JP2017113840A - アシスト装置 - Google Patents

アシスト装置 Download PDF

Info

Publication number
JP2017113840A
JP2017113840A JP2015252042A JP2015252042A JP2017113840A JP 2017113840 A JP2017113840 A JP 2017113840A JP 2015252042 A JP2015252042 A JP 2015252042A JP 2015252042 A JP2015252042 A JP 2015252042A JP 2017113840 A JP2017113840 A JP 2017113840A
Authority
JP
Japan
Prior art keywords
output link
assist device
variable
stiffness
acceleration sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015252042A
Other languages
English (en)
Other versions
JP6569518B2 (ja
Inventor
太田 浩充
Hiromitsu Ota
浩充 太田
和義 大坪
Kazuyoshi Otsubo
和義 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2015252042A priority Critical patent/JP6569518B2/ja
Priority to CN201611199184.4A priority patent/CN106926218A/zh
Priority to DE102016125317.0A priority patent/DE102016125317A1/de
Priority to US15/388,214 priority patent/US20170181917A1/en
Publication of JP2017113840A publication Critical patent/JP2017113840A/ja
Application granted granted Critical
Publication of JP6569518B2 publication Critical patent/JP6569518B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manipulator (AREA)

Abstract

【課題】高効率でアシスト作業を行なえるようにするとともに、消費電力を抑えることを目的とする。【解決手段】本発明のアシスト装置10は、身体装着具14と、弾性体24を備え、剛性を変えられるように構成された可変剛性機構20と、出力リンク30と、可変剛性機構20の見かけの剛性を変化させるモータ40と、出力リンク30の回動角度を検出する角度検出手段43と、人が物体から質量を受ける位置と出力リンク30の回動中心間の距離を測定する距離測定手段と、検出角度と測定距離とに基づいてモータ40を制御する制御装置とを有しており、制御装置は、人の負荷が軽減されるように、モータ40を制御して可変剛性機構20の見かけの剛性を変化させる。【選択図】図3

Description

本発明は、人の作業等をアシストするアシスト装置に関する。
例えば、人の歩行等をアシストするアシスト装置が特許文献1、2等に記載されている。特許文献1に記載の片脚式歩行支援機は、人の腰に装着される腰装着部と、大腿リンク部と、下腿リンク部とを備えており、前記下腿リンク部が人の下腿部に装着される構成である。前記大腿リンク部の上部は、前記腰装着部に対して上下回動可能に連結されており、前記腰装着部と前記大腿リンク部との間に、前記大腿リンク部に対して回転トルクを付与するためのトルク発生装置が設けられている。即ち、前記トルク発生装置の回転トルクが前記大腿リンク部に加わることで、歩行支援が行なわれる。前記トルク発生装置は、圧縮バネと、カム及びカムフォロアとの働きにより、前記大腿リンク部に対して回転トルクを付与できるように構成されている。また、前記トルク発生装置は、工具を使用して圧縮バネの圧縮量(バネ力)を調整できるように構成されている。
特開2013−236741号公報 特開2013−173190号公報
上記した片脚式歩行支援機では、工具を使用してトルク発生装置の圧縮バネの圧縮量を調整する構成のため、歩行途中に前記大腿リンク部の回動角度に応じて圧縮バネのバネ力を調整することはできない。このため、高効率で歩行アシストを行なうのは難しい。
特許文献2に記載のアシスト装置は、モータ等のトルク発生装置による回転トルクが大腿リンク部等に加わることで、人の動作をアシストできるように構成されている。このように、トルク発生装置としてモータ等を使用する構成では、負荷が大きい場合に大きな出力のモータ等が必要になり、消費電力を抑えるのが難しい。
本発明は、上記問題点を解決するためになされたものであり、本発明が解決しようとする課題は、高効率でアシスト作業を行なえるようにするとともに、消費電力を抑えることである。
上記した課題は、各請求項の発明によって解決される。請求項1の発明は、身体に装着される身体装着具と、弾性体を備え、剛性を変えられるように構成された可変剛性機構と、人の関節に対応する前記身体装着具の所定位置に前記可変剛性機構を介して回動中心部が連結されており、回動自由端側が前記関節を中心に回動する身体の一部に装着される出力リンクと、前記出力リンクから見た前記可変剛性機構の見かけの剛性を変化させる剛性可変アクチュエータと、前記出力リンクの回動角度を検出する角度検出手段と、人が物体から質量を受ける位置と、前記出力リンクの回動中心間の距離を測定する距離測定手段と、前記角度検出手段による検出角度と前記距離測定手段による測定距離とに基づいて前記剛性可変アクチュエータを制御する制御装置とを有しており、前記制御装置は、人の負荷が軽減されるように、前記剛性可変アクチュエータを制御して前記出力リンクから見た前記可変剛性機構の見かけの剛性を変化させる。
本発明によると、制御装置は、出力リンクの回動角度と、人が物体から質量を受ける位置と前記出力リンクの回動中心間の測定距離とに基づいて、剛性可変アクチュエータを制御する。そして、制御装置は、剛性可変アクチュエータを制御することで、人の負荷が軽減されるように出力リンクから見た可変剛性機構の見かけの剛性を変化させる。これにより、出力リンクには、可変剛性機構の見かけの剛性に対応した弾性力によって生じるアシストトルクが加わるようになる。即ち、制御装置は、アシスト装置の動作中に剛性可変アクチュエータにより出力リンクから見た可変剛性機構の見かけの剛性を変化させることができる。このため、手動で弾性体の剛性を調整する従来のアシスト装置と比較して、高効率でアシスト作業を行なえるようになる。また、可変剛性機構の見かけの剛性を変化させて出力リンクに加わるアシストトルクを制御する構成のため、モータによる回転トルクを出力リンクの回動方向に付加する従来のアシスト装置と比較して消費電力を抑えることができる。
請求項2の発明によると、距離測定手段は、人が物体から質量を受ける位置に装着される第1の加速度センサと、出力リンクの回動中心に取付けられた第2の加速度センサと、前記第1の加速度センサと前記第2の加速度センサとの検出値に基づいて、前記第1の加速度センサと前記第2の加速度センサ間の距離を演算する演算手段とを有している。このため、出力リンクの回動中心から人が物体から質量を受ける位置までの距離をアシスト作業中に連続して測定できる。
請求項3の発明によると、可変剛性機構の弾性体は、出力リンクの回動中心と同軸に設けられた渦巻きバネであり、前記渦巻きバネの一端側は、前記剛性可変アクチュエータ側に連結され、前記渦巻きバネの他端側は、前記出力リンク側に連結されており、前記剛性可変アクチュエータは、前記渦巻きバネの一端側の回転角度を変えることで前記出力リンクから見た前記可変剛性機構の見かけの剛性を変える。このため、出力リンクから見た可変剛性機構の見かけの剛性を変えるための制御が比較的容易になる。
請求項4の発明によると、渦巻きバネと出力リンクとの間には、前記渦巻きバネの他端側の回動角度に対し、前記出力リンクの回動角度を所定比率で小さく保持する減速機が設けられている。
請求項5の発明によると、第1の加速度センサを人の手首に装着する手首装着具を備えている。このため、第1の加速度センサを人が物体から質量を受ける位置に確実に保持できる。
請求項6の発明によると、出力リンクの回動中心が人の肩関節に対応する位置に保持され、前記出力リンクの回動自由端側が上腕部に装着される。このため、上腕部を持ち上げる際の負荷が軽減される。
請求項7発明によると、出力リンクの回動中心が人の股関節に対応する位置に保持され、前記出力リンクの回動自由端側が大腿部に装着される。このため、荷物等の持ち上げ動作で人が中腰から立ち上り動作の負荷が軽減される。
本発明によると、高効率でアシスト作業を行なえるようになる。また、消費電力も抑えることができる。
本発明の実施形態1に係るアシスト装置の使用状態を表わす模式側面図である。 前記アシスト装置の出力リンクと可変剛性機構等を表す模式平面図(図1のII-II矢視図)である。 前記アシスト装置の出力リンクと可変剛性機構等を表わす模式分解斜視図である。 前記アシスト装置の配線ブロック図である。 前記アシスト装置の使用状態を表わす模式側面図である。 前記アシスト装置の出力リンク等を表わす模式拡大図である。 前記アシスト装置の可変剛性機構等を表わす分解斜視図である。 本発明の実施形態2に係るアシスト装置の使用状態を表わす模式側面図である。 前記アシスト装置の使用状態において仮想質量mと慣性モーメントJとを演算するために使用される側面図である。
[実施形態1]
以下、図1から図7に基づいて本発明の実施形態1に係るアシスト装置10について説明する。本実施形態に係るアシスト装置10は、人が荷物Wを持ち上げる際に、上腕部の上回動をアシストする装置である。ここで、図中に示すx方向、y方向、及びz方向は、アシスト装置10を装着した人の前方向、上方向、及び左方向に対応している。
<アシスト装置10の概要について>
アシスト装置10は、図1に示すように、人の上体に装着される上体装着具12と、前記上体装着具12の背面上部に設けられた支持架台部14とを備えている。支持架台部14は、図2に示すように、上体装着具12の背面上部で左右に延びるように設けられた横梁部14zと、その横梁部14zの左右両側で前記横梁部14zに対してほぼ直角に設けられた側板部14xとを備えている。そして、支持架台部14の側板部14xには、図2に示すように、人の肩関節に対応する位置、即ち、人の肩関節とxy方向においてほぼ同位置に軸受孔14jが形成されている。
前記支持架台部14の横梁部14zと側板部14xとの左右の角部内側には、図2に示すように、左右一対の可変剛性機構20(後記する)が設けられている。前記可変剛性機構20は、z方向に沿って設けられており、その可変剛性機構20の入力軸22eが支持架台部14の側板部14xの軸受孔14jに挿通されている。可変剛性機構20の入力軸22eには、支持架台部14の側板部14xの外側に固定されたモータ40の回転軸41が同軸に連結されている。即ち、可変剛性機構20は、入力軸22eの軸心を中心に回動可能な状態で支持架台部14に支持されている。
また、可変剛性機構20の出力回転軸26pには、図2、図3に示すように、棒状の出力リンク30の基端部(回動中心部)が相対回転不能な状態で連結されている。即ち、出力リンク30の回動中心部は、人の肩関節に対応する支持架台部14の軸受孔14jの位置に可変剛性機構20を介して上下回動可能な状態で連結されている。出力リンク30は、人の上腕部の外側面に沿って配置されるリンクであり、その出力リンク30の先端側(回動自由端側)が上腕装着具35によって人の上腕部に装着されるように構成されている。即ち、上記した上体装着具12と支持架台部14とが本発明における身体装着具に相当する。
出力リンク30の回動中心部には、図2、図3等に示すように、出力リンク30の回動角度を検出する角度検出器43と、第2加速度センサ46とが取付けられている。また、アシスト装置10は、図1に示すように、手首装着具37を備えており、その手首装着具37に第1加速度センサ44が取付けられている。さらに、アシスト装置10は、図1等に示すように、上体装着具12の背面に取付けられる制御ボックス50を備えている。
<可変剛性機構20について>
可変剛性機構20は、出力リンク30から見た見かけの剛性を変えられるように構成された機構であり、図3に示すように、入力部22と、渦巻きバネ24と、減速機26とを備えている。入力部22は、前記モータ40の回転を渦巻きバネ24に伝達するための部分である。入力部22は、モータ40の回転軸41が相対回転不能な状態で連結される入力軸22eと、その入力軸22eと同軸に設けられた円板部22rと、入力軸22eの反対側で円板部22rの周縁に設けられたトルク伝達軸22pとを備えている。そして、入力部22のトルク伝達軸22pが渦巻きバネ24の外周側バネ端部24eに連結されている。
可変剛性機構20の渦巻きバネ24は、図3に示すように、帯状の板バネを渦巻状に成形したバネであり、中心側と外周側にバネ端部24y,24eを備えている。渦巻きバネ24は、中心側バネ端部24yに対する外周側バネ端部24eの回動角度を変えることでバネ力を調整できるように構成されている。ここで、前記渦巻きバネ24のバネ定数は、例えば、k1に設定されている。上記したように、渦巻きバネ24の外周側バネ端部24eは、入力部22のトルク伝達軸22pに相対回転不能な状態で連結されている。また、渦巻きバネ24の中心側バネ端部24yは、減速機26の入力回転軸26eに相対回転不能な状態で連結されている。ここで、入力部22と減速機26の入力回転軸26eとは同軸に保持されている。即ち、前記渦巻きバネ24が本発明の弾性体に相当する。
減速機26は、渦巻きバネ24のバネ力に起因する回転トルクを増幅して出力リンク30に伝達する部材である。減速機26は、入力回転軸26eと、出力回転軸26pと、入力回転軸26eと出力回転軸26p間に設けられたギヤ機構(図示省略)等とを備えている。減速機26の入力回転軸26eと出力回転軸26pとは同軸に保持されており、入力回転軸26eがn回転することで、出力回転軸26pが1回転するように構成されている。また、減速機26のトルク伝達効率はηに設定されている。
減速機26の出力回転軸26pの中心には、図3に示すように、出力リンク30の回転中心ピン(図示省略)が嵌合される位置決め孔26uが形成されている。さらに、出力回転軸26pの位置決め孔26uの周囲には、出力リンク30の回り止めピン31が挿入される回り止め孔26kが形成されている。これにより、出力リンク30は、減速機26の出力回転軸26pと一体で回転できるようになる。
<制御ボックス50について>
制御ボックス50は、図1に示すように、上体装着具12の背面に取付けられるボックスである。制御ボックス50には、図4に示すように、コントローラユニット52とドライバユニット54と電源ユニット56とが収納されている。コントローラユニット52は、モータ40の回転角度を制御するユニットである。ドライバユニット54は、モータ40を駆動させるユニットであり、コントローラユニット52からの信号に基づいて動作する。電源ユニット56は、コントローラユニット52とドライバユニット54に対して電力を供給するユニットである。
コントローラユニット52には、図4に示すように、手首に装着される第1加速度センサ44と、出力リンク30の回動中心部に取付けられた第2加速度センサ46との信号が入力される。コントローラユニット52は、第1加速度センサ44と第2加速度センサ46の検出値のx成分を二重積分して差をとることで、出力リンク30の回動中心部と手首間のx方向の距離L(図5参照)を演算する。また、コントローラユニット52には、出力リンク30の回動角度θを検出する角度検出器43の信号が入力される。さらに、コントローラユニット52には、ドライバユニット54からモータ40の負荷電流Iの信号が入力される。コントローラユニット52は、モータ40の負荷電流Iの信号から人が持つ荷物Wの質量mW等を演算する。なお、ドライバユニット54等には、負荷電流Iの測定用のセンサ等が設けられており、前記負荷電流Iの測定が可能になっている。
コントローラユニット52は、出力リンク30の回動中心部と手首間の距離Lと、出力リンク30の回動角度θと、荷物Wの質量mW等の値に基づいて、人の作業負荷が最小になるように、モータ40の回転角度θ1を制御する。モータ40の回転軸41が角度θ1だけ回転すると、図7等に示すように、可変剛性機構20の渦巻きバネ24の外周側バネ端部24eが同じく角度θ1だけ回転する。これにより、出力リンク30から見た可変剛性機構20の見かけの剛性kRが変化して、可変剛性機構20の出力回転軸26pから出力リンク30に加わる回転トルクτ(以下、アシストトルクτという)が制御される。
即ち、前記コントローラユニット52が本発明の制御装置に相当し、前記モータ40が本発明の剛性可変アクチュエータに相当する。また、第1加速度センサ44と第2加速度センサ46、及びコントローラユニット52が本発明の距離測定手段に相当し、コントローラユニット52が本発明の距離測定手段における演算手段に相当する。
<アシスト装置10におけるモータ40の回転角度θ1の演算手順について>
次に、上記したアシスト装置10においてモータ40の回転角度θ1を演算する手順について説明する。ここで、モータ40の回転角度θ1を演算するプログラムはコントローラユニット52のメモリ(図示省略)に格納されている。図5に示すように、人の上腕部の長さ寸法をL1とし、前腕部の長さ寸法をLとする。また、上腕部の質量をm1とし、前腕部の質量をmとする。これらの値は、コントローラユニット52に予め入力されている。この状態で、先ず、上腕部の角度、即ち、アシスト装置10の出力リンク30の角度(鉛直線に対する角度)θが角度検出器43により検出される。また、第1加速度センサ44と第2加速度センサ46との検出値のx成分に基づいて出力リンク30の回動中心と手首間のx方向の距離L(以下、トルク半径Lという)が演算される。即ち、トルク半径Lは[数1]の計算式に示すように、第1加速度センサ44の検出値x1と第2加速度センサ46の検出値x2とをそれぞれ二重積分して差を取ることで求められる。
Figure 2017113840
次に、モータ40の回転角度θ1を演算する準備として、手首の位置に集中的に加わる上腕部と前腕部とによる仮想質量mhを求める手順を説明する。図5に示すように、上腕部の角度をθ(角度検出器43の検出値)、前腕部の角度をθ2とすると、トルク半径Lは、上腕部の長さ寸法L1×sinθと前腕部の長さ寸法L×sinθ2との和で表わされる。即ち、L=L1×sinθ+L×sinθ2 このため、前腕部の角度θ2は、θ2=sin-1((L−L1×sinθ)÷L)で表わされる。
出力リンク30の回動中心に加わる重力による回転トルクをτGとすると、回転トルクτG=仮想質量mhg×トルク半径Lで表わされる。
また、前記回転トルクτGは、上腕部の肩関節から重心までの距離を1/2L1、前腕部の肘関節から重心までの距離を1/2Lとすると、m1g×1/2L1×sinθと、mg×(L1×sinθ+1/2L×sinθ2)との和で表わされる。したがって、前記仮想質量mhは、
h=(m1×1/2L1×sinθ+m×(L1×sinθ+1/2L×sinθ2))÷Lで表わされる。
次に、モータ40の負荷電流Iから荷物Wの質量mWを求める手順を説明する。モータの発生トルクτMは、トルク定数をκとすると、
τM=トルク定数κ×負荷電流Iで表わされる。
また、荷物Wを持ち上げる際のモータの発生トルクτMは、上肢を持ち上げるための回転トルクτG=(仮想質量mhg×トルク半径L)と、荷物Wを持ち上げるための回転トルクτW=(荷物Wの質量mWg×トルク半径L)との和で表わされる。
このため、(荷物Wを持ち上げるための回転トルクτW)=(モータの発生トルクτM)−(上肢を持ち上げるための回転トルクτG)となる。
即ち、(荷物Wの質量mWg×トルク半径L)=(トルク定数κ×負荷電流I)−(仮想質量mhg×トルク半径L)となる。
したがって、荷物Wの質量mWは、mW=(κ×I−mhg×L)÷Lで表わされる。そして、手首に集中的に加わる質量mは、m=(仮想質量mh+荷物Wの質量mW)で表わされる。
次に、質量m1の上腕部と質量mの前腕部とを肩関節の周りに回転させた場合の慣性モーメントJを求める手順を説明する。上腕部の肩関節から重心までの距離を上腕部の長さ寸法L1の1/2と仮定する。同様に、前腕部の肘関節から重心までの距離を前腕部の長さ寸法L2の1/2と仮定する。このとき、肩関節中心を原点とする上腕部の重心の座標は次のようになる。
即ち、L1g=(L1gx,L1gy)=(1/2×L1×sinθ,−1/2×L1×cosθ)
ここで、L1gは、肩関節中心(原点)から上腕部の重心までの距離である。
また、肩関節中心を原点とする前腕部の重心の座標は次のようになる。
即ち、L2g=(L2gx,L2gy
=(L1×sinθ+1/2×L2×sinθ2,−L1×cosθ+1/2×L2×cosθ2
ここで、L2gは、肩関節中心(原点)から前腕部の重心までの距離である。
上腕部の重心の座標と前腕部の重心の座標とから上肢全体の重心の座標を表わすと次のようになる。即ち、上肢全体の重心の座標は、Lg=(Lgx,Lgy
=((m11gx+m2gx)/(m1+m),(m11gy+m2gy)/(m1+m))で表わされる。ここで、│Lg│を、肩関節中心(原点)から上肢全体の重心までの距離として、[数2]に示す式により求められる。
Figure 2017113840

肩関節周りの慣性モーメントJは、質量(m1+m)の一様な棒を回転させると仮定すれば、平行軸の定理により、次の式で表される。
慣性モーメントJ=1/12×(m1+m)×(2│Lg│)2+(m1+m)×(│Lg│)2
次に、モータ40の回転角度θ1を演算する手順を、図6、図7に基づいて、具体的に説明する。図6に示すように、出力リンク30の回動中心Cから手首(第1加速度センサ44)までのxy平面上の直線距離をL0とし、手首の位置に集中的に質量mが加わっているものとして以下の演算を行なう。質量mは、上記したように、m=(仮想質量mh+荷物Wの質量mW)である。この状態で、上腕部と出力リンク30とを上方に角度θだけ回動させる際に必要なトルクTを計算する。
肩関節周りの慣性モーメントJに起因するトルクは、[数3]に示す値となる。
Figure 2017113840

また、回動動作における人の粘性をdとすると、粘性dに起因するトルクは、[数4]に示す値となる。
Figure 2017113840

また、図7に示すように、出力リンク30から見た可変剛性機構20の見かけの剛性をkRとし、可変剛性機構20の出力回転軸26pが中立点θ0から角度θだけ回転した場合のトルクτは、τ=kR×(θ−θ0)で表わされる。なお、中立点θ0は可変剛性機構20がトルクを発生しない角度である。
さらに、質量mによるトルクは、mg×L0×sinθで表わされる。
このため、上腕部と出力リンク30とを上方に角度θだけ回動させる際に必要なトルクTは、[数5]に示す式で表される。
Figure 2017113840
次に、系のエネルギーEの総和を求める。
先ず、慣性モーメントJに起因するエネルギーは、[数6]に示す式で表される。
Figure 2017113840

また、可変剛性機構20の弾性エネルギーは、1/2×kR×(θ−θ02で表わされる。
さらに、位置エネルギーは、mg×L0×(1−cosθ)で表わされる。
このため、系のエネルギーEの総和は、[数7]に示す式で表される。
Figure 2017113840
次に、系のエネルギーEを最小にする条件を求める。系のエネルギーEが最小になる条件は、エネルギーEの時間による微分値が零になることである。このため、[数7]に示す式を微分する。[数7]の式を微分すると、[数8]に示す式となる。
Figure 2017113840

このため、系のエネルギーEを最小にする条件は、[数9]の式に示すようになる。
Figure 2017113840

そして、[数9]の式を整理して、可変剛性機構20の出力回転軸26pの中立点θ0を求めると、[数10]の式に示すようになる。
Figure 2017113840

即ち、中立点θ0を、[数10]の式に示す角度に調整することで、系のエネルギーEを最小にできる。即ち、人の作業負荷を最小にできる。
次に、出力リンク30から見た可変剛性機構20の見かけの剛性kR(以下、見かけの剛性kRという)を渦巻きバネ24の実際のバネ定数k1で表わす手順を説明する。ここで、最初に、中立点θ0が、原点(θ0=0)に保持されているものと仮定して演算を行なう。図7に示すように、減速機26の減速比がn:1であるため、出力リンク30、及び減速機26の出力回転軸26pが角度θだけ回転すると減速機26の入力回転軸26eはnθだけ回転する。このため、出力リンク30等が角度θだけ回転している状態で、減速機26の入力回転軸26eに加わるトルクτ1は、渦巻きバネ24のバネ定数k1×nθで表わされる。即ち、τ1=k1×nθとなる。また、減速機26の減速比がn:1、効率がηであるため、減速機26の出力回転軸26pに加わる回転トルクτは、τ=ηnτ1=ηn(k1×nθ)となる。減速機26の出力回転軸26pに加わる回転トルクτは、出力リンク30に加わるアシストトルクτであり、上記したようにτ=kRθで表わされる([数5]参照)。このため、可変剛性機構20の見かけの剛性kRは、kR=ηn21で表わされる。
次に、モータ40側から見た可変剛性機構20(渦巻きバネ24)の中立点をモータ40により角度θ1だけ回動させた場合を考える。この場合、出力リンク30等が角度θだけ回転している状態で、減速機26の入力回転軸26eに加わるトルクτ1は、τ1=k1×(nθ+θ1)で表わすことができる。このため、減速機26の出力回転軸26pに加わるアシストトルクτは、τ=ηnk1(nθ+θ1)=ηn21(1+θ1/nθ)×θで表わすことができる。したがって、可変剛性機構20の見かけの剛性kRは、kR=ηn21(1+θ1/nθ)となる。即ち、モータ40の回転角度θ1を制御することで可変剛性機構20の見かけの剛性kRを変化させ、アシストトルクτを制御することができる。
上記したように、モータ40側から見た可変剛性機構20の中立点を角度θ1だけ動かしているため、可変剛性機構20の出力回転軸26pの中立点θ0は、θ1=nθ0で表わされる。この式を、上記した見かけの剛性kRの式に代入すると、kR=ηn21(1+θ0/θ)となる。次に、この式を上記した[数10]の式に代入すると、次の[数11]の式が得られる。
Figure 2017113840
そして、[数11]の式の両辺にθ0を乗じて整理すると、[数12]式が得られる。
Figure 2017113840

さらに、[数12]式を整理して[数13]式が得られる。
Figure 2017113840
ここで、上記したように、L0は、出力リンク30の回動中心Cから手首(第1加速度センサ44)までの直線距離である。このため、L0×sinθは、手首の第1加速度センサ44と出力リンク30の第1加速度センサ44とにより求めたトルク半径Lに等しくなる。このため、[数13]式のL0×sinθをLに置き換えると、[数14]に示す式で表される。
Figure 2017113840
ここで、モータ40側から見た可変剛性機構20の渦巻きバネ24の中立点θ1は、nθ0で表わされるため、[数14]の式は、[数15]に示すように書き改めることができる。
Figure 2017113840

アシスト装置10のコントローラユニット52は、モータの回転角度がθ1となるように制御する。これにより、可変剛性機構20の渦巻きバネ24の外周側バネ端部24eが角度θ1となるように回転する。この結果、系のエネルギーEが最小になるように、出力リンク30から見た可変剛性機構20の見かけの剛性kRが調整されて、可変剛性機構20の出力回転軸26pから出力リンク30に加わるアシストトルクτが制御される。即ち、人が荷物Wを持ち上げる際には、上腕部を持ち上げる方向に可変剛性機構20のアシストトルクτが出力リンク30に対して加わるようになる。これにより、人の作業負荷が軽減される。
<本実施形態に係るアシスト装置10の長所について>
前記アシスト装置10によると、コントローラユニット52(制御装置)は、出力リンク30の回動角度θと、人が荷物Wから質量を受ける位置と出力リンク30の回動中心C間の距離L(トルク半径L)とに基づいて、モータ40(剛性可変アクチュエータ)を制御する。そして、コントローラユニット52は、モータ40を制御することで、人の負荷が最小となるように出力リンク30から見た可変剛性機構20の見かけの剛性kRを変化させる。即ち、コントローラユニット52は、アシスト装置10の動作中にモータ40により出力リンク30から見た可変剛性機構20の見かけの剛性kRを変化させることができる。このため、手動で弾性体の剛性を調整する従来のアシスト装置と比較して、高効率でアシスト作業を行なえるようになる。また、可変剛性機構20の見かけの剛性kRを制御することで出力リンク30に加わるアシストトルクτを制御する構成のため、モータによる回転トルクを出力リンクの回動方向に付加する従来のアシスト装置と比較して消費電力を抑えることができる。
また、第1加速度センサ44と第2加速度センサ46とにより、トルク半径Lを演算する構成のため、アシスト作業中に連続してトルク半径Lを測定できる。また、渦巻きバネ24の外周側バネ端部24eの回転角度を変えることで出力リンク30から見た可変剛性機構20の見かけの剛性を変えるため、可変剛性機構20の剛性を変えるための制御が比較的容易になる。
[実施形態2]
次に、実施形態2に係るアシスト装置60について、図8、図9に基づいて説明する。実施形態2のアシスト装置60は、出力リンク30の回動中心が人の股関節に対応する位置に保持され、出力リンク30の回動自由端側が大腿部に装着される構成である。ここで、実施形態2のアシスト装置60における可変剛性機構20、制御ボックス50、第1加速度センサ44、第2加速度センサ46、及び角度検出器43は実施形態1のアシスト装置10で使用されたものと同様であるため、同一番号を付して説明を省略する。実施形態2のアシスト装置60は、上体装着具62を備えており、その上体装着具62の腰周りの位置に支持架台部64が設けられている。そして、支持架台部64における股関節に対応する位置に可変剛性機構20が設けられている。また、可変剛性機構20の出力回転軸26pに出力リンク30が連結されている。
実施形態2に係るアシスト装置60では、実施形態1に係るアシスト装置10の場合と同様に、第1加速度センサ44と第2加速度センサ46との検出値のx成分からトルク半径Lを演算する。また、手首の位置に集中的に加わる質量mB、即ち、mB=(仮想質量mh+荷物Wの質量mW)を求め、さらに股関節周りの慣性モーメントJBを演算する。
先ず、仮想質量mhを求める手順について説明する。図9に示すように、股関節A、肩関節B、肘関節C、手首Dを結ぶ四角形を考え、辺ABの長さをL3、辺DAの長さをL4、辺ABと辺DAのなす角度をζ1、辺ABと辺BCがなす角度をζ2、辺CDと辺DAがなす角度をζ3とする。また、大腿部と辺ABがなす角度をΦ1、大腿部とy軸がなす角度Φ2、辺DAとx軸がなす角度をΦ3とする。また、肩関節と手首を結ぶ線分と辺BCがなす角度をΨ2、肩関節と手首とを結ぶ線分と辺CDがなす角度をΨ3とする。
辺DAの長さL4は、第1加速度センサ44のx成分、y成分、及び第2加速度センサ46のx成分、y成分を用いて、[数16]に示す式により求められる。
Figure 2017113840
また、Φ1は、股関節の角度検出器43の値により求められる。Φ2は股関節のxy座標系に対する回転角度であり、第2加速度ゼンサ46のz軸まわりの角加速度成分を用いて[数17]に示す式により求められる。
Figure 2017113840

また、Φ3は、第1加速度センサ44のx成分、y成分、第2加速度センサ46のx成分、y成分を用いて、[数18]に示す式により求められる。
Figure 2017113840

また、ζ1は、Φ1、Φ2、Φ3を用いて[数19]に示す式により求められる。
Figure 2017113840
三角形ABDに余弦定理を適用すると、線分BDの長さaは、[数20]に示す式で求められる。
Figure 2017113840

さらに、三角形BCDに余弦定理を適用すれば、Ψ2、Ψ3は、[数21]に示す式で求められる。
Figure 2017113840
次に三角形ABDに正弦定理を適用することで、ζ2、ζ3は、[数22]に示す式で求められる。
Figure 2017113840

頭部を含む上半身の質量m3によって股関節に生じるトルクτ3は、股関節から重心までの距離をL3gとすれば、[数23]の式により求められる。
Figure 2017113840
上腕部の質量によって股関節に生じるトルクτ1は、[数24]の式により求められる。
Figure 2017113840

また、前腕部の質量によって股関節に生じるトルクτ2は、[数25]の式により求められる。
Figure 2017113840
以上により上半身、上腕部、前腕部によって生じるトルクと、手首部分に質量が集中したと仮定したときの仮想質量mhによって生じるトルクが等しいと考えれば、仮想質量mhは、[数26]の式により求められる。
Figure 2017113840
次に、股関節周りの慣性モーメントJBを求める手順を説明する。股関節、肩関節、肘関節のx軸に対する回転角度をそれぞれθ3、θ4、θ5とすると、θ3、θ4、θ5は、[数27]の式により求められる。
Figure 2017113840

上半身の股関節から重心までの距離を1/2L3と仮定すると、股関節中心を原点とする上半身、上腕部、前腕部の重心の座標は、[数28]により表わされる。
Figure 2017113840
したがって、上半身、上腕部、前腕部の全体の重心座標Lga=(Lgax、Lgay )は、[数29]により表わされる。
Figure 2017113840

ここで、股関節中心から上半身、上腕、前腕の全体の重心までの距離は、[数30]の式により求められる。
Figure 2017113840

したがって、股関節回りの慣性モーメントJBは、質量(m1+m2+m3)の一様な棒を回転させると仮定すれば、平行軸の定理により、[数31]の式により求められる。
Figure 2017113840
このようにして、質量mB(仮想質量mh+荷物の質量mW)、及び慣性モーメントJB等が求まると、次に、出力リンク30の角度θ、トルク半径Lに基づいて、上体を股関節周りに上方に回動させる際に必要なトルクTを演算する。前記トルクTは、実施形態1で説明したように、[数32]に示す式で求められる。
Figure 2017113840
また、系のエネルギーEの総和を演算する。エネルギーEの総和は、実施形態1で説明したように、[数33]に示す式で表される。
Figure 2017113840

そして、次に、系のエネルギーEの総和が最小になる条件を求めるため、[数34]に示すように、エネルギーEの時間による微分計算を行ない、微分値が零になる条件を求める。
Figure 2017113840
そして、実施形態1の場合と同様に、系のエネルギーEの総和が最小になる条件からモータ40の回転角度θ1を演算する。
回転角度θ1は、[数35]の式で表される。
Figure 2017113840
アシスト装置60のコントローラユニット52は、モータ40の回転角度がθ1となるように、即ち、可変剛性機構20の渦巻きバネ24の外周側バネ端部24eが角度θ1となるように制御する。この結果、出力リンク30から見た可変剛性機構20の見かけの剛性kRが調整されて、可変剛性機構20の出力回転軸26pから出力リンク30に加わるアシストトルクτが制御される。即ち、人が荷物Wを持ち上げる際には、大腿部が起立する方向に可変剛性機構20のアシストトルクτが出力リンク30に対して加わるようになる。これにより、人の作業負荷が軽減される。
<変更例>
ここで、本発明は上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における変更が可能である。例えば、本実施形態では、第1加速度センサ44と第2加速度センサ46により手首から出力リンク30の回動中心Cまでの距離L(トルク半径L)を求める例を示した。しかし、例えば、肘関節に角度検出器を装着し、その角度検出器と、出力リンク30の角度検出器43と、上腕部、及び前腕部の長さ寸法から前記トルク半径Lを求めることも可能である。また、本実施形態では、可変剛性機構20の弾性体として渦巻きバネ24を使用する例を示したが、渦巻きバネ24の代わりにコイルバネを使用したり、ゴム状の弾性体を使用することも可能である。また、本実施形態では、可変剛性機構20に減速機26を使用する例を示したが、バネの強さによっては減速機26を省略することも可能である。また、本実施形態では、荷物Wの質量mWをモータ40の負荷電流Iから演算により求める例を示したが、前記質量mWを予め測定してコントローラユニット52に入力することも可能である。また、本実施形態では、左右両側に可変剛性機構20、及び出力リンク30を設ける例を示したが、片側にのみ設けることも可能である。
10・・・アシスト装置
12・・・上体装着具(身体装着具)
14・・・支持架台部(身体装着具)
20・・・可変剛性機構
24・・・渦巻きバネ(弾性体)
24e・・バネ端部
24y・・バネ端部
26・・・減速機
30・・・出力リンク
37・・・手首装着具
40・・・モータ(剛性可変アクチュエータ)
43・・・角度検出器(角度検出手段)
44・・・第1加速度センサ(距離測定手段)
46・・・第2加速度センサ(距離測定手段)
52・・・コントローラユニット(制御装置、演算手段)
60・・・アシスト装置
62・・・上体装着具(身体装着具)
64・・・支持架台部(身体装着具)

Claims (7)

  1. 身体に装着される身体装着具と、
    弾性体を備え、剛性を変えられるように構成された可変剛性機構と、
    人の関節に対応する前記身体装着具の所定位置に前記可変剛性機構を介して回動中心部が連結されており、回動自由端側が前記関節を中心に回動する身体の一部に装着される出力リンクと、
    前記出力リンクから見た前記可変剛性機構の見かけの剛性を変化させる剛性可変アクチュエータと、
    前記出力リンクの回動角度を検出する角度検出手段と、
    人が物体から質量を受ける位置と、前記出力リンクの回動中心間の距離を測定する距離測定手段と、
    前記角度検出手段による検出角度と前記距離測定手段による測定距離とに基づいて前記剛性可変アクチュエータを制御する制御装置と、
    を有しており、
    前記制御装置は、人の負荷が軽減されるように、前記剛性可変アクチュエータを制御して前記出力リンクから見た前記可変剛性機構の見かけの剛性を変化させるアシスト装置。
  2. 請求項1に記載されたアシスト装置であって、
    前記距離測定手段は、人が物体から質量を受ける位置に装着される第1の加速度センサと、前記出力リンクの回動中心に取付けられた第2の加速度センサと、前記第1の加速度センサと前記第2の加速度センサとの検出値に基づいて、前記第1の加速度センサと前記第2の加速度センサ間の距離を演算する演算手段とを有しているアシスト装置。
  3. 請求項1又は請求項2のいずれかに記載されたアシスト装置であって、
    前記可変剛性機構の前記弾性体は、前記出力リンクの回動中心と同軸に設けられた渦巻きバネであり、
    前記渦巻きバネの一端側は、前記剛性可変アクチュエータ側に連結され、前記渦巻きバネの他端側は、前記出力リンク側に連結されており、
    前記剛性可変アクチュエータは、前記渦巻きバネの一端側の回転角度を変えることで前記出力リンクから見た前記可変剛性機構の見かけの剛性を変えるアシスト装置。
  4. 請求項3に記載されたアシスト装置であって、
    前記渦巻きバネと前記出力リンクとの間には、前記渦巻きバネの他端側の回動角度に対し、前記出力リンクの回動角度を所定比率で小さく保持する減速機が設けられているアシスト装置。
  5. 請求項2から請求項4のいずれかに記載されたアシスト装置であって、
    前記第1の加速度センサを人の手首に装着する手首装着具を備えているアシスト装置。
  6. 請求項1から請求項5のいずれかに記載されたアシスト装置であって、
    前記出力リンクの回動中心が人の肩関節に対応する位置に保持され、前記出力リンクの回動自由端側が上腕部に装着されるアシスト装置。
  7. 請求項1から請求項5のいずれかに記載されたアシスト装置であって、
    前記出力リンクの回動中心が人の股関節に対応する位置に保持され、前記出力リンクの回動自由端側が大腿部に装着されるアシスト装置。
JP2015252042A 2015-12-24 2015-12-24 アシスト装置 Expired - Fee Related JP6569518B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015252042A JP6569518B2 (ja) 2015-12-24 2015-12-24 アシスト装置
CN201611199184.4A CN106926218A (zh) 2015-12-24 2016-12-22 辅助装置、摆动关节装置、直动可变刚性单元以及机床
DE102016125317.0A DE102016125317A1 (de) 2015-12-24 2016-12-22 Unterstützungsvorrichtung, schwenkgelenkvorrichtung, linear-bewegungseinheit mit variabler steifigkeit und werkzeugmaschine
US15/388,214 US20170181917A1 (en) 2015-12-24 2016-12-22 Assist device, swinging joint device, linear motion variable rigidity unit, and machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015252042A JP6569518B2 (ja) 2015-12-24 2015-12-24 アシスト装置

Publications (2)

Publication Number Publication Date
JP2017113840A true JP2017113840A (ja) 2017-06-29
JP6569518B2 JP6569518B2 (ja) 2019-09-04

Family

ID=59232761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015252042A Expired - Fee Related JP6569518B2 (ja) 2015-12-24 2015-12-24 アシスト装置

Country Status (1)

Country Link
JP (1) JP6569518B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210008659A (ko) * 2019-07-15 2021-01-25 건국대학교 산학협력단 착용형 로봇을 위한 제어 방법 및 장치
JP7310291B2 (ja) 2019-05-20 2023-07-19 株式会社ジェイテクト パワーアシストスーツ

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63241614A (ja) * 1987-03-30 1988-10-06 Hitachi Ltd ロボツト装置
US5052379A (en) * 1989-04-27 1991-10-01 Soma Dynamics Corporation Combination brace and wearable exercise apparatus for body joints
JP2010142351A (ja) * 2008-12-17 2010-07-01 Honda Motor Co Ltd 歩行補助装置及びその制御装置
JP2014161916A (ja) * 2013-02-21 2014-09-08 Takuya MURAKITA 柔軟アクチュエータ
WO2015118642A1 (ja) * 2014-02-06 2015-08-13 株式会社安川電機 アクチュエータ及びアシスト装置
US20150272809A1 (en) * 2012-10-09 2015-10-01 Università Campus Bio-Medico Di Roma Robotic device for assistance and rehabilitation of lower limbs
WO2015190599A1 (ja) * 2014-06-13 2015-12-17 Cyberdyne株式会社 装着式動作補助装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63241614A (ja) * 1987-03-30 1988-10-06 Hitachi Ltd ロボツト装置
US5052379A (en) * 1989-04-27 1991-10-01 Soma Dynamics Corporation Combination brace and wearable exercise apparatus for body joints
JP2010142351A (ja) * 2008-12-17 2010-07-01 Honda Motor Co Ltd 歩行補助装置及びその制御装置
US20150272809A1 (en) * 2012-10-09 2015-10-01 Università Campus Bio-Medico Di Roma Robotic device for assistance and rehabilitation of lower limbs
JP2014161916A (ja) * 2013-02-21 2014-09-08 Takuya MURAKITA 柔軟アクチュエータ
WO2015118642A1 (ja) * 2014-02-06 2015-08-13 株式会社安川電機 アクチュエータ及びアシスト装置
WO2015190599A1 (ja) * 2014-06-13 2015-12-17 Cyberdyne株式会社 装着式動作補助装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7310291B2 (ja) 2019-05-20 2023-07-19 株式会社ジェイテクト パワーアシストスーツ
KR20210008659A (ko) * 2019-07-15 2021-01-25 건국대학교 산학협력단 착용형 로봇을 위한 제어 방법 및 장치
KR102228527B1 (ko) * 2019-07-15 2021-03-16 건국대학교 산학협력단 착용형 로봇을 위한 제어 방법 및 장치

Also Published As

Publication number Publication date
JP6569518B2 (ja) 2019-09-04

Similar Documents

Publication Publication Date Title
US20170181917A1 (en) Assist device, swinging joint device, linear motion variable rigidity unit, and machine tool
US10710237B2 (en) Assist device
US10786417B2 (en) Motion assist device
US10123932B2 (en) Motion assist device and motion assist method
JP6358427B2 (ja) 装着式動作補助装置
US10610439B2 (en) Assistance apparatus
KR101241800B1 (ko) 근력 보조 외골격 장치
US20190358808A1 (en) Assist device
US20140213951A1 (en) Robotic gait rehabilitation training system with orthopedic lower body exoskeleton for torque transfer to control rotation of pelvis during gait
JP5344501B2 (ja) 装着式動作補助装置及びその制御方法
CN107690375B (zh) 轻便式动力关节装置和下肢助力外骨骼设备及其控制方法
JP6569518B2 (ja) アシスト装置
JP2013075041A (ja) 関節角度測定装置及び関節角度測定方法
CN110812104A (zh) 基于虚拟现实手臂外骨骼康复系统
JP6859700B2 (ja) アシスト装置
RU2718568C1 (ru) Контроллер запястья для использования в контроллере оператора роботохирургического комплекса
JP2015083091A (ja) 動作支援装置
JP6569519B2 (ja) アシスト装置
CN109702765B (zh) 一种动力关节装置和下肢助力设备
JP6838341B2 (ja) アシスト装置
JP2016119996A (ja) 脚力支援装置
JP7478024B2 (ja) 装着式動作補助装置
US20200315818A1 (en) Synergetic prosthesis
JP2013075341A (ja) 関節角度測定装置及び関節角度測定方法
Côté Development of a virtual-reality system with large-scale haptic interface and accessible motion capture for rehabilitation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190722

R150 Certificate of patent or registration of utility model

Ref document number: 6569518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees