WO2016002608A1 - 流動層装置及び流動層造粒方法 - Google Patents

流動層装置及び流動層造粒方法 Download PDF

Info

Publication number
WO2016002608A1
WO2016002608A1 PCT/JP2015/068289 JP2015068289W WO2016002608A1 WO 2016002608 A1 WO2016002608 A1 WO 2016002608A1 JP 2015068289 W JP2015068289 W JP 2015068289W WO 2016002608 A1 WO2016002608 A1 WO 2016002608A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluidized bed
bed apparatus
liquid
area
processing gas
Prior art date
Application number
PCT/JP2015/068289
Other languages
English (en)
French (fr)
Inventor
由梨子 平井
重実 磯部
和紀 脇屋
日出夫 山崎
有香 保崎
Original Assignee
フロイント産業株式会社
株式会社大川原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014134206A external-priority patent/JP2016010783A/ja
Application filed by フロイント産業株式会社, 株式会社大川原製作所 filed Critical フロイント産業株式会社
Publication of WO2016002608A1 publication Critical patent/WO2016002608A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/16Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by suspending the powder material in a gas, e.g. in fluidised beds or as a falling curtain

Definitions

  • the present invention relates to a fluidized bed apparatus and a fluidized bed granulation method used for granulation, coating, drying treatment, etc. of a granular material, and in particular, produces a granulated product used for pharmaceuticals and foods in a short time.
  • the present invention relates to a fluidized bed apparatus and a fluidized bed granulation method.
  • fluidized bed apparatuses In the fields of pharmaceuticals, cosmetics, foods, etc., fluidized bed apparatuses are widely used that fluidize powders and granules such as granules by a gas flow and perform processes such as granulation, coating, mixing, stirring, and drying.
  • an object to be processed such as powder is introduced into a cylindrical processing container, and a fluidized gas is supplied into the processing container to fluidize the powder particles.
  • Water, a binder liquid, a coating liquid, or the like is supplied to the fluidized granular material by a spray nozzle, and processing such as granulation or coating is performed.
  • a breathable countersink plate formed of a wire mesh or the like is provided.
  • a processing gas is supplied from below the eye plate.
  • An object to be processed such as powder is fluidized by the processing gas while being held by the plate.
  • the fluidized object is sprayed with a binder liquid or the like, and a process such as granulation is performed.
  • the fluidized bed apparatus of the present invention includes an air supply unit having an air supply chamber to which a processing gas is supplied from a gas supply source, and a raw material container that is disposed above the air supply unit and accommodates an object to be processed.
  • a filter casing in which a filter is disposed, and the liquid to be processed is sprayed while the object to be processed accommodated in the raw material container container is fluidized by the processing gas.
  • a fluidized bed apparatus that performs granulation of the workpiece by supplying the raw material container, and the raw material container is disposed at the bottom on the air supply unit side to hold the workpiece. And a cylindrical straight portion that is disposed above the eye plate and extends upward with the same diameter, and an inverted truncated cone shape that is provided above the straight portion and has a large diameter upward. And an area of the air circulation portion of the dish plate is defined as a dish area Sa, the amount of liquid added is multiplied by the latent heat of evaporation, and this value is added to the dish area Sa.
  • the B (kJ / min ⁇ cm 2 ), the value obtained by converting the amount of liquid added per unit pan area, converted into heat, and the plastic limit as an index of the liquid absorption capacity of the workpiece
  • the B is PL ⁇ 1.3 ⁇ B ⁇ PL ⁇ 3.2.
  • the height Hs of the straight portion may be formed to 1/6 to 1/2 with respect to the diameter of the countersink plate.
  • the eye plate is arranged radially in the eye plate, the slit for generating a swirling airflow of the processing gas above the eye plate, and arranged in the form of dots on the eye plate, A vent hole that suppresses the formation of the swirling airflow by the slit while the processing gas is ejected upward may be provided.
  • B may be preferably PL ⁇ 1.7 ⁇ B ⁇ PL ⁇ 3.2.
  • Q (Q (kJ / min) (supply air temperature ⁇ exhaust temperature) (K) ⁇ air volume (kg / min) ⁇ air specific heat ( J / g ⁇ K))
  • Q in the steady state is Q 0
  • Q 0 is the pan area
  • C may be higher than the wind speed (cm / min) ⁇ 8.5 ⁇ 10 ⁇ 5 kJ / cm 3 and less than or equal to the wind speed (cm / min) ⁇ 11 ⁇ 10 ⁇ 5 kJ / cm 3 .
  • the fluidized bed apparatus may be an apparatus in which the eye plate area Sa of the eye plate exceeds 0.1 m 2 .
  • the PL value may be 0.1 or more and 0.5 or less.
  • the fluid to be treated is sprayed and supplied to the fluidized material while the material to be treated contained in the raw material container is fluidized by the treatment gas.
  • a fluidized bed granulation method for granulating a workpiece wherein the fluidized bed granulation method includes an air supply unit having an air supply chamber to which a processing gas is supplied from a gas supply source, A raw material container that is disposed above the air supply unit and accommodates an object to be processed, and a fluid chamber that is disposed above the raw material container and in which the object to be processed floats and flows with the processing gas is formed therein.
  • the area of the air circulation portion of the plate is defined as a plate area Sa, and the liquid is added to the liquid addition amount.
  • B (kJ / min ⁇ cm 2 ), which is obtained by multiplying the latent heat and dividing this value by the above-mentioned dish area Sa, the value obtained by converting the amount of liquid added per unit dish area into heat quantity,
  • a plastic limit value is used as an index of the liquid absorption capacity of the object to be processed, and when this is PL, the B is PL ⁇ 1.3 ⁇ B ⁇ PL ⁇ 3.2.
  • a columnar straight portion is provided above the plate of the raw material container, and a value obtained by converting the amount of liquid added per unit plate area into a calorific value is expressed as B (kJ / min ⁇ cm 2), when the PL value indicating the liquid absorbing capacity of the article to be treated was a PL, by the B and PL ⁇ 1.3 ⁇ B ⁇ PL ⁇ 3.2, equivalent to that of existing granules Can be manufactured in a shorter time than conventional. As a result, the granulation process can be carried out without reducing the product quality, and the processing time can be shortened.
  • the fluidized bed granulation method of the present invention using a fluidized bed apparatus provided with a cylindrical straight portion above the plate of the raw material container, the amount of liquid added per unit plate area is converted to heat.
  • the B is PL ⁇ 1.3 ⁇ B ⁇ PL ⁇ 3.2.
  • the front view which shows the external appearance of the fluidized-bed apparatus which is one Embodiment of this invention. It is a side view of the fluidized bed apparatus of FIG. It is explanatory drawing which shows the difference in the cross-sectional area of the flow chamber used as the taper shape. It is explanatory drawing of height Hs of the straight part of a raw material container.
  • (A) is explanatory drawing which shows the whole structure of an eye plate
  • (b) is sectional drawing which shows the structure of a slit. It is the table
  • (A) is a table showing a standard minimum air volume and an eye plate area (cm 2 ) used in the initial stage of granulation for each apparatus scale, and (b) is a table showing a C value calculated based on the table of (a). It is.
  • (A) is a table showing the liquid speed (g / min) and eyeplate area (cm 2 ) for each apparatus scale, and (b) is a B value per unit PL value calculated based on the table of (a). It is a table.
  • the liquid speed is for a solution containing 7% of a binder (solid content), and 93% of the volatile content is the amount of addition.
  • Type 30 is a type of apparatus capable of processing approximately 30 kg with a granular material having a bulk density of 0.5 g / mL.
  • type 60 is a type of apparatus capable of processing 60 kg and type 120 is capable of processing 120 kg. It is the graph which plotted the calculation result of FIG.
  • FIG. 1 is a front view showing an appearance of a fluidized bed apparatus according to an embodiment of the present invention
  • FIG. 2 is a side view of the fluidized bed apparatus of FIG.
  • the fluidized-bed apparatus 1 of FIG. 1 is used for manufacture of granulated materials, such as a granule for tableting used for manufacture of a pharmaceutical, a foodstuff, etc., a granular pharmaceutical, foodstuff, etc., for example.
  • the fluidized bed granulation method according to the present invention is carried out in the fluidized bed apparatus 1, and in the fluidized bed apparatus 1, the binder liquid or the coating liquid is sprayed onto the granular material fluidized by the processing gas.
  • the fluidized bed apparatus 1 is provided with a cylindrical processing container 2 in which a granular material (a material to be processed) serving as a raw material is accommodated and a desired granulation coating process or a drying process is performed.
  • the processing container 2 is formed of stainless steel and is supported by a support base 3 as shown in FIGS.
  • the processing container 2 of the fluidized bed apparatus 1 has a configuration in which a cover unit 4, a filter casing 5, a spray casing 6, a raw material container 7 and an air supply unit 8 are stacked in order from the top.
  • the units such as the cover unit 4 and the filter casing 5 are fastened in an airtight manner by a ring-shaped seal member.
  • the cover unit 4 is fixedly supported on the support base 3 by a cover bracket 11.
  • An exhaust port 12 is formed at one end of the cover unit 4.
  • An exhaust duct (not shown) is connected to the exhaust port 12.
  • a filter casing 5 formed separately from the spray casing 6 is attached to the lower surface side of the cover unit 4.
  • the filter casing 5 is provided so as to be movable in the vertical direction by an elevating mechanism 13 incorporated in the support base 3.
  • a disc-shaped top plate 14 is fixed to the upper end portion of the filter casing 5.
  • a cartridge filter 15 is attached to the top plate 14.
  • the top plate 14 is welded and fixed to the inner periphery of the filter casing 5 without a gap so that powder leakage does not occur between the casing and the top plate.
  • the spray casing 6 is attached to the support 3 by a swing bracket 16 and is provided so as to be able to swing in the horizontal direction.
  • the work can be performed by approaching the cartridge filter 15 in the filter casing 5 from below by retracting the spray casing 6 in the horizontal direction. Is possible.
  • a flow chamber 17 is formed in the spray casing 6.
  • the spray casing 6 has a tapered shape in which the diameter of the upper side of the side wall portion 18 is increased.
  • the cross-sectional area of the upper end 17a of the fluid chamber 17 is about 1.3 times the cross-sectional area of the lower end 17b (for example, the upper end 17a: ⁇ 820 mm, 0.53 m 2 , the lower end 17b: ⁇ 720 mm, 0.41 m 2 , see FIG. If the upper end portion 17 a side of the flow chamber 17 is formed to have a larger diameter than the lower end portion 17 b side, the wind speed of the processing gas decreases as it moves upward of the flow chamber 17.
  • the upper end portion 17a side of the flow chamber 17 functions as a flow rate suppressing portion, and the flow height of the granular material is suppressed. Therefore, the burden on the cartridge filter 15 is reduced, and the adhesion of powder particles to the filter casing 5 is also reduced.
  • the spray gun 19 for spraying a binder liquid and a coating liquid on the granular material in the fluid chamber 17 is attached to the side wall portion 18 of the spray casing 6. Binder liquid or the like is supplied to the spray gun 19 from a pump provided outside the apparatus through a tube (not shown).
  • the fluidized bed apparatus 1 employs a one gun side spray system in which one spray gun 19 is arranged on the side wall portion 18. By disposing the spray gun 19 on the side wall portion 18, powder particles are not deposited on the spray gun, maintenance becomes easy, and generation of nodules due to deposits is suppressed, and granulation quality is improved.
  • a high performance gun capable of high speed spraying is used as the spray gun 19 in order to shorten the processing time.
  • a raw material container 7 is disposed below the spray casing 6. In the raw material container 7, a granular material to be processed is put.
  • the raw material container 7 is attached to the carriage 20 so as to be freely movable on the floor surface.
  • a raw material storage chamber 21 is formed inside the raw material container 7.
  • a bottom plate 22 having air permeability is provided at the lower portion of the raw material container 7.
  • the granular material charged into the raw material storage chamber 21 is supported on the countersink plate 22.
  • the raw material container 7 is composed of a columnar straight portion 23 and an inverted frustoconical tapered portion 24.
  • the straight portion 23 is disposed above the countersink plate 22 and extends upward with the same diameter.
  • the taper portion 24 is provided above the straight portion 23 and has a larger diameter toward the upper side.
  • the straight portion 23 By providing the straight portion 23 adjacent to the eye plate 22, a decrease in the wind speed of the processing gas after passing through the eye plate can be suppressed as compared with the case where the taper portion is provided directly above the eye plate. That is, the straight part 23 functions as a flow rate maintenance part, the flow of the granular material is promoted, and the stirring and mixing performance is improved.
  • the straight portion 23 By installing the straight portion 23, the height of the raw material container 7 itself increases, but by suppressing the height of the spray casing 6, the height of the entire apparatus can be maintained at the same level as that of the conventional machine.
  • the upper part of the spray casing 6 is a flow rate suppressing portion, and the flow height can be suppressed while the air volume is large. As a result, the fluidized bed apparatus 1 can suppress the height of the spray casing 6 more than the conventional machine, and can provide the straight portion 23 without increasing the height of the entire apparatus.
  • the eye plate 22 is provided with slits 25 and vent holes 26 arranged radially.
  • the slit 25 is comprised from the opening part 25a and the wind direction piece 25b formed so that it might cover the opening part 25a (refer FIG.5 (b)).
  • the processing gas is led out in the circumferential direction from the opening 25a, and a swirling airflow of the processing gas is generated above the countersink plate 22.
  • the vent hole 26 is a hole that penetrates the countersink plate 22 in the vertical direction. In order to suppress the pressure loss of the processing gas supplied toward the countersink plate 22, the vent holes 26 are provided in a dotted shape.
  • the processing gas that has passed through the vent hole 26 is ejected upward as it is and merges with the air stream ejected from the slit 25.
  • a swirling airflow that has passed through the slit 25 and an upward jetting airflow that has passed through the vent hole 26 exist on the eye plate 22.
  • the upward jetted airflow of the vent hole 26 has an action of weakening the swirling airflow formation by the slit 25. Therefore, in the apparatus for obtaining the swirling airflow, the presence of the vent hole 26 is not necessary. On the other hand, considering the pressure loss of the processing gas, a configuration such as the slit 25 having the wind direction piece 25b is not preferable. On the other hand, in the fluidized-bed apparatus 1, the process by large air volume is assumed and there exists a possibility that the too strong whirling airflow may be formed by the slit 25. FIG. A swirling air flow that is too strong may hinder the granulation process.
  • the eye plate 22 is a hybrid eye plate in which an appropriate swirling airflow can be obtained even under a large air volume by the synergistic action of the slit 25 and the air hole 26.
  • the air supply unit 8 having an air supply chamber 27 is installed below the raw material container 7.
  • the air supply unit 8 is connected to an air supply duct 28 that communicates with the air supply chamber 27.
  • the air supply duct 28 is connected to an air supply source (not shown) provided outside the apparatus.
  • a processing gas (fluidized air) for fluidizing the powder particles is supplied into the air supply chamber 27 via an air supply duct 28.
  • the processing gas in which the powder is in a fluid state is cleaned by removing fine solid particles by the cartridge filter 15 and then discharged from the exhaust port 12 to the outside of the apparatus.
  • the air when flowing air (processing gas) is supplied from the air supply duct 28 to the air supply chamber 27, the air flows into the raw material storage chamber 21 through the eye plate 22.
  • the eye plate 22 is a swirl flow generating eye plate, and the flowing air that has passed through the eye plate 22 forms a swirl airflow, and blows up the powder particles in the raw material storage chamber 21.
  • an excessive swirling airflow is suppressed by the action of the air holes 26 in the countersink plate 22, and an appropriate swirling airflow is generated even with a large air volume.
  • the straight part 23 is provided in the lower part of the raw material container 7, the flowing air blows up in a state where the flow velocity is maintained.
  • the flow of the granular material is promoted, and good stirring and mixing is performed in the raw material storage chamber 21 and the flow chamber 17.
  • the flow rate of the granular material can be suppressed while the granular material greatly flows with a large air volume. This is because the spray casing 6 has a tapered shape, and the upper end portion side of the flow chamber functions as a flow rate suppressing portion. Therefore, while vigorous stirring and mixing is performed, adhesion to the filter and the can can be reduced. And in the state where active stirring and mixing are performed, the granulation process and the coating process of the granular material are executed by spraying the binder liquid and the coating liquid in a spray form as appropriate from the spray gun 19.
  • the carriage 20 is moved and the raw material container 7 is pulled out of the apparatus.
  • the spray casing 6 is swung in the horizontal direction, and the lower part of the filter casing 5 is opened. After retracting the spray casing 6 to the side, the filter casing 5 is lowered from the set position to the maintenance position.
  • the cartridge filter 15 After lowering the filter casing 5 to the maintenance position, the cartridge filter 15 is removed from the filter casing 5, and the filter is replaced or cleaned. If the cartridge filter 15 is moved to a maintenance position below the apparatus and the filter is removed at that position, the filter can be maintained at a low position, and workability is greatly improved as compared with work at a high position. After replacement of the cartridge filter 15 and the like, the filter casing 5 is raised from the maintenance position to the set position. After the filter casing 5 is installed at a predetermined set position, the spray casing 6 is swung in the horizontal direction and set to the original predetermined position.
  • the raw material container 7 placed on the carriage 20 is disposed below the spray casing 6. Then, a raw material container 7 is pushed upward by a lift mechanism (not shown) provided in the air supply unit 8, and the spray casing 6, the filter casing 5, and the cover unit 4 are brought into close contact with each other from the lower side. As a result, the processing container 2 is in a state that can be fluidized, and granulated coating treatment of the granular material is performed by supplying fluidized air, spraying the coating liquid, and the like.
  • FIG. 6 is a table summarizing the results
  • FIG. 7 is a graph comparing the particle size distributions of (a) 30 type and (b) 120 type between the conventional fluidized bed apparatus and the fluidized bed apparatus according to the present invention.
  • the liquid speed: standard ⁇ 1.5 and the supply air temperature up to 100 ° C. are manufactured for both the 30 type and 120 type conventional machines.
  • the physical properties of the granules were good.
  • the liquid speed: standard ⁇ 2.0 and the supply air temperature is 120 ° C.
  • the number of coarse particles increases, the particle size distribution becomes broad, and the physical properties are NG.
  • the treatment using the fluidized bed apparatus 1 a good particle size distribution can be obtained for both the 30 type and the 120 type even when the liquid speed is: standard ⁇ 3.0 and the supply air temperature is 120 ° C. ( In addition, the processing time has been reduced to less than half.
  • the fluidized bed apparatus 1 of the present invention by providing the straight portion 23 in the raw material container 7, the decrease in the flow rate of the processing gas after passing through the plate is suppressed, and the flow of the granular material is activated. Therefore, the stirring and mixing performance is improved as compared with the conventional machine. As a result, it is possible to supply air at a higher temperature and a larger air volume than the conventional machine, and accordingly, the spray liquid speed can be increased, so that the granulation processing time can be shortened. Moreover, since the raw material blow-up accompanying the activation of the flow is effectively suppressed by the taper casing, an increase in the load on the filter can be avoided. Furthermore, an excessive swirling air flow accompanying a large air volume is also appropriately suppressed by the hybrid eye plate structure provided with the vent holes 26, and the flow of the granular material can be activated by an optimum processing air flow.
  • the initial stage of granulation (the time of the whole granulation process) In the initial 1/3 range), the supply speed of the binder liquid, etc. (hereinafter referred to as the liquid speed) is about 290 to 810 g / min, and the flowing gas is about 60 to 80 ° C. 6.0 to 16.0 m 3 / min.
  • the process is performed under the conditions. In order to shorten the processing time under such conditions, it is required to increase the liquid speed, but at the same time, the supply amount of the flowing gas (hereinafter referred to as air volume) must be increased.
  • the present inventors reconsidered the conventional processing conditions under the fluidized bed apparatus 1 described above and essential conditions in the granulation processing. Was examined again.
  • the present inventors focused on the amount of heat in the apparatus during the granulation process, and by capturing various conditions of the granulation process as the amount of heat, a granulated product equivalent to the conventional one can be obtained in a shorter time than before. It was found that it can be manufactured.
  • the granulation process based on the new viewpoint as described above will be described.
  • the amount of heat Q consumed by the processing gas as it passes through the apparatus is considered.
  • This consumed heat quantity Q substantially corresponds to the drying capacity and can be expressed by the following equation.
  • Q (kJ / min) (supply air temperature-exhaust temperature) (K) x air volume (kg / min) x specific heat of air (J / g ⁇ K)
  • the solvent of the binder liquid or the coating liquid is water
  • the relative humidity 40%
  • the temperature of the air is increased to 70 ° C. and granulation is started. Relative humidity decreases from 40% to 3%.
  • the humidity in the processing container gradually increases, and rises toward a relative humidity of 100% along the adiabatic cooling line while evaporating the moisture of the granulated material.
  • the relative humidity reaches 100%, the moisture evaporation rate becomes constant, and the exhaust temperature does not fall below a certain value (for example, 28 ° C.).
  • the amount of heat consumed Q becomes a minimum value at the start of spraying when the air volume is small and the exhaust temperature is high.
  • the water vapor of the processing gas becomes saturated (relative humidity 100%), and reaches a maximum value when the exhaust temperature is lowered to the minimum value. A state in which the exhaust temperature is the lowest temperature to a steady state, the Q value of this time and Q 0.
  • drying capacity the amount of heat actually consumed to evaporate moisture
  • the amount of heat consumed Q is proportional to the air volume, and therefore the value varies depending on the device scale.
  • (a) is a table showing the standard minimum air volume and the eye plate area (cm 2 ) used at the initial stage of granulation for each apparatus scale, and (b) is calculated based on the table of (a). It is a table
  • the liquid to be sprayed is also grasped from the viewpoint of the amount of heat.
  • a value excluding a solid component in the spray liquid is defined as a liquid addition amount.
  • the amount of heat it has is calculated. That is, the amount of heat necessary to evaporate the liquid is considered.
  • the value of heat is also divided by the plate area Sa in order to remove the influence of the device scale, and converted to the amount of heat per unit plate area.
  • the value is B (kJ / min ⁇ cm 2 ). This B value is approximately proportional to the liquid speed.
  • the amount of heat is proportionally distributed according to the mixing ratio in the case of a mixed liquid of water and ethanol.
  • the maximum value of the liquid addition amount per preparation amount differs for each device and for each prescription.
  • the plastic limit of the material (PL value) is used as an index for the liquid absorption capacity of the raw material (PL value). Air is present between the particles of the powder, and when all of this is replaced with liquid (water), it becomes a plastic material (a substance having the property that strain remains even if it is removed when an external force is applied). And if a liquid is added more than this, even if external force is applied, it will return, and this limit is called a plastic limit.
  • the liquid absorption capacity is examined using this plastic limit value (PL value).
  • FIG. 9 (a) is a table showing the liquid speed (g / min) and the eye plate area (cm 2 ) for each device scale
  • FIG. 9 (b) is per unit PL value calculated based on the table of (a). Is a table showing B values (see FIG. 10 for details of each value).
  • PL values of known substances for example, lactose: 0.18 mL / g, corn starch: 0.67 mL / g (excluding equilibrium water of 12% or more), Avicel (registered trademark) PH101: 1.23 mL / g (7 % Water or less), powdered sugar: 0.23 mL / g, mannitol: 0.2 mL / g.
  • lactose 0.18 mL / g
  • corn starch 0.67 mL / g (excluding equilibrium water of 12% or more)
  • Avicel (registered trademark) PH101 1.23 mL / g (7 % Water or less)
  • powdered sugar 0.23 mL / g
  • mannitol 0.2 mL / g.
  • the PL value is proportionally distributed based on the mixing ratio.
  • processing can be performed within the following range of B and C values.
  • the C value is preferably more than wind speed (cm / min) ⁇ 8.5 ⁇ 10 ⁇ 5 kJ / cm 3 and less than or equal to wind speed (cm / min) ⁇ 11 ⁇ 10 ⁇ 5 kJ / cm 3. .
  • FIG. 10 is a table in which the processing conditions and the values of C, B, and A are calculated in each of the 30, 60, and 120 type apparatuses when the dew points of the processing gas supplied to the apparatus are 14 ° C. and 6 ° C. is there.
  • FIG. 11 is a graph in which the calculation results of FIG.
  • the condition “A” can be calculated by simply inputting an air volume, a liquid addition amount, and a PL value in an initial granulation process in a 30-120 type apparatus without considering the apparatus scale. Therefore, it is possible to easily obtain the optimum conditions and shorten the processing time without performing complicated condition setting.
  • the processing conditions described above are merely examples of conditions applicable to the fluidized bed apparatus 1 of the present invention, and the fluidized bed apparatus of the present invention is not limited to the implementation under the processing conditions.
  • the fluidized bed apparatus 1 employs the one-gun side spray method, but the number and arrangement position of the spray guns are not necessarily limited to the configuration of the embodiment. That is, it is possible to use a plurality of spray guns and to arrange the spray in the casing. Further, the spray casing 6 is tapered to form the flow rate suppressing portion on the upper end side of the flow chamber.
  • the configuration is not limited to the tapered shape as long as the cross-sectional area on the upper end side of the flow chamber is enlarged.
  • the spray casing may have a two-stage shape (or a multi-stage shape of three or more stages) that divides the spray casing into a small diameter part and a large diameter part.
  • the stepped portion itself has a tapered shape so that powder particles do not accumulate on the stepped portion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Glanulating (AREA)

Abstract

 流動層装置1は、給気ユニット8と、原料容器コンテナ7、流動室17が形成されたスプレーケーシング6、フィルタケーシング5を有する。原料容器コンテナ7は、目皿板22と、円柱状のストレート部23と、逆円錐台形状のテーパ部24を有する。スプレーケーシング6は、その上方側が下方側よりも断面積が大きいテーパ形状に形成される。流動層装置1にあっては、単位目皿面積当たりの液体の加液量を熱量に換算した値をB(kJ/min・cm2)、粉粒体の吸液能を示すPL値をPLとしたとき、Bは、PL×1.3≦B≦PL×3.2に設定される。

Description

流動層装置及び流動層造粒方法
 本発明は、粉粒体の造粒、コーティング、乾燥処理等に使用される流動層装置及び流動層造粒方法に関し、特に、医薬品や食品等に使用される造粒物を短時間にて製造し得る流動層装置及び流動層造粒方法に関する。
 医薬品や化粧品、食品などの分野では、粉末や顆粒等の粉粒体を気体流によって流動化し、造粒、コーティング、混合、撹拌、乾燥等の処理を行う流動層装置が広く使用されている。流動層装置では、円筒状の処理容器の内部に粉末等の被処理物を投入すると共に、処理容器内に流動気体を供給して粉粒体を流動化させる。流動化された粉粒体には、水やバインダ液、コーティング液等がスプレーノズルにて供給され、造粒やコーティング等の処理が実施される。処理容器の下部には、金網等にて形成された通気性の目皿板が設けられている。目皿板の下方からは、処理気体が供給される。粉末等の被処理物は、この目皿板によって保持されつつ処理気体により流動化される。流動化された被処理物には、バインダ液等が噴霧され、造粒等の処理が行われる。
特開平11-319534号公報 特開2013-71104号公報 特開2009-504584号公報 特開昭54-138871号公報 特開2002-292266号公報
 一方、造粒処理の分野においても、製造コスト等の観点から、処理時間の短縮が求められている。この場合、粉粒体に供給される水やバインダ液等の供給速度(単位時間あたりの供給量)を増加させれば、その分、処理時間も短縮される。例えば、供給速度を2倍にすれば、処理時間は理論上1/2となる。しかしながら、バインダ液等の供給速度を増加させると、処理容器内の粉粒体が過湿状態となる。その結果、流動不良が生じ塊状物が生じたり、粉粒体が団塊状に固結したりするなど、良好な造粒物が得られなくなるという問題が生じる。
 そこで、バインダ液等の供給速度を増加させる場合には、流動不良が生じないように、流動気体の供給量も増加させる必要がある。ところが、流動気体の供給量を増加させると、今度は処理容器内にて粉粒体が大きく吹き上がってしまい、フィルタに付着するなどの不都合が生じる。それ故、従来、造粒処理の分野では、時間短縮の要請がありながらも、良好な製品を確実に得ることが優先され、既存の装置による既存の条件内での造粒しか行われておらず、処理時間短縮の問題は安定志向の中に埋没していた。
 本発明の流動層装置は、気体供給源から処理気体が供給される給気室を内部に備えた給気ユニットと、前記給気ユニットの上方に配置され、被処理物が収容される原料容器コンテナと、前記原料容器コンテナの上方に配置され、その内部に前記被処理物が前記処理気体により浮遊流動する流動室が形成されたスプレーケーシングと、前記スプレーケーシングの上方に配置され、処理気体濾過用のフィルタが配置されたフィルタケーシングと、を有し、前記原料容器コンテナ内に収容した前記被処理物を前記処理気体によって流動化しつつ、流動化された該被処理物に対して液体を噴霧供給することにより、前記被処理物の造粒処理を行う流動層装置であって、前記原料容器コンテナは、前記給気ユニット側の底部に配置され前記被処理物を保持する目皿板と、該目皿板の上方に配置され同径にて上方に延びる円柱状のストレート部と、ストレート部の上方に設けられ上方に向けて大径となった逆円錐台形状に形成されたテーパ部と、を有し、前記目皿板の空気流通部分の面積を目皿面積Saとし、前記液体の加液量にその蒸発潜熱を乗じ、この値を前記目皿面積Saにて除することにより求めた、単位目皿面積当たりの前記液体の加液量を熱量に換算した値をB(kJ/min・cm2)、前記被処理物の吸液能の指標として塑性限界値を用い、これをPLとしたとき、前記BがPL×1.3≦B≦PL×3.2であることを特徴とする。
 前記流動層装置において、前記ストレート部の高さHsを、前記目皿板の直径に対して1/6~1/2に形成しても良い。また、前記スプレーケーシングの上方側(フィルタケーシング側)に、下方側(原料容器コンテナ側)よりも断面積が大きい流速抑制部を設けても良い。その場合、前記スプレーケーシングを上方側が下方側よりも断面積が大きいテーパ形状に形成しても良い。さらに、前記目皿板に、該目皿板内に放射状に配置され、当該目皿板上方に前記処理気体の旋回気流を発生させるスリットと、該目皿板に散点状に配置され、前記処理気体が上方に向かって噴出し前記スリットによる前記旋回気流の形成を抑制する通気孔と、を設けても良い。
 一方、前記流動層装置において、前記Bを、好ましくは、PL×1.7≦B≦PL×3.2としても良い。また、前記処理気体が前記流動層装置を通過する際に消費する熱量をQ(Q(kJ/min)=(給気温度-排気温度)(K)×風量(kg/min)×空気比熱(J/g・K))とし、前記処理気体の前記処理容器からの排気温度が最低温度となった状態を定常状態とし、該定常状態における前記QをQ、前記Qを前記目皿面積Saにて除することにより求めた、単位目皿面積当たりにおける前記定常状態の消費熱量QをC(=Q/Sa)(kJ/min・cm2)としたとき、前記消費熱量当たりの前記加液量A(=B/C)を、PL×6.8≦A≦PL×11としても良い。この場合、前記Cを風速(cm/min)×8.5×10-5kJ/cm3を超え、風速(cm/min)×11×10-5kJ/cm3以下としても良い。さらに、前記流動層装置は、前記目皿板の前記目皿面積Saが0.1m2を超える装置であっても良い。加えて、前記PL値を0.1以上0.5以下としても良い。
 一方、本発明の流動層造粒方法は、原料容器コンテナ内に収容した被処理物を処理気体によって流動化しつつ、流動化された該被処理物に対して液体を噴霧供給することにより、前記被処理物の造粒処理を行う流動層造粒方法であって、該流動層造粒方法は、気体供給源から処理気体が供給される給気室を内部に備えた給気ユニットと、前記給気ユニットの上方に配置され、被処理物が収容される原料容器コンテナと、前記原料容器コンテナの上方に配置され、その内部に前記被処理物が前記処理気体により浮遊流動する流動室が形成されたスプレーケーシングと、前記スプレーケーシングの上方に配置され、処理気体濾過用のフィルタが配置されたフィルタケーシングと、を有し、前記原料容器コンテナに、前記給気ユニット側の底部に配置され前記被処理物を保持する目皿板と、該目皿板の上方に配置され同径にて上方に延びる円柱状のストレート部と、ストレート部の上方に設けられ上方に向けて大径となった逆円錐台形状に形成されたテーパ部と、を設けた流動層装置によって実施され、前記目皿板の空気流通部分の面積を目皿面積Saとし、前記液体の加液量にその蒸発潜熱を乗じ、この値を前記目皿面積Saにて除することにより求めた、単位目皿面積当たりの前記液体の加液量を熱量に換算した値をB(kJ/min・cm2)、前記被処理物の吸液能の指標として塑性限界値を用い、これをPLとしたとき、前記BがPL×1.3≦B≦PL×3.2であることを特徴とする。
 前記流動層造粒方法において、前記処理気体が前記流動層装置を通過する際に消費する熱量をQ(kJ/min)=(給気温度-排気温度)(K)×風量(kg/min)×空気比熱(J/g・K)とし、前記処理気体の前記処理容器からの排気温度が最低温度となった状態を定常状態とし、該定常状態における前記QをQ、前記Qを前記目皿面積Saにて除することにより求めた、単位目皿面積当たりにおける前記定常状態の消費熱量QをC(=Q/Sa)(kJ/min・cm2)としたとき、前記消費熱量当たりの前記加液量A(=B/C)を、PL×6.8≦A≦PL×11としても良い。
 本発明の流動層装置によれば、原料容器コンテナの目皿板の上方に円柱状のストレート部を設けると共に、単位目皿面積当たりの加液量を熱量に換算した値をB(kJ/min・cm2)、被処理物の吸液能力を示すPL値をPLとしたとき、前記BをPL×1.3≦B≦PL×3.2とすることにより、従来と同等の造粒物を従来よりも短時間にて製造可能となる。この結果、製品品質を低下させることなく造粒処理を実施でき、処理時間の短縮が可能となる。
 本発明の流動層造粒方法によれば、原料容器コンテナの目皿板の上方に円柱状のストレート部を設けた流動層装置を使用し、単位目皿面積当たりの加液量を熱量に換算した値をB(kJ/min・cm2)、被処理物の吸液能力を示すPL値をPLとしたとき、前記BをPL×1.3≦B≦PL×3.2とすることにより、従来と同等の造粒物を従来よりも短時間にて製造可能となる。この結果、製品品質を低下させることなく造粒処理を実施でき、処理時間の短縮が可能となる。
本発明の一実施形態である流動層装置の外観を示す正面図 図1の流動層装置の側面図である。 テーパ形状となった流動室の断面積の違いを示す説明図である。 原料容器コンテナのストレート部の高さHsの説明図である。 (a)は目皿板の全体構成を示す説明図、(b)はスリットの構成を示す断面図である。 従来の流動層装置(従来機)と本発明による流動層装置(改良機)において、スプレー速度(液速)や給気温度を変えて造粒処理を行った結果をまとめた表である。 (a)30型と(b)120型における粒度分布を、従来の流動層装置と本発明による流動層装置で比較したグラフである。 (a)は装置スケールごとの造粒初期に用いられる標準的な最小風量と目皿面積(cm2)を示す表、(b)は(a)の表に基づいて算出したC値を示す表である。 (a)は装置スケールごとの液速(g/min)と目皿面積(cm2)を示す表、(b)は(a)の表に基づいて算出した単位PL値当たりのB値を示す表である。但し、液速は結合剤(固形分)7%を含んだ溶液のものであり、その内の揮発分93%が加液量になる。 装置に供給される処理気体の露点が14°Cと6°Cの場合における30,60,120型の各装置における処理条件とC,B,A(=B/C)の各値を計算した表である。30型はかさ密度0.5g/mLの粉粒体で概ね30kgを処理できる装置の型式であり、同様に60型は60kg、120型は120kgの処理が可能な装置の型式である。 図10の計算結果をプロットしたグラフである。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。以下の実施形態の目的は、製品品質を維持しつつ処理時間の短縮が可能な流動層装置及び流動層造粒方法を提供することにある。図1は、本発明の一実施形態である流動層装置の外観を示す正面図、図2は、図1の流動層装置の側面図である。図1の流動層装置1は、例えば、医薬品や食品等の製造に使用される打錠用顆粒等の造粒物や、顆粒状の医薬品や食品等の製造に使用される。本発明による流動層造粒方法は流動層装置1にて実施され、流動層装置1内では、処理気体によって流動化された粉粒体にバインダ液やコーティング液が噴霧される。
 流動層装置1には、原料材となる粉粒体(被処理物)が収容され、所望の造粒コーティング処理や乾燥処理等が行われる円筒状の処理容器2が設けられている。処理容器2はステンレス鋼にて形成されており、図1,2に示すように、支持台3によって支持されている。流動層装置1の処理容器2は、上から順に、カバーユニット4、フィルタケーシング5、スプレーケーシング6、原料容器コンテナ7及び給気ユニット8を重ねて配置した形態となっている。粉粒体処理時には、カバーユニット4とフィルタケーシング5間など各ユニット間は、リング状のシール部材によって気密に締結される。
 カバーユニット4は、カバーブラケット11によって支持台3に固定支持されている。カバーユニット4の一端には排気口12が形成されている。排気口12には、図示しない排気ダクトが接続される。カバーユニット4の下面側には、スプレーケーシング6とは別途形成されたフィルタケーシング5が取り付けられる。フィルタケーシング5は、支持台3に組み込まれた昇降機構13によって、上下方向に移動可能に設けられている。フィルタケーシング5の上端部には円板状の天板14が固定されている。天板14にはカートリッジフィルタ15が取り付けられている。天板14は、ケーシング-天板間から粉漏れが生じないように、フィルタケーシング5の内周に隙間なく溶接固定されている。
 スプレーケーシング6は、スウィングブラケット16にて支持台3に取り付けられており、水平方向にスウィング移動可能に設けられている。流動層装置1では、スプレーケーシング6がフィルタケーシング5と分離されているため、スプレーケーシング6を水平方向に退避させることにより、フィルタケーシング5内のカートリッジフィルタ15に下方から接近し作業を行うことが可能である。
 スプレーケーシング6内には流動室17が形成されている。スプレーケーシング6は、側壁部18の上方側が拡径したテーパ形状となっている。流動層装置1では、流動室17の上端部17aの断面積は、下端部17bの断面積の約1.3倍となっている(例えば、上端部17a:φ820mm,0.53m2、下端部17b:φ720mm,0.41m2、図3参照)。流動室17の上端部17a側を下端部17b側よりも大径に形成すると、処理気体の風速が流動室17の上方に向かうに連れて低下する。すなわち、流動室17の上端部17a側は流速抑制部として機能し、粉粒体の流動高さが抑えられる。従って、カートリッジフィルタ15の負担が軽減されると共に、フィルタケーシング5への粉粒体の付着も低減する。
 スプレーケーシング6の側壁部18には、流動室17内の粉粒体にバインダ液やコーティング液を噴霧するためのスプレーガン19が取り付けられている。スプレーガン19には、図示しないチューブによって、装置外に設けられたポンプからバインダ液等が供給される。流動層装置1は、スプレーガン19を側壁部18に1個配した1ガンサイドスプレー方式を採用している。スプレーガン19を側壁部18に配することにより、スプレーガン上に粉粒体が堆積することがなく、メンテナンスが容易となると共に、堆積物による団塊発生も抑えられ造粒品質も向上する。また、流動層装置1では、処理時間短縮のため、スプレーガン19として、高速スプレーが可能な高性能ガンが使用されている。
 スプレーケーシング6の下方には原料容器コンテナ7が配置されている。原料容器コンテナ7内には被処理物となる粉粒体が投入される。原料容器コンテナ7は、床面上を自在に移動可能なように台車20に取り付けられている。原料容器コンテナ7の内部には原料収容室21が形成されている。原料容器コンテナ7の下部には通気性を有する目皿板22が設けられている。原料収容室21内に投入された粉粒体は目皿板22上にて支持される。原料容器コンテナ7は、円柱状のストレート部23と、逆円錐台形状のテーパ部24とから構成されている。ストレート部23は、目皿板22の上方に配置され、同径にて上方に延びている。テーパ部24は、ストレート部23の上方に設けられ、上方に向けて大径となっている。ストレート部23の高さHsは、目皿板22の直径φに対して1/6~1/2程度の大きさになっている(例えば、φ497mmの目皿板22に対してはHs=80~250mm程度、φ900mmの目皿板22に対してはHs=150~450mm程度、図4参照)。
 目皿板22に隣接してストレート部23を設けることにより、目皿板直上からテーパ部を設けた場合に比して、目皿板通過後における処理気体の風速低下が抑えられる。すなわち、ストレート部23は流速維持部として機能し、粉粒体の流動が促進され、撹拌混合性能が向上する。ストレート部23の設置により、原料容器コンテナ7自体の高さが高くなるが、スプレーケーシング6の高さを抑えることにより、装置全体の高さは従来機と同等に維持できる。前述のように、流動層装置1では、スプレーケーシング6の上部は流速抑制部となっており、大風量でありながら流動高さを抑制できる。その結果、流動層装置1は、従来機よりもスプレーケーシング6の高さを抑えることができ、装置全体の高さを増大させることなく、ストレート部23を設けることが可能である。
 目皿板22には、図5(a)に示すように、放射状に配置されたスリット25と、通気孔26が設けられている。スリット25は、開口部25aと、開口部25aに覆い被さるように形成された風向片25bとから構成されている(図5(b)参照)。処理気体は、開口部25aから周方向に向かって導出され、目皿板22上方に処理気体の旋回気流が発生する。通気孔26は、目皿板22を上下方向に貫通する孔となっている。目皿板22に向かって供給された処理気体の圧力損失を抑えるべく、通気孔26は散点状に設けられている。通気孔26を通過した処理気体は、そのまま上方に噴出し、スリット25から噴出する気流と合流する。目皿板22上には、スリット25を通過した旋回気流と、通気孔26を通過した上方噴出気流が存在する。
 通気孔26の上方噴出気流は、スリット25による旋回気流形成を弱める作用を有する。従って、旋回気流を求める装置では、通気孔26のような存在は不要である。一方、処理気体の圧力損失を考えると、風向片25bのあるスリット25のような構成は好ましくない。これに対し、流動層装置1では、大風量による処理が想定されており、スリット25によって、強過ぎる旋回気流が形成されてしまうおそれがある。強過ぎる旋回気流は、造粒処理には却って妨げとなる場合がある。そこで、目皿板22では、強過ぎる旋回気流を通気孔26からの上方噴出気流によって緩和・抑制している。つまり、通気孔26は、圧力損失低下を図りつつ、過大な旋回気流の発生を抑えている。目皿板22は、スリット25と通気孔26の相乗作用により、大風量下においても適切な旋回気流が得られるハイブリッド目皿である。
 原料容器コンテナ7の下方には、内部に給気室27を有する給気ユニット8が据え付けられている。給気ユニット8は、給気室27に連通する給気ダクト28に接続されている。給気ダクト28は、装置外に設けられた図示しないエア供給源に接続されている。給気室27内には、給気ダクト28を介して、粉粒体を流動化するための処理気体(流動エア)が供給される。粉粒体を流動状態とした処理気体は、微細な固体粒子がカートリッジフィルタ15によって除去されて清浄化され、その後、排気口12から装置外へと排出される。
 流動層装置1では、給気ダクト28から給気室27に流動エア(処理気体)を供給すると、このエアが目皿板22を通って原料収容室21に流入する。前述のように、目皿板22は旋回流発生目皿であり、目皿板22を通った流動エアは旋回気流を形成し、原料収容室21内の粉粒体を吹き上げる。その際、目皿板22では、通気孔26の作用により過大な旋回気流は抑えられ、大風量であっても適度な旋回気流が発生する。また、原料容器コンテナ7の下部にストレート部23が設けられているため、流動エアは流速が維持された状態で吹き上がりる。その結果、粉粒体の流動が促進され、原料収容室21や流動室17内にて良好な撹拌混合が行われる。その一方、粉粒体は、大風量にて大きく流動しつつも、粉粒体の流動高さは抑えられる。これは、スプレーケーシング6がテーパ形状となっており、流動室上端部側が流速抑制部として機能するためである。従って、活発な撹拌混合が行われながらも、フィルタや缶体への付着が少なく抑えられる。そして、活発な撹拌混合が行われている状態にて、スプレーガン19から適宜バインダ液やコーティング液をスプレー状に噴霧することにより、粉粒体の造粒処理やコーティング処理が実行される。
 通常の造粒処理では、乾燥能力以上の液速にてスプレーを行う。そして、水やエタノールなどのバインダ液やコーティング液の溶媒を原料の粉粒体に蓄積させつつ、規定量までスプレーを行う。但し、原料に水やエタノールなどの液体が蓄積されると流動性が低下するため、多くの場合、処理の途中段階で風量を大きくする。従って、原料中の蓄積液量は、造粒初期にある程度まで上昇する。そして、ある程度水やエタノールなどの液体が蓄積されると、運転条件が変更され(主として風量増大)、蓄積液量の上昇を緩やか、あるいは、一定かやや下降気味に維持しつつ規定量までスプレーが行われる。バインダ液等は連続又は断続的にスプレーされ、その液速は、一定、あるいは徐々に大きくすることが一般的である。
 一方、造粒処理を行うに連れて、カートリッジフィルタ15に微粉が付着して濾過効率が低下するため、フィルタの交換・洗浄を適宜行う必要がある。その場合、流動層装置1ではまず、台車20を動かし原料容器コンテナ7を装置外に引き出す。次に、スプレーケーシング6を水平方向にスウィングさせ、フィルタケーシング5の下方を空ける。スプレーケーシング6を側方に退避させた後、フィルタケーシング5をセット位置からメンテナンス位置に下降させる。
 フィルタケーシング5をメンテナンス位置まで降ろした後、カートリッジフィルタ15をフィルタケーシング5から取り外し、フィルタの交換や洗浄を行う。カートリッジフィルタ15を装置下方のメンテナンス位置に移動させ、その位置でフィルタの取り外しを行うと、フィルタを低位置でメンテナンスでき、高位置での作業に比して作業性が大幅に改善される。カートリッジフィルタ15の交換等を行った後、フィルタケーシング5をメンテナンス位置からセット位置に上昇させる。フィルタケーシング5を所定のセット位置に設置した後、スプレーケーシング6を水平方向にスウィングさせ、元の所定位置にセッティングする。
 フィルタケーシング5やスプレーケーシング6を所定位置にセットした後、台車20に載った原料容器コンテナ7をスプレーケーシング6の下方に配置する。そして、給気ユニット8内に設けられた図示しないリフト機構により、原料容器コンテナ7を上方に押し上げ、下方側からスプレーケーシング6とフィルタケーシング5、カバーユニット4を互いに密接させる。この結果、処理容器2が流動処理可能な状態となり、流動エアの供給やコーティング液の噴霧等を行うことにより、粉粒体の造粒コーティング処理が実施される。
 そこで、流動層装置1における処理性能を確認すべく、従来の流動層装置(スプレーケーシング:テーパなしの直胴状、ストレート部23なし、金網にて形成された通常用いられる通気性の目皿板を使用)と流動層装置1(30型,120型)において、スプレー速度(液速)や給気温度を変えて造粒処理を行った。図6はその結果をまとめた表、図7は、(a)30型と(b)120型における粒度分布を、従来の流動層装置と本発明による流動層装置で比較したグラフである。
 図6,7に示したように、発明者らの実験によれば、従来機は30型・120型の何れにおいても、液速:標準×1.5,給気温度100°Cまでは造粒物の物性は良好であった。しかしながら、液速:標準×2.0,給気温度120°Cとすると、粗大粒子が多くなり、粒度分布がブロード化してしまい、物性としてはNGとなった。これに対し、流動層装置1を用いた処理では、液速:標準×3.0,給気温度120°Cの場合でも、30型・120型の何れにおいても良好な粒度分布が得られ(図7参照)、しかも、処理時間は半分以下に短縮された。
 以上のように、本発明の流動層装置1では、原料容器コンテナ7にストレート部23を設けることにより、目皿板通過後の処理気体の流速低下を抑え、粉粒体の流動を活発化させているので、従来機に比して、撹拌混合性能が向上する。その結果、従来機よりも、高温・大風量の給気が可能となり、それに伴い、スプレー液速も増大できるため、造粒処理時間の短縮が可能となる。また、流動の活発化に伴う原料の吹き上がりも、テーパケーシングにより効果的に抑制されるため、フィルタへの負担増も避けることができる。さらに、大風量に伴う過度な旋回気流も、通気孔26を設けたハイブリッド目皿構造により適宜抑えられ、最適な処理気流により粉粒体の流動を活発化させることが可能となる。
 ところで、従来の造粒方法では、目皿面積が0.1m2未満の小型機・実験機を除くと、例えば30~120型の装置においては、造粒初期(造粒処理全過程の時間的に初期1/3の範囲)では、バインダ液等の供給速度(以下、液速)は290~810g/min程度、流動気体は60~80°C・6.0~16.0m3/min程度の条件にて処理が実施されている。このような条件下にて処理時間を短縮するには、液速を上げることが求められるが、同時に流動気体の供給量(以下、風量)も増やさなければならない。すると、前述のように、吹き上がりの問題が生じるため、単に、液速・風量を上げれば良いというものではない。また、風量以外にも、温度条件や粉粒体の吸液能力、処理量、装置サイズなど、良好な造粒処理を行うには種々の要素を考慮する必要がある。従って、結局のところ、経験的に無難な処理条件が採用されるのが通例である。
 このような課題がある中、本発明者らは、処理時間短縮という命題を達成するため、前述の流動層装置1の下、従来の処理条件を改めて見直すと共に、造粒処理における本質的な条件を改めて検討した。その結果、本発明者らは、造粒処理時における装置内の熱量に着目し、造粒処理の諸条件を熱量として捉えることにより、従来と同等の造粒物を従来よりも短時間にて製造可能であることが分かった。以下、前述のような新しい観点に基づく造粒処理について説明する。
 ここではまず、処理気体が装置通過に伴って消費する熱量Qを考える。この消費熱量Qは、概ね乾燥能力に相当し、次式にて表すことができる。
  Q(kJ/min)=(給気温度-排気温度)(K)×風量(kg/min)×空気比熱(J/g・K)
 例えば、バインダ液やコーティング液の溶媒が水の場合、取り入れ空気の状態が20°C、相対湿度40%のとき、空気を70°Cに昇温し造粒を開始すると、温度上昇に伴い、相対湿度は40%から3%に低下する。ここでスプレーを開始すると、処理容器内の湿度が徐々に増加し、造粒物の水分を蒸発させつつ断熱冷却線に沿って相対湿度100%に向かって上昇する。そして、相対湿度100%に達すると水分蒸発速度が一定となり、排気温度が一定値(例えば、28°C)以下に下がらなくなる。消費熱量Qは、風量が小さく、排気温度が高くなるスプレー開始時に最小値となる。また、スプレー開始後に、処理気体の水蒸気が飽和状態(相対湿度100%)となり、排気温度が最低値まで下がったとき最大値となる。排気温度が最低温度となった状態を定常状態とし、このときのQ値をQとする。
 消費熱量Qのうち、実際に水分を蒸発させるのに消費した熱量(=乾燥能力)は、処理容器からの放熱等を考慮し、所定の熱効率係数を乗じる必要がある。この熱効率係数は、装置スケールや給気条件によって異なる。
 消費熱量Qは、上式から分かるように、風量に比例するため、装置スケールによって値が異なる。仕込み量当たりの風量は、過大でない限り、大きい方が乾燥能力が高くなり有利となるが、その最大値は装置ごとに決まる。そこで、ここでは、Qを目皿板22における空気流通部分の面積(以下、目皿面積)で除し、装置スケールの影響を除いた値を使用する。そして、前述のQを目皿面積Saで除した値、すなわち、単位目皿面積当たりの消費熱量を考え、その値をC=Q/Sa(kJ/min・cm2)とする。図8(a)は、装置スケールごとの造粒初期に用いられる標準的な最小風量と目皿面積(cm2)を示す表、同(b)は、(a)の表に基づいて算出したC値を示す表である(各値の詳細は図10参照)。
 次に、スプレーされる液体についても熱量という観点で捉える。ここでは、スプレー液のうち、固形成分を除いた値を加液量とする。次に、加液量に蒸発潜熱を乗じることにより、それが持つ熱量を算出する。つまり、その液体を蒸発させるために必要な熱量を考える。熱量の値も、装置スケールの影響を除くべく、目皿面積Saにて除し、単位目皿面積当たりの熱量に換算する。そして、その値をB(kJ/min・cm2)とする。このB値は概ね液速に比例する。蒸発潜熱による熱量換算は、例えば、水とエタノールの混合液の場合は、その混合比に応じて熱量を比例配分する。仕込み量当たりの加液量の最大値は、装置ごと、処方ごとに異なる。
 一方、造粒処理に際しては、原料の吸液能も考慮する必要がある。前述のように、造粒処理過程では、原料に水分等の液体を蓄積させつつ規定量までスプレーを行う。造粒処理では、従来より、原料の吸液能としては、その物質の塑性限界(Plastic Limit)が指標として用いられている(PL値)。粉体の粒子間には空気が存在しており、これを全て液体(水)で置換すると、塑性物(外力を加えた場合、それを除いても歪みが残る性質を有する物質)となる。そして、これ以上に液を加えると、外力を加えても元に戻ってしまい、この限界が塑性限界と呼ばれる。ここでは、吸液能をこの塑性限界値(PL値)を用いて検討する。
 通常、造粒処理においては、各処方でスプレー可能な液速は概ねPL値に比例する。従って、上記Bも原料のPL値に比例すると考えられ、PL値による換算が必要となる。図9(a)は、装置スケールごとの液速(g/min)と目皿面積(cm2)を示す表、同(b)は、(a)の表に基づいて算出した単位PL値当たりのB値を示す表である(各値の詳細は図10参照)。既知物質のPL値としては、例えば、乳糖:0.18mL/g、コーンスターチ:0.67mL/g(12%以上の平衡水分を差し引く)、アビセル(登録商標)PH101:1.23mL/g(7%以下の水分を差し引く)、粉糖:0.23mL/g、マンニトール:0.2mL/gである。混合物の場合は、PL値を混合比に基づいて比例配分する。
 B,Cを念頭に置き、前述の図6の条件をB,Cの観点にて改めて検討する。すると、本発明による流動層装置1では、次のようなB,C値の範囲で処理が可能である。まず、B値については、液速が標準×1.5を超える値、すなわち、単位PL値当たりのB(以下、[B]と称す;[B]=B/PL)が1.3以上3.2以下の範囲(1.3≦[B]≦3.2)での処理が可能となる。この場合、時間短縮がより効果的に現れる、液速が標準×2.0~3.0の範囲を考えると、1.7≦[B]≦3.2がより好ましい。また、C値については、風速(cm/min)×8.5×10-5kJ/cm3を超え、風速(cm/min)×11×10-5kJ/cm3以下であることが好ましい。
 一方、ここではC,Bに加え、更にそれらの比A=B/Cを考える。この比Aは無次元であり、消費熱量当たりの加液量を示している。これは、加液量と乾燥能力との比とも考えられ、簡単に言えば、スプレー量が乾燥能力の何倍になっているのか、を示している。図10は、装置に供給される処理気体の露点が14°Cと6°Cの場合における30,60,120型の各装置における処理条件とC,B,Aの各値を計算した表である。また、図11は、図10の計算結果をプロットしたグラフであり、横軸に[B]、縦軸にCを取り、図中の斜線は単位PL値当たりのA(以下、[A]と称す;[A]=A/PL)の値を示している。[B]と[A]の値は前述のPL値として、標準処方値(0.33)を使用している。標準処方とは、細粒剤の流動層造粒の標準処方として使用されている乳糖:コーンスターチ=7:3の処方である。
 そこで、「A」の観点から従来の造粒方法を見ると、目皿面積が0.1m2を超える30型以上の装置においては、造粒初期に用いられる標準的な最小風量では、「B」は、次のようになる。すなわち、目皿通過風速が0.4以上1.5m/sec未満(風量/目皿面積)の場合、図9(b)に示すように、[B]が液速=標準×1.5にて1.3~1.6、同じく×2にて1.7~2.1であることから、
  ・B:PL×1.7(kJ/min・cm2)未満
   (液速=標準×1.5:標準処理上限まで含む)
   (PL:原料のPL値)
となる。前述のように、A=B/Cであることから、Cとして、図8(b)から、従来機上限の100°C(図11参照)におけるC値の上限値0.25を用いてAを計算すると、
  ・A:PL×1.7÷0.25=PL×6.8未満
となる。これは、図10の計算結果をプロットした図11では領域Xの値となっている。これに対し、従来の処理条件は、「A」を基準として見ると、概ね単位PL値当たりのA([A])が「7」の線よりも上(6.8未満)の領域となる。
 次に、流動層装置1におけるB,Cの条件から[A](=[B]/[C])を求めると、1.3≦[B]≦3.2、0.24<[C]≦0.31から、5.4≦[A]≦10.3なる条件が得られる。これは、図11における従来条件の[A]=6.8の上限層から、それを超え[A]=10のラインまで良好な造粒処理が可能なことを意味している。すなわち、流動層装置1では、30型における[A]=8.2(図11の点P1),9.8(同P2)、120型の[A]=8.5(同P3),10.3(同P4)の各条件にて造粒が可能となる。発明者らの実験によると、[A]の値が11を超えると、原料がブロッキングを起こし粒度分布にバラツキが生じることが分かっており、[A]は11以下であることが好ましい。
 上述のように、処理条件を「A」という観点から捉え、従来機と流動層装置1を比較すると、図11からも分かるように、流動層装置1における造粒条件と、従来機の造粒条件の違いが明確となる。また、条件「A」は、30~120型の装置における造粒初期のプロセスにおいて、装置スケールを考えることなく、風量や加液量、PL値を適宜入力するだけで算出できる。従って、煩雑な条件設定を行うことなく、容易に最適条件を得て処理時間の短縮が可能となる。
 本発明は前記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
 例えば、前述の処理条件はあくまでも本発明の流動層装置1に適用可能な条件の一例であり、本発明の流動層装置は前記処理条件での実施には限定されない。また、流動層装置1では、前述のように1ガンサイドスプレー方式を採用しているが、スプレーガンの個数や配置位置は必ずしも実施形態の構成には限定されない。すなわち、複数個のスプレーガンを使用することも、また、ケーシング内にスプレーを配置することも可能である。さらに、流動室上端部側に流速抑制部を形成すべく、スプレーケーシング6をテーパ形状としているが、流動室上端部側の断面積が拡大する構成であれば良く、テーパ形状には限定されない。例えば、スプレーケーシングを小径部と大径部に分ける2段形状(あるいは3段以上の複数段形状)であっても良い。ただし、段部に粉粒体が堆積しないように、段部自体はテーパ形状とした方が好ましい。
 1  流動層装置           2  処理容器
 3  支持台             4  カバーユニット
 5  フィルタケーシング       6  スプレーケーシング
 7  原料容器コンテナ        8  給気ユニット
11  カバーブラケット       12  排気口
13  昇降機構           14  天板
15  カートリッジフィルタ     16  スウィングブラケット
17  流動室            17a 上端部
17b 下端部            18  側壁部
19  スプレーガン         20  台車
21  原料収容室          22  目皿板
23  ストレート部         24  テーパ部
25  スリット           25a 開口部
25b 風向片            26  通気孔
27  給気室            28  給気ダクト
Hs  ストレート部高さ       Q   消費熱量
Sa  目皿面積
C   単位目皿面積当たりにおける消費熱量Q
B   単位目皿面積当たりの液体の加液量を熱量に換算した値
A   消費熱量当たりの加液量

Claims (12)

  1.  気体供給源から処理気体が供給される給気室を内部に備えた給気ユニットと、
     前記給気ユニットの上方に配置され、被処理物が収容される原料容器コンテナと、
     前記原料容器コンテナの上方に配置され、その内部に前記被処理物が前記処理気体により浮遊流動する流動室が形成されたスプレーケーシングと、
     前記スプレーケーシングの上方に配置され、処理気体濾過用のフィルタが配置されたフィルタケーシングと、を有し、
     前記原料容器コンテナ内に収容した前記被処理物を前記処理気体によって流動化しつつ、流動化された該被処理物に対して液体を噴霧供給することにより、前記被処理物の造粒処理を行う流動層装置であって、
     前記原料容器コンテナは、前記給気ユニット側の底部に配置され前記被処理物を保持する目皿板と、該目皿板の上方に配置され同径にて上方に延びる円柱状のストレート部と、ストレート部の上方に設けられ上方に向けて大径となった逆円錐台形状に形成されたテーパ部と、を有し、
     前記目皿板の空気流通部分の面積を目皿面積Saとし、前記液体の加液量にその蒸発潜熱を乗じ、この値を前記目皿面積Saにて除することにより求めた、単位目皿面積当たりの前記液体の加液量を熱量に換算した値をB(kJ/min・cm2)、
     前記被処理物の吸液能の指標として塑性限界値を用い、これをPLとしたとき、
     前記BがPL×1.3≦B≦PL×3.2であることを特徴とする流動層装置。
  2.  請求項1記載の流動層装置において、
     前記ストレート部の高さHsは、前記目皿板の直径に対して1/6~1/2に形成されてなることを特徴とする流動層装置。
  3.  請求項1又は2記載の流動層装置において、
     前記スプレーケーシング上方側に下方側よりも断面積が大きい流速抑制部を有することを特徴とする流動層装置。
  4.  請求項3記載の流動層装置において、
     前記スプレーケーシングは、その上方側が下方側よりも断面積が大きいテーパ形状に形成されてなることを特徴とする流動層装置。
  5.  請求項1~4の何れか1項に記載の流動層装置において、
     前記目皿板は、
     該目皿板内に放射状に配置され、当該目皿板上方に前記処理気体の旋回気流を発生させるスリットと、
     該目皿板に散点状に配置され、前記処理気体が上方に向かって噴出し前記スリットによる前記旋回気流の形成を抑制する通気孔と、有することを特徴とする流動層装置。
  6.  請求項1~5の何れか1項に記載の流動層装置において、
     前記Bが、PL×1.7≦B≦PL×3.2であることを特徴とする流動層装置。
  7.  請求項1~6の何れか1項に記載の流動層装置において、
     前記処理気体が前記流動層装置を通過する際に消費する熱量をQとし、
      Q(kJ/min)=(給気温度-排気温度)(K)×風量(kg/min)×空気比熱(J/g・K)
     前記処理気体の前記処理容器からの排気温度が最低温度となった状態を定常状態とし、該定常状態における前記QをQ
     前記Qを前記目皿面積Saにて除することにより求めた、単位目皿面積当たりにおける前記定常状態の消費熱量QをC(=Q/Sa)(kJ/min・cm2)としたとき、
     前記消費熱量当たりの前記加液量A(=B/C)を、
      PL×6.8≦A≦PL×11
    とすることを特徴とする流動層装置。
  8.  請求項7記載の流動層装置において、
     前記Cが、風速(cm/min)×8.5×10-5kJ/cm3を超え、風速(cm/min)×11×10-5kJ/cm3以下であることを特徴とする流動層装置。
  9.  請求項1~8の何れか1項に記載の流動層装置において、
     前記流動層装置は、前記目皿板の前記目皿面積Saが0.1m2を超える装置であることを特徴とする流動層装置。
  10.  請求項1~9の何れか1項に記載の流動層装置において、
     前記PL値が0.1以上0.5以下であることを特徴とする流動層装置。
  11.  原料容器コンテナ内に収容した被処理物を処理気体によって流動化しつつ、流動化された該被処理物に対して液体を噴霧供給することにより、前記被処理物の造粒処理を行う流動層造粒方法であって、
     該流動層造粒方法は、
     気体供給源から処理気体が供給される給気室を内部に備えた給気ユニットと、
     前記給気ユニットの上方に配置され、被処理物が収容される原料容器コンテナと、
     前記原料容器コンテナの上方に配置され、その内部に前記被処理物が前記処理気体により浮遊流動する流動室が形成されたスプレーケーシングと、
     前記スプレーケーシングの上方に配置され、処理気体濾過用のフィルタが配置されたフィルタケーシングと、を有し、
     前記原料容器コンテナに、前記給気ユニット側の底部に配置され前記被処理物を保持する目皿板と、該目皿板の上方に配置され同径にて上方に延びる円柱状のストレート部と、ストレート部の上方に設けられ上方に向けて大径となった逆円錐台形状に形成されたテーパ部と、を設けた流動層装置によって実施され、
     前記目皿板の空気流通部分の面積を目皿面積Saとし、前記液体の加液量にその蒸発潜熱を乗じ、この値を前記目皿面積Saにて除することにより求めた、単位目皿面積当たりの前記液体の加液量を熱量に換算した値をB(kJ/min・cm2)、
     前記被処理物の吸液能の指標として塑性限界値を用い、これをPLとしたとき、
     前記BがPL×1.3≦B≦PL×3.2であることを特徴とする流動層造粒方法。
  12.  請求項11記載の流動層造粒方法において、
     前記処理気体が前記流動層装置を通過する際に消費する熱量をQとし、
      Q(kJ/min)=(給気温度-排気温度)(K)×風量(kg/min)×空気比熱(J/g・K)
     前記処理気体の前記処理容器からの排気温度が最低温度となった状態を定常状態とし、該定常状態における前記QをQ
     前記Qを前記目皿面積Saにて除することにより求めた、単位目皿面積当たりにおける前記定常状態の消費熱量QをC(=Q/Sa)(kJ/min・cm2)としたとき、
     前記消費熱量当たりの前記加液量A(=B/C)を、
      PL×6.8≦A≦PL×11
    とすることを特徴とする流動層造粒方法。
PCT/JP2015/068289 2014-06-30 2015-06-25 流動層装置及び流動層造粒方法 WO2016002608A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014134206A JP2016010783A (ja) 2014-06-30 2014-06-30 流動層装置
JP2014-134206 2014-06-30
JP2015-044314 2015-03-06
JP2015044314 2015-03-06

Publications (1)

Publication Number Publication Date
WO2016002608A1 true WO2016002608A1 (ja) 2016-01-07

Family

ID=55019150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068289 WO2016002608A1 (ja) 2014-06-30 2015-06-25 流動層装置及び流動層造粒方法

Country Status (1)

Country Link
WO (1) WO2016002608A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07180959A (ja) * 1993-12-24 1995-07-18 Kansoon Kogyo Kk 熱風気流式乾燥ドラム
JPH11319534A (ja) * 1998-03-18 1999-11-24 Hosokawa Micron Corp 造粒装置
JP2001009258A (ja) * 1999-07-02 2001-01-16 Pauretsuku:Kk 粉粒体の流動層処理方法
JP2002292266A (ja) * 2001-03-30 2002-10-08 Okawara Mfg Co Ltd 被処理物の流動を促進させた流動層造粒乾燥装置
JP2004123636A (ja) * 2002-10-03 2004-04-22 Nof Corp 二重被覆造粒物およびその製造方法
JP2011073972A (ja) * 2009-09-29 2011-04-14 Lion Corp 混合粉体およびその製造方法、固形製剤
JP2013071104A (ja) * 2011-09-29 2013-04-22 Powrex Corp 流動層装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07180959A (ja) * 1993-12-24 1995-07-18 Kansoon Kogyo Kk 熱風気流式乾燥ドラム
JPH11319534A (ja) * 1998-03-18 1999-11-24 Hosokawa Micron Corp 造粒装置
JP2001009258A (ja) * 1999-07-02 2001-01-16 Pauretsuku:Kk 粉粒体の流動層処理方法
JP2002292266A (ja) * 2001-03-30 2002-10-08 Okawara Mfg Co Ltd 被処理物の流動を促進させた流動層造粒乾燥装置
JP2004123636A (ja) * 2002-10-03 2004-04-22 Nof Corp 二重被覆造粒物およびその製造方法
JP2011073972A (ja) * 2009-09-29 2011-04-14 Lion Corp 混合粉体およびその製造方法、固形製剤
JP2013071104A (ja) * 2011-09-29 2013-04-22 Powrex Corp 流動層装置

Similar Documents

Publication Publication Date Title
EP2021115B1 (en) Agglomeration apparatus and method for producing agglomerated particles
CA2916107C (en) Process for drying and powderizing functional foods, nutraceuticals, and natural health ingredients
JP4819008B2 (ja) 流動層装置
US7802376B2 (en) Apparatus for treating particulate material
TW413684B (en) Fluidized bed processes including olefin polymerization and nozzles for use therein
RU2347166C1 (ru) Сушилка кипящего слоя с инертной насадкой
AU681651B2 (en) Spray drying device
US3411480A (en) Device for coating fine solids
WO2003000397A1 (fr) Dispositif de traitement de particules de poudre
CN205650164U (zh) 一种压力式喷雾造粒干燥机
JP2003001090A (ja) 流動層装置
WO2016002608A1 (ja) 流動層装置及び流動層造粒方法
JP2016010783A (ja) 流動層装置
JP4777306B2 (ja) 流動層装置
KR101683218B1 (ko) 유동층 과립기의 가동방법 및 유동층 과립기
CN208229853U (zh) 一种新型喷雾冷凝造粒装置
TW201201897A (en) Discharge cone
JP5705358B1 (ja) 流動層造粒方法
JP2001046853A (ja) 造粒装置
JP5171919B2 (ja) 鋼の連続鋳造用顆粒状モールドパウダーの製造方法
JP2009090193A (ja) 傾斜棚式流動層装置
JP2003001091A (ja) 流動層造粒・コーティング方法
RU2340850C1 (ru) Сушилка кипящего слоя с инертной насадкой
RU223751U1 (ru) Распылительная сушилка
KR101623036B1 (ko) 유동층 과립기의 가동방법 및 유동층 과립기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15814717

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15814717

Country of ref document: EP

Kind code of ref document: A1