池300が備える電流センサSNが、予め設定される車両暗電流よりも大きな消費電流を検出した場合(暗電流異常が発生している場合)に、その検出結果がデータ線DL1を介してCPU100に送信されるが、検出結果の信号(暗電流異常の発生信号)を受信したか否かが判定される。
 そして、判定結果が「No」の場合にはそのまま処理を終了し、「Yes」の場合にはステップS210に移行してパワーオンリセット処理のサブルーチンが実行される。
 ここで、図16のフローチャートを参照して、パワーオンリセット処理の処理手順について説明する。
 ステップS2101では、第2スイッチSW1~SWn(nは整数。図14に示す例ではn=3)についてオン(ON)設定処理が行われる。これにより、一旦、全ての第2スイッチSW1~SWnはON状態に設定される。次いで、ステップS2102では、第1スイッチSW0のオフ(OFF)設定処理が行われる。
 次に、ステップS2103では、系統番号「i」を1に設定(系統i=1)してステップS2104に移行する。
 ステップS2105では、所定時間(パワーオンリセット時間)が経過したかを判定する時間経過確認処理が実行され、パワーオンリセット時間に達するまで待機し、パワーオンリセット時間に達するとパワーオンリセットを実行してステップS2106に移行する。ステップS2106では、SWi(即ち、SW1)のON設定処理を実行してステップS2107に移行する。
 ステップS2107では、i≧nとなったか否かを判定する異常系統判定の終了確認処理が行われる。そして、未だi≧nではないと判定された場合(「No」の場合)にはステップS2108に移行し、系統番号「i」を「1」インクリメントしてからステップS2104に移行する。これにより、系統番号「i」が所定数(図14に示す構成ではi=3)に達するまで、ステップS2104~S2107までの処理が繰り返して実行される。
 これにより、暗電流異常が発生している系統に属するECUについて漏れなくパワーオンリセットを実行することができる。
 一方、ステップS2107で、i≧nとなったと判定された場合(「Yes」の場合)にはステップS2109に移行して、第1スイッチSW0のオン設定処理を実行してからステップS2110に進む。
 ステップS2110では、全ての第2スイッチSW1~SWnをOFF設定する処理を実行してから図15のメイン処理にリターンして処理を終了する。
 以上述べたように、第3実施形態に係る電源制御システム1Bによれば、何れかのECU1~ECU4で暗電流異常が発生しているか否かを判定(検知)することができる。また、パワーオンリセットにより暗電流異常が発生したECU1~ECU4の異常復帰動作を行うことができるなどの効果を得ることができる。
 (第4実施形態)
 図17~28を参照して、第4実施形態について説明する。
 (第4実施形態に係る電源制御システムの構成例について)
 図17は、第4実施形態に係る電源制御システム1Cの回路構成の例を示す回路図である。
 第4実施形態に係る電源制御システム1Cは、例えば車載の時計やセキュリティシステム等の複数の電子機器(不図示)が行う動作をそれぞれ制御する稼働状態(ウェイク状態ともいう)と、前記制御を休止する省電力状態(スリープ状態ともいう)とに移行可能な複数の制御装置(ECU1~ECU4、以下、制御装置をECUと称する)と、各ECU1~ECU4に1系統または2系統以上の駆動電力を供給する2以上の電源装置(第4実施形態では、2台の電源装置(第1電源装置P1,第2電源装置P2))と、各電源装置P1、P2に電力を供給するニッケル水素電池やリチウムイオン電池等で構成される二次電池300と、二次電池300の充放電電流を検出する電流センサSNと、制御装置ECU1~ECU4および電源装置P1、P2の駆動を制御する駆動制御装置(CPUまたはロジックIC等で構成される。なお、以降CPUと略記する)100とを備え、各電源装置P1、P2は、ECUへの電源供給を行う第1スイッチSW0と、ECUの電源供給系統の系統分けを行う第2スイッチSW1~SW3とを備えている。
 また、第1スイッチSW0内またはその近傍(第4実施形態では、図17等に示すように、第1スイッチSW0とコネクタC4~C6との間)に、第1スイッチSW0を流れるECU1~ECU4の消費電流を検出する電流検出回路400が設けられている。
 そして、CPU100は、電流検出回路400の検出結果に基いて、何れかのECU1~ECU4に暗電流の異常が発生しているか否かを判定すると共に、第1スイッチSW0および第2スイッチSW1のオン・オフ状態を制御して、各電源供給系統に属する各ECU1~ECU4の消費電流を計測し、その計測結果に基いて何れのECU(ECU1~ECU4の何れか)に暗電流の異常が発生しているかを判定するようにしている。
 ここで、各ECU1~ECU4の消費電流を計測する際における第1スイッチSW0および第2スイッチSW1のオン・オフ状態の制御状況は、例えば図25の図表に示すようになる。
 なお、図25、26の図表の内容を説明をするに先立って、図18を参照して電源制御システム1Cの全体構成について説明する。
 (第4実施形態に係る電源制御システムの全体構成について)
 図18は、第4実施形態に係る電源制御システム1Cの全体構成の例を示す構成図である。
 図18には、2台の電源装置P1、P2により電源制御システム1Cが構成される例を示す。なお、電源装置の台数は、2台の場合に限定されず、例えば3台以上の任意の数とすることができる。
 図18に示す例では、第1電源装置P1には、ECU1、ECU4およびECU2がそれぞれ接続されている。
 また、第2電源装置P2には、配線L21~L23を介してECU3、ECU4およびECU1がそれぞれ接続されている。
 また、信号系については、電流センサSNおよび各電源装置P1、P2が備えるCPU100が、データ線DL1、DL2を介して接続されている。
 (スイッチのオン・オフ状態の制御状況について)
 次に、図25、26の図表を参照して、スイッチのオン・オフ状態の制御状況について説明する。
 まず、図25の図表に示すように、ECU1について、第1電源装置P1においては、SW0、SW1、SW2、SW3について「ON、OFF、ON、ON」、第2電源装置P2においては、「OFF、ON、ON、OFF」のように制御する。
 また、ECU2について、第1電源装置P1においては、SW0、SW1、SW2、SW3について「ON、ON、ON、OFF」のように制御する。なお、第2電源装置P2においては、結果的に暗電流検出に影響を与えないので、オン、オフの何れの状態であってもよい。
 また、ECU3について、第2電源装置P2においては、SW0、SW1、SW2、SW3について「ON、OFF、ON、ON」のように制御する。なお、第1電源装置P1においては、結果的に暗電流検出に影響を与えないので、オン、オフの何れの状態であってもよい。
 また、ECU4について、第1電源装置P1においては、SW0、SW1、SW2、SW3について「ON、ON、OFF、ON」、第2電源装置P2においては、「OFF、ON、OFF、ON」のように制御する。
 これにより、各電源供給系統に属する各ECU1~ECU4について漏れなく消費電流の計測を行うことができ、何れのECUに暗電流異常を生じているかを精度良く検出することができる。
 また、CPU100は、暗電流の異常が発生していると判定された電源供給系統への電力供給を遮断するように第1スイッチSW0または第2スイッチSW1のオン・オフ状態の切換えを制御するようにできる。
 これにより、二次電池300からの不要な電力供給が防止され、二次電池300の消耗(いわゆるバッテリ上がりの状態)を未然に抑制することができる。よって、第4実施形態に係る電源制御システム1Cを車両等に搭載した場合に、バッテリ上がりによりエンジンを始動できないなどの事態の発生を抑制することができる。
 さらに、CPU100は、暗電流の異常が発生していると判定された電源供給系統に属するECU(ECU1~ECU4の何れか)について正常状態へ復帰させる初期化(パワーオンリセット)を行うように第1スイッチSW0または第2スイッチSW1のオン・オフ状態の切換えを制御するようにできる。
 ここで、各ECU1~ECU4のパワーオンリセットを行う際における第1スイッチSW0および第2スイッチSW1のオン・オフ状態の制御状況は、例えば図26の図表に示すようになる。
 即ち、ECU1について、第1電源装置P1においては、SW0、SW1、SW2、SW3について「OFF、OFF、ON、ON」、第2電源装置P2においては、「OFF、ON、ON、OFF」のように制御する。
 また、ECU2について、第1電源装置P1においては、SW0、SW1、SW2、SW3について「OFF、ON、ON、OFF」のように制御する。なお、第2電源装置P2においては、結果的にパワーオンリセット処理に影響を与えないので、オン、オフの何れの状態であってもよい。
 また、ECU3について、第2電源装置P2においては、SW0、SW1、SW2、SW3について「OFF、OFF、ON、ON」のように制御する。なお、第1電源装置P1においては、結果的にパワーオンリセット処理に影響を与えないので、オン、オフの何れの状態であってもよい。
 また、ECU4について、第1電源装置P1においては、SW0、SW1、SW2、SW3について「OFF、ON、OFF、ON」、第2電源装置P2においては、「OFF、ON、OFF、ON」のように制御する。
 これにより、各電源供給系統に属する各ECU1~ECU4について漏れなくパワーオンリセット処理を行うことができ、暗電流異常の解消を図ることができる。
 なお、暗電流異常検出に関する詳細な処理手順についてはフローチャートを参照して後述する。
 (第4実施形態に係る電源制御システムの具体的構成例について)
 図17を参照して、より具体的な構成について、第1電源装置P1を例に説明する。なお、第2電源装置P2等の他の電源装置も略同様の構成を有するものとする。
 図17に示すように、第1電源装置P1のコネクタC3には電力線PL1を介して二次電池300が接続されている。電力線PL1は、電源装置P1内において分岐され、ヒューズ150および電力線PL2を介して外部の第2電源装置P2に接続されている。
 また、ヒューズ151を介して延設される電力線には、ノードN1を介して第1スイッチSW0および第2スイッチSW1~SW3が並列接続されている。
 そして、第1スイッチSW0は、通常時においてオン状態を維持し各制御装置(ECU1~ECU4等)に通電するように、第2スイッチSW1~SW3は所定の制御装置(ECU1~ECU4等)に接続され各種状態に応じてオン・オフ状態が切り換えられるようにそれぞれ構成されている。
 また、第1スイッチSW0は、第1スイッチSW0を流れる電流を検出する電流検出回路400に接続されている。
 より具体的には、電流検出回路400は、第1スイッチSW0に直列接続されるセンス抵抗Rと、センス抵抗Rの両端から延設される配線L2、L3を介して接続されるコンパレータ200とから構成される。そして、センス抵抗Rに流れる電流による電圧降下に基づいてコンパレータ200から出力される信号は、配線L4を介してCPU100のA/D(アナログ-デジタル変換)端子107に入力されるようになっている。この構成により、第1スイッチSW0に流れる電流を検出することができる。
 また、センス抵抗Rの第1スイッチSW0と反対側には、ノードN2を介して逆流防止用ダイオードD1a~D1cが接続され、ノードN4~N6およびコネクタC4~C6を介して、ECU1、ECU2およびECU4に接続されている。
 より具体的には、コネクタC4にはECU1が、コネクタC5には配線L50を介してECU4が、コネクタ6にはECU2がそれぞれ接続されている。
 なお、第2電源装置P2では、配線L21~L23を介してECU3、ECU4およびECU1がそれぞれ接続されている。
 このように、図17に示す例では、ECU2およびECU3には1系統の電源供給系統(電源装置P1または電源装置P2の一方)が接続され、ECU1およびECU4には2系統の電源供給系統(第1電源装置P1と第2電源装置P2の双方)が接続されている。なお、3以上の電源装置を用いる場合には、一つのECUに3系統以上の電源供給系統を接続するようにしてもよい。
 また、ノードN1とN4との間には第2スイッチSW1が接続されている。なお、第2スイッチSW1が備える制御端子は、配線L5を介してCPU100の制御信号の出力端子104に接続されている。
 また、ノードN1とN5との間には第2スイッチSW2が接続されている。なお、第2スイッチSW2が備える制御端子は、配線L6を介してCPU100の制御信号の出力端子105に接続されている。
 また、ノードN1とN6との間には第2スイッチSW3が接続されている。なお、第2スイッチSW3が備える制御端子は、配線L7を介してCPU100の制御信号の出力端子106に接続されている。
 また、CPU100の通信用端子101には、インターフェースI/F201、コネクタC1およびデータ線DL1を介して電流センサSNが接続され、二次電池300の充放電電流の検出結果を受信するようになっている。
 また、CPU100の通信用端子102には、インターフェースI/F202、コネクタC2にその他の外部装置(不図示)が接続される。
 なお、第1スイッチSW0および第2スイッチSW1~SW3の動作の具体例については、図25、26を参照して後述する。
 第4実施形態に係る電源制御システム1Cによれば、電流センサSNは、二次電池300の充放電電流を測定しており、スリープ状態時の充放電電流により、何れかECU(ECU1~ECU4の何れか)がスリープ状態に遷移していないことを検知することができる。
 また、各電源装置P1、P2のCPU100は、第1スイッチSW0および第2スイッチSW1~SW3を制御し、各電源供給系統に接続される各ECU(ECU1~ECU4)の消費電流を計測し、何れのECU(ECU1~ECU4)で異常が発生しているかを判断することができる。
 なお、第1スイッチSW0および第2スイッチSW1~SW3の制御状況の例は、図25の図表を参照して前述した通りである。
 (ECUの構成について)
 図19は、第4実施形態に係る電源制御システム1Cの一部を構成するECUの概略構成を示す概略構成図である。
 なお、図17,18に例示されるECU1~ECU4は、何れも図19に示すECUと同様の構成を有している。
 ECUは、第1電源装置P1または第2電源装置P2に接続されるコネクタ40と、外部の各種電子装置に接続されるコネクタC30、C40を備えている。
 コネクタ40には、ダイオードD2,D3およびキャパシタCA10を介して電源IC30が接続されている。
 電源IC30には各種制御処理等を行うCPU31が接続され、インターフェース32およびコネクタC30、C40を介して各種電子装置に接続される。
 第4実施形態に係る電源制御システム1Cによれば、各電源装置P1、P2において、通信に接続されていないECUに異常が発生した場合にも検知することができる。また、暗電流異常が発生したECUをパワーオンリセットを行うことにより、ECUの異常復帰動作を行うことができる。
 また、第4実施形態に係る電源制御システム1Cにおいて、ECU1およびECU4については、電源の信頼性を高めるために、2系統の電源供給系統(第1電源装置P1と第2電源装置P2の双方)から電源供給を受けている。そのため、個別の電源装置P1、P2が自己の電源供給系統のみを確認するだけでは暗電流異常検出が困難であり、パワーオンリセットを実行することができない。
 そこで、第4実施形態に係る電源制御システム1Cでは、複数ある電源装置の一方(例えば、主電源装置としての第1電源装置P1)が、車両全体の電源制御を行う(例えば、第1電源装置P1は自身から供給している電源の状況のほかに、他の電源装置(例えば、副電源装置としての第2電源装置P2)の電源状況を把握し、第1電源装置P1が、第2電源装置P2の電源供給についても制御することができる。
 即ち、ECU1およびECU4は、第1電源装置P1および第2電源装置P2から電源供給を受けており、ECU1およびECU4の消費電流(暗電流)の計測およびパワーオンリセットの実施を行う際には、第1電源装置P1は第2電源装置P2に対して、対象のECU(ECU1およびECU4)への電源供給を停止させた後、前述のような電源供給の処理を実施する。
 なお、第1電源装置P1が対象ECUへの電源供給を停止し、その後に、第2電源装置P2に暗電流計測およびパワーオンリセットの実施を行わせるようにしてもよい。
 さらに、第4実施形態に係る電源制御システム1Cにおいて、電流センサSNは、二次電池300の充放電電流の検出結果を二次電池300の充電状態を監視する監視装置(例えば、外部に設置されるサーバ等)に送信するように構成してもよい。
 また、電流センサSNによって、所定の車両暗電流よりも大きい消費電流を検知した場合には、通信により電源装置P1,P2または制御装置(ECU1~ECU4等)を起動させるように構成してもよい。
 また、電流センサSNによる暗電流異常検知により、ECU1~ECU4等が起動した場合には、ECU1~ECU4等は各電源装置P1,P2に暗電流異常の発生を通知するように構成することもできる。
 そして、電源装置P1,P2は、暗電流異常の発生信号を受信した場合には、第1スイッチSW0と第2スイッチSW1~SW3のオン・オフ状態を制御するようにしてもよい。
 また、電源装置P1,P2またはECU1~ECU4等は、パワーオンリセットを実行した後、電流センサSNに対してスリープ状態への移行するよう制御するようにしてもよい。
 以上のような構成によれば、長期間の駐車等により、暗電流が正常範囲であってもバッテリ上がりでエンジン始動が不可となるような場合には、第1スイッチSW0と第2スイッチSW1~SW3をオフにして、かかる事態の発生を未然に抑制することができる。
 (暗電流異常発生時処理)
 図20~24に示すフローチャートおよび図25~28の図表を参照して、第4実施形態に係る電源制御システム1Cで実行される暗電流異常発生時処理の処理手順の例について説明する。
 ここで、図20は、第4実施形態に係る電源制御システム1Cで実行される電流センサを用いた暗電流異常検出処理の処理手順の例を示すフローチャートである。
 なお、説明の便宜上、電源制御システム1Cは車載され、暗電流異常発生時処理は、図17等に示す第1電源装置P1のCPU100で実行されているものとする。
 図20のフローチャートに示す暗電流異常発生時処理が開始されると、まずステップS300で暗電流異常の発生信号を受信したか否かが判定される。即ち、二次電池300が備える電流センサSNが、予め設定される車両暗電流よりも大きな消費電流を検出した場合(暗電流異常が発生している場合)に、その検出結果がデータ線DL1を介してCPU100に送信されるが、検出結果の信号(暗電流異常の発生信号)を受信したか否かが判定される。
 そして、判定結果が「No」の場合にはそのまま処理を終了し、「Yes」の場合にはステップS310に移行する。
 ステップS310では、複数電源対象を確認したか否かが判定される。即ち、図17等に示すECU1およびECU4のように複数の電源供給系統を有するか否かが判定される。
 そして、判定結果が「Yes」の場合にはステップS320に移行して、電源供給系統単独化処理のサブルーチンが実行される。
 ここで、図21のフローチャートを参照して、電源供給系統単独化処理の処理手順について説明する。
 暗電流計測時の各スイッチ(第1スイッチSW0、第2スイッチSW1~SW3)のオン・オフ状態は、図15に示す図表の通りである。なお、第1電源装置P1に接続されるECU3および第2電源装置P2に接続されるECU2については、結果的に暗電流検出に影響を与えないので、オン、オフの何れの状態であってもよい。
 電源供給系統単独化処理では、まずステップS321で、初期値をk=2にセットしてステップS322に移行する。
 ステップS322では、電源装置k(第4実施形態では、k=2に相当する第2電源装置P2)について、電源供給を遮断する電源供給遮断処理を実行してからステップS323に移行する。
 ステップS323では、供給電源数を確認する処理を行い、供給電源数=1の場合には図20のメイン処理にリターンし、供給電源数>1の場合には、ステップS324に移行して、kを「1」インクリメントしてステップS322に戻る。
 これにより、電源装置の数、即ち電源供給系統の数に応じて、各電源装置P1、P2等の供給電源を遮断することができる。
 図20にフローチャートに戻って、ステップS310で「No」と判定された場合には、ステップS330に移行して、暗電流異常系統検出処理のサブルーチンが実行される。
 ここで、図22のフローチャートを参照して、暗電流異常系統検出処理の処理手順について説明する。
 なお、ここでいう「暗電流異常系統」は、「電源供給系統」とは別の概念であり、暗電流異常が発生したECUが属する系統を意味する。
 即ち、第1電源装置P1については、ECU1が属する「系統1」、ECU4が属する「系統2」、ECU2が属する「系統3」が存在する。
 同様に、第2電源装置P2については、ECU3が属する「系統1」、ECU4が属する「系統2」、ECU1が属する「系統3」が存在するものとする。
 また、暗電流異常系統検出処理の実行時における各スイッチ(第1スイッチSW0、第2スイッチSW1~SW3)のオン・オフ状態は、図27に示す図表の通りである。
 ステップS3301では、第1スイッチSW0のオン(ON)再設定処理が行われる。これにより、図27に示すように、各系統(系統1~系統3)における暗電流異常系統検出処理においてSW0は「ON」状態を維持する。
 次いで、ステップS3302では、第2スイッチSW1~SWn(nは整数。図17等に示す例ではn=3)についてオン(ON)設定処理が行われる。これにより、一旦、全ての第2スイッチSW1~SWnはON状態に設定される。
 次にステップS3303では、系統番号「i」を1に設定(系統i=1)してステップS3304に移行する。
 ステップS3304では、SWiのオフ(OFF)設定処理が実行される。これにより、図27における「系統1」について、第2スイッチSW1のみがオフ状態となり、他の第1スイッチSW0、第2スイッチSW2、SW3がオンされた状態となる。
 ステップS3305では、第1スイッチSW0に接続された電流検出回路400の検出結果を用いた電流検出処理が実行され、ステップS3306では、電流検出結果に基づいて暗電流異常判定処理が実行される。即ち、電流検出回路400による検出結果が、予め設定された暗電流異常の閾値を超えた場合を「異常」、超えていない場合を「正常」と判定する。
 そして、「異常」と判定された場合にはステップS3307に移行して、異常系統記録処理を行う。即ち、系統1で「異常」と判定された場合には、その旨を例えばCPU100に接続される不揮発性メモリ(不図示)等に格納してステップS3308に移行する。
 また、ステップS3306で「正常」と判定された場合にはステップS3308に移行して、SWi(即ち、SW1)のON設定処理を実行してステップS3309に移行する。
 ステップS3309では、i≧nとなったか否かを判定する異常系統判定の終了確認処理が行われる。そして、未だi≧nではないと判定された場合(「No」の場合)にはステップS3310に移行し、系統番号「i」を「1」インクリメントしてからステップS3304に移行する。これにより、系統番号「i」が所定数(図17等に示す構成ではi=3)に達するまで、ステップS3304~S3309までの処理が繰り返して実行される。
 即ち、図22に示すように、「系統2」について、第2スイッチSW2のみがオフ状態となり、他の第1スイッチSW0、第2スイッチSW1、SW3がオンされた状態における暗電流異常に有無の判定処理等、「系統3」について、第2スイッチSW3のみがオフ状態となり、他の第1スイッチSW0、第2スイッチSW1、SW2がオンされた状態における暗電流異常に有無の判定処理等が順次実行される。
 これにより、系統1から系統3等の何れの系統に暗電流異常が発生しているかを漏れなく検出することができる。
 一方、ステップS3309で、i≧nとなったと判定された場合(「Yes」の場合)にはステップS3311に移行して、全ての第2スイッチSW1~SWnをOFF設定する処理を実行してから図20のメイン処理にリターンする。
 図20のフローチャートに戻って、次いでステップS340で暗電流異常系統が検出されたか否かが判定される。そして、検出されなかったと判定された場合(「No」の場合)には、そのまま処理を終了する。一方、検出されたと判定された場合(「Yes」の場合)には、ステップS350に移行してパワーオンリセット処理のサブルーチンが実行される。
 ここで、図23のフローチャートを参照して、パワーオンリセット処理の処理手順について説明する。なお、パワーオンリセット処理の実行時における各スイッチ(第1スイッチSW0、第2スイッチSW1~SW3)のオン・オフ状態は、図28に示す図表の通りである。
 ステップS3501では、第2スイッチSW1~SWn(nは整数。図17等に示す例ではn=3)についてオン(ON)設定処理が行われる。これにより、一旦、全ての第2スイッチSW1~SWnはON状態に設定される。
 次いで、ステップS3502では、第1スイッチSW0のオフ(OFF)設定処理が行われる。
 次にステップS3503では、系統番号「i」を1に設定(系統i=1)してステップS3504に移行する。
 ステップS3504では、系統i(即ち、ここでは系統1)=異常系統であるか否かが判定される。
 判定結果が「No」の場合にはステップS3508に移行し、「Yes」の場合にはステップS3505に移行する。
 ステップS3505では、SWi(ここではSW1)のオフ(OFF)設定処理を実行する。
 これにより、図28に示すように、系統1については、第1スイッチSW0と第2スイッチSW1がOFF、第2スイッチSW2,SW3がONの状態とされる。
 ステップS3506では、所定時間(パワーオンリセット時間)が経過したかを判定する時間経過確認処理が実行され、パワーオンリセット時間に達するまで待機し、パワーオンリセット時間に達するとパワーオンリセットを実行してステップS3507に移行する。
 ステップS3507では、SWiのON設定処理を行ってからステップS3508に移行する。
 ステップS3508では、i≧nとなったか否かを判定するパワーオンリセットの終了確認処理が行われる。
 そして、未だi≧nではないと判定された場合(「No」の場合)にはステップS3509に移行し、系統番号「i」を「1」インクリメントしてからステップS3504に移行する。これにより、系統番号「i」が所定数(図17に示す構成ではi=3)に達するまで、ステップS3504~S3508までの処理が繰り返して実行される。
 即ち、図28に示すように、「系統2」について、第1スイッチSW0と第2スイッチSW2がOFF、第2スイッチSW1,SW3がONの状態におけるパワーオンリセット、「系統3」について、第1スイッチSW0と第2スイッチSW3がOFF、第2スイッチSW1,SW2がONの状態におけるパワーオンリセットが順次実行される。
 これにより、暗電流異常が発生している系統に属するECUについて漏れなくパワーオンリセットを実行することができる。
 一方、ステップS3508で、i≧nとなったと判定された場合(「Yes」の場合)にはステップS3510に移行して、第1スイッチSW0のオン設定処理を実行してからステップS3511に移行する。
 ステップS3511では、全ての第2スイッチSW1~SWnをOFF設定する処理を実行してから図20のメイン処理にリターンして処理を終了する。
 次に、図24のフローチャートを参照して、電源装置(例えば、第1電源装置P1)による暗電流異常検出処理の処理手順について説明する。
 ステップS20では、複数電源対象を確認したか否かが判定される。即ち、図17等に示すECU1およびECU4のように複数の電源供給系統を有するか否かが判定される。
 そして、判定結果が「Yes」の場合にはステップS21に移行して、前述した電源供給系統単独化処理のサブルーチンを実行してからステップS22に移行する。
 また、ステップS20で「No」と判定された場合もステップS22に移行する。
 ステップS22では、前出の暗電流異常系統検出処理のサブルーチンを実行してからステップS23に移行する。
 ステップS23では、暗電流異常系統が検出されたか否かが判定される。そして、検出されなかったと判定された場合(「No」の場合)には、そのまま処理を終了する。一方、検出されたと判定された場合(「Yes」の場合)には、ステップS24に移行して前出のパワーオンリセット処理のサブルーチンを実行した後、処理を終了する。
 以上述べたように、第4実施形態に係る電源制御システム1Cによれば、通信に接続されていないECUに異常が発生した場合にも検知することができる。
 また、系統ごとの電流値に基いて、何れかのECUに暗電流異常が発生していることを判定することができる。
 また、暗電流異常が発生したECUについてパワーオンリセットによる異常復帰動作を行うことができる。
 また、暗電流異常発生の有無に応じた電流値の差分よって異常発生が可能であるため、電流検出の高精度化は不要であり、コストが嵩むことがない。
 さらに、複数の電源供給系統を介して電源供給されているECUについて、暗電流異常の発生を精度良く検知することができる。
 また、複数の電源供給系統を介して電源供給されているECUについて、パワーオンリセットによる異常状態からの復帰を効果的に行うことができる。
 以上、第4実施形態に係る電源制御システム1Cを説明したが、各部の構成は同様の機能を有する任意の構成のものに置き換えることができる。
 例えば、図17~図19に示すような二次電池300の充放電電流を検出する電流センサSNを省略した構成とすることもできる。
 このような構成の電源制御システムにおける暗電流異常検知は、例えば電源装置P1、P2等において、スリープ状態に遷移後、所定時間を経過した際に、電流検出回路400を用いて行うようにできる。
 この際の処理手順は、例えば前出の図24のフローチャートに則って行うことができる。

Claims (2)

  1.  電源から負荷への電力供給を制御するコントローラのための電源制御システムであって、
     前記電源に接続され、前記コントローラに対する電力供給に伴い電流が流れる電力供給路と、
     前記電力供給路上に設けられ、オフされることにより前記電力供給路から前記コントローラに対する電力供給を遮断可能なバイパススイッチと、
     前記電力供給路上におけるバイパススイッチよりも前記コントローラ側に設けられ、前記バイパススイッチのオン中に前記電力供給路を流れる電流をシャント抵抗を用いて測定可能な電流測定部と、
     前記電源と前記バイパススイッチとの間において前記電力供給路から分岐され、前記コントローラに接続されて、前記バイパススイッチ及び前記シャント抵抗と並列の回路を構成する電流供給路と、
     前記電流供給路上に設けられ、オフされることにより前記電流供給路から前記コントローラに対する電力供給を遮断可能な電流供給スイッチと、
     前記負荷への電力供給を停止させた前記コントローラが省電力状態に移行したシステムオフモードにおいて、前記バイパススイッチをオンさせた状態で前記電流供給スイッチをオン又はオフさせたときの、前記電流測定部による測定電流の変化量から、前記電流供給スイッチを有する前記電流供給路に接続された前記コントローラの前記省電力状態への移行異常を判定する異常判定部と
    を備えることを特徴とする電源制御システム。
  2.  請求項1記載の電源制御システムであって、
     複数の前記コントローラに対応して、前記電流供給路及び前記電流供給スイッチの組を複数有しており、
     前記異常判定部は、前記システムオフモードにおいて、前記バイパススイッチをオンさせた状態で各組の前記電流供給スイッチを順次オンさせて、各コントローラの前記省電力状態への移行異常を順次判定する
    ことを特徴とする電源制御システム。
PCT/JP2015/070252 2014-07-15 2015-07-15 電源制御システム WO2016010070A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580038841.4A CN106660497B (zh) 2014-07-15 2015-07-15 电源控制系统
DE112015003256.8T DE112015003256B4 (de) 2014-07-15 2015-07-15 Stromversorgungssteuersystem
US15/391,357 US10351084B2 (en) 2014-07-15 2016-12-27 Power supply control system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014145177A JP6374248B2 (ja) 2014-07-15 2014-07-15 電源制御システム
JP2014-145177 2014-07-15
JP2014180904 2014-09-05
JP2014-180904 2014-09-05
JP2015002813A JP6379046B2 (ja) 2015-01-09 2015-01-09 電源制御システム
JP2015-002813 2015-01-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/391,357 Continuation US10351084B2 (en) 2014-07-15 2016-12-27 Power supply control system

Publications (1)

Publication Number Publication Date
WO2016010070A1 true WO2016010070A1 (ja) 2016-01-21

Family

ID=55078559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070252 WO2016010070A1 (ja) 2014-07-15 2015-07-15 電源制御システム

Country Status (4)

Country Link
US (1) US10351084B2 (ja)
CN (1) CN106660497B (ja)
DE (1) DE112015003256B4 (ja)
WO (1) WO2016010070A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017199230A (ja) * 2016-04-28 2017-11-02 矢崎総業株式会社 電源制御システム

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6200286B2 (ja) * 2013-11-12 2017-09-20 矢崎総業株式会社 電源制御システム
KR101714518B1 (ko) * 2015-09-11 2017-03-22 현대자동차주식회사 텔레매틱스 단말에서의 암전류 초과 방지 방법 및 그를 위한 장치
JP6958090B2 (ja) 2016-08-23 2021-11-02 株式会社Gsユアサ 過電流検出装置および蓄電装置
JP7094670B2 (ja) * 2017-07-03 2022-07-04 矢崎総業株式会社 設定装置及びコンピュータ
US10122256B1 (en) 2017-07-13 2018-11-06 Infineon Technologies Austria Ag Method and apparatus for zero-current switching control in switched-capacitor converters
US10680512B2 (en) * 2017-07-19 2020-06-09 Infineon Technologies Austria Ag Switched-capacitor converters with capacitor pre-charging
US10224803B1 (en) 2017-12-20 2019-03-05 Infineon Technologies Austria Ag Switched capacitor converter with compensation inductor
CN110733347B (zh) * 2018-07-18 2023-09-15 蔚来(安徽)控股有限公司 车辆低功耗休眠控制方法及其控制系统
JP2022175858A (ja) 2021-05-14 2022-11-25 トヨタ自動車株式会社 車載機器診断装置、車載機器診断装置を備える車両、車載機器診断方法及びプログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007203929A (ja) * 2006-02-02 2007-08-16 Auto Network Gijutsu Kenkyusho:Kk 車両用暗電流測定装置及び車両用電源制御装置
JP2009292330A (ja) * 2008-06-05 2009-12-17 Autonetworks Technologies Ltd 車載システム及び制御方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09261801A (ja) * 1996-03-18 1997-10-03 Yazaki Corp 車両用負荷の電源接続方法及びその装置
JPH1027009A (ja) * 1996-07-10 1998-01-27 Sanyo Electric Co Ltd 制御装置の暴走対策装置
JP4600158B2 (ja) * 2005-06-01 2010-12-15 トヨタ自動車株式会社 車両の電子制御装置
JP2007237868A (ja) * 2006-03-07 2007-09-20 Fujitsu Ten Ltd 車両用バッテリの監視装置及び監視方法
JP2009081948A (ja) 2007-09-26 2009-04-16 Denso Corp 電源制御システム
JP2009292333A (ja) * 2008-06-05 2009-12-17 Toyota Motor Corp 車両の制御装置および制御方法
EP2629109B1 (en) 2010-10-14 2022-06-29 Toyota Jidosha Kabushiki Kaisha Electrical storage device
JP5710516B2 (ja) * 2012-02-08 2015-04-30 オムロンオートモーティブエレクトロニクス株式会社 電源装置
JP6200286B2 (ja) * 2013-11-12 2017-09-20 矢崎総業株式会社 電源制御システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007203929A (ja) * 2006-02-02 2007-08-16 Auto Network Gijutsu Kenkyusho:Kk 車両用暗電流測定装置及び車両用電源制御装置
JP2009292330A (ja) * 2008-06-05 2009-12-17 Autonetworks Technologies Ltd 車載システム及び制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017199230A (ja) * 2016-04-28 2017-11-02 矢崎総業株式会社 電源制御システム

Also Published As

Publication number Publication date
CN106660497A (zh) 2017-05-10
DE112015003256T5 (de) 2017-04-06
CN106660497B (zh) 2019-03-29
DE112015003256B4 (de) 2023-06-29
US10351084B2 (en) 2019-07-16
US20170106820A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
WO2016010070A1 (ja) 電源制御システム
EP2720052B1 (en) System and method for automated failure detection of hold-up power storage devices
JP5289616B2 (ja) 電子モジュール形態の無停電電源装置のための回路および方法
AU2014375491B2 (en) Battery pack, charging combination, electric tool and disconnection detection method
EP3393863B1 (en) Discrete energy reservoir with diagnostics
JP6200286B2 (ja) 電源制御システム
JP2008035674A (ja) 充電用電源装置
CN107872196A (zh) 具有限压器件的光伏系统
JP2008289270A (ja) 蓄電装置
JP2007336631A (ja) 電源システム
KR102571525B1 (ko) 에너지 저장 장치의 상태 진단 장치 및 방법
JP2020188528A (ja) バッテリ監視装置及び電動車両の制御装置
JP2014160377A (ja) プログラマブルコントローラ
JP6374248B2 (ja) 電源制御システム
JP2011036046A (ja) 電源バックアップ装置
JP2011093389A (ja) 制御システム、電子装置、制御装置及び装置起動方法
KR102269113B1 (ko) Ess 과전류 보호 방법
CN103124066A (zh) 用于高电流脉冲电源的短路控制
JP2010122857A (ja) バックアップ装置
JP6557157B2 (ja) 電源制御システム
US20130241564A1 (en) Method for Determining a Charge State of a Battery
JP5262221B2 (ja) 蓄電部の寿命の診断機能を備えた装置
JP6534320B2 (ja) 電源制御システム
JP6379046B2 (ja) 電源制御システム
KR20220049629A (ko) 조향 제어 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15821280

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015003256

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15821280

Country of ref document: EP

Kind code of ref document: A1