WO2016002100A1 - マルチフィラメント糸と編織物およびその製造方法 - Google Patents

マルチフィラメント糸と編織物およびその製造方法 Download PDF

Info

Publication number
WO2016002100A1
WO2016002100A1 PCT/JP2014/081319 JP2014081319W WO2016002100A1 WO 2016002100 A1 WO2016002100 A1 WO 2016002100A1 JP 2014081319 W JP2014081319 W JP 2014081319W WO 2016002100 A1 WO2016002100 A1 WO 2016002100A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
knitted fabric
yarn
sheath
single fiber
Prior art date
Application number
PCT/JP2014/081319
Other languages
English (en)
French (fr)
Inventor
丹羽氏輝
伊達寛晃
景紅川
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2014560575A priority Critical patent/JPWO2016002100A1/ja
Publication of WO2016002100A1 publication Critical patent/WO2016002100A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/30Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the fibres or filaments
    • D03D15/37Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the fibres or filaments with specific cross-section or surface shape

Definitions

  • the present invention relates to a multifilament yarn, a knitted fabric and a method for producing the same. More specifically, the present invention relates to a garment having good fabric quality and quality, light weight, high bulkiness, and excellent heat retention. The present invention relates to a multifilament yarn and knitted fabric suitable for use and material use, and a method for producing the same.
  • Synthetic fibers having a hollow cross-sectional structure are light because of the large space occupied by the mass of the fiber and have excellent heat retention characteristics, and therefore, such synthetic fibers and methods of use have been continuously developed.
  • Fibers having a hollow cross-sectional structure have long been used for short fibers such as stuffed cotton and futon cotton, but in recent years they have long fibers (filament yarns) that can be used for general clothing, clothing materials and industrial materials. ) Has been developed and proposed.
  • a thick woven fabric having a thickness of 0.3 mm or more, and one of the warp and the weft is provided with a spun yarn made of an organic fiber, and the other is a hollow polyester multifilament yarn such as a round hollow cross-sectional shape.
  • polyester is used as a sheath component
  • a thermoplastic polymer that is more easily alkaline-dissolvable than the sheath component is used as a core component, and a part of the core component is exposed on the fiber surface.
  • a method is proposed in which a yarn composed of a core-sheath type composite fiber having a so-called C-shaped cross section is subjected to false twist crimping, and then the core portion is eluted and removed with an aqueous alkaline solution (Patent Documents 2 and 3). reference.).
  • the object of the present invention is to eliminate the drawbacks of the knitted fabric characterized by the light weight of the conventional invention as described above, and by physical pressure in the false twist crimping process, twisting process, knitting process and dyeing process.
  • Multifilament yarn and knitting suitable for clothing and material applications that can maintain the irregular cross-sectional shape of each single fiber, have good fabric quality and quality, are lightweight and bulky, and also have excellent heat retention. It is to provide a woven fabric and a manufacturing method thereof.
  • the present invention is to solve the above-mentioned problems, and the multifilament yarn of the present invention is a core-sheath type composite single fiber having a U-shape with a deformity of the cross section of the sheath part of 0.9 to 1.3.
  • a multifilament yarn made of The knitted fabric of the present invention is a knitted fabric containing 30% by mass or more of multifilament yarns made of single fibers having a cross-sectional irregularity of 0.6 to 3.6.
  • the cross-sectional shape is approximately U-shaped single fiber of 30 to 60% by mass, the cross-sectional shape of substantially C-shaped single fiber is 30 to 60% by mass, and the cross-sectional shape is approximately. It contains 5 to 30% by mass of V-shaped single fibers.
  • the bulk height index of the knitted fabric is 1.2 or more.
  • the heat retention index per unit weight of the knitted fabric is 1.2 or more.
  • the core portion is made of a polyester-based easily-eluting copolymer
  • the composite mass ratio of the core portion to the sheath portion is 30 to 70% by mass
  • the sheath section has an irregular shape.
  • the sheath portion is a polyester polymer or a polyamide polymer.
  • the single fiber fineness of the core-sheath type composite single fiber is 0.5 dtex or more and 11 dtex or less, and the total fineness of the multifilament yarn is 11 dtex. Above 550 decitex.
  • a functional agent is applied to the inner surface and / or the outer surface of the multifilament yarn after the core portion is eluted and removed.
  • the irregular cross-sectional shape of each single fiber can be maintained by physical pressure in false twist crimping, twisting, knitting, weaving, dyeing, etc., and the fabric quality and quality are good.
  • a multifilament yarn and a knitted fabric suitable for clothing and materials can be obtained that are lightweight, bulky, and also excellent in heat retention.
  • FIG. 1 is a cross-sectional view showing one embodiment of a core-sheath type composite monofilament used in the present invention.
  • FIG. 2 is a cross-sectional view showing an embodiment of a cross-sectional shape of a false twist crimped yarn made of a core-sheath type composite single fiber used in the present invention.
  • FIG. 3 is a drawing-substituting photograph showing one embodiment of the cross-sectional shape of a single fiber having a U-shaped cross-sectional shape used in the present invention.
  • FIG. 4 is a cross-sectional view showing one embodiment of a cross-sectional shape of a single fiber having a U-shaped cross-sectional shape used in the present invention.
  • FIG. 1 is a cross-sectional view showing one embodiment of a core-sheath type composite monofilament used in the present invention.
  • FIG. 2 is a cross-sectional view showing an embodiment of a cross-sectional shape of a false twist crimped yarn made of
  • FIG. 5 is a cross-sectional view showing one embodiment of the cross-sectional shape of another U-shaped single fiber used in the present invention.
  • FIG. 6 is a cross-sectional view showing one embodiment of the cross-sectional shape of another single fiber having a U-shaped cross-sectional shape used in the present invention.
  • FIG. 7 is a knitting method of a knitted fabric showing one embodiment of the knitted fabric of the present invention.
  • FIG. 8 is a structure diagram of a fabric showing one embodiment of the fabric of the present invention.
  • the multifilament yarn of the present invention is a multifilament yarn composed of a core-sheath type composite single fiber having a U-shape with a deformity of 0.9 to 1.3 in the cross section of the sheath portion.
  • the multifilament yarn described here is composed of a core-sheath composite single fiber of a core-sheath composite form composed of two types of fiber-forming polymers, and the degree of deformity of the sheath portion in the cross section of the single fiber is 0.9. It is a U-shaped shape of ⁇ 1.3.
  • the multifilament yarn will be specifically described based on FIGS. 1, 2, and 3.
  • FIG. 1 is a cross-sectional view showing one embodiment of a partially oriented composite fiber before stretching false twist crimping of a core-sheath type composite single fiber used in the present invention or a single fiber after drawing and before false twist crimping. .
  • the core-sheath type composite single fiber A is composed of two types of fiber-forming polymers, ie, a sheath part B and a core part M, and the sheath part B has a U-shaped core-sheath composite form. It is configured.
  • the core-sheath type composite single fiber A has an irregular single fiber cross-sectional shape as shown in FIG. Then, the core portion M of the core-sheath type composite single fiber A is eluted and removed, so that the sheath portion of the core-sheath type composite single fiber A remains.
  • a multifilament yarn composed of a core-sheath type composite monofilament having a U shape is a single fiber (having a substantially U-shaped cross section) having a cavity E as shown in FIG. C is a preferred embodiment (having a substantially V-shaped cross section).
  • the core component polymer that constitutes the core portion M of the core-sheath type composite single fiber A is a polyester-based easily eluted copolymer that is more easily eluted with respect to an alkaline solution than the sheath component polymer of the sheath portion B.
  • the deformed degree of the sheath part B is the center width G of the core part M at the center of the cross section of the core-sheath composite single fiber A.
  • the ratio (G / N) of the opening width N of the sheath portion B in the cross section of the core-sheath type composite monofilament A is 0.9 to 1.3, preferably 1.0.
  • the core portion M is eluted after forming the knitted fabric,
  • the core component polymer is difficult to be completely eluted, and the core component polymer remains inside the single fiber, resulting in warped and horizontal streaks in the final processed product and reduced dyeing fastness due to the core component polymer remaining. It is easy to cause quality degradation and quality degradation problems.
  • the elution time of the polymer of the core part M takes a long time, it causes a cost increase.
  • a portion whose profile of the cross section of the sheath portion is not in the range of 0.9 to 1.3 may be included in a proportion of 15% by mass or less. If the amount is 15% by mass or less, the bulkiness of the final processed knitted fabric is small, and it is difficult to cause quality and quality problems such as gloss spots, horizontal stripes, and vertical stripes on the surface of the knitted fabric.
  • the method of calculating the degree of deformity (G / N) of the sheath portion B is, for example, a core sheath as shown in FIG. 1 when a single multifilament yarn composed of 36 core-sheath composite single fibers is taken as an example.
  • a core sheath as shown in FIG. 1 when a single multifilament yarn composed of 36 core-sheath composite single fibers is taken as an example.
  • a vertical line b is drawn from the position of N / 2, which is the center of the opening width N, toward the convex portion of the sheath portion B of the core-sheath type composite single fiber A. Furthermore, a vertical line t is drawn with respect to the vertical line b while being in contact with the position of the leftmost convex part of the sheath part B.
  • the connecting line a and the vertical line t are parallel to each other, and this interval is the width Y of the cross section of the core-sheath type composite single fiber A.
  • a vertical line is drawn with respect to the vertical line b from the position Y / 2 which is the central part of the width Y of the cross section to obtain a central part position P of the cross section of the core-sheath type composite single fiber A.
  • the width of the core component M at the center position P is the center width G of the core component M of the core-sheath type composite single fiber A.
  • the number of evaluations was expressed by obtaining an average value of a total of 72 core-sheath type composite monofilaments from the microscopic magnified photographs of the embedding method from any two locations in one multifilament yarn.
  • the false twist crimping process is given to the multifilament yarn of this invention.
  • a multifilament yarn in which monofilaments having an irregular cross-sectional shape, such as a substantially U shape, a substantially C shape such as B, and a substantially V shape such as C, can be formed.
  • the U-shaped cross-sectional shape of the multifilament yarn composed of the core-sheath type composite single fiber of the present invention includes any of a substantially U shape, a substantially C shape, and a substantially V shape.
  • a method of obtaining a false twist crimped yarn after spinning a yarn composed of a core-sheath type composite single fiber, after winding it once on a drum, a method of performing stretching and false twist crimping simultaneously, or After spinning, the yarn once wound on a drum and then drawn can be further crimped with a normal false twisting machine to obtain a false twist crimped yarn.
  • the method of drawing and twisting and temporarily winding on a drum is preferably applied in terms of cost and quality.
  • a crimped yarn having stretchability and bulkiness can be obtained.
  • the stretch recovery rate as a typical characteristic of the false twist crimped yarn is preferably 15 to 40%, and more preferably 20 to 30%.
  • the expansion / contraction recovery rate is less than 15%, the knitted fabric tends to be insufficient in bulkiness and stretchability.
  • the expansion / contraction recovery rate exceeds 40% the texture of the knitted fabric is coarsely cured and surface quality is improved. May get worse.
  • the evaluation method of the expansion / contraction recovery rate is in accordance with the description in Section 8.12 of the chemical fiber filament test method of JIS L1013: 2012.
  • the knitted fabric of the present invention contains 30% by mass or more of multifilament yarns made of U-shaped single fibers having a cross-sectional irregularity of 0.6 to 3.6.
  • the irregularity of the single fiber is obtained in the same manner as the definition described above with reference to FIG. 1, and the value is 0.6 to 3.6, preferably 0.7 to 2.7. More preferably, it is 0.8 to 2.0.
  • the width N of the single fiber groove opening is widened, so that the single fibers overlap each other or bite into each other, so that the final processed knitting described later
  • the bulkiness of the woven fabric is likely to be low, and glossy spots, horizontal stripes and vertical stripes on the surface of the knitted fabric or the woven fabric are liable to occur, resulting in poor quality.
  • the profile of the cross section exceeds 3.6, the width N of the groove opening of the single fiber is narrowed, so that the core component polymer is hardly completely eluted and remains inside the single fiber.
  • the occurrence of warp streaks, horizontal streaks, and a decrease in dyeing fastness due to the residual core component polymer are caused, and problems such as quality and quality deterioration in the final processed product are likely to occur.
  • the elution time of the polymer of the core portion M takes a long time, which causes a cost increase.
  • a portion having an irregularity of the cross section of the sheath portion outside the range of 0.6 to 3.6 may be included in a proportion of 15% by mass or less. If the amount is 15% by mass or less, the bulkiness of the final processed knitted fabric is small, and it is difficult to cause quality and quality problems such as gloss spots, horizontal stripes, and vertical stripes on the surface of the knitted fabric.
  • the knitted fabric of the present invention is preferably obtained by eluting and removing the core portion M of the core-sheath type composite single fiber of the multifilament yarn of the present invention comprising the above-described core-sheath type composite single fiber.
  • FIG. 3 is an example of a microphotograph obtained by processing a false twist crimped yarn of one multifilament yarn having 36 single fibers by an embedding method.
  • each single fiber is A part of the cross section has an open groove opening width n, and the groove opening width n has a single groove shape extending along the longitudinal direction of the surface of each single fiber. Yes.
  • the cross-sectional shape of the groove in each single fiber is also different, and the cross-section such as single fiber A is substantially U-shaped, substantially C-shaped such as single fiber B, and single fiber C. It is an aggregate in which single fibers having an approximately V-shaped irregular cross-sectional shape are mixed.
  • the degree of irregularity of the cross section of the single fiber constituting the multifilament yarn described here will be specifically described based on FIGS. 4, 5, and 6.
  • a substantially U shape such as a single fiber A will be described with reference to FIG. 4
  • a substantially C shape such as a single fiber B will be described with reference to FIG. 5
  • a substantially V shape such as a single fiber C will be described with reference to FIG.
  • the concept is the same as the definition of the degree of irregularity described above with reference to FIG.
  • FIG. 4 is a cross-sectional view showing one embodiment of a cross-sectional shape of a single fiber having an irregular cross-sectional shape used in the present invention.
  • FIG. 4 is a schematic cross-sectional view of the substantially U-shaped single fiber A shown in FIG. 3, and y / 2 of the cross-sectional width y of the single fiber from an enlarged microphotograph by the embedding method.
  • g represents the width of the central portion of the hollow portion (groove portion) of the single fiber
  • n represents the width of the groove opening portion of the single fiber.
  • a vertical line b is drawn from the position of n / 2, which is the center of the opening width n, toward the convex portion of the sheath portion B of the core-sheath type composite single fiber A. Furthermore, a vertical line t is drawn with respect to the vertical line b while being in contact with the position of the leftmost convex part of the sheath part B. The connecting line a and the vertical line t are parallel to each other, and this interval is the width y of the cross section of the single fiber. Further, a vertical line is drawn with respect to the vertical line b from the position of y / 2, which is the central part of the width y of the cross section, to obtain a central part position p of the cross section of the single fiber. It becomes the center part width g of the cavity part (groove part) E in this center part position p.
  • FIG. 5 is a schematic cross-sectional view of the substantially C-shaped single fiber B shown in FIG. 3
  • FIG. 6 is a schematic cross-sectional view of the substantially V-shaped single fiber C shown in FIG.
  • the degree of irregularity (g / n) of each single fiber can be calculated.
  • the number of evaluations is calculated by calculating a total of 72 deformities (g / n) of monofilaments from a microscopic magnified photograph of the embedding method from any two locations in one multifilament yarn, and calculating the average value. did.
  • those in which the degree of variation (g / n) cannot be calculated in a form in which the sheath B of the single fiber is completely cracked or chipped in the fiber length direction are excluded from the calculated number.
  • the specific substantially U-shaped shape is such that the inside of the cross-sectional shape of the single fiber is curved into a U-shaped shape as shown in FIG.
  • the width n of the fiber groove opening and the central width g of the cavity (groove) are substantially equal (n ⁇ g).
  • the substantially C-shaped shape is such that the inside of the cross-sectional shape of the single fiber is curved in an arc shape as shown in FIG. 5 and the single fiber B in FIG. 3, and the hollow portion (groove portion) is wider than the width n of the groove opening of the single fiber.
  • Having a wide central portion width g (n ⁇ g) and the substantially V-shaped shape is similar to the single fiber C in FIG. 3 and the inner bottom portion of the cross-sectional shape of the single fiber as compared to the substantially U-shaped shape. Is narrow in a V shape, and the width n of the groove opening of the single fiber is wider than the central width g (n> g) of the cavity (groove) (n> g).
  • FIG. 3 at least three kinds of irregularly shaped fibers of substantially U shape, substantially C shape and substantially V shape are mixed to constitute one multifilament yarn. .
  • the cross-sectional shape of the single fiber of the knitted fabric of the present invention is the sheath of the core-sheath type composite single fiber before elution and removal of the core portion M in FIG. Since the cross-sectional shape of the part B is substantially U-shaped, substantially C-shaped and substantially V-shaped and the opening H of the sheath part B is sufficiently wide, stable elution and removal of the core part M in the dyeing process, Furthermore, at least two types of irregularly shaped cross-section fibers in which each single fiber of the single multifilament yarn after elution removal of the core portion is mixed are mixed, and the direction of the opening of each single fiber is preferably not suitable. Since it is uniform, it is difficult to cause problems of knitted fabric dyed spots, warp streaks, and horizontal streaks.
  • the single fibers of at least two types of the substantially U shape, the substantially C shape, and the substantially V shape are mixed to form an aggregate of one multifilament yarn.
  • overlapping and biting of each single fiber can be avoided, and due to the size of the porosity of the groove inside each single fiber, the fabric is lightweight and bulky, making it warm. An excellent knitted fabric can be obtained.
  • the substantially U shape, substantially C shape and substantially V shape may be formed uniformly along the longitudinal direction of each single fiber, or each single shape It is allowed that the shapes are mixed and formed at random along the longitudinal direction of the fiber.
  • the preferable blending ratio of each of these single fibers is preferably about 30 to 60% by mass for the substantially U-shaped single fiber A, and preferably about 30 to 60% by mass for the approximately C-shaped single fiber B.
  • the V-shaped monofilament C is preferably 5 to 30% by mass, more preferably the substantially U-shaped monofilament A is 40 to 50% by mass, and the substantially C-shaped monofilament B is 40 to 40% by mass. It is 50% by mass, and the substantially V-shaped monofilament C is 7 to 20% by mass.
  • the knitted fabric of the present invention preferably includes 30% by mass or more of false twisted crimped yarns of multifilament yarns in which single fibers having these irregular and irregular cross-sectional shapes are mixed.
  • the ratio of the false twist crimped yarn of these multifilament yarns is more preferably 40 to 100% by mass, and particularly preferably 50 to 100% by mass.
  • the ratio of the false twist crimped yarn is less than 30% by mass, the fabric is lacking in lightness and bulkiness and inferior in heat retention.
  • the knitted fabric of the present invention has a bulk height index of 1.2 or more.
  • the evaluation method of the bulk height which is the basis of the bulk height index will be described in Examples.
  • FIG. 3 by eluting and removing the core portion M of the core-sheath type composite single fiber forming the knitted fabric using the false-twisted crimped yarn of the core-sheath type composite single fiber.
  • This is a false-twisted crimped yarn of a normal round cross-section raw yarn made of the same material as the sheath part, and the bulk height of the knitted fabric after the core part M is eluted and removed.
  • This bulk height index is 30% by mass or more of false twisted crimped yarn made of multifilament yarn having a composite ratio of the core part M to the sheath part B of the core-sheath type composite monofilament described later of 30% by mass or more. It is obtained by mixing. Further, in designing the knitted fabric, the bulk height index can be increased by increasing the gap between the constituent yarns. When the bulk height index is less than 1.2, the bulkiness may be low as a knitted fabric characterized by light weight.
  • the bulk height index is preferably 1.2 to 5.0, more preferably 1.2 to 3.0.
  • the knitted fabric characterized by light weight is excellent in bulkiness, but the knitted fabric becomes too bulky and difficult to move, and also has a bursting strength and tearing strength. There is a tendency to be inferior.
  • the knitted fabric of the present invention is preferably a thermal insulation index per basis weight of 1.2 or more.
  • the evaluation method of the heat retention (CLO value) which is the basis of the heat retention index per unit weight will be specifically described in Examples.
  • the heat retention index per basis weight is obtained by dividing the heat retention (CLO value) of the knitted fabric after elution and removal of the core portion M of the false-sheathed crimped yarn of the core-sheath type composite single fiber described above, It is a false twisted crimped yarn of an ordinary round cross-section raw yarn made of the same material as the sheath part, and the same total as before the core part M of the core-sheath composite fiber thread is eluted and removed.
  • L represents the heat retention (CLO value) of using the comparative yarn
  • Z represents the basis weight (g / m 2 ) of the knitted fabric using the comparative yarn.
  • the heat retention index per unit weight is 30 for a knitted fabric made of false twisted crimped yarn made of multifilament yarn having a composite ratio of the core portion M to the sheath portion B of the core-sheath type composite monofilament described later of 30% by mass or more. It is obtained by mixing at least mass%.
  • the heat retention index per basis weight can be further increased.
  • the heat retention may be low as a knitted fabric characterized by light weight.
  • the heat retention index is preferably from 1.2 to 4.0, particularly preferably from 1.2 to 3.5.
  • the knitted fabric is excellent in heat retention as a lightweight knitted fabric, but as described above, the bulkiness of the knitted fabric becomes too large, making it difficult to move and bursting. There is a tendency to be inferior in strength and tearing strength.
  • the method for producing a knitted fabric of the present invention comprises a core-sheath type composite single fiber in which the core part M is made of a polyester-based elution copolymer and the composite ratio of the core part M to the sheath part B is 30 to 70% by mass.
  • This is a method in which a knitted fabric using crimped yarns of multifilament yarns is immersed in an alkaline solution and the core portion M is eluted and removed. That is, the core-sheath type composite single fiber having a U-shaped cross-section as the sheath portion B forming the multifilament yarn mixed with the single-shaped cross-section single fibers used in the present invention is as shown in FIG. 1 and FIG.
  • the core component polymer of the core part M is eluted with respect to the alkaline aqueous solution compared to the sheath component polymer of the sheath part B. It is an easy-to-least copolymer based on polyester.
  • the lightweight knitted fabric of the present invention is subjected to solvent reduction with an alkaline aqueous solution after knitting, and the core portion M of the core-sheath type composite monofilament is eluted and removed, so that the cavity E as shown in FIG. In order to form the cross-sectional structure having, the solvent erosion of the sheath portion B must be reduced.
  • the sheath part B of the fiber cross-sectional shape into a U-shaped core-sheath composite form, the polymer of the core part M is easily and stably eluted from the wide opening H of the sheath part B. As shown in FIG. 3, the width n of the groove opening of the single fiber is formed wide.
  • the present invention makes the profile (G / N) of the cross section of the sheath portion of the core-sheath type composite single fiber 0.9 to 1.3, and the core-sheath type composite single fiber.
  • Various problems arising from conventional C-shaped cross-section fibers were solved by setting the degree of deformation (g / n) after elution of the core of the false-twist crimped yarn made of 0.6 to 3.6. Is.
  • the core component polymer of the core-sheath type composite single fiber used in the present invention is preferably polyethylene terephthalate copolymerized with polyethylene glycol, from the viewpoint of being more easily dissolved in an alkaline aqueous solution.
  • polyethylene terephthalate obtained by copolymerizing 8 to 70% by mass of polyethylene glycol having a mass average molecular weight of 500 to 8000 is preferably used.
  • the weight average molecular weight of polyethylene glycol is more preferably 4000 to 6000, and the preferable copolymerization amount is 30 to 70% by mass.
  • the core component polymer is a copolymer of terephthalic acid, polyethylene glycol and 5-sulfoisophthalate.
  • the core component polymer includes adipic acid, isophthalic acid, sebacic acid, phthalic acid, naphthalenedicarboxylic acid, 4 as long as it does not interfere with the elution removal performance with an alkaline aqueous solution and the stability of yarn production.
  • 4′-diphenyldicarboxylic acid dicarboxylic acid such as cyclohexanedicarboxylic acid and ester-forming derivatives thereof, dioxy compounds such as diethylene glycol, hexamethylene glycol, neopentyl glycol, cyclohexanedimethanol, p- ( ⁇ -oxyethoxy) benzoic acid Can be copolymerized with oxycarboxylic acid and ester-forming derivatives thereof.
  • the composite ratio of the core part M to the sheath part B configured in this core / sheath composite form is preferably 30 to 70% by mass.
  • the core portion is further considered in consideration of the bursting strength and tearing strength of the knitted fabric after the core portion M is eluted and removed.
  • the composite ratio of M is set, but the composite ratio of the core portion M is more preferably 40 to 60% by mass, and still more preferably 50% by mass.
  • the knitted fabric may satisfy the bursting strength and tearing strength, but may be inferior in bulkiness, lightness, and heat retention. Moreover, when the composite ratio of the core part M exceeds 70% by mass, the bulkiness, lightness, and heat retention are satisfied, but a large deformation of the single fiber and cracking of the sheath part B are caused by physical pressure in the dyeing process. Furthermore, the bursting strength and tearing strength of the knitted fabric may be inferior.
  • the thickness of the sheath portion B is preferably 5 to 20 microns.
  • the sheath component contains 0.05 to 2.5% by mass of titanium oxide particles.
  • a multi-filament yarn having a core-sheath composite form in which the composite ratio of the core part M to the sheath part B is 30 to 70% by mass and the thickness of the sheath part B is 5 to 20 microns is false twisted crimped yarn.
  • the single filaments having irregular U-shaped, C-shaped and V-shaped irregular cross-sectional shapes as shown in FIG. 3 which are not included in the conventional straight filament yarn having the irregular cross-sectional shape are mixed. It is easy to obtain a fiber assembly, and the knitted fabric has bulkiness, lightness and heat retention, and further, quality and quality can be maintained.
  • the knitted fabric characterized by the light weight of the present invention is knitted or woven and then subjected to a relaxation process and a scouring process in a dyeing process.
  • the irregular cross-sectional shape is formed.
  • a sodium hydroxide aqueous solution is generally used for elution and removal of the core portion in the alkaline aqueous solution.
  • a 1.5 to 4.5% aqueous sodium hydroxide solution diluted with water is preferably used at 80 to 98 ° C. Heat to a temperature in the range and perform treatment for about 20-50 minutes.
  • As equipment to be used generally used liquid flow relaxers, continuous relaxers, liquid flow dyeing machines, and the like can be used.
  • the said sheath part B is a polyester-type polymer or a polyamide-type polymer.
  • sheath part B is a polyester polymer
  • polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, cationic dyeable polyester, and the like are preferably applied as the fiber-forming polymer.
  • sheath portion B is a polyamide-based polymer
  • nylon 6, nylon 66, nylon 610, nylon 56, nylon 11, and the like are preferably applied as the fiber-forming polymer.
  • the method for obtaining a yarn comprising a polyester core-sheath type composite single fiber using a polyamide-based polymer in the sheath part B is similar to a method for obtaining a yarn comprising a polyester core-sheath type composite single fiber using a polyester-based polymer. Manufacturing equipment dedicated to nylon is used.
  • the single fiber fineness of the single fiber used in the crimped yarn used in the present invention is 0.5 dtex or more and 11 dtex or less, and the total fineness is 11 decitex or more and 550 decitex or less.
  • the single fiber fineness and the total fineness are finenesses of a false twist crimped yarn made of a core-sheath type composite single fiber before being immersed in an alkaline aqueous solution to remove the core portion M by elution.
  • the composite ratio of the core part M to the sheath part B in the core-sheath type composite monofilament described above is preferably 30 to 70% by mass
  • the fineness after elution and removal of the core part M by immersion in an alkaline aqueous solution Is 0.35 to 0.15 dtex when the single fiber fineness before elution of the core part M is 0.5 dtex, and similarly 7.7 to 3.3 dtex when it is 11 dtex.
  • the fineness after leaching and removing the core portion M by dipping in an alkaline aqueous solution is 7.7 to 3.3 dtex.
  • the texture of the knitted fabric can be made soft and can be preferably used for clothing and materials. Further, when the single fiber fineness is 0.5 dtex or more, and more preferably 1.1 dtex or more, the yarn-forming property and false twist crimping property of the multifilament yarn made of the core-sheath type composite fiber are improved.
  • the single fiber fineness when worn as clothing, fluffing and fluffing due to rubbing are likely to occur, and the quality may be inferior.
  • the single fiber fineness exceeds 11 decitex, in the case of clothing, the texture may be coarse and hard to be touched.
  • a functional agent can be applied to the inner surface and / or the outer surface of the multifilament yarn after the core portion M is eluted and removed.
  • the functional agent to be imparted it can be appropriately selected depending on the intended use and demand.
  • a sweat-absorbing agent, a moisture-absorbing agent, an antifungal agent, and an ultraviolet absorbing agent can be preferably applied.
  • the application of these functional agents is preferably performed after the core portion M of the core-sheath composite fiber is eluted and removed in the dyeing process.
  • the single fiber constituting the multifilament yarn after the core portion M has been eluted and removed has an adhesion area due to the functional agent adhering not only to the outer surface of the cross-sectional shape but also to the inner surface of the fiber having an irregular cross-sectional shape.
  • the inner surface of the single fiber constituting the multifilament yarn becomes a concave depression like the cavity E shown in FIG. 3, it is excellent in friction and washing durability. It will solve the problem of curing.
  • the processing method which provides a functional agent can be performed according to the method normally performed by the dyeing process process.
  • the knitted fabric characterized by the light weight of the present invention is preferably applied to other fiber materials in addition to the case where 100% multifilament yarns made of single fibers obtained from the above-described core-sheath type composite single fibers are used.
  • the As a method of mixing with other fiber materials ordinary knitting, knitting, twisting, aligning, covering, blending, etc. can be adopted. It can be properly used as appropriate.
  • mixed fiber materials include polyester fibers that are synthetic fibers, polyamide fibers, polyacrylonitrile fibers, polyvinyl alcohol fibers, polyvinyl chloride fibers, polyurethane fibers, or acetate fibers that are semi-synthetic fibers.
  • plant-based natural fibers including cotton and hemp, or animal-based natural fibers including wool, cashmere and silk, and blended yarns of these are also used.
  • the knitted fabric is composed of a normal weft knitted fabric or a warp knitted fabric.
  • Weft knitted fabrics include circular knitted fabrics such as single circular knitted fabrics, double circular knitted fabrics, pile circular knitted fabrics, flat knitted fabrics, sock knitted fabrics, and molded knitted fabrics. can do.
  • the warp knitted fabrics include single tricot knitted fabrics that are tricot knitted fabrics, double tricot knitted fabrics, single raschel knitted fabrics that are raschel knitted fabrics, and flat miranese knitted fabrics that are miranese knitted fabrics. There are circular miranese knitted fabrics and the like, and these can be knitted using each dedicated knitting machine.
  • the woven fabric has a normal single or double structure.
  • the single structure include plain weave, twill weave, satin weave and their changed structures.
  • the double structure there are a vertical double structure, a horizontal double structure, a vertical double structure, and the like. These fabrics are also woven using a special loom such as a water jet loom, an air jet loom, a rapier loom, and a pile loom. be able to.
  • the heat treatment, scouring, and dyeing of the knitted and woven green machine should be performed in accordance with the normal processing method of the knitted fabric except for the elution removal processing of the core portion M of the core-sheath type composite monofilament with an alkaline aqueous solution. Can do.
  • as an auxiliary process at the dyeing stage as a post process other than the functional agent application process described above, as appropriate according to the required characteristics of the end use, such as calendar process, embossing process, wrinkle process, raising process, printing process and opal process Can be granted.
  • the lightweight knitted fabric of the present invention it is possible to develop a wide range of uses as follows. For example, for clothing, sportswear, swimwear, underwear, innerwear foundations, uniforms, outerwear, sweaters / cardigans, gloves, pantyhose, tights and socks Can be used.
  • seat sheets including car seats, shoe materials, heel materials, clothing interlinings and linings, laces, curtains, building insulation materials, packing cushion materials, and the like. be able to.
  • the strength of the knitted fabric characterized by the light weight of the present invention varies depending on the application, but the burst strength of the knitted fabric is preferably 0.25 Mpa or more, more preferably 0.3 Mpa or more.
  • This burst strength evaluation method conforms to the A method (Murren type method) described in Section 8.18.1 of JIS L1096: 2012.
  • the tear strength of the woven fabric is preferably 5.0 N or more, more preferably 6.0 N or more.
  • This tear strength evaluation method conforms to the D method (Benjuram method) described in Section 8.17.4 of JIS L1096: 2012.
  • the multifilament yarn of the present invention and the woven or knitted fabric characterized by light weight will be described more specifically with reference to examples, but the present invention is not limited thereto.
  • the evaluation used in the present invention was performed by the following methods.
  • Basis weight of knitted fabric The basis weight of the knitted fabric was measured from the knitted fabric and the woven fabric after the final processing according to method A (JIS method) described in Section 8.3.2 of JIS L1096: 2012. .
  • Thickness of knitted fabric The thickness of the knitted fabric was measured in accordance with Method A (JIS method) described in Section 8.4 of JIS L1096: 2012 from the knitted fabric and woven fabric after final processing. . That is, the thickness (mm) was measured at a constant time and under a constant pressure using a thickness measuring device at five different points of the sample, and the average value was calculated and rounded to the nearest two decimal places. The constant pressure during measurement was 0.7 Kpa.
  • CLO value [ ⁇ T ⁇ 0.01] / [W ⁇ 0.155]
  • ⁇ T represents the temperature of the hot plate 40 ° C. ⁇ BT ⁇ Box
  • 0.01 represents the area (m 2 ) of the hot plate (BT ⁇ Box)
  • W represents power consumption
  • 0.155 represents Represents a constant.
  • the heat retention (CLO value) of the knitted fabric after elution and removal of the core portion M of the false-twist crimped yarn composed of the core-sheath type composite single fiber used in the present invention is divided by the basis weight. Moreover, it is a false twist crimped yarn of a commonly used round cross-section raw yarn made of the same material as the sheath portion, and a false twist crimped yarn made of the core-sheath type composite monofilament
  • the warmth (CLO value) of the knitted fabric using the same single fineness yarn (referred to as comparative yarn) with the same total fineness as before the elution removal of the core part M of the core is divided by the basis weight, and the comparison yarn is used.
  • the opening width N (mm) of the sheath component B in the cross section before false twist crimping was determined.
  • the degree of irregularity (G / N) of this core-sheath type composite monofilament is obtained from an enlarged microscopic photograph of an embedding method from any two locations in one multifilament yarn, and the average value of a total of 72 monofilaments is obtained. Rounded to one decimal place.
  • ⁇ Degree of deformity of core-sheath type composite single fiber G / N
  • G represents the center part width of the core component in the center of the cross section of the core-sheath composite single fiber
  • N represents the width of the opening of the sheath component in the cross section of the core-sheath composite single fiber.
  • Example 1 Under conditions of a spinning temperature of 290 ° C., polyethylene terephthalate copolymerized with 60% by mass of polyethylene glycol having a mass average molecular weight of 5000 is used as the core component polymer, and titanium oxide particles (average particle size 0.4 ⁇ m) are used as the sheath component polymer.
  • a polyethylene terephthalate polymer containing 1.5% by mass a core-sheath type composite nozzle having a U-shaped sheath component B side so that the composite ratio is 50/50% by mass of the core component polymer / sheath component polymer (36 holes) and spun at a spinning speed of 3000 m / min.
  • the total fineness is 140 dtex and the number of filaments.
  • the degree of irregularity (G / N) of the single fiber (core-sheath type composite single fiber) constituting the partially oriented composite fiber yarn thus obtained was 1.1.
  • the partially oriented composite fiber yarn obtained was set at a heat setting temperature of 165 ° C., a draw ratio of 1.7 times, and a processing speed of 600 m / min.
  • the false twisted crimped yarn made of the core-sheath type composite single fiber thus obtained is fed from a four-port yarn of one complete structure F1 to F4 shown in FIG. 7 using a 24-gauge double-sided circular knitting machine.
  • the constituent yarns D of the respective yarn feeder numbers F1 in this knitting diagram are formed by all needle knitting stitches of the cylinder needles C1 to C6 of the circular knitting machine and the dial needles D1 to D5 Is formed with alternating tuck stitches of D1, D3 and D5.
  • the component yarn ho of the yarn feeder number F2 is formed with all needle knit stitches only on the dial needles D1 to D5 of the circular knitting machine. Further, the constituent yarn of the yarn feeder No.
  • the constituent yarn G of the yarn feeder No. F4 is formed with all needle knit stitches only on the dial needles D1 to D5 of the circular knitting machine. In this way, all the constituent yarns of the four-necked yarns F1 to F4 were supplied to obtain a knitted fabric with a double-sided reversible structure made of 100% composite fiber false twisted crimped yarn.
  • the raw machine knitted fabric obtained in this way is used as a dyeing process to perform relaxation and scouring, intermediate setting, elution removal processing of the core component M of the composite fiber, dyeing and finishing set to obtain a finished knitted fabric It was.
  • the processing conditions for the elution and removal of the core component M in this dyeing process are: sodium hydroxide, a 2.0% alkaline aqueous solution diluted with water, heated to a temperature of 90 ° C. and treated for 35 minutes. 50% by mass of M is completely removed as shown in the schematic diagram of FIG.
  • the constituent yarn of the knitted fabric from which the core component M is eluted and removed by the alkaline aqueous solution is 39% by mass of a substantially U-shaped single fiber, 47% by mass of a substantially C-shaped single fiber, as shown in FIG. It was a multifilament yarn having a single fiber cross-sectional shape in which three types of irregular cross-sectional shapes of 14% by mass of a single fiber having a mold shape were mixed.
  • the multifilament yarn from which the core component M of the false twist crimped yarn made of core-sheath composite single fiber is eluted and removed has an apparent outer diameter of 84 decitex before the elution removal of the core component M, and the single fiber fineness is Although it was almost equivalent to 2.3 dtex, the actual total fineness was 42 dtex and the actual single fiber fineness was 1.2 dtex.
  • the final processed knitted fabric has a basis weight of 75 g / m 2 , a bulk height of 9.5 cm 3 / g, and a heat retention (CLO value) of 0.747.
  • the basis weight reduction rate was 48%
  • the bulk height index was 1.9
  • the heat retention index per basis weight was 2.0, which was excellent.
  • the cross-sectional irregularity (g / n) of each single fiber was 1.4.
  • the lightness and soft feeling by sensory evaluation, the evaluation of basic physical property values, and the quality and quality evaluation by visual evaluation are good, and it was judged that the material is suitable as a knitted fabric characterized by light weight.
  • the detailed evaluation results are shown in Table 1.
  • the degree of deformity (G / N) of the single fiber (core-sheath type composite single fiber) constituting the partially oriented composite fiber yarn obtained in this way is an example of the design of the core-sheath composite base based on the core-sheath composite ratio. 1 and 1.0. Further, using a drawing false twisting machine having the same equipment as that of Example 1, a false twisting of a composite fiber having a core / sheath mass ratio of 35/65% by mass, a total fineness of 84 dtex, and a filament count of 36 filaments. A processed yarn was obtained.
  • the multifilament yarn after elution removal of the core component M in the false twisted crimped yarn of the composite fiber has an apparent outer diameter of 84 decitex before the elution removal of the core component M, and is almost equivalent to the single fiber fineness 2.3 decitex
  • the actual total fineness was 55 dtex and the actual single fiber fineness was 1.5 dtex.
  • the knitted fabric is composed of 47% by mass of a substantially U-shaped single fiber, 38% by mass of a substantially C-shaped single fiber, and 15% by mass of a substantially V-shaped single fiber as shown in FIG. This was a multifilament yarn having a single fiber cross-sectional shape in which the three different cross-sectional shapes were mixed.
  • the final knitted fabric has a basis weight of 101 g / m 2 , a bulk height of 6.9 cm 3 / g, and a heat retention (CLO value) of 0.721.
  • the basis weight reduction rate was 30%
  • the bulk height index was 1.4
  • the heat retention index per basis weight was 1.4, which was excellent.
  • the cross-sectional irregularity (g / n) of each single fiber was 1.2.
  • the lightness and soft feeling by sensory evaluation, the evaluation of basic physical property values, and the quality and quality evaluation by visual evaluation are good, and it was judged that the material is suitable as a knitted fabric characterized by light weight. Detailed evaluation results are also shown in Table 1.
  • These false twisted crimped yarns are knitted fabrics having the same knitted fabric of yarn feeder number F1 and yarn feeder number F3 of the same double-sided circular knitting machine as in Example 1 and the circular knitting machine in the same knitting diagram.
  • a false twisted crimped yarn of a composite fiber having a core / sheath mass ratio 50/50 mass% with a total fineness of 84 dtex and a filament count of 36 filaments, and a knitted fabric constituent yarn ho And the yarn constituting the knitted fabric No.
  • the knitted fabric knitted fabric thus obtained was subjected to the final dyeing process using the same dyeing process, equipment and conditions as in Example 1.
  • the multifilament yarn after elution removal of the core component M of the false twisted crimped yarn of the composite fiber has an apparent outer diameter of 84 decitex before the elution removal of the core component M, which is almost the same as the single fiber fineness 2.3 decitex
  • the actual total fineness was 42 dtex and the actual single fiber fineness was 1.2 dtex.
  • the constituent yarn of the knitted fabric is 40% by mass of a substantially U-shaped single fiber as shown in FIG. 3, 44% by mass of a substantially C-shaped single fiber, and 16% by mass of a substantially V-shaped single fiber. This was a multifilament yarn having a single fiber cross-sectional shape in which the three different cross-sectional shapes were mixed.
  • the finished knitted fabric has a basis weight of 168 g / m 2 , a bulk height of 4.6 cm 3 / g, and a heat retention (CLO value) of 0.702.
  • the basis weight reduction rate was 17%
  • the bulk height index was 1.2
  • the heat retention index per basis weight was 1.2, which was better than that of a general product.
  • the cross-sectional irregularity (g / n) of each single fiber was 1.3.
  • the lightness and soft feeling by sensory evaluation, the evaluation of basic physical property values, and the quality and quality evaluation by visual evaluation are good, and it was judged that the material is suitable as a knitted fabric characterized by light weight. Detailed evaluation results are also shown in Table 1.
  • the irregularity degree (G / N) of the single fiber constituting this partially oriented composite fiber yarn was 1.2 because the design of the core-sheath composite die based on the core-sheath composite ratio was different from that in Example 1. Furthermore, using a drawing false twisting machine of the same equipment as in Example 1, two single yarns of drawn false twisted crimped yarn are aligned, entangled and wound as one processed yarn, A false twisted crimped yarn of a composite fiber having a core / sheath mass ratio of 70/30, a total polyester fineness of 168 dtex, and a filament count of 72 filaments was obtained.
  • the composite fiber false twisted yarn obtained as described above is a 2/2 twill fabric structure diagram in which one complete structure shown in FIG. 8 is composed of four warps and four wefts. Was supplied to all the constituent yarns of warp and weft yarns of the woven fabric yarns to obtain a 2/2 twill textured raw fabric made of 100% composite yarn false twist crimped yarn.
  • the finished fabric was obtained from the raw fabric thus obtained.
  • the multifilament yarn after the core component elution removal of the false twisted crimped yarn of the composite fiber has an apparent outer diameter of 168 decitex before the elution removal of the core component and a single fiber fineness of 2.3 decitex. Although the actual total fineness was 50 dtex, the actual single fiber fineness was 0.7 dtex.
  • the constituent yarns of the woven fabric are 33% by mass of a substantially U-shaped single fiber, 48% by mass of a substantially C-shaped single fiber, and 19% by mass of a substantially V-shaped single fiber. This was a multifilament yarn having a single fiber cross-sectional shape in which the three different cross-sectional shapes were mixed.
  • the final finished fabric has a basis weight of 51 g / m 2 , a bulk height of 3.1 cm 3 / g, and a heat retention (CLO value) of 0.681.
  • the fabric weight reduction rate was 66%
  • the bulk height index was 2.4
  • the heat retention index per fabric was 3.0, which was excellent.
  • the cross-sectional irregularity (g / n) of each single fiber was 1.5.
  • tear strength was a little low in evaluation of a basic physical property value, the light feeling and soft feeling by sensory evaluation were good, and it was judged that it was suitable as a textile characterized by light weight. Detailed evaluation results are also shown in Table 1.
  • Example 5 Using nylon dedicated manufacturing equipment, polyethylene terephthalate copolymerized with 60% by weight of polyethylene glycol having a weight average molecular weight of 5000 is used as the core component polymer at a spinning temperature of 285 ° C., and titanium oxide particles (average) are used as the sheath component polymer.
  • the drawn yarn thus obtained was temporarily set at a spindle rotation number of 325,000 rotations / minute, a false twist number of 3570 T / M, a draw ratio of 1.06 times, and a heater temperature of 180 ° C. Twist processing was performed to obtain a false twist crimped yarn of nylon composite fiber having a total fineness of 154 dtex and a filament count of 68 filaments.
  • Each of these false twisted crimped yarns is used in the same air jet loom as in Example 4, and the same round cross sectional false twisted crimped yarns are used as warp yarns of the fabric constituting yarn in the same fabric structure diagram shown in FIG.
  • Nylon multifilament yarn with a total fineness of 154 dtex and 68 filaments is supplied, and the weft yarn of the fabric constituent yarn is a false twist crimped composite fiber with a total fineness of 154 dtex and 68 filaments Yarn was supplied to obtain a raw fabric with a 2/2 twill structure in which the mixing ratio of each false twist crimped yarn was 50% by mass.
  • the multifilament yarn after the elution removal of the core component M of the false twisted crimped yarn of the composite fiber has an apparent outer diameter of 154 dtex before the elution removal of the core component M and a single fiber fineness of 2.3 dtex. Although equivalent, the actual total fineness was 77 dtex and the actual single fiber fineness was 1.1 dtex.
  • the constituent yarn of the woven fabric is 41% by mass of substantially U-shaped single fibers, 33% by mass of substantially C-shaped single fibers, and 16% by mass of substantially V-shaped single fibers. This was a multifilament yarn having a single fiber cross-sectional shape in which the three different cross-sectional shapes were mixed.
  • the finished fabric has a basis weight of 115 g / m 2 , a bulk height of 1.6 cm 3 / g, and a heat retention (CLO value) of 0.694.
  • the basis weight reduction rate was 28%
  • the bulk height index was 1.3
  • the thermal insulation index per basis weight was 1.5.
  • the cross-sectional irregularity (g / n) of each single fiber was 1.3.
  • the lightness and soft feeling by sensory evaluation, the evaluation of basic physical property values, and the quality and quality evaluation by visual evaluation were good, and it was judged to be suitable as a fabric characterized by lightness. Detailed evaluation results are also shown in Table 1.
  • Example 1 is a false twisted crimped yarn (a solid yarn that is not a hollow fiber) of a commonly used polyester round cross-section raw yarn made of the same material as the sheath portion of Examples 1 to 4, A polyester multifilament yarn having a total fineness of 84 decitex and a filament count of 36 filaments (Toray) as a raw yarn having the same total fineness and the same single fiber fineness as before the core portion M of the core-sheath composite yarn of Example 2 was eluted and removed. "Tetron” (registered trademark) manufactured by Co., Ltd.) was used.
  • this normal false twist crimped yarn is the same knitting diagram as in Example 1, and by supplying the same constituent yarn, A raw machine knitted fabric having a double-sided reversible structure made of 100% contracted yarn was obtained.
  • the dyeing process of the green knitted fabric thus obtained is the same dyeing process, equipment and conditions as in Example 1 except that the elution removal process of the core component M in Example 1 is removed.
  • a finished knitted fabric was obtained.
  • the finished knitted fabric has a basis weight of 145 g / m 2 , a bulk height of 5.0 cm 3 / g, and a heat retention (CLO value) of 0.714, which is inferior to the previous Examples 1 and 2. there were.
  • the light feeling and soft feeling by sensory evaluation were also inferior, and it was judged that it was not suitable as a knitted fabric characterized by light weight. Detailed evaluation results are also shown in Table 1.
  • Example 2 A multi-filament yarn having a total fineness of 84 dtex and a filament count of 36 filaments, which is a false twist crimped yarn of a generally used round cross-section raw yarn used in Comparative Example 1, and Example 3 A multi-filament yarn having a total fineness of 168 dtex and a filament count of 72 filaments, which is a commonly used false-twisted crimped yarn of a round cross-section raw material used in the above, was used.
  • These false twisted crimped yarns are knitted fabrics having the same knitted fabric of yarn feeder number F1 and yarn feeder number F3 of the same double-sided circular knitting machine as in Example 1 and the circular knitting machine in the same knitting diagram.
  • the normal total of fineness is obtained by using a normal 84 dtex 36 filament false twist crimped yarn for the component yarn, and a knitted fabric component yarn of the yarn feeder number F2 and a knitted fabric component yarn of the feeder port number F4 of the circular knitting machine.
  • a false twisted crimped yarn having 168 decitex and 72 filaments to obtain a knitted fabric with a double-sided reversible structure consisting of 100% of a normal false twisted crimped yarn.
  • the finished knitted fabric had a basis weight of 203 g / m 2 , a bulk height of 3.9 cm 3 / g, and a heat retention (CLO value) of 0.697, which was inferior to the previous Example 3. .
  • the light feeling and soft feeling by sensory evaluation were also inferior, and it was judged that it was not suitable as a knitted fabric characterized by light weight. Detailed evaluation results are also shown in Table 1.
  • this false twist crimped yarn is supplied to all the constituent yarns of the warp and weft threads of the fabric constituent yarn in the same fabric structure diagram shown in FIG.
  • a raw fabric with a 2/2 twill structure consisting of 100% of ordinary false crimped yarn was obtained.
  • the dyeing process of the green knitted fabric thus obtained is the same dyeing process, equipment and conditions as in Example 4 except that the elution removal process of the core component M in Example 4 is removed.
  • a final processed fabric was obtained.
  • the fabric after final processing had a basis weight of 151 g / m 2 , a bulk height of 1.3 cm 3 / g, and a heat retention (CLO value) of 0.658, which was inferior to the previous Example 4.
  • a raw fabric with a 2/2 twill structure made of 100% normal nylon false twist crimped yarn was obtained.
  • the dyeing process of the raw fabric obtained in this way is the same dyeing process, equipment and conditions as in Example 5 except that the elution removal process of the core component M in Example 5 was removed.
  • a final processed fabric was obtained.
  • the fabric after final processing had a basis weight of 160 g / m 2 , a bulk height of 1.2 cm 3 / g, and a heat retention (CLO value) of 0.664, which was inferior to the previous Example 5. .
  • the light feeling and soft feeling by sensory evaluation were also inferior, and it was judged that it was not suitable as a textile characterized by light weight. Detailed evaluation results are also shown in Table 1.
  • Example 5 Although the equipment and conditions according to Example 1 were used, the design of the base was changed according to the degree of deformation, and the spinning speed was discharged from a core-sheath composite base nozzle (36 holes) having a U-shaped sheath component B side.
  • the degree of irregularity (G / N) of the single fibers constituting this partially oriented composite fiber yarn was 0.7 because the design of the opening width of the sheath portion of the core-sheath composite base was different from that in Example 1. Further, a drawing false twisting process is performed under the same conditions with a drawing false twisting machine having the same equipment as in Example 1, and a composite fiber having a core / sheath mass ratio of 50/50 mass% and a total fineness of 84 dtex and a filament count of 36 filaments. Of false twisted crimped yarn was obtained. By using the same double-sided circular knitting machine as in Example 1, the false twisted crimped yarn of the composite fiber obtained in this way is the same knitting diagram as in Example 1, and the same component yarn is supplied. A raw knitted fabric having a double-sided reversible structure composed of 100% of false twisted crimped yarn of composite fiber was obtained.
  • the knitted fabric knitted fabric thus obtained was subjected to the final dyeing process using the same dyeing process, equipment and conditions as in Example 1.
  • the multifilament yarn after elution removal of the core component M of the false twisted yarn of the composite fiber has an apparent outer diameter of 84 decitex before the elution removal of the core component M, and the single fiber fineness is almost equal to 2.3 decitex
  • the actual total fineness was 42 dtex and the actual single fiber fineness was 1.2 dtex.
  • the constituent yarn of the knitted fabric is 58% by mass of a substantially U-shaped single fiber as shown in FIG. 3, 22% by mass of a substantially C-shaped single fiber, and 20% by mass of a substantially V-shaped single fiber. This was a multifilament yarn having a single fiber cross-sectional shape in which the three different cross-sectional shapes were mixed.
  • the final processed knitted fabric has a basis weight of 73 g / m 2 , a bulk height of 9.5 cm 3 / g, and a heat retention (CLO value) of 0.728.
  • the weight reduction rate of the fabric weight is 50%
  • the bulk height index is 1.9
  • the heat retention index per unit weight is 2.0
  • the lightness, bulkiness, and the thermal insulation index per unit area are as in Example 1. It was as good as However, since the degree of irregularity (G / N) of the partially oriented composite single fiber was as small as 0.7, the sectional irregularity (g / n) of each single fiber of the knitted fabric after final processing was 0.4.
  • Example 6 Although the equipment and conditions according to Example 1 were used, the design of the base was changed according to the degree of deformation, and the spinning speed was discharged from a core-sheath composite base nozzle (36 holes) having a U-shaped sheath component B side.
  • the degree of irregularity (G / N) of the single fiber of this partially oriented composite fiber yarn was 2.0 because the design of the opening width of the sheath part of the core-sheath composite base was different from that in Example 1. Furthermore, a drawing false twisting process was performed under the same conditions using a drawing false twisting machine having the same equipment as in Example 1 to obtain a false twist crimped yarn of a composite fiber having a total fineness of 84 dtex and a filament count of 36 filaments. . By using the same double-sided circular knitting machine as in Example 1 and supplying the same constituent yarn in the same knitting diagram as in Example 1, the false twisted crimped yarn of the composite fiber in the same way as in Example 1 was used. A raw machine knitted fabric having a double-sided reversible structure made of 100% contracted yarn was obtained.
  • the knitted fabric knitted fabric thus obtained was subjected to the same dyeing process, equipment and conditions as in Example 1 to obtain a final knitted fabric.
  • the multifilament yarn after elution removal of the core component M of the false twisted yarn of the composite fiber has an apparent outer diameter of 84 decitex before the elution removal of the core component M, and the single fiber fineness is almost equal to 2.3 decitex However, the actual total fineness was 42 dtex and the actual single fiber fineness was 1.2 dtex.
  • the constituent yarn of the knitted fabric is 24% by mass of a substantially U-shaped single fiber as shown in FIG. 3, 64% by mass of a substantially C-shaped single fiber, and 12% by mass of a substantially V-shaped single fiber. This was a multifilament yarn having a single fiber cross-sectional shape in which the three different cross-sectional shapes were mixed.
  • the final processed knitted fabric has a basis weight of 77 g / m 2 , a bulk height of 9.4 cm 3 / g, and a heat retention (CLO value) of 0.746.
  • the basis weight reduction rate was 47%
  • the bulk height index was 1.9
  • the heat retention index per unit weight was 2.0
  • the lightness, bulkiness, and the heat retention index per unit area were as in Example 1. It was as good as
  • the degree of irregularity (G / N) of the single fiber constituting the partially oriented composite fiber yarn is as large as 2.0
  • the cross-sectional irregularity of each single fiber constituting the false twisted crimped yarn of the knitted fabric after final processing was 3.9.
  • the core component polymer is difficult to be completely dissolved and remains inside some single fibers, resulting in horizontal unevenness in the final processed product, and inferior to light fastness in dyeing fastness evaluation. Therefore, it was judged that it was not suitable as a knitted fabric characterized by light weight. Detailed evaluation results are also shown in Table 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Knitting Of Fabric (AREA)
  • Multicomponent Fibers (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Woven Fabrics (AREA)

Abstract

 本発明は、仮撚加工や撚糸加工および製編織や染色加工工程での物理的圧力によっても各単繊維の異形断面形状が維持できるとともに、生地品位と品質が良く、軽量で嵩高性に富み、更には保温性にも優れたマルチフィラメント糸と編織物およびその製造方法を提供する。本発明の編織物は、芯部分がポリエステル系易溶出共重合物からなり、鞘部分に対する芯部分の複合比率が30~70質量%であって、鞘部分の断面の異形度が0.9~1.3の芯鞘型複合単繊維からなるマルチフィラメント糸の捲縮加工糸を用いた編織物を、アルカリ性水溶液中に浸漬してその芯部分を溶出除去することにより製造される。

Description

マルチフィラメント糸と編織物およびその製造方法
 本発明は、マルチフィラメント糸と編織物およびその製造方法に関するものであり、更に詳しくは、本発明は、生地品位と品質が良く、軽量で嵩高性に富み、更には保温性にも優れた衣料用途および資材用途に適したマルチフィラメント糸と編織物およびその製造方法に関するものである。
 従来、秋冬時期で用いられる日常着、あるいは寒冷な環境のもとでの作業やスポーツのために、種々の保温性に優れた衣料用や資材用の編織物が提案されてきた。このような編織物として、例えば、綿やアクリル繊維を混紡した厚手の衣料用編織物が用いられているが、これらの編織物は、保温性には優れているものの少し動くと重くて動き難いという課題があった。
 このような中、中空断面構造を有する合成繊維を活用する考えが始まった。中空断面構造の合成繊維は、繊維質量に対し占める空間が大きいため軽く、かつ保温性に優れた特性を有するため、このような合成繊維と利用方法についての開発が続けられてきた。
 中空断面構造を有する繊維は、古くから、詰め綿や布団綿などの短繊維に用いられていたが、近年では一般衣料用途、衣料資材用途および産業資材用途等でも使用可能な長繊維(フィラメント糸)が開発され提案されている。
 しかしながら、長繊維の場合、原糸製造以降の高次加工工程段階における仮撚加工、撚糸加工、製編や製織および染色加工等の段階での物理的な圧力によって、中空断面構造が潰れてしまうという課題が発生するため、使用や用途上に制約があった。
 また、一般的に使用される丸型中空断面形状の繊維の場合、前述のような中空断面構造を潰さないために仮撚加工や撚糸加工を行なわずに、原糸そのままのストレートヤーンで使用することが考えられる。しかしながら、この場合、原糸製造に起因する中空率のバラツキが生じ、織物におけるタテ筋や丸編地におけるヨコ段等の問題が発生し、あるいはストレートヤーンによる独特のヌメリ感風合いや光沢感などが現われ易くなり、好ましくない態様のものであった。
 また、厚さが0.3mm以上の厚地織物であって、経糸および緯糸のうちどちらか一方に有機繊維からなる紡績糸が配され、他方に丸型中空断面形状などの中空ポリエステルマルチフィラメント糸を含む2種以上の糸条からなる混繊糸が配されている、着用快適性に優れる厚地織物およびデニム商品が提案されている(特許文献1参照)。
 この厚地織物およびデニム商品は、紡績糸が配されていること、および2種以上の糸条からなる混繊糸が配されていることから、前記のような織物におけるタテ筋等の課題や独特のヌメリ感風合い、および光沢感などは回避できるものの、厚地織物からなるデニム商品に望まれる軽量感は十分に満足できるものではなかった。
 このような課題を回避するために、ポリエステルを鞘成分とし、この鞘成分よりも易アルカリ溶出性の熱可塑性重合体を芯成分とし、かつ、この芯成分の一部が繊維表面に露出してなる、いわゆるC型断面形状の芯鞘型複合繊維からなる糸条に、仮撚捲縮加工を施した後、アルカリ水溶液で芯部分を溶出除去する方法が提案されている(特許文献2および3参照。)。
 しかしながら、この提案は、仮撚捲縮加工や撚糸加工、あるいは製編、製織および染色加工等の段階における物理的な圧力によって、中空断面構造が潰れてしまうという課題はないものの、芯成分の溶出除去工程において具体的な芯部の溶出除去についての安定化技術の提案はなく、更には具体的な編織物の提案には至っていないため、編織物とした際に、染色斑および織物や経編地でのタテ筋の発生、および丸編地でのヨコ段が発生し易いという課題がある。
 一方、前述の編織物用原糸の製法の改善製法として、製糸工程や芯成分の溶出除去安定性が良好であり、品位の優れた中空断面構造を形成し得るポリエステル芯鞘複合繊維と、そのポリエステル芯鞘複合繊維を用いてなる繊維布帛を提供するために、ポリエステル芯鞘複合繊維およびその繊維布帛が提案されている(特許文献4参照。)。
 しかしながら、この提案は、ポリエステルC型断面形状の芯鞘複合繊維の製法には触れているものの、この原糸を活用した編織物、更には軽量を特徴とする編織物の製法の提案には十分に至っていない。
特開2007-270358号公報 特開昭55-93812号公報 特開平1-52839号公報 特開2007-131980号公報
 そこで本発明の目的は、前述のような従来の発明からなる軽量を特徴とする編織物による欠点を解消し、仮撚捲縮加工や撚糸加工および製編織や染色加工工程における物理的圧力によっても各単繊維の異形断面形状を維持することができるとともに、生地品位と品質が良く軽量で嵩高性に富み、更には保温性にも優れた衣料用途および資材用途等に適したマルチフィラメント糸と編織物およびその製造方法を提供することにある。
 本発明は、上記課題を解決せんとするものであり、本発明のマルチフィラメント糸は、鞘部分の断面の異形度が0.9~1.3のU型形状である芯鞘型複合単繊維からなるマルチフィラメント糸である。
また、本発明の編織物は、断面の異形度が0.6~3.6である単繊維からなるマルチフィラメント糸を30質量%以上含む編織物である。
本発明の編織物の好ましい態様によれば、断面形状が略U型形状の単繊維を30~60質量%、断面形状が略C型形状の単繊維を30~60質量%、断面形状が略V型形状の単繊維を5~30質量%含有するものである。
  本発明の編織物の好ましい態様によれば、前記の編織物の嵩高度指数は1.2以上である。
 本発明の編織物の好ましい態様によれば、前記の編織物の目付当たりの保温性指数は1.2以上である。
 また、本発明の編織物の製造方法は、芯部分がポリエステル系易溶出共重合物からなり、鞘部分に対する芯部分の複合質量比率が30~70質量%であって、鞘部分の断面の異形度が0.9~1.3の芯鞘型複合単繊維からなるマルチフィラメント糸の捲縮加工糸を用いてなる編織物を、アルカリ性水溶液中に浸漬して前記の芯部分を溶出除去する方法である。
 本発明の編織物の製造方法の好ましい態様によれば、前記の鞘部分はポリエステル系ポリマーまたはポリアミド系ポリマーである。
 本発明の編織物の製造方法の好ましい態様によれば、前記の芯鞘型複合単繊維の単繊維繊度は0.5デシテックス以上11デシテックス以下であり、前記のマルチフィラメント糸の総繊度は11デシテックス以上550デシテックス以下である。
 本発明の編織物の製造方法の好ましい態様によれば、前記の芯部分が溶出除去された後のマルチフィラメント糸の内表面および/または外表面に、機能剤を付与することである。
 本発明によれば、仮撚捲縮加工や撚糸加工および製編織や染色加工工程等における物理的圧力によっても、各単繊維の異形断面形状を維持することができるとともに、生地品位と品質が良く軽量で嵩高性に富み、更には保温性にも優れた衣料用途や資材用途に適したマルチフィラメント糸と編織物が得られる。
図1は、本発明で用いられる芯鞘型複合単繊維の一態様を示す断面図である。 図2は、本発明で用いられる芯鞘型複合単繊維からなる仮撚捲縮加工糸の断面形状の一態様を示す断面図である。 図3は、本発明で用いられるU型断面形状の単繊維の断面形状の一態様を示す図面代用写真である。 図4は、本発明で用いられるU型断面形状の単繊維の断面形状の一態様を示す断面図である。 図5は、本発明で用いられる他のU型断面形状の単繊維の断面形状の一態様を示す断面図である。 図6は、本発明で用いられる他のU型断面形状の単繊維の断面形状の一態様を示す断面図である。 図7は、本発明の編物の一態様を示す編物の編方図である。 図8は、本発明の織物の一態様を示す織物の組織図である。
 本発明のマルチフィラメント糸は、鞘部分の断面の異形度が0.9~1.3のU型形状である芯鞘型複合単繊維からなるマルチフィラメント糸である。
ここで述べるマルチフィラメント糸は、2種類の繊維形成性ポリマーからなる芯鞘複合形態の芯鞘型複合単繊維からなるものであり、その単繊維の横断面における鞘部分の異形度が0.9~1.3のU型形状となっているものである。このマルチフィラメント糸について、具体的に、図1、図2および図3に基づき説明する。
図1は、本発明で用いられる芯鞘型複合単繊維の延伸仮撚捲縮加工前の部分配向複合繊維または延伸後で仮撚捲縮加工前の単繊維の一態様を示す断面図である。
 図1に示されるように、芯鞘型複合単繊維Aが鞘部分Bと芯部分Mの2種類の繊維形成性ポリマーにより構成されており、鞘部分BがU型形状の芯鞘複合形態に構成されている。この芯鞘型複合単繊維からなるマルチフィラメント糸に仮撚捲縮加工を施すことにより、図2に示されるように芯鞘型複合単繊維Aは不定形な単繊維断面形状となり、更に編織物に形成された後、芯鞘型複合単繊維Aの芯部分Mを溶出除去することにより、その芯鞘型複合単繊維Aの鞘部分が残る。U型形状である芯鞘型複合単繊維からなるマルチフィラメント糸が、図3に示されるように空洞部Eを有する単繊維イ(断面略U型形状)、ロ(断面略C型形状)、ハ(断面略V型形状)であることが好ましい態様である。
 この芯鞘型複合単繊維Aの芯部分Mを構成する芯成分ポリマーは、鞘部分Bの鞘成分ポリマーに比べて、アルカリ溶液に対して溶出し易いポリエステル系の易溶出共重合物である。
この図1に示すような鞘部分BがU型形状の芯鞘複合形態における鞘部分Bの異形度は、芯鞘型複合単繊維Aの横断面中心部における芯部分Mの中央部幅Gと、芯鞘型複合単繊維Aの横断面における鞘部分Bの開口部幅Nの比(G/N)で示され、その値は0.9~1.3であり、好ましくは、1.0~1.2である。
この横断面の中央部幅の比(G/N)が0.9未満の場合は、鞘部分Bの開口部幅Nが広くなるため、芯成分ポリマーが短時間で十分に溶出除去し易いものの、図3における芯成分ポリマー溶出除去後の溝開口部の幅nが広くなりすぎることから、単繊維同志が重なり合ったり食い込み合ったりすることにより、後述する最終加工された編織物の嵩高性が低くなり易く、また、編物や織物表面の光沢斑、ヨコ筋斑およびタテ筋斑が発生し易いなど品位的に好ましくない現象が発生する。
また、この横断面の中央部幅の比(G/N)が1.3を超える場合は、鞘部分Bの開口部幅Nが狭くなるため、編織物形成後に芯部分Mを溶出させる際、芯成分ポリマーが完全溶出され難く芯成分ポリマーが単繊維内部に残留し、最終加工品でのタテ筋やヨコ段の発生および芯成分ポリマーの残留に起因する染色堅牢度の低下など、最終加工品での品位や品質劣化問題を引き起こし易いという問題を有する。更には、芯部分Mのポリマーの溶出時間が長くかかることからコストアップの要因ともなる。
なお、鞘部分の断面の異形度が0.9~1.3の範囲でないものが15質量%以下の割合で含まれていてもよい。15質量%以下ならば最終加工された編織物の嵩高性の低下は少なく、また、編織物表面の光沢斑、ヨコ筋斑およびタテ筋斑などの品位や品質的問題の発生も引き起こし難い。
 この鞘部分Bの異形度(G/N)の算出法は、例えば、芯鞘型複合単繊維36本からなる一本のマルチフィラメント糸を例にとると、図1に示されるような芯鞘型複合単繊維の延伸仮撚捲縮加工前の部分配向複合繊維または延伸後で仮撚捲縮加工前のフラットヤーンの単繊維36本からなる一本のマルチフィラメント糸をパラフィンで包埋した後、この包埋されたマルチフィラメント糸の断面を薄切りにし、更に、芯部分Mを染色可能な染料で染色(切片染色)した後、顕微鏡拡大写真を撮影する。
 この顕微鏡拡大写真から、各芯鞘型複合単繊維の横断面の幅YのY/2となる横断面の中央部位置Pにおける芯成分Mの中央部幅Gと鞘成分Bの開口部幅Nの比を求めたものである。
鞘部分Bの異型度の算出法を図1に基づいて具体的に説明する。顕微鏡拡大写真の芯鞘型複合単繊維Aの鞘部分Bの開口部H側における両先端部を結ぶ接続線aを引く。その接続線aと鞘部分Bの開口部H側における両先端部との接点間隔が鞘部分Bの開口部幅Nである。
 次に、開口部幅Nの中央部であるN/2の位置から芯鞘型複合単繊維Aの鞘部分Bの凸部に向けた垂直線bを引く。更に、鞘部分Bの左側最凸部位置に接し、かつ、垂直線bに対し垂直線tを引く。接続線aと垂直線tは平行であり、この間隔が芯鞘型複合単繊維Aの横断面の幅Yとなる。
更に、横断面の幅Yの中央部であるY/2の位置から垂直線bに対し、垂直線を引き、芯鞘型複合単繊維Aの横断面の中央部位置Pとする。この中央部位置Pにおける芯成分Mの幅が芯鞘型複合単繊維Aの芯成分Mの中央部幅Gとなる。
評価数は、一本のマルチフィラメント糸における任意の2ヶ所からの包埋法顕微鏡拡大写真から、芯鞘型複合単繊維の合計72本の平均値を求めて表した。
また、本発明のマルチフィラメント糸には、仮撚捲縮加工が施されることが好ましい態様である。
図1のような鞘部分BがU型断面形状の芯鞘型複合単繊維からなるマルチフィラメント糸を仮撚捲縮加工することにより、図2のようにマルチフィラメント糸を構成する各芯鞘型複合単繊維に不定形な断面変形が生じることから、編織物を形成後に芯部分Mを溶出することにより、図3に示されるように、その断面形状を文字でモデル的に言い表すならば、イのような略U型形状、ロのような略C型形状およびハのような略V型形状の不定形な断面形状の単繊維が混合されたマルチフィラメント糸を形成することができる。本発明の芯鞘型複合単繊維からなるマルチフィラメント糸のU型断面形状に、略U型形状、略C型形状および略V型形状のいずれもが含まれる。
仮撚捲縮加工糸を得る方法としては、芯鞘型複合単繊維からなる糸条を紡糸後、一旦ドラムに巻き取った後、更に、延伸と仮撚捲縮加工を同時に行う方法、または、紡糸後、糸条を一旦ドラムに巻き取った後に延伸されたものは、更にその後、通常の仮撚加工機で捲縮加工することにより、仮撚捲縮加工糸を得ることができる。特に、紡糸後、一旦ドラムに巻き取った後に延伸仮撚捲縮加工をする方法が、コスト的にも品質的にも好ましく適用されるものである。
このように仮撚捲縮加工を施すことにより、ストレッチ性と嵩高性を有する捲縮加工糸を得ることができる。
また、本発明では、一旦ドラムに巻き取った部分配向複合繊維を、他の糸条との異繊度混繊加工や空気混繊加工などの複合延伸仮撚加工等を行うことも好ましく適用することができる。
この仮撚捲縮加工糸の代表的な特性としての伸縮復元率は、15~40%であることが好ましく、より好ましくは、20~30%である。
伸縮復元率が15%未満の場合は、編織物の嵩高性およびストレッチ性が不足する傾向があり、また、伸縮復元率が40%を超えると、編織物の風合いが粗硬化するとともに、表面品位が悪化する場合がある。
この伸縮復元率の評価法は、JIS L1013:2012の化学繊維フィラメント糸試験方法第8.12項の記載に準ずるものである。
本発明の編織物は、断面の異形度が0.6~3.6であるU型形状の単繊維からなるマルチフィラメント糸を30質量%以上含むものである。
この単繊維の異形度は、先に図1を用いて述べた定義と同様にして求められ、その値は0.6~3.6であり、好ましくは0.7~2.7であり、より好ましくは0.8~2.0である。
この横断面の異形度が0.6未満の場合は、単繊維の溝開口部の幅Nが広くなるため、単繊維同志が重なり合ったり、食い込み合ったりすることにより、後述する最終加工された編織物の嵩高性が低くなり易く、また、編物や織物表面の光沢斑やヨコ筋斑およびタテ筋斑が発生し易くなり品位的において劣ることになる。
また、この横断面の異形度が3.6を超える場合は、単繊維の溝開口部の幅Nが狭くなるため、芯成分ポリマーが完全溶出され難く単繊維内部に残留し、最終加工品において、タテ筋やヨコ段の発生および芯成分ポリマーの残留に起因する染色堅牢度低下などが惹起され、最終加工品での品位や品質劣化等の問題を引き起こし易い。更には、芯部分Mのポリマーの溶出時間が長くかかることからのコストアップの要因ともなる。
なお、鞘部分の断面の異形度が0.6~3.6の範囲でないものが15質量%以下の割合で含まれていてもよい。15質量%以下ならば最終加工された編織物の嵩高性の低下は少なく、また、編織物表面の光沢斑、ヨコ筋斑およびタテ筋斑などの品位や品質的問題の発生も引き起こし難い。
本発明の編織物は、前記の芯鞘型複合単繊維からなる本発明のマルチフィラメント糸の芯鞘型複合単繊維の芯部分Mを溶出除去することにより、好ましくは、単繊維表面の長手方向に沿って延びる一本の溝を持つ略U型形状、略C型形状および略V型形状の単繊維イ、ロ、ハが混合されたマルチフィラメント糸の仮撚捲縮加工糸を含むものである。この不定形な断面形状の単繊維については、図3に基づき具体的に説明する。
 図3は、単繊維本数が36本からなる一本のマルチフィラメント糸の仮撚捲縮加工糸を包埋法により処理した顕微鏡写真の一例であるが、この図3において、各単繊維は、その断面の一部が開いた溝開口部の幅nを有しており、この溝開口部の幅nは、各単繊維表面の長手方向に沿って延びる一本の溝状形態を成している。
 また、図3において、各単繊維におけるその溝の断面形状も異なっており、単繊維イのような断面が略U型形状、単繊維ロのような略C型形状および単繊維ハのような略V型形状の不定形な断面形状を有する単繊維が混合された集合体となっている。
次に、ここで述べるマルチフィラメント糸を構成する単繊維の断面の異形度について、具体的に図4、図5、図6に基づき説明する。
単繊維イのような略U型形状について図4、単繊維ロのような略C型形状について図5、単繊維ハのような略V型について図6に基づいて説明するが、基本的な考え方は図1を用いて前述した異形度の定義と同じである。
 図4は、本発明で用いられる異形断面形状の単繊維の断面形状の一態様を示す断面図である。ここで図4は、具体的に、図3に示される略U型形状の単繊維イの模式断面図であり、包埋法による顕微鏡拡大写真から、単繊維の横断面幅yのy/2となる横断面の中央pにおける空洞部の中央部幅gと単繊維の溝開口部の幅nの比を求めたものである。
即ち、単繊維の異形度=g/nである。ここで、gは単繊維の空洞部(溝部)の中央部幅を表し、nは単繊維の溝開口部の幅を表す。
略U型形状の鞘部分Bの異型度(g/n)の算出法を図4に基づいて具体的に説明する。顕微鏡拡大写真の単繊維の鞘部分Bの開口部側における両先端部を結ぶ接続線aを引く。その接続線aと鞘部分Bの開口部側における両先端部との接点間隔が鞘部分Bの開口部幅nである。
 次に、開口部幅nの中央部であるn/2の位置から芯鞘型複合単繊維Aの鞘部分Bの凸部に向けた垂直線bを引く。更に、鞘部分Bの左側最凸部位置に接し、かつ、垂直線bに対し垂直線tを引く。接続線aと垂直線tは平行であり、この間隔が単繊維の横断面の幅yとなる。
更に、横断面の幅yの中央部であるy/2の位置から垂直線bに対し垂直線を引き、単繊維の横断面の中央部位置pとする。この中央部位置pにおける空洞部(溝部)Eの中央部幅gとなる。
 同様に、図5は、図3に示される略C型形状の単繊維ロの模式断面図であり、図6は、図3に示される略V型形状の単繊維ハの模式断面図であり、前述と同様にして各単繊維の異形度(g/n)を算出することができる。
評価数は、一本のマルチフィラメント糸における任意の2ヶ所からの包埋法顕微鏡拡大写真から、単繊維の合計72本の異形度(g/n)を算出し、その平均値を求めて表した。
また、顕微鏡拡大写真から単繊維の鞘部Bが繊維長さ方向に完全に割れた形態や欠けた形態で異型度(g/n)が算出できないものは、算出本数から除外する。
 ここで、各単繊維の断面形状において、具体的な略U型形状は、図3の単繊維イおよび図4のように、単繊維の断面形状内側がU型形状に湾曲しており、単繊維の溝開口部の幅nと空洞部(溝部)の中央部幅gが、ほぼ同等(n≒g)のものをいう。
 また、略C型形状は、図3の単繊維ロおよび図5のように単繊維の断面形状内側が円弧状に湾曲しており、単繊維の溝開口部の幅nよりも空洞部(溝部)の中央部幅gが広い(n<g)ものをいい、略V型形状は、図3の単繊維ハおよび図6のように、単繊維の断面形状の内側底部が略U型形状よりもV字形状に狭くなっており、単繊維の溝開口部の幅nが空洞部(溝部)の中央部幅gよりも広い(n>g)ものをいう。
このように、図3においては、略U型形状、略C型形状および略V型形状の少なくとも3種類の不定形な形状の繊維が混合されて、一本のマルチフィラメント糸が構成されている。
 本発明の編織物の単繊維の断面形状は、古くから提案されている代表的なC型断面形状糸に比べ、図2における芯部分Mを溶出除去する前の芯鞘型複合単繊維の鞘部分Bの断面形状が略U型形状、略C型形状および略V型形状として鞘部分Bの開口部Hが十分に広いため、染色加工工程での芯部分Mの安定的な溶出除去と、更には、芯部分溶出除去後の一本のマルチフィラメント糸の各単繊維が異なった少なくとも2種類の異形断面形状の繊維が混合され、かつ、各単繊維の開口部の方向が好適には不均一なことから、編織物の染色斑やタテ筋およびヨコ段の問題の発生も起こし難い。
 更には、この略U型形状、略C型形状および略V型形状の少なくとも2種類の形状の単繊維が混合されて、一本のマルチフィラメント糸の集合体となることにより、編織物において単独断面形状の集合体に比べて、各単繊維同志の重なり合いや食い込み合いが避けられ、かつ各単繊維内部の溝部の空隙率の大きさから、生地の軽量性と嵩高性に富み、保温性にも優れた編織物が得られる。
 また、本発明においては、この略U型形状、略C型形状および略V型形状は、各単繊維の長手方向に沿って、各形状が均一に形成されていてもよく、あるいは、各単繊維の長手方向に沿って、各形状がランダムに混合され形成されていることも許容される。
 また、本発明においては、略U型形状、略C型形状および略V型形状の3種類の形状の単繊維が必ずしも混合される必要はないが、少なくとも2種類の形状が混合されることが好ましい。
 これらの各単繊維の好ましい配合割合は、略U型形状の単繊維イが好ましくは30~60質量%であり、略C型形状の単繊維ロが好ましくは30~60質量%であり、略V型形状の単繊維ハが好ましくは5~30質量%であり、より好ましくは、略U型形状の単繊維イが40~50質量%であり、略C型形状の単繊維ロが40~50質量%であり、略V型形状の単繊維ハが7~20質量%である。
また、本発明の編織物は、これらの不定形な異形断面形状の単繊維が混合されたマルチフィラメント糸の仮撚捲縮加工糸を30質量%以上含むことが好ましい態様である。
本発明の編織物において、これらのマルチフィラメント糸の仮撚捲縮加工糸の割合は、40~100質量%であることがより好ましく、特に好ましくは50~100質量%である。仮撚捲縮加工糸の割合が30質量%未満の場合は、生地の軽量性と嵩高性に欠け、保温性にも劣ることになる。
 本発明の編織物は、その嵩高度指数が1.2以上であることが好ましい態様である。嵩高度指数の基礎となる嵩高度の評価法は、実施例において述べる。
次に、先の芯鞘型複合単繊維の仮撚捲縮加工糸を用いた編織物を形成する芯鞘型複合単繊維の芯部分Mを溶出除去することにより、図3に示されるように芯部分Mを溶出除去して得られた後の編織物の嵩高度と、鞘部分と同一の素材からなる通常の丸型断面原糸の仮撚捲縮加工糸であり、先の芯鞘型複合単繊維の芯部分Mを溶出除去する前と同一総繊度で、同一単繊度の原糸(比較原糸とする)を使用した編織物の嵩高度を各々評価し、かつ比較原糸使いの嵩高度を1.0としたときの、芯鞘型複合単繊維の芯部分溶出後の編織物の嵩高度の比較値を示す。
・嵩高度指数=J/K
 ここで、Jは芯部分Mを溶出除去して得られた後の編織物の嵩高度(cm/g)を表し、Kは比較原糸使いの編織物の嵩高度(cm/g)を表す。
この嵩高度指数は、後述する芯鞘型複合単繊維の鞘部分Bに対する芯部分Mの複合比率が30質量%以上のマルチフィラメント糸からなる仮撚捲縮加工糸を編織物に30質量%以上混合させることにより得られる。更に、編織物設計において、構成原糸の間隙を多くとることにより、より嵩高度指数を大きくすることができる。
この嵩高度指数が1.2未満の場合は、軽量を特徴とする編織物として嵩高性が少ない場合がある。この嵩高度指数は1.2~5.0であることが好ましく、より好ましくは1.2~3.0である。一方、嵩高度指数が5.0を超える場合は、軽量を特徴とする編織物として嵩高性には優れるものの、編織物の嵩高性が大きくなり過ぎ動き難くなると共に、破裂強力や引裂強力にも劣る傾向がある。
 また、本発明の編織物は、目付当たりの保温性指数が1.2以上であることが好ましい態様である。
 目付当たりの保温性指数の基礎となる保温性(CLO値)の評価法は、実施例において具体的に述べる。この目付当たりの保温性指数は、前述した芯鞘型複合単繊維の仮撚捲縮加工糸の芯部分Mを溶出除去した後の編織物の保温性(CLO値)を目付で割り、また、鞘部分と同一の素材からなる一般的に使用される通常の丸型断面原糸の仮撚捲縮加工糸であり、先の芯鞘複合繊維糸の芯部分Mを溶出除去する前と同一総繊度で、同一単繊度の通常原糸(比較原糸とする)を使用した編織物の保温性(CLO値)を目付で割り、かつ比較原糸使いの目付当たりの保温性(CLO値)を1.0としたときの芯鞘複合繊維糸の芯部溶出後の生地の目付当たりの保温性(CLO値)の比較値を示す。
・保温性指数=(Q/R)/(L/Z)
 ここで、Qは芯部分Mを溶出除去して得られた後の編織物の保温性(CLO値)を表し、Rは芯部分Mを溶出除去して得られた後の編織物の目付(g/m)を表す。
また、Lは比較原糸使いの保温性(CLO値)を表し、Zは比較原糸使いの編織物の目付(g/m)を表す。
この目付当たりの保温性指数は、後述する芯鞘型複合単繊維の鞘部分Bに対する芯部分Mの複合比率が30質量%以上のマルチフィラメント糸からなる仮撚捲縮加工糸を編織物に30質量%以上混合させることにより得られる。更に、編織物設計において、構成原糸の間隙を多くとることにより不動空気層が形成されることから、より目付当たりの保温性指数を大きくすることができる。
この目付当たりの保温性指数が1.2未満の場合は、軽量を特徴とする編織物として保温性が低い場合がある。保温性指数は1.2~4.0であることが好ましく、特に好ましくは1.2~3.5である。
一方、保温性指数が4.0を超える場合は、軽量を特徴とする編織物として保温性には優れているものの、前述と同様に編織物の嵩高性が大きくなり過ぎ、動き難くなると共に破裂強力や引裂強力にも劣る傾向がある。
本発明の編織物の製造方法は、芯部分Mがポリエステル系易溶出共重合物からなり、鞘部分Bに対する芯部分Mの複合比率が30~70質量%である芯鞘型複合単繊維からなるマルチフィラメント糸の捲縮加工糸を用いた編織物を、アルカリ液中に浸漬してその芯部分Mを溶出除去する方法である。
即ち、本発明で用いられる異形断面形状の単繊維が混合されたマルチフィラメント糸を形成する鞘部分BがU型断面形状の芯鞘型複合単繊維は、図1および図2に示されるように、鞘部分Bと芯部分Mの2種類の繊維形成性ポリマーから成るものであり、その芯部分Mの芯成分ポリマーは、鞘部分Bの鞘成分ポリマーに比べて、アルカリ性水溶液に対して溶出し易いポリエステル系の易溶出共重合物である。
本発明の軽量を特徴とする編織物は、製編織後にアルカリ性水溶液により溶剤減量を施し、芯鞘型複合単繊維の芯部分Mを溶出除去して、図3に示されるような空洞部Eを有する断面構造を形成させるため、鞘部分Bの溶剤浸食を低減させなければならない。鞘部分Bが溶剤浸食を受けた場合、編織物の破裂強力や引裂強力が低下するだけでなく、品質や品位の低下を伴うことになるからである。
繊維断面形状の鞘部分BをU型形状の芯鞘複合形態にすることにより、芯部分Mのポリマーは、鞘部分Bの開口部Hが広いことから、容易に、かつ、安定的に溶出され、図3に示されるように単繊維の溝開口部の幅nが広く形成される。
本発明は、これらのことから、前述した芯鞘型複合単繊維の鞘部分の断面の異形度(G/N)を0.9~1.3にすること、および、芯鞘型複合単繊維からなる仮撚捲縮加工糸の芯部溶出後の異形度(g/n)を0.6~3.6にすることにより、従来のC型断面形状の繊維から生ずる種々の課題を解決したものである。
 本発明で用いられるこの芯鞘型複合単繊維の芯成分ポリマーは、アルカリ性水溶液に対してより易溶出性が求められる観点から、ポリエチレングリコールを共重合させたポリエチレンテレフタレートであることが好ましい。特に、質量平均分子量500~8000のポリエチレングリコールを8~70質量%共重合させたポリエチレンテレフタレートが好ましく用いられる。
このことにより、芯部分Mの除去の際にアルカリ性水溶液による溶出除去性が向上し、高品質な編織物が得られるとともに、製糸安定性が向上する。更に好ましいポリエチレングリコールの質量平均分子量は4000~6000であり、その好ましい共重合量は30~70質量%である。
 また、芯成分ポリマーは、テレフタル酸とポリエチレングリコールと5-スルホイソフタル酸塩との共重合物であることも好ましい態様である。
 更に、芯成分ポリマーには、5-スルホイソフタル酸塩以外に、アルカリ性水溶液による溶出除去性と製糸安定性を妨げない範囲で、アジピン酸、イソフタル酸、セバシン酸、フタル酸、ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、シクロヘキサンジカルボン酸等のジカルボン酸およびそのエステル形成性誘導体、ジエチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、シクロヘキサンジメタノール等のジオキシ化合物、p-(β-オキシエトキシ)安息香酸等のオキシカルボン酸およびそのエステル形成性誘導体等を共重合させることができる。
 この芯鞘複合形態で構成された鞘部分Bに対する芯部分Mの複合比率は、30~70質量%であることが好ましい。
 この鞘部分Bに対する芯部分Mの複合比率について、嵩高感、軽量感および保温性の観点から、更には芯部分Mの溶出除去後の編織物の破裂強力や引裂強力を考慮して、芯部分Mの複合比率は設定されるが、芯部分Mの複合比率は、より好ましくは40~60質量%であり、更に好ましくは50質量%である。
 この芯部分Mの複合比率が30質量%未満の場合は、編織物の破裂強力や引裂強力は満足するものの、嵩高感や軽量感、更には、保温性に劣る場合がある。また、芯部分Mの複合比率が70質量%を超える場合は、嵩高感、軽量感および保温性は満足するものの、染色工程での物理的圧力で単繊維の大きな変形や鞘部分Bの割れ、更には、編織物の破裂強力や引裂強力にも劣る場合がある。
 同様の理由から、鞘部分Bの厚さは、5~20ミクロンであることが好ましい態様である。
 更に、製糸性を向上させる観点および光沢感を抑える観点から、鞘成分中に酸化チタン粒子が0.05~2.5質量%含有されてなることが好ましい態様である。
 また、鞘部分Bに対する芯部分Mの複合比率を30~70質量%とし、更に、鞘部分Bの厚さを5~20ミクロンとする芯鞘複合形態のマルチフィラメント糸を仮撚捲縮加工糸にすることにより、従来の異形断面形状のストレートなフィラメント糸にはない、図3に示されるような略U型、略C型および略V型の不定型な異形断面形状の単繊維が混合された繊維集合体が得られやすく編織物の嵩高性と軽量性および保温性を有し、更には、品位と品質を維持することができる。
本発明の軽量を特徴とする編織物は、製編または製織された後、染色加工工程でリラックス処理と精練処理を行い、その後、アルカリ性水溶液中で芯部分Mを溶出除去し、空洞部Eを有する異形断面形状を形成するものである。
アルカリ性水溶液中での芯部分の溶出除去には、一般的に水酸化ナトリウム水溶液が用いられ、水で希釈した好適には1.5~4.5%の水酸化ナトリウム水溶液を80~98℃の範囲の温度に加熱し、20~50分程度の処理を行う。
使用する設備としては、一般的に使用される液流リラクサー、連続リラクサーおよび液流染色機等を使用することができる。
本発明の編織物の製造方法の好ましい態様によれば、前記の鞘部分Bは、ポリエステル系ポリマーまたはポリアミド系ポリマーである。 
 鞘部分Bがポリエステル系ポリマーの場合は、その繊維形成性ポリマーとして、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレートおよびカチオン可染ポリエステルなどが好ましく適用される。
また、鞘部分Bがポリアミド系ポリマーの場合は、その繊維形成性ポリマーとして、ナイロン6、ナイロン66、ナイロン610、ナイロン56およびナイロン11などが好ましく適用される。
 鞘部分Bにポリアミド系ポリマーを用いたポリエステル芯鞘型複合単繊維からなる糸条を得る方法としては、ポリエステル系ポリマーを用いたポリエステル芯鞘型複合単繊維からなる糸条を得る方法に類似した、ナイロン専用の製造設備が用いられる。
 本発明の編織物の製造方法の好ましい態様によれば、本発明で用いられる捲縮加工糸において、用いられる単繊維の単繊維繊度は、0.5デシテックス以上11デシテックス以下であり、総繊度が11デシテックス以上550デシテックス以下である。
この単繊維繊度および総繊度は、アルカリ性水溶液中に浸漬して芯部分Mを溶出除去する前の芯鞘型複合単繊維からなる仮撚捲縮加工糸についての繊度である。
前述した芯鞘型複合単繊維における鞘部分Bに対する芯部分Mの複合比率は、好ましくは30~70質量%であることから、アルカリ性水溶液中に浸漬して芯部分Mを溶出除去した後の繊度は、芯部分Mを溶出する前の単繊維繊度が0.5デシテックスの場合は0.35~0.15デシテックスとなり、同様に11デシテックスの場合は7.7~3.3デシテックスとなる。
また、芯部分Mを溶出する前の総繊度が11デシテックスの場合は、アルカリ性水溶液中に浸漬して芯部分Mを溶出除去した後の繊度は、7.7~3.3デシテックスとなり、同様に550デシテックスの場合は385~165デシテックスとなる。
上記のように、芯部分Mを溶出除去する前の単繊維繊度を11デシテックス以下とすることにより、編織物の風合いをソフトなものとし、衣料用および資材用として好ましく使用することができる。また、単繊維繊度を0.5デシテックス以上、さらに好ましくは、1.1デシテックス以上とすることより芯鞘型複合繊維からなるマルチフィラメント糸の製糸性および仮撚捲縮加工性が良好となる。
 また、単繊維繊度が0.5デシテックス未満の場合は、衣料として着用したとき、擦れによる毛羽立ちや毛玉が発生し易く、品位的に劣るものとなることがある。
一方、単繊維繊度が11デシテックスを超えると、衣料用の場合、風合いが粗硬となり肌触りにも劣ることになることがある。
 また、芯部分Mを溶出除去する前の総繊度を11~550デシテックスの範囲とすることにより、薄地から厚地までの衣料用途や資材用途に幅広く適用することができる。
 本発明の編織物の製造方法の好ましい態様によれば、芯部分Mが溶出除去された後のマルチフィラメント糸の内表面および/または外表面に、機能剤を付与することができる。
 付与させる機能剤としては、求められる用途や要望により適宜選択することができるが、例えば、撥水加工剤、防汚加工剤、抗菌加工剤、消臭加工剤、防臭加工剤、難燃加工剤、吸汗加工剤、吸湿加工剤、防カビ加工剤および紫外線吸収加工剤を好ましく適用することができる。これらの機能剤の付与は、染色加工工程で芯鞘複合繊維の芯部分Mを溶出除去した後に付与加工を行うことが好ましい態様である。
 芯部分Mが溶出除去された後のマルチフィラメント糸を構成する単繊維は、機能剤が、その断面形状の外表面のみならず異形断面形状の繊維の内表面にまで付着することにより付着面積が大きくなると共に、マルチフィラメント糸を構成する単繊維の内表面が、図3に示される空洞部Eのような凹状の窪みのため、摩擦や洗濯耐久性に優れ、従来の耐久性不足や風合い粗硬化の問題を解決することになる。機能剤を付与する加工方法は、染色加工工程で通常行われている方法に準じて行うことができる。
本発明の軽量を特徴とする編織物は、前述の芯鞘型複合単繊維から得られる単繊維からなるマルチフィラメント糸を100%用いる場合の他に、他の繊維素材との混用も好ましく適用される。他の繊維素材との混用方法としては、通常の交編、交織、交撚、引き揃え、カバーリングおよび混繊等を採用することができ、狙い用途、編織物形成法および編織物組織等に応じて適宜使い分けすることができる。
 他の混用繊維素材としては、合成繊維であるポリエステル系繊維、ポリアミド系繊維、ポリアクリルニトリル系繊維、ポリビニールアルコール系繊維、ポリ塩化ビニール系繊維、ポリウレタン系繊維もしくは半合成繊維であるアセテート系繊維もしくは再生繊維であるビスコース・レーヨン、キュプラを含むセルロース系繊維、牛乳蛋白繊維、大豆蛋白繊維を含む蛋白質系繊維、ポリ乳酸系繊維、もしくはこれらのフィラメント糸使いや紡績糸使い、または、混紡糸使い、もしくは綿や麻を含む植物系天然繊維、もしくは羊毛、カシミヤや絹を含む動物系天然繊維、または更に、これらの混紡糸使い等が挙げられる。
 本発明の軽量を特徴とする編織物の形成法において、編物は通常の緯編地または経編地からなる。緯編地としては、丸編地であるシングル丸編地やダブル丸編地、パイル丸編地、横編地、靴下編地および成型編地があり、各々の専用編機を用いて製編することができる。また、経編地としては、トリコット編地であるシングルトリコット編地やダブルトリコット編地、ラッシェル編地であるシングルラッシェル編地やダブルラッシェル編地、およびミラニーズ編地である平型ミラニーズ編地や円形ミラニーズ編地等があり、これらも各々の専用編機を用いて製編することができる。
 また、織物は、通常の一重組織または二重組織からなる。一重組織としては、平織、綾織、朱子織およびそれらの変化組織が挙げられる。二重組織としては、タテ二重組織、ヨコ二重組織およびタテヨコ二重組織等があり、これらの織物もウォータージェット織機、エアージェット織機、レピア織機およびパイル織機などの専用織機を用いて製織することができる。
 また、製編織された生機の熱処理、精練や染色等の加工は、アルカリ性水溶液による芯鞘型複合単繊維の芯部分Mの溶出除去加工以外は、通常の編織物の加工法に準じて行うことができる。
また、染色段階での付帯加工として、前述した機能剤付与加工以外の後加工として、カレンダー加工、エンボス加工、シワ加工、起毛加工、プリント加工およびオパール加工等、最終用途の要求特性に応じて適宜付与することができる。
本発明の軽量を特徴とする編織物は、適宜選択することにより、次のように幅広く用途展開することが可能である。例えば、衣料用途では、スポーツウエア類、水着類、肌着類、インナーウエア用ファンデーション類、ユニフォームウエア類、アウターウエア類、セーター・カーディガン類、手袋類、パンティストッキング類、タイツ類およびソックス類等に好ましく使用することができる。
 また、資材用途では、カーシートを含む座席シート類、靴材類、鞄材類、衣料用芯地および裏地類、レース類、カーテン類、建築用断熱材および梱包用クッション材等に好ましく使用することができる。
 本発明の軽量を特徴とする編織物の強力は、用途によって要求度が異なるが、編物の破裂強力は、0.25Mpa以上が好ましく、より好ましくは0.3Mpa以上である。この破裂強力の評価法は、JIS L1096:2012の第8.18.1項に記載のA法(ミューレン形法)に準ずるものである。
 また、織物の引裂強力は、5.0N以上が好ましく、より好ましくは6.0N以上である。この引裂強力の評価法は、JIS L1096:2012の第8.17.4項に記載のD法(ベンジュラム法)に準ずるものである。
 次に、本発明のマルチフィラメント糸および軽量を特徴とする織編物について、実施例を挙げて更に具体的に説明するが、本発明はこれらに限定されるものではない。本発明において用いた評価は、それぞれ次の方法により行ったものである。
 (1)編織物の目付
 編織物の目付について、最終加工上がりの編物と織物から、JIS L1096:2012の第8.3.2項に記載のA法(JIS法)に準じて測定を行った。
 即ち、最終加工上がりの編物と織物から、20cm×20cmの試験片2枚を採取し、それぞれの標準状態における質量(g)を量り、次の式によって1m当たりの質量(g/m)を求め、その平均値を算出し、四捨五入して目付(g/m)とした。
・目付(g/m)=W/A
 ここで、Wは標準状態における試験片の質量(g)を表し、Aは試験片の面積(m)を表す。
 (2)編織物の目付軽減率
 一般的に使用される通常の丸型断面原糸(中空糸ではない中実糸で本発明の芯鞘型複合単繊維マルチアィラメント糸の仮撚捲縮加工と同条件の仮撚捲縮加工糸)であり、先の芯鞘型複合単繊維の仮撚捲縮加工糸からなる編織物の芯部分Mを溶出除去する前と同一総繊度で、同一単繊維繊度の原糸(比較原糸とする)を使用し、かつ、同一編織物設計による編織物の目付に対し、本発明の芯鞘型複合単繊維からなる編織物の芯部分Mを溶出除去した後の編織物の目付の差を目付軽減率(%)で表した。
 (3)編織物の厚さ
 編織物の厚さについて、最終加工上がりの編物と織物から、JIS L1096:2012の第8.4項に記載のA法(JIS法)に準じて測定を行った。即ち、試料の異なる5か所について厚さ測定器を用いて、一定時間および一定圧力の下で厚さ(mm)を測り、その平均値を算出し四捨五入して小数点以下2桁で表した。測定時の一定圧力は、0.7Kpaとした。
 (4)編織物の嵩高度
 上記で求めた編織物の目付(g/m)と厚さ(mm)から、次の式によって嵩高度(cm/g)を求め、四捨五入して小数点以下1桁で表した。
・嵩高度(cm/g)=t/w×1000
 ここで、tは試料の厚さ(mm)を表し、wは試料の目付(g/m)を表す。
 (5)嵩高度指数
 本発明で用いられる芯鞘型複合単繊維からなる仮撚捲縮加工糸の芯部分Mを溶出除去した後の編織物の嵩高度と、鞘部分と同一の素材からなる一般的に使用される通常の丸型断面原糸の仮撚捲縮加工糸で、先の芯鞘型複合繊維糸の芯部分Mを溶出除去する前と同一総繊度で、同一単繊度の原糸(比較原糸とする)を使用した編織物の嵩高度を各々求め、かつ比較原糸使いの嵩高度を1.0としたときの、芯鞘型複合単繊維からなる仮撚捲縮加工糸における芯部分Mの溶出後の編織物の嵩高度の比較値を示す。数値が大きい程、嵩高性があることを示す。
 (6)編織物の保温性(CLO値)
 温度20℃、湿度65%に設定された調温室内で、カトーテック(株)製の精密迅速熱物性測定装置KES-F7(サーモラボ)を用い、40℃の温度に設定された10cm×10cmの熱板(BT・Box)の上に、10cm×10cmに採取した最終加工上がりの試料(編織物)をのせ、1分間40℃の温度を保つための消費電力(W)を測定し、次の式によって保温性(CLO値)を求め、試料3枚の平均値を四捨五入して小数点以下3桁で表した。
・CLO値=[△T×0.01]/[W×0.155]
 ここで、△Tは熱板40℃-BT・Box内温度を表し、0.01は熱板(BT・Box)の面積(m)を表し、Wは消費電力を表し、0.155は定数を表す。
 (7)目付当たり保温性指数
 本発明で用いられる芯鞘型複合単繊維からなる仮撚捲縮加工糸の芯部分Mを溶出除去した後の編織物の保温性(CLO値)を目付で割り、また、鞘部分と同一の素材からなる一般的に使用される通常の丸型断面原糸の仮撚捲縮加工糸であり、先の芯鞘型複合単繊維からなる仮撚捲縮加工糸の芯部分Mを溶出除去する前と同一総繊度で、同一単繊度の原糸(比較原糸とする)を使用した編織物の保温性(CLO値)を目付で割り、かつ比較原糸使いの目付当たりの保温性(CLO値)を1.0としたときの、芯鞘型複合単繊維からなる仮撚捲縮加工糸における芯部分M溶出後の編織物の目付当たりの保温性(CLO値)の比較値を示す。数値が大きい程、目付当たりの保温性が高いことを示す。
 (8)仮撚捲縮加工前で芯部分溶出除去前の芯鞘型複合単繊維の断面の異形度(G/N)
図1に示されるような芯鞘型複合単繊維で36本からなるマルチフィラメント糸をパラフィンで包埋した後、その包埋フィラメント糸の断面を薄切りにし、更に、カチオン染料で芯部分Mを染色(切片染色)した後、顕微鏡拡大写真(600倍)を撮影した。
この顕微鏡拡大写真から、各芯鞘型複合単繊維からなる仮撚捲縮加工前の横断面の中央位置Pにおける芯成分Mの中央部幅G(mm)と各芯鞘型複合単繊維からなる仮撚捲縮加工前の横断面における鞘成分Bの開口部幅N(mm)を求めた。
この芯鞘型複合単繊維の異形度(G/N)は、一本のマルチフィラメント糸における任意の2ヶ所からの包埋法顕微鏡拡大写真から、単繊維の合計72本の平均値を求め、四捨五入して小数点以下1桁で表したものである。
・芯鞘型複合単繊維の異形度=G/N
ここで、Gは芯鞘複合単繊維の横断面中心部における芯成分の中央部幅を表し、  Nは芯鞘複合単繊維の横断面における鞘成分の開口部幅を表す。
(9)仮撚捲縮加工後で芯部分溶出除去後の単繊維の異形度(g/n)
 図3に示されるような単繊維36本からなる一本のマルチフィラメント糸の包埋法による顕微鏡拡大写真(600倍)を撮影した後、図4、図5および図6に示されるように各単繊維の横断面の中央位置pにおける中央部幅g(mm)と各単繊維の溝開口部の幅n(mm)を求めた。
この単繊維の異形度(g/n)は、次式から一本のマルチフィラメント糸における任意の2ヶ所からの包埋法顕微鏡拡大写真から、単繊維の合計72本の平均値を求め、四捨五入して小数点以下1桁で表したものである。
・単繊維の異形度=g/n
ここで、gは単繊維の空洞部(溝部)の中央部幅を表し、nは単繊維の溝開口部の幅を表す。
 (10)軽量感とソフト感
 最終加工上がりの編物と織物を手に持ち、10名による官能評価で次のように3段階評価で示した。判定表示で○と△ならば衣服等で着用したとき、一般品に比べ軽さとソフト感を感じられることから合格とした。
・判定表示
○:軽量感とソフト感が非常にある、
△:軽量感とソフト感が一般品よりは感じる、
×:軽量感とソフト感がない。
 (11)品位と品質
最終加工上がりの編物と織物の基本物性値評価と10名による視覚評価で品位と品質評価を行い、次のように3段階評価で示した。品位と品質がやや低くても、衣服等で着用したとき、一般品と同等レベルと判断されることから、判定表示で○と△を合格とした。
・判定表示
○:品位と品質が良い、
△:品位と品質がやや劣る、
×:品位と品質が劣る。
 (12)軽量編織物としての総合評価
 次のように、2段階表示をした。編織物の嵩高度指数が1.2以上で、目付当たりの保温性指数が1.2以上であり、かつ、官能評価による軽量感とソフト感および品位と品質からみて、次の判定表示で○のものを軽量編織物として適しているとした。
・判定表示
○:軽量編織物として適している、
×:軽量編織物として適していない。
 [実施例1]
 紡糸温度290℃の条件下で、芯成分ポリマーとして、質量平均分子量5000のポリエチレングリコールを60質量%共重合したポリエチレンテレフタレートを用い、鞘成分ポリマーとして、酸化チタン粒子(平均粒径0.4μm)を1.5質量%含有したポリエチレンテレフタレートポリマーを用いて、複合比率が芯成分ポリマー/鞘成分ポリマー=50/50質量%となるように、鞘成分B側がU型形状となる芯鞘型複合口金ノズル(36ホール)から吐出させて紡速3000m/分で紡糸し、繊維断面形状が図1の模式図に示されるような単繊維からなる部分配向複合繊維糸として、総繊度が140デシテックスでフィラメント数が36フィラメントのマルチフィラメント糸を一旦巻き取った。このようにして得られた部分配向複合繊維糸を構成する単繊維(芯鞘型複合単繊維)の異形度(G/N)は1.1であった。
続いて得られた部分配向複合繊維糸を、フリクションデイスクタイプの延伸仮撚機を用いて、熱セット温度が165℃で、延伸倍率が1.7倍および加工速度が600m/分で仮撚捲縮加工を行い、図2の模式図に示される単繊維の断面形状が不定形に変形された芯/鞘質量比率が50/50質量%で、総繊度が84デシテックスで、フィラメント数が36フィラメントの芯鞘型複合単繊維からなる仮撚捲縮加工糸を得た。
 このようにして得られた芯鞘型複合単繊維からなる仮撚捲縮加工糸を、24ゲージの両面丸編機を用いて、図7に示す一完全組織F1~F4の4口給糸からなる両面リバーシブル編組織の編方図において、この編方図のそれぞれの給糸口番号F1の構成糸ニは丸編機のシリンダー針C1~C6の全針ニット編目で形成すると共にダイヤル針D1~D5にはD1、D3、D5の1本交互のタック編目で形成する。給糸口番号F2の構成糸ホは丸編機のダイヤル針D1~D5のみに全針ニット編目で形成する。
また、給糸口番号F3の構成糸ヘは丸編機のシリンダー針C1~C6の全針ニット編目で形成すると共にダイヤル針D1~D5にはD2、D4の1本交互のタック編目で形成する。給糸口番号F4の構成糸トは丸編機のダイヤル針D1~D5のみに全針ニット編目で形成する。
このようにF1~F4の4口給糸の全ての構成糸に供給し、複合繊維の仮撚捲縮加工糸100%からなる両面リバーシブル組織の生機編物を得た。
 次に、このようにして得られた生機編物を染色加工工程として、リラックスと精練、中間セット、複合繊維の芯成分Mの溶出除去加工、染色および仕上げセットを行い、最終加工上がりの編物を得た。この染色加工工程における芯成分Mの溶出除去の加工条件は、水酸化ナトリウムを用い、水で希釈した2.0%のアルカリ水溶液を90℃の温度に加熱し、35分の処理で、芯部分Mの50質量%を図3の模式図に示すように完全に除去したものである。
アルカリ水溶液により芯成分Mが溶出除去された編物の構成糸は、図3に示されるような略U型形状の単繊維を39質量%、略C型形状の単繊維を47質量%、略V型形状の単繊維を14質量%の3種の異形断面形状が混合された単繊維断面形状のマルチフィラメント糸であった。
 芯鞘型複合単繊維からなる仮撚捲縮加工糸の芯成分Mが溶出除去されたマルチフィラメント糸は、見掛け外径は芯成分Mの溶出除去前の総繊度が84デシテックスで単繊維繊度は2.3デシテックスとほぼ同等であるものの、実総繊度は42デシテックスで実単繊維繊度は1.2デシテックスであった。
 芯成分Mの溶出除去加工に使用した設備としては、一般的に使用される液流リラクサーを使用した。また、その他の加工工程である、リラックスと精練、中間セット、染色および仕上げセットは、通常のポリエステル丸編物の染色設備と加工条件に準じて行った。
 最終加工上がりの編物は、目付が75g/mで、嵩高度が9.5cm/gで、保温性(CLO値)が0.747であることから、後述する比較例1の通常糸使いの同一設計編物に比べて、目付軽減率が48%であり、嵩高度指数が1.9であり、目付当たり保温性指数が2.0と優れたものであった。また、各単繊維の断面異形度(g/n)は1.4であった。
また、官能評価による軽量感とソフト感および基本物性値の評価と視覚評価による品位と品質評価も良く、軽量を特徴とする編物として適していると判断されるものであった。詳細評価結果を、表1に示す。
 [実施例2]
 実施例1に準じた設備と条件を用いたものの、複合比率が芯成分ポリマー/鞘成分ポリマー=35/65質量%となるように、また、異形度に応じて口金の設計を変更し、鞘成分B側がU型形状となる芯鞘複合口金ノズル(36ホール)から吐出させて紡速3000m/分で紡糸し、繊維断面形状が図1の模式図に示されるような単繊維からなる部分配向複合繊維糸として、総繊度が140デシテックスでフィラメント数が36フィラメントのマルチフィラメント糸を一旦巻き取った。
このようにして得られた部分配向複合繊維糸を構成する単繊維(芯鞘型複合単繊維)の異形度(G/N)は、芯鞘複合比率に基づく芯鞘複合口金の設計が実施例1と異なることから1.0であった。
更に、実施例1と同一設備の延伸仮撚加工機を用いて、芯/鞘質量比率=35/65質量%で、総繊度が84デシテックスでフィラメント数が36フィラメントの複合繊維の仮撚捲縮加工糸を得た。
このようにして得られた複合繊維の仮撚捲縮加工糸を、実施例1と同一の両面丸編機を用い、実施例1と同一の編方図で、更に、同一の構成糸供給によって、複合繊維の仮撚捲縮加工糸100%からなる両面リバーシブル組織の生機編物を得た。
 次に、このようにして得られた生機編物を、実施例1と同一の染色加工工程と設備および条件で最終加工上がりの編物を得た。
 複合繊維の仮撚捲縮加工糸における芯成分Mの溶出除去後のマルチフィラメント糸は、見掛け外径は芯成分Mの溶出除去前の総繊度84デシテックスで単繊維繊度2.3デシテックスとほぼ同等であるものの、実総繊度は55デシテックスで実単繊維繊度は1.5デシテックスであった。
また、編物の構成糸は、図3に示されるような略U型形状の単繊維を47質量%、略C型形状の単繊維を38質量%、略V型形状の単繊維を15質量%の3種の異形断面形状が混合された単繊維断面形状のマルチフィラメント糸であった。
 最終加工上がりの編物は、目付が101g/mで、嵩高度が6.9cm/gで、保温性(CLO値)が0.721であることから、後述する比較例1の通常糸使いの同一設計編物に比べ、目付軽減率が30%で、嵩高度指数が1.4、目付当たり保温性指数が1.4と優れたものであった。また、各単繊維の断面異形度(g/n)は1.2であった。また、官能評価による軽量感とソフト感および基本物性値の評価と視覚評価による品位と品質評価も良く、軽量を特徴とする編物として適していると判断されるものであった。詳細評価結果を、表1に併せて示す。
 [実施例3]
 実施例1と同一の芯/鞘質量比率=50/50質量%の総繊度が84デシテックスでフィラメント数が36フィラメントの複合繊維の仮撚捲縮加工糸と、一般的に使用される通常の丸型断面原糸の仮撚捲縮加工糸(中空糸ではない中実糸)で総繊度が168デシテックスでフィラメント数が72フィラメント(東レ(株)製“テトロン”(登録商標))の仮撚捲縮加工糸を準備した。
 これら各々の仮撚捲縮加工糸を、実施例1と同一の両面丸編機および同一の編方図における丸編機の給糸口番号F1の編地構成糸ニと給糸口番号F3の編地構成糸ヘに、芯/鞘質量比率=50/50質量%の総繊度が84デシテックスでフィラメント数が36フィラメントの複合繊維の仮撚捲縮加工糸を、給糸口番号F2の編地構成糸ホと給糸口番号F4の編地構成糸トに、通常の総繊度が168デシテックスでフィラメント数が72フィラメントの仮撚捲縮加工糸を供給し、芯/鞘質量比率=50/50質量%の総繊度が84デシテックスでフィラメント数が36フィラメントの複合繊維の仮撚捲縮加工糸が35質量%、通常の総繊度が168デシテックスでフィラメント数が72フィラメントの仮撚捲縮加工糸が65質量%からなる両面リバーシブル組織の生機編物を得た。
 次に、このようにして得られた生機編物を、実施例1と同一の染色加工工程と設備および条件で最終加工上がりの編物を得た。複合繊維の仮撚捲縮加工糸の芯成分Mの溶出除去後のマルチフィラメント糸は、見掛け外径は芯成分Mの溶出除去前の総繊度84デシテックスで単繊維繊度2.3デシテックスとほぼ同等であるものの、実総繊度は42デシテックスで実単繊維繊度は1.2デシテックスであった。
また、編物の構成糸は、図3に示されるような略U型形状の単繊維を40質量%、略C型形状の単繊維を44質量%、略V型形状の単繊維を16質量%の3種の異形断面形状が混合された単繊維断面形状のマルチフィラメント糸であった。
 最終加工上がりの編物は、目付が168g/mで、嵩高度が4.6cm/gで、保温性(CLO値)が0.702であることから、後述する比較例2の通常糸100%使いの同一設計編物に比べ、目付軽減率が17%で、嵩高度指数が1.2で、目付当たり保温性指数が1.2と一般品よりは良好なものであった。また、各単繊維の断面異形度(g/n)は1.3であった。また、官能評価による軽量感とソフト感および基本物性値の評価と視覚評価による品位と品質評価も良く、軽量を特徴とする編物として適していると判断されるものであった。詳細評価結果を、表1に併せて示す。
 [実施例4]
 実施例1に準じた設備と条件を用いたものの、複合比率が芯成分ポリマー/鞘成分ポリマー=70/30質量%となるように、また、異形度に応じて口金の設計を変更し、鞘成分B側がU型形状となる芯鞘複合口金ノズル(36ホール)から吐出させて紡速3000m/分で紡糸し、繊維断面形状が図1の模式図に示されるような部分配向複合繊維糸として、総繊度が140デシテックスでフィラメント数が36フィラメントの糸を部分配向複合繊維糸として一旦巻き取った。
この部分配向複合繊維糸を構成する単繊維の異形度(G/N)は、芯鞘複合比率に基づく芯鞘複合口金の設計が実施例1と異なることから1.2であった。
更に、実施例1と同一設備の延伸仮撚加工機を用いて、延伸仮撚捲縮加工糸の単糸2本を引き揃え、交絡を付与して1本の加工糸として巻き取りを行い、芯/鞘質量比率=70/30でポリエステルの総繊度が168デシテックスでフィラメント数が72フィラメントである複合繊維の仮撚捲縮加工糸を得た。
 このようにして得られた複合繊維の仮撚捲縮加工糸を、エアージェット織機を用いて、図8に示す一完全組織が経糸4本、緯糸4本からなる2/2のツイル織物組織図における織物構成糸の経糸チと緯糸リの全ての構成糸に供給し、複合繊維の仮撚捲縮加工糸100%からなる2/2ツイル組織の生機織物を得た。
 次に、このようにして得られた生機織物を実施例1と同一の染色加工工程と設備および条件に準じて、最終加工上がりの織物を得た。複合繊維の仮撚捲縮加工糸の芯成分溶出除去後のマルチフィラメント糸は、見掛け外径は芯成分の溶出除去前の総繊度が168デシテックスで単繊維繊度が2.3デシテックスとほぼ同等であるものの、実総繊度は50デシテックスで実単繊維繊度は0.7デシテックスであった。
また、織物の構成糸は、図3に示されるような略U型形状の単繊維を33質量%、略C型形状の単繊維を48質量%、略V型形状の単繊維を19質量%の3種の異形断面形状が混合された単繊維断面形状のマルチフィラメント糸であった。
 最終加工上がりの織物は、目付が51g/mで、嵩高度が3.1cm/gで、保温性(CLO値)が0.681であることから、後述する比較例3の通常糸使いの同一設計織物に比べ、目付軽減率が66%で、嵩高度指数が2.4で、目付当たり保温性指数が3.0と優れたものであった。また、各単繊維の断面異形度(g/n)は1.5であった。また、基本物性値の評価において引裂強力が若干低いものであったが、官能評価による軽量感とソフト感は良く、軽量を特徴とする織物として適していると判断されるものであった。詳細評価結果を、表1に併せて示す。
 [実施例5]
 ナイロンの専用製造設備により、紡糸温度285℃の条件下で、芯成分ポリマーとして、質量平均分子量5000のポリエチレングリコールを60質量%共重合したポリエチレンテレフタレートを用い、鞘成分ポリマーとして、酸化チタン粒子(平均粒径0.4μm)を1.5質量%含有したナイロン66ポリマーを用いて、複合比率が芯成分ポリマー/鞘成分ポリマー=50/50質量%となるように、鞘成分B側がU型形状となる芯鞘複合口金ノズル(68ホール)から吐出させて紡速1500m/分で紡糸し、引続いて一旦巻き取ることなく延伸し、160℃の温度の延伸熱ローラで熱セット後、4000m/分で巻き上げ、総繊度が154デシテックスでフィラメント数が68フィラメントの延伸糸を採取した。この延伸糸を構成する単繊維の異形度(G/N)は1.1であった。
 次に、このようにして得られた延伸糸をピンタイプの仮撚機を用い、スピンドル回転数325000回転/分、仮撚数3570T/M、延伸倍率1.06倍、ヒーター温度180℃で仮撚加工を行い、総繊度が154デシテックスでフィラメント数が68フィラメントのナイロン複合繊維の仮撚捲縮加工糸を得た。
 また、一般的に使用される通常のナイロン丸型断面形状の総繊度が154デシテックスでフィラメント数が68フィラメント(東レ(株)製“プロミラン”(登録商標))の仮撚捲縮加工糸を準備した。
 これら各々の仮撚捲縮加工糸を、実施例4と同一のエアージェット織機で同一の図8に示される織物組織図における織物構成糸の経糸チに通常の丸型断面仮撚捲縮加工糸の総繊度が154デシテックスでフィラメント数が68フィラメントのナイロンマルチフィラメント糸を供給し、織物構成糸の緯糸リには、総繊度が154デシテックスでフィラメント数が68フィラメントの複合繊維の仮撚捲縮加工糸を供給して、各々の仮撚捲縮加工糸の混率が各50質量%からなる2/2ツイル組織の生機織物を得た。
 次に、このようにして得られた生機織物を、実施例1と類似するナイロン織物の染色加工工程と設備および条件で最終加工上がりの織物を得た。
 複合繊維の仮撚捲縮加工糸の芯成分Mの溶出除去後のマルチフィラメント糸は、見掛け外径は芯成分M溶出除去前の総繊度が154デシテックスで単繊維繊度は2.3デシテックスとほぼ同等であるものの、実総繊度は77デシテックスで実単繊維繊度は1.1デシテックスであった。
また、織物の構成糸は、図3に示されるような略U型形状の単繊維を41質量%、略C型形状の単繊維を33質量%、略V型形状の単繊維を16質量%の3種の異形断面形状が混合された単繊維断面形状のマルチフィラメント糸であった。
 最終加工上がりの織物は、目付が115g/mで、嵩高度が1.6cm/gで、保温性(CLO値)が0.694であることから、後述する比較例4の通常糸使いと同一の設計織物に比べ、目付軽減率が28%で、嵩高度指数が1.3で、目付当たり保温性指数が1.5と優れたものであった。また、各単繊維の断面異形度(g/n)は1.3であった。また、官能評価による軽量感とソフト感および基本物性値の評価と視覚評価による品位と品質評価も良く、軽量を特徴とする織物として適していると判断されるものであった。詳細評価結果を、表1に併せて示す。
 [比較例1]
 実施例1~4の鞘部分と同一素材からなる一般的に使用される通常のポリエステル丸型断面原糸の仮撚捲縮加工糸(中空糸ではない中実糸)であり、実施例1と実施例2の芯鞘複合糸の芯部分Mを溶出除去する前と同一総繊度で、同一単繊維繊度の原糸として、総繊度が84デシテックスでフィラメント数が36フィラメントのポリエステルマルチフィラメント糸(東レ(株)製“テトロン”(登録商標))を使用した。
 この通常の仮撚捲縮加工糸を、実施例1と同一の両面丸編機を用いて、実施例1と同一の編方図で、更に、同一の構成糸供給によって、通常の仮撚捲縮加工糸100%からなる両面リバーシブル組織の生機編物を得た。
 次に、このようにして得られた生機編物の染色加工工程は、実施例1における芯成分Mの溶出除去加工を外したこと以外は、実施例1と同一の染色加工工程、設備および条件で最終加工上がりの編物を得た。最終加工上がりの編物は、目付が145g/mで、嵩高度が5.0cm/gで、保温性(CLO値)が0.714と先の実施例1と2に比べて劣るものであった。また、官能評価による軽量感とソフト感も劣り、軽量を特徴とする編物として適していないと判断されるものであった。詳細評価結果を表1に併せて示す。
[比較例2]
 比較例1で使用した一般的に使用される通常の丸型断面原糸の仮撚捲縮加工糸である総繊度が84デシテックスでフィラメント数が36フィラメントのマルチフィラメント糸と、また、実施例3で使用した一般的に使用される通常の丸型断面原糸の仮撚捲縮加工糸である総繊度が168デシテックスでフィラメント数が72フィラメントのマルチフィラメント糸を使用した。
 これら各々の仮撚捲縮加工糸を、実施例1と同一の両面丸編機および同一の編方図における丸編機の給糸口番号F1の編地構成糸ニと給糸口番号F3の編地構成糸ヘに通常の84デシテックス36フィラメントの仮撚捲縮加工糸を、丸編機の給糸口番号F2の編地構成糸ホと給糸口番号F4の編地構成糸トに、通常の総繊度が168デシテックスでフィラメント数が72フィラメントの仮撚捲縮加工糸を供給し、通常の仮撚捲縮加工糸100%からなる両面リバーシブル組織の生機編物を得た。
 次に、このようにして得られた生機編地を比較例1と同一の染色加工工程と設備および条件で最終加工上がりの編物を得た。
この最終加工上がりの編物は、目付が203g/mで、嵩高度が3.9cm/gで、保温性(CLO値)が0.697と先の実施例3に比べ劣るものであった。また、官能評価による軽量感とソフト感も劣り、軽量を特徴とする編物として適していないと判断されるものであった。詳細評価結果を、表1に併せて示す。
[比較例3]
 実施例3で使用した鞘部分と同一素材を用いた、通常のポリエステル丸型断面原糸の仮撚捲縮加工糸を用い、総繊度が168デシテックスでフィラメント数が72フィラメントのマルチフィラメント糸を使用した。
 この仮撚捲縮加工糸を実施例4と同一のエアージェット織機を用いて、同一の図8に示される織物組織図における織物構成糸の経糸チと緯糸リの全ての構成糸に供給し、通常の仮撚捲縮加工糸100%からなる2/2ツイル組織の生機織物を得た。
次に、このようにして得られた生機編物の染色加工工程は、実施例4における芯成分Mの溶出除去加工を外したこと以外は、実施例4と同一の染色加工工程、設備および条件で最終加工上がりの織物を得た。
最終加工上がりの織物は、目付が151g/mで、嵩高度が1.3cm/gで、保温性(CLO値)が0.658と先の実施例4に比べ劣るものであった。また、官能評価による軽量感とソフト感も劣り、軽量を特徴とする織物として適していないと判断されるものであった。詳細評価結果を、表1に併せて示す。
[比較例4]
 実施例5で使用した鞘部分と同一素材のナイロンを用いた丸型断面形状であり、総繊度が154デシテックスでフィラメント数が68フィラメントのマルチフィラメント糸(東レ(株)製“プロミラン”(登録商標))からなる仮撚捲縮加工糸を使用した。
この仮撚捲縮加工糸を実施例5と同一のエアージェット織機を用いて、同一の図8に示される織物組織図における織物構成糸の経糸チと緯糸リの全ての構成糸に供給し、通常のナイロン仮撚捲縮加工糸100%からなる2/2ツイル組織の生機織物を得た。
次に、このようにして得られた生機織物の染色加工工程は、実施例5における芯成分Mの溶出除去加工を外したこと以外は、実施例5と同一の染色加工工程、設備および条件で最終加工上がりの織物を得た。
最終加工上がりの織物は、目付が160g/mで、嵩高度が1.2cm/gで、保温性(CLO値)が0.664と先の実施例5に比べて劣るものであった。また、官能評価による軽量感とソフト感も劣り、軽量を特徴とする織物として適していないと判断されるものであった。詳細評価結果を、表1に併せて示す。
[比較例5]
実施例1に準じた設備と条件を用いたものの、異形度に応じて口金の設計を変更し、鞘成分B側がU型形状となる芯鞘複合口金ノズル(36ホール)から吐出させて紡速3000m/分で紡糸し、繊維断面形状が図1の模式図に示されるような芯鞘型複合単繊維からなる部分配向複合繊維糸として、総繊度が140デシテックスでフィラメント数が36フィラメントのマルチフィラメント糸を一旦巻き取った。
この部分配向複合繊維糸を構成する単繊維の異形度(G/N)は、芯鞘複合口金の鞘部分の開口部幅の設計が実施例1と異なることから0.7であった。
更に、実施例1と同一設備の延伸仮撚加工機で同一条件で延伸仮撚加工を行い、芯/鞘質量比率50/50質量%の総繊度が84デシテックスでフィラメント数が36フィラメントの複合繊維の仮撚捲縮加工糸を得た。
このようにして得られた複合繊維の仮撚捲縮加工糸を、実施例1と同一の両面丸編機を用い、実施例1と同一の編方図で、かつ、同一の構成糸供給によって、複合繊維の仮撚捲縮加工糸100%からなる両面リバーシブル組織の生機編物を得た。
 次に、このようにして得られた生機編物を、実施例1と同一の染色加工工程と設備および条件で最終加工上がりの編物を得た。
複合繊維の仮撚加工糸の芯成分Mの溶出除去後のマルチフィラメント糸は、見掛け外径は芯成分Mの溶出除去前の総繊度が84デシテックスで単繊維繊度は2.3デシテックスとほぼ同等であるものの、実総繊度は42デシテックスで実単繊維繊度は1.2デシテックスであった。
また、編物の構成糸は、図3に示されるような略U型形状の単繊維を58質量%、略C型形状の単繊維を22質量%、略V型形状の単繊維を20質量%の3種の異形断面形状が混合された単繊維断面形状のマルチフィラメント糸であった。
 最終加工上がりの編物は、目付が73g/mで、嵩高度が9.5cm/gで、保温性(CLO値)が0.728であることから、比較例1の通常糸使いの同一設計編物に比べて、目付の軽減率が50%で、嵩高度指数が1.9で、目付当たり保温性指数が2.0と軽量性と嵩高性および目付当たり保温性指数は、実施例1と同等に良いものであった。
しかしながら、部分配向複合単繊維の異形度(G/N)が0.7と小さいことから、最終加工上がりの編物の各単繊維の断面異形度(g/n)は0.4であった。これらのことから、単繊維同志が重なり合ったり、食い込み合ったりすることで、最終加工された編物の表面にヨコ段斑と光沢斑が発生して品位と品質的に軽量を特徴とする編物として適していないと判断されるものであった。詳細評価結果を、表1に併せて示す。
 [比較例6]
 実施例1に準じた設備と条件を用いたものの、異形度に応じて口金の設計を変更し、鞘成分B側がU型形状となる芯鞘複合口金ノズル(36ホール)から吐出させて紡速3000m/分で紡糸し、繊維断面形状が図1の模式図に示されるような芯鞘型複合単繊維からなる部分配向複合繊維糸として、総繊度が140デシテックスでフィラメント数が36フィラメントのマルチフィラメント糸を一旦巻き取った。
この部分配向複合繊維糸の単繊維の異形度(G/N)は、芯鞘複合口金の鞘部分の開口部幅の設計が実施例1と異なることから2.0であった。
更に、実施例1と同一設備の延伸仮撚加工機で同一条件にて延伸仮撚加工を行い、総繊度が84デシテックスでフィラメント数が36フィラメントの複合繊維の仮撚捲縮加工糸を得た。
得られた複合繊維の仮撚捲縮加工糸を実施例1と同一の両面丸編機を用いて、実施例1と同一の編方図で同一の構成糸供給により、複合繊維の仮撚捲縮加工糸100%からなる両面リバーシブル組織の生機編物を得た。
 次に、このようにして得られた生機編物を実施例1と同一の染色加工工程と設備および条件で最終加工上がりの編物を得た。
複合繊維の仮撚加工糸の芯成分Mの溶出除去後のマルチフィラメント糸は、見掛け外径は芯成分Mの溶出除去前の総繊度が84デシテックスで単繊維繊度は2.3デシテックスとほぼ同等であるものの、実総繊度は42デシテックスで実単繊維繊度は1.2デシテックスであった。
また、編物の構成糸は、図3に示されるような略U型形状の単繊維を24質量%、略C型形状の単繊維を64質量%、略V型形状の単繊維を12質量%の3種の異形断面形状が混合された単繊維断面形状のマルチフィラメント糸であった。
 最終加工上がりの編物は、目付が77g/mで、嵩高度が9.4cm/gで、保温性(CLO値)が0.746であることから、比較例1の通常糸使いの同一設計編地に比べて、目付軽減率が47%で、嵩高度指数が1.9で、目付当たり保温性指数が2.0と軽量性と嵩高性および目付当たり保温性指数は、実施例1と同等に良いものであった。
しかしながら、部分配向複合繊維糸を構成する単繊維の異形度(G/N)が2.0と大きいことにより、最終加工上がりの編物の仮撚捲縮糸を構成する各単繊維の断面異形度(g/n)は3.9であった。これらのことから、芯成分ポリマーが完全溶出され難く一部の単繊維内部に残留し、最終加工品でヨコ段斑が発生し、また、染色堅牢度評価では耐光堅牢度に劣り、品位と品質的に軽量を特徴とする編物として適していないと判断されるものであった。詳細評価結果を、表1に併せて示す。
Figure JPOXMLDOC01-appb-T000001
A:芯鞘型複合単繊維
B:鞘部分
M:芯部分
H:鞘部分の開口部
N:鞘成分の開口部幅
Y:横断面の幅
P:横断面の中央部位置
G:芯成分の中央部幅
E:空洞部(溝部)
a:鞘部分両先端部の接続線
b:鞘成分開口部幅の1/2位置での垂直線
t:鞘部分先端凸部位置でのb線との垂直線
n:溝開口部の幅
y:横断面の幅
p:横断面の中央部位置
g:空洞部(溝部)の中央部幅
F1~F4:丸編機の給糸口番号
C1~C6:丸編機のシリンダー針
D1~D5:丸編機のダイヤル針
イ:単繊維
ロ:単繊維
ハ:単繊維
ニ:編地構成糸
ホ:編地構成糸
ヘ:編地構成糸
ト:編地構成糸
チ:織物構成糸の経糸
リ:織物構成糸の緯糸

Claims (10)

  1. 鞘部分の断面の異形度が0.9~1.3であるU型形状の芯鞘型複合単繊維からなるマルチフィラメント糸。
  2. 断面の異形度が0.6~3.6であるU型形状の単繊維からなるマルチフィラメント糸を30質量%以上含む編織物。
  3. 前記U型形状の単繊維が、断面形状が略U型形状の単繊維を30~60質量%、断面形状が略C型形状の単繊維を30~60質量%、断面形状が略V型形状の単繊維を5~30質量%含有する請求項2記載の編織物。
  4. 嵩高度指数が1.2以上である請求項2または3に記載の編織物。
  5. 目付当たりの保温性指数が1.2以上である請求項2~4のいずれかに記載の編織物。
  6. 芯部分がポリエステル系易溶出共重合物からなり、芯鞘型複合単繊維における芯部分の複合比率が30~70質量%であって、断面の異形度が0.9~1.3のU型形状である芯鞘型複合単繊維からなるマルチフィラメント糸の捲縮加工糸を用いてなる編織物を、アルカリ性水溶液中に浸漬して前記芯部分を溶出除去することを特徴とする編織物の製造方法。
  7. 前記鞘部分がポリエステル系ポリマーからなる請求項6記載の編織物の製造方法。
  8. 前記鞘部分がポリアミド系ポリマーからなる請求項6記載の編織物の製造方法。
  9. 前記芯鞘型複合単繊維の単繊維繊度が0.5デシテックス以上11デシテックス以下であり、前記マルチフィラメント糸の総繊度が11デシテックス以上550デシテックス以下である請求項6~8のいずれかに記載の編織物の製造方法。
  10. 前記芯部分が溶出除去された後のマルチフィラメント糸の内表面および/または外表面に、機能剤を付与することを特徴とする請求項6~9のいずれかに記載の編織物の製造方法。
PCT/JP2014/081319 2014-06-30 2014-11-27 マルチフィラメント糸と編織物およびその製造方法 WO2016002100A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014560575A JPWO2016002100A1 (ja) 2014-06-30 2014-11-27 マルチフィラメント糸と編織物およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014134344 2014-06-30
JP2014-134344 2014-06-30

Publications (1)

Publication Number Publication Date
WO2016002100A1 true WO2016002100A1 (ja) 2016-01-07

Family

ID=55018688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081319 WO2016002100A1 (ja) 2014-06-30 2014-11-27 マルチフィラメント糸と編織物およびその製造方法

Country Status (2)

Country Link
JP (1) JPWO2016002100A1 (ja)
WO (1) WO2016002100A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170112596A (ko) * 2016-03-31 2017-10-12 도레이케미칼 주식회사 흑색도가 향상된 중공섬유, 이의 제조용 복합섬유, 이를 포함하는 원단 및 이의 제조방법
CN108360254A (zh) * 2018-04-25 2018-08-03 宁波大千纺织品有限公司 一种功能性抗疲劳保健针织面料及其制备方法
JP2019118324A (ja) * 2018-01-09 2019-07-22 小松マテーレ株式会社 植物養生シート及びそれを用いた植物養生シート敷設装置
JPWO2022039129A1 (ja) * 2020-08-18 2022-02-24
TWI781555B (zh) * 2021-03-16 2022-10-21 立綺實業有限公司 防水透濕線材、織物及其製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5530401A (en) * 1978-08-18 1980-03-04 Asahi Chem Ind Co Ltd Production of special modified cross-section multifilament yarn
JPS5782525A (en) * 1980-11-06 1982-05-24 Kanebo Synthetic Fibers Ltd Production of water-absorbing fiber
JPS6452839A (en) * 1987-08-21 1989-02-28 Teijin Ltd Polyester false twisted crimped processed yarn and its production
JPH073554A (ja) * 1993-06-17 1995-01-06 Asahi Chem Ind Co Ltd ポリエステル中空仮撚加工糸の製造方法
JP2000045174A (ja) * 1998-07-29 2000-02-15 Masao Hatanaka 生分解型機能性糸及び布帛
JP2007131980A (ja) * 2005-11-11 2007-05-31 Toray Ind Inc ポリエステル芯鞘複合繊維およびその繊維布帛
JP2009074216A (ja) * 2007-09-25 2009-04-09 Toray Ind Inc アクリル系合成繊維およびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665837A (ja) * 1992-06-19 1994-03-08 Kanebo Ltd 保温性織編物
JPH08120575A (ja) * 1994-10-25 1996-05-14 Unitika Ltd 軽量鮮明布帛の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5530401A (en) * 1978-08-18 1980-03-04 Asahi Chem Ind Co Ltd Production of special modified cross-section multifilament yarn
JPS5782525A (en) * 1980-11-06 1982-05-24 Kanebo Synthetic Fibers Ltd Production of water-absorbing fiber
JPS6452839A (en) * 1987-08-21 1989-02-28 Teijin Ltd Polyester false twisted crimped processed yarn and its production
JPH073554A (ja) * 1993-06-17 1995-01-06 Asahi Chem Ind Co Ltd ポリエステル中空仮撚加工糸の製造方法
JP2000045174A (ja) * 1998-07-29 2000-02-15 Masao Hatanaka 生分解型機能性糸及び布帛
JP2007131980A (ja) * 2005-11-11 2007-05-31 Toray Ind Inc ポリエステル芯鞘複合繊維およびその繊維布帛
JP2009074216A (ja) * 2007-09-25 2009-04-09 Toray Ind Inc アクリル系合成繊維およびその製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170112596A (ko) * 2016-03-31 2017-10-12 도레이케미칼 주식회사 흑색도가 향상된 중공섬유, 이의 제조용 복합섬유, 이를 포함하는 원단 및 이의 제조방법
KR102488650B1 (ko) 2016-03-31 2023-01-12 도레이첨단소재 주식회사 흑색도가 향상된 중공섬유, 이의 제조용 복합섬유, 이를 포함하는 원단 및 이의 제조방법
JP2019118324A (ja) * 2018-01-09 2019-07-22 小松マテーレ株式会社 植物養生シート及びそれを用いた植物養生シート敷設装置
JP7004577B2 (ja) 2018-01-09 2022-01-21 小松マテーレ株式会社 植物養生シート及びそれを用いた植物養生シート敷設装置
CN108360254A (zh) * 2018-04-25 2018-08-03 宁波大千纺织品有限公司 一种功能性抗疲劳保健针织面料及其制备方法
JPWO2022039129A1 (ja) * 2020-08-18 2022-02-24
WO2022039129A1 (ja) * 2020-08-18 2022-02-24 東レ株式会社 複合繊維、中空繊維およびマルチフィラメント
JP7136361B2 (ja) 2020-08-18 2022-09-13 東レ株式会社 マルチフィラメント及び繊維製品
TWI781555B (zh) * 2021-03-16 2022-10-21 立綺實業有限公司 防水透濕線材、織物及其製造方法

Also Published As

Publication number Publication date
JPWO2016002100A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
JP7135854B2 (ja) 偏心芯鞘複合繊維および混繊糸
US6561230B1 (en) Weft knitted fabric
WO2016002100A1 (ja) マルチフィラメント糸と編織物およびその製造方法
JP2014227612A (ja) 軽量編織物
JP2004124348A (ja) 複合織編物
JP2006214056A (ja) 織物
JP2003113554A (ja) 複合布帛およびその製造方法
JP6689293B2 (ja) 編地および繊維製品
JP2008156762A (ja) 複合加工糸およびその製造方法
JP2006077338A (ja) ストレッチシャツ地織物
JP6578650B2 (ja) 複合糸及びこれを用いた布帛
JP7193912B2 (ja) 吸水性編物
JP4475011B2 (ja) 肌着用編地
JP3988422B2 (ja) 複合布帛の製造方法
JP2016056485A (ja) ポリアミド繊維織編物およびその製造方法
JP7367407B2 (ja) 複合仮撚加工糸及びそれからなる織編物
JP2019123970A (ja) 織物
JP2001040537A (ja) ポリエステル繊維糸条および布帛
JP6871789B2 (ja) 複合杢加工糸、織編物、および複合杢加工糸の製造方法
JP2001214335A (ja) 低収縮ポリエステル太細糸およびそれからなるポリエステル混繊糸
JP4687091B2 (ja) ソフトストレッチ糸および布帛
JP3992604B2 (ja) ポリエステル混繊糸
JP2018062714A (ja) 吸水速乾性織編物
JP2006257632A (ja) 複合布帛
JP2001089950A (ja) 強撚織物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014560575

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896915

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14896915

Country of ref document: EP

Kind code of ref document: A1