WO2015198389A1 - 制御装置 - Google Patents

制御装置 Download PDF

Info

Publication number
WO2015198389A1
WO2015198389A1 PCT/JP2014/066647 JP2014066647W WO2015198389A1 WO 2015198389 A1 WO2015198389 A1 WO 2015198389A1 JP 2014066647 W JP2014066647 W JP 2014066647W WO 2015198389 A1 WO2015198389 A1 WO 2015198389A1
Authority
WO
WIPO (PCT)
Prior art keywords
analysis
unit
analyzer
power supply
control
Prior art date
Application number
PCT/JP2014/066647
Other languages
English (en)
French (fr)
Inventor
慎司 金澤
冬樹 岡本
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to CN201480080111.6A priority Critical patent/CN106461687B/zh
Priority to PCT/JP2014/066647 priority patent/WO2015198389A1/ja
Priority to EP14896137.8A priority patent/EP3163304A4/en
Priority to JP2016528781A priority patent/JP6288269B2/ja
Priority to US15/321,476 priority patent/US10416136B2/en
Publication of WO2015198389A1 publication Critical patent/WO2015198389A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • G01N35/00871Communications between instruments or with remote terminals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/0092Scheduling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/027Liquid chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8804Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 automated systems

Definitions

  • the present invention relates to a control device for an analyzer that controls the operation of the analyzer to execute a predetermined analysis.
  • Analytical devices for performing a predetermined analysis on a sample and obtaining information on the components and structure of the sample are used in various fields such as pharmaceutical / food development, medical care, environmental research and basic research. Yes.
  • such an analysis apparatus is provided with a plurality of units as functional units for each of a plurality of processes constituting a series of analysis operations.
  • a liquid chromatograph LC
  • a column oven for controlling the temperature of the column, and a detector for detecting a separation component flowing in the mobile phase flow path downstream of the column.
  • communication means for controlling communication with a control computer (such as a PC or a workstation) that controls the operation of the analyzer from the outside.
  • One analysis system is constituted by the apparatus.
  • OS Operating System
  • application software etc.
  • a start function that puts the analyzer into operation, an analysis execution function that executes analysis, a stop function that puts the analyzer into standby, and each of these functions are registered as tasks in the schedule table.
  • a schedule management function for sequentially executing the registered tasks.
  • the execution timing of each task is generally managed based on the user's designation, so that the user can start the analysis at a desired timing. it can.
  • the “timing” mentioned here includes a time specified in advance, a time when a predetermined time elapses from a certain time (for example, when a specific task ends), and the like.
  • the “operating state” of the analyzer means a state in which one or a plurality of units included in the analyzer is performing a predetermined operation related to execution or preparation (warming up) of the analysis, and “standby state”. Means that no unit is performing the predetermined operation. For example, if the LC liquid delivery pump is delivering liquid, the LC as a whole is in operation even if other units have stopped the predetermined operation. When the LC is in the standby state, the pump is included. All the units have stopped the predetermined operation. Note that power supply to the unit is maintained even in the standby state, and each unit performs the above-described operation switching in the power ON state.
  • GCMS-QP2010 SE Catalog Shimadzu Corporation, May 17, 2010
  • GCMS-QP2010 SE Manual Shimadzu Corporation, May 17, 2010, p. 25-27
  • the warm-up operation required before the start of analysis takes time (for example, in the case of LC, it takes about 60 to 90 minutes for the light source to stabilize).
  • the user often designates the start time of the warm-up operation when registering the task in the schedule table so that the analysis can be started immediately at the scheduled time.
  • it is necessary to keep the power supply of the analyzer ON at least at the designated time.
  • it is difficult to assume that the analyzer is turned on immediately before the designated time while the start of the operation is reserved in advance, considering the significance of the act of reservation.
  • the analyzer is often kept on until the specified time, and a certain amount of power is consumed during this period. Become.
  • power supply to each unit is maintained while the analyzer is in a standby state by the above stop function after the analysis is completed, which also contributes to an increase in power consumption.
  • the analysis system previously provided by the present applicant has a power saving mode for selectively stopping the operation of a specified unit (non- (See Patent Document 1).
  • the selective stop of the operation of the unit is, for example, an operation of turning off the heater of the column oven in a gas chromatograph mass spectrometer (GC-MS).
  • GC-MS gas chromatograph mass spectrometer
  • the power saving mode as described above is provided, and only the unit that maintains the vacuum environment is operated, and power consumption is reduced by turning off the power of the other units.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an analyzer that can effectively suppress power consumption when analysis is not performed and can easily restart analysis. It is in.
  • the present invention made to solve the above problems is a control device for an analyzer that controls the operation of the analyzer to perform a predetermined analysis, a) a communication module capable of maintaining power reception when the analyzer is in a power-on state and constantly receiving a control signal from an external device; b) Obtaining the control signal via the communication module, stopping the power supply to the unit included in the analyzer at a first timing based on the control signal, and at a second timing based on the control signal.
  • the “unit” in the present invention means a functional unit for each of a plurality of processes constituting a series of analysis operations.
  • a liquid feed pump, an injector, a column oven, a detector, etc. is there.
  • An autosampler for collecting a liquid sample to be introduced into the LC is also included in the unit of the present invention.
  • the unit power supply control means is a means for comprehensively controlling the unit of the present invention, and is different from the unit of the present invention responsible for a predetermined process related to analysis work.
  • first timing for example, when a communication module receives a control signal from an external device, a time designated in advance by a user, a time when analysis is completed, and a certain period of time has passed without operation. Time point etc. are mentioned.
  • second timing include a time designated in advance by the user, a time when a predetermined time has elapsed after the completion of the previous analysis, and the like.
  • a control device for example, an LC system controller
  • a control computer provided separately from the analysis device and controlling the analysis device from the outside. Etc. are included.
  • the control device can always receive the control signal from the external device by the communication module when the analysis device is in the power-on state, and the unit power supply control means has the communication module connected to the external device from the external device.
  • the unit power supply control means has the communication module connected to the external device from the external device.
  • power supply to the unit provided in the analyzer is stopped.
  • the unit power control means further restarts the power supply to the unit at the second timing based on the control signal received by the communication module from the external device.
  • the power is automatically supplied to the unit when the designated time is reached, so the power supply to each unit is resumed.
  • This eliminates the need for a manual operation by the user to perform the analysis, and the analysis can be easily resumed.
  • the time immediately before is reserved as the second timing. By doing so, it is possible to automate the resumption of analysis while suppressing the power consumption when the analysis is not executed.
  • the communication module can always receive control signals from an external device, it receives a predetermined control signal while the power supply to all units of the analyzer is cut off, and at each timing based on this, the unit receives the control signal.
  • the power supply control means can stop and restart the power supply to the unit.
  • the unit power control means stops power supply to all of the plurality of units included in the analyzer at the first timing and restarts power supply to all of the plurality of units at the second timing.
  • a configuration may be adopted. As a result, the power consumption by all units becomes zero, which further contributes to the reduction of power consumption when analysis is not performed.
  • the second timing is preferably a time point when the communication module receives a control signal registered in an analysis schedule managed by the control device or the external device and instructing the start of analysis work.
  • start of analysis work means execution of analysis or start of warm-up operation.
  • the analysis apparatus According to the analysis apparatus according to the present invention, it is possible to effectively suppress the power consumption when the analysis is not performed and facilitate the restart of the analysis.
  • FIG. 1 is a block diagram showing a schematic configuration of a sample analysis system including an analysis apparatus according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing an overview of the analyzer shown in FIG. 1.
  • the state transition diagram which shows the transition between the sleep state of the analyzer shown in FIG. 1, and a sleep release state.
  • the flowchart which shows an example of the flow of a process by an analyzer and a workstation in case the sample analysis system shown in FIG. 1 performs analysis work.
  • the example of a screen display by the program for analysis control mounted in the workstation with which the sample analysis system shown in FIG. 1 is equipped.
  • the flowchart which shows another example of the flow of a process by an analyzer when the sample analysis system shown in FIG. 1 performs analysis work.
  • FIG. 1 is a block diagram showing a schematic configuration of a sample analysis system including an analyzer according to an embodiment of the present invention.
  • the sample analysis system according to the present embodiment is connected to the analyzer 1 and the analyzer 1 for managing the analysis work performed by the analyzer 1 and for analyzing and processing data obtained by the analyzer 1.
  • a workstation 2 (corresponding to an external device of the present invention).
  • the analyzer 1 is a liquid chromatograph (LC) in this embodiment.
  • the actual state of the analyzer 1 is not limited to this, and is a liquid chromatograph mass spectrometer (LC-MS), a gas chromatograph (GC), a gas chromatograph mass spectrometer (GC-MS), a spectrophotometer, or the like.
  • the analysis apparatus 1 may be other laboratory equipment or medical equipment, and is an analysis apparatus that can be controlled by an external apparatus, and any measurement method or object can be used as long as it has a configuration corresponding to the unit of the present invention.
  • the analysis device 1 includes a main power switch 10, a system controller 110 (corresponding to the control device of the present invention), and an analysis unit 30.
  • the main power switch 10 is a mechanical switch for switching ON / OFF of the main power supply of the entire analyzer 1, and is realized by, for example, a rocker switch or a push button switch.
  • the analyzer 1 is forcibly turned off regardless of the current operation.
  • the power supply circuits for example, a control unit power supply 20p, a communication unit power supply 60p, and unit power supplies 31p, 321p, and 322p, which will be described later
  • the power supply circuits for example, a control unit power supply 20p, a communication unit power supply 60p, and unit power supplies 31p, 321p, and 322p, which will be described later
  • the system controller 110 controls the operation of each unit included in the analysis unit 30 based on a control signal issued from the workstation 2.
  • the system controller 110 includes a touch panel 11, an energy saving power switch 12, a control unit 20, an analysis unit 30, a display unit 40, a storage unit 50, and a communication unit 60 (corresponding to the communication module of the present invention).
  • the touch panel 11 is means for detecting a touch (contact or proximity of an indicator) by a user, and is realized by, for example, a capacitive touch panel or a resistive touch panel.
  • the analysis conditions can be input and the analysis execution instruction can also be input through the touch panel 11, but is usually determined based on the control signal from the workstation 2 received via the communication unit 60. Analysis is performed.
  • the energy saving power switch 12 is a switch controlled by software, and when the energy saving power switch 12 is pressed by the user, a pressing signal is output to the control unit 20.
  • the pressing of the energy saving power switch 12 serves as a trigger for transition to a sleep state of the analyzer 1 and a trigger for canceling the sleep state, which will be described later.
  • Fig. 2 shows the external appearance of the analyzer 1.
  • the analysis apparatus 1 includes a plurality of units (autosampler 31, liquid feed pump 321, injector 322, column oven 323, and detector 324) constituting the analysis unit, and a control unit that controls these operations. It is an integrated device that is a combination of a system controller 110 with 20.
  • the system controller 110 includes a storage unit 50 and a communication unit 60 in addition to the control unit 20, and includes a touch panel 11, an energy saving power switch 12, and a display unit 40 on the front side of the analyzer 1.
  • the touch panel 11 is provided integrally with the display unit 40.
  • main power switch 10 is provided on the side surface or the back surface of the outer casing of the analyzer 1.
  • the main power switch 10 is provided on the side surface of the outer casing of the liquid feed pump 321, but it may of course be provided on another unit or the system controller 110. Each unit may have an individual power switch button.
  • the analysis unit 30 performs a predetermined analysis according to control by the system controller 110 (particularly the control unit 20).
  • the analysis unit 30 includes an autosampler 31 and an LC unit 32.
  • the autosampler 31 collects a sample to be analyzed by the LC unit 32, and includes a sampling needle for sucking the sample from a sample container set on one or a plurality of sample racks 310 (see FIG. 2). I have.
  • a confirmation window 311 is provided at the upper portion of the accommodation position of the sample rack 310, and the user can visually confirm the setting position of the sample container and the lowering position of the needle through this window.
  • the autosampler 31 also incorporates a sample cooler for keeping the temperature of the sample constant and a needle drive mechanism (both not shown) for moving the needle in the horizontal and vertical directions as a power consuming part in the unit. ing.
  • the LC unit 32 accommodates, as a unit, a liquid feed pump 321 for feeding a mobile phase contained in a mobile phase container (not shown), an injector 322 for injecting a liquid sample into the mobile phase flow path, and a column (not shown).
  • a column oven 323 for maintaining the column at a predetermined temperature and a detector 324 for detecting sample components sequentially eluted from the column are provided.
  • the liquid feed pump 321 and the injector 322 include a drive mechanism that operates a plunger and a valve.
  • the column oven 323 includes a heater that keeps the column at a constant temperature (not necessarily heated but may be cooled).
  • the detector 324 is a PDA (Photodiode Array) detector, the detector 324 includes a deuterium lamp or tungsten lamp as a light source and a PDA as a sensor.
  • the auto sampler 31, the liquid feed pump 321, the injector 322, the column oven 323, and the detector 324 are unit power supplies 31p, 321p, 322p, 323p, and 324p for appropriately supplying power to the power consumption unit in the unit. Each is equipped. In addition to the main power switch 10, these are controlled by a unit power control unit 23 described later.
  • the injector 322 is illustrated as being built in the autosampler 31, but the arrangement of the injector 322 is not limited thereto, and may be built in, for example, the column oven 323.
  • each unit need only be a functional unit responsible for each of the plurality of steps related to the analysis work, and need not be provided as a separate device. Needless to say, the arrangement of the units is not limited to the mode shown in FIG.
  • the display unit 40 displays information handled by the analysis apparatus 1 and is realized by a display device such as an LCD (Liquid Crystal Display).
  • the display unit 40 is provided on the back side of the touch panel 11 so as to overlap with the touch panel 11 (see FIG. 2), and displays a GUI (Graphical User Interface) button or the like so that the user can perform a touch operation on the touch panel 11. Assist.
  • GUI Graphic User Interface
  • the storage unit 50 includes a control program and an OS (Operating System) program executed by the control unit 20 of the analysis apparatus 1, an application program for the control unit 20 to execute various functions as the analysis apparatus of the present invention, and the control unit 20.
  • OS Operating System
  • the communication unit 60 is a means for controlling connection with an external device or the like, and establishes a connection between the analysis device 1 and the workstation 2 via a network cable NW (or wireless LAN (Local Area Network)).
  • NW wireless LAN (Local Area Network)
  • the communication unit 60 includes a communication unit power source 60p as a power circuit in the module, and the communication unit power source 60p is always ON while the analyzer 1 is in the main power source ON state, and power supply to the communication unit 60 is maintained. Is done. Thereby, the analyzer 1 can receive an instruction from the workstation 2 even in a sleep state described later.
  • the control unit 20 controls the operation of the analysis apparatus 1 by supervising the functions of the elements included in the analysis apparatus 1.
  • the control unit 20 is realized by, for example, a CPU (Central Processing Unit) or the like, and each element described below included in the control unit 20 includes a program stored in the storage unit 50 by a CPU as the control unit 20 and a volatile memory such as a RAM. It implement
  • the control unit 20 includes an operation acquisition unit 21, an analysis control unit 22, a unit power supply control unit 23, and an analysis result acquisition unit 24 as functional blocks.
  • the operation acquisition unit 21 acquires an operation signal detected by the touch panel 11 (for example, the capacitance value of each electrode in the case of a capacitive touch panel), and based on the operation signal, the position of the position where the user performs a touch operation is obtained.
  • the coordinates are specified, and this is output as operation information to an analysis control unit 22 and a unit power supply control unit 23 described later.
  • a known technique can be used for the method of specifying coordinates.
  • the analysis control unit 22 controls the operations of the autosampler 31 and the LC unit 32 so that the analysis instructed by the user is appropriately executed. Specifically, the analysis control unit 22 acquires the analysis conditions and the like set on the workstation 2 via the communication unit 60, and performs predetermined processing on the autosampler 31 and the LC unit 32 according to the acquired analysis conditions and the like. A drive signal is output. Furthermore, since the analysis apparatus 1 includes the touch panel 11, the analysis control unit 22 determines analysis conditions based on the operation information acquired from the operation acquisition unit 21, and the autosampler 31 and the LC unit 32 according to the determined analysis conditions. It is also possible to output a predetermined drive signal. The analysis control unit 22 may also display the currently set analysis conditions and the like on the screen of the display unit 40 as an image.
  • the unit power supply control unit 23 stops power supply to all the units included in the analysis unit 30 when a predetermined condition is satisfied. That is, the unit power supplies 31p, 321p, 322p, 323p, and 324p included in these units are all turned off.
  • the predetermined conditions include, for example, detection of pressing of the energy saving power switch 12, acquisition of an instruction to shift to the sleep state from the workstation 2, and a preset timing (time, completion point of analysis, and no operation state) The point of time in 1 point).
  • the state in which the unit power of all units is turned off is referred to as the sleep state of the analyzer 1 in this specification. Even in the sleep state, the power supply to the control unit 20 and the energy saving power switch 12 is maintained, so that the unit power supply control unit 23 can perform the sleep state release operation described below.
  • the unit power control unit 23 further resumes power supply to all units included in the analysis unit 30 when a predetermined condition for canceling the sleep state is satisfied in the sleep state in which the unit power of all units is turned off.
  • a predetermined condition for canceling the sleep state is satisfied in the sleep state in which the unit power of all units is turned off.
  • the unit power supplies 31p, 321p, 322p, 323p, and 324p included in these units are all switched on. Thereby, since the power consumption part of each unit becomes operable, the user can restart the analysis work.
  • the predetermined condition is, for example, detection of pressing of the energy saving power switch 12, acquisition of a sleep state cancellation instruction from the workstation 2, arrival of a preset time, and the like.
  • the “instruction from the workstation 2” as an example given above is not limited to an explicit instruction based on an input manually made by the user.
  • termination and activation of an analysis control application program (hereinafter referred to as an analysis control program) installed in the workstation 2 may be used as a transition instruction to sleep state and a sleep state cancellation instruction, respectively.
  • the instruction to shift to the sleep state may be triggered by detection of a no-operation state for a certain period of time on the analysis control program when the analysis unit 30 is not performing analysis work.
  • the transition mode between the sleep state and the sleep release state by the analyzer 1 is shown in FIG.
  • the analysis apparatus 1 first transitions between the sleep state and the sleep release state as a first trigger event when the user presses the energy saving power switch 12.
  • the analysis apparatus 1 further transitions between these two states as a second trigger event in response to an instruction to shift to the sleep state or an instruction to cancel the sleep state from the workstation 2.
  • the further trigger event the above-mentioned arrival of the predetermined timing can be mentioned, but since there are various examples of this, illustration is omitted.
  • the analysis result acquisition unit 24 acquires the analysis result obtained by the analysis by the LC unit 32.
  • the analysis result acquired by the analysis result acquisition unit 24 may be displayed as an image on the screen of the display unit 40 after being saved in the storage unit 50 and subjected to processing such as graphing.
  • the analysis result is sent to the workstation 2 via the communication unit 60.
  • the control unit 20 is also provided with a control unit power supply 20p like each unit of the analysis unit 30, but this control unit power supply 20p is not controlled by the unit power supply control unit 23 and is turned ON / OFF by the operation of the main power switch 10. Can be switched.
  • the touch panel 11, the energy saving power switch 12, the display unit 40, and the storage unit 50 may be provided with unique power supply circuits, respectively, but these are not shown in the figure because they are out of the scope of the present invention. .
  • FIG. 4 is a flowchart
  • FIG. 5 is a screen display example by a monitor attached to the workstation 2.
  • the analysis device 1 is in a sleep state due to the trigger event as described above (see FIG. 3), and the user intermittently analyzes the analysis device 1 in order to measure the temporal change of a certain sample component at intervals of 3 hours. Is going to be executed.
  • the analysis control program installed in the workstation 2 registers a task in the schedule table (step S101).
  • the warm-up operation and the execution of analysis are registered alternately as a plurality of tasks.
  • eight analysis control programs are stored in the batch queue 510 (corresponding to the analysis schedule of the present invention) according to the user input made on the analysis queue management screen 500 as shown in FIG.
  • the batch files 511 to 518 are sequentially registered as tasks.
  • batch files 512, 514, 516 and 518 are batch files for executing analysis
  • batch files 511, 513, 515 and 517 preceding each of these are batches for warm-up operations related to each subsequent analysis. It is a file.
  • the batch file for executing analysis includes a plurality of analyzes specified by combinations of the position on the sample rack 310 of the sample to be collected by the sampling needle, the sample type, the injection amount, the analysis method file, and the like.
  • the batch file for the warm-up operation includes mobile phase liquid feeding by the liquid feeding pump 321, light source stabilization, temperature control by the sample cooler of the autosampler 31 and the heater of the column oven 323, and the like. (Both illustrations are omitted in this paper).
  • the warm-up operation and the execution of the analysis may be combined into one batch file.
  • a start time T i of the warm-up operation according to the analysis (1 ⁇ i ⁇ I) (step S102).
  • the batch file 511, 513, 515 and 517 are registered execution date respectively, it said execution date is T 1, T 2, T 3 and T 4.
  • the completion of the work related to the previous batch file is set as an execution trigger. That is, in the example shown in the figure, the analysis is automatically executed when the warm-up operation is completed, and therefore, it is suitable for intermittent analysis in the unattended environment at night.
  • the analysis control program stores the analysis schedule including these in the storage area in the workstation 2 (step S103). Note that the analysis schedule is also saved by clicking the execution button 502 instead of the save button 501. By clicking the execution button 502, execution of the batch files 511 to 518 is reserved.
  • step S104 the first a warm-up operation "LC_batch1_pre" (step S104), and the start time T 1, which is registered as the execution date and time to determine whether they match or not the current time t (step S105). If they do not match (in S105 No), the start time T 1 is in a standby until the arrival.
  • the analysis control program to the communication unit 60 via the communication unit (not shown) of the workstation 2 comprises, analyzer 1 is provided, the warm-up A start instruction signal is transmitted (step S106).
  • the analyzer 1 is in a sleep state when a warm-up start instruction signal is sent from the workstation 2, but as described above, as long as the main power supply of the analyzer 1 is ON, communication is performed. Since power is always supplied to the unit 60, the communication unit 60 can receive the signal sent in step S106.
  • the analyzer 1 cancels the sleep state and starts the warm-up operation (step S107). Specifically, the unit power supply control unit 23 switches on the unit power supplies 31p, 321p, 322p, 323p, and 324p included in each unit of the analysis unit 30 described above to turn on the autosampler 31, the liquid feed pump 321, the injector 322, The power supply to the column oven 323 and the detector 324 is resumed. Then, the analysis control unit 22 causes the analysis unit 30 to perform a warm-up operation according to the batch file 511 (see FIG. 5A) included in the warm-up start instruction signal received by the communication unit 60 in step S106.
  • the analysis control unit 22 sends a warm-up completion notification signal to the workstation 2 via the communication unit 60 (step S109).
  • the analysis control program determines whether there is an analysis start instruction (step S110).
  • the value of the “execution date / time” field in the batch queue 510 is “auto”, the completion of the previous work becomes an execution trigger, so the analysis control program immediately executes the next task.
  • the analysis apparatus 1 starts analysis (step S112). Specifically, the analysis control unit 22 performs a predetermined analysis according to the batch file 512 (see FIG. 5A) included in the analysis start instruction signal received by the communication unit 60 in step S111. To run. As described above, in the present embodiment, the workstation 2 sends an analysis start instruction signal immediately after receiving the warm-up completion notification signal, and therefore, from the completion of the warm-up operation in the analyzer 1 (Yes in S108), step S112. The period until the start of analysis can be shortened, and excessive power consumption after the completion of warm-up can be suppressed.
  • the analysis control unit 22 sends an analysis end notification signal to the workstation 2 via the communication unit 60 (step S114).
  • the analysis end notification signal may include analysis result data acquired from the LC unit 32 by the analysis result acquisition unit 24.
  • this determination result means that all tasks including the analysis registered in the schedule table have been completed.
  • the processing on the workstation 2 side returns to the position before step S101, and waits until the task is registered in the new schedule table.
  • the analysis apparatus 1 that has sent the analysis end notification signal to the workstation 2 in step S114 transitions to the sleep state after a certain time has elapsed (Yes in step S117), that is, all the units included in the analysis unit 30.
  • the unit power supply is turned off (step S118). Specifically, the unit power supply control unit 23 switches off the unit power supplies 31p, 321p, 322p, 323p, and 324p included in each unit of the analysis unit 30 described above, the autosampler 31, the liquid feed pump 321, the injector 322, The power supply to the column oven 323 and the detector 324 is stopped.
  • the processing on the analysis apparatus 1 side returns to the position before step S106, and waits until the communication unit 60 maintaining power reception receives the next warm-up start instruction signal from the workstation 2.
  • the “certain time” as a determination criterion in step S117 may be arbitrarily set by the user, and may be set to 0 seconds, for example. Alternatively, this period may be set to several seconds to several minutes, and when the operation acquisition unit 21 detects a touch operation in a predetermined area on the touch panel 11 during this period, power supply to each unit may be maintained.
  • the predetermined area may be related to the operation control of the analysis unit 30 among the GUI buttons displayed on the display unit 40.
  • an instruction may be given from the workstation 2 to shift to the sleep state after the analysis is completed.
  • an instruction to enter a sleep state can be incorporated at the end of a set of multiple analyzes included in batch files 512, 514, 516, and 518, respectively.
  • an instruction signal for transition to the sleep state is sent from the workstation 2 to the analyzer 1 (not shown).
  • the configuration in which the instruction to enter the sleep state is included in the batch file may be the default operation mode of the analysis control program, and whether or not to enable this can be arbitrarily changed by the user. Is preferred.
  • the analysis apparatus 1 turns off the unit power of all units included in the analysis unit 30 by pressing the energy saving power switch 12 or an instruction from the workstation 2, thereby supplying power to all the units. Stop supplying (going to sleep). Thereby, the power consumption by the analyzer 1 is significantly reduced. Further, according to the processing described with reference to FIGS. 4 and 5A, when the start time of the warm-up operation registered in the schedule table created on the workstation 2 is reached, the analysis is in the sleep state. By switching the unit power supply of all units included in the analysis unit 30 of the apparatus 1 to ON, the power supply to all the units is resumed (release of the sleep state).
  • the period during which power is consumed by each unit is only during the analysis work including the warm-up operation and the execution of analysis, and contributes to further reduction of power consumption. Furthermore, in the present embodiment, since the communication unit 60 is always operating while the analyzer 1 is in the sleep state, various control signals from the workstation 2 can be sequentially received, and based on these, the analyzer 1 can be received. It is possible to shift to the sleep state at an appropriate timing, or to automatically resume the analysis work at a timing desired by the user.
  • an analysis execution instruction is not given after the warm-up operation is completed in the analysis apparatus 1 due to an input error to the batch queue 510 by the user.
  • a determination step for determining whether or not a certain time has passed is provided between steps S109 and S111, and analysis is performed for an excessively long time (for example, about several tens of minutes to one hour).
  • the analyzer 1 may be configured to shift to the sleep state again.
  • FIG. 5B shows another example of the schedule table edited on the analysis queue management screen 500.
  • Three batch files 521 to 523 are registered as tasks in the batch queue 520, and among these, the batch file 521 (LC_batch1) is already being executed.
  • the user who started the analysis by executing LC_batch1 before returning home wants to complete the warm-up operation just before the time of arrival in the laboratory the next morning,
  • a batch file 522 related to a warm-up operation and a batch file 523 related to execution of analysis are newly registered in the batch queue 520 in order.
  • the “execution date / time” column of the batch file 523 is left blank and the user schedules it to start manually.
  • the value in the “execution date / time” column of the batch file 521 that is already being executed is the date and time when the user manually instructed the start to be automatically input afterwards.
  • step S112 corresponds to between step S112 and S113 in the flowchart shown in FIG. 4 (connector A in FIG. 4).
  • the analyzer 1 shifts to a sleep state after a predetermined time has elapsed (Yes in S117) (Step S118).
  • the execution date / time of the batch file 522 (warm-up start time T 1 ) is reached (Yes in S105)
  • the communication unit 60 receives a warm-up start instruction signal from the workstation 2 (step S106), and the batch file 522 Accordingly, the warm-up operation is started (step S107). Then, the process waits for an analysis start instruction signal (step S111) from the workstation 2 through steps S108 to S109.
  • This embodiment contributes to the improvement of the reliability of the analysis result in the following points.
  • a user who is an operator of the analysis work is often absent around the analysis apparatus 1 as in the above example.
  • a user may accidentally operate a unit (or a malicious third party deliberately) and adversely affect the analysis results.
  • the probability of occurrence of a third-party intervention by intention or negligence can be reduced by turning off the unit power for all the units of the analyzer 1 when analysis is not performed.
  • FIG. 6 is a flowchart showing another example of the processing flow by the analyzer 1 in the sample analysis system.
  • the communication unit 60 acquires a schedule table from the workstation 2 (step S201). For example, a batch queue 510 as shown in FIG. This batch queue 510 is one in which the processing from steps S101 to S103 has been completed on the workstation 2 side.
  • steps S202 to S212 are the same as steps S104, S105, S107, S108, S110, S112, S113, S117, S118, S115, and S116 shown in FIG.
  • the processing performed on the workstation 2 side in FIG. 4 is replaced with the analysis control unit 22 provided in the analyzer 1 instead of the analysis control program installed in the workstation 2. That's fine.
  • a step for determining whether a certain time has passed may be provided between steps S205 and S206.
  • the present invention is not limited to the above-described embodiments, and appropriate modifications are allowed within the scope of the gist of the present invention.
  • T i time is clicked execution button 502 on the analysis queue management screen 500 (see FIG. 5) time and was the time of the lapse of a predetermined time from the end point of the previous analysis, it may be the next T i.
  • the description has been given as a configuration in which only the unit power supply is turned off.
  • the control unit power supply 20p, the touch panel 11, the energy saving power switch 12, the display unit 40, and the storage unit 50 are unique.
  • the communication unit 60 may be configured to turn on the control unit power supply 20p with the communication unit 60 receiving a control signal from the workstation 2 as a trigger.
  • the unit power supply control unit 23 has been described as a configuration in which power supply to all the units included in the analysis unit 30 is stopped / restarted. However, a part of all the units is selectively selected. Alternatively, the unit power supply may be switched on / off at an individual timing for each unit.
  • the system controller 110 has been described as the control device of the present invention.
  • the touch panel is not an essential component in the analyzer of the present invention, the touch panel 11 can be omitted in the analyzer 1.
  • the operation acquisition unit 21 as means for specifying the touch position coordinates can also be omitted.
  • each unit listed in the above embodiment is only a limited example even when the analyzer is an LC, and the unit of the present invention can take various forms depending on the type and configuration of the apparatus. is there. That is, regarding the analysis work composed of a plurality of steps, every functional unit that is a mechanical element that consumes electric power when executing each step can be a unit of the present invention.
  • Batch file 60 Communication unit 60p ... communication unit power T 1, T 2, T 3 , T 4 ... Start time of Omuappu operations

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

 分析装置1の動作を制御して所定の分析を実行させる制御装置110において、分析装置1が電源ON状態にあるときに電力の受給を維持し、外部装置2からの制御信号を常時受信可能な通信モジュール60と、通信モジュール60を介して前記制御信号を取得し、該制御信号に基づく第1のタイミングで、分析装置1が備えるユニット31、321、322、323及び/又は324に対する電力供給を停止させるとともに、前記制御信号に基づく第2のタイミングで、ユニット31、321、322、323及び/又は324に対する電力供給を再開させるユニット電源制御手段23とを備えることにより、分析非実行時の電力消費を効果的に抑制し、且つ分析の再開を容易とする。

Description

制御装置
 本発明は、分析装置の動作を制御して所定の分析を実行させる分析装置用の制御装置に関する。
 或る試料に対し所定の分析を実行し、該試料についての成分や構造に関する情報を得るための分析装置は、医薬品・食品の開発、医療、環境調査及び基礎研究など様々な分野で用いられている。
 通常、そうした分析装置は、一連の分析作業を成す複数の工程のそれぞれを担う機能単位としてのユニットを複数備えて成るものである。一例として、液体クロマトグラフ(LC)は、移動相流路内に液体の移動相を送液する送液ポンプ、前記移動相流路に試料を注入するインジェクタ、前記試料に含まれる成分を分離するためのカラムの温調を行うカラムオーブン、及び前記カラム下流の前記移動相流路中を流れる分離成分を検出する検出器等を備えている。市販の製品ではさらに、当該分析装置の動作を外部から制御する制御用コンピュータ(PC又はワークステーション等)との通信を司る通信手段を備えているものが一般的であり、該制御用コンピュータと分析装置とで1つの分析システムが構成される。昨今では、所定のプログラム(OS(Operating System)やアプリケーションソフトウェア等)を搭載することにより、分析装置単体で1つの分析システムを構成可能とした製品も提供されている。
 このような分析システムの一例として、分析装置を稼動状態にする始動機能、分析を実行させる分析実行機能、及び分析装置を待機状態にする停止機能、並びにこれらの各機能をタスクとしてスケジュールテーブルに登録し、該登録されたタスクを順次実行するスケジュール管理機能を備えたものが提供されている。このようなスケジュールテーブルにおいては、分析条件の他に各タスクの実行タイミングもユーザの指定に基づいて管理されることが一般的であり、これにより、ユーザは所望のタイミングで分析を開始することができる。ここで言う「タイミング」には、予め指定された時刻や、或る時点(例えば特定タスクの終了時)から所定時間が経過した時点等が含まれる。
 なお、分析装置の「稼動状態」とは、分析装置が備える1又は複数のユニットが分析の実行又はその準備(ウォームアップ)に係る所定の動作を行っている状態を意味し、「待機状態」とは、いずれのユニットも上記所定の動作を行っていない状態を意味する。例えばLCの送液ポンプが送液を行っていれば、他のユニットが上記所定の動作を停止していたとしてもLC全体としては稼動状態にあり、LCが待機状態にあるときには、ポンプを含め全てのユニットが上記所定の動作を停止している。なお、待機状態においてもユニットへの電力供給は維持されており、各ユニットは電源ON状態において上記の動作切り替えを行っている。
「GCMS-QP2010 SE カタログ」、株式会社島津製作所、平成22年5月17日 「GCMS-QP2010 SE 説明書」、株式会社島津製作所、平成22年5月17日、p.25-27
 通常、分析の開始前に必要なウォームアップ動作には時間がかかるため(例えばLCの場合、光源が安定するまでに60~90分程度を要する)、上述のような機能を備えた分析システムでは、ユーザは予定した時刻に分析をすぐに開始できるよう、スケジュールテーブルへのタスク登録時に、ウォームアップ動作の開始時刻を指定することが多い。指定された時刻にウォームアップ動作が開始されるためには、少なくとも該指定時刻には分析装置の電源をON状態にしておく必要がある。しかし、動作の開始を事前に予約しておきながら、指定した時刻の直前に分析装置の電源を入れることは、予約という行為の意義を考慮すれば想定し難い状況である。従って通常は、実行時刻を指定したタスクをスケジュールテーブルに登録した後は、該指定時刻まで分析装置の電源はON状態に保たれることが多く、この期間に一定の電力が消費されることとなる。また、分析の終了後に上記の停止機能によって分析装置を待機状態にしている間も各ユニットへの電力供給は維持されており、このことも消費電力増大の一因となっている。
 そこで、分析装置非使用時の電力消費を抑えるための構成として、例えば本出願人が以前提供した分析システムは、指定されたユニットの動作を選択的に停止させる省電力モードを備えている(非特許文献1を参照)。ユニットの動作の選択的な停止とは、具体的には、例えばガスクロマトグラフ質量分析装置(GC-MS)において、カラムオーブンのヒーターの電源をOFFにするといった動作である。一般に、GC-MSでは装置起動後に質量分析部(MS部)が高真空状態で安定するまでに約3時間程度を要する。従って分析終了後に電源を完全に落としてしまうと、次の装置起動から分析開始までに長い待ち時間が発生するため、日常的な使用でユーザに不便を強いることになる。こうした事情に鑑みて上記のような省電力モードを設け、真空環境を維持するユニットのみ稼動させておき、それ以外のユニットの電源を落とすことにより消費電力の低減が図られている。
 しかしながら、上述の分析システムでは、一旦省電力モードに移行した後に分析を再開するにはユーザが該省電力モードを手動で解除する必要があり、分析の自動再開が好まれるような使用場面においては、この手動解除がユーザを煩わせる一因となる。
 本発明は上記の事情に鑑みて成されたものであり、その目的とするところは、分析非実行時の電力消費を効果的に抑制し、且つ分析の再開が容易な分析装置を提供することにある。
 上記課題を解決するために成された本発明は、分析装置の動作を制御して所定の分析を実行させる分析装置用の制御装置であって、
 a)前記分析装置が電源ON状態にあるときに電力の受給を維持し、外部装置からの制御信号を常時受信可能な通信モジュールと、
 b)前記通信モジュールを介して前記制御信号を取得し、該制御信号に基づく第1のタイミングで、前記分析装置が備えるユニットに対する電力供給を停止させるとともに、前記制御信号に基づく第2のタイミングで、前記ユニットに対する電力供給を再開させるユニット電源制御手段と、
 を備えることを特徴とする。
 本発明における「ユニット」とは、一連の分析作業を成す複数の工程をそれぞれ担う機能単位を意味しており、具体例としてLCの場合には送液ポンプ、インジェクタ、カラムオーブン及び検出器等である。また、LCに導入する液体試料を採取するためのオートサンプラも本発明のユニットに含まれる。なお、ユニット電源制御手段は本発明のユニットを統括制御する手段であり、分析作業に係る所定の工程を担う本発明のユニットとは異なる。
 なお、上記「第1のタイミング」としては例えば、通信モジュールが外部装置からの制御信号を受信した時点、使用者が事前に指定した時刻、分析の完了時及び無操作状態での一定時間の経過時点等が挙げられる。上記「第2のタイミング」としては、使用者が事前に指定した時刻や、先の分析完了後に一定時間が経過した時点等を挙例することができる。
 また本発明の「制御装置」には、分析装置と一体に設けられた制御機器(例えばLCのシステムコントローラ)や、分析装置と別体に設けられ、該分析装置を外部から制御する制御用コンピュータ等が含まれる。
 上記の構成によれば、制御装置は、分析装置が電源ON状態にあるときには通信モジュールによって外部装置からの制御信号を常時受信可能であり、ユニット電源制御手段は、該通信モジュールが上記外部装置から受信した制御信号に基づく第1のタイミングで、分析装置が備えるユニットへの電力供給を停止させる。これにより、当該のユニットによる消費電力はゼロとなるため、例えば上述したように、上記外部装置にてスケジュールされた分析の完了時等を上記第1のタイミングとすることで、分析非実行時の電力消費が抑えられる。ユニット電源制御手段はさらに、通信モジュールが上記外部装置から受信した制御信号に基づく第2のタイミングで、上記ユニットへの電力供給を再開させる。すなわち、例えば使用者が上記外部装置を介して事前に時刻を指定することで、該指定時刻になれば上記のユニットに対し自動的に電力が供給されるため、各ユニットへの電力供給を再開するためのユーザによる手動操作が不要となり、分析を容易に再開することができる。具体的には、数時間後に実行予定の分析又は該分析の準備段階であるウォームアップ動作の開始を使用者が上記外部装置上で予約するときに、その直前の時刻を上記第2のタイミングとすることで、分析非実行時の電力消費を抑えながら分析再開の自動化を図ることができる。
 さらに、通信モジュールは外部装置からの制御信号を常時受信可能であるため、分析装置の全ユニットへの電力供給が絶たれている間も所定の制御信号を受信し、これに基づく各タイミングでユニット電源制御手段がユニットへの電力供給の停止及び再開を行うことができる。
 前記ユニット電源制御手段は、前記第1のタイミングで、前記分析装置が備える複数のユニットの全てに対する電力供給を停止させるとともに、前記第2のタイミングで、前記複数のユニットの全てに対する電力供給を再開させる構成としてもよい。
 これにより、全ユニットによる消費電力がゼロとなるので、分析非実行時の消費電力の低減に一層寄与する。
 前記第2のタイミングは、前記制御装置又は前記外部装置が管理する分析スケジュールに登録された、分析作業の開始を指示する制御信号を前記通信モジュールが受信した時点であることが好ましい。
 ここで、「分析作業の開始」とは、分析の実行又はウォームアップ動作の開始を意味する。
 上記の構成によれば、外部装置が制御装置に対して分析作業の開始を指示すると、これをトリガとして電力供給が再開された各ユニットは、当該指示に従って分析作業に係る各動作を実行する。すなわち、電力供給の再開と同時に分析作業が開始されるため、一層無駄のない省電力化が実現される。この構成は、使用者が所望のタイミングで複数の分析を間欠的に実行する場合において特に有用である。
 本発明に係る分析装置によれば、分析非実行時の電力消費を効果的に抑制し、且つ分析の再開を容易とすることができる。
本発明の一実施形態に係る分析装置を含む試料分析システムの概略構成を示すブロック図。 図1に示す分析装置の概観を示す斜視図。 図1に示す分析装置のスリープ状態とスリープ解除状態との間の遷移を示す状態遷移図。 図1に示す試料分析システムが分析作業を行う場合の、分析装置及びワークステーションによる処理の流れの一例を示すフローチャート。 図1に示す試料分析システムが備えるワークステーションに搭載された分析制御用プログラムによる画面表示例。 図1に示す試料分析システムが分析作業を行う場合の、分析装置による処理の流れの別の例を示すフローチャート。
 以下、本発明を実施するための形態について、図面を参照しつつ詳細に説明する。以下の記載において、先に説明した図面と同一の機能を有する部材には同一の番号を付し、その説明を省略する。
 図1は本発明の一実施形態に係る分析装置を含む試料分析システムの概略構成を示すブロック図である。本実施形態に係る試料分析システムは、分析装置1と、分析装置1が行う分析作業を管理したり分析装置1で得られたデータを解析・処理したりするための、分析装置1と接続されたワークステーション2(本発明の外部装置に相当)とを備える。
 〔分析装置1の構成〕
 分析装置1は、本実施形態では液体クロマトグラフ(LC)とする。ただし、分析装置1の実態はこれに限定されず、液体クロマトグラフ質量分析装置(LC-MS)、ガスクロマトグラフ(GC)、ガスクロマトグラフ質量分析装置(GC-MS)又は分光光度計等であってもよい。分析装置1はその他の実験機器や医療機器であってもよく、外部装置による制御が可能な分析装置で、本発明のユニットに相当する構成を備えるものであれば測定の手法や対象は問わない。
 図1に示すように、分析装置1は主電源スイッチ10、システムコントローラ110(本発明の制御装置に相当)及び分析部30を備えて成る構成である。
 主電源スイッチ10は分析装置1全体の主電源のON/OFFを切り替えるための機械スイッチであり、例えばロッカースイッチや押ボタンスイッチ等によって実現される。分析装置1が主電源ON状態にあるときにユーザが主電源スイッチ10を操作すると、分析装置1は、現在行っている動作とは無関係に強制的に主電源OFF状態となる。分析作業の途中で主電源スイッチ10が操作される状況としては、緊急にメンテナンスの必要性が生じた場合等が想定される。
 主電源スイッチ10の操作により分析装置1が主電源ON状態になると、分析装置1が備える各部が備える電源回路(例えば後述する制御部電源20p、通信部電源60p、並びにユニット電源31p、321p、322p、323p及び324p)に対し電力が供給される。
 システムコントローラ110は、ワークステーション2から発せられる制御信号に基づき、分析部30が備える各ユニットの動作を制御するものである。システムコントローラ110はタッチパネル11、省エネ電源スイッチ12、制御部20、分析部30、表示部40、記憶部50及び通信部60(本発明の通信モジュールに相当)を備える。
 タッチパネル11は、ユーザによるタッチ(指示体の接触又は近接)を検知する手段であり、例えば静電容量方式や抵抗膜方式のタッチパネルによって実現される。本実施形態では、分析条件の入力や分析の実行指示はタッチパネル11を介した入力操作によっても可能であるが、通常は通信部60を介して受信したワークステーション2からの制御信号に基づいて所定の分析が実行される。
 省エネ電源スイッチ12は、ソフトウェアにより制御されるスイッチであり、ユーザによって省エネ電源スイッチ12が押下されると、押下信号が制御部20に出力される。省エネ電源スイッチ12の押下は、後述する分析装置1のスリープ状態への移行トリガ及び該スリープ状態の解除トリガとなる。
 図2に分析装置1の外観を示す。同図に示すとおり、分析装置1は、分析部を構成する複数のユニット(オートサンプラ31、送液ポンプ321、インジェクタ322、カラムオーブン323及び検出器324)と、これらの動作を制御する制御部20を備えたシステムコントローラ110とを組み合わせて成る一体の装置である。なお、システムコントローラ110は制御部20の他に記憶部50及び通信部60を内蔵し、また分析装置1の前面側にタッチパネル11、省エネ電源スイッチ12及び表示部40を備えている。タッチパネル11は表示部40と一体に設けられている。
 また、主電源スイッチ10は分析装置1の外装筐体の側面又は背面に備えられている。図2では主電源スイッチ10は送液ポンプ321の外装筐体側面に設けられているが、他のユニットやシステムコントローラ110上に設けられていてももちろん構わない。また、各ユニットが個別の電源スイッチボタンを備えていても構わない。
 再び図1を参照する。ここで一旦システムコントローラ110の説明を中断し、分析部30について先に説明を行う。
 分析部30は、システムコントローラ110(特に制御部20)による制御に従い所定の分析を実行するものである。分析部30は、オートサンプラ31とLC部32とを備える。
 オートサンプラ31は、LC部32にて分析される試料を採取するものであり、1又は複数のサンプルラック310(図2参照)上にセットされた試料容器から試料を吸引するためのサンプリングニードルを備えている。サンプルラック310の収容位置には上部に確認窓311が設けられており、ユーザはこの窓を通して試料容器のセット位置やニードルの降下位置を目視で確認することができる。
 オートサンプラ31はまた、ユニット内の電力消費部として、試料の温度を一定に保つためのサンプルクーラーや、ニードルを水平方向及び垂直方向に移動させるためのニードル駆動機構(ともに不図示)を内蔵している。
 次に、LC部32が備える各ユニットについて説明する。LC部32は、ユニットとして、不図示の移動相容器に収容された移動相を送液する送液ポンプ321と、液体試料を移動相流路に注入するインジェクタ322と、不図示のカラムを収容すると共に、該カラムを所定の温度に維持するカラムオーブン323と、該カラムから順次溶出される試料成分を検出するための検出器324とを備えている。
 以下に各部が備える電力消費部の例をいくつか挙げる。送液ポンプ321及びインジェクタ322はプランジャー及びバルブを動作させる駆動機構を備える。カラムオーブン323は上記カラムを一定の温度に保つヒーター(必ずしも加温するとは限らず、冷却する場合もある)を備える。検出器324は、該検出器324がPDA(Photodiode Array)検出器の場合には、光源としての重水素ランプやタングステンランプ、及びセンサとしてのPDAを備えている。
 ここで、オートサンプラ31、送液ポンプ321、インジェクタ322、カラムオーブン323及び検出器324は、ユニット内の電力消費部に電力を適切に供給するためのユニット電源31p、321p、322p、323p及び324pをそれぞれ備えている。これらは主電源スイッチ10に加え、後述するユニット電源制御部23の制御を受ける。
 なお、図2においてはインジェクタ322はオートサンプラ31に内蔵される形で図示されているが、インジェクタ322の配置はこれに限定されず、例えばカラムオーブン323に内蔵されていてもよい。この例からも分かるように、それぞれのユニットは分析作業に係る複数の工程のそれぞれを担う機能単位であればよく、機器として別体に設けられている必要はない。また各ユニットの配置は図2に示す態様に限定されないことは言うまでもない。
 再び図1を参照して、システムコントローラ110の説明を再開する。
 表示部40は、分析装置1が扱う情報を表示するものであり、例えばLCD(Liquid Crystal Display)等の表示装置によって実現される。表示部40はタッチパネル11と重畳するようにタッチパネル11の裏面側に設けられており(図2参照)、GUI(Graphical User Interface)ボタン等を表示することでタッチパネル11上でのユーザのタッチ操作を補助する。
 記憶部50は、分析装置1の制御部20が実行する制御プログラム及びOS(Operating System)プログラム、制御部20が本発明の分析装置としての各種機能を実行するためのアプリケーションプログラム、並びに制御部20が該アプリケーションプログラムを実行するときに読み出す各種データを非一時的に記憶するものであり、ROM(Read only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)、HDD(Hard Disc Drive)、SSD(Solid State Drive)等の不揮発性記憶装置によって実現される。
 通信部60は、外部装置等との接続を司る手段であり、ネットワークケーブルNW(又は無線LAN(Local Area Network))を介して分析装置1とワークステーション2との接続を確立する。通信部60はモジュール内の電源回路として通信部電源60pを備えており、分析装置1が主電源ON状態にある間は通信部電源60pは常時ON状態にあり、通信部60に対する電力供給が維持される。これにより、分析装置1は、後述のスリープ状態にある間もワークステーション2からの指示を受信可能としている。
 制御部20は、分析装置1が備える各要素の機能を統括し、分析装置1の動作を制御するものである。制御部20は例えばCPU(Central Processing Unit)等で実現され、制御部20が備える後述の各要素は、制御部20としてのCPUが、記憶部50に記憶されているプログラムを、RAM等の揮発性記憶装置で構成される不図示のメモリに読み出して実行することで実現される。
 制御部20は、図1に示すとおり、機能ブロックとして、操作取得部21、分析制御部22、ユニット電源制御部23及び分析結果取得部24を備えている。
 操作取得部21は、タッチパネル11が検知した操作信号(例えば、静電容量方式のタッチパネルの場合は各電極の容量値)を取得し、該操作信号に基づき、ユーザによるタッチ操作がなされた位置の座標を特定するとともに、これを操作情報として後述の分析制御部22やユニット電源制御部23に出力する。座標特定の方法については公知の技術を用いることができる。
 分析制御部22は、ユーザが指示した分析が適切に実行されるよう、オートサンプラ31及びLC部32の動作を制御するものである。具体的には、分析制御部22は、ワークステーション2上で設定された分析条件等を通信部60を介して取得し、該取得した分析条件等に従ってオートサンプラ31及びLC部32に対し所定の駆動信号を出力する。さらに、分析装置1はタッチパネル11を備えているので、分析制御部22は操作取得部21から取得した操作情報に基づき分析条件等を定め、該定めた分析条件等に従ってオートサンプラ31及びLC部32に対し所定の駆動信号を出力することもできる。分析制御部22はまた、現在設定されている分析条件等を、表示部40の画面上に画像として表示させてもよい。
 ユニット電源制御部23は、所定の条件が満たされた場合に、分析部30が備える全てのユニットに対する電力供給を停止させる。すなわち、これらのユニットが備えるユニット電源31p、321p、322p、323p及び324pを全てOFF状態とする。上記所定の条件とは例えば、省エネ電源スイッチ12の押下の検知、ワークステーション2からのスリープ状態への移行指示の取得、及び事前に設定されたタイミング(時刻、分析の完了時点、及び無操作状態における一点時間経過時点)の到来である。
 このように全ユニットのユニット電源がOFFとなった状態を、本明細書では分析装置1のスリープ状態と称する。該スリープ状態においても、制御部20や省エネ電源スイッチ12等への電力供給は維持されており、これによりユニット電源制御部23は以下に述べるスリープ状態の解除動作が可能となる。
 ユニット電源制御部23はさらに、全ユニットのユニット電源をOFFにしたスリープ状態において、該スリープ状態を解除すべき所定の条件が満たされたとき、分析部30が備える全てのユニットに対する電力供給を再開させる。具体的には、これらのユニットが備えるユニット電源31p、321p、322p、323p及び324pを全てONに切り替える。これにより各ユニットの電力消費部が動作可能となるため、ユーザは分析作業を再開することができる。上記所定の条件とは例えば、省エネ電源スイッチ12の押下の検知、ワークステーション2からのスリープ状態解除指示の取得、及び事前に設定された時刻の到来等である。
 なお、上に挙げた一例である「ワークステーション2からの指示」とは、ユーザが手動で行った入力に基づく明示的な指示に限定されない。例えば、ワークステーション2に搭載された分析制御用のアプリケーションプログラム(以下、分析制御用プログラムと称す)の終了及び起動を、それぞれスリープ状態への移行指示及びスリープ状態の解除指示としてもよい。また、スリープ状態への移行指示については、分析部30が分析作業を行っていない状況における、上記分析制御用プログラム上での一定時間の無操作状態の検出をトリガとしてもよい。
 分析装置1によるスリープ状態とスリープ解除状態との間の遷移態様を図3に示す。上述したとおり、分析装置1は、まず第1のトリガイベントとして、ユーザによる省エネ電源スイッチ12の押下によってスリープ状態とスリープ解除状態との間を遷移する。分析装置1はさらに、第2のトリガイベントとして、ワークステーション2からのスリープ状態への移行指示又はスリープ状態の解除指示によっても、これら2つの状態間を遷移するものである。さらなるトリガイベントとして、上述した所定タイミングの到来を挙げることができるが、これについては例が多岐に亘るため図示を省略する。
 再び図1を参照して説明を行う。分析結果取得部24は、LC部32による分析で得られた分析結果を取得するものである。分析結果取得部24が取得した分析結果は、記憶部50に保存される他、グラフ化等の処理を施された上で、表示部40の画面上に画像として表示されてもよい。また、該分析結果は、通信部60を介してワークステーション2に送出される。
 制御部20もまた分析部30の各ユニットと同様に制御部電源20pを備えるが、この制御部電源20pはユニット電源制御部23の制御を受けず、主電源スイッチ10の操作によってON/OFFが切り替えられる。
 なお、タッチパネル11、省エネ電源スイッチ12、表示部40及び記憶部50にもそれぞれ固有の電源回路が設けられていてもよいが、これらは本発明の趣旨から外れるため、同図では省略している。
 〔試料分析システムによる処理の流れ:第1例〕
 次に、フローチャートである図4及びワークステーション2に付属のモニタによる画面表示例である図5を参照しつつ、分析装置1及びワークステーション2から成る試料分析システムにおける処理の流れについて説明を行う。いま、上述したようなトリガイベント(図3参照)によって分析装置1がスリープ状態にあり、ユーザが或る試料成分の経時変化を3時間間隔で測定するために、分析装置1に間欠的に分析を実行させようとしているとする。
 まず、ワークステーション2に搭載された分析制御用プログラムが、スケジュールテーブルへのタスクの登録を行う(ステップS101)。ここでは例として、ウォームアップ動作と分析の実行とを交互に複数個のタスクとして登録する。
 具体的には例えば、上記分析制御用プログラムが、図5(a)に示すような分析キュー管理画面500上でなされたユーザ入力に従い、バッチキュー510(本発明の分析スケジュールに相当)に8個のバッチファイル511~518を順にタスクとして登録する。
 同図において、バッチファイル512、514、516及び518は分析実行用のバッチファイルであり、これらにそれぞれ先行するバッチファイル511、513、515及び517が後続の各分析に係るウォームアップ動作用のバッチファイルである。分析実行用のバッチファイルには、サンプリングニードルが採取すべき試料のサンプルラック310上での位置、試料タイプ、注入量、分析メソッドファイル等の組み合わせで特定される分析が複数含まれている。また、ウォームアップ動作用のバッチファイルには、送液ポンプ321による移動相の送液、光源の安定化、並びにオートサンプラ31のサンプルクーラー及びカラムオーブン323のヒーターによる温調等が含まれている(ともに本稿では図示を省略する)。別の例として、ウォームアップ動作と分析の実行とは1つのバッチファイルにまとめられてもよい。
 さらにこのとき、各分析に係るウォームアップ動作の開始時刻Tを指定する(1≦i≦I)(ステップS102)。バッチファイル511、513、515及び517には実行日時がそれぞれ登録されており、該実行日時がT、T、T及びTとなる。なお、「実行日時」の欄に「auto」と入力された場合には、先のバッチファイルに係る作業の完了を実行のトリガとする構成とする。すなわち、同図に示す例ではウォームアップ動作が完了すれば自動的に分析が実行されるので、夜間の無人環境での間欠的な分析に適している。
 以上のようにしてバッチキュー510へのタスク登録とTの指定が完了すれば、ユーザが保存ボタン501をクリックする(ワークステーション2付属のモニタがタッチパネルを備えている場合には指示体でタップする)ことで、上記分析制御用プログラムは、これらを含む分析スケジュールを、ワークステーション2内の記憶領域に保存する(ステップS103)。なお、保存ボタン501に代えて実行ボタン502のクリックによっても分析スケジュールは保存される。実行ボタン502のクリックによって、バッチファイル511~518の実行が予約されることとなる。
 まず第1のウォームアップ動作である「LC_batch1_pre」について(ステップS104)、実行日時として登録された開始時刻Tが現在時刻tと一致するか否かを判定する(ステップS105)。一致しなければ(S105でNo)、開始時刻Tが到来するまで待機となる。
 現在時刻tがTと一致した場合(S105でYes)、上記分析制御用プログラムは、ワークステーション2が備える不図示の通信部を介して、分析装置1が備える通信部60に対し、ウォームアップ開始指示信号を送出する(ステップS106)。
 ここで、図4に示すとおり、分析装置1はワークステーション2からウォームアップ開始指示信号が送出される時点ではスリープ状態にあるが、上述したとおり、分析装置1の主電源がONである限り通信部60には常に電力が供給されるため、通信部60はステップS106にて送出された信号を受信することができる。
 上記のようにして通信部60がワークステーション2からのウォームアップ開始指示信号を受信すると、分析装置1はスリープ状態を解除するとともに、ウォームアップ動作を開始する(ステップS107)。具体的には、ユニット電源制御部23は、上述した分析部30の各ユニットが備えるユニット電源31p、321p、322p、323p及び324pをONに切り替え、オートサンプラ31、送液ポンプ321、インジェクタ322、カラムオーブン323及び検出器324への電力供給を再開させる。そして、分析制御部22が、ステップS106にて通信部60が受信したウォームアップ開始指示信号に含まれるバッチファイル511(図5(a)参照)に従ってウォームアップ動作を分析部30に実行させる。
 ウォームアップ動作が完了すれば(S108にてYes)、分析制御部22は通信部60を介して、ワークステーション2に対しウォームアップ完了通知信号を送出する(ステップS109)。
 ワークステーション2がウォームアップ完了通知信号を受信すると、上記分析制御用プログラムは、分析開始指示の有無を判定する(ステップS110)。ここで、上述したとおり、バッチキュー510において「実行日時」の欄の値が「auto」である場合は先の作業の完了が実行トリガとなるため、上記分析制御用プログラムは即時に次なるタスク「LC_batch1」の実行、すなわち分析の開始指示有りと判定し(S110でYes)、分析装置1が備える通信部60に対し分析開始指示信号を送出する(ステップS111)。
 通信部60がワークステーション2からの分析開始指示信号を受信すると、分析装置1は分析を開始する(ステップS112)。具体的には、分析制御部22が、ステップS111にて通信部60が受信した該分析開始指示信号に含まれるバッチファイル512(図5(a)参照)に従った所定の分析を分析部30に実行させる。
 上述したように、本実施形態ではワークステーション2はウォームアップ完了通知信号を受信後すぐに分析開始指示信号を送出するため、分析装置1でのウォームアップ動作の完了(S108でYes)からステップS112の分析開始までの期間を短くすることができ、ウォームアップ完了後の余剰な電力消費が抑えられる。
 分析部30による分析が終了すると(S113でYes)、分析制御部22は通信部60を介して、ワークステーション2に対し分析終了通知信号を送出する(ステップS114)。この分析終了通知信号には、分析結果取得部24がLC部32から取得した分析結果データが含まれていてもよい。
 ワークステーション2が分析終了通知信号を受信すると、上記分析制御用プログラムは、iをインクリメントし(ステップS115)、iがスケジュールテーブルに登録されたウォームアップタスクの総数I(本実施形態ではI=4)を上回っていなければ(ステップS116でNo)、次なるウォームアップ動作の開始時刻Tの到来を待つ。
 一方、ステップS115におけるインクリメントの結果、iがIを上回った場合(ステップS116でYes)、この判定結果はスケジュールテーブルに登録されている、分析を含めた全てのタスクが終了したことを意味するので、ワークステーション2側での処理はステップS101の手前に戻り、新たなスケジュールテーブルへのタスク登録まで待機となる。
 ところで、ステップS114にてワークステーション2に対し分析終了通知信号を送出した分析装置1は、その後一定時間が経過すると(ステップS117でYes)、スリープ状態に移行する、すなわち分析部30が備える全ユニットについてユニット電源をOFFにする(ステップS118)。具体的には、ユニット電源制御部23は、上述した分析部30の各ユニットが備えるユニット電源31p、321p、322p、323p及び324pをOFFに切り替え、オートサンプラ31、送液ポンプ321、インジェクタ322、カラムオーブン323及び検出器324への電力供給を停止させる。そして、分析装置1側での処理はステップS106の手前に戻り、電力受給を維持している通信部60がワークステーション2から次なるウォームアップ開始指示信号を受信するまで待機となる。
 なお、ステップS117における判定基準となる上記「一定時間」はユーザが任意に設定可能であってもよく、例えば0秒とすることもできる。あるいは、この期間を数秒~数分間とし、この間にタッチパネル11上の所定領域内でのタッチ操作を操作取得部21が検出した場合には各ユニットへの電力供給を維持する構成としてもよい。上記所定領域とは例えば、表示部40が表示するGUIボタンのうち、分析部30の動作制御に係るものであってもよい。
 別の例として、分析終了後にスリープ状態に移行するよう、ワークステーション2から指示を与えてもよい。一例として、バッチファイル512、514、516及び518にそれぞれ含まれる複数分析のセットの末尾に、スリープ状態への移行指示を組み入れておくことができる。この場合には図4のステップS117に代えて、ワークステーション2から分析装置1に対し、スリープ状態への移行指示信号が送出される(図示は省略)。この例のようにスリープ状態への移行指示をバッチファイルに含める構成を上記分析制御用プログラムのデフォルトの動作態様としてもよく、これを有効とするか否かはユーザによって任意に変更可能であることが好ましい。
 本実施形態によれば、分析装置1は、省エネ電源スイッチ12の押下又はワークステーション2からの指示によって、分析部30が備える全ユニットのユニット電源をOFFにすることで、当該全ユニットへの電力供給を停止する(スリープ状態への移行)。これにより、分析装置1による消費電力が大幅に低減される。
 また、図4及び図5(a)を参照して説明した処理によれば、ワークステーション2上で作成されたスケジュールテーブルに登録された、ウォームアップ動作の開始時刻になると、スリープ状態にある分析装置1の分析部30が備える全ユニットのユニット電源をONに切り替えることで、当該全ユニットへの電力供給を再開する(スリープ状態の解除)。従って、各ユニットにより電力が消費される期間は、ウォームアップ動作及び分析の実行を含む分析作業中のみとなり、一層消費電力の低減に寄与する。
 さらに、本実施形態では分析装置1がスリープ状態にある間も通信部60が常時動作しているため、ワークステーション2からの各種制御信号を逐次受信することができ、これらに基づいて分析装置1は、適切なタイミングでスリープ状態に移行したり、ユーザ所望のタイミングで分析作業を自動で再開したりすることが可能となっている。
 なお、ユーザによるバッチキュー510への入力ミス等により、分析装置1においてウォームアップ動作が完了した後に分析の実行指示が与えられないといった問題が生じ得る。このような場合に、不要な電力消費を抑えるためにステップS109とS111との間に一定時間が経過したか否かの判定ステップを設け、あまりに長時間(例えば数十分~1時間程度)分析開始の指示が与えられない場合には、分析装置1は再度スリープ状態に移行する構成としてもよい。
 上述の例では4回の分析作業を間欠的に実行させる例について説明したが、分析装置1の使用状況としてより頻度が高いと想定される、「夜にユーザが分析を開始してその終了前に帰宅し、翌朝すぐに分析を再開する」場合にも本発明を適用可能である。
 図5(b)に、分析キュー管理画面500上にて編集されるスケジュールテーブルの別の例を示す。バッチキュー520にはタスクとして3個のバッチファイル521~523が登録されており、このうちバッチファイル521(LC_batch1)は既に実行中である。
 本例の状況をより詳細に説明すれば、帰宅前にLC_batch1を実行して分析を開始したユーザが、翌朝に実験室に到着する時刻の直前にウォームアップ動作を完了させておきたいと考え、バッチキュー520に新たにウォームアップ動作に係るバッチファイル522と、分析の実行に係るバッチファイル523とを順に登録した。但し、翌朝の分析開始前に試料の交換やサンプルラック310の状態の確認等を行いたいため、バッチファイル523の「実行日時」の欄は空欄としておき、ユーザが手動で開始するようスケジューリングしたものとする。なお、既に実行中のバッチファイル521の「実行日時」の欄の値は、ユーザが手動で開始を指示した日時が事後的に自動入力されたものである。
 上述した状況は、図4に示すフローチャートではステップS112とS113との間に相当する(同図中の結合子A)。バッチファイル521に係る分析が終了すれば(S113でYes)、一定時間経過後(S117でYes)に分析装置1がスリープ状態に移行する(ステップS118)。そしてバッチファイル522の実行日時(ウォームアップの開始時刻T)になれば(S105でYes)、通信部60がワークステーション2からウォームアップ開始指示信号を受信し(ステップS106)、バッチファイル522に従ったウォームアップ動作を開始する(ステップS107)。そしてステップS108~S109を経てワークステーション2からの分析開始指示信号(ステップS111)を待つ。
 本実施形態は以下の点で、分析結果の信頼性の向上にも寄与するものである。
 分析作業を予約してから当該分析作業が開始されるまでの期間は、上記の例のように分析装置1の周囲に分析作業のオペレータであるユーザが不在であることが多く、この間に別のユーザが誤って(又は悪意を持った第三者が故意に)ユニットを動作させて、分析結果に好ましくない影響を与えることがある。本実施形態によれば、分析非実行時に分析装置1の全ユニットについてユニット電源をOFFにしておくことで、故意又は過失による第三者の介入行為の発生の蓋然性を低下させることができる。
 〔試料分析システムによる処理の流れ:第2例〕
 図4を参照して説明した処理の変形例として、スケジュールテーブルを分析装置1側で記憶・参照するようにしてもよい。図6は、試料分析システムにおける、分析装置1による処理の流れの別の例を示すフローチャートである。
 まず、通信部60はワークステーション2からスケジュールテーブルを取得する(ステップS201)。例えば図5(a)に示すようなバッチキュー510を取得する。このバッチキュー510は、ワークステーション2側でステップS101~S103までの処理が完了したものである。
 ステップS202~S212における処理は、図4に示すステップS104、S105、S107、S108、S110、S112、S113、S117、S118、S115、S116とそれぞれ同様である。但し、これらのうち図4においてワークステーション2側で行われていた処理に関しては、動作主体をワークステーション2に搭載された分析制御用プログラムに代えて、分析装置1が備える分析制御部22とすればよい。なお、上記第1例と同様、ステップS205とS206との間に一定時間が経過したかの判定ステップを設けてもよい。
 〔変更例〕
 本発明は上述した各実施形態に限定されるものではなく、本発明の趣旨の範囲で適宜変更が許容される。
 例えば、上述の実施形態ではウォームアップ動作の開始時刻Tはそれぞれ独立に時刻を指定されるものとして説明を行ったが、分析キュー管理画面500(図5参照)上で実行ボタン502がクリックされた時点や、先の分析の終了時点から所定の時間が経過した時点を、次のTとしてもよい。
 さらに、分析装置1のスリープ状態においてはユニット電源のみをOFFにする構成として説明を行ったが、制御部電源20pや、タッチパネル11、省エネ電源スイッチ12、表示部40及び記憶部50がそれぞれ固有に備える電源回路もOFFにする構成とすることで消費電力をさらに低減することもできる。スリープ状態において制御部電源20pをOFFにする場合には、通信部60がワークステーション2から制御信号を受信したことをトリガとして通信部60が制御部電源20pをONにする構成とすればよい。
 また、上述の実施形態ではユニット電源制御部23は分析部30が備える全ユニットへの電力供給を一括に停止/再開する構成として説明を行ったが、全ユニットのうちの一部を選択的に、あるいは各ユニットについて個別のタイミングでユニット電源のON/OFFを切り替え可能としてもよい。
 さらなる変更例として、本発明の制御装置としてシステムコントローラ110を挙げたが、分析装置1と別体に設けられた制御コンピュータに所定のプログラムを搭載することで同様の機能を持たせてもよい。
 また、本発明の分析装置においてタッチパネルは必須の構成ではないため、分析装置1においてタッチパネル11を省略することもできる。この場合、タッチ位置座標を特定する手段としての操作取得部21もまた省略可能である。
 なお、上述の実施形態で挙げた各ユニットは分析装置がLCである場合の中でも限られた例に過ぎず、装置の種類や構成によって本発明のユニットは様々な形態を取り得ることは当然である。すなわち、複数の工程からなる分析作業に関し、各工程を実行するに際し電力の消費を伴う機械要素であるあらゆる機能単位が、本発明のユニットたり得る。
1…分析装置
10…主電源スイッチ
11…タッチパネル
110…システムコントローラ
12…省エネ電源スイッチ
2…ワークステーション
20…制御部
20p…制御部電源
21…操作取得部
22…分析制御部
23…ユニット電源制御部
24…分析結果取得部
30…分析部
31…オートサンプラ
310…サンプルラック
311…確認窓
31p、321p、322p、323p、324p…ユニット電源
32…LC部
321…送液ポンプ
322…インジェクタ
323…カラムオーブン
324…検出器
40…表示部
50…記憶部
510、520…バッチキュー
511、512、513、514、515、516、517、518、519、521、522、523…バッチファイル
60…通信部
60p…通信部電源
、T、T、T…ウォームアップ動作の開始時刻

Claims (4)

  1.  分析装置の動作を制御して所定の分析を実行させる分析装置用の制御装置であって、
     a)前記分析装置が電源ON状態にあるときに電力の受給を維持し、外部装置からの制御信号を常時受信可能な通信モジュールと、
     b)前記通信モジュールを介して前記制御信号を取得し、該制御信号に基づく第1のタイミングで、前記分析装置が備えるユニットに対する電力供給を停止させるとともに、前記制御信号に基づく第2のタイミングで、前記ユニットに対する電力供給を再開させるユニット電源制御手段と、
     を備えることを特徴とする制御装置。
  2.  前記ユニット電源制御手段は、前記第1のタイミングで、前記分析装置が備える複数のユニットの全てに対する電力供給を停止させるとともに、前記第2のタイミングで、前記複数のユニットの全てに対する電力供給を再開させることを特徴とする請求項1に記載の制御装置。
  3.  前記第2のタイミングは、前記制御装置又は前記外部装置が管理する分析スケジュールに登録された、分析作業の開始を指示する制御信号を前記通信モジュールが受信した時点であることを特徴とする請求項1又は2に記載の制御装置。
  4.  コンピュータを請求項1~3のいずれかに記載の制御装置の各手段として機能させるための制御プログラム。
PCT/JP2014/066647 2014-06-24 2014-06-24 制御装置 WO2015198389A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480080111.6A CN106461687B (zh) 2014-06-24 2014-06-24 控制装置
PCT/JP2014/066647 WO2015198389A1 (ja) 2014-06-24 2014-06-24 制御装置
EP14896137.8A EP3163304A4 (en) 2014-06-24 2014-06-24 Control device
JP2016528781A JP6288269B2 (ja) 2014-06-24 2014-06-24 制御装置
US15/321,476 US10416136B2 (en) 2014-06-24 2014-06-24 Controlling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/066647 WO2015198389A1 (ja) 2014-06-24 2014-06-24 制御装置

Publications (1)

Publication Number Publication Date
WO2015198389A1 true WO2015198389A1 (ja) 2015-12-30

Family

ID=54937527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066647 WO2015198389A1 (ja) 2014-06-24 2014-06-24 制御装置

Country Status (5)

Country Link
US (1) US10416136B2 (ja)
EP (1) EP3163304A4 (ja)
JP (1) JP6288269B2 (ja)
CN (1) CN106461687B (ja)
WO (1) WO2015198389A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018189893A1 (ja) * 2017-04-14 2018-10-18 株式会社島津製作所 分析デバイス、コントローラ及び分析システム
JP2019020234A (ja) * 2017-07-14 2019-02-07 株式会社堀場製作所 分析装置
JP2019168361A (ja) * 2018-03-23 2019-10-03 株式会社ミツトヨ 測定器および測定システム
JP2021193392A (ja) * 2017-08-10 2021-12-23 シスメックス株式会社 検査システムおよび検査システムのシャットダウン方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019074371A (ja) * 2017-10-13 2019-05-16 株式会社島津製作所 質量分析装置を用いた特定物質監視システム
JP7231008B2 (ja) * 2019-03-11 2023-03-01 株式会社島津製作所 分析システム
US20220146541A1 (en) * 2019-03-12 2022-05-12 Shimadzu Corporation Analysis device
JP2021117122A (ja) * 2020-01-27 2021-08-10 株式会社島津製作所 分析システム

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121449A (ja) * 2001-10-12 2003-04-23 Hitachi High-Technologies Corp 検体分析システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5139744A (en) * 1986-03-26 1992-08-18 Beckman Instruments, Inc. Automated laboratory work station having module identification means
JPH06160397A (ja) 1992-11-24 1994-06-07 Toshiba Corp 自動化学分析装置
JP2001296301A (ja) * 2000-04-13 2001-10-26 Toshiba Corp 管理システム
JP4225852B2 (ja) * 2003-07-17 2009-02-18 シスメックス株式会社 分析システム
JP2005181123A (ja) * 2003-12-19 2005-07-07 Olympus Corp 分析装置
CN101900720B (zh) * 2009-05-29 2014-09-10 希森美康株式会社 检体处理装置以及检体处理方法
JP2011013112A (ja) 2009-07-02 2011-01-20 Beckman Coulter Inc 自動分析装置
JP5735862B2 (ja) * 2011-06-07 2015-06-17 日本分光株式会社 省電力モード機能を備えた光学分析装置
EP2738559B1 (de) * 2012-11-28 2020-01-08 Siemens Healthcare Diagnostics Products GmbH Verfahren zum vorübergehenden Betrieb eines automatischen Analysegeräts in einem Bereitschaftsmodus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121449A (ja) * 2001-10-12 2003-04-23 Hitachi High-Technologies Corp 検体分析システム

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018189893A1 (ja) * 2017-04-14 2018-10-18 株式会社島津製作所 分析デバイス、コントローラ及び分析システム
JPWO2018189893A1 (ja) * 2017-04-14 2019-12-26 株式会社島津製作所 分析デバイス、コントローラ及び分析システム
US11106259B2 (en) 2017-04-14 2021-08-31 Shimadzu Corporation Analytical device, controller, and analytical system incorporating a main power switch and power supply instruction part disposed separately from the main power switch
JP2019020234A (ja) * 2017-07-14 2019-02-07 株式会社堀場製作所 分析装置
US11366126B2 (en) * 2017-07-14 2022-06-21 Horiba, Ltd. Analysis apparatus
JP2021193392A (ja) * 2017-08-10 2021-12-23 シスメックス株式会社 検査システムおよび検査システムのシャットダウン方法
JP7220266B2 (ja) 2017-08-10 2023-02-09 シスメックス株式会社 検査システムおよび検査システムのシャットダウン方法
JP2019168361A (ja) * 2018-03-23 2019-10-03 株式会社ミツトヨ 測定器および測定システム
JP7072978B2 (ja) 2018-03-23 2022-05-23 株式会社ミツトヨ 測定器および測定システム

Also Published As

Publication number Publication date
JP6288269B2 (ja) 2018-03-07
CN106461687B (zh) 2018-10-12
EP3163304A4 (en) 2017-06-28
JPWO2015198389A1 (ja) 2017-04-20
EP3163304A1 (en) 2017-05-03
US10416136B2 (en) 2019-09-17
CN106461687A (zh) 2017-02-22
US20170146500A1 (en) 2017-05-25

Similar Documents

Publication Publication Date Title
JP6288269B2 (ja) 制御装置
JP6446827B2 (ja) 分析装置
CN107533072B (zh) 模块型分析系统
JP2008051542A (ja) 分析装置
JP7425235B2 (ja) 検体分析システム、起動コントローラ、検体分析装置の起動方法、コンピュータプログラム
US11499984B2 (en) Pretreatment apparatus and analysis system comprising the same
JP2024009363A (ja) 分析装置
US20180093201A1 (en) Modular-type analysis system
JP5275958B2 (ja) 液体クロマトグラフ装置
JP2017211225A (ja) ガスクロマトグラフ装置
CN103338300B (zh) 一种快速进入与退出休眠模式的方法及移动终端
JP5923314B2 (ja) 自動分析装置
JP6476653B2 (ja) 計測機器用制御装置、計測機器の制御方法及び制御プログラム
KR101320555B1 (ko) 혈당측정 시스템
JP2009047592A (ja) 分析装置
EP3961221A1 (en) Automatic analysis device and maintenance guide method in automatic analysis device
JP2001296301A (ja) 管理システム
US20120179989A1 (en) Method for displaying indoor environment condition information and device thereof
JP2003121449A (ja) 検体分析システム
CN111273567B (zh) 设备开关机控制方法、体外诊断设备、流水线及存储介质
US11549957B2 (en) Automated analyzer and automated analysis system
US20220178889A1 (en) Analysis system
JP6428136B2 (ja) 液体クロマトグラフシステムとその制御方法
JP2014035306A (ja) クロマトグラフ装置
Xu et al. Control Software Design for a Multisensing Multicellular Microscale Gas Chromatography System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896137

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016528781

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15321476

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014896137

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014896137

Country of ref document: EP