WO2015190599A1 - 装着式動作補助装置 - Google Patents

装着式動作補助装置 Download PDF

Info

Publication number
WO2015190599A1
WO2015190599A1 PCT/JP2015/067035 JP2015067035W WO2015190599A1 WO 2015190599 A1 WO2015190599 A1 WO 2015190599A1 JP 2015067035 W JP2015067035 W JP 2015067035W WO 2015190599 A1 WO2015190599 A1 WO 2015190599A1
Authority
WO
WIPO (PCT)
Prior art keywords
joint
frame
shoulder
wearer
sagittal
Prior art date
Application number
PCT/JP2015/067035
Other languages
English (en)
French (fr)
Inventor
嘉之 山海
Original Assignee
Cyberdyne株式会社
国立大学法人筑波大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cyberdyne株式会社, 国立大学法人筑波大学 filed Critical Cyberdyne株式会社
Priority to US15/318,243 priority Critical patent/US10265857B2/en
Priority to EP15806572.2A priority patent/EP3156193B1/en
Publication of WO2015190599A1 publication Critical patent/WO2015190599A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • A61H1/0274Stretching or bending or torsioning apparatus for exercising for the upper limbs
    • A61H1/0281Shoulder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0006Exoskeletons, i.e. resembling a human figure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0009Constructional details, e.g. manipulator supports, bases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/165Wearable interfaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S901/00Robots
    • Y10S901/14Arm movement, spatial
    • Y10S901/15Jointed arm
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S901/00Robots
    • Y10S901/46Sensing device

Definitions

  • the present invention relates to a wearable motion assist device that supports anti-gravity work by an upper limb.
  • a wearable upper limb support device that is worn on the body along the skeleton of a worker has been proposed as a device that supports the operation of anti-gravity work (see, for example, Patent Document 1).
  • This invention makes it a subject to provide the wearing type movement assistance apparatus which can fully ensure upper body freedom degree and can respond to the physique difference between wearers.
  • a wearable movement assist device includes a frame that is worn on an upper limb of a wearer, a drive unit that is provided at each joint of the frame, and a biosignal detection that detects a biopotential signal of the wearer. And a control unit that controls the drive unit based on the bioelectric potential signal and the joint angle, and the frame is a vertical frame that extends in the vertical direction.
  • a shoulder frame laid across from the upper end of the vertical frame in the shoulder width direction, a first arm frame having one end connected to an end of the shoulder frame via a shoulder joint, and one end being the first arm frame
  • a second arm frame connected to the other end of the shoulder joint portion via an intermediate joint portion and the other end connected to the elbow joint portion, and the shoulder joint portion, the intermediate joint portion, and the elbow joint portion, That a drive is provided. It is an butterfly.
  • the shoulder joint has a horizontal joint and a sagittal joint, and the drive unit is provided in the sagittal joint, and the horizontal joint is a passive joint. It is preferable that
  • the horizontal joint of the shoulder joint portion is provided behind the sagittal joint.
  • spring tension is applied to the horizontal joint via a wire so that the rotation axis of the sagittal joint is perpendicular to the sagittal plane.
  • the intermediate joint has a horizontal joint and a sagittal joint, and the drive unit is provided in the sagittal joint, and the horizontal joint is a passive joint. It is preferable that
  • the elbow joint has a sagittal joint
  • the drive unit is provided at the sagittal joint.
  • a first cuff applied to the wearer's upper arm and a second cuff applied to the forearm are connected to the elbow joint.
  • the first arm frame includes an upper long side link and a lower long side link, one end of which is connected to the shoulder joint, and both ends of the upper long side link. And a short side link connected to the other end of the lower long side link to form a parallel link mechanism.
  • the upper long side link has a curved shape downward and the lower long side link has a straight shape.
  • the shoulder width of the shoulder frame is adjustable.
  • a waist frame to be worn on the waist of the wearer a lower limb frame having one end connected to the waist frame, and a hip joint at the other end of the lower limb frame are provided. It is preferable to further include a lower limb drive unit controlled by the control unit, and a third cuff connected to the lower limb drive unit and applied to the wearer's thigh.
  • the control unit is an optional unit that performs signal processing of the biopotential signal and causes the drive unit to generate power according to the biopotential signal after the signal processing.
  • voluntary control means for generating command signals, the length of each frame, the relative angle between the frames connected to each joint, the weight of each frame, the weight of each joint, the viscosity coefficient of each joint, and the gravitational acceleration
  • An autonomous control means for generating an autonomous command signal for causing the drive unit to generate power for gravity compensation and viscosity compensation
  • a combining means for generating a combined command signal by combining the voluntary command signal and the autonomous command signal
  • the drive unit is driven by a drive current generated based on the combined command signal.
  • the present invention by providing an intermediate joint between the shoulder joint and the elbow joint, and having a degree of freedom of redundancy, even if the rotation axes of the wearer and the joint of the device do not coincide, Since the displacement of the positional relationship is absorbed, it is possible to deal with a physique difference between wearers. In addition, a sufficient degree of freedom of the upper body can be ensured. Also, by combining with a lower back assist device that has a lower limb drive unit, the reaction force of the support force transmitted from the upper limb support device to the lower back is countered, and the burden on the wearer's lower back is reduced, so anti-gravity work by the upper limbs Support and improve work efficiency.
  • 1a to 1c are diagrams showing the movable range of the hand and shoulder. It is a figure which shows the mounting
  • 7a to 7e are schematic views of the link structure when the wearer of the link structure of the upper limb support apparatus operates. It is a figure which shows the resin model of the link structure of an upper limb assistance apparatus. It is a figure which shows the bone feature point which stuck the marker to the test subject at the time of the measurement of a range of motion.
  • FIG. 12a is a graph showing the duration of anti-gravity work when the wearable movement assist device is attached and when it is not attached
  • FIG. 12b is a graph showing the number of operations.
  • the wearable movement assist device In the work with the upper limb raised, the tool is held in front of the body and lifted upward. Therefore, in the wearable movement assist device according to the present embodiment, the movable range of the hand is set in front and above the wearer. Further, regarding the movable range of the trunk, the degree of freedom of the lumbar vertebra constituting the spinal column is limited. This is because the lumbar assist device performs operation support while fixing the lumbar vertebra and reducing the load on the endoskeletal system.
  • Table 1 below shows the assumed range of motion of each joint of the human body.
  • Table 2 below shows 95% tile values and 5% tile values of dimensions of human body parts of adult men.
  • FIGS. 1a to 1c show the movable range of each hand and shoulder obtained from the movable range of each joint shown in Table 1 and the dimension values shown in Table 2.
  • FIG. 1a shows the movable range in the sagittal plane
  • FIG. 1b shows the movable range in the horizontal plane
  • FIG. 1c shows the movable range in the frontal plane.
  • the hatched area is the movable range of the hand, and shows the area that the wrist can reach when the shoulder joint and the elbow joint are operated on a plane.
  • the curve around the shoulder indicates the movable range of the shoulder joint position when the trunk moves.
  • the wearable movement assist device is required to satisfy this movable range for each plane.
  • FIG. 2 is a perspective view of the wearable movement assist device according to the present embodiment.
  • a wearable motion assist device 10 (hereinafter referred to as “motion assist device”) shown in FIG. 2 is a device that assists (assists) the motion of the wearer, and is a biological signal generated when muscle strength is generated by a signal from the brain. (Surface myoelectric potential) and / or the operating angle of the joint of the wearer is detected, and the driving force from the driving unit is applied based on the detection signal.
  • the wearer wearing the movement assisting device 10 performs his / her own object lifting exercise with his / her intention
  • the wearer's shoulder joint, elbow joint, shoulder joint and elbow A driving torque according to the operation angle of the intermediate joint between the joint and the hip joint is applied as an assisting force from the motion assisting device 10.
  • an object can be lifted with a force that is half of the muscular force normally required for the lifting operation. It becomes possible. Therefore, the wearer can operate the upper body by the resultant force of his / her muscular strength and the drive torque from the drive unit (electric drive motor in the present embodiment).
  • the motion assisting device 10 includes an upper limb assisting device 100 that assists the upper body of the wearer and a lumbar assisting device 200 that assists the waist of the wearer.
  • the lumbar assist device 200 can be detached from the upper limb support device 100.
  • the lumbar assist device 200 may be removed and the upper limb support device 100 may be used alone.
  • the upper limb support device 100 includes a waist frame 102 that is worn on the wearer's waist, a vertical frame 104 that extends above the waist frame 102, and a lateral width in the shoulder width direction from the upper end of the vertical frame 104. It has a suspended shoulder frame 106, a first arm frame 110 connected to both ends of the shoulder frame 106 via joints, and a second arm frame 120 connected to the first arm frame 110 via joints. A link structure is provided. The first arm frame 110 and the second arm frame 120 are provided corresponding to the right arm and the left arm of the wearer, respectively.
  • the waist frame 102 is fastened to the wearer's waist by a fastening belt (not shown).
  • the shoulder frame 106 is connected to the upper end of the vertical frame 104 so as to be rotatable in a substantially horizontal direction via a horizontal joint having a joint axis perpendicular to the horizontal plane.
  • One end of the first arm frame 110 is connected to the end of the shoulder frame 106 so as to be rotatable in a substantially horizontal direction and a substantially front-rear direction via a sagittal joint having a joint axis perpendicular to the sagittal plane and a horizontal joint.
  • the connecting portion between the shoulder frame 106 and the first arm frame 110 corresponds to the shoulder joint of the wearer, and a horizontal joint that allows the first arm frame 110 to rotate in a substantially horizontal direction with respect to the shoulder frame 106.
  • a rotation joint (sagittal joint) 112 that allows the first arm frame 110 to rotate substantially in the front-rear direction with respect to the shoulder frame 106 is provided.
  • One end of the second arm frame 120 is connected to the other end of the first arm frame 110 via a horizontal joint and a sagittal joint so as to be rotatable in a substantially horizontal direction and a substantially front-rear direction.
  • the connecting portion between the first arm frame 110 and the second arm frame 120 corresponds to an intermediate joint provided between the shoulder joint and the elbow joint, and the second arm frame 120 with respect to the first arm frame 110.
  • a rotary joint (sagittal joint) 122 that allows the second arm frame 120 to rotate substantially in the front-rear direction with respect to the first arm frame 110. Is provided.
  • a cuff 126 applied to the upper arm of the wearer and a cuff 128 applied to the forearm are provided, and the upper arm is fastened to the cuff 126 by a fastening belt (not shown). Can be fastened to cuff 128.
  • a cuff 128 is connected to the other end of the second arm frame 120 via a sagittal joint so as to be rotatable in the front-rear direction.
  • the other end of the second arm frame 120 corresponds to the elbow joint of the wearer, and a rotary joint (sagittal plane joint) that allows the cuff 128 to rotate substantially in the front-rear direction with respect to the second arm frame 120.
  • Part (sagittal plane joint) is provided.
  • Rotating joints 112, 122, and 124 that constitute the sagittal joint of each joint portion are provided with drive motors 141 to 146 described later.
  • the position of the shoulder joint on the sagittal plane rises.
  • the shoulder movement is performed by the humerus, the collarbone, the scapula and the muscles around the shoulder that move them.
  • the sternoclavicular joint connecting the clavicle and sternum moves about 30 [deg]
  • the acromioclavicular joint connecting the clavicle and scapula moves upward about 30 [deg].
  • the scapula humeral joint connecting the scapula and the humerus moves upward by about 120 [deg]
  • the upper limb is raised by about 180 [deg] as the sum of these movements.
  • the movement of the clavicle and scapula at this time raises the rotation axis of the shoulder joint viewed from the sagittal plane.
  • the movement in the sagittal plane of the trunk is forward bending and backward bending. Since the position of the shoulder joint also fluctuates by this operation, the fluctuation of the shoulder joint position further increases.
  • the initial position of the shoulder joint and the movable range of the hand also change due to differences in limb length among wearers.
  • the upper limb support apparatus 100 since the upper limb support apparatus 100 has an intermediate joint between the shoulder joint and the elbow joint, two or more degrees of freedom are secured in the sagittal plane, and positioning on the sagittal plane is possible. It becomes possible. Moreover, if it is within the assumed movable range, the positional relationship between the joints is absorbed even if the rotation axes of the wearer and the joint of the apparatus do not match. Regarding the attachment of the upper limb and the upper limb support device 100, since the support can be received if the device is fixed around the elbow joint of the wearer, a fastening belt or the like is not provided around the shoulder joint, so that it is not restrained. Yes.
  • the link structure of the upper limb support device 100 has the horizontal joint portions 111 and 121 at the shoulder joint portion and the intermediate joint portion, it can cope with the horizontal movement (horizontal bending and horizontal extension) of the shoulder. .
  • two degrees of freedom are set on the horizontal plane.
  • three degrees of freedom on one plane and one degree of freedom on another plane are required.
  • the sagittal plane ensures two or more degrees of freedom, so that the hand can be positioned. If there is only one freedom on the horizontal plane, the link structure may interfere with the wearer's torso, but in this embodiment, two degrees of freedom are set on the horizontal plane, so that interference to the trunk of the link structure can be prevented. .
  • the shoulder joint position rises when raising the upper limb. Therefore, in the link structure of the upper limb support device 100, the horizontal joint portion 111 of the shoulder joint portion is provided behind the shoulder of the wearer (behind the rotary joint 112 serving as the sagittal joint) and is directly above the wearer's shoulder joint. There is no thing.
  • the link structure of the upper limb support apparatus 100 has an intermediate joint between the shoulder joint and the elbow joint, the distance in the horizontal plane between the two horizontal joint portions 111 and 121 provided at the shoulder joint portion and the intermediate joint portion, respectively, is It becomes variable. For this reason, in the horizontal movement, even if the rotational axis does not match between the wearer and the upper limb support apparatus 100, it is possible to prevent a decrease in mobility.
  • the link structure of the upper limb support device 100 can cope with the rotational movement of the trunk. . Since the link structure of the upper limb support device 100 has a redundant degree of freedom due to the intermediate joint, even if there is a discrepancy in the rotation axis between the wearer and the upper limb support device 100 during the rotation of the trunk, the mobility is reduced. Can be prevented.
  • the difference in body thickness between the wearers is dealt with by appropriately inserting a cushioning material or adjusting the fastening belt between the wearer and the upper limb support device 100.
  • the shoulder width difference between the wearers is handled by a shoulder width adjusting mechanism (see FIG. 6) described later.
  • the shoulder joint movement on the frontal plane is shoulder adduction and abduction
  • the trunk movement is lateral bending.
  • the movement on the front face and the dimensional difference between the wearers can be understood as a combination of sagittal and horizontal elements.
  • adduction and abduction of the shoulder are a combination of bending and extension in the sagittal plane and horizontal bending and extension in the horizontal plane.
  • Trunk flexion of the trunk is a combination of the difference in the initial position of the shoulder joint in the sagittal plane and the adduction and abduction in the frontal plane. Therefore, the link structure of the upper limb support device 100 can cope with the movement of the front face and the dimensional difference between the wearers.
  • FIG. 3 shows the configuration of the first arm frame 110.
  • the shoulder joint portion is provided with a joint axis AX1 (rotation axis of the horizontal joint portion 111) perpendicular to the horizontal plane and a rotation joint 112 serving as a sagittal joint.
  • the first arm frame 110 includes an upper long side link 114, a lower long side link 116, and a short side link 118 provided on the intermediate joint side.
  • One end of the upper long side link 114 and the lower long side link 116 is rotatably connected to the rotary joint 112.
  • the other ends of the upper long side link 114 and the lower long side link 116 are rotatably connected to both ends of the short side link 118.
  • a joint axis AX2 rotation axis of the horizontal joint portion 121) perpendicular to the horizontal plane is provided.
  • a parallel link mechanism is realized by the rotary joint 112, the upper long side link 114, the lower long side link 116, and the short side link 118.
  • the torque required for gravity compensation of the parallel link mechanism is constant regardless of the change in the posture of the link ahead of the mechanism. This characteristic is suitable for a system that supports work for handling heavy objects.
  • Fig. 4 shows the principle of the parallel link mechanism.
  • the gravity compensation torque that supports the link also changes.
  • a torque in a direction opposite to the gravity compensation torque is generated in the short side link of the parallel link mechanism.
  • the torque is supported as a tensile and compressive force by the long side link of the parallel link portion. Therefore, it does not affect the gravity compensation torque of the parallel link mechanism.
  • the lower long side link 116 has a straight shape.
  • the upper long side link 114 has a shape curved downward so as to prevent interference with the horizontal joint.
  • the movable range of the parallel link mechanism is 180 [deg].
  • the links when the links are arranged in a plane, the links interfere with each other, and the movable range is narrowed.
  • the upper long side link 114 and the lower long side link 116 are three-dimensionally arranged, a movable range of 180 [deg] can be used to the maximum.
  • the rigidity of the link increases.
  • the upper limb support apparatus 100 is provided with an origin return mechanism for the shoulder horizontal joint.
  • the origin return mechanism includes two tension springs 130 and 132 provided on the shoulder frame 106, a pulley 134 provided on the horizontal joint 111, and a wire having both ends coupled to the tension springs 130 and 132, respectively.
  • the shoulder frame 106 includes U-shaped frames 106A and 106B extending from the left and right shoulder joint portions, and a holder frame 106C provided between the U-shaped frames 106A and 106B.
  • the U-shaped frames 106A and 106B are slidably connected to the holder frame 106C. Part of the U-shaped frames 106A and 106B are accommodated in the holder frame 106C, and the length of the shoulder frame 106 is increased by sliding the U-shaped frames 106A and 106B and pulling them out or pushing them back from the holder frame 106C.
  • the height (shoulder width) can be adjusted.
  • the metal parts bonded to the U-shaped frames 106A and 106B (contained in the holder frame 106C and cannot be seen in FIG. 6) have screw holes and should be screwed to the metal parts 107 bonded to the holder frame 106C. Is possible.
  • This screwing portion is for preventing the U-shaped frames 106A and 106B from falling off the holder frame 106C, and the load is held between the frames.
  • the sliding surface between the U-shaped frames 106A and 106B and the holder frame 106C is provided with a resin sheet 108 having excellent slidability, and the shoulder width can be easily adjusted by loosening the screw of the screw fixing portion. it can.
  • the shoulder width adjustment stroke is, for example, 50 [mm] on one side and can correspond to an adult male with a 95% tile value to a 5% tile value.
  • 7a to 7e are schematic diagrams of the link structure when the wearer wearing the link structure of the upper limb support apparatus 100 operates.
  • 7a to 7c show movements in the sagittal plane
  • FIG. 7d shows movements in the horizontal plane
  • FIG. 7e shows movements in the frontal plane.
  • Table 3 below shows the measurement results of the range of motion of the joint when the resin model having the link structure of the upper limb support apparatus 100 as shown in FIG. 8 is attached.
  • the subjects are healthy subjects A 1810 [mm] height A, 1700 [mm] height B, and 1550 [mm] height C corresponding to the 95% tile value, 50% tile value, and 5% tile value, respectively.
  • the test subject was put on a resin model with a link structure, and a marker was attached to each bone feature point. Black circles shown in FIG. 9 are bone feature points with markers attached.
  • Each joint was moved one by one, and photographs were taken from the three directions of the subject's front, side, and top, and the displacement of each joint angle was measured from the relative position of the marker on the image. After that, when the range of motion of each joint was less than the assumed range of motion, the range of motion when the link structure was not mounted was also measured.
  • the assumed range of motion is the same as that shown in Table 1.
  • an error of about 10 [deg] occurs at the maximum.
  • the link structure having a movable range that is less than 10 [deg] in the expected movable range is actually regarded as ensuring the movable range of the upper body.
  • a difference of about 10 [deg] can be complemented by operating other joints.
  • the link structure of the upper limb support apparatus 100 does not interfere with the degree of freedom of the upper body necessary for work even when worn.
  • the resin link structure is used.
  • the degree of freedom of the upper body is ensured at the time of wearing if the link length and the positional relationship of each joint do not change.
  • Each frame and cuff of the link structure of the upper limb support device 100 is preferably manufactured using CFRP (Carbon-Fiber-Reinforced Plastic, carbon fiber reinforced plastic) having a high specific strength and a high degree of freedom in processing when molding a part.
  • CFRP Carbon-Fiber-Reinforced Plastic, carbon fiber reinforced plastic
  • a CFRP is molded using an autoclave molding method to produce a frame or the like.
  • the cuffs 126 and 128 are preferably formed integrally with a link extending from the rotary joint 124 to the cuff.
  • the upper limb support device 100 includes control motors 141 to 146 provided at the sagittal joints (rotating joints 112, 122, 124) of the link structure, and a control attached to the back side of the vertical frame 104.
  • a unit 147 and a battery 148 attached to the waist frame 102 are provided.
  • the driving motors 141 and 142 are provided at positions corresponding to the shoulder joints (rotating joint 112), and the first arm frame 110 is rotated by the driving torque of the driving motors 141 and 142.
  • the drive motors 143 and 144 are provided at positions corresponding to the intermediate joints (rotary joints 122), and the second arm frame 120 is rotated by the drive torque of the drive motors 143 and 144.
  • the drive motors 145 and 146 are provided at positions corresponding to the elbow joints (rotary joints 124), and the drive torque of the drive motors 145 and 146 is transmitted as assist force to the wearer's forearm by the cuff 128 and the fastening belt.
  • the horizontal joints 111 and 121 of the upper limb support apparatus 100 are passive joints.
  • the lower back assisting device 200 includes drive motors 201 and 202 provided at positions corresponding to the hip joints, a cuff 204 applied to the thighs, and a lower limb frame that connects the waist frame 102 and the hip joints (drive motors 201 and 202). 206, and a frame 208 that connects the cuff 204 and the hip joints (drive motors 201 and 202).
  • the thigh of the wearer can be fastened to the cuff 204 by a fastening belt (not shown).
  • the driving torque of the driving motors 201 and 202 can cancel the reaction force of the assist force transmitted to the waist when the wearer receives the assist force from the upper limb support device 100.
  • the lower limb support device 200 can be connected to the upper limb support device 100.
  • the connecting portion between the upper limb support device 100 and the lower back assistance device 200 has, for example, a fitting structure.
  • the surface of the fitting part holds the load and moment.
  • the upper limb support apparatus 100 and the lower back assistance apparatus 200 can be connected by screwing after fitting. Since almost no load is applied to the screw, the upper limb support device 100 and the lower back assistance device 200 can be easily separated by simply removing the screw.
  • the frame 206 and the waist frame 102 are detachably connected.
  • the frame 206 and the waist frame 102 may be integrally formed, and the waist frame 102 and the vertical frame 104 may be detachably connected.
  • each drive motor has a built-in reduction mechanism that reduces the motor rotation at a predetermined reduction ratio, and can provide a sufficient driving force to the wearer although it is small.
  • the drive motors 141 to 146, 201, and 202 are provided with angle sensors that detect joint angles.
  • angle sensors that detect joint angles are also provided in the horizontal joints 111 and 121 of the shoulder joint and the intermediate joint.
  • the angle sensor for example, a rotary encoder that counts the number of pulses proportional to the joint angle can be used.
  • the detection result of the angle sensor is output to the control unit 147.
  • the upper limb support device 100 and the lower back assistance device 200 have a biopotential sensor (not shown) that detects biopotential signals such as myoelectric potential signals and nerve transmission signals through the skin.
  • the biopotential sensor includes an electrode for detecting a weak potential.
  • the bioelectric potential sensor detects surface myoelectric potentials of, for example, deltoid muscles, biceps brachii muscles, triceps brachii muscles, carpal flexors, carpal extensors, and gluteus maxims.
  • the detection result of the biopotential sensor is output to the control unit 147.
  • acetylcholine a synaptic transmitter
  • acetylcholine a synaptic transmitter
  • the ionic permeability of muscle fiber membranes changes and action potentials are generated.
  • the action potential causes contraction of muscle fibers and generates muscle force. Therefore, by detecting the potential of skeletal muscle, it is possible to estimate the muscular strength generated during the operation, and obtaining the assist force (drive torque) necessary for the operation from the virtual torque based on the estimated muscular strength. Is possible.
  • the control unit 147 obtains a drive current to be supplied to each drive motor based on the biopotential signal detected by the biopotential sensor, and drives the drive motor with this drive current, thereby obtaining a necessary assist force (drive torque). To assist the movement of the upper body of the wearer.
  • the control unit 147 has a main computer, an acceleration sensor, a signal processing circuit, and the like.
  • the battery 148 supplies power to the drive motors 141 to 146, 201, 202 and the control unit 147.
  • FIG. 10 is a block diagram showing a control system of the motion assisting apparatus 10 according to the present embodiment.
  • the motion assisting device 10 includes a biopotential signal detection means 11, a joint angle detection means 12, a control device 20, a drive signal generation means 31, and a drive source (actuator) 32.
  • the biopotential signal detection means 11 corresponds to the biopotential sensor described above.
  • the joint angle detection means 12 corresponds to the angle sensor described above.
  • the drive signal generation means 31 and the drive source 32 correspond to each drive motor.
  • the control device 20 is provided in the control unit 147, and includes an optional control unit 21, an autonomous control unit 22, and a command signal synthesis unit 23.
  • the optional control means 21 performs signal processing including filter processing (smoothing processing) and amplification on the biopotential signal detected by the biopotential signal detection means 11. And the voluntary control means 21 produces
  • the autonomous control means 22 estimates the wearer's intention to operate based on information such as the joint angle detected by the joint angle detection means 12 and the acceleration detected by the acceleration sensor, and uses the power according to this intention as the drive source 32.
  • An autonomous command signal is generated for generation.
  • Gravity compensation and viscosity compensation can be performed by an autonomous command signal based on the joint angle and acceleration.
  • FIG. 11 shows a link model of the motion assist device 10. Operation support is provided by operating each joint according to the weight, posture, and angular velocity of the tool held by the hand. Equations (1) to (3) show compensation torque equations at each joint.
  • ⁇ e [Nm] corresponds to the elbow joint
  • ⁇ m [Nm] corresponds to the intermediate joint
  • ⁇ s [Nm] corresponds to the shoulder joint.
  • M [kg] is the weight of the mass point representing the mass of each part.
  • M Est [kg] is the weight of the tool at hand.
  • L [m] is the link length of each link.
  • L Est [m] is the distance from the elbow joint to the center of gravity of the hand tool.
  • ⁇ [deg] is a relative angle between the links connected to each joint.
  • ⁇ abs [deg] is an absolute angle with respect to the direction of gravity.
  • D [Nms / rad] is the viscosity coefficient of each joint
  • g [m / s 2 ] is the gravitational acceleration.
  • the compensation torque is determined by the posture of the shoulder joint and the absolute angle. This is due to the characteristics of the parallel link mechanism that connects the shoulder joint and the intermediate joint, and does not affect the compensation torque even if the horizontal joint 121 provided in the intermediate joint operates.
  • An autonomous command signal is generated based on the compensation torque obtained in this way.
  • the command signal synthesis means 23 synthesizes the optional command signal generated by the optional control means 21 and the autonomous command signal generated by the autonomous control means 22, and outputs the synthesized command signal to the drive signal generation means 31.
  • the combined command signal has a waveform that causes the drive source 32 to generate a power obtained by adding the power by the voluntary control that changes from the start to the end of the operation and the power by the autonomous control that performs gravity compensation and viscosity compensation.
  • the drive signal generation unit 31 generates a drive signal (drive current) corresponding to the combined command signal and supplies the drive signal to the drive source 32 to drive the drive source 32.
  • the drive source 32 gives an assist force (power) according to the drive signal to the wearer.
  • FIGS. 12a and 12b show the measurement results of the tool holding time (FIG. 12a) and the number of up and down movements (FIG. 12b) when the motion assisting device 10 is attached and not attached.
  • the test subjects were three healthy adult males a, b, and c. Moreover, the non-wearing experiment was performed first and the mounting experiment was performed after that.
  • FIG. 12a shows the experimental result of the static experiment.
  • the holding time increased by wearing the motion assisting device 10.
  • the subject with the largest increase had a retention time of 2.8 times.
  • FIG. 12 b shows the experimental result of the dynamic experiment.
  • the number of up and down movements increased due to the wearing of the movement assist device 10.
  • the number of up / down motions was 2.0 times.
  • an intermediate joint is provided between the shoulder joint and the elbow joint of the upper limb support apparatus 100 to give the link structure a redundant degree of freedom.
  • a horizontal joint 111 of the shoulder joint is provided at the rear of the shoulder so that the elevation of the shoulder joint position when raising the upper limb is not hindered. Therefore, the degree of freedom of the upper body of the wearer can be ensured even when the upper limb support apparatus 100 is worn.
  • the shoulder frame 106 is provided with a shoulder width adjusting mechanism. Therefore, the upper limb support apparatus 100 can cope with a physique difference between wearers.
  • a drive motor is provided at the sagittal joint of the upper limb support apparatus 100, and the work efficiency of the anti-gravity work can be improved by applying an assist force from the drive motor.
  • the reaction force of the support force transmitted from the upper limb support device 100 to the lower back can be canceled out, and the burden on the waist of the wearer can be reduced.
  • the prepreg lamination configuration of the CFRP member that constitutes each frame of the upper limb support device 100 in the above embodiment may be obtained from the strength analysis result by simulation. Since the metal parts provided in the joint part and the shoulder frame 106 of the upper limb support apparatus 100 use isotropic materials such as ultra-duralumin and carbon steel, analysis is performed using a solid model. Since CFRP constituting each frame is an anisotropic material, analysis is performed using a surface model capable of composite shell analysis. In the composite shell analysis, it is possible to perform analysis in consideration of the fiber direction and the laminated structure of the composite material. Since the surface model is a zero-thickness model, it may not be analyzed in the assembly state. At that time, the analysis is performed using a single part or an assembly model of a minimum part related to the analysis result.
  • When the stress generated in a part exceeds the allowable stress of the part, the part is destroyed.
  • An index indicating how much the stress generated in the part has a margin with respect to the allowable stress is called a safety factor.
  • the safety factor is 1, the allowable stress is equal to the stress generated in the component, and the component is not broken.
  • the safety factor of the structural member is designed to be 2 or more in consideration of the torsional load.
  • the maximum von Mises stress (Mises stress) is used as a criterion for fracture determination of isotropic materials.
  • the maximum von Mises stress is a projection of a stress generated by a composite load from a plurality of directions onto a tensile or compressive stress in one direction.
  • the Tsai-Wu rule is used for determining the fracture of CFRP, which is an anisotropic material.
  • the safety factor can be derived by dividing the allowable stress for compression and tension. This criterion is suitable for the analysis of CFRP in which the allowable stress for compression and tension changes depending on the fiber direction.
  • Strength analysis confirms whether the designed link structure has sufficient strength for the assumed load.
  • the moment length seen from the wearer's hip joint on the sagittal plane is 140 [mm] when raised and 200 [mm] when holding the front of the abdomen.
  • the load is assumed to be 150 [N] for one arm and 300 [N] for both arms from the maximum weight of the tool to be used, and transmitted to the mechanism via the forearm and upper arm.
  • the part considered to be structurally restricted is fixed.
  • the load equivalent to the case where it analyzes in the whole assembly state is given by the remote load function of simulation software.
  • the safety factor of all parts is calculated by simulation, and the CFRP prepreg laminated structure is determined so that these are equal to or greater than a predetermined value.
  • the present invention is not limited to the above-described embodiment as it is, and the constituent elements may be modified without departing from the scope of the invention in the implementation stage. Moreover, you may combine suitably the some component currently disclosed by the said embodiment, and may delete some components from all the components shown by embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.
  • Movement assistance apparatus 100 Upper limb assistance apparatus 102 Waist frame 104 Vertical frame 106 Shoulder frame 110 1st arm frame 120 2nd arm frame 141-146 Drive motor 200 Lumbar assistance apparatus 201,202 Drive motor

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pain & Pain Management (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rehabilitation Therapy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manipulator (AREA)
  • Rehabilitation Tools (AREA)
  • Prostheses (AREA)

Abstract

 上半身自由度を十分に確保し、装着者間の体格差に対応可能な装着式動作補助装置を提供する。装着式動作補助装置は、装着者の上肢に装着されるフレームと、前記フレームの各関節に設けられた駆動部と、前記装着者の生体電位信号を検出する生体信号検出部と、各関節の角度を検出する関節角度検出部と、前記生体電位信号及び前記関節角度に基づいて前記駆動部を制御する制御部と、を備える。前記フレームは、上下方向に延びる垂直フレームと、前記垂直フレームの上端より肩幅方向に横架された肩フレームと、一端が前記肩フレームの端部に肩関節部を介して連結された第1腕フレームと、一端が前記第1腕フレームの他端に中間関節部を介して連結され、他端が肘関節部に接続された第2腕フレームと、を有する。前記肩関節部、前記中間関節部、及び前記肘関節部に前記駆動部が設けられている。

Description

装着式動作補助装置
 本発明は、上肢による抗重力作業を支援する装着式動作補助装置に関する。
 工事現場等では、工具やカメラ等のツールを持ち上げた上肢挙上姿勢を維持したまま作業を行う場合がある。このような上肢による抗重力作業は、上肢の筋群への負荷が大きく、継続的作業は困難である。特に、重量の大きいツールを使用する場合は、作業効率が著しく低下する。
 そのため、抗重力作業の動作支援を行う装置として、作業員の骨格に沿って身体装着される装着型の上肢支援装置が提案されている(例えば特許文献1参照)。
特開2008-295696号公報
 しかし、上述した従来の上肢支援装置では、天井面等での作業に必要な上半身自由度が十分に確保されておらず、作業に必要な上肢や体幹の動作に対応できない場合があった。また、装着者間の体肢の長さや太さの違い等の体格差に対応できない場合があった。
 本発明は、上半身自由度を十分に確保し、装着者間の体格差に対応可能な装着式動作補助装置を提供することを課題とする。
 本発明の一態様による装着式動作補助装置は、装着者の上肢に装着されるフレームと、前記フレームの各関節に設けられた駆動部と、前記装着者の生体電位信号を検出する生体信号検出部と、各関節の角度を検出する関節角度検出部と、前記生体電位信号及び前記関節角度に基づいて前記駆動部を制御する制御部と、を備え、前記フレームは、上下方向に延びる垂直フレームと、前記垂直フレームの上端より肩幅方向に横架された肩フレームと、一端が前記肩フレームの端部に肩関節部を介して連結された第1腕フレームと、一端が前記第1腕フレームの他端に中間関節部を介して連結され、他端が肘関節部に接続された第2腕フレームと、を有し、前記肩関節部、前記中間関節部、及び前記肘関節部に前記駆動部が設けられていることを特徴とするものである。
 本発明の一態様による装着式動作補助装置においては、前記肩関節部は、水平関節及び矢状面関節を有し、該矢状面関節に前記駆動部が設けられ、該水平関節は受動関節であることが好ましい。
 本発明の一態様による装着式動作補助装置においては、前記肩関節部の前記水平関節は前記矢状面関節よりも後方に設けられていることが好ましい。
 本発明の一態様による装着式動作補助装置においては、前記矢状面関節の回転軸が矢状面と垂直になるように、ワイヤを介して前記水平関節にバネ張力が与えられることが好ましい。
 本発明の一態様による装着式動作補助装置においては、前記中間関節部は、水平関節及び矢状面関節を有し、該矢状面関節に前記駆動部が設けられ、該水平関節は受動関節であることが好ましい。
 本発明の一態様による装着式動作補助装置においては、前記肘関節部は矢状面関節を有し、該矢状面関節に前記駆動部が設けられていることが好ましい。
 本発明の一態様による装着式動作補助装置においては、装着者の上腕にあてがわれる第1カフ及び前腕にあてがわれる第2カフが前記肘関節部に連結されていることが好ましい。
 本発明の一態様による装着式動作補助装置においては、前記第1腕フレームは、一端が前記肩関節部に連結された上側長辺リンク及び下側長辺リンクと、両端が該上側長辺リンク及び該下側長辺リンクの他端に連結された短辺リンクを有し、平行リンク機構をなすことが好ましい。
 本発明の一態様による装着式動作補助装置においては、前記上側長辺リンクは下側に湾曲した形状を有し、前記下側長辺リンクはストレート形状を有することが好ましい。
 本発明の一態様による装着式動作補助装置においては、前記肩フレームの肩幅は調整可能となっていることが好ましい。
 本発明の一態様による装着式動作補助装置においては、装着者の腰に装着される腰フレームと、一端が前記腰フレームに連結された下肢フレームと、前記下肢フレームの他端の股関節部に設けられ、前記制御部により制御される下肢駆動部と、前記下肢駆動部に連結され、装着者の大腿部にあてがわれる第3カフと、をさらに備えることが好ましい。
 本発明の一態様による装着式動作補助装置においては、前記制御部は、前記生体電位信号の信号処理を行い、信号処理後の生体電位信号に応じた動力を前記駆動部に発生させるための随意指令信号を生成する随意制御手段と、各フレームの長さ、各関節に連結されたフレーム同士の相対角度、各フレームの重量、各関節の重量、各関節の粘性係数、及び重力加速度に基づいて、重力補償及び粘性補償を行う動力を前記駆動部に発生させるための自律指令信号を生成する自律制御手段と、前記随意指令信号及び前記自律指令信号を合成して合成指令信号を生成する合成手段と、を有し、前記駆動部は、前記合成指令信号に基づいて生成された駆動電流により駆動することが好ましい。
 本発明によれば、肩関節と肘関節との間に中間関節を設け、冗長自由度を持つものとすることで、装着者と装置の関節の回転軸が一致しなくても、関節間の位置関係のずれが吸収されるため、装着者間の体格差に対応することができる。また、十分な上半身の自由度を確保することができる。また、下肢駆動部を有する腰部補助装置と組み合わせることで、上肢支援装置から腰部に伝達される支援力の反力を打ち消し、装着者の腰部への負担を軽減するので、上肢による抗重力作業を支援して作業効率を向上させることができる。
図1a~1cは手先と肩の可動範囲を示す図である。 本実施形態による装着式動作補助装置を示す図である。 本実施形態による第1腕フレームを示す図である。 平行リンク機構の原理を示す図である。 本実施形態による肩水平関節の原点回帰機構を示す図である。 本実施形態による肩幅調整機構を示す図である。 図7a~7eは上肢支援装置のリンク構造の装着者が動作した場合のリンク構造の模式図である。 上肢支援装置のリンク構造の樹脂モデルを示す図である。 可動域の計測時に被験者にマーカーを貼付した骨特徴点を示す図である。 本実施形態による装着式動作補助装置の制御系を示すブロック図である。 装着式動作補助装置のリンクモデルを示す図である。 図12aは装着式動作補助装置を装着した場合と装着しなかった場合の抗重力作業の継続時間を示すグラフであり、図12bは動作回数を示すグラフである。
 以下、本発明の実施の形態を図面に基づいて説明する。
 上肢の挙上姿勢を維持したままの作業では、身体の前方でツールを把持し、上方に挙上して使用する。従って、本実施形態による装着式動作補助装置では、手先の可動範囲を装着者の前方と上方に設定する。また、体幹の可動範囲に関しては、脊柱を構成するうちの腰椎の自由度が制限されているものとする。これは、腰部補助装置が、腰椎を固定して内骨格系への負荷を軽減しつつ動作支援を行うためである。
以下の表1は人体の各関節の想定可動域を示す。
Figure JPOXMLDOC01-appb-T000001
 また、以下の表2は成人男性の人体各部の寸法の95%タイル値、5%タイル値を示す。
Figure JPOXMLDOC01-appb-T000002
 図1a~1cは、表1に示す各関節の可動域及び表2に示す寸法値から求めた、手先と肩の可動範囲を示す。図1aは矢状面における可動範囲、図1bは水平面における可動範囲、図1cは前額面における可動範囲を示す。図1a~1cにおいて、斜線領域は手先の可動範囲であり、平面上で肩関節と肘関節を動作させた時に手首が到達できる領域を示している。また、肩周辺の曲線は、体幹が動作した際の肩関節位置の可動範囲を示している。装着式動作補助装置には、それぞれの平面について、この可動範囲を満たすことが求められる。
 図2は、本実施形態による装着式動作補助装置の斜視図である。図2に示す装着式動作補助装置10(以下「動作補助装置」と称する)は、装着者の動作を支援(アシスト)する装置であり、脳からの信号により筋力を発生させる際に生じる生体信号(表面筋電位)及び/又は当該装着者の関節の動作角度などを検出し、この検出信号に基づいて駆動部からの駆動力を付与するように作動する。
 動作補助装置10を装着した装着者は、自らの意思で両腕による物体の持ち上げ運動を行うと、その際に発生した生体信号及び/又は当該装着者の肩関節、肘関節、肩関節と肘関節との間の中間関節、股関節の動作角度に応じた駆動トルクがアシスト力として動作補助装置10から付与され、例えば、持ち上げ動作で通常必要とされる筋力の半分の力で物体を持ち上げることが可能となる。従って、装着者は、自身の筋力と駆動部(本実施形態では電動式の駆動モータ)からの駆動トルクとの合力によって上体を動作させることができる。
 動作補助装置10は、装着者の上体を補助する上肢支援装置100と、装着者の腰部を補助する腰部補助装置200を備えている。腰部補助装置200は、上肢支援装置100から脱着可能となっており、腰部補助装置200を外し、上肢支援装置100を単独で使用してもよい。
 図2に示すように、上肢支援装置100は、装着者の腰に装着される腰フレーム102と、腰フレーム102の上方に延在する垂直フレーム104と、垂直フレーム104の上端より肩幅方向に横架された肩フレーム106と、関節を介して肩フレーム106の両端部に連結された第1腕フレーム110と、関節を介して第1腕フレーム110に連結された第2腕フレーム120とを有するリンク構造を備える。第1腕フレーム110及び第2腕フレーム120はそれぞれ装着者の右腕及び左腕に対応して設けられている。
 腰フレーム102は図示しない締結ベルトにより装着者の腰に締結される。
 肩フレーム106は、水平面に垂直な関節軸を持つ水平関節を介して、垂直フレーム104の上端に略水平方向に回動可能に連結されている。
 第1腕フレーム110の一端は、矢状面に垂直な関節軸を持つ矢状面関節及び水平関節を介して、肩フレーム106の端部に略水平方向及び略前後方向に回動可能に連結されている。この肩フレーム106と第1腕フレーム110との連結箇所は、装着者の肩関節に対応しており、肩フレーム106に対して第1腕フレーム110を略水平方向に回動可能とする水平関節部111と、肩フレーム106に対して第1腕フレーム110を略前後方向に回動可能とする回転関節(矢状面関節部)112とが設けられている。
 第2腕フレーム120の一端は、水平関節及び矢状面関節を介して、第1腕フレーム110の他端に、略水平方向及び略前後方向に回動可能に連結されている。この第1腕フレーム110と第2腕フレーム120との連結箇所は、肩関節と肘関節との間に設けた中間関節に対応しており、第1腕フレーム110に対して第2腕フレーム120を略水平方向に回動可能とする水平関節部121と、第1腕フレーム110に対して第2腕フレーム120を略前後方向に回動可能とする回転関節(矢状面関節部)122とが設けられている。
 第2腕フレーム120の他端には、装着者の上腕にあてがわれるカフ126及び前腕にあてがわれるカフ128が設けられており、図示しない締結ベルトにより上腕をカフ126に締結し、前腕をカフ128に締結することができる。第2腕フレーム120の他端には、矢状面関節を介して、カフ128が略前後方向に回動可能に連結されている。この第2腕フレーム120の他端部は、装着者の肘関節に対応しており、第2腕フレーム120に対してカフ128を略前後方向に回動可能とする回転関節(矢状面関節部)124が設けられている。
 各関節部の矢状面関節を構成する回転関節112、122、124には、後述する駆動モータ141~146が設けられている。
 上肢を可動域限界まで挙上する際、矢状面上の肩関節位置が上昇する。肩の運動は、上腕骨、鎖骨、肩甲骨とそれらを動作させる肩周辺の筋群によって行われる。上肢を可動域の限界まで挙上すると、鎖骨と胸骨を結ぶ胸鎖関節は約30[deg]、鎖骨と肩甲骨を結ぶ肩鎖関節は約30[deg]上方に動作する。また、肩甲骨と上腕骨を結ぶ肩甲上腕関節は約120[deg]上方に動作し、これらの運動の合計として上肢が約180[deg]挙上される。この時の鎖骨と肩甲骨の動作により,矢状面からみた肩関節の回転軸が上昇する。体幹の矢状面での動作は前屈と後屈である。この動作によっても肩関節の位置は変動するため、肩関節位置の変動は更に大きくなる。加えて、装着者間の体肢長等の違いにより、肩関節の初期位置や手先の可動範囲も変わる。
 図2に示すように、上肢支援装置100は、肩関節と肘関節との間に中間関節を有しているため、矢状面において2自由度以上が確保され、矢状面での位置決めが可能となる。また、想定可動範囲内であれば、装着者と装置の関節の回転軸が一致していなくとも、関節間の位置関係のずれが吸収される。上肢と上肢支援装置100との装着に関しては、装着者の肘関節周辺で装置を固定すれば支援を受けられるため、肩関節周辺に締結ベルト等は設けられず、拘束を受けないようになっている。
 上肢支援装置100のリンク構造は、肩関節部分と中間関節部分とに水平関節部111、121を有しているため、肩の水平方向の動作(水平屈曲、水平伸展)に対応することができる。また、水平面に2自由度が設定される。3次元空間上の位置決めには、ある平面上の3自由度と、別の平面の1自由度が必要である。上述したように、このリンク構造では、矢状面で2自由度以上確保しているため、手先の位置決めを行うことが可能である。水平面に1自由しかない場合、リンク構造が装着者の胴体に干渉してしまう場合があるが、本実施形態では水平面に2自由度が設定されるため、リンク構造の胴体への干渉を防止できる。
 上述したように、上肢を挙上する際には肩関節位置が上昇する。そのため、上肢支援装置100のリンク構造では、肩関節部分の水平関節部111を、装着者の肩後方(矢状面関節となる回転関節112より後方)に設け、装着者の肩関節直上に構造物が無いようになっている。
 上肢支援装置100のリンク構造は、肩関節と肘関節との間に中間関節を有するため、肩関節部分と中間関節部分とにそれぞれ設けられた2つの水平関節部111、121の水平面における距離は可変となる。そのため、水平動作において、装着者と上肢支援装置100との間で回転軸の不一致が生じても、可動性の低下を防止できる。
 さらに、垂直フレーム104と肩フレーム106との連結部分、すなわち装着者の体幹後方に水平関節が設けられているため、上肢支援装置100のリンク構造は体幹の回旋動作に対応することができる。上肢支援装置100のリンク構造は、中間関節による冗長自由度を有するため、体幹の回旋動作において装着者と上肢支援装置100との間で回転軸の不一致が生じても、可動性の低下を防止できる。
 装着者間の身体の太さの違いに関しては、装着者と上肢支援装置100との間に緩衝材を適宜挿入したり、締結ベルトを調整したりして対応する。装着者間の肩幅の違いに関しては、後述する肩幅調整機構(図6参照)により対応する。
 前額面における肩関節の動作は肩の内転、外転であり、体幹の動作は側屈である。前額面での動作と装着者間の寸法差は、矢状面と水平面の要素の組み合わせとして捉えることができる。例えば、肩の内転、外転は、矢状面における屈曲、伸展と、水平面における水平屈曲、伸展の組み合わせである。体幹の側屈は、矢状面における肩関節の初期位置の差と、前額面における内転、外転の組み合わせである。従って、上肢支援装置100のリンク構造により、前額面の動作と装着者間の寸法差に対応することができる。
 図3は、第1腕フレーム110の構成を示す。肩関節部分には、水平面に垂直な関節軸AX1(水平関節部111の回転軸)と、矢状面関節となる回転関節112とが設けられている。第1腕フレーム110は、上側長辺リンク114、下側長辺リンク116、及び中間関節側に設けられた短辺リンク118からなる。
 上側長辺リンク114及び下側長辺リンク116の一端は、回転関節112に回転可能に連結されている。また、上側長辺リンク114及び下側長辺リンク116の他端は、短辺リンク118の両端に回転可能に連結されている。短辺リンク118の近傍には、水平面に垂直な関節軸AX2(水平関節部121の回転軸)が設けられている。
 図3に示すように、回転関節112、上側長辺リンク114、下側長辺リンク116及び短辺リンク118により平行リンク機構が実現されている。平行リンク機構では、機構の先にあるリンクの姿勢変化によらず、平行リンク機構の重力補償に必要なトルクが一定となる。この特性は、重量物を扱う作業を支援するシステムに適している。
 図4に平行リンク機構の原理を示す。平行リンク機構の先にあるリンクが姿勢を変化させた時、リンクを支持する重力補償トルクも変化する。そのトルクの反作用として、平行リンク機構の短辺リンクに重力補償トルクとは逆方向のトルクが生じる。しかし、そのトルクは平行リンク部の長辺リンクによって、引張と圧縮の力として支持される。そのため平行リンク機構の重力補償トルクには影響しない。
 上肢支援装置100の平行リンク機構では、向かい合う上側長辺リンク114及び下側長辺リンク116の相対的な姿勢が変化しない。そのため、平行リンク機構が動作しても、水平関節はその姿勢を保持し続けることができる。
 下側長辺リンク116はストレート形状となっている。一方、上側長辺リンク114は、水平関節への干渉を防ぐために、下側に湾曲した形状になっている。平行リンク機構の可動域は180[deg]であるが、平面的にリンクを配置するとリンク同士が干渉し、可動域が狭まる。本実施形態では、上側長辺リンク114及び下側長辺リンク116が立体的に配置されているため、180[deg]の可動域を最大限に使用することができる。さらに、捻り荷重を2本のリンクで支持できるため、リンクの剛性が上昇する。
 矢状面の関節が動作する際、受動関節である肩の水平関節部111は、水平面のモーメントを受ける。そのモーメントにより肩の水平関節部111が動作すると、装着者の意図に反して回転関節112の回転軸が前額面に垂直な状態となることがある。そのような状況では、上述した自由度が制限されて、機構の可動性が著しく低下する。そのため、図5に示すように、上肢支援装置100には、肩水平関節の原点回帰機構が設けられている。原点回帰機構は、肩フレーム106に設けられた2つの引っ張りバネ130、132、水平関節部111に設けられたプーリ134、プーリ134に巻き掛けられ両端がそれぞれ引っ張りバネ130、132に連結されたワイヤ136からなる。引っ張りバネ130、132の張力が、ワイヤ136を介して肩水平関節に伝達することで、矢状面関節(回転関節112)の回転軸の姿勢を矢状面と垂直になるよう保つことができる。意図的な肩関節の水平動作は、引っ張りバネ130、132の弾性により容易に行うことができる。
 図6に示すように、肩フレーム106は、左右の肩関節部分から延びるコの字フレーム106A、106Bと、コの字フレーム106A、106Bの間に設けられたホルダフレーム106Cとを有する。コの字フレーム106A、106Bは、ホルダフレーム106Cに摺動可能に連結されている。コの字フレーム106A、106Bの一部はホルダフレーム106C内に収容されており、コの字フレーム106A、106Bを摺動し、ホルダフレーム106Cから引き出したり押し戻したりすることで、肩フレーム106の長さ(肩幅)を調整することができる。
 コの字フレーム106A、106Bに接着された金属パーツ(図6ではホルダフレーム106C内に収まっており見えない)にはネジ穴があり、ホルダフレーム106Cに接着された金属パーツ107とネジ止めすることが可能である。このネジ止め部は,ホルダフレーム106Cからコの字フレーム106A、106Bが脱落することを防ぐためにあり、荷重はフレーム間で保持する。コの字フレーム106A、106Bとホルダフレーム106Cとの間の摺動面には摺動性に優れた樹脂シート108が設けられており、ネジ止め部のネジを緩めることで、容易に肩幅を調整できる。肩幅調整のストロークは、例えば片側で50[mm]であり、95%タイル値から5%タイル値の成人男性に対応できる。
 図7a~7eは、このような上肢支援装置100のリンク構造を装着した装着者が動作した場合のリンク構造の模式図である。図7a~7cは矢状面における動作、図7dは水平面における動作、図7eは前額面における動作を示す。
 以下の表3は、図8に示すような上肢支援装置100のリンク構造の樹脂モデルを装着した場合の関節可動域の計測結果を示す。被験者は、それぞれ95%タイル値、50%タイル値、5%タイル値に対応する、身長1810[mm]の被験者A、身長1700[mm]の被験者B、身長1550[mm]の被験者Cの健常な成人男性3名とした。
 被験者にはリンク構造の樹脂モデルを装着させ、各骨特徴点にマーカーを貼り付けた。図9に示す黒丸部分が、マーカーを張りつけた骨特徴点である。各関節を1ヶ所ずつ動作させ、被験者の正面、側面、上面の3方向から写真撮影を行い、画像上のマーカーの相対位置から、各関節角度の変位を計測した。その後、各関節の可動域について装着時の可動域が想定可動域に満たなかった場合、リンク構造の非装着時の可動域も計測した。想定可動域は表1に示すものと同じである。
 骨特徴点を用いた可動域の計測では、最大で10[deg]程度の誤差が発生する。計測値に最大の誤差が生じた場合、実際には想定可動域に10[deg]足りない可動域を持つリンク構造を、上半身の可動域が確保できているとみなしてしまう。しかし、10[deg]程度の差であれば、他の関節を動作させて補完できる。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、肘関節及び肩関節について、計測値が想定可動域の値を10[deg]以上下回る項目があった。しかし、それらの項目では、リンク構造の装着時と非装着時の可動域の計測値の差が10[deg]以上にならなかった。従って、装着者の関節可動域が元から想定可動域を下回っていたことがわかる。
 以上の結果から、上肢支援装置100のリンク構造は、装着時においても作業に必要な上半身の自由度を妨げないことがわかる。上述の計測時は、樹脂製のリンク構造を使用したが、強度部材に置き換えたとしてもリンク長や各関節の位置関係が変わらなければ、装着時において上半身の自由度は確保される。
 上肢支援装置100のリンク構造の各フレームやカフは、比強度が高く、部品成形時における加工自由度が高いCFRP(Carbon-Fiber-Reinforced Plastic、炭素繊維強化プラスチック)を用いて製作することが好ましい。例えば、オートクレーブ成型法を用いてCFRPを成形してフレーム等を製作する。カフ126、128については、回転関節124からカフに延びるリンクと一体成形することが好ましい。このことにより、ネジの使用本数の削減による軽量化、応力集中部分の削減による強度の向上、及び部品点数の削減を実現できる。関節部分は寸法精度を必要とするので、超々ジュラルミンや炭素鋼等の金属部材を切削加工した金属パーツを接着する。
 図2に示すように、上肢支援装置100は、リンク構造の矢状面関節(回転関節112、122、124)に設けられた駆動モータ141~146、垂直フレーム104の背面側に取り付けられた制御ユニット147、及び腰フレーム102に取り付けられたバッテリ148を備える。
 駆動モータ141、142は肩関節に対応する位置(回転関節112)に設けられ、第1腕フレーム110は駆動モータ141、142の駆動トルクにより回動する。駆動モータ143、144は中間関節に対応する位置(回転関節122)に設けられ、第2腕フレーム120は駆動モータ143、144の駆動トルクにより回動する。駆動モータ145、146は肘関節に対応する位置(回転関節124)に設けられ、駆動モータ145、146の駆動トルクは、カフ128及び締結ベルトにより、装着者の前腕にアシスト力として伝達される。
 上肢支援装置100の水平関節部111、121は受動関節となっている。
 腰部補助装置200は、股関節に対応する位置に設けられる駆動モータ201、202と、大腿部に当てがわれるカフ204と、腰フレーム102と股関節(駆動モータ201、202)とを連結する下肢フレーム206と、カフ204と股関節(駆動モータ201、202)とを連結するフレーム208とを備える。図示しない締結ベルトにより装着者の大腿部をカフ204に締結することができる。駆動モータ201、202の駆動トルクにより、装着者が上肢支援装置100からアシスト力を受ける際に腰部に伝達されるアシスト力の反力を打ち消すことができる。
 上肢支援装置100には、腰部補助装置200を接続することができる。上肢支援装置100と腰部補助装置200との接続部は、例えば、はめ合いの構造とする。はめ合い部分の面が、荷重やモーメントを保持する。はめ合わせた後にネジ止めすることで、上肢支援装置100と腰部補助装置200とを接続することができる。ネジにはほぼ荷重が掛からないため、ネジを外すだけで、上肢支援装置100と腰部補助装置200とを容易に分離することができる。例えば、フレーム206と腰フレーム102とを分離可能に接続する。あるいはまた、フレーム206と腰フレーム102とを一体成形し、腰フレーム102と垂直フレーム104とを分離可能に接続するようにしてもよい。
 駆動モータ141~146、201、202には、DCモータ又はACモータなどからなる電動モータを用いることができ、制御ユニット147からの制御信号により駆動トルクが制御される。また、各駆動モータは、モータ回転を所定の減速比で減速する減速機構を内蔵しており、小型ではあるが装着者に十分な駆動力を付与することができる。
 駆動モータ141~146、201、202には関節角度を検出する角度センサが設けられている。また、肩関節及び中間関節の水平関節部111、121にも関節角度を検出する角度センサが設けられている。角度センサには、例えば、関節角度に比例したパルス数をカウントするロータリエンコーダを用いることができる。角度センサの検出結果は制御ユニット147へ出力される。
 上肢支援装置100及び腰部補助装置200は、筋電位信号や神経伝達信号などの生体電位信号を、皮膚を介して検出する生体電位センサ(図示せず)を有している。生体電位センサは、微弱電位を検出するための電極を備えている。生体電位センサは、例えば三角筋、上腕二頭筋、上腕三頭筋、手根屈筋、手根伸筋、大殿筋等の表面筋電位を検出する。生体電位センサの検出結果は制御ユニット147へ出力される。
 人体においては、脳からの指令によって骨格筋を形成する筋肉の表面にシナプス伝達物質のアセチルコリンが放出される結果、筋線維膜のイオン透過性が変化して活動電位が発生する。そして、活動電位によって筋線維の収縮が発生し、筋力を発生させる。そのため、骨格筋の電位を検出することにより、動作の際に生じる筋力を推測することが可能になり、この推測された筋力に基づく仮想トルクから動作に必要なアシスト力(駆動トルク)を求めることが可能になる。
 制御ユニット147は、生体電位センサによって検出された生体電位信号に基づいて各駆動モータに供給する駆動電流を求め、この駆動電流で駆動モータを駆動することで、必要なアシスト力(駆動トルク)を付与して、装着者の上体の動作を補助する。
 制御ユニット147は、メインコンピュータ、加速度センサ、信号処理回路等を有している。バッテリ148は、駆動モータ141~146、201、202や制御ユニット147に電力を供給する。
 図10は、本実施形態に係る動作補助装置10の制御系システムを示すブロック図である。動作補助装置10は、生体電位信号検出手段11、関節角度検出手段12、制御装置20、駆動信号生成手段31、及び駆動源(アクチュエータ)32を備える。
 生体電位信号検出手段11は、上述した生体電位センサに対応する。関節角度検出手段12は、上述した角度センサに対応する。駆動信号生成手段31及び駆動源32は各駆動モータに対応する。
 制御装置20は、制御ユニット147に設けられ、随意制御手段21、自律制御手段22及び指令信号合成手段23を有する。
 随意制御手段21は、生体電位信号検出手段11により検出された生体電位信号に対して、フィルタ処理(スムージング処理)及び増幅を含む信号処理を行う。そして、随意制御手段21は、信号処理を施した生体電位信号を用いて、装着者の意思に従った動力を駆動源32に発生させるための随意指令信号を生成する。
 自律制御手段22は、関節角度検出手段12により検出された関節角度や加速度センサにより検出された加速度等の情報に基づいて装着者の動作意思を推定し、この意思に従った動力を駆動源32に発生させるための自律指令信号を生成する。関節角度及び加速度に基づく自律指令信号により重力補償と粘性補償を行うことができる。図11に、動作補助装置10のリンクモデルを示す。手先で把持したツールの重量と姿勢、角速度に応じて各関節を動作させることで、動作支援を行う。数式(1)~(3)に、各関節における補償トルクの式を示す。
Figure JPOXMLDOC01-appb-M000004
 τ[Nm]は肘関節、τ[Nm]は中間関節、τ[Nm]は肩関節に対応している。M[kg]は各部の質量を代表する質点の重量である。MEst[kg]は手先にあるツールの重量である。L[m]は各リンクのリンク長である。LEst[m]は肘関節から手先ツールの重心との距離である。θ[deg]は各関節に接続されたリンク同士の相対角度である。例外として、θabs[deg]は重力方向に対する絶対角度である。D[Nms/rad]は各関節の粘性係数、g[m/s]は重力加速度である。
 数式(3)からわかるように、肩関節について、補償トルクは肩関節と絶対角度の姿勢によって決まる。これは肩関節と中間関節を接続する平行リンク機構の特性によるもので、中間関節に設けられた水平関節部121が動作しても補償トルクには影響しない。
 このようにして求めた補償トルクに基づいて、自律指令信号が生成される。
 指令信号合成手段23は、随意制御手段21により生成された随意指令信号と、自律制御手段22により生成された自律指令信号とを合成し、合成指令信号を駆動信号生成手段31へ出力する。
 合成指令信号は、動作の開始から終了まで変化する随意的制御による動力と、重力補償及び粘性補償を行う自律的制御による動力とを加算した動力を駆動源32に発生させる波形を有する。
 駆動信号生成手段31は、合成指令信号に応じた駆動信号(駆動電流)を生成し、この駆動信号を駆動源32に供給することにより駆動源32を駆動する。駆動源32は、駆動信号に応じたアシスト力(動力)を装着者に付与する。
 図12a,12bは、このような動作補助装置10を装着した場合と装着しなかった場合のツールの保持時間(図12a)及び上下動作回数(図12b)の計測結果を示す。被験者は健常な成人男性a、b、cの3名とした。また、非装着実験を先に行い、装着実験はその後に行った。
 ツール(重量物)を頭上で保持する静的実験では、30[kg]の重量物を使用した。台座から重量物を挙上し、頭上で重量物を保持し、保持の限界が来たら重量物を台座に戻した。重量物が台座から離れた瞬間から台座に戻すまでの時間を保持時間として計測した。図12aに静的実験の実験結果を示す。すべての被験者において、動作補助装置10の装着により保持時間が増加した。増加幅が最も大きかった被験者では保持時間が2.8倍となった。このことにより、動作補助装置10は静的動作を支援できることがわかる。
 重量物を頭上で上下する実験(動的実験)では、10[kg]の反力模擬重量物を使用した。台座から重量物を挙上し,頭上で反力模擬重量物の上下動作を行い、上下動作の限界が来たら、重量物を台座に戻した。重量物が台座から離れた瞬間から台座に戻る間の上下動作の回数を計測した。上下動作は、反力模擬重量物をその初期位置から100[mm]上昇させ、その後初期位置に戻す工程を1回と計測した。図12bに動的実験の実験結果を示す。すべての被験者において、動作補助装置10の装着により上下動作回数が増加した。増加幅が最も大きかった被験者では上下動作回数が2.0倍となった。このことにより、動作補助装置10は動的動作を支援できることがわかる。
 このように、本実施形態によれば、上肢支援装置100の肩関節と肘関節との間に中間関節を設け、リンク構造に冗長自由度を持たせている。また、肩関節の水平関節部111を肩後方に設け、上肢を挙上する際の肩関節位置の上昇が妨げられないようにしている。そのため、上肢支援装置100の装着時においても装着者の上半身の自由度を確保することができる。
 中間関節を設けることにより、装着者と上肢支援装置100の関節の回転軸が一致していなくても、関節間の位置関係のずれが吸収される。また、肩フレーム106には肩幅調整機構が設けられている。そのため、上肢支援装置100は、装着者間の体格差に対応することができる。
 上肢支援装置100の矢状面関節には駆動モータが設けられており、この駆動モータからアシスト力を付与することで、抗重力作業の作業効率を向上させることができる。
 また、上肢支援装置100と腰部補助装置200とを組み合わせることで、上肢支援装置100から腰部に伝達される支援力の反力を打ち消し、装着者の腰部への負担を軽減することができる。
 上記実施形態における上肢支援装置100の各フレームを構成するCFRP部材のプリプレグ積層構成は、シミュレーションによる強度解析結果から求めてもよい。上肢支援装置100の関節部分や肩フレーム106に設けられる金属パーツは、超々ジュラルミンや炭素鋼等の等方性材料を用いるため、ソリッドモデルによる解析を行う。各フレームを構成するCFRPは異方性材料であるため、複合シェル解析が可能なサーフェスモデルによる解析を行う。複合シェル解析では、複合材料の繊維方向や積層構成を考慮した解析が可能である。サーフェスモデルは厚みがゼロのモデルであるため、アセンブリ状態で解析できない場合がある。その時は部品単一、もしくは解析結果に関わる最低限の部品のアセンブリモデルにより解析を行う。
 部品に発生した応力が、その部品の許容応力を超えた時、部品は破壊される。部品に生じている応力が、許容応力に対してどの程度余裕をもつかを表す指標を、安全率と呼ぶ。安全率が1の場合、許容応力と部品に発生した応力が等しい状態であり、部品は破壊されない。構造部材の安全率は、捻り荷重を考慮した上で,2以上となるように設計する。
 等方性材料の破壊判定の基準には、最大von Mises応力(ミーゼス応力)を使用する。最大von Mises応力は、複数の方向からの複合的な荷重により発生した応力を、1方向の引張り又は圧縮応力へ投影したものでる。異方性材料であるCFRPの破壊判定には、Tsai-Wu則を使用する。Tsai-Wu側では、圧縮と引張りの許容応力を分けて安全率の導出を行うことができる。繊維方向に応じて圧縮と引張りの許容応力が変わるCFRPの解析に適した判定基準である。
 強度解析は、設計したリンク構造が、想定した負荷に対して十分な強度を持つか確認するものである。リンク構造の姿勢は、上腕を135[deg]まで挙上して前腕を地面対して垂直にしてツールを把持した場合と、腹部前面でツールを把持した場合の2種類とする。矢状面上で装着者の股関節から見たモーメント長は、挙上時で140[mm]、腹部前面保持時で200[mm]となる。荷重は、使用するツールの最大重量から片腕150[N]、両腕で300[N]とし、前腕と上腕を介して機構に伝達されるとする。部分的なアセンブリの解析では,構造上拘束をうけると考えられる箇所を固定する。そしてシミュレーションソフトのリモート荷重機能により、全体アセンブリ状態で解析した場合に相当する荷重を与える。シミュレーションにより全てのパーツの安全率を算出し、これらが所定値以上となるように、CFRPのプリプレグ積層構成を決定する。
 なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形してもよい。また、上記実施形態に開示されている複数の構成要素を適宜組み合わせてもよいし、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2014年6月13日付で出願された日本特許出願2014-122483に基づいており、その全体が引用により援用される。
10 動作補助装置
100 上肢支援装置
102 腰フレーム
104 垂直フレーム
106 肩フレーム
110 第1腕フレーム
120 第2腕フレーム
141~146 駆動モータ
200 腰部補助装置
201、202 駆動モータ

Claims (12)

  1.  装着者の上肢に装着されるフレームと、
     前記フレームの各関節に設けられた駆動部と、
     前記装着者の生体電位信号を検出する生体信号検出部と、
     各関節の角度を検出する関節角度検出部と、
     前記生体電位信号及び前記関節角度に基づいて前記駆動部を制御する制御部と、
     を備え、
     前記フレームは、
     上下方向に延びる垂直フレームと、
     前記垂直フレームの上端より肩幅方向に横架された肩フレームと、
     一端が前記肩フレームの端部に肩関節部を介して連結された第1腕フレームと、
     一端が前記第1腕フレームの他端に中間関節部を介して連結され、他端が肘関節部に接続された第2腕フレームと、
     を有し、
     前記肩関節部、前記中間関節部、及び前記肘関節部に前記駆動部が設けられていることを特徴とする装着式動作補助装置。
  2.  前記肩関節部は、水平関節及び矢状面関節を有し、該矢状面関節に前記駆動部が設けられ、該水平関節は受動関節であることを特徴とする請求項1に記載の装着式動作補助装置。
  3.  前記肩関節部の前記水平関節は前記矢状面関節よりも後方に設けられていることを特徴とする請求項2に記載の装着式動作補助装置。
  4.  前記矢状面関節の回転軸が矢状面と垂直になるように、ワイヤを介して前記水平関節にバネ張力が与えられることを特徴とする請求項2又は3に記載の装着式動作補助装置。
  5.  前記中間関節部は、水平関節及び矢状面関節を有し、該矢状面関節に前記駆動部が設けられ、該水平関節は受動関節であることを特徴とする請求項1乃至4のいずれかに記載の装着式動作補助装置。
  6.  前記肘関節部は矢状面関節を有し、該矢状面関節に前記駆動部が設けられていることを特徴とする請求項1乃至5のいずれかに記載の装着式動作補助装置。
  7.  装着者の上腕にあてがわれる第1カフ及び前腕にあてがわれる第2カフが前記肘関節部に連結されていることを特徴とする請求項6に記載の装着式動作補助装置。
  8.  前記第1腕フレームは、一端が前記肩関節部に連結された上側長辺リンク及び下側長辺リンクと、両端が該上側長辺リンク及び該下側長辺リンクの他端に連結された短辺リンクを有し、平行リンク機構をなすことを特徴とする請求項1乃至7のいずれかに記載の装着式動作補助装置。
  9.  前記上側長辺リンクは下側に湾曲した形状を有し、前記下側長辺リンクはストレート形状を有することを特徴とする請求項8に記載の装着式動作補助装置。
  10.  前記肩フレームの肩幅は調整可能となっていることを特徴とする請求項1乃至9のいずれかに記載の装着式動作補助装置。
  11.  装着者の腰に装着される腰フレームと、
     一端が前記腰フレームに連結された下肢フレームと、
     前記下肢フレームの他端の股関節部に設けられ、前記制御部により制御される下肢駆動部と、
     前記下肢駆動部に連結され、装着者の大腿部にあてがわれる第3カフと、
     をさらに備えることを特徴とする請求項1乃至10のいずれかに記載の装着式動作補助装置。
  12.  前記制御部は、
     前記生体電位信号の信号処理を行い、信号処理後の生体電位信号に応じた動力を前記駆動部に発生させるための随意指令信号を生成する随意制御手段と、
     各フレームの長さ、各関節に連結されたフレーム同士の相対角度、各フレームの重量、各関節の重量、各関節の粘性係数、及び重力加速度に基づいて、重力補償及び粘性補償を行う動力を前記駆動部に発生させるための自律指令信号を生成する自律制御手段と、
     前記随意指令信号及び前記自律指令信号を合成して合成指令信号を生成する合成手段と、
     を有し、
     前記駆動部は、前記合成指令信号に基づいて生成された駆動電流により駆動することを特徴とする請求項1乃至11のいずれかに記載の装着式動作補助装置。
PCT/JP2015/067035 2014-06-13 2015-06-12 装着式動作補助装置 WO2015190599A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/318,243 US10265857B2 (en) 2014-06-13 2015-06-12 Wearing-type movement assistance device
EP15806572.2A EP3156193B1 (en) 2014-06-13 2015-06-12 Worn movement assistance device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014122483A JP6358427B2 (ja) 2014-06-13 2014-06-13 装着式動作補助装置
JP2014-122483 2014-06-13

Publications (1)

Publication Number Publication Date
WO2015190599A1 true WO2015190599A1 (ja) 2015-12-17

Family

ID=54833682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067035 WO2015190599A1 (ja) 2014-06-13 2015-06-12 装着式動作補助装置

Country Status (4)

Country Link
US (1) US10265857B2 (ja)
EP (1) EP3156193B1 (ja)
JP (1) JP6358427B2 (ja)
WO (1) WO2015190599A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105598949A (zh) * 2016-02-29 2016-05-25 江苏常工动力机械有限公司 助力式机械臂及其工作方法
CN106493714A (zh) * 2016-12-16 2017-03-15 江苏大学 一种外骨骼搬运助力机器人
JP2017113840A (ja) * 2015-12-24 2017-06-29 株式会社ジェイテクト アシスト装置
CN107788719A (zh) * 2017-09-15 2018-03-13 安徽智柜科技发展有限公司 一种带有智能pad的医院用多功能智能床头柜
JP2019501785A (ja) * 2015-12-24 2019-01-24 サフラン・エレクトロニクス・アンド・デファンス 外骨格構造用のショルダーモジュール
WO2020093480A1 (zh) * 2018-11-08 2020-05-14 江苏昱博自动化设备有限公司 一种助力机械手
CN113018108A (zh) * 2021-04-16 2021-06-25 长春工业大学 一种五自由度上肢外骨骼康复机器人
US11181175B2 (en) * 2019-05-17 2021-11-23 Honda Motor Co., Ltd. Link mechanism, control device and control method thereof

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI126770B (fi) * 2016-04-04 2017-05-15 David Health Solutions Ltd Kuntoutuslaite ja sen käyttö olkapään alueen harjoittamiseen
US9827678B1 (en) * 2016-05-16 2017-11-28 X Development Llc Kinematic design for robotic arm
US9827677B1 (en) * 2016-05-16 2017-11-28 X Development Llc Robotic device with coordinated sweeping tool and shovel tool
JP6560157B2 (ja) * 2016-05-27 2019-08-14 公立大学法人前橋工科大学 パワーアシスト装置
MX2019004640A (es) * 2016-10-21 2019-09-18 Skel Ex Holding B V Soporte de equilibrio de fuerzas, aparato mecánico y dispositivo de soporte ponible.
JP6759356B2 (ja) * 2016-11-28 2020-09-23 国立大学法人 香川大学 筋力補助装置
WO2018161196A1 (zh) * 2017-03-05 2018-09-13 肖丽芳 一种新型家庭服务机器人机构
CN106903674B (zh) * 2017-04-07 2019-08-13 温州职业技术学院 一种可穿戴的上肢外骨骼助力装置
JP6925850B2 (ja) * 2017-04-21 2021-08-25 三菱重工業株式会社 パワーアシストスーツ
JP2018187709A (ja) 2017-05-02 2018-11-29 株式会社イノフィス 腕腰補助装置
DE102017112436B4 (de) 2017-06-06 2019-05-29 Ottobock Se & Co. Kgaa Vorrichtung zum Unterstützen wenigstens eines Armes eines Benutzers
GB2567010A (en) 2017-10-02 2019-04-03 Univ Strathclyde Apparatus for the rehabilitation, assistance and/or augmentation of arm strength in a user
FR3072598B1 (fr) * 2017-10-24 2019-11-22 Safran Electronics & Defense Structure d'exosquelette adapte a l'epaule
US11318626B1 (en) * 2018-03-02 2022-05-03 Empower Robotics Corporation Compliant joint for a robotic arm
WO2019183397A1 (en) * 2018-03-21 2019-09-26 Polygerinos Panagiotis Assisted lifting devices
JP6820295B2 (ja) * 2018-07-20 2021-01-27 ナブテスコ株式会社 筋力補助装置
JP2020011364A (ja) * 2018-07-20 2020-01-23 ナブテスコ株式会社 筋力補助装置
CN108839000B (zh) * 2018-08-10 2021-04-20 哈尔滨工业大学 上肢助力外骨骼机器人
DE102018119755A1 (de) 2018-08-14 2020-02-20 Ottobock Se & Co. Kgaa Vorrichtung zum Unterstützen wenigstens eines Armes eines Benutzers
EP3840700A1 (de) * 2018-08-22 2021-06-30 exoIQ GmbH System und verfahren zur reduktion von auf einen arm eines menschen wirkenden kräften
DE102018127553B4 (de) 2018-11-05 2020-11-05 Ottobock Se & Co. Kgaa Vorrichtung zum Unterstützen wenigstens eines Armes eines Benutzers
KR102673299B1 (ko) * 2019-02-19 2024-06-10 현대자동차주식회사 구동 메커니즘과 이를 구비한 서비스 로봇
CN109806107A (zh) * 2019-02-22 2019-05-28 广州哈罗博康复机器人生产有限公司 康复系统
US11491072B2 (en) * 2019-04-04 2022-11-08 Hyundai Motor Company Wearable apparatus for assisting muscular strength
KR102142570B1 (ko) 2019-04-04 2020-08-10 현대자동차(주) 착용식 근력 보조 장치의 상완 모듈 및 이를 포함한 착용식 근력 보조 장치
WO2020235704A1 (ko) * 2019-05-21 2020-11-26 엘지전자 주식회사 액션 로봇
CN110181489A (zh) * 2019-06-25 2019-08-30 知因(台州)机器人科技有限公司 人体上半身外骨骼的调节底盘支架及人体上半身外骨骼
US11633848B2 (en) 2019-07-31 2023-04-25 X Development Llc Independent pan of coaxial robotic arm and perception housing
KR20210065278A (ko) * 2019-11-26 2021-06-04 현대자동차주식회사 착용식 근력 보조 장치
CN111000699B (zh) * 2019-12-26 2022-03-04 中国科学院宁波工业技术研究院慈溪生物医学工程研究所 一种刚柔混合式上肢辅助运动装置
CN112057298B (zh) * 2020-09-22 2023-03-14 岳池县人民医院 一种手臂骨折术后康复装置
EP4067009B1 (de) 2021-03-31 2023-09-06 Ottobock SE & Co. KGaA Vorrichtung zum unterstützen wenigstens eines oberarms
DE102021209406A1 (de) * 2021-08-26 2023-03-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Trageunterstützungssystem
TWI783841B (zh) * 2021-12-28 2022-11-11 國家中山科學研究院 穿戴式輔助支撐裝置
CN114768194B (zh) * 2022-04-02 2023-08-11 郑州大学 一种可穿戴式康复训练监控系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013052192A (ja) * 2011-09-06 2013-03-21 Wakayama Univ パワーアシストロボット装置およびその制御方法
JP2014503320A (ja) * 2011-01-18 2014-02-13 レヴィテイト テクノロジーズ,インコーポレイテッド 適応型アームサポートシステムおよび使用方法
WO2014024506A1 (ja) * 2012-08-08 2014-02-13 株式会社クボタ 姿勢保持具

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995032842A2 (en) 1994-05-19 1995-12-07 Exos, Inc. Sensory feedback exoskeleton armmaster
US7862524B2 (en) * 2006-03-23 2011-01-04 Carignan Craig R Portable arm exoskeleton for shoulder rehabilitation
US20080009771A1 (en) * 2006-03-29 2008-01-10 Joel Perry Exoskeleton
JP4585542B2 (ja) 2007-05-31 2010-11-24 博 宇土 上肢挙上作業用支援装置
KR101393290B1 (ko) * 2007-09-27 2014-05-09 고쿠리쯔 다이가쿠 호징 츠쿠바 다이가쿠 회동 조정 장치 및 회동 장치의 제어 방법
EP2337527A1 (en) * 2008-08-28 2011-06-29 Raytheon Sarcos, LLC A biomimetic mechanical joint
JP2012501739A (ja) * 2008-09-04 2012-01-26 アイウォーク・インコーポレーテッド ハイブリッド型地形適応下肢システム
KR101065420B1 (ko) 2008-12-16 2011-09-16 한양대학교 산학협력단 상지거동을 위한 착용형 로봇장치
US9844447B2 (en) * 2010-04-09 2017-12-19 Deka Products Limited Partnership System and apparatus for robotic device and methods of using thereof
FR2993811A1 (fr) 2012-07-26 2014-01-31 Pierre Andre Davezac Exosquelette a bras mecaniques isoelastiques motorises
US9308642B2 (en) * 2013-01-16 2016-04-12 Arizona Board Of Regents On Behalf Of Arizona State University Systems and methods for adding or subtracting energy to body motion
US20160023350A1 (en) * 2013-03-15 2016-01-28 Springactive, Inc. Gravitational Load Support System
US9662262B2 (en) * 2013-05-06 2017-05-30 Springactive, Inc. Joint torque augmentation system and method for gait assistance
US9474634B2 (en) * 2013-10-22 2016-10-25 Massachusetts Institute Of Technology Peripheral neural interface via nerve regeneration to distal tissues
KR102194861B1 (ko) * 2013-11-15 2020-12-24 삼성전자주식회사 관절 보호장치 및 그 제어 방법
EP3133998B1 (en) * 2014-04-21 2019-07-03 The Trustees of Columbia University in the City of New York Human movement research, therapeutic, and diagnostic devices, methods, and systems
US10639185B2 (en) * 2014-04-25 2020-05-05 The Trustees Of Columbia University In The City Of New York Spinal treatment devices, methods, and systems
DE112016004971T5 (de) * 2015-10-30 2018-08-02 Ekso Bionics, Inc. Menschliche Exoskelett-Vorrichtungen für schwere Werkzeug-Stützung und Verwendung
KR102395796B1 (ko) * 2015-11-06 2022-05-10 삼성전자주식회사 동력 전달 모듈 및 이를 포함하는 운동 보조 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014503320A (ja) * 2011-01-18 2014-02-13 レヴィテイト テクノロジーズ,インコーポレイテッド 適応型アームサポートシステムおよび使用方法
JP2013052192A (ja) * 2011-09-06 2013-03-21 Wakayama Univ パワーアシストロボット装置およびその制御方法
WO2014024506A1 (ja) * 2012-08-08 2014-02-13 株式会社クボタ 姿勢保持具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3156193A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017113840A (ja) * 2015-12-24 2017-06-29 株式会社ジェイテクト アシスト装置
JP2019501785A (ja) * 2015-12-24 2019-01-24 サフラン・エレクトロニクス・アンド・デファンス 外骨格構造用のショルダーモジュール
CN105598949A (zh) * 2016-02-29 2016-05-25 江苏常工动力机械有限公司 助力式机械臂及其工作方法
CN106493714A (zh) * 2016-12-16 2017-03-15 江苏大学 一种外骨骼搬运助力机器人
CN106493714B (zh) * 2016-12-16 2019-01-08 江苏大学 一种外骨骼搬运助力机器人
CN107788719A (zh) * 2017-09-15 2018-03-13 安徽智柜科技发展有限公司 一种带有智能pad的医院用多功能智能床头柜
WO2020093480A1 (zh) * 2018-11-08 2020-05-14 江苏昱博自动化设备有限公司 一种助力机械手
US11181175B2 (en) * 2019-05-17 2021-11-23 Honda Motor Co., Ltd. Link mechanism, control device and control method thereof
CN113018108A (zh) * 2021-04-16 2021-06-25 长春工业大学 一种五自由度上肢外骨骼康复机器人

Also Published As

Publication number Publication date
EP3156193A4 (en) 2018-02-21
JP6358427B2 (ja) 2018-07-18
US20170144309A1 (en) 2017-05-25
JP2016002123A (ja) 2016-01-12
EP3156193A1 (en) 2017-04-19
US10265857B2 (en) 2019-04-23
EP3156193B1 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
JP6358427B2 (ja) 装着式動作補助装置
Hyun et al. A light-weight passive upper arm assistive exoskeleton based on multi-linkage spring-energy dissipation mechanism for overhead tasks
US20210007875A1 (en) Trunk supporting exoskeleton and method of use
Mao et al. Human movement training with a cable driven arm exoskeleton (CAREX)
Celebi et al. AssistOn-Knee: A self-aligning knee exoskeleton
Nef et al. ARMin III–arm therapy exoskeleton with an ergonomic shoulder actuation
US8800366B2 (en) Robotic exoskeleton for limb movement
Galiana et al. Wearable soft robotic device for post-stroke shoulder rehabilitation: Identifying misalignments
EP3402444B1 (en) System and device for guiding and detecting motions of 3-dof rotational target joint
US7601104B2 (en) Passive gravity-balanced assistive device for sit-to-stand tasks
Davenport et al. Design and biomechanical analysis of supernumerary robotic limbs
US20140213951A1 (en) Robotic gait rehabilitation training system with orthopedic lower body exoskeleton for torque transfer to control rotation of pelvis during gait
WO2015199086A1 (ja) 動作再現システム及び動作再現装置
EP3134038A2 (en) Spinal treatment devices, methods, and systems
CN110678157A (zh) 机电机器人操作器装置
Lovasz et al. Design and control solutions for haptic elbow exoskeleton module used in space telerobotics
CN106074073B (zh) 一种下肢康复机器人的控制系统及康复训练策略
KR101435514B1 (ko) 회전조인트에서의 토크를 측정하여 사용자의 동작의도를 추정하는 근력증강로봇 및 그 제어방법
Saccares et al. A novel human effort estimation method for knee assistive exoskeletons
Beekhuis et al. Design of a self-aligning 3-DOF actuated exoskeleton for diagnosis and training of wrist and forearm after stroke
CN114746050A (zh) 用于引导目标关节的运动的系统
Chien et al. Design of an adaptive exoskeleton for safe robotic shoulder rehabilitation
Cai et al. Design of self-adjusting orthoses for rehabilitation
Gu et al. Upper-limb assistive device for the elderly at home
Reichenfelser et al. Modular instrumented arm orthosis with weight support for application with NMES

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15806572

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015806572

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15318243

Country of ref document: US

Ref document number: 2015806572

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE