WO2015190472A1 - 光学素子 - Google Patents

光学素子 Download PDF

Info

Publication number
WO2015190472A1
WO2015190472A1 PCT/JP2015/066585 JP2015066585W WO2015190472A1 WO 2015190472 A1 WO2015190472 A1 WO 2015190472A1 JP 2015066585 W JP2015066585 W JP 2015066585W WO 2015190472 A1 WO2015190472 A1 WO 2015190472A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflection
transmission
optical element
periodic
light
Prior art date
Application number
PCT/JP2015/066585
Other languages
English (en)
French (fr)
Inventor
一尋 屋鋪
久保 章
力 澤村
春奈 大木
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to EP19155243.9A priority Critical patent/EP3495856B1/en
Priority to CN201580030282.2A priority patent/CN106461826B/zh
Priority to DE112015002704.1T priority patent/DE112015002704T5/de
Priority to KR1020167036830A priority patent/KR101897891B1/ko
Priority to EP15806682.9A priority patent/EP3153894B1/en
Publication of WO2015190472A1 publication Critical patent/WO2015190472A1/ja
Priority to US15/368,289 priority patent/US10261224B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1866Transmission gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/328Diffraction gratings; Holograms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/351Translucent or partly translucent parts, e.g. windows
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0221Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having an irregular structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B2005/1804Transmission gratings

Definitions

  • the present invention relates to an optical element.
  • optical elements with optical effects that are difficult to imitate in articles that are required to prevent counterfeiting such as securities, certificates, and luxury brand products.
  • Known optical elements having optical effects that are difficult to imitate include, for example, holograms, diffraction gratings, and multilayer interference films. Since these optical elements have a fine structure or a complicated layer structure, it is difficult to analyze the structure of the optical element. Therefore, unauthorized duplication of the optical element can be suppressed, and as a result, forgery of the article to which the optical element is attached can be suppressed.
  • a hologram or the like employs a structure having a reflective layer in contact with a diffractive structure for the purpose of enhancing the optical effect of the element.
  • a hologram that is more difficult to imitate is obtained by patterning the reflective layer into a predetermined shape (see, for example, Patent Document 1).
  • optical effect obtained by one optical element is further added to such an optical element.
  • optical effects to optical elements is not limited to optical elements used to suppress counterfeiting of articles as described above, but is applied to optical elements used for other purposes, for example, articles.
  • optical elements There is a similar demand for an optical element for decorating an article, an optical element that is an object of appreciation, and the like.
  • An object of the present invention is to provide an optical element to which an optical effect can be added.
  • One aspect of the optical element is a plurality of reflecting portions arranged at equal intervals along one direction, and light reflected by each of the plurality of reflecting portions is included in visible light, and the reflecting portion reflects Transmission diffraction including a plurality of the reflection portions that form a reflection image by light to be transmitted, and a plurality of transmission portions that are sandwiched between two reflection portions adjacent to each other in the one direction and transmit the visible light A part.
  • At least some of the plurality of reflection units form the reflection image by making a reflection angle of light reflected by the reflection unit different from an angle of light incident on the reflection unit, and the transmission diffraction unit includes the transmission diffraction unit, A plurality of diffraction images having mutually different colors are formed by diffracted light obtained by diffracting light transmitted through the transmission part in a predetermined direction.
  • an image having a plurality of different colors can be obtained by transmitted light. That is, an optical effect is added to one optical element.
  • FIG. 3 is a cross-sectional view showing a cross-sectional structure along the ZY plane of the optical element in the first embodiment.
  • 3 is a cross-sectional view showing a cross-sectional structure along the ZX plane of the optical element in the first embodiment.
  • FIG. It is a top view which shows the planar structure which looked at the optical element in 1st Embodiment from the Z direction. It is an action figure for explaining the optical effect by reflection of the light which entered into the optical element in a 1st embodiment. It is an operation view for explaining an optical effect by transmission of the light incident on the optical element in the first embodiment.
  • FIG. 6 is a cross-sectional view showing a cross-sectional structure along the ZY plane of an optical element in a second embodiment.
  • FIG. 10 is a cross-sectional view showing a cross-sectional structure along the ZX plane of the optical element in the second embodiment.
  • FIG. 1 and FIG. 4 for convenience of describing the configuration of the optical element, the illustration of the upper transparent resin layer formed on the reflecting portion of the optical element is omitted. Moreover, in FIG. 1 and FIG. 4, in order to make intelligible the position of the reflection part with respect to a lower transparent resin layer, each reflection part is attached with a dot. In FIG. 1, for convenience of illustration, the concavo-convex structure formed on the surface of the lower transparent resin layer is omitted.
  • the optical element 10 includes an upper transparent resin layer, a lower transparent resin layer 11, a surface 11s that is one surface of the lower transparent resin layer 11, an upper transparent resin layer, and a lower transparent resin.
  • a plurality of reflecting portions 12 formed between the resin layer 11 and the resin layer 11 are provided.
  • the optical element 10 includes a plurality of transmission portions 13, and each transmission portion 13 includes a first portion sandwiched between two reflection portions 12 in the upper transparent resin layer and 2 in the lower transparent resin layer 11.
  • the second portion sandwiched between the two reflecting portions 12, and is constituted by the second portion facing the first portion.
  • the optical element 10 includes a transmission diffraction unit 20 including a plurality of reflection units 12 and a plurality of transmission units 13.
  • the reflection part 12 is a part that reflects visible light, and reflects at least part of a wavelength of 400 nm to 700 nm.
  • the transmittance of the reflecting portion 12 is preferably less than 30%.
  • the transmission part 13 transmits at least a part of the wavelength of 400 nm to 700 nm, and the transmittance of the transmission part 13 is 70% or more.
  • the material for forming the reflecting portion 12 is a single metal such as Al, Sn, Cr, Ni, Cu, Au, and Ag, or a compound of each metal included in the group of these metals, such as an oxide. Used. Of these forming materials, it is preferable to use forming materials whose reflectivity and transparency change due to dissolution, corrosion, or alteration. Also, two or more forming materials included in the above-described metal group and metal compound group may be used.
  • Examples of a method of changing the reflectance or transmittance by dissolving the forming material of the reflecting portion 12 include, for example, a method of performing an etching process on the forming material included in the above-described metal group and metal oxide group. Can be used.
  • treatment agents such as acids, alkalis, organic solvents, oxidizing agents, and reducing agents can be used.
  • a method of oxidizing copper with an oxidizing agent to change to cuprous oxide, or a method of oxidizing aluminum with an oxidizing agent and boehmite for example, a method of oxidizing copper with an oxidizing agent to change to cuprous oxide, or a method of oxidizing aluminum with an oxidizing agent and boehmite.
  • the method of changing to can be used.
  • the forming material of the reflecting portion 12 it is possible to select materials included in the above-described metal group and metal compound group, and the above-described various treatments are performed on these forming materials. Also good. Selection of such a forming material and treatment may be made based on optical properties required for the optical element 10 and practical durability such as weather resistance and interlayer adhesion.
  • the thin film for forming the reflection part 12 is formed with a uniform surface density
  • the dry coating method is used for formation of the thin film for forming the reflection part 12.
  • a vacuum deposition method, a sputtering method, a CVD method, or the like can be employed.
  • the forming material of the reflecting portion 12 is not limited to the above-described forming material having a metallic luster or a predetermined color, and may be a transparent forming material.
  • the transparent forming materials are listed below.
  • the material for forming the reflecting portion 12 is, for example, Sb 2 O 3 , Fe 2 O 3 , TiO 2 , CdS, CeO 2 , ZnS, PbCl 2 , CdO, Sb 2 O 3 , WO 3 , SiO, Si 2 O 3 , In 2 O 3 , PbO, Ta 2 O 3 , ZnO, ZrO 2 , MgO, SiO 2 , Si 2 O 2 , MgF 2 , CeF 3 , CaF 2 , AlF 3 , Al 2 O 3 , and GaO. .
  • an organic polymer may be sufficient as a transparent formation material among the formation materials of the reflection part 12.
  • FIG. Examples of the organic polymer as a material for forming the reflecting portion 12 include polyethylene, polypropylene, polytetrafluoroethylene, polymethyl methacrylate, and polystyrene.
  • the forming material of the reflecting portion 12 may be a reflective ink in which a high refractive resin or a high refractive filler is dispersed.
  • the formation material of the reflection part 12 should just be selected according to the reflection characteristic and tolerance calculated
  • the material for forming the transmissive portion 13 that is, the upper transparent resin layer and the lower transparent resin layer 11 constituting the transmissive portion 13, for example, thermosetting A curable resin, an ultraviolet curable resin, or the like can be used.
  • the upper transparent resin layer and the lower transparent resin layer 11 may be mat-treated or have a white color as long as the above-described transmittance is satisfied.
  • the lower transparent resin layer 11 has, for example, a rectangular plate shape that expands two-dimensionally along an X direction which is an example of one direction and a Y direction orthogonal to the X direction.
  • Each of the plurality of reflecting portions 12 has a band shape extending along the Y direction which is one direction, and the plurality of reflecting portions 12 are arranged at equal intervals along the X direction.
  • Each of the plurality of transmission parts 13 has a band shape extending along the Y direction, like the reflection part 12, and the plurality of transmission parts 13 are arranged at equal intervals in the X direction.
  • the optical element 10 further includes a plurality of protection portions 14 that are located one by one between the surface 11 s of the lower transparent resin layer 11 and each reflection portion 12.
  • Each of the plurality of protection portions 14 has a band shape extending in the Y direction, like the reflection portion 12, and the plurality of protection portions 14 are arranged at equal intervals in the X direction.
  • the whole of each protection part 14 overlaps the whole of one reflection part 12 when viewed from the Z direction.
  • the protection part 14 protects the reflection part 12 from abrasion and chemical corrosion when the optical element 10 is manufactured.
  • the resistance to wear and the chemicals in the protection part 14 are equal to or higher than the resistance to friction and the chemicals in the reflection part 12.
  • medical agent are lower than the resistance with respect to the friction in the reflection part 12, and the tolerance with respect to a chemical
  • the protection part 14 may function as an etching mask when the reflection part 12 is formed by etching.
  • the protection part 14 has a function as an etching mask, the protection part 14 has a characteristic that it does not dissolve in at least one liquid material that dissolves the reflection part 12, or a dissolution rate with respect to the liquid material. It is preferable to have a property lower than the dissolution rate.
  • the thin film for forming the protective part 14 is preferably formed with a uniform surface density, similar to the reflective part 12.
  • a dry coating method such as a vacuum deposition method, a CVD method, and a sputtering method can be used. According to such a forming method, it is possible to control the film thickness, the film forming speed, the number of layers, the optical film thickness, and the like for forming the protective portion 14.
  • the material from the vapor deposition source to the substrate in the vacuum vapor deposition method has straightness. Therefore, it is preferable to employ a vacuum deposition method as the dry coating method.
  • the material for forming the protective part 14 may be any material that can be formed by a dry coating method.
  • Examples of the material for forming the protective part 14 include a group of metals that are the material for forming the reflective part 12 described above, and At least one forming material included in the group of metal compounds can be used.
  • the forming material of the protection part 14 may be a transparent forming material like the forming material of the reflection part 12.
  • the transparent forming material of the protection part 14 is, for example, Sb 2 O 3 , Fe 2 O 3 , Fe 3 O 4 , TiO 2 , Ti 2 O 3 , CdS, CeO 2 , ZnS, PbCl 2 , CdO, Sb 2 O. 3, WO 3, SiO, Si 2 O 3, In 2 O 3, PbO, Ta 2 O 3, ZnO, ZrO 2, MgO, SiO 2, Si 2 O 2, MgF 2, CeF 3, CaF 2, AlF 3 Al 2 O 3 and GaO.
  • an organic polymer may be sufficient as a transparent formation material among the formation materials of the protection part 14.
  • FIG. Examples of the organic polymer as the material for forming the protective portion 14 include polyethylene, polypropylene, polytetrafluoroethylene, polymethyl methacrylate, and polystyrene.
  • the protection unit 14 When the protection unit 14 has a function as an etching mask, the protection unit 14 may be processed into a pattern having a predetermined shape by photolithography. In this case, after a negative resist or a positive resist is applied to the thin film for forming the protective portion 14, pattern exposure is performed on the resist. Then, by etching the thin film for forming the protective part 14 using the resist as an etching mask, the protective part 14 having a function as an etching mask is formed on a part of the thin film for forming the reflective part 12. It is formed. And the reflective part 12 is formed by performing the etching process which uses the protection part 14 as an etching mask to the thin film for forming the reflective part 12. FIG.
  • the optical element 10 includes the upper transparent resin layer 15 that covers the plurality of reflecting portions 12.
  • the upper transparent resin layer 15 protects the transmission diffraction portion 20 from friction and moisture.
  • a back surface 15r which is one surface of the upper transparent resin layer 15 and faces the lower transparent resin layer 11, has convex portions 15a and concave portions 15b that are alternately arranged along the Y direction.
  • a portion protruding toward the lower transparent resin layer 11 in the Z direction is the convex portion 15a
  • a portion protruding toward the surface of the upper transparent resin layer 15 is the concave portion 15b.
  • the concave portion 15b and the convex portion 15a adjacent to each other in the Y direction constitute one reflection unit portion 16, and the lengths along the Y direction in the plurality of reflection unit portions 16 include a plurality of different lengths. include. That is, the back surface 15r of the upper transparent resin layer 15 has a non-periodic concavo-convex structure constituted by the concave portions 15b and the convex portions 15a.
  • the plurality of recesses 15b include recesses 15b in which the positions of the bottoms of the recesses 15b in the Z direction are different from each other, and the plurality of protrusions 15a are different in the positions of the tops of the protrusions 15a in the Z direction.
  • Convex part 15a is included.
  • Each of the plurality of concave portions 15b and each of the plurality of convex portions 15a extend along the X direction on the back surface 15r.
  • Each of the plurality of protection portions 14 includes a concavo-convex structure following the concavo-convex structure of the portion where each protection portion 14 is located in the back surface 15r of the upper transparent resin layer 15, and each of the plurality of reflection portions 12 includes In the back surface 15r of the upper transparent resin layer 15, a concavo-convex structure that follows the concavo-convex structure of the portion where each reflecting portion 12 is located is provided.
  • each of the plurality of protection portions 14 includes an aperiodic uneven structure equivalent to the back surface 15r as described above, and each of the plurality of reflection portions 12 has a non-periodic structure equivalent to the back surface 15r as described above. It has a periodic uneven structure. Therefore, the light incident on the reflective portion 12 from the upper transparent resin layer 15 side is scattered by each of the multiple reflective portions 12.
  • the plurality of reflecting portions 12 generate scattered light as reflected light, and form a reflected image by the scattered light. That is, the reflection unit 12 forms a reflection image by making the reflection angle of the reflected light different from the angle of the light incident on the reflection unit 12.
  • Each of the reflecting portions 12 includes a concavo-convex structure in almost the entire Y direction of the reflecting portion 12, but it is sufficient that at least a part of the refracting structure is provided in the Y direction.
  • FIG. 3 shows a cross-sectional shape of the optical element 10 along the ZX plane.
  • the plurality of recesses 15b formed on the back surface 15r include the recesses 15b whose bottom positions are different from each other in the Z direction
  • the plurality of protrusions 15a include the recesses 15b in the Z direction.
  • the convex part 15a from which the position of the top part of the convex part 15a differs is contained.
  • the multiple laminated structures include laminated structures whose positions in the Z direction are different from each other.
  • a stacked structure in which the positions in the Z direction are equal to each other may be included.
  • the plurality of reflecting portions 12 are arranged at equal intervals in the X direction, and the plurality of transmitting portions 13 are arranged at equal intervals in the X direction.
  • One reflection section 12 and one transmission section 13 that are adjacent to each other in the X direction constitute one transmission period section 17, and the width along the X direction in the transmission period section 17 is the grating period d.
  • the transmission diffraction unit 20 has different colors depending on the diffracted light obtained by diffracting the light transmitted through each of the transmission units 13 in a predetermined direction. A plurality of diffraction images can be formed.
  • the grating period d is preferably 0.35 ⁇ m or more in order to obtain a bright diffraction image by the transmission diffraction unit 20.
  • the grating period d is preferably 0.5 ⁇ m or more and 10 ⁇ m or less. When d exceeds 20 ⁇ m, the viewing angle of the diffraction image becomes small, and the range of angles that can be visually recognized by the observer becomes narrow.
  • a transmission type diffraction grating having a grating period d smaller than the wavelength of light included in the visible light region is called a sub-wavelength grating.
  • the sub-wavelength grating has an effect of absorbing a wavelength included in a specific region, an effect of reflecting a wavelength included in the specific region, and an effect of separating polarized light from incident light.
  • the grating period d of the subwavelength grating has the following length: It is preferable that That is, the grating period d is preferably included in the range of 0.15 ⁇ m or more and less than 0.35 ⁇ m, which is a length less than 1 ⁇ 2 of the visible light wavelength, and is included in the range of 0.15 ⁇ m or more and 0.30 ⁇ m or less. It is more preferable.
  • the transmission diffraction unit 20 transmits only the polarized light that is a component perpendicular to the reflection unit 12 and transmits visible light. Can be diffracted.
  • each reflecting portion 12 having an aperiodic uneven structure is incident in various directions. Reflects light Li. That is, the reflected light Lr generated by each reflecting portion 12 is scattered light. Therefore, when the incident light Li is white visible light, the optical element 10 reflects scattered light having white color.
  • the transmission diffraction unit 20 diffracts each of a plurality of wavelengths of light included in the incident light Li at a transmission angle depending on each light, thereby forming a plurality of diffraction images having mutually different colors.
  • the observer of the optical element 10 can observe white scattered light scattered by the reflecting portion 12 in the reflection observation that is a plan view facing the upper transparent resin layer 15 of the optical element 10. .
  • the transmission observation in which the observer is in plan view facing the lower transparent resin layer 11 of the optical element 10 and observes the optical element 10 through the light source, the diffraction of the transmission diffraction unit 20 is observed.
  • the diffracted light having a rainbow color can be observed.
  • FIGS. 1-10 A method for manufacturing an optical element will be described with reference to FIGS.
  • an original plate of the upper transparent resin layer 15 having an aperiodic uneven structure is prepared.
  • the original plate is created using a photolithography method using an electron beam drawing machine.
  • a portion of the upper transparent resin layer 15 corresponding to the portion where the reflecting portion 12 is located has a relatively small specific surface area, that is, a non-periodic unevenness having a relatively small aspect ratio in the uneven structure.
  • a structure is formed by the optical element 10 .
  • the specific surface area of the upper transparent resin layer 15 corresponding to the portion where the reflecting portion 12 is not located is relatively larger than the non-periodic uneven structure for scattering light. That is, a concavo-convex structure having a relatively large aspect ratio is formed.
  • the upper transparent resin layer 15 having a non-periodic concavo-convex structure is formed by duplicating the concavo-convex structure on the surface of the original plate described above.
  • the upper transparent resin layer 15 is formed using, for example, a photopolymer method. That is, when the upper transparent resin layer 15 is formed, first, an ultraviolet curable resin is applied to the original plate, and then the ultraviolet curable resin applied to the original plate is irradiated with ultraviolet rays. The curable resin is cured. Next, the cured ultraviolet curable resin is peeled off to form the upper transparent resin layer 15 having an aperiodic uneven structure.
  • the method for forming the upper transparent resin layer 15 is not limited to the photopolymer method described above, and methods such as a hot embossing method, a hot cold press method, a photopolymer method, and a nanoimprint method can be used.
  • a metal film for example, an aluminum film 12M is vacuum-deposited on the entire surface of the upper transparent resin layer 15 having the above-described concavo-convex structure.
  • an aluminum film 12M having a predetermined thickness is formed on a portion having a relatively small aspect ratio in the surface having the concavo-convex structure of the upper transparent resin layer 15, while the aspect ratio is increased.
  • the aluminum film 12M adheres only slightly to the relatively large portion.
  • the aluminum film 12M is formed in a linear shape or an island shape extending along one direction on the surface of the upper transparent resin layer 15. Is done.
  • the dry coating method for forming the aluminum film 12M is not limited to the vacuum vapor deposition method, and any of the dry coating methods described above can be used.
  • magnesium fluoride that protects the aluminum film 12M is vacuum deposited on the entire aluminum film 12M.
  • the magnesium fluoride film 14M serving as the protective portion 14 is formed on the portion of the upper transparent resin layer 15 having a relatively low aspect ratio, while the aspect ratio is relatively low.
  • the magnesium fluoride film 14M is hardly formed on a large portion.
  • the magnesium fluoride film 14M has a linear or island shape extending along one direction on the surface of the upper transparent resin layer 15. Formed.
  • the dry coating method for forming the magnesium fluoride film 14M is not limited to the vacuum vapor deposition method, and any of the dry coating methods described above can be used.
  • the aluminum film 12M is dissolved in the alkaline solution, that is, etching with the alkaline solution is possible, while the magnesium fluoride film 14M is not dissolved in the alkaline solution. Therefore, the magnesium fluoride film 14M can be used as a mask when the aluminum film 12M is wet-etched with an alkaline solution.
  • the upper transparent resin layer 15 on which the aluminum film 12M and the magnesium fluoride film 14M are formed is immersed in an alkaline solution.
  • the aluminum film 12M comes into contact with the alkaline solution, whereby the aluminum film 12M is alkali etched.
  • the aluminum film 12M is protected by the magnesium fluoride film 14M in the above-described portion having a relatively small aspect ratio. Therefore, even if etching with an alkaline solution is performed, the aluminum film 12M is not etched.
  • the high-resolution reflecting portion 12 can be placed at an arbitrary position. It is possible to form.
  • the thickness of the magnesium fluoride film 14M that forms the protective portion 14, that is, the thickness along the Z direction is less than half the thickness of the aluminum film 12M that forms the reflective portion 12.
  • the thickness of the aluminum film 12M is 5 nm or more and 500 nm or less
  • the thickness of the magnesium fluoride film 14M is 0.3 nm or more and 200 nm or less
  • the thickness of the magnesium fluoride film 14M is The thickness is preferably less than half of the thickness of the aluminum film 12M.
  • the portion of the surface of the upper transparent resin layer 15 where the aluminum film 12M is to be removed and the portion including the transmission portion 13 of the optical element 10 is very thin with respect to the very thin aluminum film 12M.
  • a film 14M is formed.
  • a magnesium fluoride film 14M is formed to such an extent that it can exhibit a function of protecting the aluminum film 12M.
  • the following effects are obtained by setting the thin film forming material and film thickness for forming the reflective portion 12 and the thin film forming material and film thickness for forming the protective portion 14. be able to. That is, the difference in etching rate in the metal film for forming the reflective portion 12 between the portion corresponding to the reflective portion 12 in the upper transparent resin layer 15 and the portion corresponding to the portion other than the reflective portion 12 including the transmissive portion 13. Can be made larger. Therefore, the productivity of the optical element 10 is enhanced by being easily etched in the portion to be etched, and the portion that should not be etched is easily maintained in a predetermined shape or is prevented from being altered. The quality of the optical element 10 is stabilized.
  • the thickness of the aluminum film 12M and the thickness of the magnesium fluoride film 14M described above are preferable thicknesses for etching the aluminum film 12M formed in the region having a relatively large specific surface area.
  • an ultraviolet curable resin is applied to the back surface 15r of the upper transparent resin layer 15, and the applied ultraviolet curable resin is cured, thereby reflecting.
  • a lower transparent resin layer 11 covering the portion 12 and the protection portion 14 is formed. Note that the step of forming the lower transparent resin layer 11 may be omitted.
  • the effects listed below can be obtained.
  • the light reflected by the optical element 10 is scattered light scattered by the concavo-convex structure, while the light transmitted by the optical element 10 is diffracted light by the transmission diffraction unit 20. Therefore, the difference between the light reflected by the optical element 10 and the light transmitted by the optical element 10 becomes significant.
  • Polarized light that is a component perpendicular to the reflecting portion 12 of visible light incident on the transmitting diffraction portion 20 when the grating period d in the transmitting periodic portion 17 is greater than 0.20 ⁇ m and less than 0.35 ⁇ m. Visible light can be diffracted while only transmitting.
  • Each of the plurality of reflecting portions 12 may have a band shape extending along the X direction instead of a band shape extending along the Y direction. In such a configuration, it is sufficient that the plurality of reflecting portions 12 are arranged at equal intervals in the Y direction, and the Y direction is an example of one direction. Or each reflection part 12 may have a strip
  • Each of the plurality of concave portions located on the back surface 15r of the upper transparent resin layer 15 and each of the plurality of convex portions do not extend along the X direction, and have, for example, the shapes described below. Also good. That is, each of the plurality of concave portions and each of the plurality of convex portions may extend along a direction intersecting at a predetermined angle other than perpendicular to the Y direction.
  • a plurality of recesses 15b may extend along a direction that forms an angle of 45 ° with respect to the Y direction.
  • the convex portion 15a sandwiched between two concave portions 15b adjacent to each other in the X direction also extends along a direction forming an angle of 45 ° with respect to the Y direction.
  • FIG. 11 for convenience of explaining the uneven structure of the back surface 15r of the upper transparent resin layer 15, a configuration in which the upper transparent resin layer 15 is reversed in the Z direction from the configuration in FIG. 2 is shown.
  • Such a configuration having the reflective portion 12 formed on the upper transparent resin layer 15 reflects scattered light having directivity in the longitudinal direction of the convex portion 15a, that is, in a direction forming an angle of 45 ° with respect to the Y direction. It is generated as Lr.
  • the reflecting portion 12 has a predetermined shape. It is possible to generate scattered light having directivity in the direction as reflected light.
  • the extending directions of the recesses 15b may be different from each other, and even in the plurality of protrusions 15a, The extending directions may be different from each other.
  • the optical element 10 having the upper transparent resin layer 15 emits isotropic scattered light having no predetermined directivity from the incident light Li. It is generated as reflected light Lr.
  • FIG. 12 for the convenience of explaining the uneven structure of the back surface 15r of the upper transparent resin layer 15, a configuration in which the upper transparent resin layer 15 is inverted in the Z direction from the configuration in FIG. 2 is shown.
  • the upper transparent resin layer 15 includes a portion having a concavo-convex structure that scatters scattered light having directivity and a portion having a concavo-convex structure that isotropically scatters incident light.
  • the optical effect obtained by 10 becomes more complicated.
  • the plurality of concave portions and the plurality of convex portions in each reflection portion 12 are not configured to be alternately continuous only in the Y direction, but may be alternately continuous in the Y direction and alternately continuous in the X direction.
  • the lengths along the Y direction may be different from each other.
  • the length along the Y direction may gradually decrease from the reflection unit 12 positioned at one end in the X direction toward the reflection unit 12 positioned at the other end.
  • the plurality of reflection portions 12 include reflection portions 12 having different lengths along the Y direction, and the plurality of reflection portions 12 have a predetermined regularity in the length along the Y direction in the X direction. You may line up in the state which does not have.
  • one metal film is formed on the entire upper surface of the lower transparent resin layer 11, that is, on the entire back surface 15 r of the upper transparent resin layer 15. 13 may be formed.
  • the plurality of transmission portions 13 may be arranged at equal intervals in the X direction, and each of the plurality of transmission portions 13 may extend along the Y direction.
  • the plurality of transmission portions 13 may be arranged at equal intervals in the Y direction, and each of the plurality of transmission portions 13 may extend along the X direction.
  • each of the plurality of transmission portions 13 extends along an extending direction that forms a predetermined angle with respect to the Y direction, and the plurality of transmission portions 13 are equally spaced in a direction orthogonal to the extending direction. You may line up with a gap.
  • the lengths along the Y direction in the plurality of transmission portions 13 may be different from each other.
  • the length along the Y direction may gradually decrease from the transmissive portion 13 located at one end in the X direction toward the transmissive portion 13 located at the other end.
  • the plurality of transmission portions 13 include transmission portions 13 having different lengths along the Y direction, and the plurality of transmission portions 13 have a predetermined regularity in the length along the Y direction in the X direction. You may line up in the state which does not have.
  • FIG. 16 it has a plurality of reflecting portions 12 having a rectangular shape, and the plurality of reflecting portions 12 are arranged at equal intervals in the X direction and are arranged at equal intervals in the Y direction. It may be a configuration. In addition, such a configuration is located between the two reflecting portions 12 adjacent to each other in the X direction and extends along the Y direction, and the two reflecting portions 12 adjacent to each other in the Y direction. And a transmission part 13 extending along the X direction. Each of the plurality of transmission parts 13 extending along the Y direction is orthogonal to the plurality of transmission parts 13 extending along the X direction.
  • One reflection section 12 and one transmission section 13 that are adjacent to each other in the X direction constitute a first diffraction period section 21, and the width along the X direction in the first diffraction period section 21 is the first grating period d 1. is there.
  • One reflecting portion 12 and one transmitting portion 13 that are adjacent to each other in the Y direction constitute a second diffraction periodic portion 22, and the width along the Y direction in the second diffraction periodic portion 22 is the second grating period d2. is there.
  • the first grating period d1 and the second grating period d2 are equal to each other.
  • the first grating period d1 and the second grating period d2 may be different from each other.
  • the optical element 10 shown in FIG. 16 has a so-called cross grating structure.
  • the direction in which the bar light source extends is parallel to the X direction, and the direction in which the bar light source extends is parallel to the Y direction. Both at times, the light transmitted through the optical element 10 is emitted as diffracted light having a rainbow color.
  • the plurality of reflecting portions 12 may be arranged along the Y direction and along a direction intersecting the X direction at a predetermined angle, or may be arranged along the X direction and Y. You may line up along the direction which cross
  • the optical element 10 includes the reflection unit 12 and the transmission unit 13 arranged along each of three or more different periodic directions. May be provided.
  • one metal film is formed on the entire upper surface of the lower transparent resin layer 11, that is, on the entire back surface 15 r of the upper transparent resin layer 15.
  • a configuration in which a plurality of transmission portions 13 are formed may be used.
  • the plurality of transmission portions 13 are arranged at equal intervals in the X direction and are arranged at equal intervals in the Y direction. And it is located between two transmissive parts 13 that are adjacent to each other in the X direction and is located between the reflective part 12a that extends along the Y direction and two transmissive parts 13 that are adjacent to each other in the Y direction. And a reflecting portion 12a extending along the X direction.
  • Each of the plurality of reflecting portions 12a extending along the Y direction is orthogonal to the plurality of reflecting portions 12a extending along the X direction.
  • a metal film surrounding the periphery of the plurality of transmission portions 13 also functions as the reflection portion 12b.
  • One reflecting portion 12a and one transmitting portion 13 that are adjacent to each other in the X direction form a first diffraction period portion 21, and the width along the X direction in the first diffraction period portion 21 is the first grating period d1. is there.
  • One reflecting portion 12a and one transmitting portion 13 that are adjacent to each other in the Y direction constitute the second diffraction periodic portion 22, and the width along the Y direction in the second diffraction periodic portion 22 is the second grating period d2. is there.
  • the first grating period d1 and the second grating period d2 are, for example, equal to each other.
  • the first grating period d1 and the second grating period d2 may be different from each other.
  • the optical element 10 shown in FIG. 17 also has a so-called cross grating structure, similarly to the optical element 10 shown in FIG.
  • the reflection part 12a is located at the position of the transmission part 13 of the optical element 10 shown in FIG. 16
  • the transmission part 13 is located at the position of the reflection part 12 of the optical element 10 shown in FIG. If positioned, the optical element 10 shown in FIG. 17 has the same optical effect as the optical element 10 shown in FIG.
  • the plurality of transmitting portions 13 may be arranged along the Y direction and may be arranged along a direction intersecting the X direction at a predetermined angle, or may be arranged along the X direction and the Y direction. You may line up along the direction which cross
  • the optical element 10 includes the reflecting portion and the transmitting portion 13 arranged along each of three or more different periodic directions. The structure provided may be sufficient.
  • the optical element 10 shown in FIG. 17 can have the same optical effect as the optical element 10 shown in FIG. Therefore, the optical element 10 shown in FIG. 17 and the optical element 10 shown in FIG. 16 may be selected according to the ease of forming the reflection portion.
  • the optical element 10 may not have the protection part 14.
  • the optical element 10 which does not have the protection part 14 is manufactured by the following manufacturing method, for example.
  • an original plate of the upper transparent resin layer 15 having an aperiodic uneven structure is prepared, as in the manufacturing method described above.
  • a non-periodic uneven structure is formed on the surface of the SUS plate by performing a sandblasting process on the SUS plate. Thereby, an original having a non-periodic uneven structure on the surface can be produced.
  • a resist film having a non-periodic concavo-convex structure on the surface may be formed by lithography using a drawing machine such as a laser or an electron beam, that is, an exposure machine, at the time of producing the original plate. Thereby, an original having a non-periodic uneven structure on the surface can be produced. Then, after a conductive film is dry-coated on the obtained original plate, a practical plate may be formed by electroforming.
  • the upper transparent resin layer 15 having an aperiodic uneven structure is formed by duplicating the uneven structure on the surface of the original plate described above.
  • the upper transparent resin layer 15 is formed using, for example, a photopolymer method.
  • the method for forming the upper transparent resin layer 15 is not limited to the photopolymer method described above, and methods such as a hot embossing method, a hot cold press method, a photopolymer method, and a nanoimprint method can be used.
  • a metal film for forming the reflecting portion 12, for example, an aluminum film 12M is dry-coated on the entire surface of the upper transparent resin layer 15 having the non-periodic uneven structure. Any of the above-described methods can be used for dry coating of the aluminum film 12M.
  • a photoresist PR is applied to the entire aluminum film 12M.
  • a mask for etching the aluminum film 12 ⁇ / b> M is formed by curing the photoresist PR in a portion corresponding to the reflective portion 12 in the aluminum film 12 ⁇ / b> M by pattern exposure using a laser.
  • the reflection part 12 is formed by carrying out the alkali etching of the part which is not hardened
  • the optical element 10 having the protection part 14 it is also possible to manufacture the optical element 10 having the protection part 14.
  • a thin film for forming the protective part 14, for example, a magnesium fluoride film is formed before the step of applying the photoresist PR. Then, the magnesium fluoride film is etched after the development of the photoresist PR and before the alkali etching of the aluminum film 12M.
  • the optical element 10 may be manufactured by a method other than the method described above.
  • the optical element 10 may be manufactured by a washing sea light process, a method of physically removing a metal film, or the like.
  • a washing sea light process after a water-soluble resin is applied to a portion of the upper transparent resin layer 15 corresponding to the transmission portion 13, a metal film for forming the reflection portion 12 is formed by dry coating. .
  • the water-soluble resin and the metal film formed on the water-soluble resin are removed by washing the upper transparent resin layer 15 formed with the water-soluble resin and the metal film with water.
  • the portion corresponding to the transmission part 13 in the metal layer is physically removed by irradiating the laser with a pattern.
  • an ultraviolet curable resin is applied to the back surface 15r of the upper transparent resin layer 15, and the applied ultraviolet curable resin is cured, so that the reflection portion 12 and the protection portion are protected.
  • a lower transparent resin layer 11 covering the portion 14 is formed. The lower transparent resin layer 11 may be omitted.
  • the reflection unit 12 may be formed on the lower transparent resin layer 11 instead of the upper transparent resin layer 15.
  • the upper transparent resin layer 15 may be omitted.
  • FIGS. 1-10 A second embodiment in which the optical element is embodied will be described with reference to FIGS.
  • the optical element of the second embodiment is different from the optical element of the first embodiment in that the reflection part scatters incident light, but the structure for scattering incident light in the reflection part is different. Therefore, in the following, such differences will be described in detail, and the same reference numerals as those of the optical element of the first embodiment are assigned to the same components as those of the optical element of the first embodiment. Description of the configuration to be performed is omitted. And below, the structure of an optical element and the effect
  • FIG. 22 and FIG. 25 The configuration of the optical element will be described with reference to FIGS.
  • the illustration of the upper transparent resin layer is omitted for convenience of explaining the configuration of the optical element.
  • dots are attached to each of the reflecting portions so that the position of the reflecting portion with respect to the lower transparent resin layer can be easily understood.
  • illustration of the uneven structure formed in the surface of a lower transparent resin layer is abbreviate
  • the optical element 10 includes a plurality of reflecting portions 31 formed above the surface 11s of the lower transparent resin layer 11, and each of the plurality of reflecting portions 31 extends along the Y direction.
  • the plurality of reflecting portions 31 have a band shape and are arranged at equal intervals in the X direction which is an example of the first direction.
  • the reflection part 31 includes a semi-cylindrical surface protruding in a direction away from the surface 11s.
  • each reflection part 31 is provided with the semicylindrical surface in the whole Y direction in the reflection part 31, you may provide a semicylindrical surface in at least one part in a Y direction.
  • the Y direction is an example of the second direction.
  • each reflection part 31 is provided with the semi-cylindrical surface over the whole X direction in the reflection part 31, you may be provided with the semi-cylindrical surface in at least one part in the X direction.
  • each of the reflecting portions 31 has a semi-cylindrical surface. Therefore, in one cross section along the ZY plane, the reflecting portion 31 has a position in the Z direction over the entire Y direction. does not change. Similarly, since the protection portion 32 has a semi-cylindrical surface, the position of the protection portion 32 in the Z direction does not change over the entire Y direction in one cross section along the ZY plane.
  • the surface in contact with the lower transparent resin layer 11 in the upper transparent resin layer 15 is the back surface 15r.
  • the back surface 15r of the upper transparent resin layer 15 has a plurality of recesses 15b arranged at equal intervals in the X direction, and each of the plurality of recesses 15b is configured by a cylindrical surface extending along the Y direction.
  • each reflecting portion 31 is formed following one recess 15b, each reflecting portion 31 has a semi-cylindrical surface that follows the shape of the recess 15b. Since each protection part 32 is formed following one recess 15b, like each reflection part 31, each protection part 32 has a semi-cylindrical surface following the shape of the recess 15b.
  • one reflection part 31 and one transmission part 13 that are adjacent to each other in the X direction constitute one transmission period part 33, and the grating period d in the transmission period part 33 is equal to the first embodiment.
  • the lattice period d of the embodiment it is preferably larger than 0.20 ⁇ m and not larger than 20 ⁇ m.
  • each reflective portion 31 having a convex shape protruding toward the upper transparent resin layer 15 is The incident light Li is reflected in a direction corresponding to the part of the reflecting portion 31 where the incident light Li is incident. That is, each reflecting portion 12 generates scattered light as the reflected light Lr. Therefore, when the incident light Li is white visible light, the optical element 10 reflects scattered light having white color.
  • the transmission diffraction unit 20 diffracts each of a plurality of wavelengths of light included in the incident light Li at an angle depending on each light to form a plurality of diffraction images having different colors.
  • the observer of the optical element 10 can observe the white scattered light scattered by the reflection unit 12 in the reflection observation.
  • the observer in the transmission observation, the observer can observe the diffracted light having a rainbow color diffracted by the transmission diffraction unit 20.
  • the optical element of the second embodiment the following effects can be obtained.
  • the light reflected by the optical element 10 is scattered light scattered by the semicylindrical surface, while the light transmitted by the optical element 10 is diffracted light by the transmission diffraction unit 20. Therefore, the difference between the light reflected by the optical element 10 and the light transmitted by the optical element becomes significant.
  • Each of the plurality of reflecting portions 31 may have a band shape extending along the X direction instead of a band shape extending along the Y direction. In such a configuration, the plurality of reflecting portions 31 only need to be arranged at equal intervals in the Y direction.
  • each reflecting portion 31 may have a band shape extending along the extending direction intersecting at a predetermined angle other than perpendicular to the Y direction. In such a configuration, the plurality of reflecting portions 31 extend. It suffices if they are arranged at equal intervals in a direction orthogonal to the current direction.
  • the lengths along the Y direction in the plurality of reflecting portions 31 may be different from each other.
  • the length along the Y direction may gradually decrease from the reflecting portion 31 located at one end in the X direction toward the reflecting portion 31 located at the other end.
  • the plurality of reflecting portions 31 include reflecting portions 31 having different lengths along the Y direction, and the plurality of reflecting portions 31 have a predetermined regularity in the length along the Y direction in the X direction. You may line up in the state which does not have. That is, the structure of the modification of 1st Embodiment which FIG. 13 shows, and the structure which combined the reflection part 31 of 2nd Embodiment may be sufficient.
  • one metal film is formed on the entire upper portion of the lower transparent resin layer 11, that is, on the entire back surface 15 r of the upper transparent resin layer 15, and a plurality of transmission portions 13 are formed on the metal film.
  • the formed structure may be sufficient. That is, the structure of the modification of 1st Embodiment which FIG. 14 shows, and the structure which combined the reflection part 31 of 2nd Embodiment may be sufficient.
  • one metal film is formed on the entire upper portion of the lower transparent resin layer 11, that is, on the entire back surface 15 r of the upper transparent resin layer 15, and a plurality of transmission portions 13 are formed on the metal film.
  • the plurality of transmissive portions 13 that are formed may include transmissive portions 13 having different lengths along the Y direction. That is, the structure of the modification of 1st Embodiment which FIG. 15 shows, and the structure which combined the reflection part 31 of 2nd Embodiment may be sufficient.
  • the optical element 10 may have a configuration having a cross grating structure. That is, the configuration of the modification of the first embodiment shown in FIG. 16 and the configuration of the reflection unit 31 in the second embodiment, or the configuration of the modification of the first embodiment shown in FIG.
  • the structure which combined the reflection part 31 in embodiment may be sufficient.
  • a third embodiment in which the optical element is embodied will be described with reference to FIGS. 28 to 33.
  • the optical element of the third embodiment is different from the optical element of the first embodiment in the configuration of the reflecting portion and the optical effect obtained by the reflecting portion. Therefore, in the following, such differences will be described in detail, and the same reference numerals as those of the optical element of the first embodiment are assigned to the same components as those of the optical element of the first embodiment. Description of the configuration to be performed is omitted. And below, the structure of an optical element and the effect
  • the optical element 10 includes a plurality of reflecting portions 41 formed above the surface 11s of the lower transparent resin layer 11, and each of the plurality of reflecting portions 41 extends along the Y direction. It has a strip shape, and the plurality of reflecting portions 41 are arranged at equal intervals in the X direction.
  • the back surface 15r of the upper transparent resin layer 15 has a plurality of protrusions 15a arranged at equal intervals in the Y direction, and each of the plurality of protrusions 15a extends along the X direction.
  • the cross-sectional shape along a ZY direction is a protrusion with a rectangular shape.
  • the amounts protruding toward the back surface 11r of the lower transparent resin layer 11 in the Z direction are equal to each other.
  • each reflecting portion 41 Since each reflecting portion 41 has a band shape extending along the Y direction on the back surface 15r of the upper transparent resin layer 15, each reflecting portion 41 includes the reflecting portion 41 of the back surface 15r of the upper transparent resin layer 15. It has a structure that follows the position. That is, each reflecting portion 41 includes a plurality of concave portions 41a that are portions protruding toward the back surface 11r of the lower transparent resin layer 11 in the reflective portion 41, and the back surface of the lower transparent resin layer 11 lower than the concave portion 41a in the Z direction. And a plurality of convex portions 41b having a large distance from 11r.
  • the concave portions 41a and the convex portions 41b are alternately and continuously arranged along the Y direction, and the direction in which the concave portions 41a and the convex portions 41b are alternately continuous is the periodic direction. That is, the reflection part 41 is provided with a concavo-convex structure having periodicity along the Y direction.
  • one concave portion 41a and one convex portion 41b adjacent to each other in the Y direction constitute one reflective periodic portion 43, and the width along the Y direction in the reflective periodic portion 43 is the grating period dr. is there.
  • the recessed part 41a and the convex part 41b are alternately continuing in the whole Y direction in the reflection part 41, you may be continuing alternately in a part in Y direction.
  • the reflection unit 41 can form a plurality of diffraction images having different colors by the diffracted light diffracted by the reflection period unit 43. That is, the reflection unit 41 can form a reflection image by making the reflection angle of the light reflected by the reflection unit 41 different from the angle of the light incident on the reflection unit 41.
  • the grating period dr is preferably not less than 0.5 ⁇ m and not more than 10 ⁇ m.
  • the diffraction period of the diffraction image is larger than that when the grating period dr is other sizes. The viewing angle becomes larger.
  • each reflecting portion 41 is a sub-wavelength grating, and the reflecting portion 41 can separate polarized light from incident light.
  • the grating period dr may have the following length: preferable. That is, the grating period dr is preferably included in the range of 0.15 ⁇ m or more and less than 0.35 ⁇ m, which is less than 1 ⁇ 2 of the visible light wavelength, and is included in the range of 0.15 ⁇ m or more and 0.30 ⁇ m or less. It is more preferable.
  • the reflection unit 41 diffracts visible light while reflecting only polarized light that is a component perpendicular to the reflection unit 41. Can be made.
  • Each protection part 42 has a structure similar to the part where each protection part 42 is located in the back surface 15 r of the upper transparent resin layer 15, similarly to the reflection part 41.
  • FIG. 30 shows a cross-sectional shape of the optical element 10 along the ZX plane.
  • the convex portion 15a formed on the back surface 15r of the upper transparent resin layer 15 extends along the X direction and has an amount protruding toward the back surface 11r of the lower transparent resin layer 11 in the Z direction. Equal to each other. Therefore, the plurality of reflecting portions 41 have the same position in the Z direction, and the plurality of protection portions 42 have the same position in the Z direction.
  • one reflection part 41 and one transmission part 13 that are adjacent to each other in the X direction constitute one transmission period part 44, and the grating period dt in the transmission period part 44 is equal to the first embodiment.
  • the lattice period d of the embodiment it is preferably larger than 0.20 ⁇ m and not larger than 20 ⁇ m.
  • each reflective portion 41 that functions as a reflective diffraction grating reflects incident light Li. . That is, each reflecting portion 41 generates diffracted light as reflected light Lr. Therefore, when the incident light Li is white visible light, each reflecting portion 41 generates diffracted light having a rainbow color as reflected light Lr.
  • the transmission diffraction unit 20 diffracts each of a plurality of wavelengths of light included in the incident light Li at an angle depending on each light to form a plurality of diffraction images having different colors.
  • the observer of the optical element 10 can observe the diffracted light having a rainbow color reflected by the reflecting portion 41 in the reflection observation.
  • the observer in the transmission observation, the observer can observe the diffracted light having a rainbow color diffracted by the transmission diffraction unit 20.
  • each reflection part 41 and the transmission diffraction part 20 may be the structure which diffracts the same diffracted light mutually, and the structure which diffracts mutually different diffracted light. As described above, according to the optical element of the third embodiment, the following effects can be obtained.
  • the grating period dr of the reflection period part 43 is greater than 0.20 ⁇ m and less than 0.35 ⁇ m, only polarized light that is a component perpendicular to the reflection part 41 out of visible light incident on the reflection part 41 The visible light can be diffracted while reflecting the light.
  • Each of the plurality of reflecting portions 41 may have a band shape extending along the X direction instead of a band shape extending along the Y direction. In such a configuration, the plurality of reflecting portions 41 only need to be arranged at equal intervals in the Y direction. Alternatively, each reflecting portion 41 may have a band shape extending along the extending direction intersecting at a predetermined angle other than perpendicular to the Y direction. In such a configuration, the plurality of reflecting portions 41 extend. It suffices if they are arranged at equal intervals in a direction orthogonal to the current direction.
  • the lengths along the Y direction in the plurality of reflecting portions 41 may be different from each other.
  • the length along the Y direction may gradually decrease from the reflecting portion 41 located at one end in the X direction toward the reflecting portion 41 located at the other end.
  • the plurality of reflection portions 41 include reflection portions 41 having different lengths along the Y direction, and the plurality of reflection portions 41 have a predetermined regularity in the length along the Y direction in the X direction. You may line up in the state which does not have. That is, the structure of the modification of 1st Embodiment which FIG. 13 shows, and the structure which combined the reflection part 41 of 3rd Embodiment may be sufficient.
  • one metal film is formed on the entire upper portion of the lower transparent resin layer 11, that is, on the entire back surface 15 r of the upper transparent resin layer 15, and a plurality of transmission portions 13 are formed on the metal film.
  • the formed structure may be sufficient. That is, the structure of the modification of 1st Embodiment which FIG. 14 shows, and the structure which combined the reflection part 41 of 3rd Embodiment may be sufficient.
  • one metal film is formed on the entire upper portion of the lower transparent resin layer 11, that is, on the entire back surface 15 r of the upper transparent resin layer 15, and a plurality of transmission portions 13 are formed on the metal film.
  • the plurality of transmissive portions 13 that are formed may include transmissive portions 13 having different lengths along the Y direction. That is, the structure of the modification of 1st Embodiment which FIG. 15 shows and the structure which combined the reflection part 41 of 3rd Embodiment may be sufficient.
  • the optical element 10 may have a configuration having a cross grating structure. That is, the configuration of the modification of the first embodiment shown in FIG. 16 and the configuration of the reflection unit 41 in the third embodiment, or the configuration of the modification of the first embodiment shown in FIG.
  • the structure which combined the reflection part 41 in embodiment may be sufficient.
  • the concave portions 41a and the convex portions 41b constituting the reflection period portion 43 are alternately and continuously arranged in the Y direction.
  • the recessed part 41a and the convex part 41b which comprise the reflection period part 43 may be arranged alternately and continuously in the X direction, and may be arranged alternately and continuously in the Y direction.
  • the recessed part 41a and the convex part 41b which comprise the reflective period part 43 are located in a row and are continuously arranged along the periodic direction which cross
  • the reflection periodic part 43 when the reflection periodic part 43 is the first periodic part, it may have a second periodic part having a concavo-convex structure that is different from the first periodic part in periodicity.
  • the second period portion only needs to be different from the first period portion in at least one of the grating period and the period direction, and the first period portion and the second period portion are visible light incident on the reflecting portion. What is necessary is just to diffract light into a mutually different direction. That is, in the plurality of reflection portions 41, the first reflection portion 41 may include the first periodic portion and the second periodic portion. Alternatively, the plurality of reflecting portions 41 may include a reflecting portion 41 including only the first periodic portion and a reflecting portion 41 including only the second periodic portion.
  • a fourth embodiment in which the optical element is embodied will be described with reference to FIG.
  • the optical element of the fourth embodiment is different from the optical element of the first embodiment in that one optical element has two element portions having different optical effects. Therefore, in the following, such differences will be described in detail, and the same reference numerals as those of the optical element of the first embodiment are assigned to the same components as those of the optical element of the first embodiment. Description of the configuration to be performed is omitted. And below, the structure of an optical element and the effect
  • the optical element 50 includes a first element portion 51 and a second element portion 52 that are partitioned in one lower transparent resin layer 11.
  • the first element unit 51 includes a plurality of reflection units 12 arranged at equal intervals in the X direction, and each of the plurality of reflection units 12 extends along the Y direction. It has a band shape.
  • the reflection part 12 has an aperiodic uneven structure, and in the first element part 51, the ratio of the sum of the areas of all the reflection parts 12 and the sum of the areas of the parts that transmit light including the transmission part 13 Is the first area ratio S1.
  • the reflection units 12 and the transmission units 13 are alternately and continuously arranged in the X direction.
  • the plurality of reflection units 12 and the plurality of transmission units 13 constitute a transmission diffraction unit 20, and the transmission diffraction unit 20 includes a predetermined grating. It has a period da.
  • the direction in which the reflection part 12 and the transmission part 13 continue alternately is a periodic direction, and the periodic direction in the first element part 51 is a direction parallel to the X direction.
  • the second element portion 52 includes a plurality of reflecting portions 61 arranged at equal intervals along the Y direction, and each of the plurality of reflecting portions 61 has a band shape extending along the X direction.
  • the reflection part 61 is an example of a scattering part.
  • the portion that fills the space between the reflecting portions 61 by being sandwiched between two reflecting portions 61 that are adjacent to each other in the Y direction is the transmitting portion 62, and the plurality of transmitting portions 62 are along the Y direction, like the reflecting portion 61.
  • the transmission parts 62 are arranged at equal intervals and have a band shape extending along the X direction.
  • the transmission part 62 is an example of a second transmission part.
  • the reflection part 61 has a non-periodic uneven structure like the reflection part 12 of the first element part 51.
  • the ratio of the sum of the areas of all the reflection parts 61 and the sum of the areas of the parts that transmit light including the transmission part 62 is the second area ratio S2, and the second area ratio S2 Is equal to, for example, the first area ratio S1.
  • the first area ratio S1 and the second area ratio S2 may be different from each other.
  • the reflection unit 61 and the transmission unit 62 are alternately and continuously arranged in the Y direction.
  • the plurality of reflection units 61 and the plurality of transmission units 62 constitute a transmission diffraction unit 60, and the transmission diffraction unit 60 includes a predetermined grating. It has a period db.
  • the grating period db in the transmission diffraction part 60 of the second element part 52 is equal to the grating period da in the transmission diffraction part 20 of the first element part 51.
  • the direction in which the reflection part 61 and the transmission part 62 continue alternately is the periodic direction
  • the periodic direction in the second element part 52 is a direction parallel to the Y direction. That is, the periodic direction in the second element unit 52 is a direction orthogonal to the periodic direction in the first element unit 51.
  • the rod-shaped light source is a light source extending along one direction and has a large incident angle, and therefore has a reflection diffraction portion and a transmission portion extending along a direction intersecting with the direction in which the rod-shaped light source extends. Then, diffracted light of each wavelength is mixed, and diffracted light having a rainbow color is not observed.
  • the diffracted light having a rainbow color is not observed.
  • the transmission part 62 of the second element part 52 extends along a direction parallel to the direction in which the rod-shaped light source extends, while the transmission of the first element part 51 occurs.
  • the part 13 extends along a direction perpendicular to the direction in which the rod-shaped light source extends.
  • the effects listed below can be obtained. (10) Since the first area ratio S1 and the second area ratio S2 are equal to each other, the state of the scattered light of the first element unit 51 and the state of the scattered light of the second element unit 52 are equal to each other. Cheap. Therefore, the boundary between the first element part 51 and the second element part 52 is hardly recognized on the side where the light is reflected with respect to the optical element 10. On the other hand, the transmitted light transmitted through the first element unit 51 and the transmitted light transmitted through the second element unit are different from each other.
  • the optical element 10 is recognized as being included in the light emitted from the optical element 10 on the side where the light is reflected with respect to the optical element 10 and the side where the light is transmitted with respect to the optical element 10.
  • An optical effect that the number of lights is different from each other is further added.
  • the periodic direction of the transmission diffraction part 20 in the first element part 51 and the periodic direction of the transmission diffraction part 60 in the second element part 52 are orthogonal to each other. Therefore, in the observation of the optical element 10 using the rod-shaped light source, the conditions under which the diffracted light due to transmission is observed in the first element portion 51 and the conditions under which the diffracted light due to transmission is observed in the second element portion 52 are mutually. Different.
  • the reflection part 12 of the 1st element part 51 and the reflection part 61 of the 2nd element part 52 may be comprised by the cylindrical surface. That is, the configuration of the first element unit 51 and the reflection unit 31 of the second embodiment may be combined, or the configuration of the second element unit 52 and the reflection unit 31 of the second embodiment may be combined.
  • the reflection part 12 of the 1st element part 51 may contain both the reflection part which has the non-periodic uneven
  • the reflection part 61 may include both a reflection part having an aperiodic uneven structure and a reflection part constituted by a cylindrical surface.
  • the reflection unit 12 of the first element unit 51 may have a periodic uneven structure
  • the reflection unit 61 of the second element unit 52 may have a periodic uneven structure. That is, the optical element is a combination of the configuration of the first element unit 51 and the reflection unit 41 of the third embodiment, and the configuration of the second element unit 52 and the reflection unit 41 of the third embodiment. May be.
  • the grating period in the reflection part and the grating period in the transmission diffraction part are set so that the transmission angle and wavelength in each of the two diffracted lights are extremely different, so that the two diffracted lights are vivid.
  • a configuration in which the color tone is observed is also possible.
  • reflection part 12 of the 1st element part 51 and the reflection part 61 of the 2nd element part 52 have a periodic uneven
  • reflection of the 1st element part 51 The grating period in the part 12 and the grating period in the reflecting part 61 of the second element part 52 may be the same or different from each other.
  • the periodic direction in the reflection part 12 of the 1st element part 51 and the periodic direction in the reflection part 61 of the 2nd element part 52 may mutually be the same, and may mutually differ.
  • the following optical element 50 may be used. That is, a configuration in which reflected light having a white color is emitted from the optical element 50 by mixing diffracted light generated by the first element unit 51 as reflected light and diffracted light generated by the second element unit 52 as reflected light. It is good.
  • the structure is as follows. May be. That is, in at least one of the first element unit 51 and the second element unit 52, the plurality of reflection units include a plurality of types of reflection units having different lattice periods and at least one of the periodic directions in the concavo-convex structure. May be.
  • One of the reflecting part 12 of the first element part 51 and the reflecting part 61 of the second element part 52 has a non-periodic concavo-convex structure or a cylindrical surface to reflect scattered light, and the other is The structure which has a periodic uneven
  • the optical element 50 has one metal film formed above the lower transparent resin layer 11, that is, on the back surface 15 r of the upper transparent resin layer 15, and one metal film is connected to the first element unit 51. It straddles both the second element portion 52 and the second element portion 52.
  • the first element unit 51 includes a plurality of transmission parts 13 arranged at equal intervals in the X direction, and each of the plurality of transmission parts 13 has a band shape extending along the Y direction.
  • the reflection part 12a is located between two transmission parts 13 adjacent to each other in the X direction.
  • the reflection part 12a and the transmission part 13 constitute a transmission diffraction part 20 arranged alternately and continuously in the X direction, and the transmission diffraction part 20 has a predetermined grating period da.
  • surroundings of the some transmission part 13 among metal films also functions as the reflection part 12b.
  • the second element part 52 includes a plurality of transmission parts 62 arranged at equal intervals in the Y direction, and each of the plurality of transmission parts 62 has a band shape extending along the X direction. Yes.
  • the reflection part 61a is located between the two transmission parts 62 adjacent to each other in the Y direction.
  • the reflection part 61a and the transmission part 62 constitute a transmission diffraction part 60 arranged alternately and continuously in the Y direction, and the transmission diffraction part 60 has a predetermined grating period db.
  • the grating period db of the second element unit 52 is equal to the grating period da of the first element unit 51.
  • the second element portion 52 functions as a reflection portion 61 b of a portion surrounding the periphery of the plurality of transmission portions 62 in the metal film.
  • the metal film included in the optical element 50 has a non-periodic uneven structure having the same characteristics in the plane of the metal film. That is, the reflective part of the first element unit 51 and the reflective part of the second element part 52 have a non-periodic uneven structure having the same characteristics. For this reason, the scattered light generated as the reflected light by the reflecting portion 12 of the first element unit 51 and the scattered light generated as the reflected light by the reflecting unit 61 of the second element unit 52 are equal to each other.
  • the effect according to the optical element 50 of the fourth embodiment can be obtained.
  • the metal film may have a periodic concavo-convex structure to generate diffracted light as reflected light from light incident on the optical element 50. That is, each of the reflective portion of the first element portion 51 and the reflective portion of the second element portion 52 may have a periodic uneven structure.
  • the metal film may have a periodic concavo-convex structure having the same characteristics in the portion located in the first element portion 51 and the portion located in the second element portion 52. They may have a periodic uneven structure having different characteristics. That is, the reflective part of the first element unit 51 and the reflective part of the second element unit 52 may have a periodic uneven structure having the same characteristics, or have different characteristics. You may have a periodic uneven structure.
  • the first element portion 51 has a configuration that is plane-symmetric with the second element portion 52 having a ZX plane passing through the boundary between the first element portion 51 and the second element portion 52 as a symmetry plane.
  • the plurality of transmission parts 62 included in the second element unit 52 include transmission parts 62 having different lengths along the X direction, and the plurality of transmission parts 62 are long along the X direction in the Y direction. In addition, they may be arranged in a state that does not have a predetermined regularity.
  • the reflection unit included in the first element unit 51 and the reflection unit included in the second element unit 52 have a non-periodic uneven structure having the same characteristics and scatter incident light. Alternatively, it may have a non-periodic concavo-convex structure having different characteristics and scatter incident light.
  • the reflection unit included in the first element unit 51 and the reflection unit included in the second element unit 52 may have a periodic uneven structure having the same characteristics and diffract incident light. Alternatively, it may have a periodic concavo-convex structure having different characteristics to diffract incident light.
  • the lengths along the Y direction are different from each other in the plurality of reflecting portions 12 included in the first element portion 51, and the lengths along the Y direction are different from each other in the plurality of reflecting portions 61 included in the second element portion 52.
  • the lengths may be different from each other. That is, the configuration of the optical element 50 may be combined with the configuration of the optical element 10 shown in FIG. 13 which is a modification of the first embodiment.
  • the configuration of the first element unit 51 in the optical element 50 shown in FIG. 34 may be combined with the configuration of the second element unit 52 in the optical element 50 shown in FIG. Or you may combine the structure of the 2nd element part 52 in the optical element 50 which FIG. 34 shows, and the structure of the 1st element part 51 in the optical element 50 which FIG. 35 shows.
  • the transmission diffraction part provided in the first element part 51 and the transmission diffraction part provided in the second element part 52 are equal to each other, and the non-periodic irregularities in the reflection part of the first element part 51
  • the structure and the non-periodic uneven structure in the reflection part of the second element part 52 may be different from each other. Even with such a configuration, the optical effect obtained by the first element unit 51 and the optical effect obtained by the second element unit 52 can be made different from each other.
  • the optical element includes a transmission diffractive part provided in the first element part 51 and a transmission diffractive part provided in the second element part 52 that are equal to each other, and a periodic uneven structure in the reflection part of the first element part 51 In the periodic uneven structure in the reflection part of the second element part 52, the grating period in the reflection period part may be different from each other. Even with such a configuration, the optical effect obtained by the first element unit 51 and the optical effect obtained by the second element unit 52 can be made different from each other.
  • the grating period in the reflecting part of the first element part 51 and the grating period in the reflecting part of the second element part 52 are different from each other, different diffracted lights can be obtained for each transmission diffraction part. it can.
  • a fifth embodiment in which the optical element is embodied will be described with reference to FIG.
  • the optical element of the fifth embodiment is different from the optical element of the fourth embodiment in that the grating period in the transmission diffraction part of the first element part and the grating period in the transmission diffraction part of the second element part are different from each other. Is different. Therefore, in the following, such differences will be described in detail, and the same reference numerals as those of the optical element of the fourth embodiment are attached to the same elements as those of the optical element of the fourth embodiment. Description of the configuration to be performed is omitted. And below, the structure of an optical element and the effect
  • the optical element 50 includes a first element part 51 and a second element part 52.
  • the first element portion 51 includes a plurality of reflecting portions 71 arranged at equal intervals in the Y direction which is an example of one direction, and each of the plurality of reflecting portions 71 has a band shape extending along the X direction. is doing.
  • the transmission part 72 is located between two reflection parts 71 adjacent to each other in the Y direction, the plurality of transmission parts 72 are arranged at equal intervals in the Y direction, and each transmission part 72 is arranged in the X direction. It has a strip shape extending along.
  • the reflection part 71 has an aperiodic uneven structure, and in the first element part 51, the ratio of the sum of the areas of all the reflection parts 71 and the sum of the areas of the parts that transmit light including the transmission part 72. Is the first area ratio S1.
  • the reflection unit 71 and the transmission unit 72 are alternately and continuously arranged in the Y direction to form a transmission diffraction unit 70.
  • the reflection part 71 and the transmission part 72 adjacent to each other constitute a transmission period part 73, and the transmission period part 73 has a predetermined grating period da.
  • the second element portion 52 includes a plurality of reflecting portions 81 arranged at equal intervals in the Y direction, and each of the plurality of reflecting portions 81 has a band shape extending along the X direction.
  • a transmission part 82 is located between two reflection parts 81 adjacent to each other in the Y direction, the plurality of transmission parts 82 are arranged at equal intervals in the Y direction, and each transmission part 82 is arranged in the X direction. It has a strip shape extending along.
  • the reflective part 81 has an aperiodic uneven structure having the same characteristics as the reflective part 71 of the first element part 51.
  • the sum of the areas of all the reflective parts 81 and the transmissive part The ratio with the sum of the areas of the portions that transmit light including 82 is the second area ratio S2.
  • the reflection part 81 and the transmission part 82 are alternately and continuously arranged in the Y direction to form a transmission diffraction part 80.
  • the reflection part 81 and the transmission part 82 adjacent to each other constitute a transmission period part 83
  • the transmission period part 83 has a predetermined grating period db.
  • the grating period db in the transmission diffraction part 80 of the second element part 52 is smaller than the grating period da in the transmission diffraction part 70 of the first element part 51.
  • the grating period db in the transmission diffraction part 80 of the second element part 52 may be larger than the grating period da in the transmission diffraction part 70 of the first element part 51.
  • optical element 50 when the first area ratio S1 and the second area ratio S2 are equal to each other, the intensity of the scattered light reflected by the first element unit 51 and the scattered light reflected by the second element unit 52 Are equal to each other.
  • the reflection part 71 of the first element part 51 and the reflection part 81 of the second element part 52 have a non-periodic uneven structure having the same characteristics, the first element part 51 The boundary with the second element unit 52 is difficult to be recognized.
  • the grating period da in the transmission diffraction part 70 of the first element part 51 and the grating period db in the transmission diffraction part 80 of the second element part 52 are different from each other. Therefore, the diffracted light generated as the transmitted light from the light incident by the transmission diffraction unit 70 of the first element unit 51, and the diffracted light generated as the transmitted light from the light incident by the transmission diffraction unit 80 of the second element unit 52 Are different from each other. Therefore, in the transmission observation, diffracted lights having different transmission angles and dispersion angles are observed in the first element unit 51 and the second element unit 52, and the first element unit 51 and the second element unit 52 The boundary is easy to recognize.
  • the optical element of the fifth embodiment the following effects can be obtained. (12) Since the grating periods of the transmission diffraction unit 70 of the first element unit 51 and the transmission diffraction unit 80 of the second element unit 52 are different from each other, different diffracted lights are obtained for each transmission diffraction unit.
  • the fifth embodiment described above can also be implemented with appropriate modifications as follows.
  • the upper transparent resin layer is not shown and dots are attached to the reflecting portion for convenience of describing the reflecting portion and the transmitting portion included in the optical element.
  • the first area ratio S1 in the first element unit 51 and the second area ratio S2 in the second element unit 52 may be different from each other.
  • the reflection part 71 of the first element part 51 and the reflection part 81 of the second element part 52 are not configured to have a non-periodic uneven structure, but have a periodic uneven structure and are diffracted as reflected light. The structure which produces light may be sufficient. Even in such a configuration, if the reflecting portion 71 of the first element portion 51 and the reflecting portion 81 of the second element portion 52 have the periodic uneven structure having the same characteristics, the first portion The diffracted light generated as reflected light in the element unit 51 and the diffracted light generated as reflected light in the second element unit 52 are equal to each other. Therefore, the boundary between the first element unit 51 and the second element unit 52 is not easily recognized.
  • the optical element 50 may have a configuration in which the position of the reflecting portion and the position of the transmitting portion in FIG. 37 are reversed. That is, the optical element 50 has one metal film formed above the lower transparent resin layer 11, that is, on the back surface 15 r of the upper transparent resin layer 15, and one metal film is connected to the first element unit 51. And straddling both the second element portion 52 and the second element portion 52.
  • the first element unit 51 includes a plurality of transmission parts 72 arranged at equal intervals in the Y direction, and each of the plurality of transmission parts 72 has a band shape extending along the X direction.
  • the reflection part 71a is located between two transmission parts 72 adjacent to each other in the Y direction.
  • the reflection part 71a and the transmission part 72 constitute a transmission diffraction part 70 that is arranged alternately and continuously in the Y direction.
  • the reflection section 71a and the transmission section 72 adjacent to each other constitute a transmission period section 73, and the transmission period section 73 has a predetermined grating period da.
  • surroundings of the some transmission part 72 among metal films also functions as the reflection part 71b.
  • the second element part 52 includes a plurality of transmission parts 82 arranged at equal intervals in the Y direction, and each of the plurality of transmission parts 82 has a band shape extending along the X direction. Yes.
  • the reflection part 81a is located between two transmission parts 82 adjacent to each other in the Y direction.
  • the reflection part 81a and the transmission part 82 constitute a transmission diffraction part 80 that is alternately and continuously arranged in the Y direction.
  • the reflection portion 81a and the transmission portion 82 adjacent to each other constitute a transmission periodic portion 83
  • the transmission periodic portion 83 has a predetermined grating period db.
  • the grating period db of the second element unit 52 is smaller than the grating period da of the first element unit 51.
  • a portion of the metal film surrounding the periphery of the plurality of transmission units 82 also functions as the reflection unit 81b.
  • the optical element 50 may have a cross grating structure. That is, the optical element 50 includes a first element unit 51 and a second element unit 52. In the first element unit 51, a plurality of reflecting portions 91 having a rectangular shape are arranged at equal intervals in the X direction and are arranged at equal intervals in the Y direction. The transmission part 92 is located between two reflection parts 91 adjacent to each other in the X direction, extends along the Y direction, and between two reflection parts 91 adjacent to each other in the Y direction. Located and extends along the X direction.
  • the reflection portions 91 and the transmission portions 92 are alternately and continuously arranged in the X direction, and are alternately and continuously arranged in the Y direction.
  • the plurality of reflection portions 91 and the plurality of transmission portions 92 constitute a transmission diffraction portion 90.
  • the reflective portion 91 and the transmissive portion 92 adjacent to each other in the X direction constitute a transmission periodic portion 93
  • the reflective portion 91 and the transmissive portion 92 adjacent to each other in the Y direction constitute a transmission periodic portion 93. Yes.
  • the grating period in the periodic direction parallel to the X direction and the grating period in the periodic direction parallel to the Y direction are equal to each other, and each grating period is a predetermined grating period da.
  • a plurality of reflecting portions 101 having a rectangular shape are arranged at equal intervals in the X direction and are arranged at equal intervals in the Y direction.
  • the transmissive part 102 is located between the two reflective parts 101 adjacent to each other in the X direction, extends along the Y direction, and between the two reflective parts 101 adjacent to each other in the Y direction. Located and extends along the X direction.
  • the reflection portion 101 and the transmission portion 102 are alternately and continuously arranged in the X direction, and are alternately and continuously arranged in the Y direction.
  • the plurality of reflection units 101 and the plurality of transmission units 102 constitute a transmission diffraction unit 100.
  • the reflective portion 101 and the transmissive portion 102 that are adjacent to each other in the X direction constitute a transmission periodic portion 103
  • the reflective portion 101 and the transmissive portion 102 that are adjacent to each other in the Y direction constitute a transmission periodic portion 103. Yes.
  • the grating period in the periodic direction parallel to the X direction and the grating period in the periodic direction parallel to the Y direction are equal to each other, and each grating period is a predetermined grating period db.
  • the grating period db in the transmission diffraction part 100 of the second element part 52 is smaller than the grating period da in the transmission diffraction part 90 of the first element part 51.
  • the optical element 50 may have a configuration in which the position of the reflecting portion and the position of the transmitting portion in FIG. 39 are reversed. That is, the optical element 50 has one metal film formed above the lower transparent resin layer 11, that is, on the back surface 15 r of the upper transparent resin layer 15, and one metal film is connected to the first element unit 51. And straddling both the second element portion 52 and the second element portion 52.
  • a plurality of transmission parts 92 having a rectangular shape are arranged at equal intervals in the X direction and are arranged at equal intervals in the Y direction.
  • the reflection portion 91a is located between two transmission portions 92 adjacent to each other in the X direction, extends along the Y direction, and is positioned between two transmission portions 92 adjacent to each other in the Y direction. Extending along the X direction.
  • the portion surrounding the periphery of the plurality of transmission portions 92 also functions as the reflection portion 91b.
  • the reflection portions 91a and the transmission portions 92 are alternately and continuously arranged in the X direction and are alternately and continuously arranged in the Y direction.
  • the plurality of reflection portions 91 a and the plurality of transmission portions 92 constitute a transmission diffraction portion 90.
  • the reflective portion 91a and the transmissive portion 92 adjacent to each other in the X direction constitute a transmission periodic portion 93
  • the reflective portion 91a and the transmissive portion 92 adjacent to each other in the Y direction constitute a transmission periodic portion 93.
  • the grating period in the periodic direction parallel to the X direction and the grating period in the direction parallel to the Y direction are equal to each other, and each grating period is a predetermined grating period da.
  • a plurality of transmission parts 102 having a rectangular shape are arranged at equal intervals in the X direction and are arranged at equal intervals in the Y direction.
  • the reflective portion 101a is positioned between two transmissive portions 102 adjacent to each other in the X direction, extends along the Y direction, and is positioned between two transmissive portions 102 adjacent to each other in the Y direction. Extending along the X direction.
  • a portion surrounding the plurality of transmission parts 92 also functions as the reflection part 101b.
  • the reflection portions 101a and the transmission portions 102 are alternately and continuously arranged in the X direction, and are alternately and continuously arranged in the Y direction.
  • the plurality of reflection units 101 and the plurality of transmission units 102 constitute a transmission diffraction unit 100.
  • the reflective portion 101a and the transmissive portion 102 adjacent to each other in the X direction constitute a transmission periodic portion 103
  • the reflective portion 101a and the transmissive portion 102 adjacent to each other in the Y direction constitute a transmission periodic portion 103. Yes.
  • the grating period in the periodic direction parallel to the X direction and the grating period in the direction parallel to the Y direction are equal to each other, and each grating period is a predetermined grating period db.
  • the grating period db in the transmission diffraction part 100 of the second element part 52 is smaller than the grating period da in the transmission diffraction part 90 of the first element part 51.
  • the optical element 50 may be combined with the configuration of the fourth embodiment. That is, the periodic direction in the transmission diffraction unit 70 of the first element unit 51 and the periodic direction in the transmission diffraction unit 80 of the second element unit 52 may be different from each other.
  • FIG. 10 A sixth embodiment in which the optical element is embodied will be described with reference to FIG.
  • the optical element according to the sixth embodiment is different from the optical element according to the fourth embodiment in the number of element portions constituting one optical element. Therefore, in the following, such differences will be described in detail, and the same reference numerals as those of the optical element of the fourth embodiment are attached to the same elements as those of the optical element of the fourth embodiment. Description of the configuration to be performed is omitted. And below, the structure of an optical element and the effect
  • the optical element 110 includes a first element part 111, a second element part 112, and a third element part 113 partitioned by the lower transparent resin layer 11.
  • the first element unit 111 includes a plurality of reflecting portions 121 arranged at equal intervals in the Y direction, and each of the plurality of reflecting portions 121 has a band shape extending along the X direction.
  • the transmission part 122 is located between two reflection parts 121 adjacent to each other in the Y direction, and the transmission part 122 has a band shape extending along the X direction.
  • the reflection unit 121 and the transmission unit 122 are alternately and continuously arranged in the Y direction to constitute the transmission diffraction unit 120.
  • the transmission diffraction unit 120 has a predetermined grating period dc.
  • the reflection unit 121 has a periodic uneven structure, and for example, generates diffracted light having a red color as reflected light.
  • the second element unit 112 includes a plurality of reflecting units 131 arranged at equal intervals in the Y direction, and each of the plurality of reflecting units 131 has a band shape extending along the X direction.
  • the transmission part 132 is located between two reflection parts 131 adjacent to each other in the Y direction, and the transmission part 132 has a band shape extending along the X direction.
  • the reflection unit 131 and the transmission unit 132 are alternately and continuously arranged in the Y direction to form the transmission diffraction unit 130.
  • the transmission diffraction unit 130 has a predetermined grating period dd.
  • the reflective portion 131 has a concavo-convex structure having a periodic concavo-convex structure and a characteristic different from that of the periodic concavo-convex structure provided in the reflective portion 121 of the first element unit 111.
  • the reflecting unit 131 generates, for example, diffracted light having a green color as reflected light.
  • the third element unit 113 includes a plurality of reflection units 141 arranged at equal intervals in the Y direction, and each of the plurality of reflection units 141 has a strip shape extending along the X direction.
  • the transmission part 142 is located between two reflection parts 141 adjacent to each other in the Y direction, and the transmission part 142 has a band shape extending along the X direction.
  • the reflection unit 141 and the transmission unit 142 are alternately and continuously arranged in the Y direction to constitute the transmission diffraction unit 140.
  • the transmission diffraction unit 140 has a predetermined grating period de.
  • the grating period de in the third element unit 113, the grating period dc in the first element unit 111, and the grating period dd in the second element unit 112 are equal to each other. In the three element portions, the grating periods may not be equal to each other.
  • the reflective portion 141 has a periodic concavo-convex structure, and concavo-convex having characteristics different from both the concavo-convex structure in the reflective portion 121 of the first element portion 111 and the concavo-convex structure in the reflective portion 131 of the second element portion 112. It has a structure.
  • the reflecting unit 141 generates diffracted light having a blue color as reflected light.
  • the first element part 111 when light enters from the upper transparent resin layer 15 side with respect to each transmission diffraction part, the first element part 111 generates red diffracted light as reflected light, and the second element part 112 generates green diffracted light. Is generated as reflected light, and the third element unit 113 generates blue diffracted light as reflected light. Therefore, the reflected light emitted from the optical element 50 is light having a white color because it is a light in which three diffracted lights are mixed.
  • the optical element 50 is not limited to a configuration having a non-periodic concavo-convex structure and a reflecting portion that reflects scattered light, or a configuration having a cylindrical surface and a reflecting portion that reflects scattered light.
  • the reflected light having white color can be emitted.
  • the optical element of the sixth embodiment the following effects can be obtained.
  • the three element portions of the optical element 110 generate differently diffracted light as reflected light by mutually different periodic uneven structures, so that the optical element 110 emits white reflected light. .
  • the optical element 110 may not be configured to emit white reflected light by mixing diffracted light.
  • the optical element 50 only needs to have three element portions that are different from each other in at least one of the optical effect due to reflection and the optical effect due to transmission.
  • the optical element 110 should just have three or more element parts, for example, may have four element parts.
  • the optical element 110 includes a first element portion 111, a second element portion 112, a third element portion 113, and a fourth element portion 114 that are partitioned on the lower transparent resin layer 11.
  • the plurality of reflecting parts 121 are arranged at equal intervals in the X direction, and each of the plurality of reflecting parts 121 has a band shape extending along the Y direction.
  • the transmission part 122 is located between two reflection parts 121 adjacent to each other in the X direction, and the transmission part 122 has a band shape extending along the Y direction.
  • the reflection part 121 and the transmission part 122 are arranged alternately and continuously in the X direction to constitute the transmission diffraction part 120.
  • the reflection part 121 and the transmission part 122 adjacent to each other constitute a transmission periodic part 123, and the transmission periodic part 123 has a predetermined grating period dc.
  • the plurality of reflecting portions 131 are arranged at equal intervals in the Y direction, and each of the plurality of reflecting portions 131 has a band shape extending along the X direction.
  • the transmission unit 132 is located between two reflection units 131 adjacent to each other in the Y direction, and the transmission unit 132 has a band shape extending along the X direction.
  • the reflection portion 131 and the transmission portion 132 are alternately and continuously arranged in the Y direction to constitute the transmission diffraction portion 130.
  • the reflection section 131 and the transmission section 132 that are adjacent to each other constitute a transmission period section 133.
  • the transmission period section 133 has a predetermined grating period dd, and the grating period dd is the first element. It is equal to the grating period dc in the transmission diffraction part 120 of the part 111.
  • the periodic direction in the transmission diffraction unit 130 of the second element unit 112 is orthogonal to the periodic direction in the transmission diffraction unit 120 of the first element unit 111.
  • the plurality of reflecting portions 141 are arranged at equal intervals in the X direction, and each of the plurality of reflecting portions 141 has a band shape extending along the Y direction.
  • the transmission unit 142 is positioned between two reflection units 141 adjacent to each other in the X direction, and the transmission unit 142 has a band shape extending in the Y direction.
  • the reflection portion 141 and the transmission portion 142 are alternately and continuously arranged in the X direction to constitute the transmission diffraction portion 140.
  • the reflection part 141 and the transmission part 142 adjacent to each other constitute a transmission period part 143
  • the transmission period part 143 has a predetermined grating period de.
  • the grating period de of the transmission diffraction part 140 is larger than both the grating period dc in the transmission diffraction part 120 of the first element part 111 and the grating period dd in the transmission diffraction part 130 of the second element part 112.
  • the plurality of reflecting portions 151 are arranged at equal intervals in the Y direction, and each of the plurality of reflecting portions 151 has a band shape extending along the X direction.
  • the transmission unit 152 is located between two reflection units 151 adjacent to each other in the Y direction, and the transmission unit 152 has a band shape extending along the X direction.
  • the reflection part 151 and the transmission part 152 are arranged alternately and continuously in the Y direction to constitute the transmission diffraction part 150.
  • the reflection section 151 and the transmission section 152 adjacent to each other constitute a transmission period section 153
  • the transmission period section 153 has a predetermined grating period df.
  • the grating period df is equal to the grating period de in the transmission diffraction unit 140 of the third element unit 113.
  • the periodic direction in the transmission diffraction unit 150 of the fourth element unit 114 is orthogonal to the periodic direction in the transmission diffraction unit 140 of the third element unit 113.
  • each element part has a non-periodic concavo-convex structure, a reflection part that generates scattered light as reflected light, a reflection part that includes a cylindrical surface and generates scattered light as reflected light, and Any reflection part that has a periodic uneven structure and generates diffracted light as reflected light may be used.
  • the four element portions included in the optical element 50 include element portions in which at least one of the periodic direction in the transmission diffraction portion and the grating period is different from each other. Therefore, a plurality of different optical effects can be added to one optical element 50 by the number of element portions. Therefore, the reflected light or the transmitted image can be scattered by changing the optical effect when the reflected image is observed or the optical effect when the transmitted image is observed. Or can be displayed on the optical element 50 by diffracted light.
  • -At least 1 may have a cross-grating structure among the 3 or more element parts with which the optical element 110 is provided.
  • Each of the optical element 110 of 6th Embodiment and the optical element 110 of the modification of 6th Embodiment may be the structure where the position of the reflection part and the position of the transmission part were reversed. That is, each of the optical element 110 according to the sixth embodiment and the optical element 110 according to the modified example of the sixth embodiment and the modified example according to the first embodiment, the optical element 10 illustrated in FIG. You may combine with the structure of.
  • a seventh embodiment in which the optical element is embodied will be described with reference to FIG.
  • the optical element of the seventh embodiment is different from the optical element of the fourth embodiment in that one of the two element parts constituting the optical element does not generate diffracted light as transmitted light. . Therefore, in the following, such differences will be described in detail, and the same reference numerals as those of the optical element of the fourth embodiment are attached to the same elements as those of the optical element of the fourth embodiment. Description of the configuration to be performed is omitted. And below, the structure of an optical element and the effect
  • the optical element 160 includes a first element portion 161 and a second element portion 162.
  • the plurality of reflection portions 171 are arranged at equal intervals in the Y direction, and each of the plurality of reflection portions 171 has a band shape extending along the X direction.
  • a transmission portion 172 is located between two reflection portions 171 adjacent to each other in the Y direction, and the transmission portion 172 has a band shape extending along the X direction.
  • the reflection unit 171 and the transmission unit 172 are alternately and continuously arranged in the Y direction to constitute the transmission diffraction unit 170.
  • the transmission diffraction unit 170 has a predetermined grating period dg.
  • the reflection portion 171 has a non-periodic uneven structure and generates scattered light as reflected light.
  • the reflection unit 171 may have a cylindrical surface and generate scattered light as reflected light.
  • the ratio of the sum of the areas of all the reflection parts 171 and the area of the part that transmits light including the transmission part 172 is the first area ratio S1.
  • the plurality of reflecting portions 181 are irregularly arranged in the Y direction, and each of the plurality of reflecting portions 181 has a band shape extending along the X direction.
  • the plurality of reflecting portions 181 include reflecting portions 181 having different widths along the Y direction.
  • the transmission unit 182 is positioned between two reflection units 181 adjacent to each other in the Y direction, and the plurality of transmission units 182 have a plurality of transmissions having different widths along the Y direction.
  • a part 182 is included.
  • Each of the plurality of transmission parts 182 has a band shape extending along the X direction.
  • the reflection portions 181 and the transmission portions 182 are alternately arranged in the Y direction.
  • the reflection unit 181 is an example of a scattering unit
  • the transmission unit 182 is an example of a second transmission unit.
  • the reflection part 181 has a non-periodic concavo-convex structure, and has a concavo-convex structure having the same characteristics as the non-periodic concavo-convex structure in the reflection part 171 of the first element unit 161, and uses scattered light as reflected light Cause it to occur.
  • the reflection unit 181 may have a cylindrical surface and generate scattered light as reflected light.
  • the ratio of the sum of the areas of all the reflection parts 181 to the area of the part that transmits light including the transmission part 182 is the second area ratio S2.
  • the first area ratio S1 and the second area ratio S2 are equal to each other.
  • the reflective part 171 in the first element part 161 and the reflective part 181 in the second element part 162 have a non-periodic concavo-convex structure having the same characteristics.
  • the first area ratio S1 and the second area ratio S2 of the first element portion 161 are equal to each other. Therefore, when light is incident on the reflecting portion from the upper transparent resin layer 15 side, in the reflection observation, the scattered light in the first element portion 161 and the scattered light in the second element portion 162 are equal to each other.
  • the boundary between the element part 161 and the second element part 162 is not easily recognized.
  • the transmission diffraction unit 170 of the first element unit 161 generates diffracted light as transmitted light, while the second element unit 162 does not generate diffracted light as transmitted light. Therefore, in transmission observation, diffracted light having an iridescent color is observed only in the first element unit 161.
  • the transmitted light that has passed through the first element portion 161 is diffracted light that forms a plurality of diffraction images having different colors, whereas the light that has passed through the second element portion 162 is white light. Therefore, the difference between the two types of transmitted light transmitted through the optical element 160 becomes significant.
  • the reflection part 171 of the first element part 161 and the reflection part 181 of the second element part 162 may have a concavo-convex structure with periodicity and generate diffracted light as reflected light. Even in such a configuration, if the reflection portion 171 of the first element portion 161 and the reflection portion 181 of the second element portion 162 have the same characteristics, the first element portion 161 is used for reflection observation. And the second element portion 162 are not easily recognized.
  • the optical element 160 has the position of the reflection part 171 in the first element part 161 and the position of the transmission part 172 in the first element part 161 reversed, and the position of the reflection part 181 in the second element part 162;
  • the configuration may be such that the position of the transmission part 182 in the second element part 162 is inverted. Even if it is such a structure, the effect equivalent to the optical element 160 of 7th Embodiment can be acquired.
  • the optical element 160 may have a configuration having a cross grating structure. That is, as shown in FIG. 44, the optical element 160 includes a first element portion 161 and a second element portion 162. In the first element portion 161, a plurality of reflecting portions 171 having a rectangular shape are arranged at equal intervals in the X direction and are arranged at equal intervals in the Y direction. In the first element portion 161, the transmissive portion 172 is located between two reflective portions 171 adjacent to each other in the X direction, extends along the Y direction, and is adjacent to each other in the Y direction. It is located between the parts 171 and extends along the X direction.
  • the reflection part 171 and the transmission part 172 are alternately and continuously arranged in the X direction, and the reflection part 171 and the transmission part 172 are alternately and continuously arranged in the Y direction to constitute the transmission diffraction part 170. ing.
  • the transmission diffraction unit 170 has a predetermined grating period dg in both the periodic direction parallel to the X direction and the periodic direction parallel to the Y direction.
  • the transmission part 182 is located between two reflection parts 181 adjacent to each other in the X direction and between two reflection parts 181 adjacent to each other in the Y direction.
  • optical element 160 of the seventh embodiment an effect equivalent to that of the optical element 160 of the seventh embodiment described above can be obtained.
  • the position of the reflecting portion 171 in the first element portion 161 and the position in the transmitting portion 172 are reversed, and the position of the reflecting portion 181 in the second element portion 162 is A configuration in which the position of the transmission portion 182 in the element portion 162 is reversed may be employed.
  • Example 1 First, as an ultraviolet curable resin, 50.0 parts by mass of urethane (meth) acrylate, 30.0 parts by mass of methyl ethyl ketone, 20.0 parts by mass of ethyl acetate, 1.5 parts by mass of a photoinitiator, The composition comprised from this was prepared.
  • a urethane (meth) acrylate As the urethane (meth) acrylate, a urethane (meth) acrylate having a polyfunctionality and a molecular weight of 6000 was prepared.
  • Irgacure 184 manufactured by BASF was prepared as a photoinitiator.
  • the above-mentioned composition was applied onto a transparent PET film having a thickness of 23 ⁇ m by a gravure printing method so that the film thickness after drying was 1 ⁇ m. And the uneven structure was formed in the coating film which uses a composition as a forming material using the original plate.
  • the original plate has a plurality of first regions and a plurality of second regions, and each first region and each second region has a width of 5 ⁇ m along one width direction, It has a rectangular shape with a width of 20 mm along the length direction orthogonal to the direction.
  • the first region and the second region are alternately and continuously located in the width direction.
  • the first region has a non-periodic concavo-convex structure including a plurality of concave portions extending along the length direction and a plurality of convex portions extending along the length direction.
  • the concave portions and the convex portions are arranged alternately and non-periodically in the width direction.
  • the average frequency is 100 lines / mm
  • the average depth of the recesses is 100 nm.
  • the second region has a cross grating structure in which two periodic uneven structures intersect each other.
  • one concavo-convex structure has a plurality of concave portions extending along the length direction and a plurality of convex portions extending along the length direction. They are arranged alternately and periodically in the width direction.
  • the other concavo-convex structure has a plurality of concave portions extending along the width direction and a plurality of convex portions extending along the width direction, and the concave portions and the convex portions are alternately and periodically in the length direction. Are lined up.
  • the spatial frequency is 2000 lines / mm, and the depth of the concave portion is 200 nm.
  • the aspect ratio of the concavo-convex structure of the second region is larger than the aspect ratio of the concavo-convex structure of the first region.
  • the ultraviolet curable resin contained in the composition was cured to form an upper transparent resin layer.
  • the press pressure was set to 2 kgf / cm 2
  • the press temperature was set to 80 ° C.
  • the press speed was set to 10 m / min.
  • the ultraviolet irradiation was performed at a strength of 300 mJ / cm 2 using a high-temperature mercury lamp.
  • an Al film was formed by vacuum deposition as a metal film for forming the reflective portion on the surface having the concavo-convex structure described above in the upper transparent resin layer.
  • the set film thickness of the Al film was 50 nm.
  • an MgF 2 film functioning as a mask layer for etching the Al film was formed on the surface of the Al film facing the surface that contacts the upper transparent resin layer by vacuum deposition.
  • the set film thickness of the MgF 2 film was 20 nm.
  • the Al film was etched using a sodium hydroxide aqueous solution. Thereby, the Al film formed in the portion of the Al film where the first region of the original plate was transferred in the upper transparent resin layer remained on the upper transparent resin layer. On the other hand, the Al film formed on the portion of the upper transparent resin layer where the second region of the original plate was transferred was selectively removed from the upper transparent resin layer. As a result, a transmission diffraction part having a reflection part and a transmission part and having a grating period of 10 ⁇ m was formed on the upper transparent resin layer. Moreover, the protective part which overlaps with the transmission part in the thickness direction was also formed.
  • Example 2 the first area of the original plate is different from the first area of the original plate of Example 1. That is, the first region of the original plate of Example 2 has a plurality of recesses extending along the width direction and a plurality of protrusions extending along the width direction, and the recesses and the protrusions are in the length direction. They are lined up alternately. That is, the first region has a diffractive structure, the spatial frequency in the diffractive structure is 1000 lines / mm, and the depth of the recess is 100 nm.
  • diffracted light having a rainbow color diffracted by the periodic concavo-convex structure of each reflecting portion was confirmed in reflection observation.
  • transmitted light having a bright rainbow color due to diffraction of the wire grid structure composed of the reflection part and the transmission part that are alternately and periodically located was observed.
  • the diffracted light observed by the reflection and the diffracted light observed by the transmission have different wavelength dispersion due to the difference in the period of the diffraction grating.
  • the upper transparent resin layer side with respect to the reflective portion and the protective portion with respect to the reflective portion Light with different iridescent colors was observed on the sides.
  • the third embodiment is different from the first embodiment in that the original plate has a first portion corresponding to the first element portion and a second portion corresponding to the second element portion.
  • the original plate in Example 3 has a first part and a second part.
  • the first regions having a rectangular shape are periodically arranged along the width direction and periodically arranged along the length direction.
  • the grating period along the width direction and the grating period along the length direction are 10 ⁇ m.
  • a plurality of first regions having a rectangular shape are irregularly positioned in the second portion.
  • the second region is located at a portion other than the portion where the first region is located.
  • the sum of the areas of the first regions is equal to each other.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

 光学素子は、1つの方向に沿って等しい間隔を空けて並ぶ複数の反射部であって、複数の反射部の各々の反射する光は可視光に含まれ、反射部が反射する光によって反射像を形成する複数の反射部と、1つの方向において相互に隣り合う2つの反射部に挟まれて、可視光を透過する複数の透過部と、を含む透過回折部を備える。複数の反射部の少なくとも一部は、反射部が反射する光の反射角を反射部に入射する光の角度とは異ならせて反射像を形成する。透過回折部は、透過部を透過する光を所定の方向に回折させた回折光によって、相互に異なる色を有する複数の回折像を形成する。

Description

光学素子
 本発明は、光学素子に関する。
 有価証券、証明書、および、高級ブランド品などの偽造を防ぐことが求められる物品において、模倣の難しい光学的な効果を有する光学素子を物品に付すことで、物品の偽造を抑えることが知られている。模倣の難しい光学的な効果を有する光学素子には、例えば、ホログラム、回折格子、および、多層干渉膜などが知られている。これらの光学素子は、微細な構造を有するため、あるいは、複雑な層構造を有するため、光学素子の構造を解析することが難しい。それゆえに、光学素子の不正な複製を抑えることができ、結果として、光学素子を付された物品の偽造を抑えることができる。
 光学素子のうち、例えばホログラムなどでは、素子による光学的な効果を高める目的で、回折構造に接する反射層を有した構造が採用されている。こうした構造では、反射層を所定の形状にパターニングすることによって、より模倣の難しいホログラムが得られる(例えば、特許文献1参照)。
特開2003-255115号公報
 ところで、こうした光学素子には、光学的な効果の模倣をより難しくする上で、1つの光学素子によって得られる光学的な効果がさらに付加されることが望まれている。なお、光学素子に対する光学的な効果の付加は、上述したような物品の偽造を抑えるために用いられる光学素子に限らず、他の目的で用いられる光学素子、例えば、物品に付されることで物品を装飾するための光学素子や、光学素子そのものが鑑賞の対象となる光学素子などにおいても同様に求められている。
 本発明は、光学的な効果を付加することの可能な光学素子を提供することを目的とする。
 光学素子の一態様は、1つの方向に沿って等しい間隔を空けて並ぶ複数の反射部であって、複数の前記反射部の各々の反射する光は可視光に含まれ、前記反射部が反射する光によって反射像を形成する複数の前記反射部と、前記1つの方向において相互に隣り合う2つの前記反射部に挟まれて、前記可視光を透過する複数の透過部と、を含む透過回折部を備える。複数の前記反射部の少なくとも一部は、前記反射部が反射する光の反射角を前記反射部に入射する光の角度とは異ならせて前記反射像を形成し、前記透過回折部は、前記透過部を透過する光を所定の方向に回折させた回折光によって、相互に異なる色を有する複数の回折像を形成する。
 光学素子の一態様によれば、1つの光学素子において、反射光によって得られる像に加えて、透過光によっても相互に異なる複数の色を有した像が得られる。すなわち、1つの光学素子に対して、光学的な効果が付加される。
本発明の光学素子を具体化した第1実施形態における光学素子の斜視構造を示す斜視図である。 第1実施形態における光学素子のZ-Y平面に沿う断面構造を示す断面図である。 第1実施形態における光学素子のZ-X平面に沿う断面構造を示す断面図である。 第1実施形態における光学素子をZ方向から見た平面構造を示す平面図である。 第1実施形態における光学素子に入射した光の反射による光学的な効果を説明するための作用図である。 第1実施形態における光学素子に入射した光の透過による光学的な効果を説明するための作用図である。 第1実施形態における光学素子の製造方法における1つの工程を示す工程図である。 第1実施形態における光学素子の製造方法における1つの工程を示す工程図である。 第1実施形態における光学素子の製造方法における1つの工程を示す工程図である。 第1実施形態における光学素子の製造方法における1つの工程を示す工程図である。 第1実施形態の変形例における上側透明樹脂層の斜視構造を示す斜視図である。 第1実施形態の変形例における上側透明樹脂層の斜視構造を示す斜視図である。 第1実施形態の変形例におけるZ方向から見た光学素子の平面構造を示す平面図である。 第1実施形態の変形例におけるZ方向から見た光学素子の平面構造を示す平面図である。 第1実施形態の変形例におけるZ方向から見た光学素子の平面構造を示す平面図である。 第1実施形態の変形例におけるZ方向から見た光学素子の平面構造を示す平面図である。 第1実施形態の変形例におけるZ方向から見た光学素子の平面構造を示す平面図である。 第1実施形態の変形例における製造方法の1つの工程を示す工程図である。 第1実施形態の変形例における製造方法の1つの工程を示す工程図である。 第1実施形態の変形例における製造方法の1つの工程を示す工程図である。 第1実施形態の変形例における製造方法の1つの工程を示す工程図である。 本発明の光学素子を具体化した第2実施形態における光学素子の斜視構造を示す斜視図である。 第2実施形態における光学素子のZ-Y平面に沿う断面構造を示す断面図である。 第2実施形態における光学素子のZ-X平面に沿う断面構造を示す断面図である。 第2実施形態における光学素子をZ方向から見た平面構造を示す平面図である。 第2実施形態における光学素子に入射した光の反射による光学的な効果を説明するための作用図である。 第2実施形態における光学素子に入射した光の透過による光学的な効果を説明するための作用図である。 本発明の光学素子を具体化した第3実施形態における光学素子の斜視構造を示す斜視図である。 第3実施形態における光学素子のZ-Y平面に沿う断面構造の一部を示す部分断面図である。 第3実施形態における光学素子のZ-X平面に沿う断面構造を示す断面図である。 第3実施形態における光学素子をZ方向から見た平面構造を示す平面図である。 第3実施形態における光学素子に入射した光の反射による光学的な効果を説明するための作用図である。 第3実施形態における光学素子に入射した光の透過による光学的な効果を説明するための作用図である。 本発明の光学素子を具体化した第4実施形態における光学素子をZ方向から見た平面構造を示す平面図である。 第4実施形態の変形例における光学素子をZ方向から見た平面構造を示す平面図である。 第4実施形態の変形例における光学素子をZ方向から見た平面構造を示す平面図である。 本発明を具体化した第5実施形態における光学素子をZ方向から見た平面構造を示す平面図である。 第5実施形態の変形例における光学素子をZ方向から見た平面構造を示す平面図である。 第5実施形態の変形例における光学素子をZ方向から見た平面構造を示す平面図である。 第5実施形態の変形例における光学素子をZ方向から見た平面構造を示す平面図である。 本発明を具体化した第6実施形態における光学素子をZ方向から見た平面構造を示す平面図である。 第6実施形態の変形例における光学素子をZ方向から見た平面構造を示す平面図である。 本発明を具体化した第7実施形態における光学素子をZ方向から見た平面構造を示す平面図である。 第7実施形態の変形例における光学素子をZ方向から見た平面構造を示す平面図である。
 [第1実施形態]
 図1から図10を参照して光学素子を具体化した第1実施形態を説明する。以下では、光学素子の構成、光学素子の作用、および、光学素子の製造方法を順番に説明する。
 [光学素子の構成]
 図1から図4を参照して光学素子の構成を説明する。図1および図4では、光学素子の構成を説明する便宜上、光学素子の有する反射部の上に形成された上側透明樹脂層の図示が省略されている。また、図1および図4では、下側透明樹脂層に対する反射部の位置を分かりやすくするために、反射部の各々にはドットが付されている。そして、図1では、図示の便宜上、下側透明樹脂層の表面に形成された凹凸構造の図示が省略されている。
 図1が示すように、光学素子10は、上側透明樹脂層と、下側透明樹脂層11と、下側透明樹脂層11の1つの面である表面11sと、上側透明樹脂層と下側透明樹脂層11との間に形成された複数の反射部12を備えている。光学素子10は、複数の透過部13を備え、各透過部13は、上側透明樹脂層のうち、2つの反射部12によって挟まれた第1部分と、下側透明樹脂層11のうち、2つの反射部12によって挟まれた第2部分であって、第1部分と対向する第2部分とによって構成される。光学素子10は、複数の反射部12と複数の透過部13とから構成される透過回折部20を備えている。
 反射部12は、可視光を反射する部分であり、少なくとも400nmから700nmの波長の一部を反射する。反射部12の透過率は、30%未満であることが好ましい。一方で、透過部13は、少なくとも400nmから700nmの波長の一部を透過し、透過部13の透過率は、70%以上であることが好ましい。
 反射部12の形成材料には、Al、Sn、Cr、Ni、Cu、Au、および、Agなどの金属の単体、または、これら金属の群に含まれる各金属の化合物、例えば、酸化物などが用いられる。これらの形成材料のうち、溶解、腐食、あるいは、変質などにより反射率や透明性が変わる形成材料を用いることが好ましい。また、上述した金属の群、および、金属化合物の群に含まれる2つ以上の形成材料が用いられてもよい。
 反射部12の形成材料を溶解することで反射率または透過率を変える方法には、例えば、上述した金属の群、および、金属酸化物の群に含まれる形成材料に対してエッチング処理を行う方法を用いることができる。エッチング処理には、酸、アルカリ、有機溶剤、酸化剤、および、還元剤などの処理剤を用いることができる。
 反射部12の形成材料を変質させて反射率または透過率を変える方法には、例えば、銅を酸化剤により酸化させて酸化第一銅に変える方法、あるいは、アルミニウムを酸化剤によって酸化させてベーマイトに変える方法などを用いることができる。
 反射部12の形成材料には、上述した金属の群、および、金属化合物の群に含まれる材料の選択が可能であり、また、これらの形成材料には、上述した各種の処理が行われてもよい。こうした形成材料や処理の選択は、光学素子10に必要とされる光学特性や、耐候性および層間密着性などの実用的な耐久性に基づいて行われればよい。
 なお、反射部12を形成するための薄膜は、均一な表面密度で形成されることが好ましいため、反射部12を形成するための薄膜の形成には、ドライコーティング法が用いられることが好ましい。ドライコーティング法には、例えば、真空蒸着法、スパッタリング法、CVD法などの方法を採用することができる。
 反射部12の形成材料は、上述した金属光沢や所定の色を有する形成材料に限らず、透明な形成材料であってもよい。以下に透明な形成材料を列記する。反射部12の形成材料は、例えば、Sb、Fe、TiO、CdS、CeO、ZnS、PbCl、CdO、Sb、WO、SiO、Si、In、PbO、Ta、ZnO、ZrO、MgO、SiO、Si、MgF、CeF、CaF、AlF、Al、および、GaOなどである。
 なお、反射部12の形成材料のうち、透明な形成材料は、有機ポリマーであってもよい。反射部12の形成材料としての有機ポリマーは、例えば、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン、ポリメチルメタクリレート、および、ポリスチレンなどである。
 また、反射部12の形成材料は、高屈折樹脂や高屈折フィラーを分散した反射インクであってもよい。反射部12の形成材料は、上述した形成材料のうち、光学素子10に求められる反射特性や耐性に応じて選択されればよい。
 透過部13、すなわち、透過部13を構成する上側透明樹脂層、および、下側透明樹脂層11の形成材料には、上述した透過率を満たす各種の樹脂が用いられればよく、例えば、熱硬化性樹脂、および、紫外線硬化性樹脂などを用いることができる。上側透明樹脂層、および、下側透明樹脂層11は、上述した透過率を満たす範囲であれば、マット処理されていてもよいし、白色を有していてもよい。
 下側透明樹脂層11は、例えば、1つの方向の一例であるX方向と、X方向と直交するY方向とに沿って2次元的に拡がる矩形板形状を有している。複数の反射部12の各々は、1つの方向であるY方向に沿って延びる帯形状を有し、複数の反射部12は、X方向に沿って等しい間隔を空けて並んでいる。複数の透過部13の各々は、反射部12と同じくY方向に沿って延びる帯形状を有し、複数の透過部13は、X方向において等しい間隔を空けて並んでいる。
 図2が示すように、光学素子10は、さらに、下側透明樹脂層11における表面11sと各反射部12との間に1つずつ位置する複数の保護部14を備えている。複数の保護部14の各々は、反射部12と同様、Y方向に沿って延びる帯形状を有し、複数の保護部14は、X方向において等しい間隔を空けて並んでいる。各保護部14の全体は、Z方向から見て、1つの反射部12の全体に重なっている。保護部14は、光学素子10が製造されるとき、反射部12を摩耗や薬品による腐食から保護する。
 そのため、保護部14における摩耗に対する耐性や薬品に対する耐性は、反射部12における摩擦に対する耐性や薬品に対する耐性以上であることが好ましい。なお、保護部14における摩擦に対する耐性や薬品に対する耐性が、反射部12における摩擦に対する耐性や薬品に対する耐性よりも低いとしても、反射部12の1つの面を覆う以上は、反射部12を保護する機能を果たす。
 保護部14は、反射部12がエッチングによって形成されるときのエッチングマスクとして機能してもよい。保護部14がエッチングマスクとしての機能を有する場合には、保護部14は、反射部12を溶解する少なくとも一つの液状体に対して溶解しない特性、または、液状体に対する溶解速度が、反射部12の溶解速度よりも低い特性を有していることが好ましい。
 保護部14を形成するための薄膜は、反射部12と同様、均一な表面密度で形成されることが好ましい。保護部14を形成するための薄膜の形成方法としては、真空蒸着法、CVD法、および、スパッタリング法などのドライコーティング法を用いることができる。こうした形成方法によれば、保護部14を形成するための薄膜の膜厚、成膜速度、積層数、および、光学膜厚などを制御することができる。なお、上述したドライコーティング法のうち、真空蒸着法において蒸着源から基板に向かう材料は直進性を有する。そのため、ドライコーティング法として真空蒸着法が採用されることが好ましい。
 保護部14の形成材料は、ドライコーティング法によって成膜の可能な材料であればよく、保護部14の形成材料には、例えば、上述した反射部12の形成材料である金属の群、および、金属化合物の群に含まれる少なくとも1つの形成材料を用いることができる。
 また、保護部14の形成材料は、反射部12の形成材料と同様、透明な形成材料であってもよい。保護部14の透明な形成材料は、例えば、Sb、Fe、Fe、TiO、Ti、CdS、CeO、ZnS、PbCl、CdO、Sb、WO、SiO、Si、In、PbO、Ta、ZnO、ZrO、MgO、SiO、Si、MgF、CeF、CaF、AlF、Al、および、GaOなどである。
 なお、保護部14の形成材料のうち、透明な形成材料は、有機ポリマーであってもよい。保護部14の形成材料としての有機ポリマーは、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン、ポリメチルメタクリレート、および、ポリスチレンなどである。
 保護部14がエッチングマスクとしての機能を有するとき、保護部14は、フォトリソグラフィーによって所定の形状を有するパターンに加工されてもよい。この場合には、ネガレジスト、または、ポジレジストが保護部14を形成するための薄膜に塗布された後、レジストに対してパターン露光が行われる。そして、レジストをエッチングマスクとする保護部14を形成するための薄膜のエッチングが行われることによって、反射部12を形成するための薄膜の一部に、エッチングマスクとしての機能を有する保護部14が形成される。そして、保護部14をエッチングマスクとするエッチング処理が反射部12を形成するための薄膜に行われることにより、反射部12が形成される。
 光学素子10は、上述のように、複数の反射部12を覆う上側透明樹脂層15を備えている。上側透明樹脂層15は、透過回折部20を摩擦や水分などから保護する。
 上側透明樹脂層15の1つの面であって、下側透明樹脂層11と対向する面である裏面15rは、Y方向に沿って交互に並ぶ凸部15aと凹部15bとを有している。ここでは、Z方向において下側透明樹脂層11に向けて突き出た部分が凸部15aであり、上側透明樹脂層15の表面に向けて突き出た部分が凹部15bである。Y方向において相互に隣り合う凹部15bと凸部15aとは、1つの反射単位部16を構成し、複数の反射単位部16におけるY方向に沿う長さには、相互に異なる複数の長さが含まれている。すなわち、上側透明樹脂層15の裏面15rは、凹部15bと凸部15aとによって構成された非周期性の凹凸構造を備えている。
 複数の凹部15bには、Z方向における凹部15bの底部の位置が相互に異なる凹部15bが含まれ、また、複数の凸部15aには、Z方向における凸部15aの頂部の位置が相互に異なる凸部15aが含まれている。複数の凹部15bの各々、および、複数の凸部15aの各々は、裏面15rにおいて、X方向に沿って延びている。
 複数の保護部14の各々は、上側透明樹脂層15の裏面15rのうち、各保護部14の位置する部分が有する凹凸構造にならう凹凸構造を備え、また、複数の反射部12の各々は、上側透明樹脂層15の裏面15rのうち、各反射部12の位置する部分が有する凹凸構造にならう凹凸構造を備えている。
 そのため、複数の保護部14の各々は、上述したような裏面15rと同等の非周期性の凹凸構造を備え、かつ、複数の反射部12の各々は、上述したような裏面15rと同等の非周期性の凹凸構造を備えている。それゆえに、反射部12に対して上側透明樹脂層15側から入射した光は、複数の反射部12の各々によって散乱される。複数の反射部12は、反射光としての散乱光を生じさせ、散乱光によって反射像を形成する。すなわち、反射部12は、反射する光の反射角を反射部12に入射する光の角度とは異ならせて反射像を形成する。
 なお、反射部12の各々は、反射部12におけるY方向のほぼ全体に凹凸構造を備えているが、Y方向における少なくとも一部に凹凸構造を備えていればよい。
 図3は、Z-X平面に沿う光学素子10の断面形状を示している。上述したように、裏面15rに形成された複数の凹部15bには、Z方向における凹部15bの底部の位置が相互に異なる凹部15bが含まれ、かつ、複数の凸部15aには、Z方向における凸部15aの頂部の位置が相互に異なる凸部15aが含まれる。そのため、1つの保護部14と1つの反射部12との積層された構造を1つの積層構造とするとき、複数の積層構造には、Z方向における位置が相互に異なる積層構造が含まれ、また、Z方向における位置が相互に等しい積層構造が含まれてもよい。
 図4が示すように、複数の反射部12は、X方向において等しい間隔を空けて並び、かつ、複数の透過部13は、X方向において等しい間隔を空けて並んでいる。X方向において相互に隣り合う1つの反射部12と1つの透過部13とが1つの透過周期部17を構成し、透過周期部17において、X方向に沿う幅が格子周期dである。
 格子周期dが、0.20μmよりも大きく20μm以下であるとき、透過回折部20は、透過部13の各々を透過する光を所定の方向に回折させた回折光によって、相互に異なる色を有する複数の回折像を形成することができる。格子周期dは、透過回折部20によって鮮やかな回折像を得る上では、0.35μm以上であることが好ましい。また、回折像の視野角、すなわち、回折像の分散角を観察者によって視認される上で好ましい大きさとする上では、格子周期dは、0.5μm以上10μm以下であることが好ましく、格子周期dが20μmを超えると、回折像の視野角が小さくなり、観察者の視認できる角度の範囲が狭くなる。
 また、格子周期dが、可視光領域に含まれる光の波長よりも小さい透過型の回折格子は、サブ波長格子とよばれている。サブ波長格子は、特定の領域に含まれる波長を吸収する効果、および、特定の領域に含まれる波長を反射する効果を有し、さらに、入射光から偏光を分離する効果を有している。なお、サブ波長格子が、可視光領域に含まれる光、例えば、400nm以上700nm以下の光に対して偏光を分離する効果を有するためには、サブ波長格子の格子周期dは、以下の長さであることが好ましい。すなわち、格子周期dは、可視光波長の1/2未満の長さである0.15μm以上0.35μm未満の範囲に含まれることが好ましく、0.15μm以上0.30μm以下の範囲に含まれることがより好ましい。
 そのため、格子周期dが0.20μmよりも大きく0.35μm未満の範囲に含まれるとき、透過回折部20は、反射部12に対して垂直な成分である偏光のみを透過しつつ、可視光を回折させることができる。
 [光学素子の作用]
 図5および図6を参照して光学素子の作用を説明する。
 図5が示すように、光学素子10において、反射部12に対して上側透明樹脂層15側から光が入射するとき、非周期性の凹凸構造を有する各反射部12は、様々な方向に入射光Liを反射する。すなわち、各反射部12によって生じる反射光Lrは散乱光である。そのため、入射光Liが白色の可視光であるとき、光学素子10は、白色を有した散乱光を反射する。
 一方で、図6が示すように、光学素子10において、反射部12に対して上側透明樹脂層15側から光が入射するとき、入射光Liは、複数の透過部13の各々から透過して、下側透明樹脂層11において、表面11sと対向する裏面から透過光Ltとして射出される。このとき、透過回折部20は、入射光Liに含まれる複数の波長の光の各々を各光に依存した透過角度で回折させて、相互に異なる色を有する複数の回折像を形成する。
 これにより、例えば、光学素子10の観察者は、光学素子10の上側透明樹脂層15と対向する平面視である反射観察では、反射部12によって散乱された白色の散乱光を観察することができる。一方で、観察者は、光学素子10の下側透明樹脂層11と対向する平面視であって、かつ、光学素子10を光源に対して透かして観察する透過観察では、透過回折部20の回折した虹色を有する回折光を観察することができる。
 [光学素子の製造方法]
 図7から図10を参照して光学素子の製造方法を説明する。
 光学素子10を製造するときには、まず、非周期性の凹凸構造を有した上側透明樹脂層15の原版を作成する。原版は、電子線描画機を利用したフォトリソグラフィー法を用いて作成される。原版において、上側透明樹脂層15のうち、反射部12の位置する部位に対応する部分には、比表面積の相対的に小さい、すなわち、凹凸構造におけるアスペクト比の相対的に小さい非周期的な凹凸構造を形成する。一方で、原版において、上側透明樹脂層15のうち、反射部12の位置しない部位に対応する部分には、光を散乱させるための非周期的な凹凸構造よりも比表面積の相対的に大きい、すなわち、アスペクト比の相対的に大きい凹凸構造を形成する。
 図7が示すように、上述した原版における表面の凹凸構造を複製することによって、非周期性の凹凸構造を有した上側透明樹脂層15を形成する。上側透明樹脂層15は、例えば、フォトポリマー法を用いて形成される。すなわち、上側透明樹脂層15が形成されるときには、まず、原版に対して紫外線硬化性樹脂が塗布され、そして、原版に塗布された紫外線硬化性樹脂に対して紫外線が照射されることで、紫外線硬化性樹脂が硬化される。次いで、硬化した紫外線硬化性樹脂が剥がされることで、非周期性の凹凸構造を有した上側透明樹脂層15が形成される。
 なお、上側透明樹脂層15を形成する方法には、上述したフォトポリマー法に限らず、熱エンボス法、ホットコールドプレス法、フォトポリマー法、および、ナノインプリント法などの方法を用いることができる。
 図8が示すように、上側透明樹脂層15のうち、上述した凹凸構造を有する面の全体に対して、金属膜、例えば、アルミニウム膜12Mが真空蒸着される。このとき、上側透明樹脂層15の凹凸構造を有する面のうち、上述したアスペクト比の相対的に小さい部分には、所定の厚さを有したアルミニウム膜12Mが成膜される一方で、アスペクト比の相対的に大きい部分には、アルミニウム膜12Mがわずかにしか付着しない。しかも、上側透明樹脂層15のうち、アスペクト比の相対的に大きい部分では、アルミニウム膜12Mは、上側透明樹脂層15の表面において、1つの方向に沿って延びる線状、あるいは、島状に形成される。
 なお、アルミニウム膜12Mを成膜するためのドライコーティング法には、真空蒸着法に限らず、上述したドライコーティング法のいずれかを用いることができる。
 図9が示すように、アルミニウム膜12Mの全体に対して、アルミニウム膜12Mを保護するフッ化マグネシウムが真空蒸着される。これにより、アルミニウム膜12Mと同様、上側透明樹脂層15のうち、アスペクト比の相対的に小さい部分には、保護部14となるフッ化マグネシウム膜14Mが成膜される一方で、アスペクト比の相対的に大きい部分には、フッ化マグネシウム膜14Mがほとんど成膜されない。しかも、上側透明樹脂層15のうち、アスペクト比の相対的に大きい部分では、フッ化マグネシウム膜14Mは、上側透明樹脂層15の表面において、1つの方向に沿って延びる線状、あるいは、島状に形成される。
 なお、フッ化マグネシウム膜14Mを成膜するためのドライコーティング法には、真空蒸着法に限らず、上述したドライコーティング法のいずれかを用いることができる。
 アルミニウム膜12Mはアルカリ溶液に溶解する、すなわち、アルカリ溶液によるエッチングが可能である一方で、フッ化マグネシウム膜14Mはアルカリ溶液に溶解しない。そのため、アルミニウム膜12Mをアルカリ溶液によってウェットエッチングするときのマスクとしてフッ化マグネシウム膜14Mを用いることができる。
 図10が示すように、アルミニウム膜12Mと、フッ化マグネシウム膜14Mとが形成された上側透明樹脂層15がアルカリ溶液に漬けられる。これにより、線状、あるいは、島状に形成されたアルミニウム膜12Mとフッ化マグネシウム膜14Mとの積層構造では、アルミニウム膜12Mがアルカリ溶液に接触することで、アルミニウム膜12Mがアルカリエッチングされる。一方で、上側透明樹脂層15のうち、上述したアスペクト比の相対的に小さい部分では、アルミニウム膜12Mがフッ化マグネシウム膜14Mによって保護されるため、アルカリ溶液によるエッチングが行われても、アルミニウム膜12Mがエッチングされない。
 こうした製造方法によれば、アルミニウム膜12Mを保護するためのフッ化マグネシウム膜14Mのパターニングを特に行わずとも、反射部12に対応するアルミニウム膜12Mのみがフッ化マグネシウム膜14Mによって保護される。そのため、こうした製造方法によれば、上側透明樹脂層15を形成するための原版において、原版の表面に位置する凹凸構造のアスペクト比を調節することによって、高解像度な反射部12を任意の位置に形成することが可能である。
 上述した製造方法では、保護部14を形成するフッ化マグネシウム膜14Mの厚さ、すなわち、Z方向に沿う厚さは、反射部12を形成するアルミニウム膜12Mの厚さの半分以下であることが好ましい。例えば、アルミニウム膜12Mの厚さが、5nm以上500nm以下であるとき、フッ化マグネシウム膜14Mの厚さは、0.3nm以上200nm以下であって、かつ、フッ化マグネシウム膜14Mの厚さが、アルミニウム膜12Mの厚さの半分以下であることが好ましい。
 このとき、上側透明樹脂層15の表面のうち、アルミニウム膜12Mを除去したい部分であって、光学素子10の透過部13を含む部分には、ごく薄いアルミニウム膜12Mに対し、ごく薄いフッ化マグネシウム膜14Mが形成される。一方で、上側透明樹脂層15のうち、アルミニウム膜12Mを残したい部分であって、光学素子10の反射部12に対応する部分では、反射部12に対応するアルミニウム膜12Mの溶解や変質から、アルミニウム膜12Mを保護する機能を発現することの可能な程度のフッ化マグネシウム膜14Mが形成される。
 このように、反射部12を形成するための薄膜の形成材料と膜厚、および、保護部14を形成するための薄膜の形成材料と膜厚とが設定されることにより、以下の効果を得ることができる。すなわち、上側透明樹脂層15における反射部12に対応する部分と、透過部13を含む反射部12以外の部分に対応する部分とにおいて、反射部12を形成するための金属膜におけるエッチング速度の差をより大きくすることができる。それゆえに、エッチングされるべき部分についてはエッチングされやすくなることで光学素子10の生産性が高められ、かつ、エッチングされるべきでない部分については、所定の形状に保たれやすくなったり、変質が抑えられたりすることで、光学素子10の品質が安定する。
 すなわち、上述したアルミニウム膜12Mの厚さ、および、フッ化マグネシウム膜14Mの厚さは、比表面積の相対的に大きい領域に形成されたアルミニウム膜12Mをエッチングする上で好ましい厚さである。
 反射部12および保護部14が形成された後、例えば、紫外線硬化性樹脂が、上側透明樹脂層15の裏面15rに塗布され、かつ、塗布された紫外線硬化性樹脂が硬化されることで、反射部12および保護部14を覆う下側透明樹脂層11が形成される。なお、下側透明樹脂層11を形成する工程は、省略されてもよい。
 以上説明したように、第1実施形態の光学素子によれば、以下に列挙する効果を得ることができる。
 (1)1つの光学素子10において、反射光Lrによって得られる反射像に加えて、透過光Ltによっても相互に異なる色を有する複数の回折像が得られることで、1つの光学素子10に対して、光学的な効果が付加される。
 (2)光学素子10において反射された光は、凹凸構造の散乱した散乱光である一方で、光学素子10において透過された光は、透過回折部20による回折光である。そのため、光学素子10の反射した光と、光学素子10の透過した光との差異が顕著になる。
 (3)透過周期部17における格子周期dが0.20μmよりも大きく0.35μm未満であるとき、透過回折部20に入射する可視光のうち、反射部12に対して垂直な成分である偏光のみを透過しつつ、可視光を回折させることができる。
 (4)透過周期部17における格子周期dが0.35μm以上20μm以下であるとき、透過回折部20に入射した可視光が、より確実に回折される。
 [第1実施形態の変形例]
 なお、上述した第1実施形態は、以下のように適宜変更して実施することもできる。また、以下に説明される図13から図17では、反射部12を説明する便宜上、上側透明樹脂層15の図示が省略されている。
 ・複数の反射部12の各々は、Y方向に沿って延びる帯形状ではなく、X方向に沿って延びる帯形状を有してもよい。こうした構成では、複数の反射部12は、Y方向において等しい間隔を空けて並んでいればよく、Y方向が1つの方向の一例である。あるいは、各反射部12は、Y方向に対して垂直以外の所定の角度で交差する延在方向に沿って延びる帯形状を有してもよい。こうした構成では、複数の反射部12は、延在方向と直交する方向において等しい間隔を空けて並んでいればよく、延在方向と直交する方向が1つの方向の一例である。
 ・上側透明樹脂層15の裏面15rに位置する複数の凹部の各々、および、複数の凸部の各々は、X方向に沿って延びておらず、例えば、以下に記載する形状を有していてもよい。すなわち、複数の凹部の各々、および、複数の凸部の各々は、Y方向に対して垂直以外の所定の角度で交差する方向に沿って延びていてもよい。
 例えば、図11が示すように、Y方向に対して45°の角度を形成する方向に沿って、複数の凹部15bが延びていてもよい。こうした構成では、X方向において相互に隣り合う2つの凹部15bによって挟まれる凸部15aも、Y方向に対して45°の角度を形成する方向に沿って延びている。なお、図11では、上側透明樹脂層15の裏面15rの有する凹凸構造を説明する便宜上、上側透明樹脂層15を図2の構成からZ方向にて反転させた構成が示されている。
 こうした上側透明樹脂層15に形成された反射部12を有する構成は、凸部15aの長手方向、すなわち、Y方向に対して45°の角度を形成する方向に指向性を有する散乱光を反射光Lrとして生じさせる。このように、所定の方向に沿って延びる複数の凹部15b、および、複数の凸部15aから構成される裏面15rを有した上側透明樹脂層15を備える光学素子10において、反射部12は、所定の方向に指向性を有する散乱光を反射光として生じさせることが可能である。
 ・図12が示すように、上側透明樹脂層15の裏面15rに位置する複数の凹部15bにおいて、凹部15bの延びる方向が相互に異なってもよく、複数の凸部15aにおいても、凸部15aの延びる方向が相互に異なってもよい。こうした上側透明樹脂層15を有する光学素子10は、図11が示す上側透明樹脂層15を有する光学素子10とは異なり、入射光Liから、所定の指向性を有しない等方的な散乱光を反射光Lrとして生じさせる。なお、図12では、上側透明樹脂層15の裏面15rの有する凹凸構造を説明する便宜上、上側透明樹脂層15を図2の構成からZ方向にて反転させた構成が示されている。
 光学素子10では、上側透明樹脂層15が、指向性を有する散乱光を散乱させる凹凸構造を有する部分と、入射光を等方的に散乱する凹凸構造を有する部分とを有することによって、光学素子10によって得られる光学的な効果がより複雑になる。
 ・各反射部12における複数の凹部と複数の凸部とは、Y方向においてのみ交互に連続する構成ではなく、Y方向において交互に連続し、かつ、X方向において交互に連続してもよい。
 ・図13が示すように、複数の反射部12において、Y方向に沿う長さが相互に異なってもよい。複数の反射部12において、例えば、X方向における1つの端に位置する反射部12から、他の端に位置する反射部12に向けて、Y方向に沿う長さが次第に小さくなってもよい。あるいは、複数の反射部12には、Y方向に沿う長さが相互に異なる反射部12が含まれ、複数の反射部12は、X方向において、Y方向に沿う長さに所定の規則性を有していない状態で並んでいてもよい。
 ・図14が示すように、下側透明樹脂層11の上方の全体、すなわち、上側透明樹脂層15の裏面15rの全体に1つの金属膜が形成され、金属膜に対して、複数の透過部13が形成された構成でもよい。
 こうした構成では、複数の透過部13は、例えば、X方向において等しい間隔を空けて並び、かつ、複数の透過部13の各々は、Y方向に沿って延びていればよい。あるいは、複数の透過部13は、Y方向において等しい間隔を空けて並び、かつ、複数の透過部13の各々は、X方向に沿って延びていてもよい。またあるいは、複数の透過部13の各々は、Y方向に対して所定の角度を形成する延在方向に沿って延び、かつ、複数の透過部13は、延在方向と直交する方向において等しい間隔を空けて並んでいてもよい。
 こうした構成では、透過部13によって挟まれた部分が反射部12aとして機能し、かつ、複数の透過部13を囲む部分も反射部12bとして機能する。
 ・図15が示すように、図14が示す光学素子10では、複数の透過部13において、Y方向に沿う長さが相互に異なってもよい。複数の透過部13において、例えば、X方向における1つの端に位置する透過部13から、他の端に位置する透過部13に向けて、Y方向に沿う長さが次第に小さくなってもよい。あるいは、複数の透過部13には、Y方向に沿う長さが相互に異なる透過部13が含まれ、複数の透過部13は、X方向において、Y方向に沿う長さに所定の規則性を有していない状態で並んでいてもよい。
 ・図16が示すように、矩形形状を有した複数の反射部12を有し、複数の反射部12が、X方向において等しい間隔を空けて並び、かつ、Y方向において等しい間隔を空けて並ぶ構成であってもよい。また、こうした構成は、X方向において相互に隣り合う2つの反射部12の間に位置して、かつ、Y方向に沿って延びる透過部13と、Y方向において相互に隣り合う2つの反射部12の間に位置して、かつ、X方向に沿って延びる透過部13とを有している。Y方向に沿って延びる複数の透過部13の各々は、X方向に沿って延びる複数の透過部13と直交している。
 X方向において相互に隣り合う1つの反射部12と1つの透過部13とが第1回折周期部21を構成し、第1回折周期部21においてX方向に沿う幅が、第1格子周期d1である。Y方向において相互に隣り合う1つの反射部12と1つの透過部13とが第2回折周期部22を構成し、第2回折周期部22においてY方向に沿う幅が、第2格子周期d2である。第1格子周期d1と第2格子周期d2とは、例えば、相互に等しい。なお、第1格子周期d1と第2格子周期d2とは相互に異なってもよい。
 つまり、図16が示す光学素子10は、いわゆるクロスグレーティング構造を有する。こうした光学素子10では、蛍光灯などの棒状光源を用いた透過観察が行われるとき、棒状光源の延びる方向とX方向が平行であるときと、棒状光源が延びる方向とY方向とが平行であるときとの両方にて、光学素子10を透過した光が、虹色を有した回折光として射出される。
 なお、複数の反射部12は、Y方向に沿って並び、かつ、X方向と所定の角度で交差する方向に沿って並んでいてもよいし、あるいは、X方向に沿って並び、かつ、Y方向と所定の角度で交差する方向に沿って並んでもよい。またあるいは、反射部12と透過部13とが連続する方向が周期方向であるとき、光学素子10は、3つ以上の相互に異なる周期方向の各々に沿って並ぶ反射部12と透過部13とを備える構成であってもよい。
 ・図17が示すように、光学素子10において、下側透明樹脂層11の上方の全体、すなわち、上側透明樹脂層15の裏面15rの全体に1つの金属膜が形成され、金属膜に対して、複数の透過部13が形成された構成でもよい。
 こうした構成では、例えば、複数の透過部13は、X方向において等しい間隔を空けて並び、かつ、Y方向において等しい間隔を空けて並んでいる。そして、X方向において相互に隣り合う2つの透過部13の間に位置して、かつ、Y方向に沿って延びる反射部12aと、Y方向において相互に隣り合う2つの透過部13の間に位置して、かつ、X方向に沿って延びる反射部12aとを有している。Y方向に沿って延びる複数の反射部12aの各々は、X方向に沿って延びる複数の反射部12aと直交している。また、複数の透過部13の周囲を囲む金属膜も反射部12bとして機能する。
 X方向において相互に隣り合う1つの反射部12aと1つの透過部13とが第1回折周期部21を構成し、第1回折周期部21においてX方向に沿う幅が、第1格子周期d1である。Y方向において相互に隣り合う1つの反射部12aと1つの透過部13とが第2回折周期部22を構成し、第2回折周期部22においてY方向に沿う幅が、第2格子周期d2である。第1格子周期d1と第2格子周期d2とは、例えば相互に等しい。なお、第1格子周期d1と第2格子周期d2とは相互に異なってもよい。
 つまり、図17が示す光学素子10も、図16が示す光学素子10と同様、いわゆるクロスグレーティング構造を有する。図17が示す光学素子10において、図16の示す光学素子10の透過部13の位置に反射部12aが位置し、かつ、図16の示す光学素子10の反射部12の位置に透過部13が位置していれば、図17が示す光学素子10は、図16が示す光学素子10と同じ光学的な効果を有する。
 なお、複数の透過部13は、Y方向に沿って並び、かつ、X方向と所定の角度で交差する方向に沿って並んでもよいし、あるいは、X方向に沿って並び、かつ、Y方向と所定の角度で交差する方向に沿って並んでもよい。またあるいは、反射部12と透過部13とが連続する方向が周期方向であるとき、光学素子10は、3つ以上の相互に異なる周期方向の各々に沿って並ぶ反射部と透過部13とを備える構成であってもよい。
 上述したように、図17が示す光学素子10は、図16が示す光学素子10と光学的な効果が等しい構造とすることも可能である。そのため、図17が示す光学素子10と図16が示す光学素子10とは、反射部の形成のしやすさに応じて選択されればよい。
 ・光学素子10は、保護部14を有していなくてもよい。保護部14を有していない光学素子10は、例えば、以下の製造方法によって製造される。
 光学素子10を製造するときには、まず、上述した製造方法と同様、非周期性の凹凸構造を有した上側透明樹脂層15の原版を作成する。原版の作成時には、例えば、SUS板に対してサンドブラスト処理を行うことで、非周期性の凹凸構造をSUS板の表面に形成する。これにより、非周期性の凹凸構造を表面に有した原版を作成することができる。あるいは、原版の作成時には、レーザーや電子線などの描画機、すなわち、露光機を用いたフォトリソグラフィーによって、非周期性の凹凸構造を表面に有したレジスト膜を作成してもよい。これにより、非周期性の凹凸構造を表面に有した原版を作成することができる。そして、得られた原版に対して導通膜をドライコーティングした後に、電鋳によって実用版を形成してもよい。
 図18が示すように、上述した原版における表面の凹凸構造を複製することによって、非周期性の凹凸構造を有した上側透明樹脂層15を形成する。上側透明樹脂層15は、例えば、フォトポリマー法を用いて形成される。
 なお、上側透明樹脂層15を形成する方法には、上述したフォトポリマー法に限らず、熱エンボス法、ホットコールドプレス法、フォトポリマー法、および、ナノインプリント法などの方法を用いることができる。
 図19が示すように、上側透明樹脂層15のうち、非周期性の凹凸構造を有する面の全体に、反射部12を形成するための金属膜、例えば、アルミニウム膜12Mがドライコーティングされる。アルミニウム膜12Mのドライコーティングには、上述した方法のいずれかを用いることができる。
 図20が示すように、アルミニウム膜12Mの全体にフォトレジストPRが塗布される。
 図21が示すように、レーザーを用いたパターン露光によって、アルミニウム膜12Mのうち、反射部12に対応した部分のフォトレジストPRを硬化させて、アルミニウム膜12Mをエッチングするときのマスクが形成される。そして、フォトレジストPRのうち、硬化していない部分と、アルミニウム膜12Mのうち、マスクの位置していない部分とがアルカリエッチングされることによって、反射部12が形成される。
 なお、こうした製造方法によれば、保護部14を有する光学素子10を製造することも可能である。保護部14を有する光学素子10を製造するときには、フォトレジストPRを塗布する工程の前に、保護部14を形成するための薄膜、例えば、フッ化マグネシウム膜が形成される。そして、フォトレジストPRの現像が行われた後であって、アルミニウム膜12Mのアルカリエッチングの前に、フッ化マグネシウム膜のエッチングが行われる。
 光学素子10は、上述した方法以外の方法によって製造されてもよく、例えば、水洗シーライト加工や、物理的に金属膜を除去する方法などによって製造されてもよい。このうち、水洗シーライト加工では、上側透明樹脂層15のうち、透過部13に対応する部分に水溶性樹脂を塗布した後に、反射部12を形成するための金属膜をドライコーティングによって成膜する。そして、水溶性樹脂と金属膜とが形成された上側透明樹脂層15を水洗することによって、水溶性樹脂と、水溶性樹脂の上に形成された金属膜とを除去する。
 これに対して、物理的に金属膜を除去する方法では、レーザーをパターン照射することなどによって、金属層のうち、透過部13に対応する部分が物理的に除去される。
 反射部12が形成された後、例えば、紫外線硬化性樹脂が、上側透明樹脂層15の裏面15rに塗布され、かつ、塗布された紫外線硬化性樹脂が硬化されることで、反射部12および保護部14を覆う下側透明樹脂層11が形成される。なお、下側透明樹脂層11は省略されてもよい。
 なお、上述したように、保護部14を有しない光学素子10を製造する方法であれば、反射部12は、上側透明樹脂層15ではなく、下側透明樹脂層11に形成されてもよい。この場合には、上側透明樹脂層15が省略されてもよい。
 [第2実施形態]
 図22から図27を参照して光学素子を具体化した第2実施形態を説明する。第2実施形態の光学素子は、第1実施形態の光学素子と比べて、反射部が入射光を散乱する点は共通しているものの、反射部において入射光を散乱させるための構造が異なる。そのため、以下では、こうした相違点を詳しく説明し、第1実施形態の光学素子と共通する構成には第1実施形態の光学素子と同じ符号を付すことによって、第1実施形態の光学素子と共通する構成の説明を省略する。そして、以下では、光学素子の構成、および、光学素子の作用を順番に説明する。
 [光学素子の構成]
 図22から図25を参照して光学素子の構成を説明する。図22および図25では、光学素子の構成を説明する便宜上、上側透明樹脂層の図示が省略されている。また、図22および図25では、下側透明樹脂層に対する反射部の位置を分かりやすくするために、反射部の各々にはドットが付されている。そして、図22では、図示の便宜上、下側透明樹脂層の表面に形成された凹凸構造の図示が省略されている。
 図22が示すように、光学素子10は、下側透明樹脂層11の表面11sにおける上方に形成された複数の反射部31を備え、複数の反射部31の各々は、Y方向に沿って延びる帯形状を有し、複数の反射部31は、第1方向の一例であるX方向において等しい間隔を空けて並んでいる。反射部31は、表面11sから離れる方向に突き出た半円筒面を備えている。なお、各反射部31は、反射部31におけるY方向の全体に半円筒面を備えているが、Y方向における少なくとも一部に半円筒面を備えてもよい。Y方向が、第2方向の一例である。また、各反射部31は、反射部31におけるX方向の全体にわたる半円筒面を備えているが、X方向における少なくとも一部に半円筒面を備えていてもよい。
 図23が示すように、反射部31の各々は半円筒面を備えているため、Z-Y平面に沿った1つの断面において、反射部31は、Y方向の全体にわたってZ方向での位置が変わらない。また、保護部32も同じく半円筒面を備えているため、Z-Y平面に沿った1つの断面において、保護部32は、Y方向の全体にわたってZ方向での位置が変わらない。
 図24が示すように、上側透明樹脂層15のうち、下側透明樹脂層11と接触する面が裏面15rである。上側透明樹脂層15の裏面15rは、X方向において等しい間隔を空けて並ぶ複数の凹部15bを有し、複数の凹部15bの各々は、Y方向に沿って延びる円筒面によって構成されている。
 各反射部31は、1つの凹部15bにならって形成されているため、各反射部31は、凹部15bの形状にならう半円筒面を備えている。また、各保護部32は、反射部31と同様、1つの凹部15bにならって形成されているため、各保護部32は、凹部15bの形状にならう半円筒面を備えている。
 図25が示すように、X方向において相互に隣り合う1つの反射部31と1つの透過部13とが1つの透過周期部33を構成し、透過周期部33における格子周期dは、第1実施形態の格子周期dと同様、0.20μmよりも大きく20μm以下であることが好ましい。
 [光学素子の作用]
 図26および図27を参照して光学素子の作用を説明する。
 図26が示すように、光学素子10において、反射部31に対して上側透明樹脂層15側から光が入射するとき、上側透明樹脂層15に向けて突き出た凸形状を有する各反射部31は、入射光Liが入射した反射部31の部位に応じた方向に入射光Liを反射する。すなわち、各反射部12は、反射光Lrとして散乱光を生じさせる。そのため、入射光Liが白色の可視光であるとき、光学素子10は、白色を有した散乱光を反射する。
 一方で、図27が示すように、光学素子10において、反射部31に対して上側透明樹脂層15側から光が入射するとき、入射光Liは、複数の透過部13の各々から透過して、下側透明樹脂層11において、表面11sと対向する裏面から透過光Ltとして射出される。このとき、透過回折部20は、入射光Liに含まれる複数の波長の光の各々を各光に依存した角度で回折させて、相互に異なる色を有する複数の回折像を形成する。
 これにより、例えば、光学素子10の観察者は、反射観察では、反射部12によって散乱された白色の散乱光を観察することができる。一方で、観察者は、透過観察では、透過回折部20の回折した虹色を有する回折光を観察することができる。
 以上説明したように、第2実施形態の光学素子によれば、以下に記載の効果を得ることができる。
 (5)光学素子10において反射された光は、半円筒面の散乱した散乱光である一方で、光学素子10において透過された光は、透過回折部20による回折光である。そのため、光学素子10の反射した光と、光学素子の透過した光との差異が顕著になる。
 [第2実施形態の変形例]
 なお、上述した第2実施形態は、以下のように適宜変更して実施することもできる。
 ・複数の反射部31の各々は、Y方向に沿って延びる帯形状ではなく、X方向に沿って延びる帯形状を有してもよい。こうした構成では、複数の反射部31は、Y方向において等しい間隔を空けて並んでいればよい。あるいは、各反射部31は、Y方向に対して垂直以外の所定の角度で交差する延在方向に沿って延びる帯形状を有してもよく、こうした構成では、複数の反射部31は、延在方向と直交する方向において等しい間隔を空けて並んでいればよい。
 ・複数の反射部31において、Y方向に沿う長さが相互に異なってもよい。複数の反射部31において、例えば、X方向における1つの端に位置する反射部31から、他の端に位置する反射部31に向けて、Y方向に沿う長さが次第に小さくなってもよい。あるいは、複数の反射部31には、Y方向に沿う長さが相互に異なる反射部31が含まれ、複数の反射部31は、X方向において、Y方向に沿う長さに所定の規則性を有していない状態で並んでいてもよい。すなわち、図13が示す第1実施形態の変形例の構成と、第2実施形態の反射部31とを組み合わせた構成であってもよい。
 ・光学素子10において、下側透明樹脂層11の上方の全体、すなわち、上側透明樹脂層15の裏面15rの全体に1つの金属膜が形成され、金属膜に対して、複数の透過部13が形成された構成でもよい。すなわち、図14が示す第1実施形態の変形例の構成と、第2実施形態の反射部31とを組み合わせた構成であってもよい。
 ・光学素子10において、下側透明樹脂層11の上方の全体、すなわち、上側透明樹脂層15の裏面15rの全体に1つの金属膜が形成され、金属膜に対して、複数の透過部13が形成され、かつ、複数の透過部13には、Y方向に沿う長さが相互に異なる透過部13が含まれる構成でもよい。すなわち、図15が示す第1実施形態の変形例の構成と、第2実施形態の反射部31とを組み合わせた構成であってもよい。
 ・光学素子10は、クロスグレーティング構造を有する構成であってもよい。すなわち、図16が示す第1実施形態の変形例の構成と、第2実施形態における反射部31とを組み合わせた構成、あるいは、図17が示す第1実施形態の変形例の構成と、第2実施形態における反射部31とを組み合わせた構成であってもよい。
 [第3実施形態]
 図28から図33を参照して光学素子を具体化した第3実施形態を説明する。第3実施形態の光学素子は、第1実施形態の光学素子と比べて、反射部の構成、および、反射部によって得られる光学的な効果が異なる。そのため、以下では、こうした相違点を詳しく説明し、第1実施形態の光学素子と共通する構成には第1実施形態の光学素子と同じ符号を付すことによって、第1実施形態の光学素子と共通する構成の説明を省略する。そして、以下では、光学素子の構成、および、光学素子の作用を順番に説明する。
 [光学素子の構成]
 図28から図31を参照して光学素子の構成を説明する。図28および図31では、光学素子の構成を説明する便宜上、上側透明樹脂層の図示が省略されている。また、図28および図31では、下側透明樹脂層に対する反射部の位置を分かりやすくするために、反射部の各々にはドットが付されている。そして、図28では、図示の便宜上、下側透明樹脂層の表面に形成された凹凸構造の図示が省略されている。
 図28が示すように、光学素子10は、下側透明樹脂層11の表面11sにおける上方に形成された複数の反射部41を備え、複数の反射部41の各々は、Y方向に沿って延びる帯形状を有し、複数の反射部41は、X方向において等しい間隔を空けて並んでいる。
 図29が示すように、上側透明樹脂層15の裏面15rは、Y方向において等しい間隔を空けて並ぶ複数の凸部15aを有し、複数の凸部15aの各々は、X方向に沿って延び、かつ、Z-Y方向に沿う断面形状が矩形の突条である。複数の凸部15aにおいて、Z方向において下側透明樹脂層11の裏面11rに向けて突き出た量が相互に等しい。
 各反射部41は、上側透明樹脂層15の裏面15rにおいて、Y方向に沿って延びる帯形状を有するため、各反射部41は、上側透明樹脂層15の裏面15rのうち、各反射部41の位置する部分にならう構造を備えている。すなわち、各反射部41は、反射部41において下側透明樹脂層11の裏面11rに向けて突き出た部位である複数の凹部41aと、Z方向において凹部41aよりも下側透明樹脂層11の裏面11rからの距離が大きい複数の凸部41bとを備えている。
 反射部41において、凹部41aと凸部41bとがY方向に沿って交互に連続して並び、凹部41aと凸部41bとが交互に連続する方向が、周期方向である。すなわち、反射部41は、Y方向に沿った周期性を有した凹凸構造を備えている。反射部41において、Y方向において相互に隣り合う1つの凹部41aと1つの凸部41bとが1つの反射周期部43を構成し、反射周期部43におけるY方向に沿う幅が、格子周期drである。なお、凹部41aと凸部41bとは、反射部41におけるY方向の全体において交互に連続しているが、Y方向における一部において交互に連続していてもよい。
 格子周期drが、0.15μm以上20μm以下であるとき、反射部41は、反射周期部43によって回折された回折光によって、相互に異なる色を有する複数の回折像を形成することができる。すなわち、反射部41は、反射部41が反射する光の反射角を反射部41に入射する光の角度とは異ならせて反射像を形成することができる。
 格子周期drは、0.5μm以上10μm以下であることが好ましく、格子周期drが、0.5μm以上10μm以下であるとき、格子周期drが他の大きさであるときと比べて、回折像の視野角がより大きくなる。
 また、格子周期drが、可視光領域に含まれる光の波長よりも小さいとき、各反射部41はサブ波長格子であり、反射部41は、入射光から偏光を分離することができる。なお、サブ波長格子が、可視光領域に含まれる光、例えば、400nm以上700nm以下の光に対して偏光を分離する効果を有するためには、格子周期drは、以下の長さであることが好ましい。すなわち、格子周期drは、可視光波長の1/2未満の長さである0.15μm以上0.35μm未満の範囲に含まれることが好ましく、0.15μm以上0.30μm以下の範囲に含まれることがより好ましい。
 そのため、格子周期drが0.20μmよりも大きく0.35μm未満の範囲に含まれるとき、反射部41は、反射部41に対して垂直な成分である偏光のみを反射しつつ、可視光を回折させることができる。
 各保護部42は、反射部41と同様、上側透明樹脂層15の裏面15rのうち、各保護部42が位置する部分にならう構造を備えている。
 図30は、Z-X平面に沿う光学素子10の断面形状を示している。上述したように、上側透明樹脂層15の裏面15rに形成された凸部15aは、X方向に沿って延び、かつ、Z方向において下側透明樹脂層11の裏面11rに向けて突き出た量が相互に等しい。そのため、複数の反射部41は、Z方向における位置が相互に等しく、かつ、複数の保護部42は、Z方向における位置が相互に等しい。
 図31が示すように、X方向において相互に隣り合う1つの反射部41と1つの透過部13とが1つの透過周期部44を構成し、透過周期部44における格子周期dtは、第1実施形態の格子周期dと同様、0.20μmよりも大きく20μm以下であることが好ましい。
 [光学素子の作用]
 図32および図33を参照して光学素子の作用を説明する。
 図32が示すように、光学素子10において、反射部41に対して上側透明樹脂層15側から光が入射するとき、反射型の回折格子として機能する各反射部41が入射光Liを反射する。すなわち、各反射部41は、回折光を反射光Lrとして生じさせる。そのため、入射光Liが白色の可視光であるとき、各反射部41は、虹色を有した回折光を反射光Lrとして生じさせる。
 一方で、図33が示すように、光学素子10において、反射部41に対して上側透明樹脂層15側から光が入射するとき、入射光Liは、複数の透過部13の各々から透過して、下側透明樹脂層11において、表面11sと対向する裏面11rから透過光Ltとして射出される。このとき、透過回折部20は、入射光Liに含まれる複数の波長の光の各々を各光に依存した角度で回折させて、相互に異なる色を有する複数の回折像を形成する。
 これにより、光学素子10の観察者は、反射観察では、反射部41によって反射された虹色を有する回折光を観察することができる。一方で、観察者は、透過観察では、透過回折部20の回折した虹色を有する回折光を観察することができる。
 なお、各反射部41と、透過回折部20とは、相互に同じ回折光を回折する構成でもよいし、相互に異なる回折光を回折する構成であってもよい。
 以上説明したように、第3実施形態の光学素子によれば、以下に記載の効果を得ることができる。
 (6)光学素子10において反射された光と、光学素子10において透過された光との両方が回折光になる。そのため、光学素子10と同じ光学的な効果を得るためには、透過による回折光における回折の状態を光学素子と同じにすること、さらには、反射による回折光における回折の状態を光学素子と同じにすることが必要であることから、光学素子10の模倣が難しくなる。
 (7)反射周期部43の格子周期drが0.20μmよりも大きく0.35μm未満であるとき、反射部41に入射する可視光のうち、反射部41に対して垂直な成分である偏光のみを反射しつつ、可視光を回折させることができる。
 (8)反射周期部43の格子周期drが0.35μm以上20μm以下であるとき、反射部41に入射した可視光が、より確実に回折される。
 [第3実施形態の変形例]
 なお、上述した第3実施形態は、以下のように適宜変更して実施することもできる。
 ・複数の反射部41の各々は、Y方向に沿って延びる帯形状ではなく、X方向に沿って延びる帯形状を有してもよい。こうした構成では、複数の反射部41は、Y方向において等しい間隔を空けて並んでいればよい。あるいは、各反射部41は、Y方向に対して垂直以外の所定の角度で交差する延在方向に沿って延びる帯形状を有してもよく、こうした構成では、複数の反射部41は、延在方向と直交する方向において等しい間隔を空けて並んでいればよい。
 ・複数の反射部41において、Y方向に沿う長さが相互に異なってもよい。複数の反射部41において、例えば、X方向における1つの端に位置する反射部41から、他の端に位置する反射部41に向けて、Y方向に沿う長さが次第に小さくなってもよい。あるいは、複数の反射部41には、Y方向に沿う長さが相互に異なる反射部41が含まれ、複数の反射部41は、X方向において、Y方向に沿う長さに所定の規則性を有していない状態で並んでいてもよい。すなわち、図13が示す第1実施形態の変形例の構成と、第3実施形態の反射部41とを組み合わせた構成であってもよい。
 ・光学素子10において、下側透明樹脂層11の上方の全体、すなわち、上側透明樹脂層15の裏面15rの全体に1つの金属膜が形成され、金属膜に対して、複数の透過部13が形成された構成でもよい。すなわち、図14が示す第1実施形態の変形例の構成と、第3実施形態の反射部41とを組み合わせた構成であってもよい。
 ・光学素子10において、下側透明樹脂層11の上方の全体、すなわち、上側透明樹脂層15の裏面15rの全体に1つの金属膜が形成され、金属膜に対して、複数の透過部13が形成され、かつ、複数の透過部13には、Y方向に沿う長さが相互に異なる透過部13が含まれる構成でもよい。すなわち、図15が示す第1実施形態の変形例の構成と、第3実施形態の反射部41とを組み合わせた構成であってもよい。
 ・光学素子10は、クロスグレーティング構造を有する構成であってもよい。すなわち、図16が示す第1実施形態の変形例の構成と、第3実施形態における反射部41とを組み合わせた構成、あるいは、図17が示す第1実施形態の変形例の構成と、第3実施形態における反射部41とを組み合わせた構成であってもよい。
 ・反射周期部43を構成する凹部41aと凸部41bとは、Y方向において交互に連続して並んでいる。これに限らず、反射周期部43を構成する凹部41aと凸部41bとは、X方向において交互に連続して並び、かつ、Y方向において交互に連続して並んでもよい。あるいは、反射周期部43を構成する凹部41aと凸部41bとは、Y方向に対して垂直以外の所定の角度で交差する周期方向に沿って交互に連続して並び、かつ、周期方向と直交する方向に沿って交互に連続して並んでもよい。
 ・光学素子10において、反射周期部43が第1周期部分であるとき、第1周期部分とは周期性の相互に異なる凹凸構造を有した第2周期部分を有してもよい。なお、第2周期部分は、第1周期部分と比べて、格子周期、および、周期方向の少なくとも一方が異なればよく、第1周期部分と、第2周期部分とは、反射部に入射した可視光を相互に異なる方向に回折させればよい。すなわち、複数の反射部41において、1つの反射部41に第1周期部分と第2周期部分とが含まれてもよい。あるいは、複数の反射部41には、第1周期部分のみを含む反射部41と、第2周期部分のみを含む反射部41とが含まれてもよい。
 こうした構成によれば、以下に記載の効果を得ることができる。
 (9)光学素子10において反射された光は、相互に状態の異なる2つの回折光の合成された光である分、光学的な効果の模倣が難しくなる。
 [第4実施形態]
 図34を参照して光学素子を具体化した第4実施形態を説明する。第4実施形態の光学素子は、第1実施形態の光学素子と比べて、1つの光学素子が光学的な効果の相互に異なる2つの素子部を有する点が異なる。そのため、以下では、こうした相違点を詳しく説明し、第1実施形態の光学素子と共通する構成には第1実施形態の光学素子と同じ符号を付すことによって、第1実施形態の光学素子と共通する構成の説明を省略する。そして、以下では、光学素子の構成、および、光学素子の作用を順番に説明する。
 [光学素子の構成]
 図34を参照して光学素子の構成を説明する。図34では、光学素子の備える反射部と透過部とを説明する便宜上、上側透明樹脂層の図示が省略され、反射部にはドットが付されている。
 図34が示すように、光学素子50は、1つの下側透明樹脂層11において区画された第1素子部51と、第2素子部52とを備えている。第1素子部51は、第1実施形態の光学素子10と同様、X方向において等しい間隔を空けて並ぶ複数の反射部12を備え、複数の反射部12の各々は、Y方向に沿って延びる帯形状を有している。反射部12は、非周期性の凹凸構造を有し、第1素子部51において、全ての反射部12の面積の和と、透過部13を含む光を透過する部分の面積の和との比が、第1面積比S1である。
 反射部12と透過部13とは、X方向において交互に連続して並び、複数の反射部12と複数の透過部13とが透過回折部20を構成し、透過回折部20は、所定の格子周期daを有している。反射部12と透過部13とが交互に連続する方向が周期方向であり、第1素子部51における周期方向は、X方向に平行な方向である。
 一方で、第2素子部52は、Y方向に沿って等しい間隔を空けて並ぶ複数の反射部61を備え、複数の反射部61の各々は、X方向に沿って延びる帯形状を有している。反射部61は、散乱部の一例である。Y方向において相互に隣り合う2つの反射部61に挟まれることで、反射部61の間を埋める部分が透過部62であり、複数の透過部62は、反射部61と同様、Y方向に沿って等しい間隔を空けて並び、かつ、各透過部62は、X方向に沿って延びる帯形状を有している。透過部62は、第2透過部の一例である。
 反射部61は、第1素子部51の反射部12と同様、非周期性の凹凸構造を有している。第2素子部52において、全ての反射部61の面積の和と、透過部62を含む光を透過する部分の面積の和との比が、第2面積比S2であり、第2面積比S2は、例えば、第1面積比S1と等しい。なお、第1面積比S1と第2面積比S2とは、相互に異なる値であってもよい。
 反射部61と透過部62とは、Y方向において交互に連続して並び、複数の反射部61と複数の透過部62とが透過回折部60を構成し、透過回折部60は、所定の格子周期dbを有している。第2素子部52の透過回折部60における格子周期dbは、第1素子部51の透過回折部20における格子周期daと相互に等しい。反射部61と透過部62とが交互に連続する方向が周期方向であり、第2素子部52における周期方向は、Y方向に平行な方向である。すなわち、第2素子部52における周期方向は、第1素子部51における周期方向と直交する方向である。
 [光学素子の作用]
 光学素子50では、第1素子部51における反射光と、第2素子部52における反射光との両方が散乱光であるため、入射光が白色の可視光であるとき、反射観察では、第1素子部51および第2素子部52の双方において、白色光が観察される。
 反射部12に対して上側透明樹脂層15側から、点光源の射出する光をZ方向に沿って光学素子50に入射させると、透過観察では、第1素子部51、および、第2素子部52の双方において、各素子部の視野角にて虹色を有した回折光が観察される。
 一方で、反射部に対して上側透明樹脂層15側から、Y方向に沿って延びる棒状光源、例えば蛍光灯の射出する光をZ方向に沿って光学素子50に入射させると、透過観察では、第1素子部51において虹色を有した回折光が観察される一方で、第2素子部52では回折光が観察されない。
 ここで、点光源の射出する光はほぼ平行光であるため、透過回折部の周期方向にかかわらず、各波長に応じた分散角で回折光が散乱することによって、虹色を有した回折光が観察される。一方で、棒状光源は、1つの方向に沿って延びる光源であって、入射角が大きいため、棒状光源の延びる方向と交差する方向に沿って延びる反射部と透過部とを有した透過回折部では、各波長の回折光が混合し、虹色を有した回折光が観察されない。
 それゆえに、棒状光源の延びる方向と平行な方向に延びる透過部13を有した第1素子部51では、虹色を有した回折光が観察されるものの、棒状光源の延びる方向に対して垂直な方向に延びる透過部62を有した第2素子部52では、虹色を有した回折光が観察されない。
 ただし、光学素子50がZ方向を中心として90°回転すると、第2素子部52の透過部62が、棒状光源の延びる方向と平行な方向に沿って延びる一方で、第1素子部51の透過部13が、棒状光源の延びる方向と垂直な方向に沿って延びる。これにより、上側透明樹脂層15側から、光がZ方向に沿って入射するとき、透過観察では、第2素子部52において虹色を有した回折光が観察される一方で、第1素子部51において虹色を有した回折光が観察されない。
 なお、図34に示される光学素子50において、反射部に対して上側透明樹脂層15側から、X方向に沿って延びる棒状光源の射出する光をZ方向に沿って入射した場合にも、透過観察では、第2素子部52において虹色を有した回折光が観察される一方で、第1素子部51において虹色を有した回折光が観察されない。
 以上説明したように、第4実施形態の光学素子によれば、以下に列挙する効果を得ることができる。
 (10)第1面積比S1と第2面積比S2とが相互に等しいため、第1素子部51の散乱光の状態と、第2素子部52の散乱光の状態とは、相互に等しくなりやすい。それゆえに、光学素子10に対して光の反射する側では、第1素子部51と第2素子部52との境界は認識されにくい。一方で、第1素子部51を透過した透過光と、第2素子部を透過した透過光とは相互に異なる。そのため、光学素子10には、光学素子10に対して光の反射する側と、光学素子10に対して光の透過する側とで、光学素子10から射出される光に含まれると認識される光の数が相互に異なるという光学的な効果がさらに付加される。
 (11)第1素子部51における透過回折部20の周期方向と、第2素子部52における透過回折部60の周期方向とが直交する。そのため、棒状光源を用いた光学素子10の観察では、第1素子部51において透過による回折光が観察される条件と、第2素子部52において透過による回折光が観察される条件とが相互に異なる。
 [第4実施形態の変形例]
 なお、上述した第4実施形態は、以下のように適宜変更して実施することもできる。以下に説明される図35および図36では、光学素子の備える反射部と透過部とを説明する便宜上、上側透明樹脂層の図示が省略され、かつ、反射部にドットが付されている。
 ・第1素子部51の反射部12、および、第2素子部52の反射部61の少なくとも一方が、円筒面によって構成されてもよい。すなわち、第1素子部51の構成と、第2実施形態の反射部31とを組み合わせてもよいし、第2素子部52の構成と、第2実施形態の反射部31とを組み合わせてもよい。あるいは、第1素子部51の反射部12が、上述した非周期性の凹凸構造を有する反射部と、円筒面から構成される反射部との両方を含んでもよいし、第2素子部52の反射部61が、非周期性の凹凸構造を有する反射部と、円筒面から構成される反射部との両方を含んでもよい。
 ・第1素子部51の反射部12が周期性の凹凸構造を有し、かつ、第2素子部52の反射部61が周期性の凹凸構造を有する構成でもよい。すなわち、第1素子部51の構成と、第3実施形態の反射部41とを組み合わせ、かつ、第2素子部52の構成と、第3実施形態の反射部41とを組み合わせた光学素子であってもよい。
 こうした構成では、反射観察において、反射部の有する周期的な凹凸構造に応じた回折光と、透過回折部の格子周期に応じた回折光とが観察される一方で、透過観察において、透過回折部を透過した回折光のみが観察される。そのため、光学素子50において、反射部における格子周期と、透過回折部における格子周期とに基づき、反射観察では、2つの回折光の波長が混合することで、虹色を有した回折光が観察されない構成とすることも可能である。また、2つの回折光の各々における透過角度や波長などを極端に異ならせるように、反射部における格子周期と、透過回折部における格子周期とが設定されることで、2つの回折光の鮮やかな色調が観察される構成とすることも可能である。
 ・第1素子部51の反射部12、および、第2素子部52の反射部61が、周期的な凹凸構造を有して回折光を反射する構成であるとき、第1素子部51の反射部12における格子周期と、第2素子部52の反射部61における格子周期とが相互に同じであってもよいし、相互に異なってもよい。また、第1素子部51の反射部12における周期方向と、第2素子部52の反射部61における周期方向とが、相互に同じであってもよいし、相互に異なってもよい。
 ・第1素子部51の反射部12における格子周期と、第2素子部52の反射部61における格子周期とが相互に異なる構成、および、第1素子部51の反射部12における周期方向と、第2素子部52の反射部61における周期方向が相互に異なる構成では、以下のような光学素子50とすることもできる。すなわち、第1素子部51が反射光として生じさせる回折光と、第2素子部52が反射光として生じさせる回折光との混合によって、光学素子50から白色を有した反射光が射出される構成としてもよい。
 ・第1素子部51の反射部12、および、第2素子部52の反射部61が、周期的な凹凸構造を有して回折光を反射する構成であるとき、以下のような構成であってもよい。すなわち、第1素子部51および第2素子部52の少なくとも一方において、複数の反射部には、凹凸構造における格子周期、および、周期方向の少なくとも一方が相互に異なる複数種類の反射部が含まれてもよい。
 ・第1素子部51の反射部12、および、第2素子部52の反射部61の一方が、非周期性の凹凸構造あるいは円筒面を有して散乱光を反射し、かつ、他方が、周期性の凹凸構造を有して回折光を反射する構成でもよい。
 ・図35が示すように、図34における反射部の位置と透過部の位置とが反転した構成であってもよい。すなわち、光学素子50は、下側透明樹脂層11の上方、すなわち、上側透明樹脂層15の裏面15rに形成された1つの金属膜を有し、1つの金属膜は、第1素子部51と第2素子部52との両方に跨っている。
 第1素子部51は、X方向において等しい間隔を空けて並ぶ複数の透過部13を備え、複数の透過部13の各々は、Y方向に沿って延びる帯形状を有している。X方向において相互に隣り合う2つの透過部13の間に反射部12aが位置している。
 反射部12aと透過部13とは、X方向において交互に連続して並んで透過回折部20を構成し、透過回折部20は、所定の格子周期daを有している。第1素子部51では、金属膜のうち、複数の透過部13の周囲を囲む部分も反射部12bとして機能する。
 これに対して、第2素子部52は、Y方向において等しい間隔を空けて並ぶ複数の透過部62を備え、複数の透過部62の各々は、X方向に沿って延びる帯形状を有している。Y方向において相互に隣り合う2つの透過部62の間に反射部61aが位置している。
 反射部61aと透過部62とは、Y方向において交互に連続して並んで透過回折部60を構成し、透過回折部60は、所定の格子周期dbを有している。第2素子部52の格子周期dbは、第1素子部51の格子周期daと等しい。第2素子部52では、金属膜のうち、複数の透過部62の周囲を囲む部分の反射部61bとして機能する。
 光学素子50の有する金属膜は、金属膜の面内において、相互に同じ特性を有した非周期性の凹凸構造を有している。すなわち、第1素子部51の反射部と、第2素子部52の反射部とは、相互に同じ特性を有した非周期性の凹凸構造を有している。そのため、第1素子部51の反射部12が反射光として生じさせる散乱光と、第2素子部52の反射部61が反射光として生じさせる散乱光とは、相互に等しくなる。
 こうした光学素子50によれば、第4実施形態の光学素子50に準じた効果を得ることができる。
 ・図35が示す光学素子50では、金属膜のうち、第1素子部51に位置する部分と、第2素子部52に位置する部分とが、相互に異なる特性を有した非周期性の凹凸構造を有してもよい。すなわち、第1素子部51の反射部を含む透過回折部20と、第2素子部52の反射部を含む透過回折部60とは、相互に異なる非周期性の凹凸構造を有してもよい。
 こうした構成によれば、2つの透過回折部の間において、透過回折部の備える非周期性の凹凸構造が相互に異なるため、透過回折部ごとに相互に異なる反射光を得ることができる。
 ・図35が示す光学素子50では、金属膜は、周期性の凹凸構造を有して、光学素子50に入射した光から反射光として回折光を生じさせる構成でもよい。すなわち、第1素子部51の反射部と、第2素子部52の反射部との各々は、周期性の凹凸構造を有してもよい。この場合には、金属膜は、第1素子部51に位置する部分と第2素子部52に位置する部分とで、相互に同じ特性を有した周期性の凹凸構造を有してもよいし、相互に異なる特性を有した周期性の凹凸構造を有してもよい。すなわち、第1素子部51の反射部と、第2素子部52の反射部とは、相互に同じ特性を有した周期性の凹凸構造を有してもよいし、相互に異なる特性を有した周期性の凹凸構造を有してもよい。
 ・図36が示す光学素子50は、図35が示す光学素子50と比べて、以下の点が異なる。すなわち、第2素子部52の備える複数の透過部62において、X方向に沿う長さが相互に異なる。複数の透過部62において、例えば、Y方向における1つの端に位置する透過部62から、他の端に位置する透過部62に向けて、X方向に沿う長さが次第に小さくなっている。そして、第1素子部51は、第1素子部51と第2素子部52との境界を通るZ-X平面を対称面とする第2素子部52と面対称な構成を有している。
 なお、第2素子部52の有する複数の透過部62には、X方向に沿う長さが相互に異なる透過部62が含まれ、複数の透過部62は、Y方向において、X方向に沿う長さに所定の規則性を有していない状態で並んでいてもよい。
 こうした構成では、第1素子部51の備える反射部と、第2素子部52の備える反射部とが、相互に同じ特性を有する非周期性の凹凸構造を有して、入射光を散乱する構成であってもよいし、相互に異なる特性を有する非周期性の凹凸構造を有して、入射光を散乱する構成であってもよい。あるいは、第1素子部51の備える反射部と、第2素子部52の備える反射部とが、相互に同じ特性を有する周期性の凹凸構造を有して、入射光を回折する構成でもよいし、相互に異なる特性を有する周期性の凹凸構造を有して、入射光を回折する構成でもよい。
 ・光学素子50では、第1素子部51の備える複数の反射部12においてY方向に沿う長さが相互に異なり、かつ、第2素子部52の備える複数の反射部61において、Y方向に沿う長さが相互に異なってもよい。すなわち、光学素子50の構成と、第1実施形態の変形例であって、図13が示す光学素子10の構成とを組み合わせてもよい。
 ・光学素子50において、図34が示す光学素子50における第1素子部51の構成と、図35が示す光学素子50における第2素子部52の構成とを組み合わせてもよい。あるいは、図34が示す光学素子50における第2素子部52の構成と、図35が示す光学素子50における第1素子部51の構成とを組み合わせてもよい。
 ・光学素子50において、第1素子部51の備える透過回折部と、第2素子部52の備える透過回折部とが相互に等しく、かつ、第1素子部51の反射部における非周期的な凹凸構造と、第2素子部52の反射部における非周期的な凹凸構造とが相互に異なる構成でもよい。こうした構成であっても、第1素子部51によって得られる光学的な効果と、第2素子部52によって得られる光学的な効果とを相互に異ならせることはできる。
 ・光学素子は、第1素子部51の備える透過回折部と、第2素子部52の備える透過回折部とが相互に等しく、かつ、第1素子部51の反射部における周期的な凹凸構造と、第2素子部52の反射部における周期的な凹凸構造とにおいて、反射周期部における格子周期が相互に異なる構成でもよい。こうした構成であっても、第1素子部51によって得られる光学的な効果と、第2素子部52によって得られる光学的な効果とを相互に異ならせることはできる。
 また、第1素子部51の反射部における格子周期と、第2素子部52の反射部における格子周期とが相互に異なる構成によれば、透過回折部ごとに相互に異なる回折光を得ることができる。
 [第5実施形態]
 図37を参照して光学素子を具体化した第5実施形態を説明する。第5実施形態の光学素子は、第4実施形態の光学素子と比べて、第1素子部の透過回折部における格子周期と、第2素子部の透過回折部における格子周期とが相互に異なる点が異なる。そのため、以下では、こうした相違点を詳しく説明し、第4実施形態の光学素子と共通する構成には第4実施形態の光学素子と同じ符号を付すことによって、第4実施形態の光学素子と共通する構成の説明を省略する。そして、以下では、光学素子の構成、および、光学素子の作用を順番に説明する。
 [光学素子の構成]
 図37を参照して光学素子の構成を説明する。図37では、光学素子の備える反射部と透過部とを説明する便宜上、上側透明樹脂層の図示が省略され、反射部にはドットが付されている。
 図37が示すように、光学素子50は、第1素子部51と第2素子部52とを備えている。第1素子部51は、1つの方向の一例であるY方向において等しい間隔を空けて並ぶ複数の反射部71を備え、複数の反射部71の各々は、X方向に沿って延びる帯形状を有している。Y方向において相互に隣り合う2つの反射部71の間に透過部72が位置し、複数の透過部72は、Y方向において等しい間隔を空けて並び、かつ、各透過部72は、X方向に沿って延びる帯形状を有している。反射部71は、非周期性の凹凸構造を有し、第1素子部51において、全ての反射部71の面積の和と、透過部72を含む光を透過する部分の面積の和との比が、第1面積比S1である。
 反射部71と透過部72とは、Y方向において交互に連続して並び、透過回折部70を構成している。透過回折部70において、相互に隣り合う反射部71と透過部72とが透過周期部73を構成し、透過周期部73は所定の格子周期daを有している。
 一方で、第2素子部52は、Y方向において等しい間隔を空けて並ぶ複数の反射部81を備え、複数の反射部81の各々は、X方向に沿って延びる帯形状を有している。Y方向において相互に隣り合う2つの反射部81の間に透過部82が位置し、複数の透過部82は、Y方向において等しい間隔を空けて並び、かつ、各透過部82は、X方向に沿って延びる帯形状を有している。反射部81は、第1素子部51の反射部71と同じ特性を有した非周期性の凹凸構造を有し、第2素子部52において、全ての反射部81の面積の和と、透過部82を含む光を透過する部分の面積の和との比が、第2面積比S2である。
 反射部81と透過部82とは、Y方向において交互に連続して並び、透過回折部80を構成している。透過回折部80において、相互に隣り合う反射部81と透過部82とが透過周期部83を構成し、透過周期部83は、所定の格子周期dbを有している。第2素子部52の透過回折部80における格子周期dbは、第1素子部51の透過回折部70における格子周期daよりも小さい。なお、第2素子部52の透過回折部80における格子周期dbは、第1素子部51の透過回折部70における格子周期daよりも大きくてもよい。
 [光学素子の作用]
 光学素子50において、第1面積比S1と第2面積比S2とが相互に等しい構成では、第1素子部51によって反射された散乱光の強度と、第2素子部52によって反射された散乱光の強度とが相互に等しい。しかも、第1素子部51の反射部71と、第2素子部52の反射部81とは、特性の相互に等しい非周期性の凹凸構造を有するため、反射観察において、第1素子部51と第2素子部52との境界が認識されにくい。
 一方で、第1素子部51の透過回折部70における格子周期daと、第2素子部52の透過回折部80における格子周期dbとが相互に異なる。そのため、第1素子部51の透過回折部70が入射光した光から透過光として生じさせる回折光と、第2素子部52の透過回折部80が入射した光から透過光として生じさせる回折光とが、相互に異なる。それゆえに、透過観察では、第1素子部51と、第2素子部52とにおいて、透過角度や分散角度が相互に異なる回折光が観察され、第1素子部51と第2素子部52との境界が認識されやすい。
 以上説明したように、第5実施形態の光学素子によれば、以下に記載の効果を得ることができる。
 (12)第1素子部51の透過回折部70と、第2素子部52の透過回折部80とにおいて、格子周期が相互に異なるため、透過回折部ごとに相互に異なる回折光が得られる。
 [第5実施形態の変形例]
 なお、上述した第5実施形態は、以下のように適宜変更して実施することもできる。以下に説明される図38から図40では、光学素子の備える反射部と透過部とを説明する便宜上、上側透明樹脂層の図示が省略され、かつ、反射部にドットが付されている。
 ・第1素子部51における第1面積比S1と、第2素子部52における第2面積比S2とが相互に異なってもよい。
 ・第1素子部51の反射部71と、第2素子部52の反射部81とは、非周期性の凹凸構造を有する構成ではなく、周期性の凹凸構造を有して、反射光として回折光を生じさせる構成でもよい。こうした構成であっても、第1素子部51の反射部71と、第2素子部52の反射部81とが、相互に同じ特性を有する周期性の凹凸構造を有していれば、第1素子部51において反射光として生じる回折光と、第2素子部52において反射光として生じる回折光とが相互に等しくなる。そのため、第1素子部51と第2素子部52との境界が認識されにくくはなる。
 ・図38が示すように、光学素子50は、図37における反射部の位置と透過部の位置とが反転した構成であってもよい。すなわち、光学素子50は、下側透明樹脂層11の上方、つまり、上側透明樹脂層15の裏面15rに形成された1つの金属膜を有し、1つの金属膜は、第1素子部51と、第2素子部52との両方に跨っている。
 第1素子部51は、Y方向において等しい間隔を空けて並ぶ複数の透過部72を備え、複数の透過部72の各々は、X方向に沿って延びる帯形状を有している。反射部71aは、Y方向において相互に隣り合う2つの透過部72の間に位置している。
 反射部71aと透過部72とは、Y方向において交互に連続して並んで透過回折部70を構成している。透過回折部70のうち、相互に隣り合う反射部71aと透過部72とが透過周期部73を構成し、透過周期部73は、所定の格子周期daを有している。第1素子部51では、金属膜のうち、複数の透過部72の周囲を囲む部分も反射部71bとして機能する。
 これに対して、第2素子部52は、Y方向において等しい間隔を空けて並ぶ複数の透過部82を備え、複数の透過部82の各々は、X方向に沿って延びる帯形状を有している。反射部81aは、Y方向において相互に隣り合う2つの透過部82の間に位置している。
 反射部81aと透過部82とは、Y方向において交互に連続して並んで透過回折部80を構成している。透過回折部80のうち、相互に隣り合う反射部81aと透過部82とが透過周期部83を構成し、透過周期部83は、所定の格子周期dbを有している。第2素子部52の格子周期dbは、第1素子部51の格子周期daよりも小さい。第2素子部52では、金属膜のうち、複数の透過部82の周囲を囲む部分も反射部81bとして機能する。
 こうした構成によっても、第5実施形態の光学素子50に準じた効果を得ることができる。
 ・図39が示すように、光学素子50は、クロスグレーティング構造を有してもよい。すなわち、光学素子50は、第1素子部51と、第2素子部52とを備えている。第1素子部51において、矩形形状を有した複数の反射部91が、X方向において等しい間隔を空けて並び、かつ、Y方向において等しい間隔を空けて並んでいる。そして、透過部92は、X方向において相互に隣り合う2つの反射部91の間に位置して、Y方向に沿って延び、また、Y方向において相互に隣り合う2つの反射部91の間に位置して、X方向に沿って延びている。
 反射部91と透過部92とは、X方向において交互に連続して並び、かつ、Y方向において交互に連続して並んでいる。これにより、複数の反射部91と複数の透過部92とが、透過回折部90を構成している。また、X方向において相互に隣り合う反射部91と透過部92とが透過周期部93を構成し、Y方向において相互に隣り合う反射部91と透過部92とが透過周期部93を構成している。透過回折部90において、X方向と平行な周期方向での格子周期と、Y方向と平行な周期方向での格子周期とが相互に等しく、各格子周期は、所定の格子周期daである。
 一方で、第2素子部52において、矩形形状を有した複数の反射部101が、X方向において等しい間隔を空けて並び、かつ、Y方向において等しい間隔を空けて並んでいる。そして、透過部102は、X方向において相互に隣り合う2つの反射部101の間に位置して、Y方向に沿って延び、また、Y方向において相互に隣り合う2つの反射部101の間に位置してX方向に沿って延びている。
 反射部101と透過部102とは、X方向において交互に連続して並び、かつ、Y方向において交互に連続して並んでいる。これにより、複数の反射部101と複数の透過部102とが、透過回折部100を構成している。また、X方向において相互に隣り合う反射部101と透過部102とが透過周期部103を構成し、Y方向において相互に隣り合う反射部101と透過部102とが透過周期部103を構成している。透過回折部100において、X方向と平行な周期方向での格子周期と、Y方向と平行な周期方向での格子周期とが相互に等しく、各格子周期は、所定の格子周期dbである。第2素子部52の透過回折部100における格子周期dbは、第1素子部51の透過回折部90における格子周期daよりも小さい。
 こうした光学素子50によれば、反射観察では、第1素子部51と第2素子部52との境界が認識されにくい一方で、透過観察では、第1素子部51の透過による回折光と、第2素子部52の透過による回折光とが相互に異なるため、第1素子部51と第2素子部52との境界が認識されやすい。
 ・図40が示すように、光学素子50は、図39における反射部の位置と透過部の位置とが反転した構成であってもよい。すなわち、光学素子50は、下側透明樹脂層11の上方、つまり、上側透明樹脂層15の裏面15rに形成された1つの金属膜を有し、1つの金属膜は、第1素子部51と、第2素子部52との両方に跨っている。
 第1素子部51において、矩形形状を有した複数の透過部92が、X方向において等しい間隔を空けて並び、かつ、Y方向において等しい間隔を空けて並んでいる。反射部91aは、X方向において相互に隣り合う2つの透過部92の間に位置して、Y方向に沿って延び、また、Y方向において相互に隣り合う2つの透過部92の間に位置して、X方向に沿って延びている。金属膜のうち、複数の透過部92の周囲を囲む部分も反射部91bとして機能する。
 反射部91aと透過部92とは、X方向において交互に連続して並び、かつ、Y方向において交互に連続して並んでいる。これにより、複数の反射部91aと複数の透過部92とが、透過回折部90を構成している。また、X方向において相互に隣り合う反射部91aと透過部92とが透過周期部93を構成し、Y方向において相互に隣り合う反射部91aと透過部92とが透過周期部93を構成している。透過回折部90において、X方向と平行な周期方向での格子周期と、Y方向と平行な方向での格子周期とが相互に等しく、各格子周期は、所定の格子周期daである。
 一方で、第2素子部52において、矩形形状を有した複数の透過部102が、X方向において等しい間隔を空けて並び、かつ、Y方向において等しい間隔を空けて並んでいる。反射部101aは、X方向において相互に隣り合う2つの透過部102の間に位置して、Y方向に沿って延び、また、Y方向において相互に隣り合う2つの透過部102の間に位置して、X方向に沿って延びている。金属膜のうち、複数の透過部92の周囲を囲む部分も反射部101bとして機能する。
 反射部101aと透過部102とは、X方向において交互に連続して並び、かつ、Y方向において交互に連続して並んでいる。これにより、複数の反射部101と複数の透過部102とが、透過回折部100を構成している。また、X方向において相互に隣り合う反射部101aと透過部102とが透過周期部103を構成し、Y方向において相互に隣り合う反射部101aと透過部102とが透過周期部103を構成している。透過回折部100において、X方向と平行な周期方向での格子周期と、Y方向と平行な方向での格子周期とが相互に等しく、各格子周期は、所定の格子周期dbである。第2素子部52の透過回折部100における格子周期dbは、第1素子部51の透過回折部90における格子周期daよりも小さい。
 そのため、こうした構成によっても、図39に示される光学素子50に準じた効果を得ることができる。
 ・光学素子50は、第4実施形態の構成と組み合わせてもよい。すなわち、第1素子部51の透過回折部70における周期方向と、第2素子部52の透過回折部80における周期方向とが相互に異なってもよい。
 [第6実施形態]
 図41を参照して光学素子を具体化した第6実施形態を説明する。第6実施形態の光学素子は、第4実施形態の光学素子と比べて、1つの光学素子を構成する素子部の数が異なる。そのため、以下では、こうした相違点を詳しく説明し、第4実施形態の光学素子と共通する構成には第4実施形態の光学素子と同じ符号を付すことによって、第4実施形態の光学素子と共通する構成の説明を省略する。そして、以下では、光学素子の構成、および、光学素子の作用を順番に説明する。
 [光学素子の構成]
 図41を参照して光学素子の構成を説明する。図41では、光学素子の備える反射部と透過部とを説明する便宜上、上側透明樹脂層の図示が省略され、反射部にはドットが付されている。
 図41が示すように、光学素子110は、下側透明樹脂層11に区画された第1素子部111、第2素子部112、および、第3素子部113を備えている。第1素子部111は、Y方向において等しい間隔を空けて並ぶ複数の反射部121を備え、複数の反射部121の各々は、X方向に沿って延びる帯形状を有している。Y方向において相互に隣り合う2つの反射部121の間に、透過部122が位置し、透過部122は、X方向に沿って延びる帯形状を有している。反射部121と透過部122とは、Y方向において交互に連続して並んで、透過回折部120を構成している。透過回折部120は、所定の格子周期dcを有している。反射部121は、周期的な凹凸構造を有して、例えば、赤色を有した回折光を反射光として生じさせる。
 第2素子部112は、第1素子部111と同様、Y方向において等しい間隔を空けて並ぶ複数の反射部131を備え、複数の反射部131の各々は、X方向に沿って延びる帯形状を有している。Y方向において相互に隣り合う2つの反射部131の間に、透過部132が位置し、透過部132は、X方向に沿って延びる帯形状を有している。反射部131と透過部132とは、Y方向において交互に連続して並んで、透過回折部130を構成している。透過回折部130は、所定の格子周期ddを有している。
 反射部131は、周期的な凹凸構造であって、かつ、第1素子部111の反射部121が備える周期的な凹凸構造とは異なる特性を有した凹凸構造を有している。反射部131は、例えば、緑色を有した回折光を反射光として生じさせる。
 第3素子部113は、第1素子部111と同様、Y方向において等しい間隔を空けて並ぶ複数の反射部141を備え、複数の反射部141の各々は、X方向に沿って延びる帯形状を有している。Y方向において相互に隣り合う2つの反射部141の間に、透過部142が位置し、透過部142は、X方向に沿って延びる帯形状を有している。反射部141と透過部142とは、Y方向において交互に連続して並んで、透過回折部140を構成している。透過回折部140は、所定の格子周期deを有している。第3素子部113における格子周期de、第1素子部111における格子周期dc、および、第2素子部112における格子周期ddは、相互に等しい。なお、3つの素子部において、格子周期は相互に等しくなくてもよい。
 反射部141は、周期的な凹凸構造であって、第1素子部111の反射部121における凹凸構造、および、第2素子部112の反射部131における凹凸構造の双方と異なる特性を有した凹凸構造を有している。反射部141は、例えば、青色を有した回折光を反射光として生じさせる。
 [光学素子の作用]
 光学素子110において、各透過回折部に対する上側透明樹脂層15側から光が入射したとき、第1素子部111は赤色の回折光を反射光として生じさせ、第2素子部112は緑色の回折光を反射光として生じさせ、かつ、第3素子部113は青色の回折光を反射光として生じさせる。そのため、光学素子50から射出される反射光は、3つの回折光が混合した光であるため、白色を有した光になる。
 このように、非周期性の凹凸構造を有して散乱光を反射する反射部を備える構成や、円筒面を有して散乱光を反射する反射部を備える構成でなくとも、光学素子50が白色を有した反射光を射出することができる。
 以上説明したように、第6実施形態の光学素子によれば、以下に記載の効果を得ることができる。
 (13)光学素子110の3つの素子部が、相互に異なる周期的な凹凸構造によって相互に異なる回折光を反射光として生じさせることで、光学素子110が、白色を有した反射光を射出する。
 [第6実施形態の変形例]
 なお、上述した第6実施形態は、以下のように適宜変更して実施することもできる。以下に説明される図42では、光学素子の備える反射部と透過部との構成を説明する便宜上、上側透明樹脂層の図示が省略されている。
 ・光学素子110は、回折光の混合によって白色を有する反射光を射出する構成でなくともよい。光学素子50は、反射による光学的な効果、および、透過による光学的な効果の少なくとも一方が相互に異なる3つの素子部を有していればよい。
 ・光学素子110は、3つ以上の素子部を有していればよく、例えば、4つの素子部を有してもよい。図42が示すように、光学素子110は、下側透明樹脂層11の上に区画された第1素子部111、第2素子部112、第3素子部113、および、第4素子部114を備えている。第1素子部111において、複数の反射部121がX方向において等しい間隔を空けて並び、複数の反射部121の各々が、Y方向に沿って延びる帯形状を有している。第1素子部111では、X方向において相互に隣り合う2つの反射部121の間に、透過部122が位置し、透過部122は、Y方向に沿って延びる帯形状を有している。
 反射部121と透過部122とは、X方向において交互に連続して並んで、透過回折部120を構成している。透過回折部120において、相互に隣り合う反射部121と透過部122とが透過周期部123を構成し、透過周期部123は、所定の格子周期dcを有している。
 第2素子部112において、複数の反射部131がY方向において等しい間隔を空けて並び、複数の反射部131の各々が、X方向に沿って延びる帯形状を有している。第2素子部112では、Y方向において相互に隣り合う2つの反射部131の間に、透過部132が位置し、透過部132は、X方向に沿って延びる帯形状を有している。
 反射部131と透過部132とは、Y方向において交互に連続して並んで、透過回折部130を構成している。透過回折部130において、相互に隣り合う反射部131と透過部132とが透過周期部133を構成し、透過周期部133は、所定の格子周期ddを有し、格子周期ddは、第1素子部111の透過回折部120における格子周期dcと等しい。第2素子部112の透過回折部130における周期方向は、第1素子部111の透過回折部120における周期方向と直交している。
 第3素子部113において、複数の反射部141がX方向において等しい間隔を空けて並び、複数の反射部141の各々が、Y方向に沿って延びる帯形状を有している。第3素子部113では、X方向において相互に隣り合う2つの反射部141の間に、透過部142が位置し、透過部142は、Y方向に沿って延びる帯形状を有している。
 反射部141と透過部142とは、X方向において交互に連続して並んで、透過回折部140を構成している。透過回折部140において、相互に隣り合う反射部141と透過部142とが透過周期部143を構成し、透過周期部143は、所定の格子周期deを有している。透過回折部140の格子周期deは、第1素子部111の透過回折部120における格子周期dc、および、第2素子部112の透過回折部130における格子周期ddの双方よりも大きい。
 第4素子部114において、複数の反射部151がY方向において等しい間隔を空けて並び、複数の反射部151の各々が、X方向に沿って延びる帯形状を有している。第4素子部114では、Y方向において相互に隣り合う2つの反射部151の間に、透過部152が位置し、透過部152は、X方向に沿って延びる帯形状を有している。
 反射部151と透過部152とは、Y方向において交互に連続して並んで、透過回折部150を構成している。透過回折部150において、相互に隣り合う反射部151と透過部152とが透過周期部153を構成し、透過周期部153は、所定の格子周期dfを有している。格子周期dfは、第3素子部113の透過回折部140における格子周期deと等しい。第4素子部114の透過回折部150における周期方向は、第3素子部113の透過回折部140における周期方向と直交している。
 なお、各素子部の備える反射部は、非周期性の凹凸構造を有して散乱光を反射光として生じさせる反射部、円筒面を備えて散乱光を反射光として生じさせる反射部、および、周期性の凹凸構造を有して回折光を反射光として生じさせる反射部のいずれかであればよい。
 このように、光学素子50の備える4つの素子部には、透過回折部における周期方向、および、格子周期の少なくとも一方が相互に異なる素子部が含まれる。そのため、1つの光学素子50に対して、素子部の数の分だけ、相互に異なる複数の光学的な効果を付加することができる。それゆえに、反射観察されたときの光学的な効果、あるいは、透過観察されたときの光学的な効果を素子部ごとに異ならせることにより、複数の反射画像や、複数の透過画像を、散乱光や回折光によって光学素子50に表示させることができる。
 ・光学素子110の備える3つ以上の素子部のうち、少なくとも1つがクロスグレーティング構造を有してもよい。
 ・第6実施形態の光学素子110、および、第6実施形態の変形例の光学素子110の各々は、反射部の位置と透過部の位置とが反転した構造であってもよい。すなわち、第6実施形態の光学素子110、および、第6実施形態の変形例の光学素子110の各々の構成と、第1実施形態の変形例の構成であって、図14が示す光学素子10の構成とを組み合わせてもよい。
 [第7実施形態]
 図43を参照して光学素子を具体化した第7実施形態を説明する。第7実施形態の光学素子は、第4実施形態の光学素子と比べて、光学素子を構成する2つの素子部のうち、一方の素子部が回折光を透過光として生じさせない点が相互に異なる。そのため、以下では、こうした相違点を詳しく説明し、第4実施形態の光学素子と共通する構成には第4実施形態の光学素子と同じ符号を付すことによって、第4実施形態の光学素子と共通する構成の説明を省略する。そして、以下では、光学素子の構成、および、光学素子の作用を順番に説明する。
 [光学素子の構成]
 図43を参照して光学素子の構成を説明する。図43では、光学素子の備える反射部と透過部とを説明する便宜上、上側透明樹脂層の図示が省略され、反射部にはドットが付されている。
 図43が示すように、光学素子160は、第1素子部161と、第2素子部162とを備えている。第1素子部161では、複数の反射部171が、Y方向において等しい間隔を空けて並び、複数の反射部171の各々が、X方向に沿って延びる帯形状を有している。第1素子部161では、Y方向において相互に隣り合う2つの反射部171の間に、透過部172が位置し、透過部172は、X方向に沿って延びる帯形状を有している。反射部171と透過部172とは、Y方向において交互に連続して並んで、透過回折部170を構成している。透過回折部170は、所定の格子周期dgを有している。
 反射部171は、非周期性の凹凸構造を有して、散乱光を反射光として生じさせる。なお、反射部171は、円筒面を備えて、散乱光を反射光として生じさせる構成でもよい。第1素子部161において、全ての反射部171の面積の和と、透過部172を含む光を透過する部分の面積との比が、第1面積比S1である。
 一方で、第2素子部162では、複数の反射部181が、Y方向において不規則に並び、複数の反射部181の各々が、X方向に沿って延びる帯形状を有している。複数の反射部181には、Y方向に沿う幅が相互に異なる反射部181が含まれている。第2素子部162では、Y方向において相互に隣り合う2つの反射部181の間に、透過部182が位置し、複数の透過部182には、Y方向に沿う幅が相互に異なる複数の透過部182が含まれている。複数の透過部182の各々は、X方向に沿って延びる帯形状を有している。反射部181と透過部182とは、Y方向において交互に連続して並んでいる。反射部181は散乱部の一例であり、透過部182は第2透過部の一例である。
 反射部181は、非周期性の凹凸構造であって、第1素子部161の反射部171における非周期性の凹凸構造と同じ特性を有した凹凸構造を有して、散乱光を反射光として生じさせる。なお、反射部181は、円筒面を備えて、散乱光を反射光として生じさせる構成でもよい。第2素子部162において、全ての反射部181の面積の和と、透過部182を含む光を透過する部分の面積との比が、第2面積比S2である。第1面積比S1と第2面積比S2とは、相互に等しい。
 [光学素子の効果]
 第1素子部161における反射部171と、第2素子部162における反射部181とが、相互に同じ特性を有した非周期性を有する凹凸構造を備えている。しかも、第1素子部161の第1面積比S1と、第2面積比S2とが相互に等しい。そのため、反射部に対して上側透明樹脂層15側から光が入射したとき、反射観察では、第1素子部161における散乱光と、第2素子部162における散乱光とが相互に等しく、第1素子部161と第2素子部162との境界が認識されにくい。一方で、第1素子部161の透過回折部170が、回折光を透過光として生じさせる一方、第2素子部162は、透過光として回折光を生じさせない。そのため、透過観察では、第1素子部161においてのみ、虹色を有した回折光が観察される。
 以上説明したように、第7実施形態の光学素子によれば、以下に記載の効果を得ることができる。
 (14)第1素子部161を透過した透過光は、相互に異なる色を有する複数の回折像を形成する回折光である一方で、第2素子部162を透過した光は白色光である。そのため、光学素子160を透過した2種類の透過光における違いが顕著になる。
 [第7実施形態の変形例]
 なお、上述した第7実施形態は、以下のように適宜変更して実施することもできる。
 ・第1素子部161の反射部171と、第2素子部162の反射部181とは、周期性を有した凹凸構造を有して、回折光を反射光として生じさせる構成でもよい。こうした構成であっても、第1素子部161の反射部171と、第2素子部162の反射部181とが、相互に同じ特性を有していれば、反射観察では、第1素子部161と第2素子部162との境界が認識されにくい。
 ・光学素子160は、第1素子部161における反射部171の位置と、第1素子部161における透過部172の位置とが反転され、かつ、第2素子部162における反射部181の位置と、第2素子部162における透過部182の位置とが反転された構成であってもよい。こうした構成であっても、第7実施形態の光学素子160と同等の効果を得ることができる。
 ・光学素子160は、クロスグレーティング構造を有する構成でもよい。すなわち、図44が示すように、光学素子160は、第1素子部161と、第2素子部162とを備えている。第1素子部161において、矩形形状を有する複数の反射部171が、X方向において等しい間隔を空けて並び、かつ、Y方向において等しい間隔を空けて並んでいる。第1素子部161では、透過部172が、X方向において相互に隣り合う2つの反射部171の間に位置して、Y方向に沿って延び、また、Y方向において相互に隣り合う2つの反射部171の間に位置して、X方向に沿って延びている。
 反射部171と透過部172とは、X方向において交互に連続して並び、かつ、反射部171と透過部172とは、Y方向において交互に連続して並んで、透過回折部170を構成している。透過回折部170は、X方向と平行な周期方向と、Y方向と平行な周期方向との双方において、所定の格子周期dgを有している。
 一方で、第2素子部162では、Z方向から見て、矩形形状を有する複数の反射部181が、X方向とY方向との双方において不規則に位置している。第2素子部162において、透過部182は、X方向において相互に隣り合う2つの反射部181の間、および、Y方向において相互に隣り合う2つの反射部181の間に位置している。
 こうした構成によっても、上述した第7実施形態の光学素子160と同等の効果を得ることができる。
 ・図44が示す光学素子160において、第1素子部161における反射部171の位置と、透過部172における位置とが反転され、かつ、第2素子部162における反射部181の位置と、第2素子部162における透過部182の位置とが反転された構成でもよい。
 [実施例]
 [実施例1]
 まず、紫外線硬化性樹脂として、50.0質量部のウレタン(メタ)アクリレートと、30.0質量部のメチルエチルケトンと、20.0質量部の酢酸エチルと、1.5質量部の光開始剤とから構成される組成物を準備した。ウレタン(メタ)アクリレートとして、多官能性であり、かつ、分子量が6000であるウレタン(メタ)アクリレートを準備した。光開始剤として、イルガキュア184(BASF社製)を準備した。
 次に、23μmの厚さを有した透明PETフィルムの上に、乾燥後の膜厚が1μmとなるように、上述の組成物をグラビア印刷法によって塗布した。
 そして、組成物を形成材料とする塗膜に、原版を用いて凹凸構造を形成した。
 なお、原版は、複数の第1領域と複数の第2領域とを有し、各第1領域、および、各第2領域は、1つの方向である幅方向に沿う幅が5μmであり、幅方向と直交する長さ方向に沿う幅が20mmの矩形形状を有している。第1領域と第2領域とは、幅方向において交互に連続して位置している。
 第1領域は、長さ方向に沿って延びる複数の凹部と、長さ方向に沿って延びる複数の凸部とから構成される非周期性の凹凸構造を有し、非周期性の凹凸構造において、凹部と凸部とが、幅方向において交互に、かつ、非周期的に連続して並んでいる。非周期性の凹凸構造において、平均周波数は100本/mmであり、凹部の平均深さは100nmである。
 第2領域は、2つの周期性の凹凸構造が相互に交差したクロスグレーティング構造を有する。2つの周期性の凹凸構造のうち、一方の凹凸構造は、長さ方向に沿って延びる複数の凹部と、長さ方向に沿って延びる複数の凸部とを有し、凹部と凸部とが幅方向において交互に、かつ、周期的に並んでいる。他方の凹凸構造は、幅方向に沿って延びる複数の凹部と、幅方向に沿って延びる複数の凸部とを有し、凹部と凸部とが長さ方向において交互に、かつ、周期的に並んでいる。各凹凸構造において、空間周波数は2000本/mmであり、凹部の深さは200nmである。第2領域の有する凹凸構造のアスペクト比は、第1領域の有する凹凸構造よりもアスペクト比よりも大きい。
 グラビア印刷機が備える版胴の円筒面に原版を支持させ、原版を上述の組成物を用いて形成した塗膜に押し当てながら、透明PETフィルムにおける塗膜とは反対側から、塗膜に対して紫外線を照射した。これにより、組成物の含む紫外線硬化性樹脂を硬化させて、上側透明樹脂層を形成した。このとき、プレス圧力を2kgf/cmに設定し、プレス温度を80℃に設定し、プレススピードを10m/分に設定した。また、紫外線の照射は、高温水銀灯を用いて、300mJ/cmの強度で行った。
 次いで、上側透明樹脂層のうち、上述した凹凸構造を有する面の上に、反射部を形成するための金属膜としてAl膜を真空蒸着によって形成した。Al膜の設定膜厚は50nmとした。その後、Al膜における上側透明樹脂層に接触する面と対向する面の上に、Al膜をエッチングするときのマスク層として機能するMgF膜を真空蒸着によって形成した。MgF膜の設定膜厚は20nmとした。
 そして、水酸化ナトリウム水溶液を用いてAl膜のエッチング処理を行った。これにより、Al膜のうち、上側透明樹脂層において原版の第1領域が転写された部分に形成されたAl膜は、上側透明樹脂層の上に残った。一方で、上側透明樹脂層において原版の第2領域が転写された部分に形成されたAl膜は、上側透明樹脂層の上から選択的に除去された。これにより、上側透明樹脂層の上に、反射部と透過部とを有し、かつ、格子周期が10μmである透過回折部が形成された。また、厚さ方向において透過部と重なる保護部も形成された。
 こうして形成された光学素子において、反射観察では、各反射部の有する非周期性の凹凸構造によって散乱された白色光が確認された。これに対して、透過観察では、交互に、かつ、周期的に位置する反射部と透過部とから構成されるワイヤーグリッド構造の回折による鮮やかな虹色を有する透過光が観察された。
 [実施例2]
 実施例2では、原版の有する第1領域が、実施例1の原版の有する第1領域と異なっている。すなわち、実施例2の原版の有する第1領域は、幅方向に沿って延びる複数の凹部と、幅方向に沿って延びる複数の凸部とを有し、長さ方向において凹部と凸部とが交互に並んでいる。すなわち、第1領域は、回折構造を有し、回折構造における空間周波数が1000本/mmであり、凹部の深さが100nmである。
 こうした原版を用いて形成された光学素子において、反射観察では、各反射部の有する周期性の凹凸構造によって回折された虹色を有する回折光が確認された。これに対して、透過観察では、交互に、かつ、周期的に位置する反射部と透過部とから構成されるワイヤーグリッド構造の回折による鮮やかな虹色を有する透過光が観察された。反射によって観察される回折光と、透過によって観察される回折光とは、回折格子の周期が異なるために波長分散が異なり、結果として、反射部に対する上側透明樹脂層側と、反射部に対する保護部側とで、相互に異なる虹色を有した光が観察された。
 [実施例3]
 実施例3では、原版が、第1素子部に対応する第1部分と、第2素子部に対応する第2部分とを有する点が実施例1と異なる。
 実施例3における原版は、第1部分と、第2部分とを有している。第1部分において、矩形形状を有した第1領域が、幅方向に沿って周期的に並び、かつ、長さ方向に沿って周期的に並んでいる。幅方向に沿う格子周期と、長さ方向に沿う格子周期とは、10μmである。第2部分において、矩形形状を有した複数の第1領域が、第2部分において不規則に位置している。第2部分において、第1領域が位置する部位以外の部位には、第2領域が位置している。第1部分と第2部分とにおいて、第1領域の面積の和が相互に等しい。
 こうした原版を用いて形成された光学素子において、反射観察では、2つの素子部の双方において散乱光が観察されるため、2つの素子部の境界が確認できないことが認められた。これに対して、透過観察では、一方の素子部において、交互に、かつ、周期的に配置された反射部と透過部によるクロスグレーティング構造の回折による鮮やかな虹色を有する光が観察された。一方で、他方の素子部では、非周期的に並んだ透過部を透過した白色の光が観察された。

Claims (15)

  1.  1つの方向に沿って等しい間隔を空けて並ぶ複数の反射部であって、複数の前記反射部の各々の反射する光は可視光に含まれ、前記反射部が反射する光によって反射像を形成する複数の前記反射部と、
     前記1つの方向において相互に隣り合う2つの前記反射部に挟まれて、前記可視光を透過する複数の透過部と、を含む透過回折部を備え、
     複数の前記反射部の少なくとも一部は、前記反射部が反射する光の反射角を前記反射部に入射する光の角度とは異ならせて前記反射像を形成し、
     前記透過回折部は、前記透過部を透過する光を所定の方向に回折させた回折光によって、相互に異なる色を有する複数の回折像を形成する
     光学素子。
  2.  前記反射部の少なくとも一部は、非周期性の凹凸構造を備え、
     前記非周期性の凹凸構造は、前記非周期性の凹凸構造に入射した可視光を散乱し、
     前記非周期性の凹凸構造からの散乱光が、前記反射像を形成する
     請求項1に記載の光学素子。
  3.  前記反射部の少なくとも一部は、所定の周期性を有した凹凸構造を備え、
     前記周期性を有した凹凸構造が、前記周期性を有した凹凸構造に入射した可視光を所定の方向に回折させ、
     前記周期性を有した凹凸構造からの回折光が、前記反射像を形成する
     請求項1に記載の光学素子。
  4.  前記周期性を有した凹凸構造を有する部分が、第1周期部分であり、
     前記反射部は、前記第1周期部分とは周期性の相互に異なる凹凸構造を有した部分である第2周期部分をさらに備え、
     前記第1周期部分と、前記第2周期部分とは、前記反射部に入射した可視光を相互に異なる方向に回折させる
     請求項3に記載の光学素子。
  5.  前記1つの方向が第1方向であり、
     前記反射部の少なくとも一部は、前記第1方向と交差する第2方向に沿って延びる半円筒面を備え、
     前記半円筒面は、前記半円筒面に入射した可視光を散乱し、
     前記半円筒面からの散乱光が、前記反射像を形成する
     請求項1に記載の光学素子。
  6.  前記透過回折部を備える第1素子部と、
     可視光を散乱させる複数の散乱部、および、複数の前記散乱部の間を埋める第2透過部を備える第2素子部とを備え、
     全ての前記反射部の面積の和と、前記第1素子部において前記可視光を透過する部分の面積の和との比が第1面積比であり、
     全ての前記散乱部の面積の和と、前記第2透過部の面積との比が第2面積比であり、
     前記第1面積比と前記第2面積比とが相互に等しく、
     前記第2素子部の透過する光が、前記第1素子部の透過する光とは相互に異なる
     請求項2または5に記載の光学素子。
  7.  複数の前記散乱部は、前記第2素子部の内部において不規則に位置している
     請求項6に記載の光学素子。
  8.  前記1つの方向において相互に隣り合う前記反射部と前記透過部とが1つの透過周期部を構成し、前記透過周期部における前記1つの方向に沿う幅が、0.20μmよりも大きく0.35μm未満である
     請求項1から7のいずれか一項に記載の光学素子。
  9.  前記1つの方向において相互に隣り合う前記反射部と前記透過部とが1つの透過周期部を構成し、前記透過周期部における前記1つの方向に沿う幅が、0.35μm以上20μm以下である
     請求項1から7のいずれか一項に記載の光学素子。
  10.  前記反射部において、凹部と凸部とが周期方向において交互に連続して並び、
     前記周期方向において相互に隣り合う前記凹部と前記凸部とが1つの反射周期部を構成し、前記反射周期部における前記周期方向に沿う幅が、0.20μmよりも大きく0.35μm未満である
     請求項3に記載の光学素子。
  11.  前記反射部において、凹部と凸部とが周期方向において交互に連続して並び、
     前記周期方向において相互に隣り合う前記凹部と前記凸部とが1つの反射周期部を構成し、前記反射周期部における前記周期方向に沿う幅が、0.35μm以上20μm以下である
     請求項3に記載の光学素子。
  12.  複数の前記透過回折部を備え、
     複数の前記透過回折部の各々において、前記1つの方向において相互に隣り合う前記反射部と前記透過部とが1つの透過周期部を構成し、複数の前記透過回折部の間において、前記透過周期部における前記1つの方向に沿う幅が相互に異なる
     請求項1から11のいずれか一項に記載の光学素子。
  13.  複数の前記透過回折部を備え、
     複数の前記透過回折部の間において、前記非周期性の凹凸構造が相互に異なる
     請求項2に記載の光学素子。
  14.  複数の前記透過回折部を備え、
     各透過回折部の備える前記反射部において、凹部と凸部とが周期方向において交互に連続して並び、前記周期方向において相互に隣り合う前記凹部と前記凸部とが1つの反射周期部を構成し、
     複数の前記透過回折部の間において、前記反射周期部における前記周期方向に沿う幅が相互に異なる
     請求項3に記載の光学素子。
  15.  前記反射部を覆う保護部をさらに備え、
     前記反射部の厚さが5nm以上500nm以下であり、
     前記保護部の厚さが0.3nm以上200nm以下である
     請求項1から14のいずれか一項に記載の光学素子。
PCT/JP2015/066585 2014-06-09 2015-06-09 光学素子 WO2015190472A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP19155243.9A EP3495856B1 (en) 2014-06-09 2015-06-09 Optical element
CN201580030282.2A CN106461826B (zh) 2014-06-09 2015-06-09 光学元件
DE112015002704.1T DE112015002704T5 (de) 2014-06-09 2015-06-09 Optisches Element
KR1020167036830A KR101897891B1 (ko) 2014-06-09 2015-06-09 광학 소자
EP15806682.9A EP3153894B1 (en) 2014-06-09 2015-06-09 Optical element
US15/368,289 US10261224B2 (en) 2014-06-09 2016-12-02 Optical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-118985 2014-06-09
JP2014118985A JP6357892B2 (ja) 2014-06-09 2014-06-09 光学素子

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/368,289 Continuation US10261224B2 (en) 2014-06-09 2016-12-02 Optical element

Publications (1)

Publication Number Publication Date
WO2015190472A1 true WO2015190472A1 (ja) 2015-12-17

Family

ID=54833562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066585 WO2015190472A1 (ja) 2014-06-09 2015-06-09 光学素子

Country Status (7)

Country Link
US (1) US10261224B2 (ja)
EP (2) EP3495856B1 (ja)
JP (1) JP6357892B2 (ja)
KR (1) KR101897891B1 (ja)
CN (1) CN106461826B (ja)
DE (1) DE112015002704T5 (ja)
WO (1) WO2015190472A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6357892B2 (ja) 2014-06-09 2018-07-18 凸版印刷株式会社 光学素子
WO2016068143A1 (ja) * 2014-10-28 2016-05-06 大日本印刷株式会社 凹凸構造体及びセキュリティ媒体
JP6774646B2 (ja) * 2016-08-04 2020-10-28 大日本印刷株式会社 光学素子、印刷物および偽造防止媒体
RU2754983C2 (ru) * 2016-08-31 2021-09-08 Виави Солюшнз Инк. Изделие с наклонными отражающими сегментами
EP3507026B1 (en) 2016-08-31 2024-08-07 Viavi Solutions Inc. Orienting magnetically-orientable flakes
CN108873118B (zh) * 2017-05-16 2020-06-26 昇印光电(昆山)股份有限公司 光学元件、手机盖板及用于制备该光学元件的模具
DE102018106430B4 (de) * 2018-03-20 2021-08-12 Bundesdruckerei Gmbh Sicherheitselement mit Mikro- oder Nanostrukturierung
US10618340B2 (en) * 2018-05-16 2020-04-14 Viavi Solutions Inc. Security feature based on a single axis alignment of mirrors in a structured surface that forms a micro mirror array
TWI831898B (zh) * 2019-01-15 2024-02-11 德商卡爾蔡司Smt有限公司 藉由破壞性干涉抑制至少一目標波長的光學繞射元件
JP7011796B2 (ja) * 2020-09-24 2022-01-27 大日本印刷株式会社 光学素子、印刷物および偽造防止媒体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005115176A (ja) * 2003-10-09 2005-04-28 Internatl Business Mach Corp <Ibm> 分光素子、回折格子、複合回折格子、カラー表示装置、分波器、および回折格子の製造方法
JP2008216864A (ja) * 2007-03-07 2008-09-18 Seiko Epson Corp 偏光素子、偏光素子の製造方法、液晶装置、投射型表示装置
JP2011170135A (ja) * 2010-02-19 2011-09-01 Seiko Epson Corp 偏光素子及びプロジェクター
WO2012067080A1 (ja) * 2010-11-18 2012-05-24 日本電気株式会社 光源ユニットおよびそれを備えた投射型表示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5148302A (en) * 1986-04-10 1992-09-15 Akihiko Nagano Optical modulation element having two-dimensional phase type diffraction grating
JP2003255115A (ja) 2002-03-06 2003-09-10 Toppan Printing Co Ltd パターン状の金属反射層を有する回折構造形成体とその製造方法、並びに回折構造体転写箔、回折構造体ステッカー、及び回折構造体付き情報記録媒体
US7944544B2 (en) * 2007-06-07 2011-05-17 Seiko Epson Corporation Liquid crystal device having a diffraction function layer that includes a flat portion and a non-flat portion with a grid disposed in the non-flat portion
JP5487592B2 (ja) * 2007-11-06 2014-05-07 セイコーエプソン株式会社 レーザー加工方法
BR112014029710A2 (ja) * 2012-06-01 2018-04-17 Toppan Printing Co., Ltd. An information storage object using an unisometric reflection display body and an unisometric reflection display body
JP6357892B2 (ja) 2014-06-09 2018-07-18 凸版印刷株式会社 光学素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005115176A (ja) * 2003-10-09 2005-04-28 Internatl Business Mach Corp <Ibm> 分光素子、回折格子、複合回折格子、カラー表示装置、分波器、および回折格子の製造方法
JP2008216864A (ja) * 2007-03-07 2008-09-18 Seiko Epson Corp 偏光素子、偏光素子の製造方法、液晶装置、投射型表示装置
JP2011170135A (ja) * 2010-02-19 2011-09-01 Seiko Epson Corp 偏光素子及びプロジェクター
WO2012067080A1 (ja) * 2010-11-18 2012-05-24 日本電気株式会社 光源ユニットおよびそれを備えた投射型表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3153894A4 *

Also Published As

Publication number Publication date
EP3495856B1 (en) 2020-07-15
CN106461826B (zh) 2019-03-22
KR101897891B1 (ko) 2018-09-12
CN106461826A (zh) 2017-02-22
EP3495856A1 (en) 2019-06-12
EP3153894A4 (en) 2017-11-08
DE112015002704T5 (de) 2017-03-16
KR20170013339A (ko) 2017-02-06
US10261224B2 (en) 2019-04-16
JP2015232618A (ja) 2015-12-24
JP6357892B2 (ja) 2018-07-18
EP3153894B1 (en) 2019-02-20
EP3153894A1 (en) 2017-04-12
US20170082787A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
JP6357892B2 (ja) 光学素子
RU2670078C1 (ru) Оптический компонент для защиты от подделок и изделие с оптической защитой от подделок
US10207533B2 (en) Security element having a color filter, document of value having such a security element and production method for such a security element
RU2357869C2 (ru) Защитный элемент в виде многослойного пленочного тела
CN106536212B (zh) 防伪元件、有价文件及防伪元件的制造方法
JP5434144B2 (ja) 表示体及びラベル付き物品
WO2018131667A1 (ja) 表示体、および、表示体の製造方法
JP7192277B2 (ja) 転写シート、発色シート、発色物品、および、転写方法
CN1854944B (zh) 具有光学可变效果的图案化结构
JP6171291B2 (ja) 表示体の真偽判定方法
CN110936750A (zh) 光学防伪元件及防伪产品
WO2017181442A1 (zh) 一种光学防伪元件及光学防伪产品
JP6136386B2 (ja) 表示体及びその真偽判定方法
JP6500943B2 (ja) 発色構造体、モールドおよびモールドを用いた発色構造体の製造方法
JP7196859B2 (ja) 表示体及び表示体の製造方法
JP2014240892A (ja) 光学素子及び光学素子を形成するための転写箔の製造方法
JP2014062992A (ja) 光学媒体及び光学物品
WO2021145339A1 (ja) 発色構造体、および、発色構造体の製造方法
JP2023019615A (ja) 発色構造体
JP2023019616A (ja) 発色構造体
JP7302277B2 (ja) 表示体及び表示体の製造方法
JP6834344B2 (ja) 表示体
JP2023013264A (ja) 発色構造体
JP6003450B2 (ja) 表示体及びラベル付き物品
JP2019109414A (ja) 発色構造体、表示体、発色構造体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15806682

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015002704

Country of ref document: DE

REEP Request for entry into the european phase

Ref document number: 2015806682

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015806682

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020167036830

Country of ref document: KR