WO2015194196A1 - 皿ばね - Google Patents

皿ばね Download PDF

Info

Publication number
WO2015194196A1
WO2015194196A1 PCT/JP2015/003119 JP2015003119W WO2015194196A1 WO 2015194196 A1 WO2015194196 A1 WO 2015194196A1 JP 2015003119 W JP2015003119 W JP 2015003119W WO 2015194196 A1 WO2015194196 A1 WO 2015194196A1
Authority
WO
WIPO (PCT)
Prior art keywords
spring
diameter side
cross
shape portion
sectional shape
Prior art date
Application number
PCT/JP2015/003119
Other languages
English (en)
French (fr)
Inventor
雄亮 寺田
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Priority to CN201580032697.3A priority Critical patent/CN106460984B/zh
Priority to JP2016529073A priority patent/JP6538047B2/ja
Priority to US15/320,257 priority patent/US10060493B2/en
Publication of WO2015194196A1 publication Critical patent/WO2015194196A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/32Belleville-type springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/22Friction clutches with axially-movable clutching members
    • F16D13/38Friction clutches with axially-movable clutching members with flat clutching surfaces, e.g. discs
    • F16D13/52Clutches with multiple lamellae ; Clutches in which three or more axially moveable members are fixed alternately to the shafts to be coupled and are pressed from one side towards an axially-located member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/22Friction clutches with axially-movable clutching members
    • F16D13/38Friction clutches with axially-movable clutching members with flat clutching surfaces, e.g. discs
    • F16D13/52Clutches with multiple lamellae ; Clutches in which three or more axially moveable members are fixed alternately to the shafts to be coupled and are pressed from one side towards an axially-located member
    • F16D13/54Clutches with multiple lamellae ; Clutches in which three or more axially moveable members are fixed alternately to the shafts to be coupled and are pressed from one side towards an axially-located member with means for increasing the effective force between the actuating sleeve or equivalent member and the pressure member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/58Details
    • F16D13/583Diaphragm-springs, e.g. Belleville
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/06Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch
    • F16D25/062Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces
    • F16D25/063Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially
    • F16D25/0635Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs
    • F16D25/0638Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs with more than two discs, e.g. multiple lamellae

Definitions

  • the present invention relates to a disc spring used for absorbing a shock generated when a clutch of a multi-plate clutch mechanism such as an automatic transmission for an automobile is engaged.
  • a disc spring that absorbs a shock generated when the clutch is engaged is used.
  • FIG. 18 is an enlarged cross-sectional view of a main part showing the configuration of a multi-plate clutch mechanism 100 to which the conventional disc spring 200 described in Patent Document 1 is applied.
  • the multi-plate clutch mechanism 100 includes a clutch drum 101 having a substantially bottomed cylindrical shape, and an inner spline 103 extending in the axial direction is formed on an inner peripheral surface thereof.
  • a clutch hub 105 is concentrically arranged inside the clutch drum 101, and a spline 107 is formed on the outer peripheral surface thereof.
  • the outer plate 111 and the inner plate 113 of the friction clutch 109 are alternately arranged.
  • the outer plate 111 is engaged with the inner spline 103 of the clutch drum 101
  • the inner plate 113 is engaged with the spline 107 of the clutch hub 105.
  • the piston 117 of the hydraulic actuator 115 is disposed on one side of the friction clutch 109, and the pressure receiving plate 119 is disposed on the other side.
  • the hydraulic actuator 115 includes a hydraulic chamber 121 between the piston 117 and the clutch drum 101.
  • a disc spring 200 is interposed between the outer plate 111 of the friction clutch 109 and the piston 117 of the hydraulic actuator 115.
  • the disc spring 200 has an outer peripheral side facing the outer plate 111 of the friction clutch 109 and an inner peripheral side facing the piston 117 of the hydraulic actuator 115.
  • the piston 117 driven by hydraulic pressure causes the outer plate 111 and the inner plate 113 of the friction clutch 109 to move against the pressure receiving plate 119 via the disc spring 200. Press.
  • the friction clutch 109 is fastened according to the pressing force by this pressing, and torque transmission between the clutch drum 101 and the clutch hub 105 is controlled.
  • the disc spring 200 is elastically deformed with respect to the outer plate 111 by the pressing of the piston 117, and absorbs a shock generated when the clutch is engaged.
  • a general load characteristic of such a disc spring 200 is a characteristic in which the spring constant decreases with respect to the deflection amount as shown in FIGS. 19 (A) and 19 (B). For this reason, in order to ensure the required load, it is necessary to increase the plate thickness of the disc spring 200, and there is a problem that it is impossible to assemble in a limited space.
  • the problem to be solved is that it is necessary to increase the plate thickness of the disc spring in order to secure the required load, and it is difficult to assemble in a limited space.
  • the present invention makes it possible to easily secure the required load without increasing the plate thickness due to the characteristic that the spring constant increases even when the deflection amount exceeds a certain deflection amount.
  • a disc spring in which the spring portion is interposed between a pair of rotating members that move relative to each other in the axial direction, and the spring portion contacts one of the rotating members. Are formed on at least one of the inner diameter side and the outer diameter side of the spring portion and are in contact with the other of the rotating members, and are in close contact with the rotating members. And having a linear cross-sectional shape portion for enabling narrow pressure.
  • the present invention has the above-described configuration, when the pair of rotating members relatively move in the axial direction and approach each other, the contact position of the round cross-section portion with one of the rotating members smoothly moves to the inner diameter side or the outer diameter side.
  • the spring constant increases without decreasing even when the amount of deflection exceeds a certain amount of deflection. Therefore, it becomes easy to ensure the required load without increasing the plate thickness of the disc spring.
  • (A) is a front view of a disc spring
  • (B) is a cross-sectional view taken along line IB-IB in (A).
  • (Example 1) It is sectional drawing of a spring part.
  • (Example 1) It is a load characteristic figure of a disc spring.
  • (Example 1) It is sectional drawing of the spring part which shows the curvature center position of a round cross-section part.
  • (Example 1) It is a load characteristic figure which shows the difference in the load characteristic of a disc spring by the difference in the curvature center position of a round cross-section part.
  • (Example 1) It is sectional drawing of the spring part which shows the curvature radius of a round cross-section part.
  • Example 1 It is a load characteristic figure which shows the difference in the load characteristic of a disk spring by the difference in the curvature radius of a round cross-section part.
  • Example 1 It is sectional drawing which shows the positional relationship of each part of a spring part.
  • Example 1 It is sectional drawing of the spring part which formed the round cross-section shape part with the some curvature.
  • Example 2 It is a load characteristic figure of a disc spring.
  • Example 2 It is sectional drawing of the spring part provided with the nail
  • Example 3 (A) is a front view of a disc spring provided with a lever on the inner diameter side, and (B) is a cross-sectional view taken along line XIIIB-XIIIB in (A).
  • Example 3) (A) is a front view of a disc spring provided with a claw on the outer diameter side, and (B) is a cross-sectional view taken along line XIVB-XIVB in (A).
  • Example 3) It is sectional drawing of a spring part.
  • Example 4 It is a graph which shows the fluctuation
  • Example 4 It is a graph which shows the fluctuation
  • Example 4 It is principal part sectional drawing of the multi-plate clutch mechanism which shows attachment of a disk spring.
  • (A) (B) is a load characteristic figure of a disc spring.
  • a round cross-section for contacting one of the rotating members, and at least one of the inner diameter side or the outer diameter side of the spring portion that is continuous with the round cross-section and making contact with the other of the rotating members It has been realized by having a linear cross-sectional shape portion for enabling narrow pressure tightly between members.
  • FIG. 1A is a front view of a disc spring
  • FIG. 1B is a cross-sectional view taken along line IB-IB of FIG. 2A
  • FIG. 2 is a cross-sectional view of a spring portion
  • FIG. 3 is a load characteristic of the disc spring.
  • the disc spring 1 has a circular disc-shaped spring portion 3.
  • a hole 5 is provided in the inner diameter of the spring portion 3.
  • the spring portion 3 of the disc spring 1 is used by being interposed between a pair of rotating members that move relative to each other in the axial direction to approach and separate from each other.
  • the disc spring 1 is assembled to a multi-plate clutch mechanism such as an automatic transmission (AT) for automobiles or a metal belt type automatic transmission (CVT).
  • a multi-plate clutch mechanism such as an automatic transmission (AT) for automobiles or a metal belt type automatic transmission (CVT).
  • the outer plate 7 of the clutch and the piston 9 of the hydraulic actuator serve as the other side.
  • the inner diameter side of the disc spring 1 can be tightly pressed in close contact with the pressure of the piston 9 against the outer plate 7. Note that the outer plate 7 and the piston 9 are not shown.
  • the assembly of the disc spring 1 is not particularly limited, and the pressure receiving plate of the friction clutch and the stopper on the clutch drum side may be assembled as a pair of rotating members.
  • the outer diameter side of the disc spring 1 can be narrowed tightly by both rotating members. Moreover, the linear cross-sectional shape part mentioned later of an internal diameter side can also be eliminated.
  • the spring portion 3 is formed with a uniform plate thickness, and has a round cross-sectional shape portion 11 and a straight cross-sectional shape portion 13.
  • the spring portion 3 is formed by pressing, and the round cross-sectional shape portion 11 is for contacting the outer plate 7 which is one of the rotating members.
  • the center portion of the round cross-sectional shape portion 11 serves as a contact point and contacts the outer plate 7 in a free state.
  • the radius of curvature R and the central angle ⁇ (not shown) of the R-shaped cross-section portion 11 can be arbitrarily set as long as the following formula is satisfied.
  • the center of curvature of the round cross-section portion 11 is located on a straight line passing through the contact point of the round cross-section portion 11 with respect to the outer plate 7 and parallel to the rotational axis of the outer plate 7.
  • round cross-section portion 11 can be constituted by a hyperbola, an elliptic curve, or other curves.
  • the straight cross-sectional shape portion 13 is continuous with the round cross-section shape portion 11 and is formed on the inner diameter side and the outer diameter side of the spring portion 3, and has an inner diameter side linear cross-section shape portion 13a and an outer diameter-side straight cross-section shape portion 13b. Yes.
  • the inner diameter side linear cross-sectional shape portion 13 a indicates a range with a pair of thick lines for the sake of clarity.
  • the linear cross-sectional shape part 13 can also be formed in one of an inner diameter side or an outer diameter side.
  • the round cross-sectional shape portion 11 is formed so as to reach the outer diameter side or the inner diameter side where the linear cross-sectional shape portion 13 is not formed.
  • the inner diameter side linear cross-sectional shape portion 13a is brought into contact with the piston 9 which is the other of the rotating members, and can be tightly pressed between the outer plate 7 and the piston 9 which are both rotating members. In this narrow pressure, the round cross-section portion 11 is not narrowed between the outer plate 7 and the piston 9. Therefore, the inner diameter side linear cross-sectional shape portion 13a can be reliably narrowed tightly between the outer plate 7 and the piston 9, and load characteristics can be obtained accurately.
  • the continuation of the inner diameter side linear sectional shape portion 13a and the outer diameter side linear sectional shape portion 13b to the rounded sectional shape portion 11 is continuously and smoothly performed without having a step or a corner. Specifically, an inner diameter side linear sectional shape portion 13 a and an outer diameter side linear sectional shape portion 13 b are extended in the direction of a radius tangent to each end of the radius sectional shape portion 11.
  • the outer diameter side linear cross-sectional shape portion 13b it is also possible to set the outer diameter side linear cross-sectional shape portion 13b to have an angle parallel to the outer plate 7.
  • the pressing force of the piston 9 is transmitted to the outer plate 7 of the friction clutch through the round cross-sectional shape portion 11 of the disc spring 1, and the outer plate 7 and the inner plate (not shown) are pressed against the pressure receiving plate.
  • the friction clutch is engaged according to the pressing force by this pressing, and torque transmission between the clutch drum and the clutch hub is controlled.
  • the disc spring 1 is elastically deformed while gradually moving the contact point of the round cross-section portion 11 to the outer plate 7 toward the inner diameter side as described above, and the shock generated at the time of clutch engagement while increasing the spring constant as described above. To absorb.
  • the load characteristics of the disc spring 1 are such that the spring constant increases with respect to the amount of deflection and the load increases even if the amount of deflection exceeds a certain amount of deflection as shown in FIG. For this reason, the disc spring 1 can easily ensure the required load without increasing the plate thickness.
  • FIG. 4 is a cross-sectional view of the spring portion showing the position of the center of curvature of the round cross-section shape portion
  • FIG. 5 is a load characteristic diagram showing the difference in the load characteristics of the disc spring due to the difference in the center of curvature position of the round-section shape portion.
  • the position of the contact point of the round cross-section portion 11 with respect to the outer plate 7 can be specified as a round center position (R center position): ⁇ A with respect to the rotation center of the rotating member.
  • R center position a round center position
  • ⁇ A the initial force point changes, so that the magnitude of the load can be controlled.
  • the limit of the position of the R center is a position where the linear cross-sectional shape portion 13 is not provided on the inner diameter side or the outer diameter side.
  • FIG. 6 is a cross-sectional view of the spring portion showing the radius of curvature of the round cross-section shape portion
  • FIG. 7 is a load characteristic diagram showing the difference in the load characteristic of the disc spring due to the difference in the curvature radius of the round cross-section shape portion.
  • the upper limit value of the size of R is a size at which the linear cross-section 13 is not provided on the inner diameter side or the outer diameter side.
  • the load characteristics of the disc spring 1 due to the change in the curvature radius R are as shown in FIG. As R increases, the rise of the load with respect to the stroke increases, and the increase in the spring constant with respect to the deflection amount can be further increased.
  • FIG. 8 is a cross-sectional view showing the positional relationship of each part of the spring part.
  • the spring portion 3 has the round cross-sectional shape portion 11 and the linear cross-sectional shape portion 13 exists on the inner diameter side or the outer diameter side.
  • This constraint can be defined as follows.
  • a straight cross-sectional shape portion 13 is formed on the inner diameter side of the spring portion 3.
  • the inner diameter of the spring portion 3 is ⁇ D1
  • the camber angle is ⁇ relative to the outer plate 7 of the inner diameter side linear cross-sectional shape portion 13a
  • the spring portion 3 is R ⁇ tan ⁇ 1 ⁇ (A ⁇ D1) / cos ⁇ Is established.
  • the inner diameter side central angle ⁇ 1 is an inner diameter when the central angle of the round cross-section portion 11 is divided by a radius R connecting the contact point of the round cross-section portion 11 with the outer plate 7 and the center of curvature of the round cross-section portion 11. Means the side.
  • a straight cross-sectional shape portion 13 is formed on the outer diameter side of the spring portion 3.
  • the spring portion 3 is R ⁇ tan ⁇ 2 ⁇ (D2-A) / cos ⁇ Is established.
  • the outer-diameter side central angle ⁇ 2 means the outer-diameter side angle when the central angle of the round cross-section portion 11 is divided as described above.
  • FIGS. 9 and 10 relate to Example 2 of the present invention
  • FIG. 9 is a cross-sectional view of a spring portion in which a round cross-sectional shape portion is formed with a plurality of curvatures
  • FIG. 10 is a load characteristic diagram of a disc spring.
  • the spring portion 3A of the disc spring 1A of the present embodiment has a round cross-sectional shape portion formed with a plurality of radii of curvature R1 and R2, and the first and second round cross-sectional shape portions 11Aa and 11Ab are smooth each other. It was made continuous.
  • the first rounded cross-sectional shape portion 11Aa smoothly continues to the outer-diameter-side linear cross-sectional shape portion 13Ab, and the second rounded cross-sectional shape portion 11Ab smoothly continues to the inner-diameter-side linear cross-sectional shape portion 13Aa as in the first embodiment. is there.
  • the load characteristics of the disc spring 1A due to the change in the curvature radius R are as shown in FIG.
  • the operating range of R2 can be made continuous with the operating range of R1, and the increase of the spring constant with respect to the deflection amount can be further increased.
  • FIGS. 11 to 14 relate to a third embodiment of the present invention
  • FIGS. 11 and 12 are cross-sectional views of a spring portion provided with claws on the inner and outer diameter sides
  • FIG. 13 (A) is provided with a lever on the inner diameter side
  • Front view of disc spring (B) is a cross-sectional view taken along line XIIIB-XIIIB in (A)
  • FIG. 14 (A) is a front view of a disc spring having a claw on the outer diameter side
  • (B) is It is XIVB-XIVB arrow sectional drawing of (A).
  • This Example 3 was provided with claws and levers as engaging convex portions on at least one of the inner diameter side and the outer diameter side of the spring portion.
  • 11 is provided with an inner diameter claw 3Ba and an outer diameter claw 3Bb as claws. It is the same as in the first embodiment that it has a rounded cross-sectional shape portion 11B, an inner-diameter-side linear cross-sectional shape portion 13Ba, and an outer-diameter-side linear cross-sectional shape portion 13Bb.
  • the inner diameter claw 3Ca and the outer diameter claw 3Cb are bent in opposite directions with respect to the spring portion 3C. It is the same as in the first embodiment that it has a round cross-sectional shape portion 11C, an inner diameter side linear cross-sectional shape portion 13Ca, and an outer diameter side linear cross-sectional shape portion 13Cb.
  • 13 is provided with an inner diameter lever 3Da as a lever. It is the same as in the first embodiment that it has a rounded cross-sectional shape portion 11D, an inner diameter-side linear cross-sectional shape portion 13Da, and an outer-diameter-side linear cross-sectional shape portion 13Db.
  • Example 14 is provided with an outer diameter claw 3Eb as a claw. It is the same as that of Example 1 that the rounded cross-sectional shape portion 11E, the inner diameter side linear cross-sectional shape portion 13Ea, and the outer diameter side linear cross-sectional shape portion 13Eb are provided.
  • FIG. 15 to 17 relate to a fourth embodiment of the present invention
  • FIG. 15 is a cross-sectional view of the spring portion
  • FIG. 16 is a variation in load corresponding to the radial length of the outer diameter side of the spring portion of FIG.
  • FIG. 17 is a graph showing the variation in load characteristics due to the relationship between the load and the stroke according to the radial direction length on the outer diameter side of the spring portion of FIG.
  • the load variation characteristic is such that the load gradually increases in a non-linear manner (curved) in accordance with the increase in the radial length L of the outer diameter side linear cross-section 13Fb.
  • the load in a state where the disc spring 1F having different radial lengths L is bent with a specific stroke is compared.
  • the increase in the load of the load variation characteristic is based on the fact that the rigidity of the spring portion 3F increases as the radial length L of the outer diameter side linear cross-sectional shape portion 13Fb increases. Further, the increase in load depends on the increase in the volume of the outer diameter side linear cross-sectional shape portion 13Fb, and therefore becomes non-linear with respect to the increase in the radial length L of the outer diameter side linear cross-sectional shape portion 13Fb.
  • the load characteristic changes as a whole with respect to the rise of the load with respect to the stroke.
  • the radial length L of the outer diameter side linear cross-sectional shape portion 13Fb is increased, the rise of the load with respect to the stroke is increased, and the increase of the spring constant with respect to the stroke (deflection amount) can be further increased.
  • the radial length L becomes small, the rise of the load with respect to the stroke becomes small.
  • the disc spring 1F of the present embodiment it is possible to control the load characteristics by setting the radial length L of the outer diameter side linear cross-section 13Fb. Moreover, in the disc spring 1F of the present embodiment, the load can be increased or decreased nonlinearly in accordance with the increase or decrease of the radial length L. Therefore, when the radial length L is increased and the increase of the spring constant is further increased. However, it is possible to prevent the radial length L from being inadvertently increased, and it is possible to assemble in a limited space.
  • the present embodiment is the same as the first embodiment in terms of structural deformation and operational effects.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Springs (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

撓み量に対してばね定数が増大する特性により板厚を増加させることなく要求される荷重の確保を容易にすることを可能とする皿ばねを提供する。周回皿形状のばね部(3)を有し、軸方向に相対移動して接近離反する一対の回転部材、例えばアウタープレート(7)及びピストン(9)間にばね部(3)が介設される皿ばね(1)であって、ばね部(3)は、例えばアウタープレート(7)に当接させるためのアール断面形状部(11)と、アール断面形状部(11)に連続しばね部(3)の内径側又は外径側の少なくとも一方に形成されて例えばピストン(9)に当接させ両回転部材間で密着状に狭圧可能とするための直線断面形状部(13)とを有することを特徴とする。

Description

皿ばね
 本発明は、自動車用オートマチックトランスミッションなどの多板式クラッチ機構のクラッチ締結時などに生じるショックの吸収のためなどに用いられる皿ばねに関する。
 従来、自動車用オートマチックトランスミッション(AT)や金属ベルト式自動変速機(CVT)などの多板式クラッチ機構では、クラッチ締結時に生じるショックを吸収する皿ばねが用いられている。
 図18は、特許文献1に記載された従来の皿ばね200を適用した多板式クラッチ機構100の構成を表す要部拡大断面図である。多板式クラッチ機構100は、略有底円筒状をなすクラッチドラム101を備え、その内周面には軸線方向に延在するインナースプライン103が形成されている。クラッチドラム101の内部には、クラッチハブ105が同芯状に配置され、その外周面にはスプライン107が形成されている。
 クラッチドラム101とクラッチハブ105との間には、摩擦クラッチ109のアウタープレート111及びインナープレート113が交互に配置されている。アウタープレート111は、クラッチドラム101のインナースプライン103に係合し、インナープレート113は、クラッチハブ105のスプライン107に係合している。
 摩擦クラッチ109の一側には、油圧アクチュエーター115のピストン117が配置され、同他側には、受圧プレート119が配置されている。油圧アクチュエーター115は、ピストン117とクラッチドラム101との間に油圧室121を備えている。
 摩擦クラッチ109のアウタープレート111と油圧アクチュエーター115のピストン117との間には、皿ばね200が介設されている。この皿ばね200は、外周側が摩擦クラッチ109のアウタープレート111に対向し、内周側に油圧アクチュエーター115のピストン117が対向する。
 かかる多板式クラッチ機構100では、油圧室121に作動油を供給すると、油圧により駆動されたピストン117が、皿ばね200を介し摩擦クラッチ109のアウタープレート111及びインナープレート113を受圧プレート119に対して押圧する。
 この押圧で摩擦クラッチ109が押圧力に応じて締結され、クラッチドラム101とクラッチハブ105との間のトルク伝達が制御される。
 このとき、皿ばね200は、ピストン117の押圧によりアウタープレート111に対して弾性変形し、クラッチ締結時に生じるショックを吸収する。
 かかる皿ばね200の一般的な荷重特性は、図19(A)、(B)のように一定の撓み量を越えると撓み量に対してばね定数が減少する特性である。このため、要求される荷重を確保するためには皿ばね200の板厚を増加させる必要があり、限られたスペースへの組付けに無理を伴うという問題があった。
特開2008-75877号公報
 解決しようとする問題点は、要求される荷重を確保するためには皿ばねの板厚を増加させる必要があり、限られたスペースへの組付けに無理を伴う点である。
 本発明は、一定の撓み量を越える撓み量に対してもばね定数が増大する特性により板厚を増加させることなく要求される荷重の確保を容易にすることを可能とするため、周回皿形状のばね部を有し、軸方向に相対移動して接近離反する一対の回転部材間に前記ばね部が介設される皿ばねであって、前記ばね部は、前記回転部材の一方に当接させるためのアール断面形状部と、このアール断面形状部に連続し前記ばね部の内径側又は外径側の少なくとも一方に形成されて前記回転部材の他方に当接させ前記両回転部材間で密着状に狭圧可能とするための直線断面形状部とを有することを特徴とする。
 本発明は、上記構成であるから、一対の回転部材が軸方向に相対移動して接近するとアール断面形状部の回転部材の一方への当接位置が内径側又は外径側へ滑らかに移動し、一定の撓み量を越える撓み量に対してもばね定数が減少することなく増大する。したがって、皿ばねの板厚を増加させることなく要求される荷重を確保することが容易となる。
 しかも、直線断面形状部は、両回転部材間で密着状に狭圧可能であるため、ばね部の荷重特性が安定する。
(A)は、皿ばねの正面図、(B)は、(A)のIB-IB線矢視断面図である。(実施例1) ばね部の断面図である。(実施例1) 皿ばねの荷重特性図である。(実施例1) アール断面形状部の曲率中心位置を示すばね部の断面図である。(実施例1) アール断面形状部の曲率中心位置の相違による皿ばねの荷重特性の相違を示す荷重特性図である。(実施例1) アール断面形状部の曲率半径を示すばね部の断面図である。(実施例1) アール断面形状部の曲率半径の相違による皿ばねの荷重特性の相違を示す荷重特性図である。(実施例1) ばね部の各所の位置関係を示す断面図である。(実施例1) アール断面形状部を複数の曲率で形成したばね部の断面図である。(実施例2) 皿ばねの荷重特性図である。(実施例2) 内外径側に爪を備えたばね部の断面図である。(実施例3) 内外径側に爪を備えたばね部の断面図である。(実施例3) (A)は、内径側にレバーを備えた皿ばねの正面図、(B)は、(A)のXIIIB-XIIIB線矢視断面図である。(実施例3) (A)は、外径側に爪を備えた皿ばねの正面図、(B)は、(A)のXIVB-XIVB線矢視断面図である。(実施例3) ばね部の断面図である。(実施例4) 図15のばね部の外径側の径方向長さに応じた荷重の変動を示すグラフである。(実施例4) 図15のばね部の外径側の径方向長さの変化に応じた荷重とストロークとの関係による荷重特性の変動を示すグラフである。(実施例4) 皿ばねの取り付けを示す多板式クラッチ機構の要部断面図である。(従来例) (A)、(B)は、皿ばねの荷重特性図である。(従来例)
 一定の撓み量を越える撓み量に対してもばね定数が増大する特性により皿ばねの板厚を増加させることなく要求される荷重の確保を容易とすることを可能とするため、ばね部は、回転部材の一方に当接させるためのアール断面形状部と、このアール断面形状部に連続しばね部の内径側又は外径側の少なくとも一方に形成されて回転部材の他方に当接させ両回転部材間で密着状に狭圧可能とするための直線断面形状部とを有することで実現した。
 [皿ばねの構造]
 図1(A)は、皿ばねの正面図、(B)は、(A)のIB-IB線矢視断面図、図2は、ばね部の断面図、図3は、皿ばねの荷重特性図である。
 図1、図2のように、皿ばね1は、周回皿形状のばね部3を有している。ばね部3の内径内には、孔5を備えている。この皿ばね1のばね部3が、軸方向に相対移動して接近離反する一対の回転部材間に介設されて用いられる。
 例えば図18と同様に、皿ばね1は、自動車用オートマチックトランスミッション(AT)や金属ベルト式自動変速機(CVT)などの多板式クラッチ機構に組み付けられ、一対の回転部材の一方はとしては、摩擦クラッチのアウタープレート7、同他方としては、油圧アクチュエーターのピストン9となる。
 この場合、皿ばね1の内径側がアウタープレート7に対するピストン9の押圧で密着状に狭圧可能となる。なお、アウタープレート7及びピストン9は、略して図示している。
 なお、皿ばね1の組み付けは、特に限定されるものではなく、摩擦クラッチの受圧プレートとクラッチドラム側のストッパとを一対の回転部材として両者間に組み付けることなどでもよい。
 この場合、皿ばね1の外径側が両回転部材で密着状に狭圧可能となる。また内径側の後述する直線断面形状部はなくすこともできる。
 ばね部3は、均一の板厚で形成され、アール断面形状部11と直線断面形状部13とを有する。
 ばね部3は、プレスによって形成され、アール断面形状部11は、回転部材の一方であるアウタープレート7などに当接させるためのものである。本実施例では自由状態でアール断面形状部11の中央部が接点となりアウタープレート7に当接する。
 アール断面形状部11の曲率半径R、中心角θ(図示せず)は、後述の式を満たす限り任意に設定することができる。アール断面形状部11の曲率中心は、アウタープレート7に対するアール断面形状部11の接点を通りアウタープレート7の回転軸芯に平行な直線上に位置する。
 なお、アール断面形状部11は双曲線、楕円曲線、その他の曲線で構成することもできる。
 直線断面形状部13は、アール断面形状部11に連続し前記ばね部3の内径側及び外径側に形成され、内径側直線断面形状部13a及び外径側直線断面形状部13bを有している。図2において内径側直線断面形状部13aは、明確化のために一対の太線で範囲を示す。なお、直線断面形状部13は、内径側又は外径側の一方に形成することもできる。この場合、直線断面形状部13の形成されない外径側又は内径側に至るようにアール断面形状部11が形成される。
 内径側直線断面形状部13aは、回転部材の他方であるピストン9に当接させ両回転部材であるアウタープレート7及びピストン9間で密着状に狭圧可能とする。この狭圧において、アール断面形状部11はアウタープレート7及びピストン9間で狭圧されない。したがって、内径側直線断面形状部13aをアウタープレート7及びピストン9間で確実に密着状に狭圧することができ、荷重特性を正確に得ることができる。
 内径側直線断面形状部13a及び外径側直線断面形状部13bのアール断面形状部11への連続は、段差や角部を有することなく連続的に滑らかに行われる。具体的には、アール断面形状部11の各端部のアール接線方向に内径側直線断面形状部13a及び外径側直線断面形状部13bが延設されている。
 なお、本実施例では外径側直線断面形状部13bをアウタープレート7に平行な角度となるように設定することも可能である。
 [荷重特性]
 そして、図18と同様にして皿ばね1が組み付けられた多板式クラッチ機構では、油圧室に作動油を供給すると、油圧により駆動されたピストン9が、皿ばね1の内径側直線断面形状部13aの内径側縁部を押圧し始め、押圧力の増大と共に内径側直線断面形状部13aがアウタープレート7への密着方向へ変位する。
 この変位によりアール断面形状部11のアウタープレート7に対する接点が漸次内径側に移動してばね定数を高める。
 したがって、ピストン9の押圧力が皿ばね1のアール断面形状部11を介して摩擦クラッチのアウタープレート7に伝達され、アウタープレート7及び図示しないインナープレートが受圧プレートに対して押圧される。
 この押圧で摩擦クラッチが押圧力に応じて締結され、クラッチドラムとクラッチハブとの間のトルク伝達が制御される。
 このとき、皿ばね1は、前記のようにアール断面形状部11のアウタープレート7に対する接点を漸次内径側に移動させながら弾性変形し、前記のようにばね定数を増大させながらクラッチ締結時に生じるショックを吸収する。
 かかる皿ばね1の荷重特性は、図3のように一定の撓み量を越えても撓み量に対してばね定数が増大して荷重も増大するものとなる。このため、皿ばね1は、板厚を増大させなくても要求される荷重を容易に確保することができる。
 すなわち、限られたスペースへの皿ばね1の組付けに無理を伴うことなく容易に行うことが可能となる。
 図4は、アール断面形状部の曲率中心位置を示すばね部の断面図、図5は、アール断面形状部の曲率中心位置の相違による皿ばねの荷重特性の相違を示す荷重特性図である。
 図4において、アール断面形状部11のアウタープレート7に対する接点の位置は、回転部材の回転中心に対し、アール中心の位置(R中心の位置):φAとして特定することができる。このR中心の位置:φAを変化させることで、初期の力点が変化するため、荷重の大小をコントロールすることが可能である。R中心の位置の限界は、内径側か外径側に直線断面形状部13が設けられなくなる位置となる。
 かかるR中心の位置:φAの変化による皿ばね1の荷重特性は、図5のようになる。φAが小さくなるとストロークに対する荷重の立ち上がりが大きくなり、撓み量に対するばね定数の増大をより大きくすることができる。
 図6は、アール断面形状部の曲率半径を示すばね部の断面図、図7は、アール断面形状部の曲率半径の相違による皿ばねの荷重特性の相違を示す荷重特性図である。
 図6において、アール断面形状部11の曲率半径Rの大きさを変化させることで初期の着力点が変化するので、荷重の大小をコントロールすることが可能である。Rの大きさの上限値は、内径側か外径側に直線断面形状部13が設けられなくなる大きさとなる。
 かかる曲率半径Rの変化による皿ばね1の荷重特性は、図7のようになる。Rが大きくなるとストロークに対する荷重の立ち上がりが大きくなり、撓み量に対するばね定数の増大をより大きくすることができる。
 図8は、ばね部の各所の位置関係を示す断面図である。
 上記のように、ばね部3は、アール断面形状部11を有し、内径側か外径側に直線断面形状部13が存在する形態となる。この制約は、次のように規定することができる。
 直線断面形状部13がばね部3の内径側に形成され、アール断面形状部11の曲率半径:R、アール断面形状部11の内径側中心角:θ1、アール断面形状部11の曲率中心の径方向位置:φA、ばね部3の内径:φD1、内径側直線断面形状部13aのアウタープレート7に対するキャンバー角度:αとしたとき、前記ばね部3は、
  R×tanθ1<(A-D1)/cosα
 が成立する。
 なお、内径側中心角θ1は、アール断面形状部11のアウタープレート7に対する接点とアール断面形状部11の曲率中心とを結ぶ半径Rによって、アール断面形状部11の中心角を分割した場合の内径側のものを意味する。
 直線断面形状部13がばね部3の外径側に形成され、アール断面形状部11の曲率半径:R、アール断面形状部11の外径側中心角:θ2、アール断面形状部11の曲率中心の径方向位置:φA、ばね部3の外径:φD2、外径側直線断面形状部13bのアウタープレート7に対するキャンバー角度:βとしたとき、前記ばね部3は、
  R×tanθ2<(D2-A)/cosβ
 が成立する。
 なお、外径側中心角θ2は、上記のようにアール断面形状部11の中心角を分割した場合の外径側のものを意味する。
 このようにして、皿ばね1の板厚を増加させることなく、アール断面形状部11により変形に応じてばね定数を高め、要求される荷重を容易に確保することが容易となる。
 また、皿ばね1の板厚を増加させる必要がないから、多板クラッチ機構等の限られたスペースへの組付けに無理がない。
 しかも、直線断面形状部13は、両回転部材間であるアウタープレート7及びピストン9間で密着状に狭圧可能であるため、ばね部3の荷重特性が安定するとともに、摩擦クラッチの締結制御を的確に行わせることができる。
 図9、図10は、本発明の実施例2に係り、図9は、アール断面形状部を複数の曲率で形成したばね部の断面図、図10は、皿ばねの荷重特性図である。
 図9において、本実施例の皿ばね1Aのばね部3Aは、アール断面形状部を複数の曲率半径R1、R2で形成し、第1、第2アール断面形状部11Aa、11Abを相互に滑らかに連続させた。第1アール断面形状部11Aaが外径側直線断面形状部13Abに滑らかに連続し、第2アール断面形状部11Abが内径側直線断面形状部13Aaに滑らかに連続することは、実施例1同様である。
 かかる曲率半径Rの変化による皿ばね1Aの荷重特性は、図10のようになる。R1の作動範囲にR2の作動範囲を連続させ、撓み量に対するばね定数の増大をより大きくすることができる。
 その他、構造の変形及び作用効果は実施例1同様である。
 図11~図14は、本発明の実施例3に係り、図11、図12は、内外径側に爪を備えたばね部の断面図、図13(A)は、内径側にレバーを備えた皿ばねの正面図、(B)は、(A)のXIIIB-XIIIB線矢視断面図、図14(A)は、外径側に爪を備えた皿ばねの正面図、(B)は、(A)のXIVB-XIVB線矢視断面図である。
 この実施例3は、ばね部の内径側又は外径側の少なくとも一方に係合用の凸部として爪やレバーを備えた。
 図11の皿ばね1Bのばね部3Bは、爪として内径爪3Ba及び外径爪3Bbを備えている。アール断面形状部11B、内径側直線断面形状部13Ba、外径側直線断面形状部13Bbを備えていることは実施例1と同様である。
 図12の皿ばね1Cのばね部3Cは、爪として内径爪3Ca及び外径爪3Cbを備え、ている。内径爪3Ca及び外径爪3Cbは、ばね部3Cに対して相互に逆方向へ折り曲げられている。アール断面形状部11C、内径側直線断面形状部13Ca、外径側直線断面形状部13Cbを備えていることは実施例1と同様である。
 図13の皿ばね1Dのばね部3Dは、レバーとして内径レバー3Daを備えている。アール断面形状部11D、内径側直線断面形状部13Da、外径側直線断面形状部13Dbを備えていることは実施例1と同様である。
 図14の皿ばね1Eのばね部3Eは、爪として外径爪3Ebを備えている。アール断面形状部11E、内径側直線断面形状部13Ea、外径側直線断面形状部13Ebを備えていることは実施例1と同様である。
 図15~図17は、本発明の実施例4に係り、図15は、ばね部の断面図、図16は、図15のばね部の外径側の径方向長さに応じた荷重の変動を示すグラフ、図17は、図15のばね部の外径側の径方向長さに応じた荷重とストロークとの関係による荷重特性の変動を示すグラフである。
 実施例4の皿ばね1Fは、実施例1の構造を前提に、ばね部3Fの外径側の部分である外径側直線断面形状部13Fbの径方向長さL(=D2-A)を、その径方向長さLに応じた荷重変動特性に基づいて設定したものである。
 荷重変動特性は、図16のように、外径側直線断面形状部13Fbの径方向長さLの増加に応じて非線形(曲線状)に漸次荷重が増加するようになっている。なお、図16では、異なる径方向長さLを有する皿ばね1Fを特定のストロークで撓ませた状態の荷重を対比したものとなっている。
 かかる荷重変動特性の荷重の増加は、外径側直線断面形状部13Fbの径方向長さLが増加すると、ばね部3Fの剛性が高まることに基づいている。また、荷重の増加は、外径側直線断面形状部13Fbの体積増加に依存するため、外径側直線断面形状部13Fbの径方向長さLの増加に対して非線形となる。
 この図16の荷重変動特性に基づいて外径側直線断面形状部13Fbの径方向長さLを設定すると、長さ設定に応じて図17の二点鎖線で示すように荷重とストロークとの関係による荷重特性が変動する。
 すなわち、荷重特性の変動としては、図16のように特定のストロークでの荷重が増減すると、これに応じて図17の荷重特性において対応するストロークでの荷重(例えば点P)が増減する。
 この荷重(例えば点P)の変動に応じ、荷重特性は、全体としてストロークに対する荷重の立ち上がりが変動することになる。具体的には、外径側直線断面形状部13Fbの径方向長さLが大きくなれば、ストロークに対する荷重の立ち上がりが大きくなり、ストローク(撓み量)に対するばね定数の増大をより大きくすることができる。逆に、径方向長さLが小さくなれば、ストロークに対する荷重の立ち上がりが小さくなる。
 従って、本実施例の皿ばね1Fでは、外径側直線断面形状部13Fbの径方向長さLの設定により、荷重特性をコントロールすることが可能となる。しかも、本実施例の皿ばね1Fでは、径方向長さLの増減に応じて非線形に荷重を増減させることができるため、径方向長さLを大きくしてばね定数の増大をより大きくする場合でも、径方向長さLが不用意に大きくなることを抑制することができ、限られたスペースへの組付けに無理がない。
 その他、本実施例は、構造の変形及び作用効果は実施例1と同様である。
 1、1A、1B、1C、1D、1E、1F 皿ばね
 3、3A、3B、3C、3D、3E、3F ばね部
 3Ba、3Ca、3Ca 内径爪(凸部)
 3Bb、3Cb、3Cb、3Eb 外径爪(凸部)
 3Da 内径レバー(凸部)
 11、11B、11C、11D、11E アール断面形状部
 11Aa 第1アール断面形状部(アール断面形状部)
 11Ab 第2アール断面形状部(アール断面形状部)
 13 直線断面形状部
 13a、13Aa、13Ba、13Ca、13Da、13Ea、13Fa 内径側直線断面形状部
 13b、13Ab、13Bb、13Cb、13Db、13Eb、13Fb 外径側直線断面形状部
 R、R1、R2 曲率半径
 θ アール断面形状部の中心角
 φA アール断面形状部の曲率中心の径方向位置
 φD1 ばね部の内径
 α、β キャンバー角度

Claims (6)

  1.  周回皿形状のばね部を有し、軸方向に相対移動して接近離反する一対の回転部材間に前記ばね部が介設される皿ばねであって、
     前記ばね部は、前記回転部材の一方に当接させるためのアール断面形状部と、このアール断面形状部に連続し前記ばね部の内径側又は外径側の少なくとも一方に形成されて前記回転部材の他方に当接させ前記両回転部材間で密着状に狭圧可能とするための直線断面形状部とを有する、
     ことを特徴とする皿ばね。
  2.  請求項1に記載の皿ばねであって、
     前記ばね部は、前記アール断面形状部を複数の曲率半径で形成した、
     ことを特徴とする皿ばね。
  3.  請求項1記載の皿ばねであって、
     前記直線断面形状部が前記ばね部の内径側に形成され、前記アール断面形状部の曲率半径:R、前記アール断面形状部の内径側中心角:θ1、前記アール断面形状部の曲率中心の径方向位置:φA、前記ばね部の内径:φD1、前記内径側の直線断面形状部の前記回転部材の一方に対するキャンバー角度:αとしたとき、
     前記ばね部は、
      R×tanθ1<(A-D1)/cosα
     が成立する
     ことを特徴とする皿ばね。
  4.  請求項1記載の皿ばねであって、
     前記直線断面形状部が前記ばね部の外径側に形成され、前記アール断面形状部の曲率半径:R、前記アール断面形状部の外径側中心角:θ2、前記アール断面形状部の曲率中心の径方向位置:φA、前記ばね部の外径:φD2、前記外径側の直線断面形状部の前記回転部材の一方に対するキャンバー角度:βとしたとき、
     前記ばね部は、
      R×tanθ2<(D2-A)/cosβ
     が成立する
     ことを特徴とする皿ばね。
  5.  請求項1~4の何れか1項記載の皿ばねであって、
     前記ばね部の内径側又は外径側の少なくとも一方に係合用の凸部を備えた、
     ことを特徴とする皿ばね。
  6.  請求項1~5の何れか1項記載の皿ばねであって、
     前記ばね部の外径側の部分の径方向長さは、該部分の径方向長さの増加に応じて非線形に漸次荷重が増加する前記ばね部の荷重変動特性に基づいて設定された、
     ことを特徴とする皿ばね。

     
PCT/JP2015/003119 2014-06-20 2015-06-22 皿ばね WO2015194196A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580032697.3A CN106460984B (zh) 2014-06-20 2015-06-22 碟形弹簧
JP2016529073A JP6538047B2 (ja) 2014-06-20 2015-06-22 皿ばね
US15/320,257 US10060493B2 (en) 2014-06-20 2015-06-22 Disk spring

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014127762 2014-06-20
JP2014-127762 2014-06-20

Publications (1)

Publication Number Publication Date
WO2015194196A1 true WO2015194196A1 (ja) 2015-12-23

Family

ID=54935197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003119 WO2015194196A1 (ja) 2014-06-20 2015-06-22 皿ばね

Country Status (4)

Country Link
US (1) US10060493B2 (ja)
JP (1) JP6538047B2 (ja)
CN (1) CN106460984B (ja)
WO (1) WO2015194196A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106015415A (zh) * 2016-08-07 2016-10-12 上海核工碟形弹簧制造有限公司 接触点可变的碟形弹簧
JP2016223585A (ja) * 2015-06-02 2016-12-28 平和発條株式会社 皿ばね

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6731265B2 (ja) * 2016-03-18 2020-07-29 株式会社エクセディ トルクコンバータのロックアップ装置
CH714910A1 (de) * 2018-04-17 2019-10-31 Liebherr Machines Bulle Sa Axialkolbenmaschine.
EP3862592A4 (en) * 2018-10-02 2022-06-29 NHK Spring Co., Ltd. Disc spring, disc spring device, and method for manufacturing disc spring
IT201800010034A1 (it) * 2018-11-05 2020-05-05 Adler Spa Frizione con molla anti-judder, in particolare per un motociclo

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002122170A (ja) * 2000-10-12 2002-04-26 Ohbayashi Corp 皿ばねの配設方法および皿ばね構造
JP2008075877A (ja) * 2007-10-12 2008-04-03 Nhk Spring Co Ltd 皿ばね
JP2009144545A (ja) * 2007-12-12 2009-07-02 Ihi Corp ターボチャージャ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5874926A (ja) * 1981-10-29 1983-05-06 Horikiri Bane Seisakusho:Kk テ−パ板ばね
DE3415925A1 (de) * 1984-04-28 1985-10-31 Fichtel & Sachs Ag, 8720 Schweinfurt Teller- bzw. membranfeder
JP3889167B2 (ja) * 1998-11-09 2007-03-07 Ntn株式会社 自動調心型クラッチレリーズ軸受装置
US20060065495A1 (en) * 2004-09-28 2006-03-30 Wittkopp Scott H Dual disc spring
JP4917754B2 (ja) * 2005-02-10 2012-04-18 日本発條株式会社 皿ばね
ATE438048T1 (de) * 2006-06-23 2009-08-15 Muhr & Bender Kg Randschichtverbessern von tellerfedern oder wellfedern
DE102007018969A1 (de) * 2007-04-21 2008-10-30 Zf Friedrichshafen Ag Anordnung einer Tellerfeder bei einem Kolben eines Schaltelementes
CN201513498U (zh) * 2009-09-18 2010-06-23 湖北宝马弹簧有限公司 汽车用齿形碟簧
US9234551B2 (en) * 2012-09-12 2016-01-12 GM Global Technology Operations LLC Transmission and a clutch assembly for a vehicle
DE102012221935A1 (de) * 2012-11-30 2014-06-05 Schaeffler Technologies Gmbh & Co. Kg Tellerfeder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002122170A (ja) * 2000-10-12 2002-04-26 Ohbayashi Corp 皿ばねの配設方法および皿ばね構造
JP2008075877A (ja) * 2007-10-12 2008-04-03 Nhk Spring Co Ltd 皿ばね
JP2009144545A (ja) * 2007-12-12 2009-07-02 Ihi Corp ターボチャージャ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016223585A (ja) * 2015-06-02 2016-12-28 平和発條株式会社 皿ばね
CN106015415A (zh) * 2016-08-07 2016-10-12 上海核工碟形弹簧制造有限公司 接触点可变的碟形弹簧

Also Published As

Publication number Publication date
US10060493B2 (en) 2018-08-28
JP6538047B2 (ja) 2019-07-03
CN106460984A (zh) 2017-02-22
JPWO2015194196A1 (ja) 2017-04-20
US20170159739A1 (en) 2017-06-08
CN106460984B (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
WO2015194196A1 (ja) 皿ばね
US9581209B2 (en) Spring pack, clutch and method of producing a clutch
JP5691367B2 (ja) トルク変動吸収装置
JP5101028B2 (ja) 皿ばねの製造方法およびクラッチ装置
JP2012519806A (ja) ブレーキディスク
JP7003162B2 (ja) パワートレーン用のトルクリミッタ
JP2008025629A (ja) 動力伝達装置
US10781882B2 (en) Torque fluctuation absorbing apparatus
US7611005B2 (en) Clutch cover assembly
JP4305403B2 (ja) 自動変速機用ピストン
US20070261932A1 (en) Friction clutch with multiple belleville springs
US6015035A (en) Clutch disk
JPS60241537A (ja) リング円板ばね
JP2017187142A (ja) ダンパ装置のスプリング保持部材
WO2013150615A1 (ja) トルク変動吸収装置および変速機
EP3428478B1 (en) Damper apparatus
US5906257A (en) Clutch cover assembly
JP5069710B2 (ja) ピストン機構
US20080237954A1 (en) Damper apparatus
US10337565B2 (en) Zero backlash pre-damper to main damper attachment system
JP6708004B2 (ja) ダンパ装置
WO2017141699A1 (ja) クラッチカバー組立体
JPS5947527A (ja) 摩擦クラツチ
JP4950776B2 (ja) 捩り振動低減装置
US9188167B2 (en) Clutch housing with lever spring retention slots and method of installing a lever spring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15809631

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529073

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15320257

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15809631

Country of ref document: EP

Kind code of ref document: A1