WO2016009781A1 - プラズマ処理装置 - Google Patents

プラズマ処理装置 Download PDF

Info

Publication number
WO2016009781A1
WO2016009781A1 PCT/JP2015/067688 JP2015067688W WO2016009781A1 WO 2016009781 A1 WO2016009781 A1 WO 2016009781A1 JP 2015067688 W JP2015067688 W JP 2015067688W WO 2016009781 A1 WO2016009781 A1 WO 2016009781A1
Authority
WO
WIPO (PCT)
Prior art keywords
support shaft
processing
processing container
microwave
substrate
Prior art date
Application number
PCT/JP2015/067688
Other languages
English (en)
French (fr)
Inventor
野沢 俊久
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to US15/326,078 priority Critical patent/US20170198395A1/en
Priority to KR1020177000974A priority patent/KR102438349B1/ko
Publication of WO2016009781A1 publication Critical patent/WO2016009781A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4409Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber characterised by sealing means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4586Elements in the interior of the support, e.g. electrodes, heating or cooling devices
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • C23C16/463Cooling of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
    • H01L21/02315Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68742Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a lifting arrangement, e.g. lift pins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68792Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the construction of the shaft
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • the present invention relates to a plasma processing apparatus for processing a target object by converting a processing gas supplied into a processing container into a plasma by using a microwave.
  • a plasma processing apparatus that performs predetermined plasma processing on an object to be processed such as a semiconductor wafer (hereinafter referred to as “wafer”)
  • a plasma processing apparatus that generates plasma by irradiating microwaves into a processing container
  • high-density plasma having a low electron temperature can be generated in a processing container, and for example, a film forming process or an etching process is performed by the generated plasma.
  • the plasma processing apparatus includes, for example, a mounting table provided in the processing container, a heating mechanism that heats the mounting table, an exhaust mechanism that exhausts the processing container, a microwave supply unit that irradiates microwaves into the processing container, A gas supply unit for supplying the processing gas is provided.
  • a baffle plate having a large number of exhaust holes is arranged around the mounting table in order to uniformize the flow of the processing gas in the processing container, or uniform plasma processing is performed.
  • a focus ring for converging plasma on the wafer is arranged near the outer periphery of the wafer.
  • the intensity distribution of the irradiated microwaves changes due to slight protrusions or depressions on the microwave propagation path, or assembly errors in the microwave supply section. End up. For this reason, it is extremely difficult to ensure the uniformity of the intensity distribution particularly in the circumferential direction of the wafer.
  • the adjustment using the baffle plate or the focus ring described above has a limit in suppressing such variation in the intensity distribution of the microwave.
  • the present invention has been made in view of such points, and in a microwave plasma processing apparatus, even when there is a variation in the intensity distribution of the microwave, particularly in the circumferential direction of the wafer, in-plane uniform wafer processing is performed. It is an object.
  • the present invention provides a plasma processing apparatus for processing a substrate with microwave plasma, a processing container for hermetically storing the substrate, and a microwave supply for irradiating the processing container with microwaves
  • a processing gas supply unit that supplies a processing gas into the processing container, a substrate holding mechanism that holds the substrate in the processing container, and a bottom surface of the substrate holding mechanism that vertically penetrates the bottom surface of the processing container.
  • a support shaft that supports the rotating shaft, a rotation drive mechanism that rotates the support shaft, and a magnetic fluid seal that hermetically seals between the support shaft and the processing container; and the magnetic fluid seal And a choke mechanism that prevents the magnetic fluid seal from being heated by leakage of microwaves from between the support shaft and the processing container.
  • the inventor has tried to equalize the microwaves irradiated into the processing container, and to uniformize the flow of processing gas in the processing container using a baffle plate or the like.
  • the idea that it is also effective to actively rotate the substrate in the processing container and average the dispersion of the intensity distribution of the microwaves is obtained.
  • the present invention is based on this idea, and the substrate held by the substrate holding mechanism can be rotated during the plasma processing by rotating the support shaft that supports the substrate holding mechanism by the rotation driving mechanism. Therefore, even when there is variation in the intensity distribution of the microwaves irradiated into the processing container, in-plane uniform substrate processing can be performed.
  • a rotational drive mechanism such as a motor needs to be arranged outside the processing container. For this reason, it is necessary to provide the support shaft that supports the substrate holding mechanism through the processing container. In this case, there are problems such as maintaining the hermeticity of the processing container and leakage of microwaves between the support shaft and the processing container.
  • a magnetic fluid seal that hermetically seals between the support shaft and the processing container, and a choke mechanism that prevents leakage of microwaves from between the support shaft and the processing container. Therefore, the inside of the processing container can be maintained in a vacuum, and microwave leakage to the outside of the processing container can be minimized.
  • the choke mechanism is provided above the magnetic fluid seal, it is possible to prevent the magnetic fluid seal from being heated by leakage of microwaves, for example, exceeding the heat resistance temperature of the magnetic fluid seal. Therefore, the inside of the processing container can be reliably kept airtight.
  • the microwave plasma processing apparatus even when there is a variation in the intensity distribution of the microwave particularly in the circumferential direction of the wafer, it is possible to perform in-plane uniform wafer processing.
  • FIG. 1 is a longitudinal sectional view showing an outline of a configuration of a plasma processing apparatus 1 according to the present embodiment.
  • the plasma processing apparatus 1 performs a plasma CVD (Chemical Vapor Deposition) process on the surface of the wafer W to form, for example, a SiN film (silicon nitride film) on the surface of the wafer W.
  • a plasma CVD Chemical Vapor Deposition
  • SiN film silicon nitride film
  • the plasma processing apparatus 1 has a processing container 2 that keeps the inside airtight, and a microwave supply unit 3 that irradiates the processing container 2 with microwaves.
  • the processing container 2 has a substantially cylindrical main body 2a whose upper surface is open and a substantially disc-shaped lid 2b that hermetically closes the opening of the main body 2a.
  • the main body 2a and the lid 2b are made of a metal such as aluminum, for example.
  • the main body 2a is grounded by a ground wire (not shown).
  • a susceptor 10 as a substrate holding mechanism for holding the wafer W is provided.
  • the susceptor 10 has a disk shape, for example, and is made of a metal such as aluminum.
  • a high frequency power supply 12 for bias is connected to the susceptor 10 via a slip ring 100 which will be described later.
  • the high frequency power source 12 outputs a certain frequency suitable for controlling the energy of ions drawn into the wafer W, for example, a high frequency of 13.56 MHz.
  • the susceptor 10 is provided with an electrostatic chuck for electrostatically attracting the wafer W, and the wafer W can be electrostatically attracted onto the susceptor 10.
  • a heater 13 is provided inside the susceptor 10 to heat the wafer W to a predetermined temperature. Supply of electric power to the heater 13 is also performed via a slip ring 100 described later.
  • lift pins 14 are provided for supporting the wafer W from below and lifting it.
  • the elevating pin 14 is formed longer than the thickness of the susceptor 10 so as to be inserted through a through hole 10a penetrating the susceptor 10 in the vertical direction and movable with respect to the susceptor 10 and protruding from the upper surface of the susceptor 10. Yes.
  • a lift arm 15 that presses the lift pin 14 upward is provided below the lift pin 14.
  • the lift arm 15 is configured to be movable up and down by a lifting mechanism 16.
  • the lift pins 14 are not connected to the lift arm 15, and when the lift arms 15 are lowered, the lift pins 14 and the lift arms 15 are separated from each other.
  • the upper end portion 14a of the elevating pin 14 has a larger diameter than the through hole 10a. Therefore, the lifting pins 14 are locked to the susceptor 10 without falling off the through holes 10a even when the lift arm 15 is retracted downward.
  • a recess 10b having a diameter and thickness larger than that of the upper end portion 14a of the elevating pin 14 is formed at the upper end of the through hole 10a.
  • An annular focus ring 17 is provided on the upper surface of the susceptor 10 so as to surround the wafer W.
  • the focus ring 17 is made of an insulating material such as ceramic or quartz.
  • the plasma generated in the processing container 2 converges on the wafer W by the action of the focus ring 17, thereby improving the uniformity of plasma processing in the wafer W surface.
  • the susceptor 10 is supported at the center of the lower surface thereof by a support shaft 20 having a cylindrical shape with a hollow center, for example.
  • the support shaft 20 extends vertically downward and is provided so as to penetrate the bottom surface of the main body 2a of the processing container 2 in the vertical direction.
  • the support shaft 20 has an upper shaft 20a that comes into contact with the susceptor 10 and a lower shaft 20b that is connected to the upper shaft 20a via a flange 21 provided at the lower end of the upper shaft 20a.
  • the upper shaft 20a and the lower shaft 20b are formed of an insulating member, for example.
  • the exhaust chamber 30 is formed at the bottom of the main body 2a of the processing container 2 so as to protrude to the side of the main body 2a, for example.
  • An exhaust mechanism 31 that exhausts the inside of the processing container 2 is connected to the bottom surface of the exhaust chamber 30 via an exhaust pipe 32.
  • the exhaust pipe 32 is provided with an adjustment valve 33 that adjusts the amount of exhaust by the exhaust mechanism 31.
  • An annular baffle plate 34 is provided above the exhaust chamber 30 and below the susceptor 10 to uniformly exhaust the inside of the processing container 2 with a predetermined gap from the outer surface of the support shaft 20. ing. In the baffle plate 34, an opening (not shown) penetrating the baffle plate 34 in the thickness direction is formed over the entire circumference.
  • a rotary seal that seals the space between the support shaft 20 and the main body 2a at the lower end of the bottom of the main body 2a of the processing container 2, that is, outside the processing container 2, and rotates the support shaft 20 about the vertical axis.
  • a mechanism 35 is provided. Details of the rotary seal mechanism 35 will be described later.
  • the microwave supply part 3 which supplies the microwave for plasma generation is provided in the ceiling surface opening part of the processing container 2.
  • the microwave supply unit 3 includes a radial line slot antenna 40 (radial line slot antenna).
  • the radial line slot antenna 40 includes a microwave transmission plate 41, a slot plate 42, and a slow wave plate 43.
  • the microwave transmission plate 41, the slot plate 42, and the slow wave plate 43 are stacked in this order from the bottom, and are provided in the opening of the main body 2a of the processing container 2.
  • the upper surface of the slow wave plate 43 is covered with the lid 2b.
  • the radial line slot antenna 40 is disposed at a position where the center thereof substantially coincides with the rotation center of the support shaft 20.
  • the microwave transmitting plate 41 and the main body 2a are kept airtight by a sealing material (not shown) such as an O-ring.
  • the microwave transmitting plate 41 is made of a dielectric material such as quartz, Al 2 O 3 , AlN, or the like, and the microwave transmitting plate 41 transmits microwaves.
  • a plurality of slots are formed in the slot plate 42 provided on the upper surface of the microwave transmission plate 41, and the slot plate 42 functions as an antenna.
  • the slot plate 42 is made of a conductive material such as copper, aluminum, or nickel.
  • the slow wave plate 43 provided on the upper surface of the slot plate 42 is made of a low loss dielectric material, for example, quartz, Al 2 O 3 , AlN, or the like, and shortens the wavelength of the microwave.
  • the lid body 2b that covers the upper surface of the slow wave plate 43 is provided with a plurality of annular passages 45 through which, for example, a cooling medium flows.
  • the lid 2b, the microwave transmission plate 41, the slot plate 42, and the slow wave plate 43 are adjusted to a predetermined temperature by the cooling medium flowing through the flow path 45.
  • a coaxial waveguide 50 is connected to the center of the lid 2b.
  • a microwave generation source 53 is connected to the upper end portion of the coaxial waveguide 50 via a rectangular waveguide 51 and a mode converter 52.
  • the microwave generation source 53 is installed outside the processing container 2 and can generate a microwave of 2.45 GHz, for example.
  • the coaxial waveguide 50 has an inner conductor 54 and an outer tube 55.
  • the inner conductor 54 is connected to the slot plate 42.
  • the slot 54 on the side of the inner conductor 54 is formed in a conical shape so that microwaves can be efficiently propagated to the slot plate 42.
  • the microwave generated from the microwave generation source 53 sequentially propagates in the rectangular waveguide 51, the mode converter 52, and the coaxial waveguide 50, and is compressed by the slow wave plate 43 to be shortened in wavelength. .
  • circularly polarized microwaves are transmitted from the slot plate 42 through the microwave transmission plate 41 and irradiated into the processing container 2.
  • the processing gas is converted into plasma in the processing chamber 2 by the microwave, and the plasma processing of the wafer W is performed by the plasma.
  • a first processing gas supply pipe 60 is provided at the center of the ceiling surface of the processing vessel 2, that is, at the center of the radial line slot antenna 40.
  • the first processing gas supply pipe 60 penetrates the radial line slot antenna 40 in the vertical direction, and one end of the first processing gas supply pipe 60 is opened on the lower surface of the microwave transmission plate 41.
  • the first processing gas supply pipe 60 passes through the inner conductor 54 of the coaxial waveguide 50 and further passes through the mode converter 52.
  • the other end of the first process gas supply pipe 60 is connected to a first process gas supply source 61.
  • the first processing gas supply source 61 is configured to be capable of individually supplying, for example, TSA (trisilylamine), N 2 gas, H 2 gas, and Ar gas as processing gases.
  • TSA, N 2 gas, and H 2 gas are raw material gases for forming the SiN film
  • Ar gas is a plasma excitation gas.
  • this processing gas may be referred to as a “first processing gas”.
  • the first processing gas supply pipe 60 is provided with a supply device group 62 including a valve for controlling the flow of the first processing gas, a flow rate adjusting unit, and the like.
  • the first processing gas supplied from the first processing gas supply source 61 is supplied into the processing container 2 via the first processing gas supply pipe 60 and is directed toward the wafer W placed on the susceptor 10. Flows vertically downward.
  • a second processing gas supply pipe 70 is provided on the inner peripheral surface of the upper portion of the processing container 2.
  • a plurality of second processing gas supply pipes 70 are provided at equal intervals along the inner peripheral surface of the processing container 2.
  • a second processing gas supply source 71 is connected to the second processing gas supply pipe 70. Inside the second processing gas supply source 71, for example, TSA (trisilylamine), N 2 gas, H 2 gas, and Ar gas can be individually supplied as processing gases. In the following, this processing gas may be referred to as a “second processing gas”.
  • the second processing gas supply source 71 is provided with a supply device group 72 including a valve for controlling the flow of the second processing gas, a flow rate adjusting unit, and the like.
  • the second processing gas supplied from the second processing gas supply source 71 is supplied into the processing container 2 via the second processing gas supply pipe 70, and the outer peripheral portion of the wafer W placed on the susceptor 10. It flows toward.
  • the first processing gas from the first processing gas supply pipe 60 is supplied toward the center of the wafer W
  • the second processing gas from the second processing gas supply pipe 70 is supplied to the wafer W. Supplied toward the outer periphery.
  • the processing gas supplied from the first processing gas supply pipe 60 and the second processing gas supply pipe 70 into the processing container 2 may be the same kind of gas or a different kind of gas. Each can be supplied at an independent flow rate or at an arbitrary flow rate ratio.
  • FIG. 2 is a longitudinal sectional view showing an outline of the configuration of the rotary seal mechanism 35.
  • the rotary seal mechanism 35 includes a casing 81 that holds the support shaft 20 via a bearing 80, a rotary joint 82 connected to the lower end of the casing, and a rotation drive mechanism 83 that rotates the support shaft 20.
  • the casing 81 has an opening 81a whose inner diameter is larger than the outer diameter of the support shaft 20, and the lower shaft 20b of the support shaft 20 is inserted into the opening 81a.
  • the upper end portion of the casing 81 is fixed to the bottom portion of the main body portion 2a of the processing container 2 with, for example, a bolt (not shown), and an O-ring (for example) is provided between the upper end portion of the casing 81 and the lower end surface of the main body portion 2a. (Not shown) or the like.
  • a choke 84 for preventing microwave leakage from a gap between the lower shaft 20b and the casing 81 is provided in an annular shape on the inner peripheral surface of the upper portion of the casing 81.
  • the chalk 84 is formed in a slit shape having a rectangular cross section, for example.
  • the length L of the choke 84 is set to a length of about 1 ⁇ 4 of the wavelength of the microwave for the purpose of preventing leakage of the microwave.
  • the length L of the choke 84 is not necessarily set to 1 ⁇ 4 of the wavelength of the microwave.
  • a magnetic fluid seal 85 is provided as a seal member that hermetically seals between the lower shaft 20b of the support shaft 20 and the casing 81.
  • the magnetic fluid seal 85 includes, for example, an annular permanent magnet 85a built in the casing 81, and a magnetic fluid 85b sealed between the permanent magnet 85a and the lower shaft 20b.
  • the magnetic fluid seal 85 maintains an airtight space between the support shaft 20 and the processing container 2.
  • the bearing 80 is provided below the magnetic fluid seal 85 in the support shaft 20.
  • the bearing 80 is supported by the casing 81. Thereby, the support shaft 20 is supported in a rotatable state with respect to the casing 81.
  • FIG. 2 only the radial bearing is illustrated, but a thrust bearing that supports a load in the vertical direction may be provided as necessary.
  • a rotary joint 82 having an annular shape is connected to the lower end of the casing 81.
  • the rotary joint 82 is connected to the lower shaft 20 b via a bearing 86, and the lower shaft 20 b is rotatable with respect to the rotary joint 82.
  • a cooling water supply pipe 90 is connected to the side surface of the rotary joint 82, and a cooling water discharge pipe 91 is connected to the cooling water supply pipe 90, for example, below.
  • annular grooves 92 and 93 are formed, respectively.
  • a cooling water supply path 94 that communicates with the groove 92 and extends vertically upward is formed inside the lower shaft 20b.
  • the cooling water supply path 94 extends to the vicinity of the flange 21, and is folded vertically downward from the vicinity of the flange 21 to be connected to the groove 93.
  • a cooling water supply source (not shown) is connected to the cooling water supply pipe 90, and the cooling water supplied from the cooling water supply source cools the flange 21 through the cooling water supply pipe 90 and the cooling water supply path 94. Then, it is discharged from the cooling water discharge pipe 91.
  • O-rings 95 are provided vertically so as to sandwich the grooves 92 and 93. Thereby, the cooling water is supplied to the cooling water supply path 94 without leaking from between the rotary joint 82 and the lower shaft 20b.
  • a cylindrical slip ring 100 is connected to, for example, the lower end surface of the lower shaft 20b.
  • a disc-shaped rotating electrode 101 is provided at the center of the lower end surface of the slip ring 100, and an annular rotating electrode 102 is provided outside the rotating electrode 101, for example.
  • Conductive wires 110 and 111 for supplying high-frequency power from the high-frequency power source 12 to the susceptor 10 and supplying power to the heater inside the susceptor 10 are electrically connected to the rotating electrodes 101 and 102, respectively.
  • the conducting wires 110 and 111 are provided to extend upward along the hollow portion inside the support shaft 20 and are connected to the susceptor 10. When power is supplied to the conducting wires 110 and 111, for example, as shown in FIG.
  • a power source is connected to the rotating electrodes 101 and 102 via the brush 103.
  • the brush 103 is fixed, for example, by a fixing member (not shown) so that the relative positional relationship with the main body 2a of the processing container 2 does not change.
  • FIG. 2 a state in which the matching unit 11 and the high-frequency power source 12 are connected to the rotating electrodes 101 and 102 via the brush 103 is illustrated.
  • the arrangement and the number of the rotating electrodes are the same as those in the present embodiment.
  • the content is not limited and can be set arbitrarily.
  • a power source for supplying power to the heater 13 for example, a power source for applying a voltage to the electrostatic chuck, or a thermocouple built in the susceptor 10 used for temperature control of the heater 13. Etc.
  • a shielding member 112 formed in a cylindrical shape surrounding the slip ring 100 is fixed below the rotary joint 82 in the lower shaft 20b.
  • the shielding member 112 is formed of an insulating member, for example, so that the contact portion between the slip ring 100 and the brush 103 is not exposed.
  • a belt 120 is connected to the outer peripheral portion of the shielding member 112.
  • a motor 121 is connected to the belt 120 via a shaft 122. Therefore, by rotating the motor 121, the shielding member 112 is rotated via the shaft 122 and the belt 120, and the support shaft 20 fixed to the shielding member 112 is rotated.
  • the shielding member 112, the belt 120, and the motor 121 form a rotational drive mechanism 83 in the present invention.
  • the slip ring 100 also rotates, but the electrical connection with the rotating electrodes 101 and 102 is maintained by the brush 103.
  • the cooling water supply path 94 formed in the lower shaft 20b is also rotated by the rotation of the support shaft 20, but the cooling water supply pipe 90 and the cooling water discharge pipe are passed through the grooves 92 and 93 formed in the lower shaft 20b. Since the connection with 91 is maintained, the supply of cooling water to the cooling water supply path 94 is maintained even when the support shaft 20 is rotated.
  • the rotary joint 82 and the rotation drive mechanism 83 are provided in this order below the casing 81.
  • these arrangements and shapes are as follows. It can be set arbitrarily.
  • the configuration of the rotation drive mechanism 83 is not limited to the contents of the present embodiment, and the arrangement of the motor 121 and the mechanism for transmitting the driving force of the motor 121 to the support shaft 20 can be arbitrarily set. .
  • the plasma processing apparatus 1 according to the present embodiment is configured as described above. Next, plasma processing of the wafer W performed by the plasma processing apparatus 1 according to the present embodiment will be described. In the present embodiment, as described above, the plasma film forming process is performed on the wafer W to form the SiN film on the surface of the wafer W.
  • a gate valve (not shown) provided in the processing container 2 is opened, and the wafer W is loaded into the processing container 2.
  • the wafer W is transferred to the lift pins 14, and then the lift mechanism 16 is lowered to place the wafer W on the susceptor 10.
  • a DC voltage is applied to the electrostatic chuck, and the wafer W is electrostatically attracted onto the susceptor 10 by the Coulomb force.
  • the susceptor 10 is rotated via the support shaft 20 by rotating the motor 121.
  • the lifting pins 14 are provided separately from the lift arm 15, the lifting pins 14 rotate together with the susceptor 10.
  • the first processing gas is supplied from the first processing gas supply pipe 60 into the processing container 2, and the second processing gas is supplied from the second processing gas supply pipe 70 into the processing container 2.
  • the flow rate of Ar gas supplied from the first process gas supply pipe 60 is, for example, 100 sccm (mL / min)
  • the flow rate of Ar gas supplied from the second process gas supply pipe 70 is, for example, 750 sccm ( mL / min).
  • the first processing gas and the second processing gas are supplied into the processing container 2 and the microwave generation source 53 is operated.
  • the microwave generation source 53 for example, a microwave having a predetermined power at a frequency of 2.45 GHz is used. Generate a wave.
  • the microwave is irradiated into the processing container 2 through the rectangular waveguide 51, the mode converter 52, the coaxial waveguide 50, and the radial line slot antenna 40.
  • the processing gas is turned into plasma in the processing chamber 2 by the microwave, and the dissociation of the processing gas proceeds in the plasma, and a film forming process is performed on the wafer W by radicals (active species) generated at that time.
  • the wafer W is rotated in the processing container 2 by rotating the susceptor 10, for example, even if the electric field intensity distribution of the microwave irradiated from the radial line slot antenna 40 is not uniform, the wafer Plasma processing in the W plane can be averaged to perform uniform processing in the plane. Thus, a SiN film is formed on the surface of the wafer W.
  • a high frequency of a predetermined power is applied to the susceptor 10 by the high frequency power source 12 at a frequency of 13.56 MHz, for example.
  • an RF bias in an appropriate range, ions in plasma are attracted to the wafer W, so that the denseness of the SiN film is improved and traps in the film are increased.
  • the electron temperature of the plasma can be kept low by using the microwave plasma, the film is not damaged, and the molecules of the processing gas are easily dissociated by the high-density plasma, thereby promoting the reaction.
  • the support shaft 20 that supports the susceptor 10 is rotated by the rotation drive mechanism 83 having the motor 121 and the belt 120, thereby rotating the wafer W held by the susceptor 10 during plasma processing. be able to. Therefore, even when the intensity distribution of the microwaves radiated into the processing container 2 has a variation, it is possible to perform the in-plane uniform wafer processing.
  • the rotation drive mechanism 83 needs to be disposed outside the processing container 2 in order to avoid exposure to plasma, and therefore, the support shaft 20 needs to be provided through the processing container 2.
  • the support shaft 20 in order to maintain the airtightness of the processing container 2, it is conceivable to provide an O-ring or the like at the sliding portion between the support shaft 20 and the processing container 2, but the sliding between the O-ring and the support shaft 20 may be considered.
  • the magnetic fluid 85b as the sealing member as in the present invention, the airtightness between the support shaft 20 and the processing container 2 can be maintained, and further the generation of particles can be suppressed.
  • the magnetic fluid 85b easily absorbs microwaves, and when exposed to microwaves, the temperature may rise and exceed the heat-resistant temperature (approximately 150 ° C.). However, as in this embodiment, the magnetic fluid 85b is supported. A choke 84 that prevents leakage of microwaves from between the shaft 20 and the processing container 2 is provided above the magnetic fluid seal 85, thereby suppressing leakage of microwaves from the processing container 2 to the outside and magnetic fluid. Microwaves reaching 85b can be significantly reduced. As a result, the magnetic fluid 85b can be prevented from being heated beyond the heat resistance temperature, and the inside of the processing container 2 can be kept airtight.
  • an O-ring or the like is used as a sealing member.
  • an O-ring is used instead of the magnetic fluid seal 85 according to allowable particles.
  • a ring may be used as a seal member.
  • a seal mechanism 130 as another seal member is provided between the choke 84 and the magnetic fluid seal 85 as shown in FIG. Also good.
  • the seal mechanism 130 includes, for example, an O-ring 131 provided below the choke 84 and a labyrinth seal 132 provided between the choke 84 and the O-ring 131 to reduce the differential pressure acting on the O-ring 131. is doing.
  • the O-ring 131 is not required to have a sealing performance against gas, has high resistance to sliding and friction, and is in the processing container 2. It is preferable to use, for example, PTFE (polytetrafluoroethylene), which has resistance to radicals generated in the above.
  • the center of rotation of the support shaft 20 and the center of the radial line slot antenna 40 substantially coincide.
  • the center may be eccentric with respect to the center of the radial line slot antenna 40 in plan view.
  • the intensity distribution of microwaves varies in the circumferential direction, while the intensity tends to gradually decrease from, for example, the microwave irradiation center toward the outer periphery. That is, the intensity distribution of the microwave changes along the diameter direction of the wafer W. Therefore, for example, as shown in FIG. 3, the rotation center of the support shaft 20 is decentered with respect to the center of the radial line slot antenna 40, thereby uniformizing the intensity variation of the microwave along the diameter direction of the wafer W. Further, it is possible to perform a plasma treatment that is uniform in the surface. In FIG.
  • the center of the susceptor 10 and the center of the support shaft 20 coincide, but for example, as shown in FIG.
  • the center of the radial line slot antenna 40 and the center of the radial line slot antenna 40 may be at the same position, and the support shaft 20 may be connected to a position eccentric with respect to the center of the susceptor 10.
  • the center of the wafer W is arranged at a position eccentric to the center of the susceptor 10 as shown in FIG. , The center of rotation of the wafer W and the center of microwave irradiation may be decentered.
  • an elevating mechanism 140 for elevating the susceptor 10 may be provided as shown in FIG.
  • a bellows 141 that is airtightly connected to the main body 2a and the casing 81 is provided between the lower end surface of the main body 2a and the upper end surface of the casing 81.
  • the structure which raises / lowers the susceptor 10 can be proposed. By raising and lowering the susceptor 10, it is possible to average the intensity distribution of the microwaves along the diameter direction of the wafer W, which cannot be averaged only by the rotational operation of the susceptor 10, and perform more uniform plasma processing of the wafer W. .
  • the lift arm 15 and the lift pins 14 are provided separately. However, even if the lift arm 15 is lowered due to charging of the wafer W by the electrostatic chuck, the lift pins 14 are moved to the wafer W. You may not be away from.
  • another lift arm 150 is provided above the lift arm 15 at a predetermined interval, and the lift pins 14 are separated from the wafer W by the other lift arm 150. Also good.
  • the lower end portion 14b of the elevating pin 14 is formed as a locking portion thicker than the outer diameter of the elevating pin 14, and as shown in FIG.
  • the lift arm 15 pushes the lower end portion 14b of the lift pin 14 upward to raise the lift pin 14 and when the lift pin 14 is lowered, another lift
  • the lower end portion 14 b is locked to the lower surface of the arm 150, and the other lift arm 150 is lowered in this state, whereby the lift pin 14 is pushed down by the other lift arm 150.
  • the elevating pins 14 can be pulled away from the wafer W.
  • the lift arm 15 and the other lift arm 150 may operate in synchronization or may operate individually.
  • the present invention is applied to plasma processing for performing film formation.
  • the present invention is also applied to substrate processing other than film formation, for example, plasma processing for performing etching or sputtering. it can.
  • the target object to be processed by the plasma processing of the present invention may be any of a glass substrate, an organic EL substrate, a substrate for FPD (flat panel display), and the like.
  • the present invention is useful for plasma processing of, for example, semiconductor wafers, and is particularly useful for plasma processing using microwaves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

 プラズマ処理装置は、基板を気密に収容する処理容器と、処理容器内にマイクロ波を照射するマイクロ波供給部と、処理容器内に処理ガスを供給する処理ガス供給部と、処理容器内において基板を保持する基板保持機構と、処理容器の底面を上下方向に貫通し、基板保持機構の下面を支持する支持軸と、処理容器の外部に設けられ、支持軸を回転させる回転駆動機構と、支持軸と処理容器との間を気密に塞ぐ磁性流体シールと、磁性流体シールよりも上方に設けられ、支持軸と処理容器との間からのマイクロ波の漏洩により磁性流体シールが加熱されることを防止するチョーク機構と、を有する。

Description

プラズマ処理装置
(関連出願の相互参照)
 本願は、2014年7月15日に日本国に出願された特願2014-145186号に基づき、優先権を主張し、その内容をここに援用する。
 本発明は、処理容器内に供給した処理ガスをマイクロ波によりプラズマ化させて被処理体を処理するプラズマ処理装置に関する。
 従来から、例えば半導体ウェハ(以下、「ウェハ」という)などの被処理体に対して所定のプラズマ処理を施すプラズマ処理装置として、処理容器内にマイクロ波を照射してプラズマを生成させるプラズマ処理装置が知られている。マイクロ波を用いたプラズマ処理装置では、処理容器内において電子温度の低い高密度のプラズマを生成させることが可能であり、生成されたプラズマによって、例えば成膜処理やエッチング処理などが行われる。
 上記のプラズマ処理装置は、例えば処理容器内に設けられた載置台、載置台を加熱する加熱機構、処理容器内を排気する排気機構、処理容器内にマイクロ波を照射するマイクロ波供給部、所定の処理ガスを供給するガス供給部などを備えている。
 このようなプラズマ処理装置では、処理容器内における処理ガスの分布やプラズマの分布が、ウェハ面内における処理の均一性に影響する。そのため、例えば特許文献1に示されるように、処理容器内における処理ガスの流れを均一化するために、多数の排気孔を有するバッフルプレートを載置台の周囲に配置したり、均一なプラズマ処理を行うために、ウェハ上にプラズマを収束させるフォーカスリングをウェハの外周部近傍に配置したりしている。
日本国特開2010-118549号公報
 しかしながら、マイクロ波は指向性が強いため、マイクロ波の伝播経路上の僅かな突起や窪み、或いはマイクロ波供給部の組み立て誤差などに起因して、照射されるマイクロ波の強度分布が変化してしまう。そのため、特にウェハの円周方向における強度分布の均一性を確保することが極めて困難である。
 また、上述のバッフルプレートやフォーカスリングによる調整では、このようなマイクロ波の強度分布のばらつきを抑制するにも限界がある。
 本発明は、かかる点に鑑みてなされたものであり、マイクロ波プラズマ処理装置において、特にウェハの円周方向でマイクロ波の強度分布にばらつきがある場合でも、面内均一なウェハ処理を行うことを目的としている。
 前記の目的を達成するため、本発明は、基板をマイクロ波プラズマにより処理するプラズマ処理装置であって、基板を気密に収容する処理容器と、前記処理容器内にマイクロ波を照射するマイクロ波供給部と、前記処理容器内に処理ガスを供給する処理ガス供給部と、前記処理容器内において基板を保持する基板保持機構と、前記処理容器の底面を上下方向に貫通し、基板保持機構の下面を支持する支持軸と、前記処理容器の外部に設けられ、前記支持軸を回転させる回転駆動機構と、前記支持軸と前記処理容器との間を気密に塞ぐ磁性流体シールと、前記磁性流体シールよりも上方に設けられ、前記支持軸と前記処理容器との間からのマイクロ波の漏洩により前記磁性流体シールが加熱されることを防止するチョーク機構と、を有する。
 発明者は、基板面内で均一な処理を行うためには、処理容器内に照射するマイクロ波の均一化を図ったり、バッフルプレートなどにより処理容器内の処理ガスの流れを均一化したりする他に、例えば基板を処理容器内で積極的に回転させ、マイクロ波の強度分布のばらつきを平均化することも有効であるとの着想を得た。本発明はこの着想に基づくものであり、基板保持機構を支持する支持軸を回転駆動機構により回転させることで、プラズマ処理中に基板保持機構に保持された基板を回転させることができる。したがって、処理容器内に照射されるマイクロ波の強度分布にばらつきがある場合でも、面内均一な基板処理を行うことができる。
 また、例えばモータなどの回転駆動機構は、処理容器外に配置する必要がある。そのため、基板保持機構を支持する支持軸は処理容器を貫通して設ける必要があり、その場合、処理容器の気密性の維持や支持軸と処理容器との間からのマイクロ波の漏洩といった問題が生じるが、本発明によれば、支持軸と処理容器との間を気密に塞ぐ磁性流体シールと、支持軸と処理容器との間からのマイクロ波の漏洩を防止するチョーク機構を有しているので、処理容器内を真空に維持し、且つ処理容器外部へのマイクロ波の漏洩も最小限に抑えることができる。また、磁性流体シールの上方にチョーク機構を設けているので、マイクロ波の漏洩により磁性流体シールが加熱され、例えば磁性流体シールの耐熱温度を超えてしまうことを防止できる。そのため、処理容器内を確実に気密に維持することができる。
 本発明によれば、マイクロ波プラズマ処理装置において、特にウェハの円周方向でマイクロ波の強度分布にばらつきがある場合でも、面内均一なウェハ処理を行うことができる。
本実施の形態にかかるプラズマ処理装置の構成の概略を示す縦断面図である。 回転シール機構近傍の構成の概略を示す縦断面図である。 他の実施の形態にかかるプラズマ処理装置の構成の概略を示す縦断面図である。 他の実施の形態にかかるプラズマ処理装置の構成の概略を示す縦断面図である。 他の実施の形態にかかるプラズマ処理装置の構成の概略を示す縦断面図である。 他の実施の形態にかかるプラズマ処理装置の構成の概略を示す縦断面図である。 他の実施の形態にかかるリフトアームの構成の概略を示す説明図である。 他のリフトアームの構成の概略を示す平面図である。
 以下、本発明の実施の形態について説明する。図1は、本実施の形態にかかるプラズマ処理装置1の構成の概略を示す縦断面図である。なお、本実施の形態のでは、プラズマ処理装置1によりウェハWの表面に対してプラズマCVD(Chemical Vapor Deposiotion)処理を行い、当該ウェハWの表面に例えばSiN膜(シリコン窒化膜)を形成する場合を例にして説明する。また、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 プラズマ処理装置1は、内部を気密に保持する処理容器2と、処理容器2内にマイクロ波を照射するマイクロ波供給部3を有している。処理容器2は上面が開口した略円筒状の本体部2aと、本体部2aの開口を気密に塞ぐ略円盤状の蓋体2bを有している。本体部2a及び蓋体2bは、例えばアルミニウム等の金属から形成されている。また、本体部2aは接地線(図示せず)により接地されている。
 処理容器2内には、ウェハWを保持する基板保持機構としてのサセプタ10が設けられている。サセプタ10は、例えば円盤形状を有し、アルミニウム等の金属から形成されている。サセプタ10には、整合器11を介してバイアス用の高周波電源12が、後述するスリップリング100を介して接続されている。高周波電源12は、ウェハWに引き込むイオンのエネルギーを制御するのに適した一定の周波数、例えば13.56MHzの高周波を出力する。なお、図示していないが、サセプタ10には、ウェハWを静電吸着するための静電チャックが設けられており、ウェハWをサセプタ10上に静電吸着することができる。また、サセプタ10の内部にはヒータ13が設けられ、ウェハWを所定の温度に加熱することができる。ヒータ13への電力の供給も後述するスリップリング100を介して行われる。
 なお、サセプタ10の下方には、ウェハWを下方から支持し昇降させるための昇降ピン14が設けられている。昇降ピン14は、サセプタ10を上下方向に貫通する貫通孔10aを挿通し、サセプタ10に対して移動自在で且つサセプタ10の上面から突出可能なように、サセプタ10の厚みよりも長く形成されている。昇降ピン14の下方には、昇降ピン14を上方に押圧するリフトアーム15が設けられている。リフトアーム15は、昇降機構16により昇降自在に構成されている。昇降ピン14はリフトアーム15とは接続されておらず、リフトアーム15を降下させると、昇降ピン14とリフトアーム15とは離れた状態となる。昇降ピン14の上端部14aは、貫通孔10aよりも大きな径を有している。そのため昇降ピン14は、リフトアーム15が下方に退避しても貫通孔10aから脱落することなく、サセプタ10に係止した状態となる。また、貫通孔10aの上端には、昇降ピン14の上端部14aよりも径と厚みが大きな窪み部10bが形成されており、昇降ピン14がサセプタ10に係止した状態において、上端部14aがサセプタ10の上面より突出しないようになっている。なお、図1においては、リフトアーム15が降下し、昇降ピン14がサセプタ10に係止した状態を描図している。
 サセプタ10の上面には、ウェハWを囲むように環状のフォーカスリング17が設けられている。フォーカスリング17には例えばセラミックスあるいは石英などの絶縁性材料が用いられる。処理容器2内に発生したプラズマは、当該フォーカスリング17の作用によりウェハW上に収束し、これにより、ウェハW面内におけるプラズマ処理の均一性が向上する。
 サセプタ10は、その下面の中央部を、例えば中心部が中空な円筒形状を有する支持軸20により支持されている。支持軸20は鉛直下方に延伸し、処理容器2の本体部2aの底面を上下方向に貫通して設けられている。支持軸20は、サセプタ10と当接する上部軸20aと、上部軸20aの下端に設けられたフランジ21を介して当該上部軸20aに接続された下部軸20bを有している。上部軸20a及び下部軸20bは、例えば絶縁部材により形成されている。
 処理容器2の本体部2aの底部には、例えば本体部2aの側方に突出して排気室30が形成されている。排気室30の底面には、処理容器2内を排気する排気機構31が、排気管32を介して接続されている。排気管32には、排気機構31による排気量を調整する調整弁33が設けられている。
 排気室30の上方であって、サセプタ10の下方には、処理容器2内を均一に排気するための円環状のバッフル板34が、支持軸20の外側面と所定の隙間を空けて設けられている。バッフル板34には、当該バッフル板34を厚み方向に貫通する開口(図示せず)が全周にわたって形成されている。
 処理容器2の本体部2a底部の下端面、即ち処理容器2の外部には、支持軸20と本体部2aとの間を気密に塞ぎ、且つ鉛直軸を中心に支持軸20を回転させる回転シール機構35が設けられている。この回転シール機構35の詳細については後述する。
 処理容器2の天井面開口部には、プラズマ生成用のマイクロ波を供給するマイクロ波供給部3が設けられている。マイクロ波供給部3はラジアルラインスロットアンテナ40(radial line slot antenna)を有している。ラジアルラインスロットアンテナ40は、マイクロ波透過板41、スロット板42、遅波板43を有している。マイクロ波透過板41、スロット板42、遅波板43は、この順に下から積層して、処理容器2の本体部2aの開口部に設けられている。遅波板43の上面は、蓋体2bにより覆われている。なお、ラジアルラインスロットアンテナ40は、その中心が支持軸20の回転中心と概ね一致した位置に配置されている。
 マイクロ波透過板41と本体部2aとの間は、例えばOリング等のシール材(図示せず)により気密に保たれている。マイクロ波透過板41には誘電体、例えば石英、Al、AlN等が用いられ、マイクロ波透過板41はマイクロ波を透過させる。
 マイクロ波透過板41の上面に設けられたスロット板42には複数のスロットが形成され、スロット板42はアンテナとして機能する。スロット板42には、導電性を有する材料、たとえば銅、アルミニウム、ニッケル等が用いられる。
 スロット板42の上面に設けられた遅波板43は、低損失誘電体材料、例えば石英、Al、AlN等により構成されており、マイクロ波の波長を短縮する。
 遅波板43の上面を覆う蓋体2bは、その内部に例えば冷却媒体を流通させる円環状の流路45が複数設けられている。流路45を流れる冷却媒体によって、蓋体2b、マイクロ波透過板41、スロット板42及び遅波板43が所定の温度に調節される。
 蓋体2bの中央部には同軸導波管50が接続されている。同軸導波管50の上端部には、矩形導波管51およびモード変換器52を介して、マイクロ波発生源53が接続されている。マイクロ波発生源53は、処理容器2の外部に設置されており、例えば2.45GHzのマイクロ波を発生させることができる。
 同軸導波管50は、内部導体54と外管55を有している。内部導体54は、スロット板42と接続されている。内部導体54のスロット板42側は円錐形に形成されて、スロット板42に対してマイクロ波を効率よく伝播するようになっている。
 かかる構成により、マイクロ波発生源53から発生したマイクロ波は、矩形導波管51、モード変換器52、同軸導波管50内を順次伝播し、遅波板43で圧縮され短波長化される。そして、スロット板42から円偏波状のマイクロ波が、マイクロ波透過板41を透過して処理容器2内に照射される。このマイクロ波により処理容器2内では処理ガスがプラズマ化し、このプラズマによりウェハWのプラズマ処理が行われる。
 処理容器2の天井面中央部、すなわちラジアルラインスロットアンテナ40の中央部には、第1の処理ガス供給管60が設けられている。第1の処理ガス供給管60はラジアルラインスロットアンテナ40を上下方向に貫通し、当該第1の処理ガス供給管60の一端部はマイクロ波透過板41の下面において開口している。また、第1の処理ガス供給管60は同軸導波管50の内部導体54の内部を貫通し、さらにモード変換器52内を挿通している。当該第1の処理ガス供給管60の他端部は第1の処理ガス供給源61に接続されている。
 第1の処理ガス供給源61は、処理ガスとして、例えばTSA(トリシリルアミン)、Nガス、Hガス、Arガスをそれぞれ個別に供給可能に構成されている。このうち、TSA、Nガス、HガスはSiN膜の成膜用の原料ガスであり、Arガスはプラズマ励起用ガスである。なお、以下において、この処理ガスを「第1の処理ガス」という場合がある。また、第1の処理ガス供給管60には、第1の処理ガスの流れを制御するバルブや流量調節部等を含む供給機器群62が設けられている。第1の処理ガス供給源61から供給された第1の処理ガスは、第1の処理ガス供給管60を介して処理容器2内に供給され、サセプタ10に載置されたウェハWに向かって鉛直下方に流れる。
 また、図1に示すように、処理容器2の上部の内周面には、第2の処理ガス供給管70が設けられている。第2の処理ガス供給管70は、処理容器2の内周面に沿って等間隔に複数設けられている。第2の処理ガス供給管70には、第2の処理ガス供給源71が接続されている。第2の処理ガス供給源71の内部には、処理ガスとして、例えばTSA(トリシリルアミン)、Nガス、Hガス、Arガスがそれぞれ個別に供給可能に構成されている。なお、以下において、この処理ガスを「第2の処理ガス」という場合がある。また、第2の処理ガス供給源71には、第2の処理ガスの流れを制御するバルブや流量調節部等を含む供給機器群72が設けられている。第2の処理ガス供給源71から供給された第2の処理ガスは、第2の処理ガス供給管70を介して処理容器2内に供給され、サセプタ10に載置されたウェハWの外周部に向かって流れる。このように、第1の処理ガス供給管60からの第1の処理ガスはウェハWの中心部に向けて供給され、第2の処理ガス供給管70からの第2の処理ガスはウェハWの外周部に向けて供給される。
 なお、第1の処理ガス供給管60と第2の処理ガス供給管70から処理容器2内にそれぞれ供給される処理ガスは、同種のガスであっても、別種類のガスであってもよく、各々独立した流量で、或いは任意の流量比で供給することができる。
 次に、回転シール機構35について詳述する。図2は、回転シール機構35の構成の概略を示す縦断面図である。回転シール機構35は、ベアリング80を介して支持軸20を保持するケーシング81と、ケーシングの下端に接続されたロータリージョイント82と、支持軸20を回転させる回転駆動機構83を有している。
 ケーシング81は、その内径が支持軸20の外径よりも大きな開口81aを有しており、支持軸20の下部軸20bは、この開口81a内に挿通されている。ケーシング81の上端部は、例えば図示しないボルト等により、処理容器2の本体部2aの底部に固定されており、ケーシング81の上端部と本体部2aの下端面との間は、例えばOリング(図示せず)等により気密に保たれている。
 ケーシング81上部の内周面には、下部軸20bとケーシング81との間の隙間からのマイクロ波漏洩を防止するためのチョーク84が全周にわたって環状に設けられている。チョーク84は、例えば断面形状が矩形のスリット状に形成されている。なお、チョーク84の長さLは、マイクロ波の漏洩を防ぐ目的から、マイクロ波の波長の概ね1/4程度の長さに設定されている。なお、チョーク84の内部に誘電体などを充填した場合、チョーク84の長さLは必ずしもマイクロ波の波長の1/4とする必要はない。
 ケーシング81の内周面におけるチョーク84の下方には、支持軸20の下部軸20bとケーシング81との間を気密に塞ぐシール部材としての磁性流体シール85が設けられている。磁性流体シール85は、例えばケーシング81に内蔵された円環状の永久磁石85aと、永久磁石85aと下部軸20bとの間に封入された磁性流体85bにより構成されている。この磁性流体シール85により、支持軸20と処理容器2との間が気密に維持される。
 ベアリング80は、支持軸20における磁性流体シール85の下方に設けられている。ベアリング80は、ケーシング81により支持されている。これにより支持軸20は、ケーシング81に対して回転自在な状態で支持されている。なお、図2には、ラジアル方向のベアリングのみ描図しているが、必要に応じて鉛直方向の荷重を支持するスラストベアリングを設けてもよい。
 ケーシング81の下端には円環形状を有するロータリージョイント82が接続されている。ロータリージョイント82は、ベアリング86を介して下部軸20bと接続されており、下部軸20bはロータリージョイント82に対して回転自在となっている。ロータリージョイント82の側面には、冷却水供給管90が接続されており、冷却水供給管90の例えば下方には冷却水排出管91が接続されている。下部軸20bの外周面における冷却水供給管90と冷却水排出管91に対応する位置には、円環状の溝92、93がそれぞれ形成されている。下部軸20bの内部には、溝92に連通し、鉛直上方に延伸する冷却水供給路94が形成されている。冷却水供給路94は、フランジ21近傍まで延伸し、フランジ21近傍から鉛直下方に折り返して溝93に接続されている。冷却水供給管90には図示しない冷却水供給源が接続されており、冷却水供給源から供給される冷却水は、冷却水供給管90、冷却水供給路94を通ってフランジ21を冷却し、その後冷却水排出管91から排出される。
 ロータリージョイント82の内周面には、溝92及び溝93を挟みこむように上下にOリング95が設けられている。これにより、ロータリージョイント82と下部軸20bとの間から漏洩することなく、冷却水供給路94に冷却水が供給される。
 下部軸20bの例えば下端面には、円柱形状のスリップリング100が接続されている。スリップリング100の下端面の中央部には、円盤状の回転電極101が設けられ、回転電極101の外方には、例えば円環状の回転電極102が設けられている。回転電極101、102には、サセプタ10に高周波電源12からの高周波電力を供給したり、サセプタ10内部のヒータへ給電したりする導線110、111がそれぞれ電気的に接続されている。導線110、111は、支持軸20内部の中空部分に沿って上方に延伸して設けられ、サセプタ10に接続されている。導線110、111への給電に際しては、例えば図2に示すように、ブラシ103を介して回転電極101、102に電源が接続される。ブラシ103は、例えば図示しない固定部材により、例えば処理容器2の本体部2aとの相対的な位置関係が変化しないように固定されている。なお図2では、回転電極101、102に、ブラシ103を介して整合器11、高周波電源12を接続した状態を描図しているが、回転電極の配置や設置数などは本実施の形態の内容に限定されるものではなく、任意に設定が可能である。回転電極に接続される機器としては、例えばヒータ13に電力を供給する電源や、静電チャックに電圧を印加する電源、或いはヒータ13の温度制御用に用いられる、サセプタ10に内蔵された熱電対などが挙げられる。
 例えば下部軸20bにおけるロータリージョイント82の下方には、スリップリング100を囲むような円筒形状に形成された遮蔽部材112が固定されている。遮蔽部材112は例えば絶縁部材により形成されており、スリップリング100とブラシ103の接触部などが露出しないようになっている。
 また、遮蔽部材112の外周部には、ベルト120が接続されている。ベルト120には、モータ121がシャフト122を介して接続されている。したがって、モータ121を回転させることで、シャフト122及びベルト120を介して遮蔽部材112が回転し、遮蔽部材112と固定された支持軸20が回転する。これら遮蔽部材112、ベルト120、モータ121により、本発明における回転駆動機構83が形成されている。支持軸20が回転すると、スリップリング100も共に回転するが、ブラシ103により回転電極101、102との電気的な接続は維持される。また、支持軸20の回転により下部軸20b内に形成された冷却水供給路94も回転するが、下部軸20bに形成された溝92、93を介して冷却水供給管90、冷却水排出管91との接続が維持されるので、支持軸20を回転させた場合であっても、冷却水供給路94への冷却水の供給が維持される。
 なお、図2では、ケーシング81の下方にロータリージョイント82、回転駆動機構83をこの順で設けたが、回転駆動機構83により支持軸20を適切に回転させることができれば、これらの配置や形状は任意に設定が可能である。また、回転駆動機構83の構成についても、本実施の形態の内容に限定されるものではなく、モータ121の配置や、モータ121の駆動力を支持軸20に伝達する機構については任意に設定できる。
 本実施の形態にかかるプラズマ処理装置1は以上のように構成されている。次に、本実施の形態にかかるプラズマ処理装置1で行われるウェハWのプラズマ処理について説明する。本実施の形態では、上述したようにウェハWにプラズマ成膜処理を行って、当該ウェハWの表面にSiN膜を形成する。
 ウェハWの処理にあたっては、先ず、処理容器2に設けられた図示しないゲートバルブが開き、処理容器2内にウェハWが搬入される。ウェハWは、昇降ピン14に受け渡され、次に昇降機構16が降下してサセプタ10上にウェハWが載置される。それと共に、静電チャックに直流電圧が印可され、クーロン力によりウェハWがサセプタ10上に静電吸着する。そして、ゲートバルブを閉じ、処理容器2内を密閉した後、排気機構31を作動させ、処理容器2内を所定の圧力、例えば400mTorr(=53Pa)に減圧する。また、モータ121を回転させることにより、支持軸20を介してサセプタ10が回転する。この際、昇降ピン14はリフトアーム15とは分離して設けられているので、昇降ピン14はサセプタ10と共に回転する。
 その後、第1の処理ガス供給管60から処理容器2内に第1の処理ガスを供給し、第2の処理ガス供給管70から処理容器2内に第2の処理ガスを供給する。このとき、第1の処理ガス供給管60から供給されるArガスの流量は例えば100sccm(mL/min)であり、第2の処理ガス供給管70から供給されるArガスの流量は例えば750sccm(mL/min)である。
 処理容器2内に第1の処理ガス、第2の処理ガスを供給すると共に、マイクロ波発生源53を作動させ、当該マイクロ波発生源53において、例えば2.45GHzの周波数で所定の電力のマイクロ波を発生させる。マイクロ波は、矩形導波管51、モード変換器52、同軸導波管50、ラジアルラインスロットアンテナ40を介して、処理容器2内に照射される。このマイクロ波によって処理容器2内では処理ガスがプラズマ化し、プラズマ中で処理ガスの解離が進み、その際に発生したラジカル(活性種)によってウェハW上に成膜処理が行われる。このとき、サセプタ10を回転させることで、ウェハWが処理容器2内で回転しているので、例えばラジアルラインスロットアンテナ40から照射されるマイクロ波の電界強度分布が不均一であっても、ウェハW面内におけるプラズマ処理を平均化し、面内均一な処理を行うことができる。こうして、ウェハWの表面にSiN膜が形成される。
 ウェハWにプラズマ成膜処理を行っている間、高周波電源12により例えば13.56MHzの周波数で所定の電力の高周波がサセプタ10に印加される。適切な範囲でのRFバイアスの印加により、プラズマ中のイオンをウェハWへ引き込むように作用するため、SiN膜の緻密性を向上させるとともに、膜中のトラップを増加させるように作用する。また、マイクロ波プラズマを用いることでプラズマの電子温度を低く維持できるので、膜へのダメージがなく、しかも、高密度プラズマにより、処理ガスの分子が解離されやすいので、反応が促進される。
 その後、SiN膜が成長し、ウェハWに所定の膜厚のSiN膜が形成されると、処理ガスと、マイクロ波の照射が停止される。その後、ウェハWは処理容器2から搬出されて、一連のプラズマ成膜処理が終了する。
 以上の実施の形態によれば、サセプタ10を支持する支持軸20をモータ121やベルト120を有する回転駆動機構83により回転させることで、プラズマ処理中にサセプタ10に保持されたウェハWを回転させることができる。したがって、処理容器2内に照射されるマイクロ波の強度分布にばらつきがある場合でも、面内均一なウェハ処理を行うことができる。
 また、回転駆動機構83はプラズマに曝されることを避けるために処理容器2外に配置する必要があり、そのため、支持軸20は処理容器2を貫通して設ける必要がある。かかる場合、処理容器2の気密性を維持するために、支持軸20と処理容器2との間の摺動部にOリングなどを設けることが考えられるが、Oリングと支持軸20との摺動部からパーティクルが発生し、ウェハWを汚染する恐れがある。この点、本発明のようにシール部材として磁性流体85bを用いることで、支持軸20と処理容器2との間の気密性を維持し、さらにパーティクルの発生を抑えることができる。
 さらに、磁性流体85bはマイクロ波を吸収しやすく、マイクロ波に曝されると温度上昇が起こり耐熱温度(概ね150℃程度)を超えてしまう恐れがあるが、本実施の形態のように、支持軸20と処理容器2との間からのマイクロ波の漏洩を防止するチョーク84を磁性流体シール85の上方に設けることで、処理容器2から外部へのマイクロ波の漏洩を抑制すると共に、磁性流体85bに到達するマイクロ波を大幅に低減することができる。その結果、磁性流体85bが耐熱温度を超えて加熱することを防ぎ、且つ処理容器2内を気密に維持することができる。
 なお、処理容器2内を気密に維持するという観点からは、シール部材としてOリング等を用いることが否定されるものではなく、例えば許容されるパーティクルに応じて、磁性流体シール85に代えてOリングをシール部材として用いてもよい。また、磁性流体シール85へ到達するマイクロ波やラジカルを低減するという観点から、例えばチョーク84と磁性流体シール85の間に、図2に示すように他のシール部材としてのシール機構130を設けてもよい。シール機構130は、例えばチョーク84の下方に設けられたOリング131と、チョーク84とOリング131との間に設けられ、Oリング131に作用する差圧を低減するためのラビリンスシール132を有している。処理容器2と支持軸20間の気密については磁性流体シール85により確保されているので、Oリング131には気体に対するシール性能は求められず、摺動や摩擦に対する耐性が高く且つ処理容器2内で生成するラジカルに対しても耐性を有する、例えばPTFE(ポリテトラフルオロエチレン)などを用いることが好ましい。
 以上の実施の形態では、支持軸20の回転中心とラジアルラインスロットアンテナ40の中心(マイクロ波の照射中心)とが概ね一致していたが、例えば図3に示すように、支持軸20の回転中心はラジアルラインスロットアンテナ40の中心に対して、平面視において偏心していてもよい。
 一般に、マイクロ波の強度分布は、円周方向にばらつきを有する一方で、例えばマイクロ波の照射中心から外周部に向けて徐々に強度が低下する傾向がある。即ち、ウェハWの直径方向に沿ってマイクロ波の強度分布が変化する。そこで、例えば図3に示すように、支持軸20の回転中心をラジアルラインスロットアンテナ40の中心に対して偏心させることで、このウェハWの直径方向に沿ったマイクロ波の強度のばらつきを均一化し、さらに面内均一なプラズマ処理を行うことができる。なお、図3では、サセプタ10の中心と支持軸20の中心、換言すれば、ウェハWの回転中心と支持軸20の回転中心とが一致しているが、例えば図4に示すように、サセプタ10の中心とラジアルラインスロットアンテナ40の中心は同じ位置とし、サセプタ10の中心に対して偏心した位置に支持軸20を接続するようにしてもよい。
 また、支持軸20の回転中心とラジアルラインスロットアンテナ40の中心をずらす代わりに、例えば図5に示すように、ウェハWの中心をサセプタ10の中心に対して偏心した位置に配置し、サセプタ10を回転させることで、ウェハWの回転中心とマイクロ波の照射中心とを偏心させるようにしてもよい。
 なお、マイクロ波の強度分布、特に直径方向に沿った強度分布を平均化するという観点から、図6に示すように、サセプタ10を昇降させる昇降機構140を設けてもよい。かかる場合、例えば本体部2aの下端面とケーシング81の上端面との間に、本体部2a及びケーシング81と気密に接続されたベローズ141を設け、昇降機構140により例えばケーシング81及び支持軸20ごと、サセプタ10を昇降させる構成が提案できる。サセプタ10を昇降させることにより、サセプタ10の回転動作のみでは平均化しきれない、ウェハWの直径方向に沿ったマイクロ波の強度分布を平均化し、より均一なウェハWのプラズマ処理を行うことができる。
 以上の実施の形態では、リフトアーム15と昇降ピン14は分離して設けられていたが、静電チャックによるウェハWへの帯電により、リフトアーム15を降下させても、昇降ピン14がウェハWから離れない場合がある。かかる場合、例えば図7に示すように、リフトアーム15の上方に、所定の間隔離間して他のリフトアーム150を設け、当該他のリフトアーム150により昇降ピン14をウェハWから引き離すようにしてもよい。かかる場合、例えば図7に示すように、昇降ピン14の下端部14bを昇降ピン14の外径よりも太い係止部として形成しておき、また図8に示すように、他のリフトアーム150は、昇降ピン14の下端部14bと係止するように形成する。そして、昇降ピン14を上昇させる際には、リフトアーム15により昇降ピン14の下端部14bを上方に押すことで当該昇降ピン14を上昇させ、昇降ピン14を下降させる際には、他のリフトアーム150の下面に下端部14bを係止させ、その状態で他のリフトアーム150を下降させることで、他のリフトアーム150により昇降ピン14を押し下げる。これにより、ウェハWが帯電している場合であっても、ウェハWから昇降ピン14を引き離すことができる。なお、リフトアーム15と他のリフトアーム150は同期して動作してもよいし、個別に動作してもよい。
 以上、添付図面を参照しながら本発明の好適な実施の形態について説明したが、本発明はかかる例に限定されない。当業者であれば、請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、以上の実施の形態では、本発明を成膜処理を行うプラズマ処理に適用していたが、本発明は、成膜処理以外の基板処理、例えばエッチング処理やスパッタリングを行うプラズマ処理にも適用できる。さらに、本発明のプラズマ処理で処理される被処理体は、ガラス基板、有機EL基板、FPD(フラットパネルディスプレイ)用の基板等のいずれのものであってもよい。
 本発明は、例えば半導体ウェハ等のプラズマ処理に有用であり、特にマイクロ波を用いたプラズマ処理に有用である。
  1  プラズマ処理装置
  2  処理容器
  3  マイクロ波供給部
  10 サセプタ
  11 整合器
  12 高周波電源
  13 ヒータ
  14 昇降ピン
  15 リフトアーム
  16 昇降機構
  17 フォーカスリング
  20 支持軸
  21 フランジ
  30 排気室
  31 排気機構
  32 排気管
  33 調整弁
  34 バッフル板
  35 回転シール機構
  40 ラジアルラインスロットアンテナ
  41 マイクロ波透過板
  42 スロット板
  43 遅波板
  50 同軸導波管
  60 第1の処理ガス供給管
  70 第2の処理ガス供給管
  80 ベアリング
  81 ケーシング
  82 ロータリージョイント
  83 回転駆動機構
  84 チョーク
  85 磁性流体シール
  W  ウェハ

Claims (6)

  1. 基板をマイクロ波プラズマにより処理するプラズマ処理装置であって、
    基板を気密に収容する処理容器と、
    前記処理容器内にマイクロ波を照射するマイクロ波供給部と、
    前記処理容器内に処理ガスを供給する処理ガス供給部と、
    前記処理容器内において基板を保持する基板保持機構と、
    前記処理容器の底面を上下方向に貫通し、基板保持機構の下面を支持する支持軸と、
    前記処理容器の外部に設けられ、前記支持軸を回転させる回転駆動機構と、
    前記支持軸と前記処理容器との間を気密に塞ぐ磁性流体シールと、
    前記磁性流体シールよりも上方に設けられ、前記支持軸と前記処理容器との間からのマイクロ波の漏洩により前記磁性流体シールが加熱されることを防止するチョーク機構と、を有する。
  2. 請求項1に記載のプラズマ処理装置において、
    前記磁性流体シールと前記チョーク機構との間には、ラジカルを遮蔽する他のシール部材が更に設けられている。
  3. 請求項1に記載のプラズマ処理装置において、
    前記支持軸には、前記処理容器の外部に設けられた冷媒供給機構から供給される冷媒を流通させる冷媒流路が内蔵されており、
    前記冷媒流路と前記冷媒供給機構は、ロータリージョイントを介して接続されている。
  4. 請求項1に記載のプラズマ処理装置において、
    前記基板保持機構は、基板を加熱するヒータを備え、
    前記ヒータに電流を供給する導線は前記支持軸に内蔵され、
    前記ヒータに電流を供給する電源と前記導線とは、スリップリングを介して接続されている。
  5. 請求項1に記載のプラズマ処理装置において、
    前記支持軸の回転中心または前記基板の中心の少なくともいずれかは、前記マイクロ波供給部からのマイクロ波の照射中心に対して、平面視において偏心位置にある。
  6. 請求項1に記載のプラズマ処理装置において、
    前記基板保持機構を上下方向に挿通し、基板保持機構に対して移動自在に設けられた昇降ピンと、
    前記昇降ピンを昇降させる昇降機構と、をさらに有し、
    前記昇降機構は、前記昇降ピンを上方に押圧するリフトアームと、前記昇降ピンを下方に押し下げる他のリフトアームを備え、
    前記昇降ピンは、前記基板保持機構の厚みよりも長く形成され、
    前記昇降ピンの下端部には、前記他のリフトアームにより前記昇降ピンを押し下げる際に前記他のリフトアームと係止する係止部が設けられている。
PCT/JP2015/067688 2014-07-15 2015-06-19 プラズマ処理装置 WO2016009781A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/326,078 US20170198395A1 (en) 2014-07-15 2015-06-19 Plasma processing apparatus
KR1020177000974A KR102438349B1 (ko) 2014-07-15 2015-06-19 플라즈마 처리 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-145186 2014-07-15
JP2014145186A JP2016021524A (ja) 2014-07-15 2014-07-15 プラズマ処理装置

Publications (1)

Publication Number Publication Date
WO2016009781A1 true WO2016009781A1 (ja) 2016-01-21

Family

ID=55078282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067688 WO2016009781A1 (ja) 2014-07-15 2015-06-19 プラズマ処理装置

Country Status (4)

Country Link
US (1) US20170198395A1 (ja)
JP (1) JP2016021524A (ja)
KR (1) KR102438349B1 (ja)
WO (1) WO2016009781A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190390337A1 (en) * 2018-06-25 2019-12-26 Applied Materials, Inc. High temperature rotation module for a processing chamber

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6777055B2 (ja) * 2017-01-11 2020-10-28 東京エレクトロン株式会社 基板処理装置
US10679827B2 (en) * 2017-01-25 2020-06-09 Applied Materials, Inc. Method and apparatus for semiconductor processing chamber isolation for reduced particles and improved uniformity
CN206573826U (zh) * 2017-03-23 2017-10-20 惠科股份有限公司 一种顶升装置及配向紫外线照射机
JP6955013B2 (ja) * 2017-08-25 2021-10-27 株式会社日本製鋼所 レーザ照射装置及び基板搬送装置
JP6663400B2 (ja) * 2017-09-11 2020-03-11 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
CN108203817B (zh) * 2018-01-29 2020-01-10 福州京东方光电科技有限公司 Pecvd反应腔以及用于pecvd反应腔的支撑针
US11417504B2 (en) * 2018-10-25 2022-08-16 Tokyo Electron Limited Stage device and processing apparatus
US11211232B2 (en) * 2018-10-29 2021-12-28 Taiwan Semiconductor Manufacturing Co., Ltd. Methods for cleaning semiconductor device manufacturing apparatus
US11388809B2 (en) * 2019-03-25 2022-07-12 Recarbon, Inc. Systems for controlling plasma reactors
JP2020167288A (ja) 2019-03-29 2020-10-08 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理装置のメンテナンス方法
JP7285693B2 (ja) * 2019-05-23 2023-06-02 東京エレクトロン株式会社 ステージ装置および処理装置
JP7334507B2 (ja) * 2019-07-03 2023-08-29 東京エレクトロン株式会社 シール構造、真空処理装置及びシール方法
KR102573720B1 (ko) * 2019-12-10 2023-09-04 주식회사 원익아이피에스 기판 처리 장치
KR102378581B1 (ko) * 2020-06-19 2022-03-24 씰링크 주식회사 회전축 밀폐장치 및 이를 이용하는 반도체 기판처리장치
CN113088934A (zh) * 2020-12-14 2021-07-09 芯三代半导体科技(苏州)有限公司 旋转装置
US20230238269A1 (en) * 2022-01-21 2023-07-27 Applied Materials, Inc. Rotatable thermal processing chamber
KR102619965B1 (ko) * 2022-05-16 2024-01-02 세메스 주식회사 기판 처리 장치 및 기판 처리 방법
CN115206848B (zh) * 2022-08-01 2023-10-24 北京屹唐半导体科技股份有限公司 晶圆的热处理装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54144262A (en) * 1978-04-28 1979-11-10 Hitachi Netsu Kigu Kk Highhfrequency heater
JPS5679501A (en) * 1979-12-03 1981-06-30 Mitsubishi Electric Corp Coaxial waveguide converter
JPS6327022A (ja) * 1986-07-21 1988-02-04 Hitachi Ltd マイクロ波プラズマ処理装置
JP2006194303A (ja) * 2005-01-12 2006-07-27 Nok Corp 耐プラズマ用シール
JP2009188161A (ja) * 2008-02-06 2009-08-20 Hitachi Kokusai Electric Inc 基板処理装置
JP2010141254A (ja) * 2008-12-15 2010-06-24 Tokyo Electron Ltd 被処理体の処理装置
JP2013065791A (ja) * 2011-09-20 2013-04-11 Hitachi Kokusai Electric Inc 基板処理装置及び半導体装置の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6143081A (en) * 1996-07-12 2000-11-07 Tokyo Electron Limited Film forming apparatus and method, and film modifying apparatus and method
JP2010118549A (ja) 2008-11-13 2010-05-27 Tokyo Electron Ltd プラズマエッチング方法及びプラズマエッチング装置
JP5466670B2 (ja) * 2010-10-28 2014-04-09 株式会社日立国際電気 基板処理装置および半導体装置の製造方法
JP5890204B2 (ja) * 2012-03-05 2016-03-22 東京エレクトロン株式会社 スラグチューナ、それを用いたマイクロ波プラズマ源、およびマイクロ波プラズマ処理装置
JP5955394B2 (ja) * 2012-09-06 2016-07-20 株式会社日立国際電気 基板処理装置、半導体装置の製造方法及びプログラム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54144262A (en) * 1978-04-28 1979-11-10 Hitachi Netsu Kigu Kk Highhfrequency heater
JPS5679501A (en) * 1979-12-03 1981-06-30 Mitsubishi Electric Corp Coaxial waveguide converter
JPS6327022A (ja) * 1986-07-21 1988-02-04 Hitachi Ltd マイクロ波プラズマ処理装置
JP2006194303A (ja) * 2005-01-12 2006-07-27 Nok Corp 耐プラズマ用シール
JP2009188161A (ja) * 2008-02-06 2009-08-20 Hitachi Kokusai Electric Inc 基板処理装置
JP2010141254A (ja) * 2008-12-15 2010-06-24 Tokyo Electron Ltd 被処理体の処理装置
JP2013065791A (ja) * 2011-09-20 2013-04-11 Hitachi Kokusai Electric Inc 基板処理装置及び半導体装置の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190390337A1 (en) * 2018-06-25 2019-12-26 Applied Materials, Inc. High temperature rotation module for a processing chamber
US11427912B2 (en) * 2018-06-25 2022-08-30 Applied Materials, Inc. High temperature rotation module for a processing chamber

Also Published As

Publication number Publication date
US20170198395A1 (en) 2017-07-13
KR20170031144A (ko) 2017-03-20
KR102438349B1 (ko) 2022-08-30
JP2016021524A (ja) 2016-02-04

Similar Documents

Publication Publication Date Title
WO2016009781A1 (ja) プラズマ処理装置
KR102266368B1 (ko) 플라즈마 처리 장치
JP5971144B2 (ja) 基板処理装置及び成膜方法
US20180144945A1 (en) Placing unit and plasma processing apparatus
KR20180061421A (ko) 바이어스가능한 회전가능 정전 척
US20160189934A1 (en) Plasma processing apparatus
KR102220276B1 (ko) 플라스마 처리 장치 및 플라스마 처리 방법
JP2023169185A (ja) シャッタ機構および基板処理装置
KR102616555B1 (ko) 플라즈마 처리 장치
JP6386632B2 (ja) プラズマ処理装置
JP2006253312A (ja) プラズマ処理装置
US20150176125A1 (en) Substrate processing apparatus
US12027346B2 (en) Substrate processing apparatus and method of driving relay member
TW201523703A (zh) 電漿處理裝置及電漿處理方法
US20230407458A1 (en) Film formation apparatus
JP5876463B2 (ja) プラズマ処理装置
US10930477B2 (en) Plasma processing apparatus
WO2024176976A1 (ja) 壁部材およびプラズマ処理装置
JP5728565B2 (ja) プラズマ処理装置及びこれに用いる遅波板
US20240212995A1 (en) Apparatus for treating substrate
CN117265475A (zh) 成膜装置
JP2009059845A (ja) 基板処理装置
KR20160142230A (ko) 플라즈마 처리 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15821411

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177000974

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15326078

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15821411

Country of ref document: EP

Kind code of ref document: A1