WO2015190286A1 - (メタ)アクリル酸エステルの製造方法及びカルボン酸芳香族エステルの製造方法 - Google Patents

(メタ)アクリル酸エステルの製造方法及びカルボン酸芳香族エステルの製造方法 Download PDF

Info

Publication number
WO2015190286A1
WO2015190286A1 PCT/JP2015/065168 JP2015065168W WO2015190286A1 WO 2015190286 A1 WO2015190286 A1 WO 2015190286A1 JP 2015065168 W JP2015065168 W JP 2015065168W WO 2015190286 A1 WO2015190286 A1 WO 2015190286A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituent
group
meth
anhydride
carbonate
Prior art date
Application number
PCT/JP2015/065168
Other languages
English (en)
French (fr)
Inventor
武士 松尾
直志 村田
浩幸 森
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to JP2015527706A priority Critical patent/JP6489015B2/ja
Priority to KR1020167028602A priority patent/KR101898362B1/ko
Priority to EP15806000.4A priority patent/EP3156390B1/en
Priority to US15/308,232 priority patent/US9796652B2/en
Priority to CN201580030725.8A priority patent/CN106470967B/zh
Priority to RU2016146200A priority patent/RU2661899C2/ru
Publication of WO2015190286A1 publication Critical patent/WO2015190286A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0244Nitrogen containing compounds with nitrogen contained as ring member in aromatic compounds or moieties, e.g. pyridine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/10Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with ester groups or with a carbon-halogen bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/10Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with ester groups or with a carbon-halogen bond
    • C07C67/11Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with ester groups or with a carbon-halogen bond being mineral ester groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/612Esters of carboxylic acids having a carboxyl group bound to an acyclic carbon atom and having a six-membered aromatic ring in the acid moiety
    • C07C69/618Esters of carboxylic acids having a carboxyl group bound to an acyclic carbon atom and having a six-membered aromatic ring in the acid moiety having unsaturation outside the six-membered aromatic ring

Definitions

  • the present invention relates to a method for producing a (meth) acrylic acid ester and a method for producing a carboxylic acid aromatic ester.
  • Patent Document 1 discloses a method in which (meth) acrylic acid and alcohol are subjected to a dehydration reaction under an acid catalyst.
  • Patent Document 2 discloses a method of transesterifying a lower alkyl ester of (meth) acrylic acid with an alcohol.
  • Non-Patent Document 1 discloses a method of reacting (meth) acrylic acid chloride and alcohol in the presence of an amine.
  • Patent Document 3 discloses a method of dehydrating carboxylic acid and phenol under an acid catalyst.
  • Patent Document 4 discloses a method of reacting a carboxylic acid aromatic ester with diphenyl carbonate.
  • Patent Document 4 requires an excess of carboxylic aromatic ester relative to diphenyl carbonate, so that the amount of carboxylic aromatic ester produced per reaction volume is small.
  • An object of the present invention is to provide a method capable of efficiently producing a (meth) acrylic acid ester and a carboxylic acid aromatic ester.
  • the present invention includes the following [1] to [15].
  • a method for producing a (meth) acrylic acid ester in which a (meth) acrylic anhydride and a carbonate compound are reacted.
  • At least one selected from the group consisting of a basic nitrogen-containing organic compound, a Group 1 metal compound, and a Group 2 metal compound is present as a catalyst in the reaction solution and reacted.
  • [1] to [1] [3] The method for producing a (meth) acrylic acid ester according to any one of [3].
  • the NR 21 R 22 group is bonded to any one of the 2-position, 3-position and 4-position of the pyridine ring.
  • R 21 and R 22 are each independently hydrogen, A linear group that may have a group, a branched chain that may have a substituent, or a cyclic alkyl group having 1 to 30 carbon atoms that may have a substituent, or a substituent.
  • R 21 and R 22 may be bonded to each other to form a cyclic structure.
  • R 23 is a straight chain which may have a substituent, A branched chain which may have a substituent, or a cyclic alkyl group having 1 to 30 carbon atoms which may have a substituent, a straight chain which may have a substituent, and a substituent.
  • R 24 is a linear group which may have a substituent, a branched chain which may have a substituent, or a cyclic carbon group which may have a substituent.
  • a method for producing a carboxylic acid aromatic ester which comprises reacting a carboxylic acid anhydride and an aromatic carbonate in the presence of a catalyst, A method for producing a carboxylic acid aromatic ester, wherein the catalyst is at least one selected from the group consisting of a basic nitrogen-containing organic compound, a Group 1 metal compound, and a Group 2 metal compound.
  • the NR 21 R 22 group is bonded to any one of the 2-position, 3-position and 4-position of the pyridine ring.
  • R 21 and R 22 are each independently hydrogen, A linear group that may have a group, a branched chain that may have a substituent, or a cyclic alkyl group having 1 to 30 carbon atoms that may have a substituent, or a substituent.
  • R 21 and R 22 may be bonded to each other to form a cyclic structure.
  • R 23 is a straight chain which may have a substituent, A branched chain which may have a substituent, or a cyclic alkyl group having 1 to 30 carbon atoms which may have a substituent, a straight chain which may have a substituent, and a substituent.
  • R 24 is a linear group which may have a substituent, a branched chain which may have a substituent, or a cyclic carbon group which may have a substituent.
  • (meth) acrylic acid ester and carboxylic acid aromatic ester can be produced efficiently.
  • FIG. 28 It is a graph which shows the phenol density
  • FIG. It is a graph which shows the phenol concentration with respect to the reaction time in Examples 30-32.
  • a (meth) acrylic anhydride and a carbonate compound are reacted.
  • a (meth) acrylic ester can be produced in a short time and in a high yield.
  • the efficiency per batch is high, and the ratio of the amount of (meth) acrylic acid ester obtained to the amount of charged raw materials is high. That is, according to the present invention, a (meth) acrylic acid ester can be produced efficiently, and a production method that is convenient and industrially suitable can be provided.
  • (meth) acrylic acid means acrylic acid and / or methacrylic acid.
  • (meth) acrylic acid ester means acrylic acid ester and / or methacrylic acid ester.
  • (meth) acrylic anhydride The kind of (meth) acrylic anhydride used in the present invention is not particularly limited, and may be acrylic anhydride, methacrylic anhydride, or a mixture thereof. However, acrylic acid anhydride or methacrylic acid anhydride is preferable, and methacrylic acid anhydride is particularly preferable.
  • the purity of the (meth) acrylic anhydride used in the present invention is not particularly limited, but is preferably 50% by mass or more, more preferably 70% by mass or more, and further more preferably 83% by mass or more. It is preferably 92% by mass or more, and most preferably 96% by mass or more.
  • the amount of (meth) acrylic anhydride used is more preferably 0.33 mol or more and 5 mol or less, and further preferably 0.6 mol or more and 3 mol or less, relative to 1 mol of the carbonate compound. It is particularly preferably 0.83 mol or more and 1.5 mol or less, and most preferably 0.95 mol or more and 1.1 mol or less.
  • the carbonate compound refers to a carbonate compound having a carbonate group (—O—C ( ⁇ O) —O—) bonded to a carbon atom in the molecule.
  • the kind of carbonate compound which concerns on this invention is not specifically limited, It is preferable that it is a compound represented by following formula (1).
  • R 11 and R 12 each independently have a linear, branched, or cyclic alkyl group having 1 to 30 carbon atoms, which may have a substituent, or a substituent. And a linear, branched or cyclic alkenyl group having 2 to 30 carbon atoms, or an aryl group having 6 to 30 carbon atoms which may have a substituent.
  • R 11 and R 12 may combine to form a cyclic structure.
  • “may have a substituent” means that one or more arbitrary substituents may be present, and examples thereof include an ester bond, an amide bond, an ether bond, and a sulfide bond.
  • Disulfide bond urethane bond, amino group, nitro group, cyano group, thiol group, hydroxyl group, carboxyl group, ketone group, formyl group, acetal group, thioacetal group, sulfonyl group, halogen, silicon, phosphorus, etc. It means that you may have more.
  • Examples of the compound represented by the formula (1) include ethyl methyl carbonate, methyl phenyl carbonate, allyl methyl carbonate, dimethyl carbonate, diethyl carbonate, di (n-propyl) carbonate, diisopropyl carbonate, di (n-butyl) carbonate. , Di (tert-butyl) carbonate, dibenzyl carbonate, triphosgene, diphenyl carbonate, dinaphthyl carbonate, di (4-nitrophenyl) carbonate, di (o-tolyl) carbonate, ethylene carbonate, propylene carbonate, trimethylene carbonate, vinylene Examples thereof include carbonate, cyclohexene carbonate, and o-phenylene carbonate.
  • the carbonate compound is more preferably a compound represented by the following formula (2) or the following formula (3).
  • R 13 is a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms which may have a substituent, a linear chain which may have a substituent, A branched or cyclic alkenyl group having 2 to 30 carbon atoms, or an aryl group having 6 to 30 carbon atoms which may have a substituent.
  • R 14 is a linear, branched or cyclic alkylene group having 2 to 30 carbon atoms which may have a substituent, and a linear chain which may have a substituent, A branched or cyclic alkenylene group having 2 to 30 carbon atoms, or an arylene group having 6 to 30 carbon atoms which may have a substituent.
  • Examples of the compound represented by the formula (2) include dimethyl carbonate, diethyl carbonate, di (n-propyl) carbonate, diisopropyl carbonate, di (n-butyl) carbonate, di (tert-butyl) carbonate, dibenzyl carbonate. , Triphosgene, diphenyl carbonate, dinaphthyl carbonate, di (4-nitrophenyl) carbonate, di (o-tolyl) carbonate, and the like.
  • Examples of the compound represented by the formula (3) include ethylene carbonate, propylene carbonate, trimethylene carbonate, vinylene carbonate, cyclohexene carbonate, o-phenylene carbonate, and the like. These carbonate compounds may be used alone or in combination of two or more.
  • the carbonate compound is more preferably a compound represented by the following formula (4).
  • R 15 is an aryl group having 6 to 30 carbon atoms which may have a substituent.
  • Examples of the compound represented by the formula (4) include diphenyl carbonate, dinaphthyl carbonate, di (4-nitrophenyl) carbonate, di (o-tolyl) carbonate, and the like.
  • diphenyl carbonate is particularly preferable from the viewpoint of suppressing side reactions.
  • the molecular weight (number average molecular weight) of the carbonate compound used in the present invention is not particularly limited, but is preferably 90 to 100,000. By setting the molecular weight of the carbonate compound to 90 to 100,000, the carbonate compound can be efficiently mixed during the reaction, and the reaction can be efficiently advanced.
  • the molecular weight (number average molecular weight) of the carbonate compound is more preferably 90 to 50000, still more preferably 90 to 10,000, particularly preferably 90 to 3000, and most preferably 90 to 1000.
  • the molecular weight (number average molecular weight) of the carbonate compound is a value measured by GPC (Gel Permeation Chromatography).
  • the purity of the carbonate compound used in the present invention is not particularly limited, but is preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably 90% by mass or more, and 95% by mass. It is particularly preferable that the ratio be 98% by mass or more.
  • a catalyst When (meth) acrylic anhydride and a carbonate compound are reacted in a reaction solution, a catalyst may or may not be used. However, since the reaction rate can be increased, it is preferable to use a catalyst. preferable. When the catalyst is used, the type of the catalyst is not particularly limited as long as the (meth) acrylic acid ester is efficiently obtained. From the viewpoint of the reaction rate, the basic nitrogen-containing organic compound, the Group 1 metal compound, and the second It is preferably at least one selected from the group consisting of group metal compounds. A catalyst may be used individually by 1 type and may use 2 or more types together.
  • the basic nitrogen-containing organic compound is an organic compound containing basic nitrogen.
  • the basic nitrogen-containing organic compound is not particularly limited.
  • a primary amine compound, a secondary amine compound, a tertiary amine compound, an aromatic amine compound, an imine compound, a nitrogen-containing heterocyclic compound, or the like is used. Can do.
  • the basic nitrogen-containing organic compound may have a plurality of nitrogen atoms in one molecule.
  • Examples of the basic nitrogen-containing organic compound having a plurality of nitrogen atoms include at least 2 selected from the group consisting of a primary amine moiety, a secondary amine moiety, a tertiary amine moiety, an imine moiety, and a nitrogen-containing heterocyclic moiety.
  • -Containing basic nitrogen-containing organic compounds In the present specification, a basic nitrogen-containing organic compound having a nitrogen-containing heterocyclic moiety and another basic nitrogen moiety is referred to as a nitrogen-containing heterocyclic compound.
  • a basic nitrogen-containing organic compound having an imine moiety and a primary amine moiety, a secondary amine moiety, or a tertiary amine moiety is represented as an imine compound.
  • a basic nitrogen-containing organic compound having a tertiary amine moiety and a primary amine moiety or a secondary amine moiety is represented as a tertiary amine compound.
  • a basic nitrogen-containing organic compound having a secondary amine moiety and a primary amine moiety is represented as a secondary amine compound.
  • the basic nitrogen-containing organic compound is preferably a nitrogen-containing heterocyclic compound or an imine compound, and more preferably a nitrogen-containing heterocyclic compound.
  • nitrogen-containing heterocyclic compounds include pyrrole ring, pyridine ring, azepine ring, imidazole ring, pyrazole ring, oxazole ring, imidazoline ring, pyrazine ring, indole ring, isoindole ring, benzimidazole ring, purine ring, quinoline ring.
  • the nitrogen-containing heterocyclic compounds include pyrrole ring, pyridine ring, azepine ring, imidazole ring, pyrazole ring, oxazole ring, imidazoline ring, pyrazine ring, indole ring, benzimidazole ring, quinoline ring, diazabicyclo.
  • a nitrogen-containing heterocyclic compound having at least one selected from the group consisting of an undecene ring and a diazabicyclononene ring in the molecule is preferable.
  • the nitrogen-containing heterocyclic compound is selected from the group consisting of a pyrrole ring, a pyridine ring, an imidazole ring, a pyrazole ring, an imidazoline ring, a pyrazine ring, a benzimidazole ring, a diazabicycloundecene ring, and a diazabicyclononene ring.
  • a nitrogen-containing heterocyclic compound having at least one selected in the molecule is more preferable.
  • a nitrogen-containing heterocyclic compound having at least one selected from the group consisting of a pyridine ring, an imidazole ring, a diazabicycloundecene ring, and a diazabicyclononene ring in the molecule. More preferred are compounds.
  • Examples of the nitrogen-containing heterocyclic compound having a pyridine ring include pyridine, 2-methylpyridine, 2-ethylpyridine, 2-phenylpyridine, 2-cyanopyridine, 2-hydroxypyridine, 2- (aminomethyl) pyridine, 2-aminopyridine, 2- (methylamino) pyridine, 2-dimethylaminopyridine, 3-methylpyridine, 3-ethylpyridine, 3-phenylpyridine, 3-cyanopyridine, 3-hydroxypyridine, 3- (aminomethyl) Pyridine, 3- (methylamino) pyridine, 3-aminopyridine, 4-methylpyridine, 4-ethylpyridine, 4-tert-butylpyridine, 4-phenylpyridine, 4-cyanopyridine, 4-hydroxypyridine, 4- ( Aminomethyl) pyridine, 4-aminopyridine, 4- (methyl) Amino) pyridine, 4-dimethylaminopyridine, 4-diethylaminopyridine, 4-anilinopyridine, 4-pyr
  • Examples of the nitrogen-containing heterocyclic compound having an imidazole ring include imidazole, 1-methylimidazole, 1-ethylimidazole, 1-propylimidazole, 1-isopropylimidazole, 1-butylimidazole, 1-phenylimidazole, 2-methyl Imidazole, 2-ethylimidazole, 2-propylimidazole, 2-isopropylimidazole, 2-butylimidazole, 2-phenylimidazole, 2-aminoimidazole, 2-formylimidazole, 4-methylimidazole, 4-ethylimidazole, 5-methyl Examples include imidazole, 5-ethylimidazole, and 1,2-dimethylimidazole.
  • nitrogen-containing heterocyclic compound having a diazabicycloundecene ring examples include 1,8-diazabicyclo [5.4.0] -7-undecene.
  • Examples of the nitrogen-containing heterocyclic compound having a diazabicyclononene ring include 1,5-diazabicyclo [4.3.0] -5-nonene.
  • the nitrogen-containing heterocyclic compound is preferably a compound represented by the following formulas (5) to (7).
  • the NR 21 R 22 group is bonded to any one of the 2-position, 3-position and 4-position of the pyridine ring.
  • R 21 and R 22 are each independently hydrogen, an optionally substituted linear, which may have a substituent branched, or number of carbon atoms in the cyclic ring may have a substituent An alkyl group having 1 to 30 carbon atoms, a linear chain which may have a substituent, a branched chain which may have a substituent, or a cyclic alkenyl group having 2 to 30 carbon atoms which may have a substituent Or an aryl group having 6 to 30 carbon atoms which may have a substituent.
  • R 21 and R 22 may combine to form a cyclic structure.
  • the OR 23 group is bonded to any one of the 2-position, 3-position and 4-position of the pyridine ring.
  • R 23 is a linear group which may have a substituent, a branched chain which may have a substituent, or a cyclic alkyl group having 1 to 30 carbon atoms which may have a substituent, a substituent.
  • R 24 is a straight chain which may have a substituent, a branched chain which may have a substituent, or a cyclic which may have a substituent, having 1 to 30 carbon atoms.
  • Examples of the compound represented by the formula (5) include 2-aminopyridine, 2- (methylamino) pyridine, 2-dimethylaminopyridine, 3-aminopyridine, 3- (methylamino) pyridine, 3-dimethylamino.
  • Pyridine 4-aminopyridine, 4- (methylamino) pyridine, 4-dimethylaminopyridine, 4-diethylaminopyridine, 4-anilinopyridine, 4-pyrrolidinopyridine, 4- (4-pyridyl) morpholine, 4- ( 4-aminopiperidino) pyridine and the like.
  • Examples of the compound represented by the formula (6) include 2-methoxypyridine, 3-methoxypyridine, 4-methoxypyridine, 4-ethoxypyridine, 4-phenoxypyridine and the like.
  • Examples of the compound represented by the formula (7) include 1-methylimidazole, 1-ethylimidazole, 1-propylimidazole, 1-isopropylimidazole, 1-butylimidazole, 1-phenylimidazole and the like.
  • the nitrogen-containing heterocyclic compound is more preferably a compound represented by the following formula (8).
  • R 21 and R 22 each independently have hydrogen, a linear group that may have a substituent, a branched chain that may have a substituent, or a substituent.
  • a cyclic alkyl group having 1 to 30 carbon atoms, a straight chain which may have a substituent, a branched chain which may have a substituent, or a cyclic carbon which may have a substituent An alkenyl group having 2 to 30 carbon atoms, or an aryl group having 6 to 30 carbon atoms which may have a substituent.
  • Examples of the compound represented by the formula (8) include 4-aminopyridine, 4- (methylamino) pyridine, 4-dimethylaminopyridine, 4-diethylaminopyridine, 4-anilinopyridine and the like.
  • the nitrogen-containing heterocyclic compound is most preferably 4-dimethylaminopyridine. These basic nitrogen-containing organic compounds may be used singly or in combination of two or more.
  • Group 1 metal compound Although it does not specifically limit as a metal contained in a group 1 metal compound, Since reaction rate can be raised, lithium, sodium, and potassium are preferable among the metals which belong to a group 1 catalyst, and lithium and sodium are more preferable. .
  • the Group 1 metal compound is preferably a compound having a ligand.
  • the ligand include acrylate ion, methacrylate ion, formate ion, acetate ion, acetylacetonate ion, trifluoro-2,4-pentanedionate ion, phenoxy ion, methoxy ion, hydroxide ion, Examples thereof include carbonate ions and hydrogen carbonate ions.
  • the ligand is preferably an ionic ligand, more preferably an ionic ligand composed of an organic molecule, and still more preferably a carboxylate ion ligand or an aromatic alkoxy ion ligand.
  • the ligand is particularly preferably an acrylate ion ligand, a methacrylate ion ligand, or a phenoxy ion ligand, and most preferably a methacrylate ion ligand or a phenoxy ion ligand.
  • Examples of the Group 1 metal compound having an ionic ligand composed of an organic molecule include lithium acrylate, lithium methacrylate, lithium formate, lithium acetate, lithium phenoxide, lithium methoxide, sodium acrylate, sodium methacrylate, Examples include sodium formate, sodium acetate, sodium phenoxide, sodium methoxide, potassium acrylate, potassium methacrylate, potassium formate, potassium acetate, potassium phenoxide, potassium methoxide, and the like.
  • lithium acrylate, lithium methacrylate, sodium acrylate, sodium methacrylate, potassium acrylate, potassium methacrylate, lithium phenoxide, sodium phenoxide, and potassium phenoxide are preferable.
  • Group 1 metal compound lithium acrylate, lithium methacrylate, sodium acrylate, sodium methacrylate, lithium phenoxide, sodium phenoxide are more preferable, and lithium methacrylate, lithium phenoxide, sodium methacrylate, sodium phenoxide are preferable. Further preferred. These Group 1 metal compounds may be used singly or in combination of two or more.
  • the metal contained in the Group 2 metal compound is not particularly limited. However, since the reaction rate can be increased, beryllium, magnesium and calcium are preferable among the metals belonging to Group 2, and magnesium and calcium are more preferable. Magnesium is more preferable.
  • the Group 2 metal compound is preferably a compound having a ligand.
  • the ligand include acrylate ion, methacrylate ion, formate ion, acetate ion, acetylacetonate ion, trifluoro-2,4-pentanedionate ion, phenoxy ion, methoxy ion, hydroxide ion, Examples thereof include carbonate ions and hydrogen carbonate ions.
  • the ligand is preferably an ionic ligand, more preferably an ionic ligand composed of an organic molecule, and still more preferably a carboxylic acid ion ligand or an aromatic alkoxy ion ligand.
  • the ligand is particularly preferably an acrylate ion ligand, a methacrylate ion ligand, or a phenoxy ion ligand, and most preferably a methacrylate ion ligand or a phenoxy ion ligand.
  • Examples of the Group 2 metal compound having an ionic ligand composed of an organic molecule include beryllium acrylate, beryllium methacrylate, beryllium formate, beryllium acetate, beryllium phenoxide, beryllium methoxide, magnesium acrylate, magnesium methacrylate, Magnesium formate, magnesium acetate, magnesium phenoxide, magnesium methoxide, magnesium acetylacetonate, bis (trifluoro-2,4-pentandionato) magnesium, calcium acrylate, calcium methacrylate, calcium formate, calcium acetate, calcium phenoxide, Examples include calcium methoxide, calcium acetylacetonate, and bis (trifluoro-2,4-pentanedionato) calcium.
  • the Group 2 metal compound is preferably magnesium acrylate, magnesium methacrylate, calcium acrylate, calcium methacrylate, magnesium phenoxide, calcium phenoxide, magnesium acetylacetonate, or calcium acetylacetonate. Further, as the Group 2 metal compound, magnesium acrylate, magnesium methacrylate, magnesium phenoxide and magnesium acetylacetonate are more preferable, magnesium acrylate, magnesium methacrylate and magnesium phenoxide are more preferable, and magnesium methacrylate and magnesium phenoxide. Is particularly preferred. These Group 2 metal compounds may be used singly or in combination of two or more.
  • the amount of the catalyst used in the present invention is not particularly limited as long as a (meth) acrylic acid ester can be obtained efficiently, but is preferably 0.0001 mol or more and 0.5 mol or less with respect to 1 mol of the carbonate compound.
  • the amount of catalyst 0.0001 mol or more with respect to the carbonate compound it is possible to effectively suppress a decrease in catalytic activity due to impurities.
  • productivity of the (meth) acrylic acid ester and a decrease in the purity of the product can be efficiently prevented.
  • the amount of the catalyst is more preferably 0.0003 mol or more and 0.3 mol or less, further preferably 0.0005 mol or more and 0.2 mol or less, with respect to 1 mol of the carbonate compound, and 0.001 mol It is particularly preferably 0.15 mol or less and most preferably 0.005 mol or more and 0.07 mol or less.
  • the catalyst used in the reaction of the present invention may be dissolved in the reaction solution or not dissolved, but is preferably dissolved. Since the catalyst is dissolved in the reaction solution, the production rate of (meth) acrylic acid ester can be improved.
  • reaction When the (meth) acrylic anhydride and the carbonate compound are reacted, the reaction may be performed in the presence or absence of the carboxylic acid, but the reaction is performed in the presence of the carboxylic acid from the viewpoint of the reaction rate. It is preferable to carry out.
  • carboxylic acid When carboxylic acid is present, the type of carboxylic acid is not particularly limited, but (meth) acrylic acid is preferable from the viewpoint of suppressing side reactions.
  • the carboxylic acid is preferably acrylic acid when acrylic acid anhydride is used, and methacrylic acid when methacrylic acid anhydride is used.
  • the number of moles of the carboxylic acid is preferably 0.001 mol or more and 1.5 mol or less with respect to 1 mol of the carbonate compound.
  • the production amount per reaction volume can be increased by setting the number of moles of the carboxylic acid to 1.5 moles or less with respect to 1 mole of the carbonate compound.
  • the addition amount of the carboxylic acid is more preferably 0.005 mol or more and 1 mol or less, further preferably 0.01 mol or more and 0.7 mol or less, with respect to 1 mol of the carbonate compound, It is particularly preferably from 0.5 to 0.55 mol, most preferably from 0.1 to 0.3 mol.
  • the timing at which the carboxylic acid is present is not particularly limited, and may be present before the reaction between the (meth) acrylic anhydride and the carbonate compound, or may be present or added during the reaction.
  • the reaction between the (meth) acrylic anhydride and the carbonate compound can be carried out in a solvent, it is preferable not to use a solvent from the viewpoint of productivity.
  • a solvent the type of the solvent is not particularly limited, but is preferably an organic compound having 1 to 25 carbon atoms.
  • the solvent may have one or more double bonds, triple bonds, amide bonds, ether bonds, sulfide bonds, nitro groups, cyano groups, ketone groups, halogens, silicon, phosphorus and the like.
  • the solvent may have a cyclic structure or an aromatic structure.
  • the amount of the solvent is not particularly limited.
  • solvent examples include benzene, toluene, xylene, n-hexane, cyclohexane, n-heptane, n-octane, n-nonane, n-decane, 1,4-dioxane, tetrahydrofuran, tetrahydropyran, anisole, methyl-tert.
  • a solvent may be used individually by 1 type, or may use 2 or more types together.
  • polymerization inhibitor examples include phenol, 1,4-benzenediol, 4-methoxyphenol, 2,6-di-tert-butylphenol, 2,4-di-tert-butylphenol, 2-tert-butyl-4, Phenol polymerization inhibitors such as 6-dimethylphenol, 2,6-di-tert-butyl-4-methylphenol, 2,4,6-tri-tert-butylphenol, N, N′-dialkylated paradiphenylamine, N , N'-diphenyl-p-phenylenediamine, N, N'-di-2-naphthylparaphenylenediamine, N-phenyl-N- (1,3-dimethylbutyl) paraphenylenediamine, phenothiazine, etc.
  • Copper dithiocarbamate polymerization inhibitors such as copper dibutyldithiocarbamate, 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (HO-TEMPO), 4-benzoyloxy-2,2,6, N-oxyl compounds such as 6-tetramethylpiperidine-N-oxyl (BTOX) and 4-acetoxy-2,2,6,6-tetramethylpiperidine-N-oxyl, N represented by the following formula (9)
  • An oxyl polymerization inhibitor or the like can be used.
  • R 31 and R 32 are both hydrogen atoms, or one is a hydrogen atom and the other is a methyl group.
  • R 33 , R 34 , R 35 and R 36 are linear or branched alkyl groups.
  • R 37 is a hydrogen atom or an acyl group having a linear, branched or cyclic hydrocarbon group. Examples of R 37 include an acetyl group, a benzoyl group, an acryloyl group, and a methacryloyl group.
  • phenol, 1,4-benzenediol, 4-methoxyphenol, N, N′-dialkylated paradiphenylamine, N, N′-diphenyl-p-phenylenediamine, N, N ′ -Di-2-naphthylparaphenylenediamine, N-phenyl-N- (1,3-dimethylbutyl) paraphenylenediamine, phenothiazine, HO-TEMPO, BTOX are preferred, phenol, 1,4-benzenediol, 4-methoxy Phenol, phenothiazine, HO-TEMPO, and BTOX are more preferable, phenol, 1,4-benzenediol, BTOX, and phenothiazine are more preferable, and phenothiazine is particularly preferable from the viewpoint of the polymerization inhibitory effect.
  • polymerization inhibitors may be used alone or in combination of two or more.
  • the addition amount of the polymerization inhibitor can be 0.0001 to 2.0% by mass, preferably 0.001 to 1.0% by mass.
  • concentration of a polymerization inhibitor exists in the range of the density
  • reaction vessel The form of the reaction vessel used in the present invention is not particularly limited, and for example, a batch reaction vessel, a continuous flow stirring reaction vessel, a tubular flow reaction vessel or the like can be used. Among them, a batch type reaction vessel and a continuous flow stirring reaction vessel that can change the fluid volume due to the generated gas and can be simplified in design are preferable, and a batch type reaction vessel is more preferable.
  • a baffle plate or a structure may be provided inside the reaction vessel used in the present invention in order to increase the efficiency of stirring.
  • the oxygen-containing gas is preferably supplied continuously or intermittently into the reaction vessel, and continuously supplied into the reaction vessel. More preferred.
  • the oxygen-containing gas may be supplied from two or more locations in the reaction vessel.
  • the oxygen-containing gas may be directly introduced into the reaction solution and supplied, or may be introduced and supplied into the gas phase, or may be used in combination or may be switched in the middle.
  • a method for supplying the oxygen-containing gas a method for supplying the oxygen-containing gas can be promoted or a side reaction of (meth) acrylic anhydride can be suppressed. It is preferable that
  • reaction raw materials ((meth) acrylic anhydride, carbonate compound, and in some cases, catalyst, carboxylic acid, solvent, etc.) into the reaction vessel is not particularly limited, and may be introduced in any order. Also good.
  • (meth) acrylic anhydride may be introduced at a time, and a carbonate compound or a catalyst may be added as necessary.
  • a catalyst you may add one part or all (meth) acrylic anhydride to a mixture containing a carbonate compound and a catalyst sequentially or continuously.
  • sequential addition means adding intermittently several times, or adding intermittently once or several times separately from initial preparation.
  • the method of introducing (meth) acrylic anhydride into the reaction vessel is to add a carbonate compound and, in the case of using a catalyst, a solution containing the catalyst and a part of (meth) acrylic anhydride. Or it is preferable to include the method of adding the whole quantity sequentially or continuously, and it is more preferable to include the method of adding a part or whole quantity of (meth) acrylic anhydride continuously.
  • the addition amount may or may not be constant, but it is preferable to reduce the addition amount by one of two adjacent additions. More preferably, the amount added is constant or reduced in all additions, and more preferably in all two adjacent additions. Further, the interval of addition may be constant, increased, or decreased, but is preferably constant or increased, and more preferably increased.
  • the addition rate may be constant, increased, or decreased, but it is preferable to reduce the addition rate in a part of the continuous addition section, More preferably, the rate of addition is constant or reduced in all sections where continuous addition is performed.
  • the reaction can be performed in the presence of a compound having a hydroxyl group in the reaction solution from the viewpoint of improving the reaction selectivity.
  • the concentration of the compound having a hydroxyl group present in the reaction solution is preferably 0.005% by mass to 10% by mass with respect to the total amount of the reaction raw materials.
  • the concentration of the compound having a hydroxyl group is more preferably 0.01% by mass or more and 5% by mass or less, further preferably 0.03% by mass or more and 3% by mass or less, and 0.05% by mass or more and 2% by mass. % Or less is particularly preferable, and it is most preferably 0.1% by mass or more and 2% by mass or less.
  • the type of the compound having a hydroxyl group is not particularly limited, but a compound having a hydroxyl group shown when the carbonate portion of the carbonate compound to be used is replaced with OH is preferable.
  • the compound having a hydroxyl group is preferably R 11 OH or R 12 OH, and when R 11 and R 12 are bonded, HO -R 11 -R 12 -OH is preferred.
  • Examples of the compound having a hydroxyl group include phenol, ethylene glycol, propylene glycol, methanol, ethanol, and propanol. Among these, phenol, ethylene glycol and the like are preferable as the compound having a hydroxyl group from the viewpoint of impurity suppression.
  • Examples of the method for maintaining the concentration of the compound having a hydroxyl group in the preferred range include a method of adding the compound having a hydroxyl group while monitoring the concentration of the compound having a hydroxyl group in the reaction solution using an analytical method.
  • a method of adding the compound having a hydroxyl group while monitoring the concentration of the compound having a hydroxyl group in the reaction solution using an analytical method when (meth) acrylic anhydride is added sequentially or continuously, the concentration of the compound having a hydroxyl group in the reaction solution is monitored using an analytical technique, while (meth) acrylic anhydride is added. The method of adding sequentially or continuously is mentioned.
  • the period during which the concentration of the compound having a hydroxyl group is maintained within the above preferable range is preferably part or all of the period of reaction at the reaction temperature, and is 30% or more of the period of heating to the reaction temperature. More preferably, it is more preferably 50% or more of the period heated to the reaction temperature, even more preferably 80% or more of the period heated to the reaction temperature, and 95% of the period heated to the reaction temperature. % Is particularly preferred, and most preferred is the entire period heated to the reaction temperature.
  • reaction temperature Although the reaction temperature at the time of making a (meth) acrylic anhydride and a carbonate compound react is not specifically limited, It is preferable that they are 40 degreeC or more and 200 degrees C or less.
  • the reaction can be promoted by setting the reaction temperature to 40 ° C. or higher.
  • reaction temperature by setting the reaction temperature to 200 ° C. or lower, decomposition or side reaction of (meth) acrylic anhydride and (meth) acrylic acid ester can be suppressed.
  • the reaction temperature is more preferably 60 ° C. or higher and 180 ° C. or lower, further preferably 80 ° C. or higher and 160 ° C. or lower, particularly preferably 90 ° C. or higher and 140 ° C. or lower, and 100 ° C. or higher and 140 ° C. or lower. Most preferably it is.
  • the reaction temperature does not need to be constant during the reaction, and the reaction temperature may be changed within a preferable range.
  • reaction time The reaction time when the mixture containing (meth) acrylic anhydride and the carbonate compound is reacted by heating is not particularly limited. However, when the reaction is performed at the reaction temperature described above, 0.1 to 150 hours are preferable, 0.3 to 100 hours are more preferable, 0.5 to 60 hours are more preferable, 1 to 40 hours are particularly preferable, and 2 to 30 hours are most preferable. By making it react for 0.1 hour or more, reaction can be advanced smoothly. Moreover, by making it react for 150 hours or less, since process cost etc. can be reduced and the side reaction of (meth) acrylic anhydride and (meth) acrylic acid ester can be suppressed, ( A meth) acrylic ester can be produced.
  • the pressure at the time of making it react is not specifically limited, Any of the pressure-reduced state, atmospheric pressure, and the pressurized state may be sufficient.
  • the (meth) acrylic acid ester produced in the present invention can be purified as necessary.
  • the step of purifying the (meth) acrylic acid ester include a liquid separation step, a distillation step, and a crystallization step. These steps may be performed alone, or two or more steps may be combined. It is preferable to purify the (meth) acrylic acid ester by a liquid separation step and a distillation step.
  • the (meth) acrylic acid ester When purifying the (meth) acrylic acid ester in the liquid separation step, the (meth) acrylic acid ester can be washed using an aqueous alkali solution such as an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution.
  • an aqueous alkali solution such as an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution.
  • the alkali concentration and the number of washings of the aqueous alkali solution to be used can be appropriately selected according to the reaction conditions and the like.
  • the distillation method in the distillation step is not particularly limited, and examples thereof include simple distillation, precision distillation, and thin film distillation.
  • the pressure in the distillation step is not particularly limited and may be any of a reduced pressure state, an atmospheric pressure, and a pressurized state, but is preferably in a reduced pressure state.
  • the distillation step may be performed in a nitrogen atmosphere or in an oxygen-containing gas atmosphere when the distillation step is performed at any pressure of reduced pressure, atmospheric pressure, or increased pressure.
  • the conditions for the crystallization step are not particularly limited, and the type of solvent, the crystallization temperature, and the like can be appropriately selected according to the type of carboxylic aromatic ester.
  • the method for producing a carboxylic acid aromatic ester according to the present invention is a method for producing a carboxylic acid aromatic ester in which a carboxylic acid anhydride and an aromatic carbonate are reacted in the presence of a catalyst, wherein the catalyst is a basic nitrogen-containing organic compound. It is at least one selected from the group consisting of a compound, a Group 1 metal compound, and a Group 2 metal compound.
  • the carboxylic acid anhydride and the aromatic carbonate when the carboxylic acid anhydride and the aromatic carbonate are reacted, at least one selected from the group consisting of a basic nitrogen-containing organic compound, a Group 1 metal compound, and a Group 2 metal compound is used as a catalyst. Is used.
  • the carboxylic acid aromatic ester can be produced in a short time and in a high yield from the carboxylic acid anhydride and the aromatic carbonate. That is, according to the present invention, a carboxylic acid aromatic ester can be efficiently produced, and a production method that is convenient and industrially suitable can be provided.
  • the manufacturing method of the carboxylic acid aromatic ester which concerns on this invention is demonstrated in detail.
  • the carboxylic anhydride used in the present invention refers to a carboxylic anhydride having an acid anhydride group (—C ( ⁇ O) —O—C ( ⁇ O) —) bonded to a carbon atom in the molecule.
  • an acid anhydride group —C ( ⁇ O) —O—C ( ⁇ O) —
  • the carboxylic acid anhydride represented by following formula (10) is preferable.
  • R 41 and R 42 each independently have a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms and a substituent, which may have a substituent. And a linear, branched or cyclic alkenyl group having 2 to 30 carbon atoms, or an aryl group having 6 to 30 carbon atoms which may have a substituent. R 41 and R 42 may combine to form a cyclic structure.
  • Examples of the carboxylic acid anhydride represented by the formula (10) include acetic acid anhydride, propionic acid anhydride, pivalic acid anhydride, butyric acid anhydride, valeric acid anhydride, isovaleric acid anhydride, hexanoic acid anhydride.
  • Lauric anhydride trifluoroacetic anhydride, trichloroacetic anhydride, angelic anhydride, tiglic anhydride, crotonic anhydride, acrylic anhydride, methacrylic anhydride, cyclohexanecarboxylic anhydride, benzoic acid Anhydride, succinic anhydride, maleic anhydride, glutaric anhydride, phthalic anhydride, cis-1,2-cyclohexanedicarboxylic anhydride, trans-1,2-cyclohexanedicarboxylic anhydride, 3,4 , 5,6-tetrahydrophthalic anhydride, 2,3-naphthalenedicarboxylic anhydride and the like.
  • the carboxylic acid anhydride is more preferably a carboxylic acid anhydride represented by the following formula (11) or the following formula (12).
  • R 43 is a linear, branched, or cyclic alkyl group having 1 to 30 carbon atoms which may have a substituent, a linear chain which may have a substituent, A branched or cyclic alkenyl group having 2 to 30 carbon atoms, or an aryl group having 6 to 30 carbon atoms which may have a substituent.
  • R 44 is a linear, branched or cyclic alkylene group having 2 to 30 carbon atoms which may have a substituent, or a linear which may have a substituent.
  • Examples of the carboxylic acid anhydride represented by the formula (11) include acetic acid anhydride, propionic acid anhydride, pivalic acid anhydride, butyric acid anhydride, valeric acid anhydride, isovaleric acid anhydride, hexanoic acid anhydride. , Lauric anhydride, trifluoroacetic anhydride, trichloroacetic anhydride, angelic anhydride, tiglic anhydride, crotonic anhydride, acrylic anhydride, methacrylic anhydride, cyclohexanecarboxylic anhydride, benzoic acid An anhydride etc. are mentioned.
  • Examples of the carboxylic acid anhydride represented by the formula (12) include succinic acid anhydride, maleic acid anhydride, glutaric acid anhydride, phthalic acid anhydride, cis-1,2-cyclohexanedicarboxylic acid anhydride, trans Examples include -1,2-cyclohexanedicarboxylic anhydride, 3,4,5,6-tetrahydrophthalic anhydride, 2,3-naphthalenedicarboxylic anhydride, and the like.
  • the carboxylic acid anhydride is more preferably a carboxylic acid anhydride represented by the above formula (11), and from the viewpoint of utilization as a polymer raw material, an acrylic acid anhydride or a methacrylic acid anhydride is particularly preferable. Preferably, methacrylic anhydride is most preferable.
  • carboxylic anhydrides may be used alone or in combination of two or more.
  • the usage-amount of the carboxylic acid anhydride used by this invention is not specifically limited, It is preferable that they are 0.1 mol or more and 10 mol or less with respect to 1 mol of aromatic carbonates mentioned later.
  • the production amount per reaction volume can be increased by setting the amount of carboxylic acid anhydride to be used in the range of 0.1 mol to 10 mol with respect to 1 mol of aromatic carbonate.
  • the amount of the carboxylic acid anhydride used is more preferably 0.33 mol or more and 5 mol or less, further preferably 0.6 mol or more and 3 mol or less, relative to 1 mol of the aromatic carbonate. It is particularly preferably 83 mol or more and 1.5 mol or less, and most preferably 0.95 mol or more and 1.1 mol or less.
  • aromatic carbonate Although the kind of aromatic carbonate used by this invention will not be specifically limited if it is a carbonate which has an aromatic group, The aromatic carbonate represented by following formula (13) is preferable.
  • R 45 is an aryl group having 6 to 30 carbon atoms which may have a substituent.
  • “may have a substituent” means that one or more arbitrary substituents may be present, and examples thereof include an ester bond, an amide bond, an ether bond, and a sulfide bond. , Disulfide bond, urethane bond, amino group, nitro group, cyano group, thiol group, hydroxyl group, carboxyl group, ketone group, formyl group, acetal group, thioacetal group, sulfonyl group, halogen, silicon, phosphorus, etc. It means that you may have more.
  • aromatic carbonate represented by the formula (13) examples include diphenyl carbonate, dinaphthyl carbonate, di (4-nitrophenyl) carbonate, di (o-tolyl) carbonate, and the like.
  • diphenyl carbonate is preferable as the aromatic carbonate from the viewpoint of availability and stability.
  • aromatic carbonates may be used alone or in combination of two or more.
  • the catalyst used in the present invention is at least one selected from the group consisting of a basic nitrogen-containing organic compound, a Group 1 metal compound, and a Group 2 metal compound. These catalysts may be used individually by 1 type, and may use 2 or more types together.
  • the basic nitrogen-containing organic compound is an organic compound containing basic nitrogen.
  • the basic nitrogen-containing organic compound, the Group 1 metal compound, and the Group 2 metal compound the same compounds as those in the first embodiment can be used.
  • the amount of the catalyst used in the present invention is not particularly limited as long as the carboxylic acid aromatic ester can be obtained efficiently, but is preferably 0.0001 mol or more and 0.5 mol or less with respect to 1 mol of the aromatic carbonate.
  • the amount of catalyst is preferably 0.0001 mol or more and 0.5 mol or less with respect to 1 mol of the aromatic carbonate.
  • the amount of the catalyst is more preferably 0.0003 mol or more and 0.3 mol or less, further preferably 0.0005 mol or more and 0.2 mol or less, with respect to 1 mol of the aromatic carbonate, It is particularly preferable that the amount be from 0.1 mol to 0.15 mol, and most preferable from 0.005 mol to 0.07 mol.
  • the catalyst used in the reaction of the present invention may be dissolved in the reaction solution or not dissolved, but is preferably dissolved. When the catalyst is dissolved in the reaction solution, the production rate of the carboxylic acid aromatic ester can be improved.
  • carboxylic acid When the carboxylic anhydride and the aromatic carbonate are reacted, it is preferable to add a carboxylic acid from the viewpoint of securing the reaction rate.
  • the carboxylic acid is preferably a carboxylic acid carboxylic acid.
  • acrylic acid is preferable when acrylic acid anhydride is used, and methacrylic acid is preferable when methacrylic acid anhydride is used.
  • These carboxylic acids may be used alone or in combination of two or more.
  • the reaction between the carboxylic acid anhydride and the aromatic carbonate can be performed in a solvent.
  • a solvent it is preferable not to use a solvent from the viewpoint of productivity.
  • the type of the solvent is not particularly limited, but is preferably an organic compound having 1 to 25 carbon atoms.
  • the solvent may have one or more double bonds, triple bonds, amide bonds, ether bonds, sulfide bonds, nitro groups, cyano groups, ketone groups, halogens, silicon, phosphorus and the like.
  • the solvent may have a cyclic structure or an aromatic structure.
  • the amount of the solvent is not particularly limited.
  • solvent examples include benzene, toluene, xylene, n-hexane, cyclohexane, n-heptane, n-octane, n-nonane, n-decane, 1,4-dioxane, tetrahydrofuran, tetrahydropyran, anisole, methyl-tert.
  • a solvent may be used individually by 1 type, or may use 2 or more types together.
  • reaction vessel The form of the reaction vessel used in the present invention is not particularly limited, and for example, a batch reaction vessel, a continuous flow stirring reaction vessel, a tubular flow reaction vessel or the like can be used. Among them, a batch type reaction vessel and a continuous flow stirring reaction vessel that can change the fluid volume due to the generated gas and can be simplified in design are preferable, and a batch type reaction vessel is more preferable.
  • a baffle plate or a structure may be provided inside the reaction vessel used in the present invention in order to increase the efficiency of stirring.
  • reaction temperature Although the reaction temperature at the time of making a carboxylic anhydride and an aromatic carbonate react is not specifically limited, It is preferable that they are 40 degreeC or more and 200 degrees C or less.
  • the reaction can be promoted by setting the reaction temperature to 40 ° C. or higher.
  • reaction temperature by setting the reaction temperature to 200 ° C. or lower, decomposition and side reactions of the carboxylic anhydride and the carboxylic aromatic ester can be suppressed.
  • the reaction temperature is more preferably 60 ° C. or higher and 180 ° C. or lower, further preferably 80 ° C. or higher and 160 ° C. or lower, particularly preferably 90 ° C. or higher and 140 ° C. or lower, and 100 ° C. or higher and 140 ° C. or lower. Most preferably it is.
  • the reaction temperature does not need to be constant during the reaction, and the reaction temperature may be changed within a preferable range.
  • reaction time The reaction time for heating and reacting the mixture containing the carboxylic acid anhydride and the aromatic carbonate is not particularly limited. However, when the reaction is performed at the reaction temperature described above, 0.1 to 150 hours are preferable. 3 to 100 hours are more preferable, 0.5 to 60 hours are further preferable, 1 to 40 hours are particularly preferable, and 2 to 30 hours are most preferable. By making it react for 0.1 hour or more, reaction can be advanced smoothly. In addition, by reacting for 150 hours or less, process costs and the like can be reduced, and side reactions of the carboxylic acid anhydride and the carboxylic acid aromatic ester can be suppressed. Can be manufactured.
  • the pressure at the time of making it react is not specifically limited, Any of the pressure-reduced state, atmospheric pressure, and the pressurized state may be sufficient.
  • the carboxylic acid aromatic ester produced in the present invention can be purified as necessary.
  • Examples of the process for purifying the carboxylic acid aromatic ester include a liquid separation process, a distillation process, and a crystallization process. These steps may be performed alone, or two or more steps may be combined. It is preferable to purify the carboxylic acid aromatic ester by a liquid separation step and a distillation step.
  • the carboxylic acid aromatic ester When purifying the carboxylic acid aromatic ester in the liquid separation step, the carboxylic acid aromatic ester can be washed using an aqueous alkali solution such as an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution.
  • an aqueous alkali solution such as an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution.
  • the alkali concentration and the number of washings of the aqueous alkali solution to be used can be appropriately selected according to the reaction conditions and the like.
  • the distillation method in the distillation step is not particularly limited, and examples thereof include simple distillation, precision distillation, and thin film distillation.
  • the pressure in the distillation step is not particularly limited and may be any of a reduced pressure state, an atmospheric pressure, and a pressurized state, but is preferably in a reduced pressure state.
  • the conditions for the crystallization step are not particularly limited, and the type of solvent, the crystallization temperature, and the like can be appropriately selected according to the type of carboxylic aromatic ester.
  • methacrylic anhydride As methacrylic anhydride (methacrylic anhydride), a methacrylic anhydride having a purity of 81.8% by mass (including 0.1% by mass of methacrylic acid) purchased from Aldrich, and a purity of 67.6% by mass (methacrylic acid 2.
  • Example 1 In a 30 mm ⁇ ⁇ 200 mm test tube equipped with an air introduction tube, diphenyl carbonate 9.52 g (44.4 mmol), 4-dimethylaminopyridine 0.005 g (0.04 mmol) as a catalyst, phenothiazine 0.008 g as a polymerization inhibitor, 7.16 g of methacrylic anhydride having a purity of 95.2% by mass (44.2 mmol as methacrylic anhydride) was added. Next, methacrylic acid was added so that the amount of methacrylic acid in the liquid containing methacrylic acid contained in the raw material methacrylic anhydride was 0.80 g (9.3 mmol).
  • Examples 2 to 21 The same operation as in Example 1 was performed except that the conditions shown in Table 1 were used. The results are shown in Table 1.
  • MAOMA methacrylic anhydride.
  • DPC represents diphenyl carbonate.
  • MAA indicates methacrylic acid.
  • PHMA phenyl methacrylate.
  • BTOX represents 4-benzoyloxy-2,2,6,6-tetramethylpiperidine-N-oxyl.
  • DMAP represents 4-dimethylaminopyridine.
  • Mg (MAA) 2 indicates magnesium methacrylate.
  • 4MPy represents 4-methoxypyridine.
  • 4AP represents 4-aminopyridine.
  • MIM represents 1-methylimidazole.
  • Ca (MAA) 2 indicates calcium methacrylate.
  • Na (MAA) indicates sodium methacrylate.
  • MAOMA / DPC indicates the number of moles of methacrylic anhydride relative to 1 mole of diphenyl carbonate.
  • Catalyst / DPC indicates the number of moles of catalyst per mole of diphenyl carbonate.
  • MAA / DPC indicates the number of moles of methacrylic acid per mole of diphenyl carbonate.
  • Examples 1 to 21 show that (meth) acrylic acid ester can be produced by reacting (meth) acrylic anhydride and a carbonate compound in a reaction solution. Further, from Examples 1 to 15 and 17 to 21, when a basic nitrogen-containing organic compound, a Group 1 metal compound, or a Group 2 metal compound was used as a catalyst, the (meth) acrylic ester was more efficiently obtained. It can be seen that it can be manufactured. Furthermore, from comparison between Examples 20 and 21, it can be seen that phenothiazine is preferably present as a polymerization inhibitor.
  • Example 22 In a 30 mm ⁇ ⁇ 200 mm test tube equipped with an air introduction tube, diphenyl carbonate 9.51 g (44.4 mmol), magnesium methacrylate 0.436 g (2.24 mmol), polymerization inhibitor BTOX 0.034 g, purity 91. 9.01 g of 3% by weight methacrylic anhydride (53.4 mmol as methacrylic anhydride) was added.
  • methacrylic acid was added so that the amount of methacrylic acid in the liquid containing methacrylic acid contained in the raw material methacrylic anhydride was 0.85 g (9.9 mmol).
  • the mass of the raw material was 19.84 g.
  • the internal temperature was heated to 130 ° C. and stirred for 3 hours. That is, the reaction time was 3 hours.
  • 5.90 g (36.4 mmol) of phenyl methacrylate was produced, and the amount of phenyl methacrylate produced (phenyl methacrylate production (g) / mass of raw material (g)) relative to the mass of the raw material was 0.30. (G / g).
  • Examples 23 to 27 The same operation as in Example 22 was performed except that the conditions shown in Table 2 were used. As a result of the reaction, the amount of phenyl methacrylate produced and the amount of phenyl methacrylate produced per mass of raw material are shown in Table 2.
  • MAOMA methacrylic anhydride.
  • DPC represents diphenyl carbonate.
  • MAA indicates methacrylic acid.
  • PHMA phenyl methacrylate.
  • BTOX represents 4-benzoyloxy-2,2,6,6-tetramethylpiperidine-N-oxyl.
  • Mg (MAA) 2 indicates magnesium methacrylate.
  • MAOMA / DPC indicates the number of moles of methacrylic anhydride relative to 1 mole of diphenyl carbonate.
  • Catalyst / DPC indicates the number of moles of catalyst per mole of diphenyl carbonate.
  • MAA / DPC indicates the number of moles of methacrylic acid per mole of diphenyl carbonate.
  • Example 28 In a 50 mL three-necked round bottom flask equipped with an air inlet tube, 14.26 g (66.6 mmol) of diphenyl carbonate, 0.650 g (3.34 mmol) of magnesium methacrylate as a catalyst, 0.098 g of phenothiazine as a polymerization inhibitor, purity of 91. 2.26 g of methacrylic acid anhydride (13.4 mmol as methacrylic acid anhydride) was added. Next, methacrylic acid was added so that the amount of methacrylic acid in the liquid containing methacrylic acid contained in the raw material methacrylic anhydride was 1.50 g (17.4 mmol).
  • Example 29 In a 50 mL three-necked round bottom flask equipped with an air inlet tube, 12.36 g (57.7 mmol) of diphenyl carbonate, 0.89 g (10.4 mmol) of methacrylic acid, 1.124 g (5.78 mmol) of magnesium methacrylate as a catalyst, polymerization As an inhibitor, 0.077 g of phenothiazine was added. While air was blown into the mixture at a flow rate of 20 mL / min, the mixture was heated and stirred so that the internal temperature became 130 ° C.
  • Example 30 In a 50 mL three-necked round bottom flask equipped with an air inlet tube, 14.26 g (66.6 mmol) of diphenyl carbonate, 1.03 g (12.0 mmol) of methacrylic acid, 1.297 g (6.67 mmol) of magnesium methacrylate as a catalyst, polymerization As an inhibitor, 0.045 g of phenothiazine was added. While air was blown into the mixture at a flow rate of 20 mL / min, the mixture was heated and stirred so that the internal temperature became 130 ° C.
  • the flow rate is 0.150 g / min during the period of 15 minutes to 42 minutes, the flow rate is 0.050 g / minute during the period of 42 minutes to 120 minutes, 120 minutes.
  • methacrylic acid As 66.3 mmol, and methacrylic acid as 1.6 mmol).
  • 19.9 g (122.8 mmol) of phenyl methacrylate was produced.
  • the yield of phenyl methacrylate in this example calculated by the formula (14) was 92.5%.
  • Example 31 In a 50 mL three-necked round bottom flask equipped with an air introduction tube, 14.29 g (66.7 mmol) of diphenyl carbonate, 1.17 g (13.6 mmol) of methacrylic acid, 1.300 g (6.69 mmol) of magnesium methacrylate as a catalyst, polymerization As an inhibitor, 0.046 g of phenothiazine was added. While air was blown into the mixture at a flow rate of 20 mL / min, the mixture was heated and stirred so that the internal temperature became 130 ° C.
  • the flow rate is 0.125 g / min during the period of 15 minutes to 45 minutes, the flow rate is 0.052 g / minute during the period of 45 minutes to 120 minutes, 120 minutes.
  • 20.5 g (126.4 mmol) of phenyl methacrylate was produced.
  • the yield of phenyl methacrylate in this example calculated by the formula (14) was 94.8%.
  • Example 32 In a 30 mm ⁇ ⁇ 200 mm test tube equipped with an air introduction tube, 9.50 g (44.4 mmol) of diphenyl carbonate, 7.51 g of methacrylic anhydride (44.5 mmol as methacrylic anhydride) with a purity of 91.3 mass%, As a catalyst, 0.436 g (2.24 mmol) of magnesium methacrylate and 0.034 g of phenothiazine as a polymerization inhibitor were added.
  • methacrylic acid was added so that the amount of methacrylic acid in the liquid containing methacrylic acid contained in the raw material methacrylic anhydride was 0.83 g (9.6 mmol). While air was blown into the mixed solution at a flow rate of 20 mL per minute, the internal temperature was heated to 130 ° C. and stirred for 300 minutes. As a result, 10.9 g (67.5 mmol) of phenyl methacrylate was produced. The yield of phenyl methacrylate in this example calculated by the formula (14) was 76.0%.
  • Table 3 shows the number of moles of the raw materials finally used in Examples 28 to 32, the molar ratio, and the yield of phenyl methacrylate.
  • MAOMA methacrylic anhydride.
  • DPC represents diphenyl carbonate.
  • MAA indicates methacrylic acid.
  • PHMA represents phenyl methacrylate.
  • Mg (MAA) 2 indicates magnesium methacrylate.
  • MAOMA / DPC indicates the number of moles of methacrylic anhydride relative to 1 mole of diphenyl carbonate.
  • Catalyst / DPC indicates the number of moles of catalyst per mole of diphenyl carbonate.
  • MAA / DPC indicates the number of moles of methacrylic acid per mole of diphenyl carbonate.
  • methacrylic anhydride purity obtained by distillation of 81.8% by mass (including 0.1% by mass of methacrylic acid) methacrylic anhydride purchased from Aldrich was 98.7% by mass. Methacrylic anhydride (including 1.3% by weight of methacrylic acid), 99.8% by weight (including 0.2% by weight of methacrylic acid), and 67.6% by weight of purity purchased from Aldrich. A methacrylic anhydride having a purity of 95.2% by mass (including 4.8% by mass of methacrylic acid) obtained by distillation of methacrylic anhydride was used.
  • benzoic anhydride the one having a purity of 99% by mass purchased from Tokyo Chemical Industry Co., Ltd. was used.
  • acetic anhydride the thing of purity 99 mass% purchased from frame school pure drug company was used.
  • Diphenyl carbonate having a purity of 99% by mass purchased from Tokyo Chemical Industry Co., Ltd. was used.
  • Example 33 In a 30 mm ⁇ ⁇ 200 mm test tube equipped with an air introduction tube, 9.50 g (44.4 mmol) of diphenyl carbonate, 0.054 g (0.45 mmol) of 4-dimethylaminopyridine as a catalyst, 0.010 g of phenothiazine as a polymerization inhibitor, 7.16 g of methacrylic anhydride having a purity of 95.2% by mass (44.2 mmol as methacrylic anhydride) was added. Next, methacrylic acid was added so that the amount of methacrylic acid in the liquid containing methacrylic acid contained in the raw material methacrylic anhydride was 0.80 g (9.3 mmol).
  • Examples 34 to 45 Comparative Examples 1 to 4> The same operation as in Example 33 was performed except that the conditions shown in Table 5 were used. The results are shown in Table 5.
  • MAOMA methacrylic anhydride.
  • DPC diphenyl carbonate.
  • MAA indicates methacrylic acid.
  • PHMA phenyl methacrylate.
  • BTOX represents 4-benzoyloxy-2,2,6,6-tetramethylpiperidine-N-oxyl.
  • DMAP represents 4-dimethylaminopyridine.
  • Mg (MAA) 2 indicates magnesium methacrylate.
  • 4MPy represents 4-methoxypyridine.
  • 4AP represents 4-aminopyridine.
  • MIM represents 1-methylimidazole.
  • Ca (MAA) 2 indicates calcium methacrylate.
  • Na (MAA) indicates sodium methacrylate.
  • Ti (OBu) 4 represents tetrabutoxy titanium.
  • Bu 2 SnO represents dibutyltin oxide.
  • Sc (OTf) 3 represents scandium trifluoromethanesulfonate. In Comparative Example 1, no catalyst was added.
  • MAOMA / DPC indicates the number of moles of methacrylic anhydride relative to 1 mole of diphenyl carbonate.
  • Catalyst / DPC indicates the number of moles of catalyst per mole of diphenyl carbonate.
  • Example 46 In a test tube of 30 mm ⁇ ⁇ 200 mm, diphenyl carbonate 8.99 g (42.0 mmol), 4-dimethylaminopyridine 0.015 g (0.12 mmol) as a catalyst, acetic anhydride 4.29 g (42.0 mmol), as an internal standard 1.21 g of anisole was added. The mixture was heated so that the internal temperature became 80 ° C. and stirred for 3 hours. That is, the reaction time was 3 hours. As a result, 2.55 g (48.7 mmol) of phenyl acetate was produced. The yield of phenyl acetate in this example calculated by the following formula (16) was 58.0%.
  • Example 47 The same operation as in Example 46 was performed except that the conditions shown in Table 6 were used. The results are shown in Table 6.
  • Ac 2 O represents acetic anhydride.
  • DPC represents diphenyl carbonate.
  • AcOPh represents phenyl acetate.
  • PhOMe indicates anisole.
  • DMAP represents 4-dimethylaminopyridine.
  • Ac 2 O / DPC indicates the number of moles of acetic anhydride relative to 1 mole of diphenyl carbonate.
  • Catalyst / DPC indicates the number of moles of catalyst per mole of diphenyl carbonate.
  • Example 48 In a 30 mm ⁇ ⁇ 200 mm test tube, 6.70 g (31.3 mmol) of diphenyl carbonate, 7.08 g (31.3 mmol) of benzoic anhydride, 0.019 g (0.16 mmol) of 4-dimethylaminopyridine as a catalyst, internal standard 0.75 g of anisole was added. The mixture was heated to an internal temperature of 90 ° C. and stirred for 3 hours. That is, the reaction time was 3 hours. As a result, 12.4 g (62.6 mmol) of phenyl benzoate was produced. The yield of phenyl benzoate in this example calculated by the following formula (17) was 80.1%.
  • Examples 49 and 50 Comparative Examples 5 and 6> The same operation as in Example 48 was performed except that the conditions shown in Table 7 were used. The results are shown in Table 7.
  • Bz 2 O represents benzoic anhydride.
  • DPC represents diphenyl carbonate.
  • BzOPh represents phenyl benzoate.
  • PhOMe indicates anisole.
  • DMAP represents 4-dimethylaminopyridine.
  • Mg (acac) 2 ⁇ 2H 2 O represents magnesium acetylacetone dihydrate.
  • CF 3 SO 3 H represents trifluoromethanesulfonic acid. In Comparative Example 5, no catalyst was added.
  • Bz 2 O / DPC indicates the number of moles of benzoic anhydride relative to 1 mole of diphenyl carbonate.
  • Catalyst / DPC indicates the number of moles of catalyst per mole of diphenyl carbonate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

 (メタ)アクリル酸エステル及びカルボン酸芳香族エステルを効率よく製造することができる方法を提供する。本発明に係る(メタ)アクリル酸エステルの製造方法は、(メタ)アクリル酸無水物とカーボネート化合物とを反応させる。また、本発明に係るカルボン酸芳香族エステルの製造方法は、カルボン酸無水物と芳香族カーボネートとを触媒存在下で反応させるカルボン酸芳香族エステルの製造方法であって、前記触媒が含塩基性窒素有機化合物、第1族金属化合物、および第2族金属化合物からなる群から選択される少なくとも1種である。

Description

(メタ)アクリル酸エステルの製造方法及びカルボン酸芳香族エステルの製造方法
 本発明は(メタ)アクリル酸エステルの製造方法及びカルボン酸芳香族エステルの製造方法に関する。
 (メタ)アクリル酸エステルの製造方法として、特許文献1には、(メタ)アクリル酸とアルコールとを酸触媒下で脱水反応させる方法が開示されている。特許文献2には、(メタ)アクリル酸の低級アルキルエステルとアルコールとをエステル交換反応させる方法が開示されている。非特許文献1には、(メタ)アクリル酸クロリドとアルコールとをアミン存在下で反応させる方法が開示されている。
 また、特許文献3には、カルボン酸とフェノールとを酸触媒下で脱水反応させる方法が開示されている。特許文献4には、カルボン酸芳香族エステルとジフェニルカーボネートとを反応させる方法が開示されている。
特開昭62-132840号公報 特開2002-3444号公報 特開2011-105667号公報 特開2007-246503号公報
Journal of Organic Chemistry,1977,42,3965
 しかしながら、特許文献1に記載された方法では、酸性触媒を用いるため、副生物が多かったり、生成する水により(メタ)アクリル酸エステルが分解したりするため、(メタ)アクリル酸エステルを効率よく合成することができない。
 特許文献2に記載された方法では、エステル交換反応が平衡反応であるため、原料の(メタ)アクリル酸の低級アルキルエステル又はアルコールを余剰に使用するため、(メタ)アクリル酸エステルを効率よく合成することができない。また、反応で生成するアルコールを効率よく除去するための装置を反応器に設置する必要がある。
 非特許文献1に記載された方法では、原料として用いる(メタ)アクリル酸クロリドが高価であったり、生成するアミン塩酸塩の除去工程での廃水処理の負荷が大きかったりするため、工業的な製造法としては満足しえるものではない。
 したがって、(メタ)アクリル酸エステルの製造方法について更なる改良が望まれている。
 また、特許文献3に記載された方法では、反応によって生成する水によりカルボン酸芳香族エステルが分解するため、反応の平衡を生成系に偏らせることが難しく、カルボン酸芳香族エステルを効率よく合成することができない。
 特許文献4に記載された方法では、ジフェニルカーボネートに対して、余剰のカルボン酸芳香族エステルを必要とするため、反応容積あたりのカルボン酸芳香族エステルの生成量が少ない。
 したがって、カルボン酸芳香族エステルの製造方法について更なる改良が望まれている。
 本発明の目的は、(メタ)アクリル酸エステル及びカルボン酸芳香族エステルを効率よく製造することができる方法を提供することにある。
 本発明は、以下の[1]~[15]である。
 [1](メタ)アクリル酸無水物とカーボネート化合物とを反応させる、(メタ)アクリル酸エステルの製造方法。
 [2]カーボネート化合物1モルに対し、0.1モル以上、10モル以下の(メタ)アクリル酸無水物を反応させる、[1]に記載の(メタ)アクリル酸エステルの製造方法。
 [3]カーボネート化合物1モルに対し、0.001モル以上、1.5モル以下のカルボン酸の存在下に反応させる、[1]又は[2]に記載の(メタ)アクリル酸エステルの製造方法。
 [4]反応液中に触媒として含塩基性窒素有機化合物、第1族金属化合物、および第2族金属化合物からなる群から選択される少なくとも1種を存在させて反応させる、[1]から[3]のいずれかに記載の(メタ)アクリル酸エステルの製造方法。
 [5]触媒が、下記式(5)~(7)で示される化合物からなる群から選択される少なくとも1種である、[4]に記載の(メタ)アクリル酸エステルの製造方法。
Figure JPOXMLDOC01-appb-C000007
(式(5)中、NR2122基はピリジン環の2位、3位、および4位のいずれか1つに結合している。R21およびR22は、それぞれ独立に、水素、置換基を有してもよい直鎖状、置換基を有してもよい分岐鎖状、若しくは置換基を有してもよい環状の炭素数1~30のアルキル基、置換基を有してもよい直鎖状、置換基を有してもよい分岐鎖状、若しくは置換基を有してもよい環状の炭素数2~30のアルケニル基、又は置換基を有してもよい炭素数6~30のアリール基である。R21とR22とが結合して、環状構造を形成していてもよい。)。
Figure JPOXMLDOC01-appb-C000008
(式(6)中、OR23基はピリジン環の2位、3位、および4位のいずれか1つに結合している。R23は、置換基を有してもよい直鎖状、置換基を有してもよい分岐鎖状、若しくは置換基を有してもよい環状の炭素数1~30のアルキル基、置換基を有してもよい直鎖状、置換基を有してもよい分岐鎖状、若しくは置換基を有してもよい環状の炭素数2~30のアルケニル基、又は置換基を有してもよい炭素数6~30のアリール基である。)。
Figure JPOXMLDOC01-appb-C000009
(式(7)中、R24は置換基を有してもよい直鎖状、置換基を有してもよい分岐鎖状、若しくは置換基を有してもよい環状の炭素数1~30のアルキル基、置換基を有してもよい直鎖状、置換基を有してもよい分岐鎖状、若しくは置換基を有してもよい環状の炭素数2~30のアルケニル基、又は置換基を有してもよい炭素数6~30のアリール基である。)。
 [6]カーボネート化合物がジフェニルカーボネートである、[1]から[5]のいずれかに記載の(メタ)アクリル酸エステルの製造方法。
 [7]反応液中に、重合防止剤としてフェノチアジンを存在させる、[1]から[6]のいずれかに記載の(メタ)アクリル酸エステルの製造方法。
 [8]カーボネート化合物を含む溶液に、(メタ)アクリル酸無水物の一部または全量を、逐次添加または連続添加する、[1]から[7]のいずれかに記載の(メタ)アクリル酸エステルの製造方法。
 [9]反応原料全量に対し、0.005質量%以上、10質量%以下の水酸基を有する化合物の存在下に反応させる、[1]から[8]のいずれかに記載の(メタ)アクリル酸エステルの製造方法。
 [10]反応温度が40℃以上、200℃以下である、[1]から[9]のいずれかに記載の(メタ)アクリル酸エステルの製造方法。
 [11]カルボン酸無水物と芳香族カーボネートとを触媒存在下で反応させるカルボン酸芳香族エステルの製造方法であって、
 前記触媒が含塩基性窒素有機化合物、第1族金属化合物、および第2族金属化合物からなる群から選択される少なくとも1種であるカルボン酸芳香族エステルの製造方法。
 [12]触媒が、下記式(5)~(7)で示される化合物からなる群から選択される少なくとも1種である[11]に記載のカルボン酸芳香族エステルの製造方法。
Figure JPOXMLDOC01-appb-C000010
(式(5)中、NR2122基はピリジン環の2位、3位、および4位のいずれか1つに結合している。R21およびR22は、それぞれ独立に、水素、置換基を有してもよい直鎖状、置換基を有してもよい分岐鎖状、若しくは置換基を有してもよい環状の炭素数1~30のアルキル基、置換基を有してもよい直鎖状、置換基を有してもよい分岐鎖状、若しくは置換基を有してもよい環状の炭素数2~30のアルケニル基、又は置換基を有してもよい炭素数6~30のアリール基である。R21とR22とが結合して、環状構造を形成していてもよい。)。
Figure JPOXMLDOC01-appb-C000011
(式(6)中、OR23基はピリジン環の2位、3位、および4位のいずれか1つに結合している。R23は、置換基を有してもよい直鎖状、置換基を有してもよい分岐鎖状、若しくは置換基を有してもよい環状の炭素数1~30のアルキル基、置換基を有してもよい直鎖状、置換基を有してもよい分岐鎖状、若しくは置換基を有してもよい環状の炭素数2~30のアルケニル基、又は置換基を有してもよい炭素数6~30のアリール基である。)。
Figure JPOXMLDOC01-appb-C000012
(式(7)中、R24は置換基を有してもよい直鎖状、置換基を有してもよい分岐鎖状、若しくは置換基を有してもよい環状の炭素数1~30のアルキル基、置換基を有してもよい直鎖状、置換基を有してもよい分岐鎖状、若しくは置換基を有してもよい環状の炭素数2~30のアルケニル基、又は置換基を有してもよい炭素数6~30のアリール基である。)。
 [13]芳香族カーボネートがジフェニルカーボネートである[11]又は[12]に記載のカルボン酸芳香族エステルの製造方法。
 [14]カルボン酸無水物がアクリル酸無水物、またはメタクリル酸無水物である[11]から[13]のいずれかに記載のカルボン酸芳香族エステルの製造方法。
 [15]反応温度が40℃以上、200℃以下である、[11]から[14]のいずれかに記載のカルボン酸芳香族エステルの製造方法。
 本発明によれば、(メタ)アクリル酸エステル及びカルボン酸芳香族エステルを効率よく製造することができる。
実施例28および29における反応時間に対するフェノール濃度を示すグラフである。 実施例30から32における反応時間に対するフェノール濃度を示すグラフである。
 [第一の実施形態]
 本発明に係る(メタ)アクリル酸エステルの製造方法は、(メタ)アクリル酸無水物とカーボネート化合物とを反応させる。本発明に係る方法では、原料として(メタ)アクリル酸無水物とカーボネート化合物とを用いることにより、(メタ)アクリル酸エステルを短時間で、かつ高収率で製造することができる。また、副生物の副生量が少ないためバッチあたりの効率性が高く、仕込み原料の量に対する得られる(メタ)アクリル酸エステルの量の比率が高い。すなわち、本発明によれば、(メタ)アクリル酸エステルを効率よく製造することができ、簡便かつ工業的にも好適な製造方法を提供できる。
 以下、本発明に係る(メタ)アクリル酸エステルの製造方法について詳しく説明する。
 なお、本明細書において、(メタ)アクリル酸は、アクリル酸および/またはメタクリル酸を意味する。また、(メタ)アクリル酸エステルは、アクリル酸エステルおよび/またはメタクリル酸エステルを意味する。
 ((メタ)アクリル酸無水物)
 本発明で用いられる(メタ)アクリル酸無水物の種類は特に制限はなく、アクリル酸無水物であっても、メタクリル酸無水物であっても、これらの混合物であってもよい。しかしながら、アクリル酸無水物、またはメタクリル酸無水物であることが好ましく、メタクリル酸無水物であることが特に好ましい。
 本発明で用いられる(メタ)アクリル酸無水物の純度は特に限定されないが、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、83質量%以上であることがさらに好ましく、92質量%以上であることが特に好ましく、96質量%以上であることが最も好ましい。純度50質量%以上の(メタ)アクリル酸無水物を使用することにより、触媒活性の低下を抑制したり、反応容積あたりの生成量を多くしたりすることができる。
 ((メタ)アクリル酸無水物の使用量)
 本発明で用いる(メタ)アクリル酸無水物の使用量は特に限定されないが、後述する、使用するカーボネート化合物1モルに対して、0.1モル以上10モル以下であることが好ましい。(メタ)アクリル酸無水物の使用量を0.1モル以上10モル以下にすることにより、反応容積あたりの生成量を多くすることができる。(メタ)アクリル酸無水物の使用量は、カーボネート化合物1モルに対して、0.33モル以上5モル以下であることがより好ましく、0.6モル以上3モル以下であることがさらに好ましく、0.83モル以上1.5モル以下であることが特に好ましく、0.95モル以上1.1モル以下であることが最も好ましい。
 (カーボネート化合物)
 本発明においてカーボネート化合物とは、分子内に炭素原子と結合したカーボネート基(-O-C(=O)-O-)を有するカーボネート化合物を示す。本発明に係るカーボネート化合物の種類は特に限定されないが、下記式(1)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000013
 式(1)中、R11およびR12は、それぞれ独立に、置換基を有してもよい直鎖状、分岐鎖状、若しくは環状の炭素数1~30のアルキル基、置換基を有してもよい直鎖状、分岐鎖状、若しくは環状の炭素数2~30のアルケニル基、又は置換基を有してもよい炭素数6~30のアリール基である。R11とR12とが結合して、環状構造を形成していてもよい。なお、本発明において「置換基を有していてもよい」とは、任意の置換基を1つ以上有してもよいという意味であり、例えば、エステル結合、アミド結合、エーテル結合、スルフィド結合、ジスルフィド結合、ウレタン結合、アミノ基、ニトロ基、シアノ基、チオール基、ヒドロキシル基、カルボキシル基、ケトン基、ホルミル基、アセタール基、チオアセタール基、スルホニル基、ハロゲン、ケイ素、リン等を1つ以上有してもよいという意味である。
 式(1)で表される化合物としては、例えば、エチルメチルカーボネート、メチルフェニルカーボネート、アリルメチルカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジ(n-プロピル)カーボネート、ジイソプロピルカーボネート、ジ(n-ブチル)カーボネート、ジ(tert-ブチル)カーボネート、ジベンジルカーボネート、トリホスゲン、ジフェニルカーボネート、ジナフチルカーボネート、ジ(4-ニトロフェニル)カーボネート、ジ(o-トリル)カーボネート、エチレンカーボネート、プロピレンカーボネート、トリメチレンカーボネート、ビニレンカーボネート、シクロヘキセンカーボネート、o-フェニレンカーボネート等が挙げられる。
 カーボネート化合物は、下記式(2)または下記式(3)で表される化合物であることがより好ましい。
Figure JPOXMLDOC01-appb-C000014
 式(2)中、R13は、置換基を有してもよい直鎖状、分岐鎖状、若しくは環状の炭素数1~30のアルキル基、置換基を有してもよい直鎖状、分岐鎖状、若しくは環状の炭素数2~30のアルケニル基、又は置換基を有してもよい炭素数6~30のアリール基である。
Figure JPOXMLDOC01-appb-C000015
 式(3)中、R14は、置換基を有してもよい直鎖状、分岐鎖状、若しくは環状の炭素数2~30のアルキレン基、置換基を有してもよい直鎖状、分岐鎖状、若しくは環状の炭素数2~30のアルケニレン基、又は置換基を有してもよい炭素数6~30のアリーレン基である。
 式(2)で表される化合物としては、例えば、ジメチルカーボネート、ジエチルカーボネート、ジ(n-プロピル)カーボネート、ジイソプロピルカーボネート、ジ(n-ブチル)カーボネート、ジ(tert-ブチル)カーボネート、ジベンジルカーボネート、トリホスゲン、ジフェニルカーボネート、ジナフチルカーボネート、ジ(4-ニトロフェニル)カーボネート、ジ(o-トリル)カーボネート等が挙げられる。
 式(3)で表される化合物としては、例えば、エチレンカーボネート、プロピレンカーボネート、トリメチレンカーボネート、ビニレンカーボネート、シクロヘキセンカーボネート、o-フェニレンカーボネート等が挙げられる。これらのカーボネート化合物は一種を用いてもよく、二種以上を併用してもよい。
 カーボネート化合物は、下記式(4)で表される化合物であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000016
 式(4)中、R15は、置換基を有してもよい炭素数6~30のアリール基である。
 式(4)で表される化合物としては、例えば、ジフェニルカーボネート、ジナフチルカーボネート、ジ(4-ニトロフェニル)カーボネート、ジ(o-トリル)カーボネート等が挙げられる。
 中でも、副反応抑制の観点から、ジフェニルカーボネートであることが特に好ましい。
 本発明で用いられるカーボネート化合物の分子量(数平均分子量)は特に限定されるものではないが、90~100000であることが好ましい。カーボネート化合物の分子量を90~100000とすることにより、反応時にカーボネート化合物を効率よく混合させることができ、反応を効率よく進行させることができる。カーボネート化合物の分子量(数平均分子量)は90~50000であることがより好ましく、90~10000であることがさらに好ましく、90~3000であることが特に好ましく、90~1000であることが最も好ましい。なお、カーボネート化合物の分子量(数平均分子量)はGPC(Gel Permeation Chromatography)により測定した値である。
 (カーボネート化合物の純度)
 本発明で用いられるカーボネート化合物の純度は特に限定されないが、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることが特に好ましく、98質量%以上であることが最も好ましい。純度50質量%以上のカーボネート化合物を使用することにより、反応容積あたりの(メタ)アクリル酸エステルの生成量を多くすることができる。
 (触媒)
 (メタ)アクリル酸無水物とカーボネート化合物とを反応液中で反応させる際、触媒は使用しても、使用しなくてもよいが、反応速度を高めることができるので、触媒を使用する方が好ましい。触媒を使用する場合、触媒の種類は、効率良く(メタ)アクリル酸エステルが得られる限り特に限定されないが、反応速度の観点から、含塩基性窒素有機化合物、第1族金属化合物、および第2族金属化合物からなる群から選択される少なくとも1種であることが好ましい。触媒は1種を単独で使用してもよく、2種以上を併用してもよい。なお、含塩基性窒素有機化合物とは、塩基性窒素を含む有機化合物のことである。
 (含塩基性窒素有機化合物)
 含塩基性窒素有機化合物は、特に限定されるものではなく、例えば1級アミン化合物、2級アミン化合物、3級アミン化合物、芳香族アミン化合物、イミン化合物、窒素含有複素環式化合物等を用いることができる。
 含塩基性窒素有機化合物は、1分子内に窒素原子を複数有していてもよい。窒素原子を複数有する含塩基性窒素有機化合物としては、例えば、1級アミン部位、2級アミン部位、3級アミン部位、イミン部位、および窒素含複素環式部位からなる群から選択される少なくとも2つを有する含塩基性窒素有機化合物が挙げられる。なお、本明細書内では、窒素含有複素環式部位と、他の塩基性窒素部位とを有する含塩基性窒素有機化合物は窒素含有複素環式化合物と表す。イミン部位と1級アミン部位、2級アミン部位、または3級アミン部位を有する含塩基性窒素有機化合物はイミン化合物と表す。3級アミン部位と、1級アミン部位または2級アミン部位とを有する含塩基性窒素有機化合物は3級アミン化合物と表す。2級アミン部位と、1級アミン部位とを有する含塩基性窒素有機化合物は2級アミン化合物と表す。
 含塩基性窒素有機化合物は、窒素含有複素環式化合物、イミン化合物であることが好ましく、窒素含有複素環式化合物であることがより好ましい。
 窒素含有複素環式化合物としては、例えばピロール環、ピリジン環、アゼピン環、イミダゾール環、ピラゾール環、オキサゾール環、イミダゾリン環、ピラジン環、インドール環、イソインドール環、ベンゾイミダゾール環、プリン環、キノリン環、イソキノリン環、キノキサリン環、シンノリン環、プテリジン環、アクリジン環、カルバゾール環、ポルフィリン環、クロリン環、コリン環、ジアザビシクロウンデセン環、ジアザビシクロノネン環等を分子内に含む窒素含有複素環式化合物が挙げられる。これらの中でも、窒素含有複素環式化合物としては、ピロール環、ピリジン環、アゼピン環、イミダゾール環、ピラゾール環、オキサゾール環、イミダゾリン環、ピラジン環、インドール環、ベンゾイミダゾール環、キノリン環、ジアザビシクロウンデセン環、およびジアザビシクロノネン環からなる群から選択される少なくとも1つを分子内に有する窒素含有複素環式化合物が好ましい。また、窒素含有複素環式化合物としては、ピロール環、ピリジン環、イミダゾール環、ピラゾール環、イミダゾリン環、ピラジン環、ベンゾイミダゾール環、ジアザビシクロウンデセン環、およびジアザビシクロノネン環からなる群から選択される少なくとも1つを分子内に有する窒素含有複素環式化合物がより好ましい。さらに、窒素含有複素環式化合物としては、ピリジン環、イミダゾール環、ジアザビシクロウンデセン環、およびジアザビシクロノネン環からなる群から選択される少なくとも1つを分子内に有する窒素含有複素環式化合物がさらに好ましい。
 ピリジン環を有する窒素含有複素環式化合物としては、例えば、ピリジン、2-メチルピリジン、2-エチルピリジン、2-フェニルピリジン、2-シアノピリジン、2-ヒドロキシピリジン、2-(アミノメチル)ピリジン、2-アミノピリジン、2-(メチルアミノ)ピリジン、2-ジメチルアミノピリジン、3-メチルピリジン、3-エチルピリジン、3-フェニルピリジン、3-シアノピリジン、3-ヒドロキシピリジン、3-(アミノメチル)ピリジン、3-(メチルアミノ)ピリジン、3-アミノピリジン、4-メチルピリジン、4-エチルピリジン、4-tert-ブチルピリジン、4-フェニルピリジン、4-シアノピリジン、4-ヒドロキシピリジン、4-(アミノメチル)ピリジン、4-アミノピリジン、4-(メチルアミノ)ピリジン、4-ジメチルアミノピリジン、4-ジエチルアミノピリジン、4-アニリノピリジン、4-ピロリジノピリジン、4-(4-ピリジル)モルホリン、4-(4-アミノピペリジノ)ピリジン、4-メトキシピリジン、4-エトキシピリジン、4-フェノキシピリジン、2,6-ジメチルピリジン、2,6-ジアミノピリジン、3,5-ジメチルピリジン、2,2’-ビピリジン、4,4’-ビピリジン、4,4’-ジメチル-2,2’-ビピリジン等が挙げられる。
 イミダゾール環を有する窒素含有複素環式化合物としては、例えば、イミダゾール、1-メチルイミダゾール、1-エチルイミダゾール、1-プロピルイミダゾール、1-イソプロピルイミダゾール、1-ブチルイミダゾール、1-フェニルイミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-プロピルイミダゾール、2-イソプロピルイミダゾール、2-ブチルイミダゾール、2-フェニルイミダゾール、2-アミノイミダゾール、2-ホルミルイミダゾール、4-メチルイミダゾール、4-エチルイミダゾール、5-メチルイミダゾール、5-エチルイミダゾール、1,2-ジメチルイミダゾール等が挙げられる。
 ジアザビシクロウンデセン環を有する窒素含有複素環式化合物としては、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン等が挙げられる。
 ジアザビシクロノネン環を有する窒素含有複素環式化合物としては、1,5-ジアザビシクロ[4.3.0]-5-ノネン等が挙げられる。
 また、反応速度の観点から、窒素含有複素環式化合物は、下記式(5)~(7)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000017
 式(5)中、NR2122基はピリジン環の2位、3位、および4位のいずれか1つに結合している。R21およびR22は、それぞれ独立に、水素、置換基を有してもよい直鎖状、置換基を有してもよい分岐鎖状、若しくは置換基を有してもよい環状の炭素数1~30のアルキル基、置換基を有してもよい直鎖状、置換基を有してもよい分岐鎖状、若しくは置換基を有してもよい環状の炭素数2~30のアルケニル基、又は置換基を有してもよい炭素数6~30のアリール基である。R21とR22とが結合して、環状構造を形成していてもよい。
Figure JPOXMLDOC01-appb-C000018
 式(6)中、OR23基はピリジン環の2位、3位、および4位のいずれか1つに結合している。R23は、置換基を有してもよい直鎖状、置換基を有してもよい分岐鎖状、若しくは置換基を有してもよい環状の炭素数1~30のアルキル基、置換基を有してもよい直鎖状、置換基を有してもよい分岐鎖状、若しくは置換基を有してもよい環状の炭素数2~30のアルケニル基、又は置換基を有してもよい炭素数6~30のアリール基である。
Figure JPOXMLDOC01-appb-C000019
 式(7)中、R24は置換基を有してもよい直鎖状、置換基を有してもよい分岐鎖状、若しくは置換基を有してもよい環状の炭素数1~30のアルキル基、置換基を有してもよい直鎖状、置換基を有してもよい分岐鎖状、若しくは置換基を有してもよい環状の炭素数2~30のアルケニル基、又は置換基を有してもよい炭素数6~30のアリール基である。
 式(5)で表される化合物としては、例えば、2-アミノピリジン、2-(メチルアミノ)ピリジン、2-ジメチルアミノピリジン、3-アミノピリジン、3-(メチルアミノ)ピリジン、3-ジメチルアミノピリジン、4-アミノピリジン、4-(メチルアミノ)ピリジン、4-ジメチルアミノピリジン、4-ジエチルアミノピリジン、4-アニリノピリジン、4-ピロリジノピリジン、4-(4-ピリジル)モルホリン、4-(4-アミノピペリジノ)ピリジン等が挙げられる。
 式(6)で表される化合物としては、例えば、2-メトキシピリジン、3-メトキシピリジン、4-メトキシピリジン、4-エトキシピリジン、4-フェノキシピリジン等が挙げられる。
 式(7)で表される化合物としては、例えば、1-メチルイミダゾール、1-エチルイミダゾール、1-プロピルイミダゾール、1-イソプロピルイミダゾール、1-ブチルイミダゾール、1-フェニルイミダゾール等が挙げられる。
 窒素含有複素環式化合物は、下記式(8)で表される化合物であることがより好ましい。
Figure JPOXMLDOC01-appb-C000020
 式(8)中、R21およびR22は、それぞれ独立に、水素、置換基を有してもよい直鎖状、置換基を有してもよい分岐鎖状、若しくは置換基を有してもよい環状の炭素数1~30のアルキル基、置換基を有してもよい直鎖状、置換基を有してもよい分岐鎖状、若しくは置換基を有してもよい環状の炭素数2~30のアルケニル基、又は置換基を有してもよい炭素数6~30のアリール基である。
 式(8)で表される化合物としては、例えば、4-アミノピリジン、4-(メチルアミノ)ピリジン、4-ジメチルアミノピリジン、4-ジエチルアミノピリジン、4-アニリノピリジン等が挙げられる。
 窒素含有複素環式化合物は、4-ジメチルアミノピリジンであることが最も好ましい。これらの含塩基性窒素有機化合物は一種を用いてもよく、二種以上を併用してもよい。
 (第1族金属化合物)
 第1族金属化合物に含まれる金属としては、特に限定されないが、反応速度を高めることができるので、触媒を第1族に属する金属のうちリチウム、ナトリウム、カリウムが好ましく、リチウム、ナトリウムがより好ましい。
 第1族金属化合物としては、配位子を有する化合物であることが好ましい。配位子としては、例えば、アクリル酸イオン、メタクリル酸イオン、ギ酸イオン、酢酸イオン、アセチルアセトナートイオン、トリフルオロ-2,4-ペンタンジオナトイオン、フェノキシイオン、メトキシイオン、水酸化物イオン、炭酸イオン、炭酸水素イオン等が挙げられる。
 配位子は、イオン性配位子が好ましく、有機分子からなるイオン性配位子がより好ましく、カルボン酸イオン配位子、または芳香族アルコキシイオン配位子がさらに好ましい。また、配位子は、アクリル酸イオン配位子、メタクリル酸イオン配位子、またはフェノキシイオン配位子が特に好ましく、メタクリル酸イオン配位子、またはフェノキシイオン配位子が最も好ましい。
 有機分子からなるイオン性配位子を有する第1族金属化合物としては、例えば、アクリル酸リチウム、メタクリル酸リチウム、ギ酸リチウム、酢酸リチウム、リチウムフェノキシド、リチウムメトキシド、アクリル酸ナトリウム、メタクリル酸ナトリウム、ギ酸ナトリウム、酢酸ナトリウム、ナトリウムフェノキシド、ナトリウムメトキシド、アクリル酸カリウム、メタクリル酸カリウム、ギ酸カリウム、酢酸カリウム、カリウムフェノキシド、カリウムメトキシド等が挙げられる。これらのうち、該第1族金属化合物としては、アクリル酸リチウム、メタクリル酸リチウム、アクリル酸ナトリウム、メタクリル酸ナトリウム、アクリル酸カリウム、メタクリル酸カリウム、リチウムフェノキシド、ナトリウムフェノキシド、カリウムフェノキシドが好ましい。また、該第1族金属化合物としては、アクリル酸リチウム、メタクリル酸リチウム、アクリル酸ナトリウム、メタクリル酸ナトリウム、リチウムフェノキシド、ナトリウムフェノキシドがより好ましく、メタクリル酸リチウム、リチウムフェノキシド、メタクリル酸ナトリウム、ナトリウムフェノキシドがさらに好ましい。これらの第1族金属化合物は、一種を用いてもよく、二種以上を併用してもよい。
 (第2族金属化合物)
 第2族金属化合物に含まれる金属としては、特に限定されないが、反応速度を高めることができるので、触媒を第2族に属する金属のうちベリリウム、マグネシウム、カルシウムが好ましく、マグネシウム、カルシウムがより好ましく、マグネシウムがさらに好ましい。
 第2族金属化合物としては、配位子を有する化合物であることが好ましい。配位子としては、例えば、アクリル酸イオン、メタクリル酸イオン、ギ酸イオン、酢酸イオン、アセチルアセトナートイオン、トリフルオロ-2,4-ペンタンジオナトイオン、フェノキシイオン、メトキシイオン、水酸化物イオン、炭酸イオン、炭酸水素イオン等が挙げられる。
 配位子は、イオン性配位子が好ましく、有機分子からなるイオン性配位子がより好ましく、カルボン酸イオン配位子、芳香族アルコキシイオン配位子がさらに好ましい。また、配位子は、アクリル酸イオン配位子、メタクリル酸イオン配位子、フェノキシイオン配位子が特に好ましく、メタクリル酸イオン配位子、フェノキシイオン配位子が最も好ましい。
 有機分子からなるイオン性配位子を有する第2族金属化合物としては、例えば、アクリル酸ベリリウム、メタクリル酸ベリリウム、ギ酸ベリリウム、酢酸ベリリウム、ベリリウムフェノキシド、ベリリウムメトキシド、アクリル酸マグネシウム、メタクリル酸マグネシウム、ギ酸マグネシウム、酢酸マグネシウム、マグネシウムフェノキシド、マグネシウムメトキシド、マグネシウムアセチルアセトナート、ビス(トリフルオロ-2,4-ペンタンジオナト)マグネシウム、アクリル酸カルシウム、メタクリル酸カルシウム、ギ酸カルシウム、酢酸カルシウム、カルシウムフェノキシド、カルシウムメトキシド、カルシウムアセチルアセトナート、ビス(トリフルオロ-2,4-ペンタンジオナト)カルシウム等が挙げられる。これらのうち、該第2族金属化合物としては、アクリル酸マグネシウム、メタクリル酸マグネシウム、アクリル酸カルシウム、メタクリル酸カルシウム、マグネシウムフェノキシド、カルシウムフェノキシド、マグネシウムアセチルアセトナート、カルシウムアセチルアセトナートが好ましい。また、該第2族金属化合物としては、アクリル酸マグネシウム、メタクリル酸マグネシウム、マグネシウムフェノキシド、マグネシウムアセチルアセトナートがより好ましく、アクリル酸マグネシウム、メタクリル酸マグネシウム、マグネシウムフェノキシドがさらに好ましく、メタクリル酸マグネシウム、マグネシウムフェノキシドが特に好ましい。これらの第2族金属化合物は、一種を用いてもよく、二種以上を併用してもよい。
 (触媒量)
 本発明で用いる触媒の量は、効率良く(メタ)アクリル酸エステルが得られる限り特に限定されないが、カーボネート化合物1モルに対して0.0001モル以上0.5モル以下であることが好ましい。触媒量をカーボネート化合物に対して0.0001モル以上にすることにより、不純物による触媒活性の低下を効果的に抑制することができる。触媒量をカーボネート化合物1モルに対して0.5モル以下とすることにより、(メタ)アクリル酸エステルの生産性や生成物の純度低下を効率的に防ぐことができる。
 触媒量は、カーボネート化合物1モルに対して、0.0003モル以上0.3モル以下であることがより好ましく、0.0005モル以上0.2モル以下であることがさらに好ましく、0.001モル以上0.15モル以下であることが特に好ましく、0.005モル以上0.07モル以下であることが最も好ましい。
 本発明の反応において使用する触媒は、反応液に溶解した状態であってもよく、溶解していない状態であってもよいが、溶解した状態であることが好ましい。触媒が反応液に溶解していることにより、(メタ)アクリル酸エステルの生成速度を向上させることができる。
 (カルボン酸)
 (メタ)アクリル酸無水物とカーボネート化合物とを反応させる際には、カルボン酸の存在下又は非存在下のいずれで反応を行ってもよいが、反応速度の観点からカルボン酸の存在下に反応を行うことが好ましい。
 カルボン酸を存在させる場合、カルボン酸の種類は特に限定されないが、副反応抑制の観点から、(メタ)アクリル酸であることが好ましい。特に、カルボン酸としては、アクリル酸無水物を用いる場合はアクリル酸、メタクリル酸無水物を用いる場合はメタクリル酸であることが好ましい。
 カルボン酸を添加する場合、カルボン酸のモル数は、カーボネート化合物1モルに対して0.001モル以上1.5モル以下であることが好ましい。カルボン酸のモル数を、カーボネート化合物1モルに対して0.001モル以上にすることにより、反応を効率よく進行させることができる。カルボン酸のモル数を、カーボネート化合物1モルに対して1.5モル以下にすることにより、反応容積あたりの生成量を多くすることができる。
 カルボン酸の添加量は、カーボネート化合物1モルに対して、0.005モル以上1モル以下であることがより好ましく、0.01モル以上0.7モル以下であることがさらに好ましく、0.05モル以上0.55モル以下であることが特に好ましく、0.1モル以上0.3モル以下であることが最も好ましい。
 カルボン酸を存在させるタイミングも特には限定されず、(メタ)アクリル酸無水物とカーボネート化合物との反応前に存在させてもよく、反応中に存在させる又は添加してもよい。
 (溶媒)
 (メタ)アクリル酸無水物とカーボネート化合物との反応は、溶媒中で行うことができるが、生産性の観点から、溶媒を使用しないことが好ましい。溶媒を使用する場合は、溶媒の種類は特に限定されないが、炭素数が1~25の有機化合物であることが好ましい。該溶媒は、二重結合、三重結合、アミド結合、エーテル結合、スルフィド結合、ニトロ基、シアノ基、ケトン基、ハロゲン、ケイ素、リン等を1つ以上有してもよい。また、該溶媒は、環状構造や芳香族構造を有してもよい。該溶媒の量は特に限定されない。
 溶媒としては、例えば、ベンゼン、トルエン、キシレン、n-ヘキサン、シクロヘキサン、n-ヘプタン、n-オクタン、n-ノナン、n-デカン、1,4-ジオキサン、テトラヒドロフラン、テトラヒドロピラン、アニソール、メチル-tert-ブチルエーテル、ジブチルエーテル、ジフェニルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ-n-ブチルエーテル、アセトン、メチルエチルケトン、メチル-n-ブチルケトン、メチルイソブチルケトン、シクロヘキサノン、2-メチルシクロヘキサノン、ジメチルホルムアミド、ジメチルアセトアミド等が挙げられる。また、溶媒は、1種を単独で使用しても、2種以上を併用してもよい。
 (重合防止剤)
 本発明において、(メタ)アクリル酸無水物とカーボネート化合物とを反応させる際には、重合防止剤共存下で反応させることが好ましい。
 重合防止剤としては、例えば、フェノール、1,4-ベンゼンジオール、4-メトキシフェノール、2,6-ジ-tert-ブチルフェノール、2,4-ジ-tert-ブチルフェノール、2-tert-ブチル-4,6-ジメチルフェノール、2,6-ジ-tert-ブチル-4-メチルフェノール、2,4,6-トリ-tert-ブチルフェノール等のフェノール系重合防止剤、N,N’-ジアルキル化パラジフェニルアミン、N,N’-ジフェニル-p-フェニレンジアミン、N,N’-ジ-2-ナフチルパラフェニレンジアミン、N-フェニル-N-(1,3-ジメチルブチル)パラフェニレンジアミン、フェノチアジン等のアミン系重合防止剤、金属銅、硫酸銅、ジメチルジチオカルバミン酸銅、ジエチルジチオカルバミン酸銅、ジブチルジチオカルバミン酸銅等のジチオカルバミン酸銅系重合防止剤、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-N-オキシル(HO-TEMPO)、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン-N-オキシル(BTOX)、4-アセトキシ-2,2,6,6-テトラメチルピペリジン-N-オキシル等のN-オキシル系化合物、下記式(9)で例示されるN-オキシル系重合防止剤等を用いることができる。
Figure JPOXMLDOC01-appb-C000021
 式(9)中、k=1~18である。R31及びR32は、両方が水素原子、又は一方が水素原子であって他方がメチル基である。また、R33、R34、R35及びR36は、直鎖状又は分岐鎖状のアルキル基である。さらに、R37は、水素原子、又は直鎖状、分岐鎖状若しくは環状の炭化水素基を有するアシル基である。R37としては、例えば、アセチル基、ベンゾイル基、アクリロイル基、メタクリロイル基等が挙げられる。
 これらのうち、重合防止剤としては、フェノール、1,4-ベンゼンジオール、4-メトキシフェノール、N,N’-ジアルキル化パラジフェニルアミン、N,N’-ジフェニル-p-フェニレンジアミン、N,N’-ジ-2-ナフチルパラフェニレンジアミン、N-フェニル-N-(1,3-ジメチルブチル)パラフェニレンジアミン、フェノチアジン、HO-TEMPO、BTOXが好ましく、フェノール、1,4-ベンゼンジオール、4-メトキシフェノール、フェノチアジン、HO-TEMPO、BTOXがよりに好ましく、フェノール、1,4-ベンゼンジオール、BTOX、フェノチアジンがさらに好ましく、重合抑制効果の観点からフェノチアジンが特に好ましい。これらの重合防止剤は、1種を単独で使用してもよく、2種以上を併用してもよい。重合防止剤の添加量は、0.0001~2.0質量%とすることができ、0.001~1.0質量%とすることが好ましい。なお、重合防止剤として水酸基を有する化合物を用いる場合には、重合防止剤の濃度は後述する水酸基を有する化合物の濃度の範囲内であることが好ましい。
 (反応容器)
 本発明で用いられる反応容器の形態は、特に限定されるものではなく、例えば、回分式反応容器、連続流通撹拌反応容器、管型流通反応容器等が使用できる。なかでも、発生するガスによる流体体積の変化が少なく、設計が簡略化できる回分式反応容器、連続流通撹拌反応容器が好ましく、回分式反応容器がより好ましい。また、本発明で用いられる反応容器の内部には、撹拌の効率を上げるために、邪魔板又は構造物が設けられていてもよい。
 (酸素含有ガスの供給)
 (メタ)アクリル酸無水物とカーボネート化合物とを反応させる際には、酸素含有ガスを、反応容器内に連続的又は断続的に供給することが好ましく、反応容器内に連続的に供給することがより好ましい。酸素含有ガスは反応容器の2か所以上から供給してもよい。酸素含有ガスを供給する方法としては、反応液に直接導入して供給したり、気相部に導入して供給してもよく、また、これらを併用したり、途中で切り替えたりしてもよい。酸素含有ガスを供給する方法としては、反応を促進できたり、(メタ)アクリル酸無水物の副反応を抑制したりすることができることから、反応液に直接導入して供給させる方法を含む供給方法であることが好ましい。
 (原料の導入方法)
 反応原料((メタ)アクリル酸無水物、カーボネート化合物、場合により触媒、カルボン酸、溶媒等)を反応容器に導入する方法については、特に限定されるものではなく、どのような順番で導入してもよい。
 (メタ)アクリル酸無水物の反応容器への導入方法としては、(メタ)アクリル酸無水物を一度に導入して、カーボネート化合物や必要に応じて触媒を加えてもよい。また、触媒を使用する場合は、カーボネート化合物と触媒とを含む混合物に、一部または全ての(メタ)アクリル酸無水物を逐次添加または連続添加してもよい。また、これらを組み合わせた導入方法でもよい。なお、本明細書において、逐次添加とは複数回にわたって間欠的に添加すること、または初期仕込みとは別に、1回または複数回にわたって間欠的に添加することを意味する。
 副反応抑制の観点から、(メタ)アクリル酸無水物の反応容器への導入方法は、カーボネート化合物と、触媒を使用する場合は触媒とを含む溶液に、(メタ)アクリル酸無水物の一部または全量を、逐次添加または連続添加する方法を含むことが好ましく、(メタ)アクリル酸無水物の一部または全量を連続添加する方法を含むことがより好ましい。
 (メタ)アクリル酸無水物を逐次添加する際は、その添加量は一定でも一定でなくてもよいが、隣接する2回の添加のいずれかで添加量を減少させることが好ましく、隣接する2回の添加の全てで添加量を一定または減少させることがより好ましく、隣接する2回の添加の全てで添加量を減少させることがさらに好ましい。また、添加する間隔は一定でも、増加させても、減少させてもよいが、一定または増加させることが好ましく、増加させることがより好ましい。
 (メタ)アクリル酸無水物を連続添加する際は、その添加速度は一定でも、増加させても、減少させてもよいが、連続添加する区間の一部で添加速度を減少させることが好ましく、連続添加するすべての区間で添加速度を一定または減少させることがより好ましい。
 (反応液中の水酸基を有する化合物)
 (メタ)アクリル酸無水物とカーボネート化合物とを反応させる際に、反応選択率向上の点から、反応液中に水酸基を有する化合物の存在下で反応させることができる。この場合、反応液中に存在する水酸基を有する化合物の濃度は、反応原料全量に対して0.005質量%以上10質量%以下であることが好ましい。水酸基を有する化合物の濃度を0.005質量%以上にすることにより、(メタ)アクリル酸無水物を選択性良く(メタ)アクリル酸エステルに変換することができる。水酸基を有する化合物の濃度を10質量%以下にすることにより、(メタ)アクリル酸エステルを効率よく製造することができる。
 水酸基を有する化合物の濃度は、0.01質量%以上5質量%以下であることがより好ましく、0.03質量%以上3質量%以下であることがさらに好ましく、0.05質量%以上2質量%以下であることが特に好ましく、0.1質量%以上2質量%以下であることが最も好ましい。
 水酸基を有する化合物の種類は特に限定されないが、用いるカーボネート化合物のカーボネート部位をOHで置き換えたときに示される水酸基を有する化合物であることが好ましい。例えば、用いるカーボネート化合物が前記式(1)で表されるとき、水酸基を有する化合物はR11OHまたはR12OHであることが好ましく、R11とR12とが結合している場合は、HO-R11-R12-OHであることが好ましい。
 水酸基を有する化合物としては、フェノール、エチレングリコール、プロピレングリコール、メタノール、エタノール、プロパノール等を挙げることができる。これらの中でも、不純物抑制の点から、水酸基を有する化合物としては、フェノール、エチレングリコール等が好ましい。
 水酸基を有する化合物の濃度を前記好ましい範囲に維持する方法としては、反応液中の水酸基を有する化合物の濃度を、分析手法を用いてモニタリングしながら、水酸基を有する化合物を添加する方法が挙げられる。また、(メタ)アクリル酸無水物を逐次添加、または連続添加する場合においては、反応液中の水酸基を有する化合物の濃度を、分析手法を用いてモニタリングしながら、(メタ)アクリル酸無水物を逐次添加、または連続添加する方法が挙げられる。
 水酸基を有する化合物の濃度を前記好ましい範囲に維持する期間は、反応温度で反応させた期間の一部または全部であることが好ましく、反応温度に加熱した期間の30%以上の期間であることがより好ましく、反応温度に加熱した期間の50%以上の期間であることがさらに好ましく、反応温度に加熱した期間の80%以上の期間であることがさらにより好ましく、反応温度に加熱した期間の95%以上の期間であることが特に好ましく、反応温度に加熱したすべての期間であることが最も好ましい。
 (反応温度)
 (メタ)アクリル酸無水物とカーボネート化合物とを反応させる際の反応温度は、特に限定されるものでないが、40℃以上200℃以下であることが好ましい。反応温度を40℃以上にすることにより、反応を促進させることができる。一方、反応温度を200℃以下とすることにより、(メタ)アクリル酸無水物および(メタ)アクリル酸エステルの分解や副反応を抑制することができる。
 反応温度は、60℃以上180℃以下であることがより好ましく、80℃以上160℃以下であることがさらに好ましく、90℃以上140℃以下であることが特に好ましく、100℃以上140℃以下であることが最も好ましい。なお、反応中反応温度は一定である必要はなく、好ましい範囲で反応温度を変化させてもよい。
 (反応時間)
 (メタ)アクリル酸無水物とカーボネート化合物とを含む混合物を加熱して反応させる際の反応時間は、特に制限されないが、上述した反応温度で反応を行う場合、0.1~150時間が好ましく、0.3~100時間がより好ましく、0.5~60時間がさらに好ましく、1~40時間が特に好ましく、2~30時間が最も好ましい。0.1時間以上反応させることにより、反応を円滑に進行させることができる。また、150時間以下反応させることにより、工程費用等を低減することができ、また、(メタ)アクリル酸無水物および(メタ)アクリル酸エステルの副反応を抑制することができるため、良好に(メタ)アクリル酸エステルを製造できる。
 (圧力)
 反応させる際の圧力は、特に限定されるものではなく、減圧した状態、大気圧、加圧した状態のいずれでもよい。
 (精製工程)
 本発明において製造される(メタ)アクリル酸エステルは、必要に応じて精製を行うことができる。(メタ)アクリル酸エステルを精製する工程としては、分液工程、蒸留工程、晶析工程等を挙げることができる。これらの工程を単独で行ってもよく、2以上の工程を組み合わせて行ってもよい。分液工程と蒸留工程により(メタ)アクリル酸エステルを精製することが好ましい。
 分液工程にて(メタ)アクリル酸エステルを精製する場合、水酸化ナトリウム水溶液、水酸化カリウム水溶液等のアルカリ水溶液を使用して(メタ)アクリル酸エステルを洗浄することができる。使用するアルカリ水溶液のアルカリの濃度や洗浄回数については、反応条件等に応じて適宜選択することができる。
 蒸留工程の蒸留方法としては、特に限定されるものではなく、例えば、単蒸留、精密蒸留、薄膜蒸留等が挙げられる。蒸留工程での圧力は、特に限定されるものではなく、減圧した状態、大気圧、加圧した状態のいずれでもよいが、減圧した状態であることが好ましい。
 蒸留工程は、減圧した状態、大気圧、加圧した状態のいずれの圧力で行う場合にも、窒素雰囲気下で行っても、酸素含有ガス雰囲気下で行ってもよい。しかしながら、(メタ)アクリル酸エステルの重合を防止する観点から、気相部を酸素含有ガス雰囲気にすることが好ましく、酸素含有ガスを蒸留装置内に導入することがより好ましく、酸素含有ガスを蒸留される溶液中に直接導入することがさらに好ましい。
 晶析工程の条件についても特には限定されず、カルボン酸芳香族エステルの種類に応じて、溶媒の種類や晶析させる温度等を適宜選択することができる。
 [第二の実施形態]
 本発明に係るカルボン酸芳香族エステルの製造方法は、カルボン酸無水物と芳香族カーボネートとを触媒存在下で反応させるカルボン酸芳香族エステルの製造方法であって、前記触媒が含塩基性窒素有機化合物、第1族金属化合物、および第2族金属化合物からなる群から選択される少なくとも1種である。
 本発明では、カルボン酸無水物と芳香族カーボネートと反応させる際に、触媒として、含塩基性窒素有機化合物、第1族金属化合物、および第2族金属化合物からなる群から選択される少なくとも1種を用いる。これにより、カルボン酸無水物および芳香族カーボネートからカルボン酸芳香族エステルを短時間で、かつ高収率で製造することができる。すなわち、本発明によれば、カルボン酸芳香族エステルを効率よく製造することができ、簡便かつ工業的にも好適な製造方法を提供できる。以下、本発明に係るカルボン酸芳香族エステルの製造方法について詳しく説明する。
 (カルボン酸無水物)
 本発明で用いられるカルボン酸無水物とは、分子内に炭素原子と結合した酸無水物基(-C(=O)-O-C(=O)-)を有するカルボン酸無水物を示す。該カルボン酸無水物の種類は特に限定されないが、下記式(10)で表されるカルボン酸無水物が好ましい。
Figure JPOXMLDOC01-appb-C000022
 式(10)中、R41およびR42は、それぞれ独立に、置換基を有してもよい直鎖状、分岐鎖状、若しくは環状の炭素数1~30のアルキル基、置換基を有してもよい直鎖状、分岐鎖状、若しくは環状の炭素数2~30のアルケニル基、又は置換基を有してもよい炭素数6~30のアリール基である。R41とR42とが結合して、環状構造を形成していてもよい。
 式(10)で表されるカルボン酸無水物としては、例えば、酢酸無水物、プロピオン酸無水物、ピバル酸無水物、酪酸無水物、吉草酸無水物、イソ吉草酸無水物、ヘキサン酸無水物、ラウリン酸無水物、トリフルオロ酢酸無水物、トリクロロ酢酸無水物、アンゲリカ酸無水物、チグリン酸無水物、クロトン酸無水物、アクリル酸無水物、メタクリル酸無水物、シクロヘキサンカルボン酸無水物、安息香酸無水物、コハク酸無水物、マレイン酸無水物、グルタル酸無水物、フタル酸無水物、cis-1,2-シクロヘキサンジカルボン酸無水物、trans-1,2-シクロヘキサンジカルボン酸無水物、3,4,5,6-テトラヒドロフタル酸無水物、2,3-ナフタレンジカルボン酸無水物等が挙げられる。
 カルボン酸無水物は、下記式(11)または下記式(12)で表されるカルボン酸無水物であることがより好ましい。
Figure JPOXMLDOC01-appb-C000023
 式(11)中、R43は、置換基を有してもよい直鎖状、分岐鎖状、若しくは環状の炭素数1~30のアルキル基、置換基を有してもよい直鎖状、分岐鎖状、若しくは環状の炭素数2~30のアルケニル基、又は置換基を有してもよい炭素数6~30のアリール基である。
Figure JPOXMLDOC01-appb-C000024
 式(12)中、R44は、置換基を有してもよい直鎖状、分岐鎖状、若しくは環状の炭素数2~30のアルキレン基、又は置換基を有してもよい直鎖状、分岐鎖状、若しくは環状の炭素数2~30のアルケニレン基、又は置換基を有してもよい炭素数6~30のアリーレン基である。
 式(11)で表されるカルボン酸無水物としては、例えば、酢酸無水物、プロピオン酸無水物、ピバル酸無水物、酪酸無水物、吉草酸無水物、イソ吉草酸無水物、ヘキサン酸無水物、ラウリン酸無水物、トリフルオロ酢酸無水物、トリクロロ酢酸無水物、アンゲリカ酸無水物、チグリン酸無水物、クロトン酸無水物、アクリル酸無水物、メタクリル酸無水物、シクロヘキサンカルボン酸無水物、安息香酸無水物等が挙げられる。
 式(12)で表されるカルボン酸無水物としては、例えば、コハク酸無水物、マレイン酸無水物、グルタル酸無水物、フタル酸無水物、cis-1,2-シクロヘキサンジカルボン酸無水物、trans-1,2-シクロヘキサンジカルボン酸無水物、3,4,5,6-テトラヒドロフタル酸無水物、2,3-ナフタレンジカルボン酸無水物等が挙げられる。
 カルボン酸無水物は、前記式(11)で表されるカルボン酸無水物であることがさらに好ましく、ポリマー原料としての利用の観点から、アクリル酸無水物、またはメタクリル酸無水物であることが特に好ましく、メタクリル酸無水物であることが最も好ましい。これらのカルボン酸無水物は一種を用いてもよく、二種以上を併用してもよい。
 (カルボン酸無水物の使用量)
 本発明で用いるカルボン酸無水物の使用量は特に限定されないが、後述する芳香族カーボネート1モルに対して、0.1モル以上10モル以下であることが好ましい。カルボン酸無水物の使用量を芳香族カーボネート1モルに対して0.1モル以上10モル以下にすることにより、反応容積あたりの生成量を多くすることができる。カルボン酸無水物の使用量は、芳香族カーボネート1モルに対して、0.33モル以上5モル以下であることがより好ましく、0.6モル以上3モル以下であることがさらに好ましく、0.83モル以上1.5モル以下であることが特に好ましく、0.95モル以上1.1モル以下であることが最も好ましい。
 (芳香族カーボネート)
 本発明で用いられる芳香族カーボネートの種類は、芳香族基を有するカーボネートであれば特に限定されないが、下記式(13)で表される芳香族カーボネートが好ましい。
Figure JPOXMLDOC01-appb-C000025
 式(13)中、R45は、置換基を有してもよい炭素数6~30のアリール基である。なお、本発明において「置換基を有していてもよい」とは、任意の置換基を1つ以上有してもよいという意味であり、例えば、エステル結合、アミド結合、エーテル結合、スルフィド結合、ジスルフィド結合、ウレタン結合、アミノ基、ニトロ基、シアノ基、チオール基、ヒドロキシル基、カルボキシル基、ケトン基、ホルミル基、アセタール基、チオアセタール基、スルホニル基、ハロゲン、ケイ素、リン等を1つ以上有してもよいという意味である。
 式(13)で表される芳香族カーボネートとしては、例えば、ジフェニルカーボネート、ジナフチルカーボネート、ジ(4-ニトロフェニル)カーボネート、ジ(o-トリル)カーボネート等が挙げられる。これらの中でも、入手容易性、安定性の観点から、芳香族カーボネートとしてはジフェニルカーボネートが好ましい。これらの芳香族カーボネートは一種を用いてもよく、二種以上を併用してもよい。
 (触媒)
 本発明で用いる触媒は、含塩基性窒素有機化合物、第1族金属化合物、および第2族金属化合物からなる群から選択される少なくとも1種である。これらの触媒は1種を単独で使用してもよく、2種以上を併用してもよい。なお、含塩基性窒素有機化合物とは、塩基性窒素を含む有機化合物のことである。含塩基性窒素有機化合物、第1族金属化合物、および第2族金属化合物としては、第一の実施形態と同様のものを用いることができる。
 (触媒量)
 本発明で用いる触媒の量は、効率良くカルボン酸芳香族エステルが得られる限り特に限定されないが、芳香族カーボネート1モルに対して0.0001モル以上0.5モル以下であることが好ましい。触媒量を芳香族カーボネートに対して0.0001モル以上にすることにより、不純物による触媒活性の低下を効果的に抑制することができる。触媒量を芳香族カーボネート1モルに対して0.5モル以下とすることにより、カルボン酸芳香族エステルの純度低下を効率的に防ぐことができ、生産性が向上する。
 触媒量は、芳香族カーボネート1モルに対して、0.0003モル以上0.3モル以下であることがより好ましく、0.0005モル以上0.2モル以下であることがさらに好ましく、0.001モル以上0.15モル以下であることが特に好ましく、0.005モル以上0.07モル以下であることが最も好ましい。
 本発明の反応において使用する触媒は、反応液に溶解した状態であってもよく、溶解していない状態であってもよいが、溶解した状態であることが好ましい。触媒が反応液に溶解していることにより、カルボン酸芳香族エステルの生成速度を向上させることができる。
 (カルボン酸)
 カルボン酸無水物と芳香族カーボネートとを反応させる際には、反応速度確保の観点から、カルボン酸を添加することが好ましい。カルボン酸としては、カルボン酸無水物のカルボン酸であることが好ましい。例えば、アクリル酸無水物を用いる場合はアクリル酸、メタクリル酸無水物を用いる場合はメタクリル酸であることが好ましい。これらのカルボン酸は一種を用いてもよく、二種以上を併用してもよい。
 (溶媒)
 カルボン酸無水物と芳香族カーボネートとの反応は、溶媒中で行うことができる。しかしながら、生産性の観点から、溶媒を使用しないことが好ましい。溶媒を使用する場合、溶媒の種類は特に限定されないが、炭素数が1~25の有機化合物であることが好ましい。該溶媒は、二重結合、三重結合、アミド結合、エーテル結合、スルフィド結合、ニトロ基、シアノ基、ケトン基、ハロゲン、ケイ素、リン等を1つ以上有してもよい。また、該溶媒は、環状構造や芳香族構造を有してもよい。該溶媒の量は特に限定されない。
 溶媒としては、例えば、ベンゼン、トルエン、キシレン、n-ヘキサン、シクロヘキサン、n-ヘプタン、n-オクタン、n-ノナン、n-デカン、1,4-ジオキサン、テトラヒドロフラン、テトラヒドロピラン、アニソール、メチル-tert-ブチルエーテル、ジブチルエーテル、ジフェニルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ-n-ブチルエーテル、アセトン、メチルエチルケトン、メチル-n-ブチルケトン、メチルイソブチルケトン、シクロヘキサノン、2-メチルシクロヘキサノン、ジメチルホルムアミド、ジメチルアセトアミド等が挙げられる。また、溶媒は、1種を単独で使用しても、2種以上を併用してもよい。
 (反応容器)
 本発明で用いられる反応容器の形態は、特に限定されるものではなく、例えば、回分式反応容器、連続流通撹拌反応容器、管型流通反応容器等が使用できる。なかでも、発生するガスによる流体体積の変化が少なく、設計が簡略化できる回分式反応容器、連続流通撹拌反応容器が好ましく、回分式反応容器がより好ましい。また、本発明で用いられる反応容器の内部には、撹拌の効率を上げるために、邪魔板又は構造物が設けられていてもよい。
 (反応温度)
 カルボン酸無水物と芳香族カーボネートとを反応させる際の反応温度は、特に限定されるものでないが、40℃以上200℃以下であることが好ましい。反応温度を40℃以上にすることにより、反応を促進させることができる。一方、反応温度を200℃以下とすることにより、カルボン酸無水物およびカルボン酸芳香族エステルの分解や副反応を抑制することができる。
 反応温度は、60℃以上180℃以下であることがより好ましく、80℃以上160℃以下であることがさらに好ましく、90℃以上140℃以下であることが特に好ましく、100℃以上140℃以下であることが最も好ましい。なお、反応中反応温度は一定である必要はなく、好ましい範囲で反応温度を変化させてもよい。
 (反応時間)
 カルボン酸無水物と芳香族カーボネートとを含む混合物を加熱して反応させる際の反応時間は、特に制限されないが、上述した反応温度で反応を行う場合、0.1~150時間が好ましく、0.3~100時間がより好ましく、0.5~60時間がさらに好ましく、1~40時間が特に好ましく、2~30時間が最も好ましい。0.1時間以上反応させることにより、反応を円滑に進行させることができる。また、150時間以下反応させることにより、工程費用等を低減することができ、また、カルボン酸無水物およびカルボン酸芳香族エステルの副反応を抑制することができるため、良好にカルボン酸芳香族エステルを製造できる。
 (圧力)
 反応させる際の圧力は、特に限定されるものではなく、減圧した状態、大気圧、加圧した状態のいずれでもよい。
 (精製工程)
 本発明において製造されるカルボン酸芳香族エステルは、必要に応じて精製を行うことができる。カルボン酸芳香族エステルを精製する工程としては、分液工程、蒸留工程、晶析工程等を挙げることができる。これらの工程を単独で行ってもよく、2以上の工程を組み合わせて行ってもよい。分液工程と蒸留工程によりカルボン酸芳香族エステルを精製することが好ましい。
 分液工程にてカルボン酸芳香族エステルを精製する場合、水酸化ナトリウム水溶液、水酸化カリウム水溶液等のアルカリ水溶液を使用してカルボン酸芳香族エステルを洗浄することができる。使用するアルカリ水溶液のアルカリの濃度や洗浄回数については、反応条件等に応じて適宜選択することができる。
 蒸留工程の蒸留方法としては、特に限定されるものではなく、例えば、単蒸留、精密蒸留、薄膜蒸留等が挙げられる。蒸留工程での圧力は、特に限定されるものではなく、減圧した状態、大気圧、加圧した状態のいずれでもよいが、減圧した状態であることが好ましい。
 晶析工程の条件についても特には限定されず、カルボン酸芳香族エステルの種類に応じて、溶媒の種類や晶析させる温度等を適宜選択することができる。
 以下、本発明を実施例によってより詳細に説明するが、本発明はこれらに限定されるものではない。
 [第一の実施例]
 実施例において、フェノール、メタクリル酸フェニル等の分析は、高速液体クロマトグラフィーにより行った。
 メタクリル酸無水物(Methacrylic anhydride)としては、Aldrich社より購入した純度81.8質量%(メタクリル酸 0.1質量%含む)のメタクリル酸無水物、および純度67.6質量%(メタクリル酸 2.4質量%含む)のメタクリル無水物、純度81.8質量%のメタクリル酸無水物を蒸留して得られた純度98.7質量%(メタクリル酸 1.3質量%含む)のメタクリル酸無水物、99.4質量%(メタクリル酸 0.6質量%含む)のメタクリル酸無水物、および99.8質量%(メタクリル酸 0.2質量%含む)のメタクリル酸無水物、並びに純度67.6質量%のメタクリル酸無水物を蒸留して得られた純度91.3質量%(メタクリル酸 1.8質量%含む)のメタクリル酸無水物、および純度95.2質量%(メタクリル酸 4.8質量%含む)のメタクリル酸無水物を使用した。
 ジフェニルカーボネートとしては、東京化成株式会社より購入した純度99質量%のものを使用した。
 <実施例1>
 空気導入管を備えた30mmφ×200mmの試験管に、ジフェニルカーボネート9.52g(44.4mmol)、触媒として4-ジメチルアミノピリジン0.005g(0.04mmol)、重合防止剤としてフェノチアジン0.008g、純度95.2質量%のメタクリル酸無水物7.16g(メタクリル酸無水物として44.2mmol)を入れた。次いで、原料のメタクリル酸無水物中に含まれるメタクリル酸を含む液中のメタクリル酸量が0.80g(9.3mmol)となるようにメタクリル酸を加えた。この混合液に空気を毎分15mLの流量で吹き込みながら、内温が100℃になるように加熱して、3時間撹拌した。すなわち、反応時間は3時間であった。その結果、メタクリル酸フェニルが2.71g(16.7mmol)生成した。下記式(14)で計算される本実施例におけるメタクリル酸フェニルの収率は、18.8%であった。
Figure JPOXMLDOC01-appb-M000026
 <実施例2~21>
 表1に示す条件を用いた以外は、実施例1と同様の操作を行った。結果を表1に示す。
 なお、表1中、MAOMAはメタクリル酸無水物を示す。DPCはジフェニルカーボネートを示す。MAAはメタクリル酸を示す。PHMAはメタクリル酸フェニルを示す。BTOXは4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン-N-オキシルを示す。DMAPは4-ジメチルアミノピリジンを示す。Mg(MAA)はメタクリル酸マグネシウムを示す。4MPyは4-メトキシピリジンを示す。4APは4-アミノピリジンを示す。MIMは1-メチルイミダゾールを示す。Ca(MAA)はメタクリル酸カルシウムを示す。Na(MAA)はメタクリル酸ナトリウムを示す。
 表1中、MAOMA/DPCはジフェニルカーボネート1モルに対するメタクリル酸無水物のモル数を示す。触媒/DPCはジフェニルカーボネート1モルに対する触媒のモル数を示す。MAA/DPCはジフェニルカーボネート1モルに対するメタクリル酸のモル数を示す。
 実施例1~21から、(メタ)アクリル酸無水物とカーボネート化合物とを反応液中で反応させることで、(メタ)アクリル酸エステルが製造できることがわかる。また、実施例1~15、17~21から、含塩基性窒素有機化合物、第1族金属化合物、または第2族金属化合物を触媒として用いたとき、より効率的に(メタ)アクリル酸エステルが製造できることがわかる。さらに、実施例20と21の比較から、重合防止剤としてフェノチアジンを存在させることがより好ましいことが分かる。
Figure JPOXMLDOC01-appb-T000027
 
 <実施例22>
 空気導入管を備えた30mmφ×200mmの試験管に、ジフェニルカーボネート9.51g(44.4mmol)、触媒としてメタクリル酸マグネシウム0.436g(2.24mmol)、重合防止剤としてBTOX0.034g、純度91.3質量%のメタクリル酸無水物9.01g(メタクリル酸無水物として53.4mmol)を入れた。
 次いで、原料のメタクリル酸無水物中に含まれるメタクリル酸を含む液中のメタクリル酸量が0.85g(9.9mmol)となるようにメタクリル酸を加えた。このとき原料の質量は19.84gであった。この混合液に空気を毎分15mLの流量で吹き込みながら、内温が130℃になるように加熱して、3時間撹拌した。すなわち、反応時間は3時間であった。その結果、メタクリル酸フェニルは5.90g(36.4mmol)生成し、原料の質量に対するメタクリル酸フェニルの生成量(メタクリル酸フェニル生成量(g)/原料の質量(g))は、0.30(g/g)であった。
 <実施例23~27>
 表2に示す条件を用いた以外は、実施例22と同様の操作を行った。反応の結果、得られたメタクリル酸フェニルの生成量、原料の質量あたりのメタクリル酸フェニルの生成量を表2に示す。
 なお、表2中、MAOMAはメタクリル酸無水物を示す。DPCはジフェニルカーボネートを示す。MAAはメタクリル酸を示す。PHMAはメタクリル酸フェニルを示す。BTOXは4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン-N-オキシルを示す。Mg(MAA)はメタクリル酸マグネシウムを示す。
 表2中、MAOMA/DPCはジフェニルカーボネート1モルに対するメタクリル酸無水物のモル数を示す。触媒/DPCはジフェニルカーボネート1モルに対する触媒のモル数を示す。MAA/DPCはジフェニルカーボネート1モルに対するメタクリル酸のモル数を示す。
 実施例22~27から、カーボネート化合物1モルに対して、メタクリル酸無水物を0.1モル以上10モル以下にすることにより、反応容積あたりの生成量が多くなることがわかる。また、反応開始時のカルボン酸のモル数が、カーボネート化合物1モルに対し、0.001モル以上、1.5モル以下であるとき、反応容積あたりの(メタ)アクリル酸エステルの生産量が多くなることがわかる。
Figure JPOXMLDOC01-appb-T000028
 <実施例28>
 空気導入管を備えた50mL三口丸底フラスコに、ジフェニルカーボネート14.26g(66.6mmol)、触媒としてメタクリル酸マグネシウム0.650g(3.34mmol)、重合防止剤としてフェノチアジン0.098g、純度91.3質量%のメタクリル酸無水物2.26g(メタクリル酸無水物として13.4mmol)を入れた。次いで、原料のメタクリル酸無水物中に含まれるメタクリル酸を含む液中のメタクリル酸量が1.50g(17.4mmol)になるようにメタクリル酸を加えた。この混合液に空気を毎分20mLの流量で吹き込みながら、内温が130℃になるように加熱して撹拌した。内温が130℃になった時点を0分としたとき、30分~150分の期間に0.075g/分の流量で純度91.3質量%のメタクリル酸無水物9.00g(メタクリル酸無水物として53.3mmol、メタクリル酸として1.9mmol)を連続添加した。300分時点でメタクリル酸フェニルが19.5g(120.5mmol)生成した。前記式(14)で計算される本実施例におけるメタクリル酸フェニルの収率は、90.4%であった。
 また、本反応中、30分、60分、120分、180分、240分、300分時点の反応液をサンプリングし、液体クロマトグラフィーを用いて、液中のフェノール濃度を測定した。結果を表4および図1に示す。
 <実施例29>
 空気導入管を備えた50mL三口丸底フラスコに、ジフェニルカーボネート12.36g(57.7mmol)、メタクリル酸0.89g(10.4mmol)、触媒としてメタクリル酸マグネシウム1.124g(5.78mmol)、重合防止剤としてフェノチアジン0.077gを入れた。この混合液に空気を毎分20mLの流量で吹き込みながら、内温が130℃になるように加熱して撹拌した。内温が130℃になった時点を0分としたとき、30分~150分の期間に0.075g/分の流量で、純度98.7質量%のメタクリル酸無水物8.97g(メタクリル酸無水物として57.4mmol、メタクリル酸として1.4mmol)を連続添加した。300分時点でメタクリル酸フェニルが17.1g(105.4mmol)生成した。前記式(14)で計算される本実施例におけるメタクリル酸フェニルの収率は、91.5%であった。
 また、本反応中、30分、60分、120分、180分、240分、300分時点の反応液をサンプリングし、液体クロマトグラフィーを用いて、液中のフェノール濃度を測定した。結果を表4および図1に示す。
 <実施例30>
 空気導入管を備えた50mL三口丸底フラスコに、ジフェニルカーボネート14.26g(66.6mmol)、メタクリル酸1.03g(12.0mmol)、触媒としてメタクリル酸マグネシウム1.297g(6.67mmol)、重合防止剤としてフェノチアジン0.045gを入れた。この混合液に空気を毎分20mLの流量で吹き込みながら、内温が130℃になるように加熱して撹拌した。内温が130℃になった時点を0分としたとき、15分~42分の期間に0.150g/分の流量、42分~120分の期間に0.050g/分の流量、120分~180分の期間に0.025g/分の流量、180分~265分の期間に0.010g/分の流量で、純度98.7質量%のメタクリル酸無水物10.35g(メタクリル酸無水物として66.3mmol、メタクリル酸として1.6mmol)を連続添加した。300分時点でメタクリル酸フェニルが19.9g(122.8mmol)生成した。前記式(14)で計算される本実施例におけるメタクリル酸フェニルの収率は、92.5%であった。
 また、本反応中、30分、60分、120分、180分、240分、300分時点の反応液をサンプリングし、液体クロマトグラフィーを用いて、液中のフェノール濃度を測定した。結果を表4および図2に示す。
 <実施例31>
 空気導入管を備えた50mL三口丸底フラスコに、ジフェニルカーボネート14.29g(66.7mmol)、メタクリル酸1.17g(13.6mmol)、触媒としてメタクリル酸マグネシウム1.300g(6.69mmol)、重合防止剤としてフェノチアジン0.046gを入れた。この混合液に空気を毎分20mLの流量で吹き込みながら、内温が130℃になるように加熱して撹拌した。内温が130℃になった時点を0分としたとき、15分~45分の期間に0.125g/分の流量、45分~120分の期間に0.052g/分の流量、120分~205分の期間に0.026g/分の流量、205分~240分の期間に0.010g/分の流量で、純度98.7質量%のメタクリル酸無水物10.30g(メタクリル酸無水物として66.7mmol、メタクリル酸として0.3mmol)を連続添加した。300分時点でメタクリル酸フェニルが20.5g(126.4mmol)生成した。前記式(14)で計算される本実施例におけるメタクリル酸フェニルの収率は、94.8%であった。
 また、本反応中、30分、60分、120分、180分、240分、300分時点の反応液をサンプリングし、液体クロマトグラフィーを用いて、液中のフェノール濃度を測定した。結果を表4および図2に示す。
 <実施例32>
 空気導入管を備えた30mmφ×200mmの試験管に、ジフェニルカーボネート9.50g(44.4mmol)、純度91.3質量%のメタクリル酸無水物7.51g(メタクリル酸無水物として44.5mmol)、触媒としてメタクリル酸マグネシウム0.436g(2.24mmol)、重合防止剤としてフェノチアジン0.034gを入れた。
 次いで、原料のメタクリル酸無水物中に含まれるメタクリル酸を含む液中のメタクリル酸量が0.83g(9.6mmol)となるようにメタクリル酸を加えた。この混合液に空気を毎分20mLの流量で吹き込みながら、内温が130℃になるように加熱して、300分撹拌した。その結果、メタクリル酸フェニルが10.9g(67.5mmol)生成した。前記式(14)で計算される本実施例におけるメタクリル酸フェニルの収率は、76.0%であった。
 また、本反応中、30分、60分、120分、180分、240分、300分時点の反応液をサンプリングし、液体クロマトグラフィーを用いて、液中のフェノール濃度を測定した。結果を表4および図2に示す。
 実施例28~32で最終的に使用した原料のモル数、モル比率、メタクリル酸フェニルの収率を表3に示す。
 なお、表3中、MAOMAはメタクリル酸無水物を示す。DPCはジフェニルカーボネートを示す。MAAはメタクリル酸を示す。PHMAはメタクリル酸フェニルを示す。Mg(MAA)はメタクリル酸マグネシウムを示す。
 表3中、MAOMA/DPCはジフェニルカーボネート1モルに対するメタクリル酸無水物のモル数を示す。触媒/DPCはジフェニルカーボネート1モルに対する触媒のモル数を示す。MAA/DPCはジフェニルカーボネート1モルに対するメタクリル酸のモル数を示す。
 実施例28~32から、カーボネート化合物と触媒とを含む溶液にメタクリル酸無水物の一部または全量を、逐次添加または連続添加することが好ましいことがわかる。また、実施例28~32、表4、図1および図2から、反応液中に水酸基を有する化合物を0.005質量%以上10質量%以下存在させることが好ましいことがわかる。
Figure JPOXMLDOC01-appb-T000030
 [第二の実施例]
 実施例において、メタクリル酸フェニル、酢酸フェニル、安息香酸フェニル等の分析は、高速液体クロマトグラフィーにより行った。
 メタクリル酸無水物としては、Aldrich社より購入した純度81.8質量%(メタクリル酸 0.1質量%含む)のメタクリル酸無水物(Methacrylic anhydride)を蒸留して得られた純度98.7質量%(メタクリル酸 1.3質量%含む)のメタクリル酸無水物、および99.8質量%(メタクリル酸 0.2質量%含む)のメタクリル酸無水物、並びにAldrich社より購入した純度67.6質量%のメタクリル酸無水物を蒸留して得られた純度95.2質量%(メタクリル酸 4.8質量%含む)のメタクリル酸無水物を使用した。
 安息香酸無水物としては、東京化成株式会社より購入した純度99質量%のものを使用した。酢酸無水物としては、枠校純薬株式会社より購入した純度99質量%のものを使用した。ジフェニルカーボネートとしては、東京化成株式会社より購入した純度99質量%のものを使用した。
 <実施例33>
 空気導入管を備えた30mmφ×200mmの試験管に、ジフェニルカーボネート9.50g(44.4mmol)、触媒として4-ジメチルアミノピリジン0.054g(0.45mmol)、重合防止剤としてフェノチアジン0.010g、純度95.2質量%のメタクリル酸無水物7.16g(メタクリル酸無水物として44.2mmol)を入れた。次いで、原料のメタクリル酸無水物中に含まれるメタクリル酸を含む液中のメタクリル酸量が0.80g(9.3mmol)となるようにメタクリル酸を加えた。この混合液に空気を毎分15mLの流量で吹き込みながら、内温が120℃になるように加熱して、3時間撹拌した。すなわち、反応時間は3時間であった。その結果、メタクリル酸フェニルが13.7g(84.6mmol)生成した。下記式(15)で計算される本実施例におけるメタクリル酸フェニルの収率は、95.5%であった。
Figure JPOXMLDOC01-appb-M000031
 <実施例34~45、比較例1~4>
 表5に示す条件を用いた以外は、実施例33と同様の操作を行った。結果を表5に示す。
 なお、表5中、MAOMAはメタクリル酸無水物を示す。DPCはジフェニルカーボネートを示す。MAAはメタクリル酸を示す。PHMAはメタクリル酸フェニルを示す。BTOXは4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン-N-オキシルを示す。DMAPは4-ジメチルアミノピリジンを示す。Mg(MAA)はメタクリル酸マグネシウムを示す。4MPyは4-メトキシピリジンを示す。4APは4-アミノピリジンを示す。MIMは1-メチルイミダゾールを示す。Ca(MAA)はメタクリル酸カルシウムを示す。Na(MAA)はメタクリル酸ナトリウムを示す。Ti(OBu)はテトラブトキシチタンを示す。BuSnOはジブチルスズオキシドを示す。Sc(OTf)はトリフルオロメタンスルホン酸スカンジウムを示す。比較例1では触媒を加えていない。
 表5中、MAOMA/DPCはジフェニルカーボネート1モルに対するメタクリル酸無水物のモル数を示す。触媒/DPCはジフェニルカーボネート1モルに対する触媒のモル数を示す。
 実施例33~45、比較例1~4から、触媒として含塩基性窒素有機化合物、第1族金属化合物、および第2族金属化合物からなる群から選択される少なくとも1種を用いることで、カルボン酸芳香族エステルを効率よく製造できることがわかる。
Figure JPOXMLDOC01-appb-T000032
 <実施例46>
 30mmφ×200mmの試験管に、ジフェニルカーボネート8.99g(42.0mmol)、触媒として4-ジメチルアミノピリジン0.015g(0.12mmol)、酢酸無水物4.29g(42.0mmol)、内部標準としてアニソール1.21gを入れた。この混合液を内温が80℃になるように加熱して、3時間撹拌した。すなわち、反応時間は3時間であった。その結果、酢酸フェニルが2.55g(48.7mmol)生成した。下記式(16)で計算される本実施例における酢酸フェニルの収率は、58.0%であった。
Figure JPOXMLDOC01-appb-M000033
 <実施例47>
 表6に示す条件を用いた以外は、実施例46と同様の操作を行った。結果を表6に示す。なお、表6中、AcOは酢酸無水物を示す。DPCはジフェニルカーボネートを示す。AcOPhは酢酸フェニルを示す。PhOMeはアニソールを示す。DMAPは4-ジメチルアミノピリジンを示す。表6中、AcO/DPCはジフェニルカーボネート1モルに対する酢酸無水物のモル数を示す。触媒/DPCはジフェニルカーボネート1モルに対する触媒のモル数を示す。
Figure JPOXMLDOC01-appb-T000034
 <実施例48>
 30mmφ×200mmの試験管に、ジフェニルカーボネート6.70g(31.3mmol)、安息香酸無水物7.08g(31.3mmol)、触媒として4-ジメチルアミノピリジン0.019g(0.16mmol)、内部標準としてアニソール0.75gを入れた。この混合液を内温が90℃になるように加熱して、3時間撹拌した。すなわち、反応時間は3時間であった。その結果、安息香酸フェニルが12.4g(62.6mmol)生成した。下記式(17)で計算される本実施例における安息香酸フェニルの収率は、80.1%であった。
Figure JPOXMLDOC01-appb-M000035
 <実施例49、50、比較例5、6>
 表7に示す条件を用いた以外は、実施例48と同様の操作を行った。結果を表7に示す。なお、表7中、BzOは安息香酸無水物を示す。DPCはジフェニルカーボネートを示す。BzOPhは安息香酸フェニルを示す。PhOMeはアニソールを示す。DMAPは4-ジメチルアミノピリジンを示す。Mg(acac)・2HOはマグネシウムアセチルアセトン2水和物を示す。CFSOHはトリフルオロメタンスルホン酸を示す。比較例5では触媒を加えていない。表7中、BzO/DPCはジフェニルカーボネート1モルに対する安息香酸無水物のモル数を示す。触媒/DPCはジフェニルカーボネート1モルに対する触媒のモル数を示す。
Figure JPOXMLDOC01-appb-T000036
 この出願は、2014年6月12日に出願された日本出願特願2014-121445、及び、2014年6月12日に出願された日本出願特願2014-121446を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 以上、実施形態及び実施例を参照して本願発明を説明したが、本願発明は上記実施形態及び実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。

Claims (15)

  1.  (メタ)アクリル酸無水物とカーボネート化合物とを反応させる、(メタ)アクリル酸エステルの製造方法。
  2.  カーボネート化合物1モルに対し、0.1モル以上、10モル以下の(メタ)アクリル酸無水物を反応させる、請求項1に記載の(メタ)アクリル酸エステルの製造方法。
  3.  カーボネート化合物1モルに対し、0.001モル以上、1.5モル以下のカルボン酸の存在下に反応させる、請求項1に記載の(メタ)アクリル酸エステルの製造方法。
  4.  反応液中に触媒として含塩基性窒素有機化合物、第1族金属化合物、および第2族金属化合物からなる群から選択される少なくとも1種を存在させて反応させる、請求項1に記載の(メタ)アクリル酸エステルの製造方法。
  5.  触媒が、下記式(5)~(7)で示される化合物からなる群から選択される少なくとも1種である、請求項4に記載の(メタ)アクリル酸エステルの製造方法。
    Figure JPOXMLDOC01-appb-C000001
     (式(5)中、NR2122基はピリジン環の2位、3位、および4位のいずれか1つに結合している。R21およびR22は、それぞれ独立に、水素、置換基を有してもよい直鎖状、置換基を有してもよい分岐鎖状、若しくは置換基を有してもよい環状の炭素数1~30のアルキル基、置換基を有してもよい直鎖状、置換基を有してもよい分岐鎖状、若しくは置換基を有してもよい環状の炭素数2~30のアルケニル基、又は置換基を有してもよい炭素数6~30のアリール基である。R21とR22とが結合して、環状構造を形成していてもよい。)
    Figure JPOXMLDOC01-appb-C000002
     (式(6)中、OR23基はピリジン環の2位、3位、および4位のいずれか1つに結合している。R23は、置換基を有してもよい直鎖状、置換基を有してもよい分岐鎖状、若しくは置換基を有してもよい環状の炭素数1~30のアルキル基、置換基を有してもよい直鎖状、置換基を有してもよい分岐鎖状、若しくは置換基を有してもよい環状の炭素数2~30のアルケニル基、又は置換基を有してもよい炭素数6~30のアリール基である。)
    Figure JPOXMLDOC01-appb-C000003
    (式(7)中、R24は置換基を有してもよい直鎖状、置換基を有してもよい分岐鎖状、若しくは置換基を有してもよい環状の炭素数1~30のアルキル基、置換基を有してもよい直鎖状、置換基を有してもよい分岐鎖状、若しくは置換基を有してもよい環状の炭素数2~30のアルケニル基、又は置換基を有してもよい炭素数6~30のアリール基である。)
  6.  カーボネート化合物がジフェニルカーボネートである、請求項1に記載の(メタ)アクリル酸エステルの製造方法。
  7.  反応液中に、重合防止剤としてフェノチアジンを存在させる、請求項1に記載の(メタ)アクリル酸エステルの製造方法。
  8.  カーボネート化合物を含む溶液に、(メタ)アクリル酸無水物の一部または全量を、逐次添加または連続添加する、請求項1に記載の(メタ)アクリル酸エステルの製造方法。
  9.  反応原料全量に対し、0.005質量%以上、10質量%以下の水酸基を有する化合物の存在下に反応させる、請求項1に記載の(メタ)アクリル酸エステルの製造方法。
  10.  反応温度が40℃以上、200℃以下である、請求項1に記載の(メタ)アクリル酸エステルの製造方法。
  11.  カルボン酸無水物と芳香族カーボネートとを触媒存在下で反応させるカルボン酸芳香族エステルの製造方法であって、
     前記触媒が含塩基性窒素有機化合物、第1族金属化合物、および第2族金属化合物からなる群から選択される少なくとも1種であるカルボン酸芳香族エステルの製造方法。
  12.  触媒が、下記式(5)~(7)で示される化合物からなる群から選択される少なくとも1種である請求項11に記載のカルボン酸芳香族エステルの製造方法。
    Figure JPOXMLDOC01-appb-C000004
     (式(5)中、NR2122基はピリジン環の2位、3位、および4位のいずれか1つに結合している。R21およびR22は、それぞれ独立に、水素、置換基を有してもよい直鎖状、置換基を有してもよい分岐鎖状、若しくは置換基を有してもよい環状の炭素数1~30のアルキル基、置換基を有してもよい直鎖状、置換基を有してもよい分岐鎖状、若しくは置換基を有してもよい環状の炭素数2~30のアルケニル基、又は置換基を有してもよい炭素数6~30のアリール基である。R21とR22とが結合して、環状構造を形成していてもよい。)
    Figure JPOXMLDOC01-appb-C000005
     (式(6)中、OR23基はピリジン環の2位、3位、および4位のいずれか1つに結合している。R23は、置換基を有してもよい直鎖状、置換基を有してもよい分岐鎖状、若しくは置換基を有してもよい環状の炭素数1~30のアルキル基、置換基を有してもよい直鎖状、置換基を有してもよい分岐鎖状、若しくは置換基を有してもよい環状の炭素数2~30のアルケニル基、又は置換基を有してもよい炭素数6~30のアリール基である。)
    Figure JPOXMLDOC01-appb-C000006
     (式(7)中、R24は置換基を有してもよい直鎖状、置換基を有してもよい分岐鎖状、若しくは置換基を有してもよい環状の炭素数1~30のアルキル基、置換基を有してもよい直鎖状、置換基を有してもよい分岐鎖状、若しくは置換基を有してもよい環状の炭素数2~30のアルケニル基、又は置換基を有してもよい炭素数6~30のアリール基である。)
  13.  芳香族カーボネートがジフェニルカーボネートである請求項11に記載のカルボン酸芳香族エステルの製造方法。
  14.  カルボン酸無水物がアクリル酸無水物、またはメタクリル酸無水物である請求項11に記載のカルボン酸芳香族エステルの製造方法。
  15.  反応温度が40℃以上、200℃以下である、請求項11に記載のカルボン酸芳香族エステルの製造方法。
PCT/JP2015/065168 2014-06-12 2015-05-27 (メタ)アクリル酸エステルの製造方法及びカルボン酸芳香族エステルの製造方法 WO2015190286A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2015527706A JP6489015B2 (ja) 2014-06-12 2015-05-27 (メタ)アクリル酸エステルの製造方法及びカルボン酸芳香族エステルの製造方法
KR1020167028602A KR101898362B1 (ko) 2014-06-12 2015-05-27 (메트)아크릴산 에스터의 제조 방법 및 카복실산 방향족 에스터의 제조 방법
EP15806000.4A EP3156390B1 (en) 2014-06-12 2015-05-27 (meth)acrylic acid ester manufacturing method and aromatic carboxylic acid ester manufacturing method
US15/308,232 US9796652B2 (en) 2014-06-12 2015-05-27 Method for manufacturing (meth) acrylic acid ester and method for manufacturing aromatic carboxylic acid ester
CN201580030725.8A CN106470967B (zh) 2014-06-12 2015-05-27 (甲基)丙烯酸酯的制造方法和羧酸芳香族酯的制造方法
RU2016146200A RU2661899C2 (ru) 2014-06-12 2015-05-27 Способ производства эфира (мет)акриловой кислоты и способ производства ароматического эфира карбоновой кислоты

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014121445 2014-06-12
JP2014-121445 2014-06-12
JP2014121446 2014-06-12
JP2014-121446 2014-06-12

Publications (1)

Publication Number Publication Date
WO2015190286A1 true WO2015190286A1 (ja) 2015-12-17

Family

ID=54833388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065168 WO2015190286A1 (ja) 2014-06-12 2015-05-27 (メタ)アクリル酸エステルの製造方法及びカルボン酸芳香族エステルの製造方法

Country Status (8)

Country Link
US (1) US9796652B2 (ja)
EP (1) EP3156390B1 (ja)
JP (1) JP6489015B2 (ja)
KR (1) KR101898362B1 (ja)
CN (1) CN106470967B (ja)
RU (1) RU2661899C2 (ja)
TW (1) TWI565694B (ja)
WO (1) WO2015190286A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021526518A (ja) * 2019-05-09 2021-10-07 エルジー・ケム・リミテッド (メタ)アクリル酸エステル系化合物製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020226271A1 (ko) * 2019-05-09 2020-11-12 주식회사 엘지화학 (메트)아크릴산 에스테르계 화합물 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000191590A (ja) * 1998-12-24 2000-07-11 Nof Corp (メタ)アクリル酸フェニルエステルの製造方法
JP2007246503A (ja) * 2006-02-14 2007-09-27 Mitsubishi Rayon Co Ltd 不飽和カルボン酸フェニルの製造方法
WO2010016493A1 (ja) * 2008-08-05 2010-02-11 三菱レイヨン株式会社 (メタ)アクリル酸無水物の製造方法及び保存方法、並びに(メタ)アクリル酸エステルの製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2458421A (en) * 1947-11-22 1949-01-04 Eastman Kodak Co Unsaturated derivatives of ethylene diamine and polymers thereof
US4258204A (en) * 1978-11-24 1981-03-24 University Patents, Inc. Acrylate ester monomer production
US4792620A (en) * 1983-10-14 1988-12-20 Bp Chemicals Limited Carbonylation catalysts
DE3528928A1 (de) * 1985-08-13 1987-02-26 Hoechst Ag Polymerisierbare verbindungen und verfahren zu ihrer herstellung
JPS62132840A (ja) 1985-12-04 1987-06-16 Mitsubishi Rayon Co Ltd アクリル酸又はメタクリル酸のフエニルエステルの製造法
JP4591733B2 (ja) 2000-06-23 2010-12-01 日立化成工業株式会社 メタクリル酸エステルの製造法
DE102005023975A1 (de) * 2005-05-20 2006-11-23 Röhm Gmbh Verfahren zur Herstellung von Alkyl(meth)acrylaten
JP5439133B2 (ja) 2009-11-19 2014-03-12 三菱レイヨン株式会社 フェニルエステルの製造方法
WO2014024207A1 (en) * 2012-08-06 2014-02-13 Neon Laboratories Ltd. Process for preparation of succinylcholine chloride

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000191590A (ja) * 1998-12-24 2000-07-11 Nof Corp (メタ)アクリル酸フェニルエステルの製造方法
JP2007246503A (ja) * 2006-02-14 2007-09-27 Mitsubishi Rayon Co Ltd 不飽和カルボン酸フェニルの製造方法
WO2010016493A1 (ja) * 2008-08-05 2010-02-11 三菱レイヨン株式会社 (メタ)アクリル酸無水物の製造方法及び保存方法、並びに(メタ)アクリル酸エステルの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3156390A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021526518A (ja) * 2019-05-09 2021-10-07 エルジー・ケム・リミテッド (メタ)アクリル酸エステル系化合物製造方法
JP7130303B2 (ja) 2019-05-09 2022-09-05 エルジー・ケム・リミテッド (メタ)アクリル酸エステル系化合物製造方法

Also Published As

Publication number Publication date
RU2016146200A3 (ja) 2018-07-18
TW201605788A (zh) 2016-02-16
EP3156390A4 (en) 2017-05-24
US20170050912A1 (en) 2017-02-23
CN106470967A (zh) 2017-03-01
US9796652B2 (en) 2017-10-24
EP3156390B1 (en) 2022-07-06
TWI565694B (zh) 2017-01-11
JPWO2015190286A1 (ja) 2017-04-20
KR101898362B1 (ko) 2018-09-12
EP3156390A1 (en) 2017-04-19
JP6489015B2 (ja) 2019-03-27
KR20160135275A (ko) 2016-11-25
RU2016146200A (ru) 2018-07-18
CN106470967B (zh) 2020-05-22
RU2661899C2 (ru) 2018-07-23

Similar Documents

Publication Publication Date Title
JP5849710B2 (ja) β−フルオロアルコール類の製造方法
CN107074719B (zh) 羧酸酯的制造方法
JP6489015B2 (ja) (メタ)アクリル酸エステルの製造方法及びカルボン酸芳香族エステルの製造方法
JP4800205B2 (ja) 五環性タキサンの製造方法
JP6137766B2 (ja) 鉄触媒によるエステル交換反応
JPS6058739B2 (ja) 炭酸ジメチルの製法
TWI796324B (zh) (甲基)丙烯酸酯的製造方法
JP2014062071A (ja) エチレン性不飽和基含有イソシアネート化合物の製造方法
JPS6281356A (ja) 有機炭酸エステル類の製造方法
JP2016011292A (ja) 混合酸無水物の製造方法
JPS6197242A (ja) グリコールモノエステルの改良製造法
EP3064486B1 (en) Phenyl(meta)acrylate production method and phenyl(meta)acrylate composition
JPH024737A (ja) 炭酸エステルの製造法
JPH07224011A (ja) 炭酸エステルの製造方法
JP2013001653A (ja) フルオロ硫酸エノールエステル類の製造方法
JPWO2017090581A1 (ja) カルボン酸チオエステルの製造方法
WO2023054429A1 (ja) アルキルフランカルボン酸エステルの製造方法
JP2021042171A (ja) カルボン酸エステルの製造方法
EP0127276A2 (en) Carbonylation process
JP2019123694A (ja) 含窒素複素環化合物の製造方法
JP2011219394A (ja) α,β−不飽和エステルの製造方法
JPH09208530A (ja) 脂肪族炭酸ジエステルの製造方法
JP2000327660A (ja) アセチルピリジン類の製造方法
JP2005272361A (ja) 3級アミンの製造方法
JP2001192380A (ja) エステル及びその合成法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015527706

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15806000

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167028602

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015806000

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015806000

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15308232

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016146200

Country of ref document: RU

Kind code of ref document: A