WO2015198492A1 - エピタキシャルウェーハの製造方法およびエピタキシャルウェーハ - Google Patents

エピタキシャルウェーハの製造方法およびエピタキシャルウェーハ Download PDF

Info

Publication number
WO2015198492A1
WO2015198492A1 PCT/JP2014/067601 JP2014067601W WO2015198492A1 WO 2015198492 A1 WO2015198492 A1 WO 2015198492A1 JP 2014067601 W JP2014067601 W JP 2014067601W WO 2015198492 A1 WO2015198492 A1 WO 2015198492A1
Authority
WO
WIPO (PCT)
Prior art keywords
epitaxial wafer
less
aln layer
heat treatment
seconds
Prior art date
Application number
PCT/JP2014/067601
Other languages
English (en)
French (fr)
Inventor
正昭 肥後
Original Assignee
Dowaエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowaエレクトロニクス株式会社 filed Critical Dowaエレクトロニクス株式会社
Priority to PCT/JP2014/067601 priority Critical patent/WO2015198492A1/ja
Publication of WO2015198492A1 publication Critical patent/WO2015198492A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02694Controlling the interface between substrate and epitaxial layer, e.g. by ion implantation followed by annealing

Definitions

  • the present invention relates to an epitaxial wafer manufacturing method and an epitaxial wafer, and more particularly to an epitaxial wafer manufacturing method and an epitaxial wafer capable of manufacturing an epitaxial wafer having higher crystallinity and surface flatness than conventional.
  • group III nitride semiconductors composed of a compound of N, Al, Ga, In, and the like and N have been widely used as materials for light-emitting elements or electronic device elements.
  • Such a group III nitride semiconductor is generally supplied as a so-called epitaxial wafer in which a group III nitride semiconductor layer is epitaxially grown on a predetermined single crystal substrate.
  • Patent Document 1 an epitaxial substrate composed of a base material made of an oxide single crystal and an upper layer made of an AlN group III nitride crystal film epitaxially formed on the main surface thereof is heat-treated.
  • an epitaxial substrate composed of a base material made of an oxide single crystal and an upper layer made of an AlN group III nitride crystal film epitaxially formed on the main surface thereof is heat-treated.
  • Patent Document 2 discloses an epitaxial substrate composed of a sapphire single crystal base material and an AlN layer epitaxially formed on the main surface thereof in accordance with the thickness of the AlN layer of 1250 ° C. or higher in a nitrogen atmosphere. It describes a technique for reducing the dislocation density in the AlN crystal by heat treatment at a temperature and improving the surface flatness of the AlN crystal.
  • an object of the present invention is to propose an epitaxial wafer manufacturing method and an epitaxial wafer capable of manufacturing an epitaxial wafer having higher crystallinity and surface flatness than conventional ones.
  • the inventor has intensively studied how to solve the above problems. Therefore, the relationship between the state of the AlN layer in the epitaxial wafer subjected to the heat treatment, the heat treatment conditions, and the like, and the crystallinity and surface flatness of the AlN layer in the epitaxial wafer after the heat treatment were investigated in detail. As a result, it was found that the structure near the interface between the sapphire substrate and the AlN layer in the epitaxial wafer after heat treatment was closely related to the crystallinity and surface flatness of the AlN layer in the epitaxial wafer before heat treatment. did.
  • the thickness of the defect region is 15 nm or less
  • the half width of the (10-12) plane of the X-ray rocking curve is less than 350 seconds and the surface roughness (Ra) is 0.3 nm or less. It has been found that high crystallinity and surface flatness of the AlN layer can be realized.
  • an AlN layer having an X-ray rocking curve half-width of (0002) plane of 110 seconds or less and a surface roughness (Ra) of 0.23 nm or less was formed on the sapphire substrate, and the AlN layer was formed.
  • an epitaxial wafer having extremely high crystallinity and surface flatness can be obtained with a defect region thickness of 15 nm or less. As a result, the present invention has been completed.
  • the gist of the present invention is as follows. (1) A growth step of forming an AlN layer on a sapphire substrate having an X-ray rocking curve half-width of (0002) plane of 110 seconds or less and a surface roughness (Ra) of 0.23 nm or less, and the AlN layer A heat treatment step in which heat treatment is performed at a temperature of 1580 ° C. to 1730 ° C. in a nitrogen gas atmosphere with respect to the sapphire substrate on which is formed, in the vicinity of the interface between the sapphire substrate and the AlN layer after the heat treatment step, An epitaxial wafer manufacturing method, wherein a thickness of a defect region in which a surface defect is formed is 15 nm or less.
  • the AlN layer after the heat treatment step has a (0002) plane X-ray rocking curve half width of 100 seconds or less, a (10-12) plane X-ray rocking curve half width of less than 350 seconds, and a surface roughness (Ra) is 0.3 nm or less, The manufacturing method of the epitaxial wafer as described in said (1).
  • the growth step is performed under the growth gas flow rate conditions in which the growth temperature is 1270 ° C. to 1350 ° C., the growth pressure is 5 Torr to 20 Torr, and the V / III ratio is 130 to 190, The manufacturing method of the epitaxial wafer as described in (2).
  • a thickness of a defect region including a sapphire substrate and an AlN layer on the sapphire substrate and formed in the vicinity of an interface between the substrate and the AlN layer and having a surface defect is 15 nm or less.
  • the half width of the X-ray rocking curve of the (0002) plane of the AlN layer is 100 seconds or less, the half width of the X-ray rocking curve of the (10-12) plane is less than 350 seconds, and the surface roughness (Ra)
  • an epitaxial wafer is produced by growing an AlN layer having a small half-value width of the X-ray rocking curve of the (0002) plane and a small surface roughness (Ra) on a sapphire substrate.
  • an AlN layer having a narrow half width of the X-ray rocking curve of the (10-12) plane and a small surface roughness (Ra) is obtained, so that high crystallinity and surface flatness are obtained. Can be obtained.
  • FIG. 1 shows a flowchart of an epitaxial wafer manufacturing method according to the present invention.
  • the epitaxial wafer manufacturing method according to the present invention has a (0002) plane X-ray rocking curve half-width of 110 seconds or less on the sapphire substrate 11 and a surface roughness (Ra) of 0.1.
  • a growth step for forming an AlN layer 12 of 23 nm or less (FIGS. 1A and 1B), and a sapphire substrate 11 on which the AlN layer 12 is formed at 1580 ° C. to 1730 ° C. in a nitrogen gas atmosphere.
  • a heat treatment step of performing heat treatment at a temperature is performed (FIG. 1C).
  • the thickness of the defect region 13 in which the surface defect is formed is 15 nm or less.
  • the present inventor considered the structure in the vicinity of the interface between the sapphire substrate 11 and the AlN layer 12 in the epitaxial wafer 1 after the heat treatment, the crystallinity and the surface flatness of the AlN layer 12 in the epitaxial wafer 10 before the heat treatment.
  • sex is closely related.
  • the thickness of the defect region 13 is 15 nm or less
  • the half width of the X-ray rocking curve of the (10-12) plane is less than 350 seconds and the surface roughness (Ra) is 0.3 nm or less. It has also been found that high crystallinity and surface flatness of the layer 12 can be realized.
  • the “defect region” is a region in which defects such as misfit dislocations and stacking faults that alleviate strain caused by lattice mismatch between the sapphire substrate 11 and the AlN layer 12 are formed. 11 and the AlN layer 12 in the vicinity of the interface.
  • Near the interface refers to a region in the depth range from the interface between the sapphire substrate 11 and the AlN layer 12 to 150 ⁇ m in the depth direction.
  • the “surface defect” refers to a defect that is observed by being connected to the substrate surface in the horizontal direction in cross-sectional TEM observation, and is not a defect that extends in a direction perpendicular to the substrate surface.
  • the “thickness of a defect region in which a surface defect is formed” means a horizontal length of 1000 nm of a surface defect observed in a cross-sectional TEM observation in a horizontal direction or in a horizontal direction with respect to the substrate surface. Is the difference between the minimum height and the maximum height from the substrate surface (interface between the sapphire substrate 11 and the AlN layer 12).
  • the height from the substrate surface where the surface defect occurs is not uniform within the surface, and the surface defect has fluctuations in the direction perpendicular to the depth direction from the observation surface, and these are dark on the TEM observation.
  • the observed defect area appears to have a thickness. Therefore, the fact that the thickness of the defect area where the surface defect exists is small indicates that the surface defect is generated at a relatively equal height from the substrate and substantially uniformly in the surface, and that the thickness is thick. This indicates that the height of the surface defect from the substrate varies greatly in the plane.
  • the thickness of the defect region 13 is preferably 15 nm or less, more preferably 5 nm or less, and the closer to 0 nm, the better, but it is difficult to make it strictly 0 (uniform in the plane).
  • the inventor believes that the AlN layer 12 before the heat treatment is The epitaxial wafer 10 is manufactured so as to have high surface flatness with high crystallinity, and the epitaxial wafer 10 is subjected to a heat treatment at a high temperature, whereby the thickness of the defect region 13 in the epitaxial wafer 1 after the heat treatment is 15 nm or less. And found that can.
  • the epitaxial wafer 10 is epitaxially formed so that the half width of the (0002) plane of the X-ray rocking curve of the AlN layer 12 in the epitaxial wafer 10 is 110 seconds or less and the surface roughness (Ra) is 0.23 nm or less.
  • a defect region 13 having a thickness of 15 nm or less is formed in the vicinity of the interface between the sapphire substrate 11 and the AlN layer 12, Since the full width at half maximum of the (10-12) plane of the X-ray rocking curve after heat treatment is less than 350 seconds and the surface roughness is 0.3 nm or less, it has been found that high crystallinity and surface flatness of the AlN layer 12 can be realized. is there. Hereafter, each process of this invention is demonstrated concretely.
  • a sapphire substrate 11 is prepared.
  • the sapphire 11 is a base material for forming a group III nitride semiconductor as a semiconductor device. Specifications such as the plane orientation and thickness of the sapphire substrate 11 can be appropriately set according to the requirements of the designed epitaxial wafer.
  • an AlN layer 12 is formed on the sapphire substrate 11. It is important to form the AlN layer 12 so that the half width of the (0002) plane of the X-ray rocking curve is 110 seconds or less and the surface roughness (Ra) is 0.23 nm or less. More preferably, the half width of the (0002) plane of the X-ray rocking curve is 90 seconds or less, and the surface roughness (Ra) is 0.2 nm or less.
  • the AlN layer 12 may be formed by, for example, a known thin film growth method such as metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), or sputtering. it can.
  • MOCVD metal organic chemical vapor deposition
  • MBE molecular beam epitaxy
  • sputtering a known thin film growth method such as metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), or sputtering. it can.
  • the AlN layer 12 may be grown under these conditions. That is, first, the growth temperature is preferably 1270 ° C. to 1350 ° C. More preferably, it is 1290 ° C. to 1330 ° C. If it is a more preferable range, the half width of the (0002) plane of the X-ray rocking curve is 90 seconds or less and the surface roughness (Ra) is 0.2 nm or less. .
  • the growth pressure in the chamber is preferably 5 Torr to 20 Torr. More preferably, it is 8 Torr to 15 Torr. In a more preferable range, the half-value width of the (0002) plane of the X-ray rocking curve is 90 seconds or less and the surface roughness (Ra) is 0.2 nm or less.
  • V / III ratio is likely to affect the crystallinity ⁇ XRC (0002) ⁇ and surface flatness (Ra) within the above-mentioned growth temperature and growth pressure range.
  • the V / III ratio is preferably in the range of 130 to 190.
  • the V / III ratio is more preferably in the range of 140 to 180.
  • the growth gas flow rate can be set so that the V / III ratio is 163 under conditions of a growth temperature of 1300 ° C. and a growth pressure of 10 Torr. Most preferred.
  • the epitaxial wafer 10 is heat treated. This heat treatment can be performed using a known heat treatment furnace.
  • the heating temperature during the heat treatment is set to 1580 ° C. to 1730 ° C. This is because the dislocation density cannot be sufficiently reduced below 1580 ° C.
  • the temperature exceeds 1730 ° C. part of the surface AlN is decomposed and the surface becomes rough. More preferably, it is 1600 ° C to 1700 ° C.
  • the heating time is 3 to 12 hours. This is because the dislocation density cannot be sufficiently reduced in less than 3 hours. On the other hand, if it exceeds 12 hours, a part of the surface AlN is decomposed and the surface becomes rough. Preferably, it is 4 to 10 hours.
  • the atmosphere for the heat treatment is preferably a nitrogen gas atmosphere. This is because a nitrogen element needs to be present in the atmosphere in order to suppress the decomposition of the group III nitride including the pinhole.
  • the nitrogen gas atmosphere may contain a rare gas such as argon in addition to the nitrogen gas. Since the vapor pressure of AlN is relatively low, it may be normal pressure, and the pressure is not particularly limited.
  • an epitaxial wafer 1 having both high crystallinity and surface flatness can be obtained.
  • the epitaxial wafer 1 according to the present invention includes a sapphire substrate 11 and an AlN layer 12 formed on the sapphire substrate 11.
  • the defect region 13 in which a surface defect having a thickness of 15 nm or less is formed.
  • the half width of the X-ray rocking curve of the (10-12) plane of the AlN layer 12 is less than 350 seconds, and the surface roughness (Ra) is less than 0.3 nm.
  • the epitaxial wafer 1 according to the present invention has high crystallinity and surface flatness.
  • An epitaxial wafer 1 according to the present invention was manufactured according to the flowchart shown in FIG. That is, first, a sapphire substrate 11 (thickness: 0.60 ⁇ m, plane orientation (0001), off-angle 0.11 °) was prepared (FIG. 1A). Subsequently, the epitaxial wafer 10 was obtained by growing the AlN layer 12 by 0.6 ⁇ m on the sapphire substrate 11 by MOCVD. At that time, the growth temperature of the AlN layer 12 was 1300 ° C., the growth pressure in the chamber was 10 Torr, and the growth gas flow rates of ammonia gas and TMA gas were set so that the V / III ratio was 163.
  • the flow rate of the group V element gas (NH 3 ) is 200 sccm, and the flow rate of the group III element gas (TMA) is 53 sccm.
  • the crystallinity of the AlN layer 12 was evaluated for the central portion of the epitaxial wafer 1, the half width of the (0002) plane of the X-ray rocking curve was 71 seconds, and the half width of the (10-12) plane was 1729 seconds. Met. Further, the surface roughness (Ra) measured by an atomic force microscope (AFM) was 0.18 nm. The surface observation result of the epitaxial wafer 10 by AFM is shown in FIG.
  • the epitaxial wafer 10 is introduced into a heat treatment furnace, and after reducing the pressure to 10 Pa and purging nitrogen gas to normal pressure, the furnace is made a nitrogen gas atmosphere. A heat treatment was applied. At that time, the heating temperature was 1650 ° C., and the heating time was 4 hours. Thus, an epitaxial wafer 1 according to the present invention was obtained.
  • the crystal quality of the AlN layer 12 in the central portion of the epitaxial wafer 1 was evaluated, the half width of the (10-12) plane of the X-ray rocking curve was 312 seconds.
  • the surface roughness measured by AFM was 0.23 nm.
  • FIG. 2B shows the surface observation result of the epitaxial wafer 1 by AFM.
  • FIG. 2C shows an observation result of the cross section in the thickness direction of the epitaxial wafer 1 with a transmission electron microscope (Transmission Electron Microscope, TEM) at 100,000 times.
  • TEM Transmission Electron Microscope
  • FIGS. 3B and 3C show the surface observation results of the epitaxial wafer by AFM and the observation results at 100,000 times the cross section in the thickness direction of the epitaxial wafer after the heat treatment by TEM, respectively.
  • Table 1 shows manufacturing conditions of the epitaxial wafer 1, evaluation results of crystal quality, and the like.
  • FIGS. 4B and 4C show the surface observation results of the epitaxial wafer by AFM and the observation results at 100,000 times the cross section in the thickness direction of the epitaxial wafer after the heat treatment by TEM, respectively.
  • Table 1 shows manufacturing conditions of the epitaxial wafer 1, evaluation results of crystal quality, and the like.
  • the half width of the (0002) plane of the X-ray rocking curve of the AlN layer before heat treatment is 110 seconds or less (71 seconds)
  • the surface roughness (Ra) is 0. .23 nm or less (0.18 nm)
  • the half width of the (0002) plane of the X-ray rocking curve is 350 seconds.
  • the surface roughness (Ra) was 0.3 nm or less (0.23 nm).
  • the surface roughness (Ra) of the AlN layer before the heat treatment is 0.23 nm or less (0.20 nm), but the half width of the (0002) plane of the X-ray rocking curve is More than 110 seconds (129 seconds), and as a result of heat-treating the epitaxial wafer having such an AlN layer at a heating temperature of 1650 ° C., the half width of the (0002) plane of the X-ray rocking curve is more than 350 seconds. (584 seconds), the surface roughness (Ra) exceeded 0.3 nm (0.32 nm).
  • the half width of the (0002) plane of the X-ray rocking curve of the AlN layer before the heat treatment is 110 seconds or less (95 seconds), and the surface roughness (Ra) exceeds 0.23 nm (0.43 nm).
  • the half width of the (10-12) plane of the X-ray rocking curve exceeds 350 seconds (432 seconds).
  • the surface roughness (Ra) was over 0.3 nm (0.36 nm).
  • Comparative Example 1 a surface defect is observed at a position 50 to 120 nm above the interface between the sapphire substrate and the AlN layer from the cross-sectional TEM image shown in FIG. The defect region to be formed was formed, and the thickness of the defect region was 70 nm.
  • Comparative Example 2 a surface defect is observed at a position 65 to 140 nm above the interface between the sapphire substrate and the AlN layer from the cross-sectional TEM image shown in FIG. A region was formed, and the thickness of the defective region was 75 nm.
  • the sapphire substrate and the AlN layer It can be seen that a defect region having a surface defect in the vicinity of the interface is formed with a very thin thickness, and as a result, the crystallinity and surface flatness of the AlN layer above the defect region are improved.
  • an epitaxial wafer is produced by growing an AlN layer having a small half-value width of the X-ray rocking curve of the (0002) plane and a small surface roughness (Ra) on a sapphire substrate.
  • high-temperature heat treatment in a nitrogen gas atmosphere results in an AlN layer having a narrow half width of the X-ray rocking curve on the (10-12) plane and a small surface roughness (Ra). It is useful in the semiconductor industry because an epitaxial wafer having both surface roughness and surface flatness can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

従来よりも高い結晶性と表面平坦性とを有するエピタキシャルウェーハを製造できるエピタキシャルウェーハの製造方法およびエピタキシャルウェーハを提案する。サファイア基板11上に(0002)面のX線ロッキングカーブの半値幅が110秒以下、かつ表面粗さ(Ra)が0.23nm以下となるAlN層12を形成する成長工程と、該AlN層が形成されたサファイア基板に対して窒素ガス雰囲気中で1580℃~1730℃の温度で熱処理を施す熱処理工程とを有し、該熱処理工程後の前記サファイア基板とAlN12層との界面近傍には、面欠陥が形成された欠陥領域13の厚さが15nm以下であることを特徴とする。

Description

エピタキシャルウェーハの製造方法およびエピタキシャルウェーハ
 本発明は、エピタキシャルウェーハの製造方法およびエピタキシャルウェーハに関し、特に、従来よりも高い結晶性と表面平坦性とを有するエピタキシャルウェーハを製造できるエピタキシャルウェーハの製造方法およびエピタキシャルウェーハに関するものである。
 従来、Al、Ga、In等とNとの化合物からなるIII族窒化物半導体は、発光素子または電子デバイス用素子の材料として広く用いられている。このようなIII族窒化物半導体は、所定の単結晶基材の上に、III族窒化物半導体層をエピタキシャル成長させた、いわゆるエピタキシャルウェーハとして供給されるのが一般的である。
 しかし、一般に、このような構成を有するエピタキシャルウェーハにおいては、基材とIII族窒化物半導体層との間に格子不整合が存在するため、こうした格子不整合に起因する格子歪みを緩和するために、基材とIII族窒化物半導体層との界面近傍の領域にミスフィット転位が形成される。このミスフィット転位は、デバイス機能層であるIII族窒化物半導体層を貫通して表面にまで伝搬し、キャリアを捕獲する等してデバイス性能を低下させる。そのため、良好なデバイス特性の実現のためには、このIII族窒化物半導体層を貫通する転位の密度を低減することが肝要となる。
 そこで、III族窒化物半導体層における転位密度を低減する様々な技術が提案されてきた。例えば、特許文献1には、酸化物単結晶からなる基材とその主面上にエピタキシャル形成されたAlN系III族窒化物結晶膜からなる上部層とで構成されたエピタキシャル基板を加熱処理することにより、基材側から酸素原子を拡散させて基材側に偏在している上部層2の酸素原子の分布を均一化させることにより、AlN系III族窒化物結晶の転位の密度を低減する技術について記載されている。
 また、特許文献2には、サファイア単結晶基材とその主面上にエピタキシャル形成されたAlN層とで構成されたエピタキシャル基板を、窒素雰囲気下で1250℃以上のAlN層の厚さに応じた温度で加熱処理することによりAlN結晶内の転位密度を低減するとともにAlN結晶の表面平坦性についても向上させる技術について記載されている。
特許第4943132号公報 特許第4712450号公報
 上記特許文献2に記載された技術により、AlN層の転位密度を低減して結晶性を向上させるとともに、その表面平坦性をある程度向上させることができる。しかし、AlN層の結晶性および表面平坦性の更なる向上が望まれており、それを実現できる技術の提案が希求されていた。
 そこで、本発明の目的は、従来よりも高い結晶性と表面平坦性とを有するエピタキシャルウェーハを製造できるエピタキシャルウェーハの製造方法およびエピタキシャルウェーハを提案することにある。
 本発明者は、上記課題を解決する方途について鋭意検討した。そのために、熱処理に供するエピタキシャルウェーハにおけるAlN層の状態や熱処理条件等と、熱処理後のエピタキシャルウェーハにおけるAlN層の結晶性および表面平坦性との関係について詳細に調査した。その結果、熱処理後のエピタキシャルウェーハにおけるサファイア基板とAlN層との間の界面近傍の構造と、熱処理前のエピタキシャルウェーハにおけるAlN層の結晶性および表面平坦性とが密接に関連していることが判明した。
 すなわち、熱処理後のエピタキシャルウェーハの界面近傍の領域には、サファイア基板とAlN層との間の格子不整合に起因して、ミスフィット転位や積層欠陥等の欠陥が形成された欠陥領域が形成される。これにより、AlN層に蓄積される歪みエネルギーが解放される。本発明者が詳細に調査した結果、熱処理後にAlN層が高い結晶性および表面平坦性を有するエピタキシャルウェーハにおいては、上記した欠陥領域の厚さが極めて薄いことが判明した。特に、上記した欠陥領域の厚さが15nm以下の場合には、X線ロッキングカーブの(10−12)面の半値幅が350秒を切るとともに表面粗さ(Ra)が0.3nm以下となり、AlN層の高い結晶性および表面平坦性を実現できることを見出した。
 そして、サファイア基板上に(0002)面のX線ロッキングカーブの半値幅が110秒以下、かつ表面粗さ(Ra)が0.23nm以下となるAlN層を形成し、該AlN層が形成されたサファイア基板に対して窒素ガス雰囲気中で1580℃~1730℃の温度で熱処理を施すことにより、欠陥領域の厚さを15nm以下として、結晶性および表面平坦性が極めて高いエピタキシャルウェーハを得ることができることをさらに見出し、本発明を完成させるに至った。
 本発明の要旨構成は以下の通りである。
(1)サファイア基板上に(0002)面のX線ロッキングカーブの半値幅が110秒以下、かつ表面粗さ(Ra)が0.23nm以下となるAlN層を形成する成長工程と、該AlN層が形成されたサファイア基板に対して窒素ガス雰囲気中で1580℃~1730℃の温度で熱処理を施す熱処理工程とを有し、該熱処理工程後の前記サファイア基板と前記AlN層との界面近傍の、面欠陥が形成された欠陥領域の厚さが15nm以下であることを特徴とすることを特徴とするエピタキシャルウェーハの製造方法。
(2)前記熱処理工程後のAlN層が(0002)面のX線ロッキングカーブの半値幅が100秒以下、(10−12)面のX線ロッキングカーブの半値幅が350秒未満、かつ表面粗さ(Ra)が0.3nm以下である前記(1)に記載のエピタキシャルウェーハの製造方法。
(3)前記成長工程は、成長温度が1270℃~1350℃、成長圧力が5Torr~20Torrで、V/III比が130~190となる成長ガス流量の条件の下で行う、前記(1)または(2)に記載のエピタキシャルウェーハの製造方法。
(4)サファイア基板と、サファイア基板上のAlN層とを備え、前記基板と前記AlN層との界面近傍に形成される、面欠陥が形成された欠陥領域の厚さが15nm以下であることを特徴とすることを特徴とするエピタキシャルウェーハ。
(5)前記AlN層の(0002)面のX線ロッキングカーブの半値幅が100秒以下、(10−12)面のX線ロッキングカーブの半値幅が350秒未満、かつ表面粗さ(Ra)が0.3nm以下である前記(4)に記載のエピタキシャルウェーハ。
 本発明によれば、サファイア基板上に(0002)面のX線ロッキングカーブの半値幅が狭く、かつ表面粗さ(Ra)の小さいAlN層を成長させてエピタキシャルウェーハを作製し、このエピタキシャルウェーハに対して高温で熱処理を行うことにより、(10−12)面のX線ロッキングカーブの半値幅が狭く、かつ表面粗さ(Ra)が小さいAlN層となるため、高い結晶性と表面平坦性とを兼ね備えたエピタキシャルウェーハを得ることができる。
本発明に係るエピタキシャルウェーハの製造方法のフローチャートである。 発明例に対する、(A)熱処理前のAFM像、(B)熱処理後のAFM像、および(C)熱処理後の断面TEM像である。 比較例1に対する、(A)熱処理前のAFM像、(B)熱処理後のAFM像、および(C)熱処理後の断面TEM像である。 比較例2に対する、(A)熱処理前のAFM像、(B)熱処理後のAFM像、および(C)熱処理後の断面TEM像である。
(エピタキシャルウェーハの製造方法)
 以下、図面を参照して本発明の実施形態について説明する。図1は本発明に係るエピタキシャルウェーハの製造方法のフローチャートを示している。この図に示すように、本発明に係るエピタキシャルウェーハの製造方法は、サファイア基板11上に(0002)面のX線ロッキングカーブの半値幅が110秒以下、かつ表面粗さ(Ra)が0.23nm以下となるAlN層12を形成する成長工程と(図1(A)および(B))、該AlN層12が形成されたサファイア基板11に対して窒素ガス雰囲気中で1580℃~1730℃の温度で熱処理を施す熱処理工程とをする(図1(C))。これにより、熱処理工程後にサファイア基板11とAlN層12との界面近傍に形成される、面欠陥が形成された欠陥領域13の厚さが15nm以下となる。
 上述のように、本発明者は、熱処理後のエピタキシャルウェーハ1におけるサファイア基板11とAlN層12との間の界面近傍の構造と、熱処理前のエピタキシャルウェーハ10におけるAlN層12の結晶性および表面平坦性とが密接に関連していることを見出した。そして、欠陥領域13の厚さが15nm以下の場合には、(10−12)面のX線ロッキングカーブの半値幅が350秒を切るとともに表面粗さ(Ra)が0.3nm以下となり、AlN層12の高い結晶性および表面平坦性を実現できることも見出したのである。
 本発明において、「欠陥領域」は、サファイア基板11とAlN層12との間の格子不整合に起因する歪みを緩和するミスフィット転位や積層欠陥等の欠陥が形成された領域であり、サファイア基板11とAlN層12との界面近傍に形成される。ここで、「界面近傍」とは、サファイア基板11とAlN層12との界面から深さ方向に150μmまでの深さ範囲の領域を指している。
 また、「面欠陥」とは、断面TEM観察において基板表面に対し水平方向に繋がって観察される欠陥をいい、基板表面に対し垂直方向に伸びる欠陥ではない。そして、「面欠陥が形成された欠陥領域の厚さ」とは、断面TEM観察において基板表面に対し水平方向に略水平または山なりに繋がって観察される面欠陥の、水平方向の長さ1000nmの範囲における、基板表面(サファイア基板11とAlN層12との界面)からの最小高さと最大高さの差のことである。面欠陥が生じている基板表面からの高さは面内一律ではなく、さらに面欠陥は、観察面から深さ方向に対して垂直方向にゆらぎを有しており、それらがTEM観察上は暗く観察される欠陥領域が厚さを持って存在するように見える。従って、面欠陥が存在する欠陥領域の厚さが薄いということは、面欠陥が基板から比較的等しい高さで、面内で略均一に生じていることを示し、厚さが厚いということは、面欠陥の基板からの高さが面内で大きく変動していることを示す。この厚さの測定には、加速電圧200kV、7万~10万倍で断面のTEM観察することが好ましい。この欠陥領域13の厚さが15nm以下であることが好ましく、5nm以下であることがより好ましく、0nmに近いほど好ましいが厳密に0(面内一律)とすることは困難である。
 このような、熱処理後のエピタキシャルウェーハ1における欠陥領域13の厚さが15nm以下とするエピタキシャルウェーハの製造条件は一意に決定されるものではないが、本発明者は、熱処理前のAlN層12が高い結晶性とともに高い表面平坦性を有するようにエピタキシャルウェーハ10を作製し、このエピタキシャルウェーハ10に対して高温で熱処理を施すことにより、熱処理後のエピタキシャルウェーハ1における欠陥領域13の厚さを15nm以下とすることができることを見出した。
 具体的には、熱処理前のエピタキシャルウェーハ10におけるAlN層12のX線ロッキングカーブの(0002)面の半値幅が110秒以下、かつ表面粗さ(Ra)が0.23nm以下となるようにエピタキシャルウェーハ10を成長させ、このエピタキシャルウェーハ10に対して1600℃以上の熱処理を施すことにより、サファイア基板11とAlN層12との間の界面近傍に厚さ15nm以下の欠陥領域13を形成して、熱処理後のX線ロッキングカーブの(10−12)面の半値幅が350秒未満かつ表面粗さが0.3nm以下とし、AlN層12の高い結晶性および表面平坦性を実現できることを見出したのである。以下、本発明の各工程を具体的に説明する。
 まず、図1(A)に示すように、サファイア基板11を用意する。このサファイア11は、半導体デバイスとしてのIII族窒化物半導体を形成するための下地の基材である。このサファイア基板11の面方位や厚さ等の仕様は、設計されるエピタキシャルウェーハの要求に応じて、適切に設定できる。
 次に、図1(B)に示すように、サファイア基板11上にAlN層12を形成する。このAlN層12の形成は、X線ロッキングカーブの(0002)面の半値幅が110秒以下、かつ表面粗さ(Ra)が0.23nm以下となるように行うことが肝要である。より好ましくは、X線ロッキングカーブの(0002)面の半値幅が90秒以下、かつ表面粗さ(Ra)が0.2nm以下である。
 このAlN層12は、例えば、有機金属気相成長(Metal Organic Chemical Vapor Deposition、MOCVD)法や分子線エピタキシ(Molecular Beam Epitaxy,MBE)法、スパッタ法などの公知の薄膜成長方法により形成することができる。
 ここで、熱処理前のエピタキシャルウェーハ10におけるAlN層12のX線ロッキングカーブの(0002)面の半値幅が110秒以下、表面粗さ(Ra)が0.23nm以下を実現するためには、以下の条件の下でAlN層12の成長を行えばよい。すなわち、まず、成長温度については、1270℃~1350℃が好ましい。より好ましくは、1290℃~1330℃であり、より好ましい範囲であれば、X線ロッキングカーブの(0002)面の半値幅が90秒以下、かつ表面粗さ(Ra)が0.2nm以下となる。
 また、チャンバ内の成長圧力については、5Torr~20Torrが好ましい。より好ましくは8Torr~15Torrである。より好ましい範囲であれば、X線ロッキングカーブの(0002)面の半値幅が90秒以下、かつ表面粗さ(Ra)が0.2nm以下となる。
 さらに、アンモニア(NH)ガスなどのV族元素ガスと、トリメチルアルミニウム(TMA)ガスなどのIII族元素ガスの成長ガス流量を元に計算されるIII族元素に対するV族元素のモル比(以降、V/III比と記載する)が、上記の成長温度および成長圧力の範囲において、結晶性{XRC(0002)}および表面平坦性(Ra)に影響を与えやすく、X線ロッキングカーブの(0002)面の半値幅が110秒以下、かつ、表面粗さ(Ra)が0.23nm以下を実現するには、V/III比が130~190の範囲であることが好ましい。さらに、半値幅が90秒以下、かつ、表面粗さ(Ra)が0.2nm以下を実現するには、V/III比が140~180の範囲であることがより好ましい。各成長温度、および成長圧力において最適なV/III比が存在し、例えば、成長温度1300℃、成長圧力10Torrの条件化ではV/III比は163となるように成長ガス流量を設定することが最も好ましい。
 続いて、上述のようにして得られた、X線ロッキングカーブの(0002)面の半値幅が110秒以下、表面粗さ(Ra)が0.23nm以下の要件を満足するAlN層12を有するエピタキシャルウェーハ10に対して熱処理を施す。この熱処理は、公知の熱処理炉を用いて行うことができる。
 ここで、熱処理の際の加熱温度は1580℃~1730℃以下とする。これは、1580℃未満では、転位密度を十分に減らすことができないためである。一方、1730℃を超えると表面のAlNの一部が分解して表面が粗れるためである。より好ましくは1600℃~1700℃である。
 また、加熱時間は、3~12時間とする。これは、3時間未満では、十分に転位密度を減らせないためである。一方、12時間を超えると表面のAlNの一部が分解して表面が粗れるためである。好ましくは4~10時間である。
 さらに、熱処理を行う雰囲気としては、窒素ガス雰囲気中が好ましい。これは、ピンホールを含めたIII族窒化物の分解を抑制するために、雰囲気中に窒素元素が存在する必要があるためである。なお、窒素ガス雰囲気は、窒素ガス以外にはアルゴンなど希ガスを含んでいてもよい。AlNの蒸気圧は比較的低いため常圧でもよく、圧力は特に限定されない。
 こうして、図1(C)に示すように、高い結晶性と表面平坦性とを兼ね備えたエピタキシャルウェーハ1を得ることができる。
(エピタキシャルウェーハ)
 次に、本発明に係るエピタキシャルウェーハについて説明する。図1(C)に示すように、本発明に係るエピタキシャルウェーハ1は、サファイア基板11と、該サファイア基板11上に形成されたAlN層12とを備える。ここで、サファイア基板11とAlN層12との界面近傍に、厚さ15nm以下の面欠陥が形成された欠陥領域13を有する。これにより、AlN層12の(10−12)面のX線ロッキングカーブの半値幅が350秒未満、かつ表面粗さ(Ra)が0.3nm未満となる。このように、本発明に係るエピタキシャルウェーハ1は、高い結晶性および表面平坦性を兼ね備えたものである。
(本発明例)
 図1に示したフローチャートに従って、本発明に係るエピタキシャルウェーハ1を製造した。すなわち、まず、サファイア基板11(厚さ:0.60μm、面方位(0001)、オフ角0.11°)を用意した(図1(A))。次いで、MOCVD法により、上記サファイア基板11上にAlN層12を0.6μm成長させ、エピタキシャルウェーハ10を得た。その際、AlN層12の成長温度は1300℃、チャンバ内の成長圧力は10Torrであり、V/III比が163となるようにアンモニアガスとTMAガスの成長ガス流量を設定した。V族元素ガス(NH)の流量は200sccm、III族元素ガス(TMA)の流量は53sccmである。この段階で、エピタキシャルウェーハ1の中央部分についてAlN層12の結晶性を評価したところ、X線ロッキングカーブの(0002)面の半値幅は71秒、(10−12)面の半値幅は1729秒であった。また、原子間力顕微鏡(Atomic Force Microscope、AFM)により表面粗さ(Ra)を測定したところ、0.18nmであった。AFMによるエピタキシャルウェーハ10の表面観察結果を図2(A)に示す。
 次いで、上記エピタキシャルウェーハ10を熱処理炉に導入し、10Paまで減圧後に窒素ガスを常圧までパージすることにより炉内を窒素ガス雰囲気とした後に、炉内の温度を昇温してエピタキシャルウェーハ10に対して熱処理を施した。その際、加熱温度は1650℃、加熱時間は4時間とした。こうして、本発明に係るエピタキシャルウェーハ1を得た。
 上記エピタキシャルウェーハ1の中央部分におけるAlN層12の結晶品質を評価したところ、X線のロッキングカーブの(10−12)面の半値幅は312秒であった。また、AFMにより表面粗さを測定したところ、0.23nmであった。AFMによるエピタキシャルウェーハ1の表面観察結果を図2(B)に示す。さらに、透過型電子顕微鏡(Transmission Electron Microscope、TEM)によるエピタキシャルウェーハ1の厚さ方向断面の10万倍での観察結果を図2(C)に示す。
(比較例1)
 発明例と同様にエピタキシャルウェーハを作製した。ただし、V/III比が204となる成長ガス流量の条件の下でサファイア基板上にAlN層を形成した。その他の条件は全て発明例と同じである。
 サファイア基板上にAlN層を成長させた段階でエピタキシャルウェーハ1の中央部分についてAlN層の結晶性を評価したところ、X線ロッキングカーブの(0002)面の半値幅は129秒、(10−12)面の半値幅は1834秒であった。また、AFMにより表面粗さ(Ra)を測定したところ、0.20nmであった。AFMによるエピタキシャルウェーハの表面観察結果を図3(A)に示す。
 また、熱処理後にエピタキシャルウェーハ1の中央部分についてAlN層の結晶性を評価したところ、X線ロッキングカーブの(10−12)面の半値幅は584秒であった。また、AFMにより表面粗さ(Ra)を測定したところ、0.32nmであった。
 AFMによるエピタキシャルウェーハの表面観察結果、TEMによる熱処理後のエピタキシャルウェーハの厚さ方向断面の10万倍での観察結果を、図3(B)および(C)にそれぞれ示す。また、エピタキシャルウェーハ1の製造条件、結晶品質の評価結果等を表1に示す。
(比較例2)
 発明例と同様にエピタキシャルウェーハを作製した。ただし、V/III比が112となる成長ガス流量の条件の下でサファイア基板上にAlN層を形成した。その他の条件は全て発明例と同じである。
 サファイア基板上にAlN層を成長させた段階でエピタキシャルウェーハ1の中央部分についてAlN層の結晶性を評価したところ、X線ロッキングカーブの(0002)面の半値幅は95秒、(10−12)面の半値幅は1684秒であった。また、AFMにより表面粗さ(Ra)を測定したところ、0.43nmであった。AFMによるエピタキシャルウェーハの表面観察結果を図4(A)に示す。
 また、熱処理後にエピタキシャルウェーハ1の中央部分についてAlN層の結晶性を評価したところ、X線ロッキングカーブの(10−12)面の半値幅は432秒であった。また、AFMにより表面粗さ(Ra)を測定したところ、0.36nmであった。
 AFMによるエピタキシャルウェーハの表面観察結果、TEMによる熱処理後のエピタキシャルウェーハの厚さ方向断面の10万倍での観察結果を、図4(B)および(C)にそれぞれ示す。また、エピタキシャルウェーハ1の製造条件、結晶品質の評価結果等を表1に示す。
<AlN層の結晶性および表面平坦性の評価>
 表1に示すように、本発明例においては、熱処理前のAlN層のX線ロッキングカーブの(0002)面の半値幅は110秒以下(71秒)、かつ、表面粗さ(Ra)は0.23nm以下(0.18nm)であり、このようなAlN層を有するエピタキシャルウェーハに対して1650℃の加熱温度で熱処理を施すことによって、X線ロッキングカーブの(0002)面の半値幅は350秒以下(312秒)、表面粗さ(Ra)は0.3nm以下(0.23nm)となった。
 これに対して、比較例1においては、熱処理前のAlN層の表面粗さ(Ra)は0.23nm以下(0.20nm)であるものの、X線ロッキングカーブの(0002)面の半値幅は110秒超(129秒)であり、このようなAlN層を有するエピタキシャルウェーハに対して1650℃の加熱温度で熱処理を施した結果、X線ロッキングカーブの(0002)面の半値幅は350秒超(584秒)、表面粗さ(Ra)は0.3nm超(0.32nm)となった。
 同様に、比較例2においては、熱処理前のAlN層のX線ロッキングカーブの(0002)面の半値幅は110秒以下(95秒)表面粗さ(Ra)は0.23nm超(0.43nm)であり、このようなAlN層を有するエピタキシャルウェーハに対して1650℃の加熱温度で熱処理を施した結果、X線ロッキングカーブの(10−12)面の半値幅は350秒超(432秒)、表面粗さ(Ra)は0.3nm超(0.36nm)となった。
 このように、熱処理前のAlN層のX線ロッキングカーブの(0002)面の半値幅が110秒以下、かつ表面粗さ(Ra)が0.23nm以下を満足する場合には、熱処理後に極めて高い結晶性(X線ロッキングカーブの(10−12)面の半値幅が350秒以下)および表面平坦性(表面粗さ(Ra)が0.3nm以下)が実現できることが分かる。
<AFM像およびTEM像による評価>
 図2~図4に示したAFM像から、発明例、比較例1および2のいずれにおいても、熱処理後にはステップ幅が大きくなり、表面の平坦性が改善されていることが分かる。また、比較例1および2においては、ステップが大きくうねっているのに対して、発明例においてはうねりは小さく、比較例1および2に比べて結晶性が向上していることが分かる。
 また、発明例については、図2(C)に示した断面TEM像から、サファイア基板とAlN層との界面から20~25nm上方の位置に面欠陥が観察され、面欠陥が存在する欠陥領域が形成されており、その欠陥領域の厚さは極めて薄く5nmであった。この欠陥領域の上方のAlN層の結晶性は良好である。
 これに対して、比較例1については、図3(C)に示した断面TEM像から、サファイア基板とAlN層との界面から50~120nm上方の位置に面欠陥が観察され、面欠陥が存在する欠陥領域が形成されており、その欠陥領域の厚さは70nmであった。同様に、比較例2についても、図4(C)に示した断面TEM像から、サファイア基板とAlN層との界面から65~140nm上方の位置に面欠陥が観察され、面欠陥が存在する欠陥領域が形成されており、その欠陥領域の厚さは75nmであった。このように、X線ロッキングカーブの(10−12)面の半値幅が350秒未満、表面粗さ(Ra)が0.3nm以下を実現する本発明例においては、サファイア基板とAlN層との界面近傍に面欠陥を有する欠陥領域が極めて薄い厚さで形成され、その結果、欠陥領域の上方のAlN層の結晶性および表面平坦性が向上していることが分かる。
Figure JPOXMLDOC01-appb-T000001
 本発明によれば、サファイア基板上に(0002)面のX線ロッキングカーブの半値幅が狭く、かつ表面粗さ(Ra)の小さいAlN層を成長させてエピタキシャルウェーハを作製し、このエピタキシャルウェーハに対して窒素ガス雰囲気中で高温の熱処理を行うことにより、(10−12)面のX線ロッキングカーブの半値幅が狭く、かつ表面粗さ(Ra)が小さいAlN層となるため、高い結晶性と表面平坦性とを兼ね備えたエピタキシャルウェーハを得ることができるため、半導体産業において有用である。
1,10 エピタキシャルウェーハ
11 サファイア基板
12 AlN層
13 欠陥領域

Claims (5)

  1.  サファイア基板上に(0002)面のX線ロッキングカーブの半値幅が110秒以下、かつ表面粗さ(Ra)が0.23nm以下となるAlN層を形成する成長工程と、
     該AlN層が形成されたサファイア基板に対して窒素ガス雰囲気中で1580℃~1730℃の温度で熱処理を施す熱処理工程と、
    を有し、
     該熱処理工程後の前記サファイア基板と前記AlN層との界面近傍の、面欠陥が形成された欠陥領域の厚さが15nm以下であることを特徴とすることを特徴とするエピタキシャルウェーハの製造方法。
  2.  前記熱処理工程後のAlN層が(0002)面のX線ロッキングカーブの半値幅が100秒以下、(10−12)面のX線ロッキングカーブの半値幅が350秒未満、かつ表面粗さ(Ra)が0.3nm以下である請求項1に記載のエピタキシャルウェーハの製造方法。
  3.  前記成長工程は、成長温度が1270℃~1350℃、成長圧力が5Torr~20Torrで、V/III比が130~190となる成長ガス流量の条件の下で行う、請求項1または2に記載のエピタキシャルウェーハの製造方法。
  4.  サファイア基板と、サファイア基板上のAlN層とを備え、
     前記基板と前記AlN層との界面近傍に形成される、面欠陥が形成された欠陥領域の厚さが15nm以下であることを特徴とすることを特徴とするエピタキシャルウェーハ。
  5.  前記AlN層の(0002)面のX線ロッキングカーブの半値幅が100秒以下、(10−12)面のX線ロッキングカーブの半値幅が350秒未満、かつ表面粗さ(Ra)が0.3nm以下である請求項4に記載のエピタキシャルウェーハ。
PCT/JP2014/067601 2014-06-25 2014-06-25 エピタキシャルウェーハの製造方法およびエピタキシャルウェーハ WO2015198492A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/067601 WO2015198492A1 (ja) 2014-06-25 2014-06-25 エピタキシャルウェーハの製造方法およびエピタキシャルウェーハ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/067601 WO2015198492A1 (ja) 2014-06-25 2014-06-25 エピタキシャルウェーハの製造方法およびエピタキシャルウェーハ

Publications (1)

Publication Number Publication Date
WO2015198492A1 true WO2015198492A1 (ja) 2015-12-30

Family

ID=54937611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067601 WO2015198492A1 (ja) 2014-06-25 2014-06-25 エピタキシャルウェーハの製造方法およびエピタキシャルウェーハ

Country Status (1)

Country Link
WO (1) WO2015198492A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017139253A (ja) * 2016-02-01 2017-08-10 パナソニック株式会社 エピタキシャル基板の製造方法
TWI698546B (zh) * 2019-06-20 2020-07-11 環球晶圓股份有限公司 具有氮化鋁成核層的基板及其製造方法
CN113574214A (zh) * 2019-03-28 2021-10-29 日本碍子株式会社 基底基板及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0964477A (ja) * 1995-08-25 1997-03-07 Toshiba Corp 半導体発光素子及びその製造方法
JP2003197541A (ja) * 2001-12-26 2003-07-11 Ngk Insulators Ltd Iii族窒化物膜の製造方法
WO2008010541A1 (fr) * 2006-07-19 2008-01-24 Ngk Insulators, Ltd. Procédé de réduction de dislocation dans un cristal de nitrure de groupe iii et substrat pour croissance épitaxiale
JP2008028007A (ja) * 2006-07-19 2008-02-07 Ngk Insulators Ltd Iii族窒化物結晶の結晶品質改善方法
JP4712450B2 (ja) * 2004-06-29 2011-06-29 日本碍子株式会社 AlN結晶の表面平坦性改善方法
JP4943132B2 (ja) * 2005-12-28 2012-05-30 日本碍子株式会社 AlN系III族窒化物エピタキシャル膜の転位低減方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0964477A (ja) * 1995-08-25 1997-03-07 Toshiba Corp 半導体発光素子及びその製造方法
JP2003197541A (ja) * 2001-12-26 2003-07-11 Ngk Insulators Ltd Iii族窒化物膜の製造方法
JP4712450B2 (ja) * 2004-06-29 2011-06-29 日本碍子株式会社 AlN結晶の表面平坦性改善方法
JP4943132B2 (ja) * 2005-12-28 2012-05-30 日本碍子株式会社 AlN系III族窒化物エピタキシャル膜の転位低減方法
WO2008010541A1 (fr) * 2006-07-19 2008-01-24 Ngk Insulators, Ltd. Procédé de réduction de dislocation dans un cristal de nitrure de groupe iii et substrat pour croissance épitaxiale
JP2008028007A (ja) * 2006-07-19 2008-02-07 Ngk Insulators Ltd Iii族窒化物結晶の結晶品質改善方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017139253A (ja) * 2016-02-01 2017-08-10 パナソニック株式会社 エピタキシャル基板の製造方法
CN113574214A (zh) * 2019-03-28 2021-10-29 日本碍子株式会社 基底基板及其制造方法
TWI698546B (zh) * 2019-06-20 2020-07-11 環球晶圓股份有限公司 具有氮化鋁成核層的基板及其製造方法

Similar Documents

Publication Publication Date Title
JP5520056B2 (ja) 中間層構造を有する窒化物半導体構造、及び中間層構造を有する窒化物半導体構造を製造する方法
JP4954298B2 (ja) 中間層構造を有する厚い窒化物半導体構造、及び厚い窒化物半導体構造を製造する方法
US8268646B2 (en) Group III-nitrides on SI substrates using a nanostructured interlayer
JP2013026321A (ja) 窒化物系半導体層を含むエピタキシャルウエハ
JP2013187428A (ja) 窒化物半導体層の製造方法
TW201519315A (zh) 矽系基板、半導體裝置及半導體裝置的製造方法
JP6404655B2 (ja) AlNテンプレート基板およびその製造方法
JP5179635B1 (ja) 窒化物半導体層を成長させるためのバッファ層構造を有する基板の製造方法
JP2004111848A (ja) サファイア基板とそれを用いたエピタキシャル基板およびその製造方法
TWI699462B (zh) Iii族氮化物半導體基板的製造方法
WO2015198492A1 (ja) エピタキシャルウェーハの製造方法およびエピタキシャルウェーハ
JP6239017B2 (ja) 窒化物半導体基板
JP5378128B2 (ja) 電子デバイス用エピタキシャル基板およびiii族窒化物電子デバイス用エピタキシャル基板
JP5139567B1 (ja) 窒化物半導体層を成長させるためのバッファ層構造を有する基板
US20110089433A1 (en) Method for manufacturing nitrogen compound semiconductor substrate and nitrogen compound semiconductor substrate, and method for manufacturing single crystal sic substrate and single crystal sic substrate
WO2019156121A1 (ja) 半導体ウエハー
WO2010074346A1 (ja) Iii族窒化物半導体成長用基板、iii族窒化物半導体エピタキシャル基板、iii族窒化物半導体素子およびiii族窒化物半導体自立基板、ならびに、これらの製造方法
JP6163024B2 (ja) 基板の製造方法
US11522105B2 (en) Nitride semiconductor laminated structure, nitride semiconductor light emitting element, and method for manufacturing nitride semiconductor laminated structure
JP6527667B2 (ja) 窒化物半導体基板の製造方法
JP6108609B2 (ja) 窒化物半導体基板
US9923050B2 (en) Semiconductor wafer and a method for producing the semiconductor wafer
CN113196450A (zh) 用于制造生长衬底的方法
JP6480244B2 (ja) 気相成長方法
TWI728498B (zh) 氮化物半導體基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14896181

Country of ref document: EP

Kind code of ref document: A1