WO2015182689A1 - ポリオレフィン多層微多孔膜及び電池用セパレータ - Google Patents

ポリオレフィン多層微多孔膜及び電池用セパレータ Download PDF

Info

Publication number
WO2015182689A1
WO2015182689A1 PCT/JP2015/065348 JP2015065348W WO2015182689A1 WO 2015182689 A1 WO2015182689 A1 WO 2015182689A1 JP 2015065348 W JP2015065348 W JP 2015065348W WO 2015182689 A1 WO2015182689 A1 WO 2015182689A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyolefin
microporous membrane
mass
layer
polyethylene
Prior art date
Application number
PCT/JP2015/065348
Other languages
English (en)
French (fr)
Inventor
由起子 三浦
秀人 光岡
隆 窪田
Original Assignee
東レバッテリーセパレータフィルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レバッテリーセパレータフィルム株式会社 filed Critical 東レバッテリーセパレータフィルム株式会社
Priority to SG11201606671PA priority Critical patent/SG11201606671PA/en
Priority to PL15800063T priority patent/PL3085531T3/pl
Priority to US15/113,004 priority patent/US9843030B2/en
Priority to CN201580008710.1A priority patent/CN106029380B/zh
Priority to JP2015548517A priority patent/JP5876631B1/ja
Priority to KR1020167019862A priority patent/KR101686409B1/ko
Priority to EP15800063.8A priority patent/EP3085531B1/en
Publication of WO2015182689A1 publication Critical patent/WO2015182689A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/32Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed at least two layers being foamed and next to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/002Organic membrane manufacture from melts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0025Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching
    • B01D67/0027Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching by stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/003Organic membrane manufacture by inducing porosity into non porous precursor membranes by selective elimination of components, e.g. by leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/261Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/262Polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/12Specific discharge elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02831Pore size less than 1 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/028321-10 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/22Thermal or heat-resistance properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/34Molecular weight or degree of polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/34Molecular weight or degree of polymerisation
    • B01D2325/341At least two polymers of same structure but different molecular weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/025Polyolefin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/308Heat stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/58Cuttability
    • B32B2307/581Resistant to cut
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/744Non-slip, anti-slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/062HDPE
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/068Ultra high molecular weight polyethylene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a polyolefin multilayer microporous membrane and a battery separator using the same, and more specifically, a polyolefin multilayer microporous membrane excellent in mechanical strength, heat resistance, and electrolyte wettability, and a battery using the same. It relates to a separator.
  • Non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries are small, light, and have high energy density, so they are widely used as main power sources for portable electronic devices and power sources for driving vehicles such as hybrid cars. ing.
  • a separator is disposed between a positive electrode and a negative electrode. The separator prevents a short circuit due to contact between the bipolar active materials, and also holds an electrolytic solution in the pores to form an ion conducting path.
  • polyolefin microporous membranes have been used as separators for lithium ion secondary batteries.
  • polyolefin-based microporous membranes especially microporous membranes made of polyethylene-based resin are known to have an excellent shutdown function that shuts off the flow of current when micropores of the porous membrane are blocked when the temperature of the battery rises. It has been.
  • the battery temperature may further increase.
  • the separator is melted (so-called meltdown), causing a short circuit inside the battery. May cause dangers such as smoke, ignition, and explosion.
  • meltdown a short circuit inside the battery. It is required to have excellent heat resistance with reduced risk.
  • a polyolefin microporous film containing polypropylene having a melting point higher than that of polyethylene has been proposed (for example, see Patent Document 1).
  • a microporous film containing a polypropylene resin has a problem that the meltdown temperature is high but the shutdown temperature is also high.
  • both the surface layers are made of a polyethylene resin alone, and the heat of fusion ( ⁇ H measured by a polyethylene resin and a scanning differential calorimeter is used.
  • m includes polypropylene having 90 J / g or more, and an inner layer in which the blending ratio is adjusted is interposed between both polyethylene resin layers.
  • a second microporous layer having a structure in which the pore size distribution curve obtained by mercury porosimetry has at least two peaks the second microporous layer comprising a second polyethylene resin having a ratio of 7% by mass or less.
  • the total thickness of the second microporous layer is 100%, and the thickness of the first microporous layer is 15 to 60%.
  • a polyolefin multilayer microporous membrane having an excellent balance of permeability, mechanical strength, meltdown characteristics, electrolyte solution absorbability and electrolyte solution retention can be obtained.
  • An object of the present invention is to provide a polyolefin multilayer microporous membrane excellent in mechanical strength, heat resistance, and electrolyte wettability, and a battery separator using the same, in view of the above-described problems of the prior art. .
  • the inventors have improved heat resistance when used as a separator of a lithium ion secondary battery by improving the adhesion between the polyolefin multilayer microporous membrane and the electrode. I was wondering if it would improve my sex.
  • the 1st microporous layer which consists of polyethylene resin containing ultra high molecular weight polyethylene
  • the 2nd microporous layer intermediate layer which consists of polyolefin resin containing high-density polyethylene and polypropylene
  • the polyolefin multilayer microporous membrane having at least three layers including: (I) puncture strength, (II) coefficient of static friction against metal foil, and (III) meltdown temperature can solve the above problems.
  • the headline and the present invention were completed.
  • the polyolefin multilayer microporous membrane of the present invention is a polyolefin multilayer microporous membrane having at least three layers, wherein the first microporous layer is both surface layers and the second microporous layer is an intermediate layer.
  • the first microporous layer is made of a polyethylene-based resin containing 30% by mass or more and less than 70% by mass of ultrahigh molecular weight polyethylene having a weight average molecular weight of 1 ⁇ 10 6 or more, and the second microporous layer.
  • the layer is made of a polyolefin resin containing 50% by mass or more of high-density polyethylene having a weight average molecular weight of 1 ⁇ 10 4 or more and less than 8 ⁇ 10 5 and polypropylene, and the polypropylene is contained in the multilayer microporous membrane.
  • the amount is 5% by mass or more and 15% by mass or less with respect to 100% by mass in total of the polyethylene resin and the polyolefin resin contained in the both surface layers and the intermediate layer.
  • the puncture strength is 25 g / ⁇ m or more.
  • the static friction coefficients in the MD direction and the TD direction in the both surface layers with respect to the aluminum foil are 0.40 or more.
  • the meltdown temperature is 180 ° C. or higher.
  • the polyolefin multilayer microporous membrane preferably has an average pore size of 0.001 ⁇ m or more and less than 0.030 ⁇ m.
  • the polyolefin multilayer microporous membrane preferably has a thickness of 1 ⁇ m or more and less than 20 ⁇ m and an air permeability of 600 sec / 100 cc or less.
  • the polyolefin multilayer microporous membrane is preferably disposed between a positive electrode and a negative electrode of a lithium ion secondary battery and has an area retention of 90% or more when exposed at 150 ° C. for 1 hour.
  • the battery separator of the present invention is characterized by using the polyolefin multilayer microporous membrane.
  • the polyolefin multilayer microporous membrane of the present invention is excellent in heat resistance because it is excellent in mechanical strength and wettability with an electrolyte solution and in adhesion with an electrode.
  • it is possible to provide a highly safe non-aqueous electrolyte battery having sufficient mechanical strength and shutdown characteristics and suppressed thermal runaway and ignition.
  • FIG. 1 is an explanatory view showing an angle ⁇ between the lip tip of the die and the top of the cooling roll.
  • FIG. 2 is an explanatory diagram showing the shape of the 150 ° C. exposure test.
  • the polyolefin multilayer microporous membrane of the present invention has at least three layers in which the first microporous layer is both surface layers and the second microporous layer is an intermediate layer,
  • the first microporous layer is made of a polyethylene resin containing a specific amount of ultrahigh molecular weight polyethylene
  • the second microporous layer is made of a polyolefin resin containing a specific amount of high-density polyethylene and polypropylene. It is excellent in mechanical strength, heat resistance, adhesion to the electrode, wettability of the electrolytic solution, etc., and can be suitably used for a secondary battery separator.
  • the present invention will be described for each item.
  • the first microporous layer is made of a polyethylene resin containing ultrahigh molecular weight polyethylene.
  • the first microporous layer that forms the surface layer by using ultra high molecular weight polyethylene, high mechanical strength can be obtained even when thinned, and it is placed between the positive electrode and the negative electrode as a battery separator. In this case, the shape of the film can be maintained even when the separator is shut down (135 ° C. or higher and 180 ° C. or lower).
  • the ultra high molecular weight polyethylene used in the present invention has a mass average molecular weight (Mw) of 1 ⁇ 10 6 or more, preferably 1 ⁇ 10 6 to 15 ⁇ 10 6 , more preferably 1 ⁇ . 10 6 to 5 ⁇ 10 6 , more preferably 1.5 ⁇ 10 6 to 3 ⁇ 10 6 .
  • Mw mass average molecular weight
  • Mw is a value measured by gel permeation chromatography (GPC) described later.
  • the ultrahigh molecular weight polyethylene is not particularly limited as long as it satisfies the above Mw, and any conventionally known one can be used. Not only ethylene homopolymers but also ethylene / ⁇ - containing a small amount of other ⁇ -olefins. Olefin copolymers can be used.
  • ⁇ -olefin other than ethylene propylene, butene-1, pentene-1, hexene-1, 4-methylpentene-1, octene-1, vinyl acetate, methyl methacrylate and styrene are preferable.
  • the content of ⁇ -olefin other than ethylene is preferably 5 mol% or less.
  • the ultra-high molecular weight polyethylene can be used alone or in combination of two or more.
  • two or more ultra-high molecular weight polyethylenes having different Mw may be mixed and used.
  • the content of ultra high molecular weight polyethylene in the polyethylene resin is 30% by mass or more and less than 70% by mass, preferably 30% by mass or more and less than 60% by mass, with respect to 100% by mass of the entire polyethylene resin. Preferably they are 35 mass% or more and less than 55 mass%.
  • the content of the ultra-high molecular weight polyethylene is in the above range, high mechanical strength can be obtained even when the polyolefin multilayer microporous film is thinned, and the battery separator is disposed between the positive electrode and the negative electrode. At this time, the shape of the film can be maintained even when the separator is shut down (from 135 ° C. to 180 ° C.).
  • the polyethylene-based resin may contain a polyethylene such as high density polyethylene, medium density polyethylene, branched low density polyethylene, and linear low density polyethylene as a resin component other than ultra high molecular weight polyethylene.
  • a polyethylene such as high density polyethylene, medium density polyethylene, branched low density polyethylene, and linear low density polyethylene as a resin component other than ultra high molecular weight polyethylene.
  • high-density polyethylene with Mw of 5 ⁇ 10 4 or more and less than 8 ⁇ 10 5
  • more preferably high-density polyethylene with Mw of 1 ⁇ 10 5 or more and less than 7 ⁇ 10 5 is included.
  • the density of the high-density polyethylene is preferably 0.940 to 0.98 g / cm 3 , more preferably 0.950 to 0.970 g / cm 3 .
  • the high density polyethylene having an Mw of 1 ⁇ 10 4 or more and less than 8 ⁇ 10 5 is not particularly limited, and a conventionally known polyethylene can be used. Not only ethylene homopolymers but also ⁇ -olefins other than ethylene can be used. A copolymer containing a small amount may be used, and a copolymer produced by a single site catalyst is preferred. Examples of ⁇ -olefins other than ethylene include propylene, butene-1, pentene-1, hexene-1, 4-methylpentene-1, and octene-1. Mw is a value measured by gel permeation chromatography (GPC) described later.
  • the content of the resin component other than the ultra high molecular weight polyethylene in the ethylene resin is preferably 30% by mass or more and less than 70% by mass, and more preferably 40% by mass or more and 65% with respect to 100% by mass of the entire polyethylene resin. It is less than mass%.
  • a high density polyethylene having an Mw of 5 ⁇ 10 4 or more and less than 8 ⁇ 10 5 in the above range it is possible to achieve both stability of film formation and high puncture strength of the finally obtained film. it can.
  • Polyolefins other than the above polyethylene may also be included, and polybutene-1, polybutene-1, polypentene-1, polyhexene-1, polyoctene-1, and Mw having an Mw of 1 ⁇ 10 4 to 4 ⁇ 10 6 are 1 ⁇ 10 6. At least one selected from the group consisting of 3 to 1 ⁇ 10 4 polyethylene wax may be used.
  • the content of polyolefin other than polyethylene is preferably 10% by mass or less, more preferably 5% by mass or less, based on 100% by mass of the entire polyethylene resin. Moreover, it is preferable that the said polyethylene-type resin does not contain a polypropylene substantially.
  • substantially free means that the content of polypropylene is 7% by mass or less, preferably 5% by mass or less, more preferably 100% by mass with respect to 100% by mass of the whole polyethylene resin. 0% by mass.
  • resin components other than ultra high molecular weight polyethylene can be used individually by 1 type or in combination of 2 or more types.
  • two or more kinds of high-density polyethylenes having different Mw, medium-density polyethylenes, or low-density polyethylenes may be mixed and used.
  • the first microporous layer which is the surface layer, is molded from a polyethylene resin containing the above resin component, so that the coefficient of static friction with respect to the metal foil (Al) is 0.4.
  • a polyolefin multilayer microporous layer that is easily adhered to the electrode can be obtained.
  • the Mw of the polyethylene-based resin (total) used in the present invention is not particularly limited, but is preferably 1 ⁇ 10 4 to 1 ⁇ 10 7 , more preferably 5 ⁇ 10 4 to 15 ⁇ 10 6 , particularly It is preferably 1 ⁇ 10 5 to 10 ⁇ 10 6 . When the Mw of the polyethylene resin is 15 ⁇ 10 6 or less, melt extrusion becomes easy.
  • the second microporous layer is made of a polyolefin resin containing high-density polyethylene and polypropylene.
  • polypropylene as an essential component in the second microporous layer forming the intermediate layer, good meltdown characteristics can be obtained, and heat resistance is improved. Further, kneading high density polyethylene rather than polypropylene alone facilitates melt extrusion.
  • the Mw of the high-density polyethylene is 1 ⁇ 10 4 or more and less than 8 ⁇ 10 5 , preferably 5 ⁇ 10 4 or more and less than 8 ⁇ 10 5 , more preferably 1 ⁇ 10 5 or more and less than 7 ⁇ 10 5 .
  • the high-density polyethylene is not particularly limited, and a conventionally known polyethylene can be used. Not only a homopolymer of ethylene but also a copolymer containing a small amount of ⁇ -olefin other than ethylene may be used. Those produced are preferred. Examples of ⁇ -olefins other than ethylene include propylene, butene-1, pentene-1, hexene-1, 4-methylpentene-1, and octene-1.
  • the content of the high density polyethylene in the polyolefin resin is 50% by mass or more, preferably 50% by mass or more and less than 80% by mass, more preferably 50% by mass or more and 70% by mass with respect to 100% by mass of the whole polyolefin resin. It is less than mass%.
  • melt extrusion is facilitated by containing high density polyethylene having an Mw of 1 ⁇ 10 4 or more and less than 8 ⁇ 10 5 in the above range.
  • polypropylene used in the present invention is not particularly limited, and may be any one of a homopolymer of propylene, a copolymer of propylene and other ⁇ -olefin and / or diolefin, or a mixture thereof. However, a homopolymer is preferable. As the copolymer, either a random copolymer or a block copolymer can be used.
  • the ⁇ -olefin preferably has 8 or less carbon atoms.
  • Examples of the ⁇ -olefin having 8 or less carbon atoms include ethylene, butene-1, pentene-1, 4-methylpentene-1, octene-1, vinyl acetate, methyl methacrylate, styrene and the like.
  • the diolefin preferably has 4 to 14 carbon atoms.
  • Examples of the diolefin having 4 to 14 carbon atoms include butadiene, 1,5-hexadiene, 1,7-octadiene, 1,9-decadiene, and the like.
  • the content of the other ⁇ -olefin or diolefin is preferably less than 10 mol% based on 100 mol% of the propylene copolymer.
  • the Mw of polypropylene is preferably 1 ⁇ 10 4 to 5 ⁇ 10 6, more preferably 1 ⁇ 10 5 to 4 ⁇ 10 6, and particularly preferably 5 ⁇ 10 5 to 3 ⁇ 10 6 . If a polypropylene having an Mw of less than 1 ⁇ 10 4 is used, the meltdown characteristics are deteriorated. On the other hand, when a polypropylene having Mw exceeding 4 ⁇ 10 6 is used, kneading with a polyethylene resin becomes difficult.
  • the molecular weight distribution (Mw / Mn) of polypropylene is preferably 1.01 to 100, more preferably 1.1 to 50.
  • the melting point of polypropylene is preferably 155 to 175 ° C, more preferably 163 to 175 ° C. Here, the melting point can be measured according to JIS K7121.
  • powdered polypropylene may be used.
  • the powdered polypropylene preferably has an average particle size of 100 to 2,000 ⁇ m and a particle size distribution of 50 to 3,000.
  • the average particle size and particle size distribution can be measured according to JIS K0069.
  • the content of polypropylene is 5% by mass or more and 15% by mass or less, preferably 7% by mass with respect to a total of 100% by mass of the polyethylene resin and the polyolefin resin contained in the both surface layers and the intermediate layer. % Or more and less than 15% by mass, more preferably 7% by mass or more and less than 10% by mass.
  • the content of polypropylene in the polyolefin resin in the intermediate layer is preferably 25% by mass or more and less than 60% by mass, more preferably 30% by mass or more and 50% by mass with respect to 100% by mass of the whole polyolefin resin. % Or less.
  • the polyolefin composition may contain other resin components other than high-density polyethylene and polypropylene as necessary.
  • the resin component other than polypropylene is preferably a crystalline resin having a melting point of 150 ° C. or higher (including a resin that is partially crystalline) and / or an amorphous resin having a glass transition temperature (Tg) of 150 ° C. or higher.
  • Tg can be measured according to JIS K7121.
  • the resin component examples include polyester, polymethylpentene [PMP or TPX (transparent polymer X), melting point: 230 to 245 ° C.], polyamide (PA, melting point: 215 to 265 ° C.), polyarylene sulfide (PAS). , Fluororesin, polystyrene (PS, melting point: 230 ° C.), polyvinyl alcohol (PVA, melting point: 220-240 ° C.), polyimide (PI, Tg: 280 ° C.
  • PMP or TPX transparent polymer X
  • PA melting point: 215 to 265 ° C.
  • PAS polyarylene sulfide
  • PI polyimide
  • the resin component is not limited to one composed of a single resin component, and may be composed of a plurality of resin components.
  • the preferred Mw of the resin component varies depending on the type of resin, but is generally 1 ⁇ 10 3 to 1 ⁇ 10 6 , more preferably 1 ⁇ 10 4 to 7 ⁇ 10 5 .
  • the first microporous layer is both surface layers
  • the second microporous layer is an intermediate layer.
  • the intermediate layer refers to a layer that is interposed between both surface layers and is composed of a second microporous layer.
  • the composition of the first microporous layer (polyethylene resin) forming both surface layers may be the same or different in each layer, but is preferably the same.
  • the second microporous layer as the intermediate layer is usually a single layer, but may be a multilayer if necessary. For example, a plurality of second microporous layers having different compositions may be provided. Furthermore, layers other than the second microporous layer that is an intermediate layer may be provided between both surface layers, or a first porous layer having a composition different from that of both surface layers may be provided.
  • the polyolefin multilayer microporous membrane can be made into three or more layers by providing other layers other than the first and second microporous layers as required. The polyolefin multilayer microporous membrane can be coated on one side or both sides as required.
  • each layer of the polyolefin multilayer microporous membrane of the present invention is not particularly limited, but the first porous layer / second porous layer (solid content mass ratio) is preferably 90/10 to 10/90, More preferably, it is 90/10 to 60/40.
  • the thickness of the 1st porous layer which comprises both surface layers may be the same or different, it is preferable from the viewpoint of productivity etc. that it is the same.
  • the piercing strength of the polyolefin multilayer microporous membrane of the present invention is 25 g / ⁇ m or more, preferably 27 g / ⁇ m or more, more preferably 30 g / ⁇ m or more.
  • the puncture strength can be controlled within the above range by adjusting the content of the ultrahigh molecular weight polyethylene in the surface layer to 30% by mass or more, or by adjusting the stretching temperature to 115 ° C. or less.
  • the puncture strength is a value measured by the method described in Examples described later.
  • the polyolefin multilayer microporous membrane of the present invention has a coefficient of static friction in the MD direction and the TD direction in the both surface layers with respect to the metal foil (aluminum foil) of 0.4 or more, preferably 0.4 to 0.9. Preferably, it is 0.4 to 0.8.
  • the multilayer microporous membrane is used as a battery separator due to the static friction coefficient being in the above range, the adhesion with adjacent electrodes (positive electrode, negative electrode) is improved, and the separator of the separator at high temperature when used as a battery is obtained. Excellent shape retention characteristics, resulting in improved heat resistance.
  • the average of the static friction coefficients in the MD direction and the TD direction in the both surface layers with respect to the metal foil (aluminum foil) is preferably 0.4 to 0.9, more preferably. Is 0.4 to 0.8.
  • the friction coefficient MD / TD ratio is desirably 0.8 to 1.2.
  • the static friction coefficient is, for example, 30% by mass or more of the ultrahigh molecular weight polyethylene content of the first microporous layer forming both surface layers, and the angle ⁇ between the lip tip 1 and the cooling roll apex 2 of the multilayer die is 45 ° or more.
  • the stretching temperature can be adjusted to the above range by adjusting the stretching temperature to 115 ° C. or lower.
  • a static friction coefficient is a value measured by the method as described in the below-mentioned Example based on JISK7125.
  • meltdown temperature The meltdown temperature of the polyolefin multilayer microporous membrane of the present invention is 180 ° C. or higher, preferably 180 to 190 ° C. When the meltdown temperature is within the above range, the heat resistance is more excellent.
  • the meltdown temperature can be adjusted to the above range by adjusting the polypropylene content in the multilayer microporous membrane to 5 to 15% by mass. In addition, meltdown temperature is a value measured by the method as described in the below-mentioned Example.
  • the air permeability of the polyolefin multilayer microporous membrane of the present invention is preferably 600 sec / 100 cc or less, more preferably 400 sec / 100 cc or less. When the air permeability is in the above range, when used as a separator, the ion permeability is excellent.
  • the air permeability can be set to the above range by setting the polypropylene content in the multilayer microporous membrane (entire multilayer membrane) to 5 to 15% by mass and appropriately adjusting the stretching temperature, re-stretching temperature, and the like.
  • the air resistance (sec / 100 cc) is a value measured according to JIS P-8117.
  • the film thickness of the polyolefin multilayer microporous membrane of the present invention is 1 ⁇ m or more and less than 20 ⁇ m, preferably 3 ⁇ m or more and less than 19 ⁇ m, more preferably 3 ⁇ m or more and 16 ⁇ m or less, and further preferably 3 ⁇ m or more and 13 ⁇ m or less.
  • the polyolefin multilayer microporous film of the present invention has sufficient mechanical strength and heat resistance even when the film thickness is in the above range.
  • a film thickness is a value measured by the method as described in the below-mentioned Example.
  • the average pore diameter of the polyolefin multilayer microporous membrane of the present invention is preferably 0.001 ⁇ m or more and less than 0.030 ⁇ m, more preferably 0.010 ⁇ m or more and less than 0.030 ⁇ m.
  • the average pore diameter can be controlled by preparing a blend of polyolefins in the first microporous layer and the second microporous layer, adjusting the stretching temperature to 110 to 115 ° C., and the like.
  • an average hole diameter is a value measured by the method as described in the below-mentioned Example.
  • the bubble point (BP) pore diameter (maximum pore diameter) in the polyolefin multilayer microporous membrane of the present invention refers to the maximum pore diameter measured using a palm porometer.
  • [BP pore diameter (nm)]-[average pore diameter (nm)] is preferably 15 nm or less, and more preferably 10 nm or less. When the difference is 15 nm or more, the pore size distribution is widened, and the variation in safety performance is also large.
  • the polyolefin multilayer microporous membrane of the present invention is preferably disposed between the positive electrode and the negative electrode and has an area retention of 90% or more when exposed at 150 ° C. for 1 hour.
  • the area retention rate is less than 90%, when the multilayer microporous membrane is used as a battery separator, the separator contracts due to the heat generated by the battery, and there is a high possibility that a short circuit occurs at the end.
  • the area retention rate is a value measured by the method described in Examples described later.
  • the polyolefin multilayer microporous membrane of the present invention has a porosity of preferably 20 to 80%, more preferably 30 to 70%, and further preferably 35 to 55%.
  • the porosity is a value measured by the method described in the examples described later.
  • Production method of polyolefin multilayer microporous membrane is not particularly limited, and conventionally known methods as disclosed in Patent Documents 2 and 3 can be used. Steps (1) to (6) are preferably included, and the following step (7) can also be included.
  • first and second polyolefin solution After adding an appropriate film-forming solvent to the polyethylene resin and the polyolefin resin, respectively, the mixture is melt-kneaded to prepare first and second polyolefin solutions.
  • Various additives such as antioxidants, ultraviolet absorbers, anti-blocking agents, pigments, dyes, inorganic fillers, and the like are added to the first and second polyolefin solutions as necessary without impairing the effects of the present invention. be able to.
  • finely divided silicic acid can be added as a pore forming agent.
  • Either a liquid solvent or a solid solvent can be used as the film-forming solvent.
  • the liquid solvent include nonane, decane, decalin, paraxylene, undecane, dodecane, aliphatic hydrocarbons such as liquid paraffin, and mineral oil fractions having boiling points corresponding to these.
  • a non-volatile liquid solvent such as liquid paraffin.
  • the solid solvent preferably has a melting point of 80 ° C. or lower. Examples of such a solid solvent include paraffin wax, ceryl alcohol, stearyl alcohol, dicyclohexyl phthalate, and the like.
  • a liquid solvent and a solid solvent may be used in combination.
  • the mixing ratio of the polyethylene resin and the film forming solvent in the first polyolefin solution is not particularly limited, but the film forming solvent is 70 to 80 parts by weight with respect to 20 to 30 parts by weight of the polyethylene resin or polyolefin resin. It is preferable that When the ratio of the polyethylene resin or the polypropylene resin is less than 20 parts by mass, swell and neck-in are increased at the die outlet when the first or second polyolefin solution is extruded, and the extrusion molded body (gel molded body) Formability and self-supporting properties are reduced. On the other hand, when the ratio of the polyethylene resin or the polypropylene resin exceeds 30 parts by mass, the moldability of the gel-like molded product is lowered.
  • the uniform melt kneading of the first and second polyolefin solutions is not particularly limited, but is preferably performed in a twin screw extruder. Melt kneading in a twin screw extruder is suitable for preparing a highly concentrated polyolefin solution.
  • the melt kneading temperature is preferably within the range of the melting point of the polyethylene resin + 10 ° C. to the melting point + 100 ° C. Specifically, the melt kneading temperature is preferably 140 to 250 ° C, more preferably 170 to 240 ° C. On the other hand, in the case of a polyolefin resin containing polypropylene, it is preferably within the range of the melting point of polypropylene to the melting point + 70 ° C. Specifically, the melt-kneading temperature is preferably 170 to 280 ° C., more preferably 200 to 270 ° C.
  • the melt-kneading temperature is higher than the melting point of the crystalline heat-resistant resin or the glass transition temperature (Tg) of the amorphous heat-resistant resin according to the kind of the heat-resistant resin. It is preferable to do this.
  • the film-forming solvent may be added before the start of kneading, or may be added from the middle of the twin-screw extruder during kneading, but the latter is preferred. In melt kneading, it is preferable to add an antioxidant in order to prevent oxidation of the polyethylene resin.
  • the first and second polyolefin solutions are each fed from an extruder to one die, where both solutions are combined in layers and extruded into a sheet.
  • the first polyolefin solution forms at least both surface layers and the second polyolefin solution forms at least one layer between both surface layers (preferably The two solutions are combined in layers and extruded into a sheet (so that one or both of the surface layers are in contact).
  • the extrusion method may be either a flat die method or an inflation method. In either method, the solution is supplied to separate manifolds and stacked in layers at the lip inlet of a multilayer die (multiple manifold method), or the solution is supplied to the die in a layered flow in advance (block method) Can be used. Since the multi-manifold method and the block method itself are known, a detailed description thereof will be omitted.
  • the gap of the multi-layer flat die is 0.1 to 3 mm
  • the extrusion temperature is preferably 140 to 250 ° C.
  • the extrusion speed is preferably 0.2 to 15 m / min.
  • the film thickness ratio of the first and second microporous layers can be adjusted by adjusting the extrusion amounts of the first and second polyolefin solutions.
  • the solution extruded from the die in this way has a large neck-in, the moldability of the extruded product, the refinement of the average pore diameter of the polyolefin multilayer microporous membrane, and the static friction coefficient against the metal foil of the surface layer.
  • the angle ⁇ between the lip tip 1 of the multilayer die and the cooling roll apex 2 is preferably 45 degrees or more, more preferably 50 to 90 degrees, and still more preferably 55. It is ⁇ 85 degrees.
  • FIG. 1 is a view of the cooling roll 2a as viewed from one end side in the longitudinal direction.
  • the solution is counterclockwise (counterclockwise) in FIG. 1 along the outer peripheral surface (circular outer surface) of the cooling roll 2a. It is drawn to flow. Accordingly, the solution discharge port (lip tip 1) in the multilayer die is formed so as to extend along the longitudinal direction of the cooling roll 2a.
  • the solution discharged to the cooling roll 2a is cooled by the cooling roll 2a to become a gel-like sheet, and is applied to a stretching device or a winding device (not shown) arranged on the right side in FIG. It will flow towards you. Therefore, the direction from the left side to the right side in FIG. 1 is referred to as “film traveling direction”.
  • the reference numeral “11” is attached to a horizontal virtual surface (hereinafter referred to as “first surface”) passing through the lower end surface of the lip tip 1. Further, a virtual surface (hereinafter referred to as “second surface”) parallel to the first surface 11 and in contact with the outer peripheral portion on the upper surface side of the cooling roll 2a is denoted by reference numeral “12”.
  • first surface a horizontal virtual surface
  • second surface a virtual surface parallel to the first surface 11 and in contact with the outer peripheral portion on the upper surface side of the cooling roll 2a
  • reference numeral “12” In FIG. 1, when viewed from the lip tip 1, an arbitrary part (a part on the right side of the multilayer die in FIG. 1) separated along the film traveling direction on the first surface 11 with a symbol “A”. And the reference point “B” to the contact point between the second surface 12 and the cooling roll 2a (actually a straight line extending along the length direction of the cooling roll 2a), In FIG. 1, “A” indicates the lip AOB (where “O” represents the lip
  • the angle ⁇ is 90 degrees
  • the angle ⁇ indicates that the contact point B described above is located immediately below the lip tip 1.
  • the cooling roll 2a With respect to the multilayer die. Indicates that they are separated in the film traveling direction. Further, by setting the distance from the lip of the T die to the cooling roll to 300 mm or less and the angle ⁇ to be in the above range, the gel-like molded product is excellent in moldability and the cooling rate can be 50 ° C./min or more. .
  • a gel-like laminated sheet is formed by cooling the obtained laminated extruded product.
  • a cooling method it is preferable to cool by contacting with a roll cooled with a refrigerant.
  • the temperature of the cooling roll is preferably 40 ° C. or lower, more preferably 10 ° C. to 35 ° C., and still more preferably 15 to 32 ° C. It is because the higher-order structure of the gel-like lamination sheet obtained becomes dense by making the temperature of a cooling roll into the said range.
  • the surface of the cooling roll is mirror-finished.
  • Cooling is preferably performed at a cooling rate of 50 ° C./min or more until at least the gelation temperature. Cooling is preferably performed to 25 ° C. or lower.
  • the microphases of the first and second polyolefins separated by the film-forming solvent can be fixed.
  • the cooling rate is slowed down, the pseudo cell unit becomes large and the higher order structure of the resulting gel-like laminated sheet becomes rough.
  • the cooling rate is fastened, the cell unit becomes dense.
  • the cooling rate is less than 50 ° C./min, the degree of crystallinity increases and it is difficult to obtain a gel-like laminated sheet suitable for stretching.
  • a cooling method a method of contacting with a refrigerant such as cold air or cooling water, a method of contacting with a cooling roll, or the like can be used.
  • the obtained gel-like laminated sheet is stretched at least in the biaxial direction. Since the gel-like laminated sheet contains a film-forming solvent, it can be uniformly stretched.
  • the gel-like laminated sheet is preferably stretched at a predetermined ratio after heating by a tenter method, a roll method, an inflation method, or a combination thereof.
  • the stretching is preferably biaxial stretching, and may be any of simultaneous biaxial stretching, sequential stretching and multistage stretching (for example, a combination of simultaneous biaxial stretching and sequential stretching).
  • the stretching ratio is preferably 3 times or more in any direction in biaxial stretching (the area magnification is preferably 9 times or more, more preferably 16 times or more, and particularly preferably 25 times or more).
  • the puncture strength is improved by setting the area magnification to 9 times or more. When the area magnification exceeds 400 times, there are restrictions in terms of the stretching device, stretching operation, and the like.
  • the stretching temperature is particularly preferably in the range of 110 ° C to 115 ° C.
  • the stretching temperature is less than 110 ° C., the polyethylene resin is not sufficiently softened, the film is easily broken by stretching, and high-stretching cannot be performed. Further, at a stretching temperature of 116 ° C. or higher, the mechanical strength is difficult to improve.
  • the stretching as described above causes cleavage between polyethylene lamellae, the polyethylene phase becomes finer, and a large number of fibrils are formed. Fibrils form a three-dimensional irregularly connected network structure. Stretching improves the mechanical strength and enlarges the pores, which is suitable for battery separators.
  • the film may be stretched by providing a temperature distribution in the film thickness direction, whereby a multilayer microporous film having further excellent mechanical strength can be obtained. Details of the method are described in Japanese Patent No. 3347854.
  • washing solvent includes, for example, saturated hydrocarbons such as pentane, hexane and heptane, chlorinated hydrocarbons such as methylene chloride and carbon tetrachloride, ethers such as diethyl ether and dioxane, ketones such as methyl ethyl ketone, and trifluoride.
  • the gel laminated sheet can be washed by a method of immersing in a washing solvent, a method of showering the washing solvent, or a combination thereof.
  • the washing solvent is preferably used in an amount of 300 to 30,000 parts by mass with respect to 100 parts by mass of the membrane.
  • the washing temperature may be 15 to 30 ° C., and may be heated and washed as necessary.
  • the temperature for the heat washing is preferably 80 ° C. or lower.
  • the washing with the washing solvent is preferably performed until the residual amount of the liquid solvent becomes less than 1% by mass of the initial addition amount.
  • the laminated microporous film from which the film-forming solvent has been removed is dried by a heat drying method or an air drying method. Drying is preferably carried out until the residual micro solvent is 100% by mass (dry weight) and the residual washing solvent is 5% by mass or less, and more preferably 3% by mass or less. If the drying is insufficient, the porosity of the laminated microporous film is lowered when the stretching process and the heat treatment process of the latter laminated microporous film are performed, and the permeability is deteriorated.
  • the laminated microporous membrane after drying is stretched (re-stretched) in at least a uniaxial direction.
  • the laminated microporous membrane can be stretched by the tenter method or the like in the same manner as described above while heating.
  • the stretching may be uniaxial stretching or biaxial stretching.
  • biaxial stretching any of simultaneous biaxial stretching and sequential stretching may be used, but simultaneous biaxial stretching is preferable.
  • re-stretching is usually performed on a long sheet-like laminated microporous membrane obtained from a stretched gel-like laminated sheet, MD direction and TD direction in re-stretching and MD direction and TD direction in stretching of the gel-like laminated sheet Matches.
  • the restretching temperature is not particularly limited, but is usually 90 to 135 ° C, more preferably 95 to 130 ° C.
  • the magnification in the uniaxial direction of re-stretching of the laminated microporous membrane is preferably 1.1 to 1.8 times.
  • the length is 1.1 to 1.8 times in the longitudinal direction (MD direction) or the transverse direction (TD direction).
  • the length is set to 1.1 to 1.8 times in the longitudinal direction and the transverse direction, and the longitudinal direction and the transverse direction may be the same or different from each other, but are preferably the same.
  • the first microporous layer Since the first microporous layer has an ultra high molecular weight polyethylene ratio of 30% by mass or more, even if the first microporous layer is stretched 1.1 to 1.8 times, the average is higher than that of the second microporous layer.
  • the hole diameter does not increase.
  • an average pore diameter becomes small because a 2nd microporous layer also makes polypropylene content 25 mass% or more and less than 60 mass%, More preferably, it is 30 mass% or more and 50 mass% or less.
  • the average pore diameter tends to be 0.030 ⁇ m or more.
  • the restretch ratio of the laminated microporous membrane is less than 1.1 times, a hybrid structure is not formed in the second microporous layer, and permeability, electrolyte solution absorbability, and electrolyte solution retention are reduced.
  • the draw ratio is more than 1.8 times, the fibrils become too thin, and the heat shrinkage resistance and the electrolyte solution holding ability are lowered.
  • the draw ratio is more preferably 1.2 to 1.6 times.
  • crosslinking treatment and hydrophilization treatment can be further performed on the multilayer microporous membrane after bonding or stretching.
  • the cross-linking treatment is performed by irradiating the laminated microporous film with ionizing radiation such as ⁇ rays, ⁇ rays, ⁇ rays, and electron beams.
  • ionizing radiation such as ⁇ rays, ⁇ rays, ⁇ rays, and electron beams.
  • electron beam irradiation an electron dose of 0.1 to 100 Mrad is preferable, and an acceleration voltage of 100 to 300 kV is preferable.
  • the meltdown temperature of the laminated microporous membrane increases due to the crosslinking treatment.
  • the hydrophilic treatment can be performed by monomer grafting, surfactant treatment, corona discharge, or the like. Monomer grafting is preferably performed after the crosslinking treatment.
  • the polyolefin multilayer microporous membrane of the present invention is a separator for secondary batteries such as nickel-hydrogen batteries, nickel-cadmium batteries, nickel-zinc batteries, silver-zinc batteries, lithium secondary batteries, lithium polymer secondary batteries, etc.
  • secondary batteries such as nickel-hydrogen batteries, nickel-cadmium batteries, nickel-zinc batteries, silver-zinc batteries, lithium secondary batteries, lithium polymer secondary batteries, etc.
  • it is particularly preferable to use as a separator for a lithium secondary battery.
  • a lithium secondary battery will be described as an example.
  • a positive electrode and a negative electrode are laminated via a separator, and the separator contains an electrolytic solution (electrolyte).
  • the structure of the electrode is not particularly limited, and a conventionally known structure can be used.
  • an electrode structure (coin type) arranged so that a disc-shaped positive electrode and a negative electrode face each other, a plate-shaped positive electrode and a negative electrode
  • An electrode structure in which layers are stacked alternately (stacked type), an electrode structure in which stacked strip-like positive and negative electrodes are wound (winding type), and the like can be used.
  • a wound type is preferable.
  • the positive electrode usually has a current collector and a layer that is formed on the surface thereof and includes a positive electrode active material that can occlude and release lithium ions.
  • the positive electrode active material include transition metal oxides, composite oxides of lithium and transition metals (lithium composite oxides), and inorganic compounds such as transition metal sulfides. Transition metals include V, Mn, and Fe. , Co, Ni and the like.
  • the lithium composite oxide include lithium nickelate, lithium cobaltate, lithium manganate, and a layered lithium composite oxide based on an ⁇ -NaFeO 2 type structure.
  • the method for producing the positive electrode is not particularly limited.
  • the positive electrode active material, the conductive material, and the binder are mixed, and if necessary, activated carbon or a solvent for adjusting the viscosity is added and kneaded.
  • a positive electrode paste is produced.
  • the obtained positive electrode paste can be applied to the surface of a current collector made of, for example, an aluminum foil, dried, and the solvent can be scattered to obtain a positive electrode.
  • the negative electrode has a current collector and a layer formed on the surface thereof and containing a negative electrode active material.
  • the negative electrode active material include carbonaceous materials such as natural graphite, artificial graphite, cokes, and carbon black.
  • the method for producing the negative electrode is not particularly limited, and for example, a negative electrode paste is prepared by mixing a binder with a negative electrode active material and adding an appropriate solvent. The obtained negative electrode paste can be applied to the surface of a metal foil current collector such as copper, dried, and compressed as necessary to increase the electrode density to obtain a negative electrode.
  • the electrolytic solution can be obtained by dissolving a lithium salt in an organic solvent.
  • Lithium salts include LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , Li 2 B 10 Cl 10 , Examples include LiN (C 2 F 5 SO 2 ) 2 , LiPF 4 (CF 3 ) 2 , LiPF 3 (C 2 F 5 ) 3 , lower aliphatic carboxylic acid lithium salt, LiAlCl 4 and the like. These may be used alone or as a mixture of two or more.
  • organic solvent examples include high boiling point and high dielectric constant organic solvents such as ethylene carbonate, propylene carbonate, ethyl methyl carbonate, and ⁇ -butyrolactone, and tetrahydrofuran, 2-methyltetrahydrofuran, dimethoxyethane, dioxolane, dimethyl carbonate, diethyl carbonate, and the like.
  • organic solvents having a low boiling point and a low viscosity These may be used alone or as a mixture of two or more.
  • a high dielectric constant organic solvent has a high viscosity
  • a low viscosity organic solvent has a low dielectric constant. Therefore, it is preferable to use a mixture of the two.
  • the separator When assembling the battery, impregnate the separator with electrolyte. Thereby, ion permeability can be imparted to the separator (multilayer microporous membrane).
  • the impregnation treatment is performed by immersing the multilayer microporous membrane in an electrolytic solution at room temperature.
  • a positive electrode sheet, a separator made of a multilayer microporous film, and a negative electrode sheet are laminated in this order, and the obtained laminate is wound from one end to form a wound electrode element.
  • the obtained electrode element is inserted into a battery can, impregnated with the above electrolyte, and a battery lid that also serves as a positive electrode terminal provided with a safety valve is caulked through a gasket to produce a battery.
  • this invention is not limited to said embodiment, It can implement in various deformation
  • a test piece was prepared by cutting out from an arbitrary position of the polyolefin laminated microporous membrane into a square of 5 cm in the longitudinal direction and 5 cm in the width direction. Any five points of this test piece were measured with a thickness contact thickness meter and averaged to obtain the thickness of the test piece. Ten test pieces were prepared and measured for the same polyolefin laminated microporous membrane. The average value of all 10 test pieces was taken as the thickness of the polyolefin microporous membrane. As a thickness measuring machine, Lightmatic VL-50A manufactured by Mitsutoyo was used.
  • Porosity (%) (w2-w1) / w2 ⁇ 100
  • Puncture strength (gf, g / ⁇ m) The maximum load was measured when the multi-layered microporous film having a film thickness T1 was pierced at a speed of 2 mm / sec with a needle having a spherical surface (curvature radius R: 0.5 mm) and a diameter of 1 mm.
  • Average pore diameter (average flow pore diameter) and bubble point (BP) pore diameter (nm) Using a palm porometer (trade name, model: CFP-1500A) manufactured by PMI, measurement was performed in the order of Dry-up and Wet-up. In the wet-up, pressure was applied to a microporous membrane sufficiently immersed in Galwick (trade name) having a known surface tension, and the pore diameter converted from the pressure at which air began to penetrate was defined as the maximum pore diameter. For the average flow diameter, the hole diameter was converted from the pressure at the point where the curve showing a half of the pressure / flow curve in the Dry-up measurement and the curve of the Wet-up measurement intersect. The following formula was used for conversion of pressure and pore diameter.
  • d C ⁇ ⁇ / P
  • d ( ⁇ m) is the pore diameter of the microporous membrane
  • ⁇ (mN / m) is the surface tension of the liquid
  • P (Pa) is the pressure
  • C is a constant.
  • Falling ball meltdown temperature A polyolefin microporous membrane of 50 mm square is sandwiched between metal block frames having 12 mm diameter holes, and a tungsten carbide 10 mm diameter sphere is placed on the porous membrane (in the block frame). Installed at a position overlapping the hole). The porous membrane is installed to have a flat surface in the horizontal direction. Start from 30 ° C and raise the temperature at 5 ° C / min. The temperature when the porous membrane was broken by the ball was measured three times, and the average temperature was taken as the meltdown temperature.
  • the sample was left in an oven at 150 ° C. for 1 hour. Thereafter, the sample was taken out of the oven, sufficiently cooled, and the area retention rate of the sample after the test was measured as 100% of the sample area before the test.
  • the heat resistance evaluation a case where the area retention rate was 95% or more was evaluated as ⁇ (excellent), a case where it was 90% to 95% was evaluated as ⁇ (good), and a case where it was 90% or less was evaluated as ⁇ (impossible).
  • Electrolytic solution wettability A 50 mm square polyolefin microporous membrane was placed on a 65 ⁇ 100 mm square glass plate, 0.5 ml of propylene carbonate was dropped onto the membrane, the permeation time was measured 5 times, all 5 minutes The case of being within the range was evaluated as ⁇ (excellent), and the case of being at least 5 minutes was evaluated as x (impossible).
  • Example 1 (1) Preparation of First Polyolefin Solution Containing 40% by mass of ultra high molecular weight polyethylene (UHPE) having an Mw of 2.0 ⁇ 10 6 and 60% by mass of high density polyethylene (HDPE) having an Mw of 5.6 ⁇ 10 5 Tetrakis [methylene-3- (3,5-ditertiarybutyl-4-hydroxyphenyl) -propionate] methane 0.2 parts by mass as an antioxidant was blended with 100 parts by mass of a polyethylene resin to prepare a mixture.
  • UHPE ultra high molecular weight polyethylene
  • HDPE high density polyethylene
  • Second Polyolefin Solution 100 parts by mass of a polyolefin resin comprising 50% by mass of polypropylene (PP) having a high-density polyethylene (HDPE) having an Mw of 5.6 ⁇ 10 5 and 1.6 ⁇ 10 6 And 0.2 parts by mass of tetrakis [methylene-3- (3,5-ditertiarybutyl-4-hydroxyphenyl) -propionate] methane as an antioxidant were blended to prepare a mixture. 30 parts by mass of the obtained mixture was charged into another twin screw extruder of the same type as above, and 70 parts by mass of liquid paraffin [35 cSt (40 ° C.)] was supplied from the side feeder of the twin screw extruder. A second polyolefin solution was prepared by melt-kneading under the same conditions.
  • PP polypropylene
  • HDPE high-density polyethylene
  • tetrakis methylene-3- (3,5-ditertiarybutyl-4-hydroxy
  • Example 2 The thickness ratio of the polyolefin three-layer microporous film is 42.5 / 15 / 42.5, the angle ⁇ to the cooling roll is 75 degrees, and re-stretching and heat setting are 1.6 times in the TD direction at a temperature of 127 ° C.
  • a polyolefin three-layer microporous membrane was produced under the same conditions as in Example 1 except that the film was redrawn.
  • Example 3 The polyolefin three-layer microporous membrane was formed under the same conditions as in Example 2 except that the temperature of the cooling roll was 18 ° C., and re-stretching and heat setting were re-stretched 1.6 times in the TD direction at a temperature of 125 ° C. Produced.
  • Example 4 The resin is mixed at the ratio shown in Table 1, the thickness ratio of the polyolefin three-layer microporous membrane is 35/30/35, the angle ⁇ to the cooling roll is 75 degrees, the cooling roll temperature is 37 ° C., and the stretching temperature is 114 degrees.
  • a polyolefin three-layer microporous membrane was produced under the same conditions as in Example 1 except that re-stretching and heat setting were performed at a temperature of 124 ° C. by 1.4 times in the TD direction.
  • Example 5 A polyolefin three-layer microporous membrane was produced under the same conditions as in Example 4 except that the polyolefin three-layer microporous membrane was re-stretched and the heat setting temperature was 123 ° C., and the film thickness was 8 ⁇ m.
  • Example 6 A polyolefin three-layer microporous film having a thickness of 6 ⁇ m was prepared under the same conditions as in Example 3 except that re-stretching and heat setting were performed at 126 ° C.
  • Comparative Example 1 Resin is mixed in the proportions shown in Table 1, using both the second polyolefin solution as the surface layer and the first polyolefin solution as the intermediate layer, the thickness ratio is 15/70/15, the cooling roll temperature is 20 ° C., and the stretching is performed.
  • a polyolefin three-layer microporous membrane was produced under the same conditions as in Example 1 except that the temperature was 116 ° C., re-stretching, and heat setting were re-stretched 1.3 times in the TD direction at a temperature of 124 ° C. .
  • Comparative Example 2 A polyolefin three-layer microporous membrane according to the same conditions as in Comparative Example 1 except that the thickness ratio was 10/80/10 and re-stretching and heat setting were re-stretched 1.3 times in the TD direction at a temperature of 125 ° C. Was made.
  • Comparative Example 3 The resin is mixed at the ratio shown in Table 1, the thickness ratio is 10/80/10, the angle ⁇ from the cooling roll is 41 degrees, the cooling roll temperature is 29 ° C., the stretching temperature is 115 ° C., re-stretching, and heat setting is 125.
  • a polyolefin three-layer microporous membrane was produced under the same conditions as in Comparative Example 1 except that the film was redrawn 1.4 times in the TD direction at a temperature of ° C.
  • Comparative Example 4 A polyolefin three-layer microporous membrane was produced under the same conditions as in Comparative Example 2 except that the cooling roll temperature was 15 ° C., and re-stretching and heat setting were re-stretched 1.3 times in the TD direction at a temperature of 124 ° C. did.
  • Comparative Example 5 The resin is mixed at the ratio shown in Table 1, the thickness ratio is 7.5 / 85 / 7.5, the angle ⁇ to the cooling roll is 43 degrees, the cooling roll temperature is 40 ° C., re-stretching, and heat setting is 125 ° C.
  • a polyolefin three-layer microporous membrane was produced under the same conditions as in Comparative Example 1 except that the film was re-stretched 1.4 times in the TD direction at the temperature.
  • Example 6 The resin is mixed in the ratio shown in Table 1, the thickness ratio is 40/20/40, the angle ⁇ to the cooling roll is 37 degrees, the cooling roll temperature is 21 ° C., the stretching temperature is 115 ° C., re-stretching, and heat setting is 126.
  • a polyolefin three-layer microporous membrane was produced under the same conditions as in Example 5 except that the film was redrawn 1.4 times in the TD direction at a temperature of ° C.
  • Comparative Example 5 since the polypropylene content in the surface layer is large, the wettability of the electrolytic solution is poor, and the electrolyte gas permeability resistance is 600 sec / 100 cc or more, and the battery performance deteriorates. Furthermore, in Comparative Example 6, the layer structure is the same as in Examples 4 and 5, but because the manufacturing conditions are different, the static friction coefficient in either MD or TD direction on one or both sides is 0.4 or less, and the meltdown The temperature does not exceed 180 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)
  • Laminated Bodies (AREA)
  • Secondary Cells (AREA)

Abstract

 機械的強度及び耐熱性に優れたポリオレフィン多層微多孔膜及び電池用セパレータの提供。 超高分子量ポリエチレンを含むポリエチレン系樹脂からなる第一の微多孔質層(表面層)と、高密度ポリエチレン及びポリプロピレンを含むポリオレフィン樹脂からなる第二の微多孔質層(中間層)と、を含む少なくとも3層を有し、(I)突刺強度がが25g/μm以上、(II)アルミニウム箔に対する静摩擦係数が0.40以上及び(III)メルトダウン温度が180℃以上であるポリオレフィン多層微多孔膜による。

Description

ポリオレフィン多層微多孔膜及び電池用セパレータ
 本発明は、ポリオレフィン多層微多孔膜及びそれを用いた電池用セパレータに関し、より詳しくは、機械的強度、耐熱性及び電解液の濡れ性に優れたポリオレフィン多層微多孔膜及びそれを用いた電池用セパレータに関するものである。
 リチウムイオン二次電池に代表される非水電解質二次電池は、小型、軽量かつ高エネルギー密度であるため、携帯用電子機器の主電源や、ハイブリット自動車等の車両駆動用電源として、広く使用されている。リチウムイオン二次電池は、正極と負極の間にセパレータを配置する。セパレータは、両極活物質の接触による短絡を防ぐと共に、その空孔内に電解液を保持してイオン伝導の通路を形成している。
 近年のリチウムイオン二次電池の高エネルギー密度化に伴い電池部材への負荷が大きくなっており、セパレータに対してもより高度な安全性能が求められている。そこで、リチウムイオン二次電池のセパレータとしては、械的強度に優れるとともに、電池とした状態で、米国規格UL-1642(Underwriters Laboratories)や国際電気標準会議規格IEC-61960(International Electrotechnical Commission)などに規定される電池安全性を評価する試験である高温サイクル試験、オーブン試験などにおいて優れた結果を示すなど、高温下での熱収縮特性にも優れる必要がある。
 従来から、リチウムイオン二次電池のセパレータとして、ポリオレフィン系微多孔膜が使用されてきた。ポリオレフィン系微多孔膜の中でも、特にポリエチレン系樹脂からなる微多孔膜は、電池の温度が上昇したときに、多孔膜の微細孔が閉塞して電流の流れを遮断するシャットダウン機能に優れることが知られている。
 しかし、シャットダウン機能が作動した後、さらに電池温度が上昇することがあり、このような場合、セパレータの溶融(いわゆるメルトダウン)が進行して電池内部で短絡が生じ、これに伴って大量の熱を発して発煙・発火・爆発といった危険が生じることがある。このため、セパレータには、シャットダウン機能に加えて、シャットダウン機能が発現する温度より高い温度に達した場合にも短絡が生じるおそれがなく、シャットダウン温度より高い温度にある程度の時間保持されても短絡の危険性が抑えられた優れた耐熱性を有していることが求められる。
 そこで、セパレータの耐熱性を向上させるため、ポリエチレンよりも高い融点を有するポリプロピレンを含むポリオレフィン微多孔質膜が提案されている(例えば、特許文献1参照)。しかし、ポリプロピレン系樹脂を含む微多孔膜では、メルトダウン温度は高いものの、シャットダウン温度も高くなってしまうという問題があった。
 また、シャットダウン特性とメルトダウン特性を両立させるため、ポリエチレンとポリプロピレンをブレンドしたり、ポリエチレン系樹脂からなる微多孔膜とポリプロピレン系樹脂からなる微多孔膜を積層させたりすることも提案されている。
 例えば、特許文献2では、少なくとも三層からなるポリオレフィン多層微多孔膜において、両面の表層をポリエチレン系樹脂のみからなる層とし、かつポリエチレン系樹脂と、走査型示差熱量計により測定した融解熱(ΔH)が90J/g以上のポリプロピレンとを含み、これらの配合割合を調整した内層を、両ポリエチレン系樹脂層の間に介在させている。この場合には、低いシャットダウン温度、高いシャットダウン速度及び高いメルトダウン温度を示し、かつ成膜性に優れたポリオレフィン多層微多孔膜が得られることが開示されている。
 また、特許文献3では、重量平均分子量が1×10以上の超高分子量ポリエチレンの割合が8質量%以上の第一のポリエチレン系樹脂を含む第一の微多孔層と、前記超高分子量ポリエチレンの割合が7質量%以下の第二のポリエチレン系樹脂を含み、水銀圧入法により求めた孔径分布曲線が少なくとも二つのピークを有する構造を有する第二の微多孔層とを設け、第一及び第二の微多孔層の合計厚さを100%として、前記第一の微多孔層の厚さを15~60%としている。この場合には、透過性、機械的強度、メルトダウン特性、電解液吸収性及び電解液保持性のバランスに優れたポリオレフィン多層微多孔膜が得られることが開示されている。
 こうした状況下、従来のポリオレフィン多層微多孔膜の持つ問題点を解消し、リチウムイオン二次電池の高性能化に伴い、さらなる機械的強度及び耐熱性の向上を追及したオレフィン多層微多孔膜及びそれを用いた電池用セパレータの開発が求められている。
国際公開第2004/089627号 国際公開第2007/010878号 特開2008-255306号公報
 本発明の課題は、上記した従来技術の問題点に鑑み、機械的強度、耐熱性及び電解液の濡れ性に優れたポリオレフィン多層微多孔膜及びそれを用いた電池用セパレータを提供することにある。
 本発明者らは、上記課題を解決するため、鋭意研究を重ねた結果、ポリオレフィン多層微多孔膜と電極との密着性を向上させることで、リチウムイオン二次電池のセパレータとして用いた場合の耐熱性がさらに向上するのではないかと着想した。そして、超高分子量ポリエチレンを含むポリエチレン系樹脂からなる第一の微多孔質層(表面層)と、高密度ポリエチレン及びポリプロピレンを含むポリオレフィン樹脂からなる第二の微多孔質層(中間層)と、を含む少なくとも3層を有し、(I)突刺強度、(II)金属箔に対する静摩擦係数及び(III)メルトダウン温度が特定の範囲であるポリオレフィン多層微多孔膜により、上記の課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明のポリオレフィン多層微多孔膜は、第一の微多孔質層が両表面層であり、第二の微多孔質層が中間層である、少なくとも3層を有するポリオレフィン多層微多孔膜であって、前記第一の微多孔質層は、重量平均分子量1×10以上である超高分子量ポリエチレンを30質量%以上70質量%未満含むポリエチレン系樹脂からなり、前記第二の微多孔質層は、重量平均分子量1×10以上8×10未満である高密度ポリエチレンを50質量%以上と、ポリプロピレンと、を含むポリオレフィン系樹脂からなり、前記多層微多孔質膜中のポリプロピレンの含有量は、前記両表面層及び前記中間層に含まれる前記ポリエチレン系樹脂及び前記ポリオレフィン系樹脂の合計100質量%に対して、5質量%以上15質量%以下であり、下記(I)~(III)の要件を満たすことを特徴とする。
 (I)突刺強度が25g/μm以上である。
 (II)アルミニウム箔に対する、前記両表面層におけるMD方向及びTD方向それぞれの静摩擦係数が0.40以上である。
 (III)メルトダウン温度が180℃以上である。
 また、前記ポリオレフィン多層微多孔膜は、平均孔径が0.001μm以上0.030μm未満であることが好ましい。
 また、前記ポリオレフィン多層微多孔膜は、膜厚が1μm以上20μm未満であり、かつ、透気度が600sec/100cc以下であることが好ましい。
 さらに、前記ポリオレフィン多層微多孔膜は、リチウムイオン二次電池の正極と負極の間に配置し、150℃で1時間暴露した際、面積保持率が90%以上であることが好ましい。
 本発明の電池用セパレータは、前記ポリオレフィン多層微多孔膜を用いてなることを特徴とする。
 本発明のポリオレフィン多層微多孔膜は、機械的強度及び電解液との濡れ性に優れ、かつ、電極との密着性に優れるため、耐熱性に非常に優れる。また、電池用セパレータとして用いた場合、十分な機械的強度とシャットダウン特性を有し、かつ、熱暴走や発火などが抑制された安全性の高い非水電解質電池を提供することができる。
図1は、ダイのリップ先端と冷却ロール頂点との角度θを示した説明図である。 図2は、150℃暴露試験の形状を示した説明図である。
1.ポリオレフィン多層微多孔膜
 本発明のポリオレフィン多層微多孔膜は、第一の微多孔質層が両表面層であり、第二の微多孔質層が中間層である、少なくとも3層を有し、前記第一の微多孔質層が特定量の超高分子量ポリエチレンを含むポリエチレン系樹脂からなり、前記第二の微多孔質層が特定量の高密度ポリエチレンと、ポリプロピレンとを含有するポリオレフィン系樹脂からなるものであり、機械的強度、耐熱性、電極との密着性及び電解液の濡れ性等に優れ、二次電池用セパレータに好適に用いることができる。
 以下、本発明について、各項目毎に説明する。
(1)第一の微多孔質層
 第一の微多孔質層は、超高分子量ポリエチレンを含むポリエチレン系樹脂からなる。表面層を形成する第一の微多孔質層において、超高分子量ポリエチレンを使用することにより、薄膜化した際にも高い機械強度が得ることができ、電池セパレータとして正極と負極との間に配置した際、該セパレータがシャットダウンした状態(135℃以上180℃以下)でも膜の形状を保持することができる。
(i)超高分子量ポリエチレン
 本発明に用いられる超高分子量ポリエチレンは、質量平均分子量(Mw)が1×10以上であり、好ましくは1×10~15×10、より好ましくは1×10~5×10、さらに好ましくは1.5×10~3×10である。Mwが上記範囲であることにより、成形性が良好となる。
 なお、Mwは、後述するゲルパーミエーションクロマトグラフィー(GPC)により測定される値である。
 超高分子量ポリエチレンは、上記Mwを満たす範囲おいて、特に限定されず従来公知のものを用いることができ、エチレンの単独重合体のみならず、他のα-オレフィンを少量含有するエチレン・α-オレフィン共重合体を用いることができる。
 エチレン以外のα-オレフィンとしては、プロピレン、ブテン-1、ペンテン-1、ヘキセン-1、4-メチルペンテン-1、オクテン-1、酢酸ビニル、メタクリル酸メチル及びスチレンが好ましい。エチレン以外のα-オレフィンの含有量は、5mol%以下が好ましい。
 超高分子量ポリエチレンは1種を単独で、または2種以上を併用して用いることができ、例えばMwの異なる二種以上の超高分子量ポリエチレン同士を混合して用いてもよい。
 前記ポリエチレン系樹脂中の超高分子量ポリエチレンの含有量は、前記ポリエチレン系樹脂全体100質量%に対して、30質量%以上70質量%未満であり、好ましくは30質量%以上60質量%未満、より好ましくは35質量%以上55質量%未満である。超高分子ポリエチレンの含有量が上記範囲であることにより、ポリオレフィン多層微多孔質膜を薄膜化した際にも高い機械強度を得ることができ、さらに電池セパレータとして正極と負極との間に配置した際、該セパレータがシャットダウンした状態(135℃以上180℃以下)でも膜の形状を保持することができる。
(ii)その他の樹脂成分
 前記ポリエチレン系樹脂は、超高分子量ポリエチレン以外の樹脂成分として、高密度ポリエチレン、中密度ポリエチレン、分岐状低密度ポリエチレン、直鎖状低密度ポリエチレンなどのポリチレンを含むことができ、好ましくはMwが5×10以上8×10未満である高密度ポリエチレン、さらに好ましくはMwが1×10以上7×10未満である高密度ポリエチレンを含む。また、高密度ポリエチレンの密度は0.940~0.98g/cmであることが好ましく、より好ましくは0.950~0.970g/cmである。
 Mwが1×10以上8×10未満の高密度ポリエチレンとしては、特に限定されず、従来公知のポリエチレンを用いることができ、エチレンの単独重合体のみならず、エチレン以外のα-オレフィンを少量含有する共重合体でもよく、シングルサイト触媒により製造されたものが好ましい。エチレン以外のα-オレフィンとしては、プロピレン、ブテン-1、ペンテン-1、ヘキセン-1、4-メチルペンテン-1、オクテン-1等が挙げられる。
 なお、Mwは、後述するゲルパーミエーションクロマトグラフィー(GPC)により測定される値である。
 前記エチレン系樹脂中の超高分子量ポリエチレン以外の樹脂成分の含有量は、前記ポリエチレン系樹脂全体100質量%に対して、好ましくは30質量%以上70質量%未満、より好ましくは40質量%以上65質量%未満である。特に、Mwが5×10以上8×10未満である高密度ポリエチレンを上記範囲で含有させることにより、製膜の安定性と最終的に得られる膜の高い突刺強度とを両立することができる。
 また、上記ポリエチレン以外の他のポリオレフィンを含んでもよく、Mwが1×10~4×10のポリブテン-1ポリブテン-1、ポリペンテン-1、ポリヘキセン-1、ポリオクテン-1及びMwが1×10~1×10のポリエチレンワックスからなる群から選ばれた少なくとも一種を用いてもよい。
 ポリエチレン以外のポリオレフィンの含有量は、前記ポリエチレン系樹脂全体100質量%に対して、10質量%以下が好ましく、5質量%以下がより好ましい。
 また、前記ポリエチレン系樹脂は、ポリプロピレンを実質的に含まないことが好ましい。ここで、実質的に含まないとは、ポリプロピレンの含有量が前記ポリエチレン系樹脂全体100質量%に対して、7質量%以下であることをいい、好ましくは5質量%以下であり、更に好ましくは0質量%である。
 なお、超高分子量ポリエチレン以外の樹脂成分は1種を単独で、または2種以上を併用して用いることができる。例えばMwの異なる二種以上の高密度ポリエチレン同士、中密度ポリエチレン同士、または、低密度ポリエチレン同士を混合して用いてもよい。
(iii)ポリエチレン系樹脂
 本発明においては、表面層である第一の微多孔質層を、上記の樹脂成分を含むポリエチレン系樹脂により成形することにより、金属箔(Al)に対する静摩擦係数0.4以上となり電極に密着しやすいポリオレフィン多層微多孔質層が得られる。
 本発明に用いられるポリエチレン系樹脂(全体)のMwは、特に限定されないが、好ましくは1×10~1×10であり、より好ましくは5×10~15×10であり、特に好ましくは1×10~10×10である。ポリエチレン系樹脂のMwが15×10以下であると、溶融押出が容易となる。
(2)第二の微多孔質層
 第二の微多孔質層は、高密度ポリエチレン及びポリプロピレンを含むポリオレフィン系樹脂からなる。中間層を形成する第二の微多孔質層において、ポリプロピレンを必須成分として使用することにより、良好なメルトダウン特性を得ることができ、耐熱性が向上する。また、ポリプロピレン単独よりも高密度ポリエチレンを混練することで溶融押出が容易となる。
(i)高密度ポリエチレン
 ポリオレフィン系樹脂に用いられる高密度ポリエチレンは、密度が0.940~0.98g/cmであり、好ましくは0.950~0.970g/cmであるポリエチレンである。
 高密度ポリエチレンのMwは、1×10以上8×10未満であり、好ましくは5×10以上×8×10未満、より好ましくは1×10以上7×10未満である。
 高密度ポリエチレンとしては、特に限定されず、従来公知のポリエチレンを用いることができ、エチレンの単独重合体のみならず、エチレン以外のα-オレフィンを少量含有する共重合体でもよく、シングルサイト触媒により製造されたものが好ましい。エチレン以外のα-オレフィンとしては、プロピレン、ブテン-1、ペンテン-1、ヘキセン-1、4-メチルペンテン-1、オクテン-1等が挙げられる。
 前記ポリオレフィン系樹脂中の高密度ポリエチレンの含有量は、前記ポリオレフィン系樹脂全体100質量%に対して、50質量%以上、好ましくは50質量%以上質量%80未満、より好ましくは50質量%以上70質量%未満である。特に、Mwが1×10以上8×10未満である高密度ポリエチレンを上記範囲で含有させることにより、溶融押出が容易となる。
(ii)ポリプロピレン
 本発明に用いられるポリプロピレンの種類は特に限定されず、プロピレンの単独重合体、プロピレンと他のα-オレフィン及び/又はジオレフィンとの共重合体、あるいはこれらの混合物のいずれでも良いが、単独重合体が好ましい。共重合体としてはランダム共重合体又はブロック共重合体のいずれも用いることができる。α-オレフィンの炭素数は8以下が好ましい。炭素数が8以下のα-オレフィンとして、エチレン、ブテン-1、ペンテン-1、4-メチルペンテン-1、オクテン-1、酢酸ビニル、メタクリル酸メチル、スチレン等が挙げられる。ジオレフィンの炭素数は4~14が好ましい。炭素数が4~14のジオレフィンとして、例えばブタジエン、1,5-ヘキサジエン、1,7-オクタジエン、1,9-デカジエン等が挙げられる。他のα-オレフィン又はジオレフィンの含有量は、プロピレン共重合体を100モル%として10モル%未満であるのが好ましい。
 ポリプロピレンのMwは1×10~5×10が好ましく、1×10~4×10がより好ましく、5×10~3×10が特に好ましい。Mwが1×10未満のポリプロピレンを用いると、メルトダウン特性が低下してしまう。一方Mwが4×10超のポリプロピレンを用いると、ポリエチレン系樹脂との混練が困難になる。ポリプロピレンの分子量分布(Mw/Mn)は1.01~100が好ましく、1.1~50がより好ましい。ポリプロピレンの融点は155~175℃が好ましく、163℃~175℃がより好ましい。ここで融点はJIS K7121により測定することができる。
 成膜性向上のために、粉末状のポリプロピレンを用いてもよい。粉末状ポリプロピレンは平均粒径が100~2,000μmで、かつ粒径分布が50~3,000であるのが好ましい。ここで平均粒径及び粒径分布はJIS K0069により測定することができる。
 ポリプロピレンの含有量は、前記両表面層及び前記中間層に含まれる前記ポリエチレン系樹脂及び前記ポリオレフィン系樹脂の合計100質量%に対して、5質量%以上15質量%以下であり、好ましくは7質量%以上15質量%未満、さらに好ましくは7質量%以上10質量%未満である。ポリプロピレンを上記範囲で含むことにより、耐熱性と機械的強度のバランスを向上させることが出来る。
 また、前記中間層における前記ポリオレフィン系樹脂中のポリプロピレンの含有量は、前記ポリオレフィン系樹脂全体100質量%に対して、好ましくは25質量%以上60質量%未満、より好ましくは30質量%以上50質量%以下である。
(iii)その他の樹脂成分
 ポリオレフィン組成物は、必要に応じて高密度ポリエチレン及びポリプロピレン以外のその他の樹脂成分を含んでもよい。ポリプロピレン以外の樹脂成分としては、融点が150℃以上の結晶性樹脂(部分的に結晶性である樹脂を含む)、及び/又はガラス転移温度(Tg)が150℃以上の非晶性樹脂が好ましい。ここでTgはJIS K7121により測定することができる。
 樹脂成分の具体例としては、ポリエステル、ポリメチルペンテン[PMP又はTPX(トランスパレントポリマーX)、融点:230~245℃]、ポリアミド(PA、融点:215~265℃)、ポリアリレンスルフィド(PAS)、フッ素樹脂、ポリスチレン(PS、融点:230℃)、ポリビニルアルコール(PVA、融点:220~240℃)、ポリイミド(PI、Tg:280℃以上)、ポリアミドイミド(PAI、Tg:280℃)、ポリエーテルサルフォン(PES、Tg:223℃)、ポリエーテルエーテルケトン(PEEK、融点:334℃)、ポリカーボネート(PC、融点:220~240℃)、セルロースアセテート(融点:220℃)、セルローストリアセテート(融点:300℃)、ポリスルホン(Tg:190℃)、ポリエーテルイミド(融点:216℃)等が挙げられる。樹脂成分は、単一樹脂成分からなるものに限定されず、複数の樹脂成分からなるものでもよい。樹脂成分の好ましいMwは、樹脂の種類により異なるが、一般的に1×10~1×10であり、より好ましくは1×10~7×10である。
(3)ポリオレフィン多層微多孔膜
(i)各層の構成
 本発明のポリオレフィン多層微多孔膜は、第一の微多孔質層が両表面層であり、第二の微多孔質層が中間層である、少なくとも3層を有し、好ましくは、第一の微多孔質層/第二の微多孔質層/第一の微多孔質層である。
 なお、本明細書において、中間層とは、両表面層間に介在する層であって、第二の微多孔質層からなる層をいう。
 両表層を形成する第一の微多孔質層(ポリエチレン系樹脂)の組成は、各層で同じであっても、異なっていてもよいが、同じであるのが好ましい。
 また、中間層である第二の微多孔質層は通常一層でよいが、必要に応じて多層にしてもよい。例えば組成の異なる複数の第二の微多孔質層を設けてもよい。さらに、中間層である第二の微多孔質層以外の層を、両表面層間に設けてもよく、両表層と組成の異なる第一の多孔質層を設けてもよい。
 さらに、ポリオレフィン多層微多孔膜は、必要に応じて、第一及び第二の微多孔質層以外の他の層を設けて、三層以上にすることもできる。また、ポリオレフィン多層微多孔膜は、必要に応じて、片面あるいは両面にコーティングを行うこともできる。
 本発明のポリオレフィン多層微多孔膜の各層の厚さは、特に限定されないが、第一の多孔質層/第二の多孔質層(固形分質量比)が好ましくは90/10~10/90、より好ましくは90/10~60/40である。両表面層を構成する第一の多孔質層の厚みは同じであっても異なっていてもよいが、生産性等の観点からは、同じであることが好ましい。
(ii)各特性
(突刺強度)
 本発明のポリオレフィン多層微多孔膜の突刺強度は25g/μm以上であり、好ましくは27g/μm以上、より好ましくは30g/μm以上である。突刺強度が上記範囲であることにより、前記多層微多孔膜の機械的強度が優れ、電池用セパレータとして用いた場合、電極活物質などによる破膜が防止される。
 突刺強度は、表層の超高分子量ポリエチレンの含有量を30質量%以上に調製したり、延伸温度を115℃以下にしたりすることなどにより、上記範囲に制御することができる。
 なお、突刺強度は、後述の実施例に記載の方法により測定される値である。
(静摩擦係数)
 本発明のポリオレフィン多層微多孔膜は、金属箔(アルミニウム箔)に対する、前記両表面層におけるMD方向及びTD方向それぞれの静摩擦係数が、0.4以上、好ましくは0.4~0.9、より好ましくは、0.4~0.8である。静摩擦係数が上記範囲であることにより、前記多層微多孔膜を電池用セパレータとして用いた場合、隣接する電極(正極、負極)との密着性が向上し、電池とした際の高温時のセパレータの形状保持特性に優れ、結果として耐熱性が向上する。これは、電極との摩擦力の増大により熱による収縮が抑制され、それにより形状保持特性が向上するものと推察される。
 また、本発明のポリオレフィン多層微多孔膜は、金属箔(アルミニウム箔)に対する、前記両表面層におけるMD方向及びTD方向それぞれの静摩擦係数の平均が、好ましくは0.4~0.9、より好ましくは0.4~0.8である。また摩擦係数のMD/TDの比率は0.8~1.2が望ましい。
 静摩擦係数は、例えば、両表層を形成する第一の微多孔質層の超高分子量ポリエチレン含有量を30質量%以上、多層ダイのリップ先端1と冷却ロール頂点2との角度θを45度以上、延伸温度を115℃以下に調製することなどより、上記範囲とすることができる。
 なお、静摩擦係数は、JIS K7125に準拠し、後述の実施例に記載の方法により測定される値である。
(メルトダウン温度)
 本発明のポリオレフィン多層微多孔膜のメルトダウン温度は、180℃以上、好ましくは180~190℃である。メルトダウン温度が上記範囲であることにより、より耐熱性に優れる。
 メルトダウン温度は、多層微多孔膜中のポリプロピレンの含有量を5質量%~15質量%に調製することなどより、上記範囲とすることができる。
 なお、メルトダウン温度は、後述の実施例に記載の方法により測定される値である。
(透気抵抗度)
 本発明のポリオレフィン多層微多孔膜の透気度は、好ましくは600sec/100cc以下であり、より好ましくは400sec/100cc以下である。透気度が上記範囲であることにより、セパレータとして用いた場合、イオン透過性に優れる。
 透気度は、多層微多孔膜(多層膜全体)中のポリプロピレンの含有量を5~15質量%とし、延伸温度や再延伸温度などを適宜調整することにより、上記範囲とすることができる。
 なお、透気抵抗度(sec/100cc)は、JIS P-8117に準拠して測定される値である。
(膜厚)
 本発明のポリオレフィン多層微多孔膜の膜厚は、1μm以上20μm未満、好ましくは3μm以上19μm未満、より好ましくは3μm以上16μm以下、更に好ましくは3μm以上13μm以下である。本発明のポリオレフィン多層微多孔膜は、膜厚が上記範囲であっても、十分な機械的強度及び耐熱性を有する。
 なお、膜厚は、後述の実施例に記載の方法により測定される値である。
(平均孔径)
 本発明のポリオレフィン多層微多孔膜の平均孔径は、好ましくは0.001μm以上0.030μm未満、より好ましくは0.010μm以上0.030μm未満であることが好ましい。平均孔径は、第一の微多孔層及び第二の微多孔層のポリオレフィンの配合を調製したり、延伸温度を110~115℃に調整したりすること等により制御することができる。平均孔径が0.001μm未満であると、電池用セパレータとして用いる場合において電解液の空孔内への充填が物理的に困難となり、充填できたとしてもイオンの通過に支障をきたしやすくなる。
 なお、平均孔径は、後述の実施例に記載の方法により測定される値である。
(BP細孔径)
 本発明のポリオレフィン多層微多孔膜におけるバブルポイント(BP)細孔径(最大孔径)は、パームポロメータを用いて測定した最大孔径をいう。本発明のポリオレフィン多層微多孔膜においては、[BP細孔径(nm)]-[平均孔径(nm)]が15nm以下であることが好ましく、10nm以下であることがより好ましい。差が15nm以上であると孔径分布が広くなり、安全性能のバラツキも大きくなる。
 (耐熱性)
 本発明のポリオレフィン多層微多孔膜は、正極と負極の間に配置し、150℃で1時間暴露した際の面積保持率が90%以上であることが好ましい。面積保持率が90%未満である場合、多層微多孔膜を電池用セパレータとして用いた場合、電池の発熱によりセパレータが収縮し、その端部で短絡が発生する可能性が高くなる。
 なお、面積保持率は、後述の実施例に記載の方法により測定される値である。
(空孔率)
 本発明のポリオレフィン多層微多孔膜は、空孔率が好ましくは20~80%、より好ましくは30~70%、さらに好ましくは35~55%である。
 なお、空孔率は、後述の実施例に記載の方法により測定される値である。
2.ポリオレフィン多層微多孔膜の製造方法
 ポリオレフィン多層微多孔膜の製造方法としては、特に限定されず、特許文献2、3に開示されるような、従来公知の方法を用いることができるが、例えば、下記の工程(1)~(6)を含むことが好ましく、さらに下記の工程(7)を含むこともできる。
 (1)各層を構成する原料(ポリエチレン系樹脂及びポリオレフィン系樹脂)と成膜用溶剤とをそれぞれ溶融混練し、第一及び第二のポリオレフィン溶液を調製する工程
 (2)前記第一及び第二のポリオレフィン溶液を共押出し、積層シートを形成した後、冷却し、ゲル状積層シートを形成する工程
 (3)前記ゲル状積層シートを延伸する工程
 (4)前記延伸後のゲル状積層シートから成膜用溶剤を除去する工程
 (5)前記成膜用溶剤除去後の積層シートを乾燥する工程
 (6)前記乾燥後の積層シートを再延伸する工程
 (7)前記延伸工程後の積層シートに対して架橋処理、親水化処理する工程
 特に、工程(2)において、特定の条件下、第一及び第二のポリオレフィン溶液を、多層ダイにより同時に押出し、多層シートを形成することにより、各層間の密着性に優れ、かつ、電池用セパレータとして用いた場合、電極との密着性に優れるポリオレフィン多層微多孔膜を製造することができる。
 以下、各工程についてそれぞれ説明する。
(1)第一及び第二のポリオレフィン溶液の調製工程
 前記ポリエチレン系樹脂及び前記ポリオレフィン系樹脂に、それぞれ適当な成膜用溶剤を添加した後、溶融混練し、第一及び第二のポリオレフィン溶液を調製する。第一及び第二のポリオレフィン溶液には必要に応じて酸化防止剤、紫外線吸収剤、アンチブロッキング剤、顔料、染料、無機充填材等の各種添加剤を本発明の効果を損なわない範囲で添加することができる。例えば、孔形成剤として微粉珪酸を添加できる。
 成膜用溶剤としては液体溶剤及び固体溶剤のいずれも使用できる。液体溶剤としてはノナン、デカン、デカリン、パラキシレン、ウンデカン、ドデカン、流動パラフィン等の脂肪族又は環式の炭化水素、及び沸点がこれらに対応する鉱油留分が挙げられる。溶剤含有量が安定したゲル状シートを得るためには、流動パラフィンのような不揮発性の液体溶剤を用いるのが好ましい。固体溶剤は融点が80℃以下のものが好ましく、このような固体溶剤としてパラフィンワックス、セリルアルコール、ステアリルアルコール、ジシクロヘキシルフタレート等が挙げられる。液体溶剤と固体溶剤を併用してもよい。
 第一のポリオレフィン溶液中、ポリエチレン系樹脂と成膜用溶剤との配合割合は、特に限定されないが、ポリエチレン系樹脂又はポリオレフィン系樹脂20~30質量部に対して、成膜溶剤70~80質量部であることが好ましい。ポリエチレン系樹脂またはポリプロピレン系樹脂の割合を20質量部未満にすると、第一又は第二のポリオレフィン溶液を押し出す際にダイ出口でスウェルやネックインが大きくなり、押出し成形体(ゲル状成形体)の成形性及び自己支持性が低下する。一方、ポリエチレン系樹脂又はポリプロピレン系樹脂の割合が30質量部を超えるとゲル状成形体の成形性が低下する。
 第一及び第二のポリオレフィン溶液の均一な溶融混練は特に限定されないが、二軸押出機中で行うのが好ましい。二軸押出機中での溶融混練は高濃度のポリオレフィン溶液を調製するのに適する。
 溶融混練温度は、ポリエチレン系樹脂の場合、ポリエチレン系樹脂の融点+10℃~融点+100℃の範囲内とするのが好ましい。具体的には溶融混練温度は140~250℃であるのが好ましく、170~240℃であるのがより好ましい。
 一方、ポリプロピレンを含むポリオレフィン系樹脂の場合、ポリプロピレンの融点~融点+70℃の範囲内とするのが好ましい。具体的には、融混練温度は170~280℃であるのが好ましく、200~270℃であるのがより好ましい。
 また、ポリオレフィン系樹脂が、さらに耐熱性樹脂を含む場合、溶融混練温度を耐熱性樹脂の種類に応じて結晶性耐熱性樹脂の融点又は非晶性耐熱性樹脂のガラス転移温度(Tg)以上とするのが好ましい。
 成膜用溶剤は混練開始前に添加しても、混練中に二軸押出機の途中から添加してもよいが、後者が好ましい。溶融混練にあたってはポリエチレン系樹脂の酸化を防止するために酸化防止剤を添加するのが好ましい。
(2)ゲル状シートの形成工程
 第一及び第二のポリオレフィン溶液をそれぞれ押出機から1つのダイに送給し、そこで両溶液を層状に組合せ、シート状に押し出す。三層以上の構造を有する多層微多孔膜を製造する場合、第一のポリオレフィン溶液が少なくとも両表面層を形成し、第二のポリオレフィン溶液が両表層間の少なくとも一層を形成するように(好ましくは、両表面層の一方又は両方に接触するように)両溶液を層状に組合せ、シート状に押し出す。
 押出方法はフラットダイ法及びインフレーション法のいずれでもよい。いずれの方法でも、溶液を別々のマニホールドに供給して多層用ダイのリップ入口で層状に積層する方法(多数マニホールド法)、又は溶液を予め層状の流れにしてダイに供給する方法(ブロック法)を用いることができる。多数マニホールド法及びブロック法自体は公知であるので、それらの詳細な説明は省略する。多層用フラットダイのギャップは0.1~3mmであり、押出し温度は140~250℃が好ましく、押出速度は0.2~15m/分が好ましい。第一及び第二のポリオレフィン溶液の各押出量を調節することにより、第一及び第二の微多孔層の膜厚比を調節することができる。
 また、このようにしてダイスから押し出された溶液は、ネックインが大きくなり、押出し成形体の成形性と、ポリオレフィン多層微多孔膜の平均孔径微細化、さらには表面層の金属箔に対する静摩擦係数の制御の観点から、図1に示されるように、多層ダイのリップ先端1と冷却ロール頂点2との角度θは45度以上にすることが好ましく、より好ましくは50~90度、さらに好ましくは55~85度である。
 ここで、多層ダイのリップ先端1と冷却ロール頂点2との角度θについて詳述する。まず、既述の図1について説明する。この図1は、冷却ロール2aを長手方向における一端側から見た図であり、当該冷却ロール2aの外周面(円状の外面)に沿って溶液が図1中反時計回り(左回り)に通流するように描画されている。従って、多層ダイにおける溶液の吐出口(リップ先端1)は、冷却ロール2aの長手方向に沿って伸びるように形成されている。
 冷却ロール2aに吐出された溶液は、後述するように、この冷却ロール2aにて冷却されてゲル状シートとなり、図1中右側に配置された延伸装置や巻取装置など(図示せず)に向かって通流していく。そのため、図1中左側から右側に向かう方向を「フィルム進行方向」と呼ぶ。
 この図1において、前記リップ先端1の下端面を通る水平な仮想上の面(以下、「第一の面」と呼ぶ)に符号「11」を付す。また、この第一の面11に対して平行で且つ冷却ロール2aの上面側外周部に接触する仮想上の面(以下、「第二の面」と呼ぶ)に符号「12」を付す。そして、図1において、リップ先端1から見て、第一の面11において既述のフィルム進行方向に沿って離間した任意の部位(図1中多層ダイよりも右側の部位)に符号「A」を付すとともに、前記第二の面12と冷却ロール2aとの接触点(実際には冷却ロール2aの長さ方向に沿って伸びる直線)に符号「B」を付すと、既述の角度θとは、図1において∠AOBを指している(ここで「O」は、既述のリップ先端1を表しており、接触点Bは冷却ロール頂点2と同義である)。
 従って、「角度θが90度」とは、リップ先端1の直下に既述の接触点Bが位置していることを表している。また、角度θが90度よりも小さい場合には、既述の図1を平面で見たとき(多層ダイや冷却ロール2a)を上方側から見たとき)、多層ダイに対して冷却ロール2aがフィルム進行方向に離間していることを表している。
 また、Tダイのリップから冷却ロールまでの距離を300mm以下とし、角度θを上記範囲とすることにより、ゲル状成形体の成形性に優れ、冷却速度を50℃/分以上にすることができる。
 得られた積層押出し成形体を冷却することによりゲル状積層シートを形成する。冷却方法としては、冷媒で冷却したロールに接触させて冷却させることが好ましい。冷却ロールの温度は40℃以下にすることが好ましく、より好ましくは、10℃~35℃、さらに好ましくは15~32℃である。冷却ロールの温度を上記範囲にすることにより、得られるゲル状積層シートの高次構造が密になるからである。
 また、冷却ロールの表面は、鏡面加工されていることが好ましい。
 冷却は少なくともゲル化温度までは50℃/分以上の冷却速度で行うのが好ましい。冷却は25℃以下まで行うのが好ましい。冷却により、成膜用溶剤によって分離された第一及び第二のポリオレフィンのミクロ相を固定化することができる。一般に冷却速度を遅くすると擬似細胞単位が大きくなり、得られるゲル状積層シートの高次構造が粗くなるが、冷却速度を速くすると密な細胞単位となる。冷却速度を50℃/分未満にすると結晶化度が上昇し、延伸に適したゲル状積層シートとなりにくい。冷却方法としては冷風、冷却水等の冷媒に接触させる方法、冷却ロールに接触させる方法等を用いることができる。
(3)ゲル状積層シートの延伸
 得られたゲル状積層シートを少なくとも二軸方向に延伸する。ゲル状積層シートは成膜用溶剤を含むので、均一に延伸できる。ゲル状積層シートは、加熱後、テンター法、ロール法、インフレーション法、又はこれらの組合せにより所定の倍率で延伸するのが好ましい。延伸は二軸延伸が好ましく、同時二軸延伸、逐次延伸及び多段延伸(例えば同時二軸延伸及び逐次延伸の組合せ)のいずれでもよい。
 延伸倍率は、二軸延伸ではいずれの方向でも3倍以上が好ましい(面積倍率で9倍以上が好ましく、16倍以上がより好ましく、25倍以上が特に好ましい)。面積倍率を9倍以上とすることにより突刺強度が向上する。面積倍率が400倍を超えると、延伸装置、延伸操作等の点で制約が生じる。
 延伸温度は、110℃~115℃の範囲内にするのが特に好ましい。
延伸温度が110℃未満ではポリエチレン系樹脂の軟化が不十分で、延伸により破膜しやすく、高倍率の延伸ができない。また、116℃以上の延伸温度では機械的強度が向上しにくい。
 以上のような延伸によりポリエチレンラメラ間に開裂が起こり、ポリエチレン相が微細化し、多数のフィブリルが形成される。フィブリルは三次元的に不規則に連結した網目構造を形成する。延伸により機械的強度が向上するとともに、細孔が拡大するので、電池用セパレータに好適である。
 所望の物性に応じて、膜厚方向に温度分布を設けて延伸してもよく、これにより一層機械的強度に優れた多層微多孔膜が得られる。その方法の詳細は日本国特許第3347854号に記載されている。
(4)成膜用溶剤の除去
 成膜用溶剤の除去(洗浄)に洗浄溶媒を用いる。第一及び第二のポリオレフィン相は成膜用溶剤相と分離しているので、成膜用溶剤を除去すると、微細な三次元網目構造を形成するフィブリルからなり、三次元的に不規則に連通する孔(空隙)を有する多孔質の膜が得られる。適当な洗浄溶媒としては、例えばペンタン、ヘキサン、ヘプタン等の飽和炭化水素、塩化メチレン、四塩化炭素等の塩素化炭化水素、ジエチルエーテル、ジオキサン等のエーテル類、メチルエチルケトン等のケトン類、三フッ化エタン,C14,C16等の鎖状フルオロカーボン、C等の環状ハイドロフルオロカーボン、COCH,COC等のハイドロフルオロエーテル、COCF,COC等のパーフルオロエーテル等の易揮発性溶媒が挙げられる。
 ゲル状積層シートの洗浄は、洗浄溶媒に浸漬する方法、洗浄溶媒をシャワーする方法、又はこれらの組合せにより行うことができる。洗浄溶媒は、膜100質量部に対し、300~30,000質量部使用するのが好ましい。洗浄温度は15~30℃でよく、必要に応じて加熱洗浄すればよい。加熱洗浄の温度は80℃以下であるのが好ましい。洗浄溶媒による洗浄は、液体溶剤の残留量が当初の添加量の1質量%未満になるまで行うのが好ましい。
(5)乾燥
 成膜用溶剤を除去した積層微多孔膜を、加熱乾燥法又は風乾法により乾燥する。乾燥は、積層微多孔膜を100質量%(乾燥重量)として、残存洗浄溶媒が5質量%以下になるまで行うのが好ましく、3質量%以下になるまで行うのがより好ましい。乾燥が不十分であると、後段の積層微多孔膜の延伸工程及び熱処理工程を行ったときに積層微多孔膜の空孔率が低下し、透過性が悪化する。
(6)再延伸
 乾燥後の積層微多孔膜を、少なくとも一軸方向に延伸(再延伸)する。積層微多孔膜の延伸は、加熱しながら上記と同様にテンター法等により行うことができる。延伸は一軸延伸でも二軸延伸でもよい。二軸延伸の場合、同時二軸延伸及び逐次延伸のいずれでもよいが、同時二軸延伸が好ましい。なお再延伸は通常延伸ゲル状積層シートから得られた長尺シート状の積層微多孔膜に対して行うので、再延伸におけるMD方向及びTD方向とゲル状積層シートの延伸におけるMD方向及びTD方向とは一致する。これは他の製造方法例でも同じである。
 再延伸温度は、特に限定されないが、通常90~135℃であり、より好ましくは95~130℃である。
 積層微多孔膜の再延伸の一軸方向への倍率は1.1~1.8倍とするのが好ましい。一軸延伸の場合、長手方向(MD方向)又は横手方向(TD方向)に1.1~1.8倍とする。二軸延伸の場合、長手方向及び横手方向に各々1.1~1.8倍とし、長手方向と横手方向で互いに同じでも異なってもよいが、同じであるのが好ましい。
 第一の微多孔質層は、超高分子量ポリエチレンの割合が30質量%以上であるので、1.1~1.8倍に延伸しても、第二の微多孔質層に比べて、平均孔径が大きくならない。また、第二の微多孔質層もポリプロピレン含有量を25質量%以上60質量%未満、より好ましくは30質量%以上50質量%以下とすることで、平均孔径が小さくなる。第二の微多孔質層のポリプロピレン含有量を25質量%以下とすると、平均孔径は0.030μm以上となりやすくなる。
 積層微多孔膜の再延伸倍率を1.1倍未満とすると、第二の微多孔質層に、ハイブリッド構造が形成されず、透過性、電解液吸収性及び電解液保持性が低下する。一方延伸倍率を1.8倍超とすると、フィブリルが細くなり過ぎ、しかも耐熱収縮性及び電解液保持性が低下する。延伸倍率は1.2~1.6倍とするのがより好ましい。
(7)架橋処理、親水化処理
 また、接合後又は延伸後の多層微多孔質膜に対して、さらに、架橋処理および親水化処理を行うこともできる。
 例えば、積層微多孔膜に対して、α線、β線、γ線、電子線等の電離放射線の照射することに、架橋処理を行う。電子線の照射の場合、0.1~100Mradの電子線量が好ましく、100~300kVの加速電圧が好ましい。架橋処理により積層微多孔膜のメルトダウン温度が上昇する。
 また、親水化処理は、モノマーグラフト、界面活性剤処理、コロナ放電等により行うことができる。モノマーグラフトは架橋処理後に行うのが好ましい。
3.電池用セパレータ
 本発明のポリオレフィン多層微多孔膜は、ニッケル-水素電池、ニッケル-カドミウム電池、ニッケル-亜鉛電池、銀-亜鉛電池、リチウム二次電池、リチウムポリマー二次電池等の二次電池のセパレータとして好ましく用いることができるが、特にリチウム二次電池のセパレータとして用いるのが好ましい。以下リチウム二次電池を例にとって説明する。
 リチウム二次電池は、正極と負極がセパレータを介して積層されており、セパレータが電解液(電解質)を含有している。電極の構造は特に限定されず、従来公知の構造を用いることができ、例えば、円盤状の正極及び負極が対向するように配設された電極構造(コイン型)、平板状の正極及び負極が交互に積層された電極構造(積層型)、積層された帯状の正極及び負極が巻回された電極構造(捲回型)等にすることができる。これらの中でも、捲回型が好ましい。
 正極は、通常集電体と、その表面に形成され、リチウムイオンを吸蔵放出可能な正極活物質を含む層とを有する。正極活物質としては、遷移金属酸化物、リチウムと遷移金属との複合酸化物(リチウム複合酸化物)、遷移金属硫化物等の無機化合物等が挙げられ、遷移金属としては、V、Mn、Fe、Co、Ni等が挙げられる。リチウム複合酸化物の好ましい例としては、ニッケル酸リチウム、コバルト酸リチウム、マンガン酸リチウム、α-NaFeO型構造を母体とする層状リチウム複合酸化物等が挙げられる。
 正極の製造方法としては、特に限定されず、例えば、正極活物質、導電材および結着剤を混合し、さらに必要に応じて活性炭や、粘度調整などの目的の溶剤を添加し、これを混練して正極ペーストを作製する。得られた正極ペーストを、例えば、アルミニウム箔製の集電体の表面に塗布し、乾燥して、溶剤を飛散させ、正極とすることができる。
 負極は、集電体と、その表面に形成され、負極活物質を含む層とを有する。負極活物質としては、天然黒鉛、人造黒鉛、コークス類、カーボンブラック等の炭素質材料が挙げられる。負極の製造方法としては、特に限定されず、例えば、負極活物質に、結着剤を混合し、適当な溶剤を加えて、負極ペーストを作成する。得られた負極ペーストを、銅などの金属箔集電体の表面に塗布し、乾燥し、必要に応じて電極密度を高めるべく圧縮し、負極とすることができる。
 電解液はリチウム塩を有機溶媒に溶解することにより得られる。リチウム塩としては、LiClO、LiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(CFSO、LiC(CFSO、Li10Cl10、LiN(CSO、LiPF(CF、LiPF(C、低級脂肪族カルボン酸リチウム塩、LiAlCl等が挙げられる。これらは単独で用いてもよいし、2種以上の混合物として用いてもよい。
 有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、エチルメチルカーボネート、γ-ブチロラクトン等の高沸点及び高誘電率の有機溶媒や、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジメトキシエタン、ジオキソラン、ジメチルカーボネート、ジエチルカーボネート等の低沸点及び低粘度の有機溶媒が挙げられる。これらは単独で用いてもよいし、2種以上の混合物として用いてもよい。特に高誘電率の有機溶媒は粘度が高く、低粘度の有機溶媒は誘電率が低いため、両者の混合物を用いるのが好ましい。
 電池を組み立てる際、セパレータに電解液を含浸させる。これによりセパレータ(多層微多孔膜)にイオン透過性を付与することができる。通常、含浸処理は多層微多孔膜を常温で電解液に浸漬することにより行う。円筒型電池を組み立てる場合、例えば正極シート、多層微多孔膜からなるセパレータ、及び負極シートをこの順に積層し、得られた積層体を一端より巻き取って捲回型電極素子とする。得られた電極素子を電池缶に挿入し、上記電解液を含浸させ、さらに安全弁を備えた正極端子を兼ねる電池蓋を、ガスケットを介してかしめることにより電池を作製することができる。
 なお、本発明は、上記の実施の形態に限定されるものでなく、その要旨の範囲内で種々変形して実施することができる。
 本発明を実施例により、さらに詳細に説明するが、本発明の実施態様は、これらの実施例に限定されるものではない。
 なお、実施例で用いた評価法、分析の各法および材料は、以下の通りである。
1.評価方法、分析方法
(1)透気抵抗度(sec/100cc)
 旭精工(株)社製のデジタル型王研式透気度試験機EGO1を使用して、本発明のポリオレフィン製積層微多孔膜を測定部にシワが入らないように固定し、JIS P-8117(2009)に従って測定した。試料は5cm角とし、測定点は試料の中央部の1点として、測定値を当該試料の透気度[秒]とした。同様の測定を任意のフィルム位置から採取した10個の試験片について行い、10個の測定値の平均値を当該ポリオレフィン製積層微多孔膜の透気度とした(sec/100ml)。
(2)膜厚(μm)
 ポリオレフィン製積層微多孔膜の任意の位置からを長手方向5cm、幅方向5cmの正方形に切り出し、試験片を作製した。この試験片の任意の5点を厚み接触厚さ計により測定し、平均することにより、当該試験片の厚みとした。同一のポリオレフィン製積層微多孔膜について、10個の試験片を用意し、測定を行った。試験片10個の全ての平均値を当該ポリオレフィン製積層微多孔膜の厚みとした。
厚み測定機はミツトヨ(Mitsutoyo)製ライトマチックVL-50Aを用いた。
(3)空孔率(%)
 微多孔質膜の重量w1とそれと等価な空孔のないポリマーの重量w2(幅、長さ、組成の同じポリマー)とを比較した、以下の式によって、測定される。
 空孔率(%)=(w2-w1)/w2×100
(4)突刺強度(gf、g/μm)
 先端が球面(曲率半径R:0.5mm)の直径1mmの針で、膜厚T1の多層微多孔膜を2mm/秒の速度で突刺したときの最大荷重を測定した。
(5)平均孔径(平均流量孔径)及びバブルポイント(BP)細孔径(nm)
 PMI社のパームポロメータ(商品名、型式:CFP-1500A)を用いて、Dry-up、Wet-upの順で測定した。Wet-upには表面張力が既知のGalwick(商品名)で十分に浸した微多孔膜に圧力をかけ、空気が貫通し始める圧力から換算される孔径を最大孔径とした。平均流量径については、Dry-up測定で圧力、流量曲線の1/2の傾きを示す曲線と、Wet-up測定の曲線が交わる点の圧力から孔径を換算した。圧力と孔径の換算は下記の数式を用いた。
d=C・γ/P
式中、「d(μm)」は微多孔膜の孔径、「γ(mN/m)」は液体の表面張力、「P(Pa)」は圧力、「C」は定数とした。
(6)静摩擦係数
 測定には島津製作所製オートグラフ(AGS-J)を用いた。ポリオレフィン微多孔膜の表(おもて)面A及び裏面Bのそれぞれ縦方向(MD)及び幅方向(TD)について、おのおの厚み50μmのアルミ箔(株式会社UACJ製箔社製硬質アルミ箔)との静摩擦係数を、JIS K7125(1999)に準拠して3回測定し平均した。なお、表面Aとは、冷却ロールに接触した面とは反対側(エア側)の面をいい、裏面Bとは冷却ロールに接触した面をいう。
(7)落球メルトダウン温度
 50mm角のポリオレフィン微多孔質膜を直径12mmの穴を有する金属製のブロック枠を用いて挟み、タングステンカーバイド製の直径10mmの球を前記多孔質膜上(ブロック枠における前記穴に重なる位置)に設置する。前記多孔質膜は水平方向に平面を有するように設置される。30℃からスタートし、5℃/分で昇温する。前記多孔質膜がボールによって破膜されたときの温度を3回測定し、平均温度をメルトダウン温度とした。
(8)耐熱性の評価(150℃暴露試験)
 50mm角のポリオレフィン微多孔膜を、50mm角の正極(コバルト酸リチウム:パイオトレック社製)と負極(グラファイト:パイオトレック社製)との間に挟み、それをガラス板(3t×50×80mm)2枚との間に、ガラス板の長辺がMD方向となるよう正極、ポリオレフィン微多孔膜、負極の順で挟んだサンプルを入れ、外側からガラス板の短辺のみをクリップで10mmの位置で固定し、評価用サンプルとした(図2)。前記サンプルを150℃のオーブン中に1時間静置した。その後、サンプルをオーブンから取り出し、十分、冷却した後、試験前のサンプル面積100%として、試験後のサンプルの面積保持率を測定した。耐熱性評価として、面積保持率が95%以上である場合を○(優)、90%~95%である場合を△(良)、90%以下である場合を×(不可)と評価した。
(9)重量平均分子量(Mw)
 UHMWPE及びHDPEのMwは以下の条件でゲルパーミエーションクロマトグラフィー(GPC)法により求めた。
・測定装置:Waters Corporation製GPC-150C
・カラム:昭和電工株式会社製Shodex UT806M
・カラム温度:135℃
・溶媒(移動相):o-ジクロルベンゼン
・溶媒流速:1.0 ml/分
・試料濃度:0.1 wt%(溶解条件:135℃/1h)
・インジェクション量:500μl
・検出器:Waters Corporation製ディファレンシャルリフラクトメーター(RI検出器)
・検量線:単分散ポリスチレン標準試料を用いて得られた検量線から、所定の換算定数を用いて作成した。
(10)電解液の濡れ性
 50mm角のポリオレフィン微多孔膜を65×100mm角のガラス板上に設置し、炭酸プロピレン0.5mlを膜に滴下し、浸透時間を5回測定し、すべて5分以内である場合を○(優)、1つでも5分以上である場合を×(不可)と評価した。
2.実施例
(実施例1)
(1)第一のポリオレフィン溶液の調製
 Mwが2.0×10の超高分子量ポリエチレン(UHPE)40質量%及びMwが5.6×10の高密度ポリチレン(HDPE)60質量%からなるポリエチレン系樹脂100質量部に、酸化防止剤としてテトラキス[メチレン-3-(3,5-ジターシャリーブチル-4-ヒドロキシフェニル)-プロピオネート]メタン0.2質量部を配合し、混合物を調製した。
 得られた混合物25質量部を強混練タイプの二軸押出機に投入し、二軸押出機のサイドフィーダーから流動パラフィン[35cSt(40℃)]75質量部を供給し、230℃及び250rpmの条件で溶融混練して、第一のポリオレフィン溶液を調製した。
(2)第二のポリオレフィン溶液の調製
 Mwが5.6×10の高密度ポリチレン(HDPE)及びMwが1.6×10のポリプロピレン(PP)50質量%からなるポリオレフィン系樹脂100質量部に、酸化防止剤としてテトラキス[メチレン-3-(3,5-ジターシャリーブチル-4-ヒドロキシフェニル)-プロピオネート]メタン0.2質量部を配合し、混合物を調製した。
 得られた混合物30質量部を、上記と同タイプの別の二軸押出機に投入し、二軸押出機のサイドフィーダーから流動パラフィン[35cSt(40℃)]70質量部を供給し、上記と同条件で溶融混練して、第二のポリオレフィン溶液を調製した。
(3)押出
 第一及び第二のポリオレフィン溶液を、各二軸押出機から三層用Tダイに供給し、第一のポリオレフィン溶液/第二のポリオレフィン溶液/第一のポリオレフィン溶液の層厚比が40/20/40となるように押し出した。押出し成形体を、31℃に温調した冷却ロール(直径500mm)に引き取りながら冷却し、ゲル状三層シートを形成した。このとき、ダイリップと冷却ロールとの角度θは45度となるように調整した。
(4)ゲル状積層シートの延伸、成膜溶剤の除去、乾燥
 ゲル状三層シートを、114℃で5×5倍に同時2軸延伸を行い、延伸膜を得た。得られた延伸膜を塩化メチレンで洗浄して残留する流動パラフィンを抽出除去し、乾燥した。
(5)積層微多孔質膜の再延伸、熱固定
 得られた積層微多孔質膜を、テンター延伸機により124℃の温度でTD方向に1.6倍に再延伸した後、そのままテンター延伸機内で幅を固定しポリオレフィン三層微多孔膜を作製した。
 作成したポリオレフィン三層微多孔膜の各成分の配合割合、製造条件、評価結果等を表1に記載した。
(実施例2)
 ポリオレフィン三層微多孔膜の厚み比を42.5/15/42.5とし、冷却ロールまでの角度θを75度とし、再延伸、熱固定は127℃の温度でTD方向に1.6倍に再延伸した以外は、実施例1と同様な条件により、ポリオレフィン三層微多孔膜を作製した。
(実施例3)
 冷却ロールの温度を18℃とし、再延伸、熱固定は125℃の温度でTD方向に1.6倍に再延伸した以外は、実施例2と同様な条件により、ポリオレフィン三層微多孔膜を作製した。
(実施例4)
 表1に示す割合で樹脂を混合し、ポリオレフィン三層微多孔膜の厚み比を35/30/35とし、冷却ロールまでの角度θを75度、冷却ロール温度を37℃とし、延伸温度を114℃、再延伸、熱固定は124℃の温度でTD方向に1.4倍に再延伸した以外は、実施例1と同様な条件により、ポリオレフィン三層微多孔膜を作製した。
(実施例5)
 ポリオレフィン三層微多孔膜の再延伸、熱固定温度を123℃の温度にし、膜厚を8μmとした以外は、実施例4と同様な条件により、ポリオレフィン三層微多孔膜を作製した。
(実施例6)
 再延伸、熱固定を126℃で行った以外は実施例3と同様の条件により膜厚が6μmのポリオレフィン三層微多孔膜を作製した。
(比較例1)
 表1に示す割合で樹脂を混合し、両表面層を第二のポリオレフィン溶液、中間層を第一のポリオレフィン溶液を用い、厚み比を15/70/15とし、冷却ロール温度を20℃、延伸温度を116℃、再延伸、熱固定は124℃の温度でTD方向に1.3倍に再延伸したとした以外は、実施例1と同様な条件により、ポリオレフィン三層微多孔膜を作製した。
(比較例2)
 厚み比を10/80/10とし、再延伸、熱固定は125℃の温度でTD方向に1.3倍に再延伸した以外は、比較例1と同様な条件により、ポリオレフィン三層微多孔膜を作製した。
(比較例3)
 表1に示す割合で樹脂を混合し、厚み比を10/80/10、冷却ロールからの角度θを41度、冷却ロール温度を29℃、延伸温度を115℃、再延伸、熱固定は125℃の温度でTD方向に1.4倍に再延伸した以外は、比較例1と同様な条件により、ポリオレフィン三層微多孔膜を作製した。
(比較例4)
 冷却ロール温度を15℃とし、再延伸、熱固定は124℃の温度でTD方向に1.3倍に再延伸した以外は、比較例2と同様な条件により、ポリオレフィン三層微多孔膜を作製した。
(比較例5)
 表1に示す割合で樹脂を混合し、厚み比を7.5/85/7.5、冷却ロールまでの角度θを43度、冷却ロール温度を40℃、再延伸、熱固定は125℃の温度でTD方向に1.4倍に再延伸した以外は、比較例1と同様な条件により、ポリオレフィン三層微多孔膜を作製した。
(比較例6)
 表1に示す割合で樹脂を混合し、厚み比を40/20/40、冷却ロールまでの角度θを37度、冷却ロール温度を21℃、延伸温度を115℃、再延伸、熱固定は126℃の温度でTD方向に1.4倍に再延伸した以外は、実施例5と同様な条件により、ポリオレフィン三層微多孔膜を作製した。
[規則26に基づく補充 09.07.2015] 
Figure WO-DOC-TABLE-1
 本発明の要件を満たす実施例1~6では、突刺強度等の機械的強度が十分であり、また、静摩擦係数がすべての条件で0.4以上であり、メルトダウン温度も180℃以上であるため、150℃暴露試験においても、面積保持率が90%以上であり、耐熱性に優れることが明かである。
 一方、比較例1~4では、表面層がポリオレフィン系樹脂からなり、中間層がポリエチレン系樹脂からなるため、片面あるいは両面のMD及びTD方向のいずれかの静摩擦係数が0.4以下となり、メルトダウン温度が180℃以上とならない。また。比較例5では、表層のポリプロピレン含有量多いため、電解液の濡れ性が悪く、電解液透気抵抗度が600sec/100cc以上であり電池性能が悪化する。さらに、比較例6では、層構造は実施例4、5と同様であるが、製造条件が異なるため、片面あるいは両面のMD及びTD方向のいずれかの静摩擦係数が0.4以下となり、メルトダウン温度が180℃以上とならない。
 1(O)  リップ先端
 2(B)  冷却ロール頂点
 3、θ  ダイリップと冷却ロールとの角度
 
 

Claims (5)

  1.  第一の微多孔質層が両表面層であり、第二の微多孔質層が中間層である、少なくとも3層を有するポリオレフィン多層微多孔膜であって、
     前記第一の微多孔質層は、重量平均分子量1×10以上である超高分子量ポリエチレンを30質量%以上70質量%未満含むポリエチレン系樹脂からなり、
     前記第二の微多孔質層は、重量平均分子量1×10以上5×10未満である高密度ポリエチレンを50質量%以上と、ポリプロピレンと、を含むポリオレフィン系樹脂からなり、
     前記多層微多孔質膜中のポリプロピレンの含有量は、前記両表面層及び前記中間層に含まれる前記ポリエチレン系樹脂及び前記ポリオレフィン系樹脂の合計100質量%に対して、5質量%以上15質量%以下であり、
     下記(I)~(III)の要件を満たすことを特徴とするポリオレフィン多層微多孔膜。
     (I)突刺強度が25g/μm以上である。
     (II)アルミニウム箔に対する、前記両表面層におけるMD方向及びTD方向それぞれの静摩擦係数が0.40以上である。
     (III)メルトダウン温度が180℃以上である。
  2.  平均孔径が0.001μm以上0.030μm未満であることを特徴とする請求項1に記載のポリオレフィン多層微多孔膜。
  3.  膜厚が1μm以上20μm未満であり、かつ、透気度が600sec/100cc以下であることを特徴とする請求項1に記載のポリオレフィン多層微多孔膜。
  4.  リチウムイオン二次電池の正極と負極の間に配置し、150℃で1時間暴露した際、面積保持率が90%以上であることを特徴とする請求項1~3のいずれかに記載のポリオレフィン多層微多孔膜。
  5.  請求項1~4のいずれかに記載のポリオレフィン微多孔質膜を用いてなる電池用セパレータ。
     
     
PCT/JP2015/065348 2014-05-30 2015-05-28 ポリオレフィン多層微多孔膜及び電池用セパレータ WO2015182689A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
SG11201606671PA SG11201606671PA (en) 2014-05-30 2015-05-28 Polyolefin multilayer microporous membrane and battery separator
PL15800063T PL3085531T3 (pl) 2014-05-30 2015-05-28 Wielowarstwowa mikroporowata membrana poliolefinowa oraz separator baterii
US15/113,004 US9843030B2 (en) 2014-05-30 2015-05-28 Polyolefin multilayer microporous membrane and battery separator
CN201580008710.1A CN106029380B (zh) 2014-05-30 2015-05-28 聚烯烃多层微多孔膜及电池用隔膜
JP2015548517A JP5876631B1 (ja) 2014-05-30 2015-05-28 ポリオレフィン多層微多孔膜及び電池用セパレータ
KR1020167019862A KR101686409B1 (ko) 2014-05-30 2015-05-28 폴리올레핀 다층 미세 다공막 및 전지용 세퍼레이터
EP15800063.8A EP3085531B1 (en) 2014-05-30 2015-05-28 Polyolefin multilayer microporous membrane and battery separator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014112048 2014-05-30
JP2014-112048 2014-05-30

Publications (1)

Publication Number Publication Date
WO2015182689A1 true WO2015182689A1 (ja) 2015-12-03

Family

ID=54699012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065348 WO2015182689A1 (ja) 2014-05-30 2015-05-28 ポリオレフィン多層微多孔膜及び電池用セパレータ

Country Status (10)

Country Link
US (1) US9843030B2 (ja)
EP (1) EP3085531B1 (ja)
JP (1) JP5876631B1 (ja)
KR (1) KR101686409B1 (ja)
CN (1) CN106029380B (ja)
HU (1) HUE039856T2 (ja)
MY (1) MY176001A (ja)
PL (1) PL3085531T3 (ja)
SG (1) SG11201606671PA (ja)
WO (1) WO2015182689A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168871A1 (ja) * 2017-03-17 2018-09-20 東レ株式会社 ポリオレフィン微多孔膜
WO2018180713A1 (ja) * 2017-03-30 2018-10-04 東レ株式会社 ポリオレフィン微多孔膜およびそれを用いた電池
WO2019074122A1 (ja) 2017-10-13 2019-04-18 旭化成株式会社 ポリオレフィン微多孔膜及びこれを用いたリチウムイオン二次電池
JP2020095950A (ja) * 2018-12-10 2020-06-18 東レ株式会社 ポリオレフィン微多孔膜、電池用セパレータ及びポリオレフィン微多孔膜の製造方法
WO2020195948A1 (ja) * 2019-03-28 2020-10-01 東レ株式会社 多孔性フィルム、二次電池用セパレータおよび二次電池
WO2023002818A1 (ja) * 2021-07-19 2023-01-26 東レ株式会社 ポリオレフィン多層微多孔膜、積層ポリオレフィン多層微多孔膜、電池用セパレータ

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114784458A (zh) 2015-07-31 2022-07-22 赛尔格有限责任公司 干法膜、电池隔板、微孔聚烯烃锂电池及相关方法
JP6014743B1 (ja) 2015-11-30 2016-10-25 住友化学株式会社 非水電解液二次電池用セパレータおよびその利用
JP6053903B1 (ja) * 2015-11-30 2016-12-27 住友化学株式会社 非水電解液二次電池用セパレータ
KR102231395B1 (ko) * 2017-03-17 2021-03-24 도레이 카부시키가이샤 전지용 세퍼레이터, 전극체 및 비수 전해질 이차전지
US20210218108A1 (en) * 2017-11-08 2021-07-15 Toray Industries, Inc. Polyolefin composite porous film, method of producing same, battery separator, and battery
CN110366787B (zh) * 2017-11-10 2022-02-25 旭化成株式会社 蓄电装置用分隔件、及蓄电装置
JP2020136268A (ja) * 2019-02-18 2020-08-31 旭化成株式会社 蓄電デバイス用微多孔膜
DE102019112089A1 (de) * 2019-05-09 2020-11-12 Brückner Maschinenbau GmbH & Co. KG Folie mit wenigstens zwei Schichten und Verfahren zu ihrer Herstellung
CN110265608B (zh) * 2019-06-28 2021-10-01 新乡市中科科技有限公司 一种耐高压锂离子电池用纳米涂层隔膜及其制备方法
JP2021091896A (ja) * 2019-12-10 2021-06-17 旭化成株式会社 ポリエチレン樹脂組成物
CN110993866B (zh) * 2019-12-18 2022-08-16 江苏厚生新能源科技有限公司 耐高温热收缩的锂电池隔膜及其制备方法
CN112495197B (zh) * 2020-11-30 2023-08-29 杭州科百特科技有限公司 一种聚偏二氟乙烯过滤膜及其制备方法与用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010245028A (ja) * 2009-03-19 2010-10-28 Asahi Kasei E-Materials Corp 積層微多孔膜及び非水電解質二次電池用セパレータ
JP2011126275A (ja) * 2009-11-20 2011-06-30 Mitsubishi Plastics Inc 積層多孔フィルム、電池用セパレータおよび電池
JP2013035293A (ja) * 2006-08-31 2013-02-21 Toray Battery Separator Film Co Ltd 多層微多孔膜及びその製造方法、並びに電池用セパレータ及び電池

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3347854B2 (ja) 1993-12-27 2002-11-20 東燃化学株式会社 ポリオレフィン微多孔膜、その製造方法、それを用いた電池用セパレーター及びフィルター
JP4117167B2 (ja) 2002-09-04 2008-07-16 株式会社ナナオ スロットマシン及び制御プログラム
CN100522602C (zh) 2003-04-04 2009-08-05 旭化成电子材料株式会社 聚烯烃微多孔膜
CA2611275A1 (en) * 2005-06-24 2006-12-28 Tonen Chemical Corporation Multi-layer, microporous polyethylene membrane,and battery separator and battery using same
JP4822097B2 (ja) 2005-06-29 2011-11-24 第一電気株式会社 動揺・安定台装置
JP5202949B2 (ja) 2005-07-15 2013-06-05 東レバッテリーセパレータフィルム株式会社 ポリオレフィン多層微多孔膜及び電池用セパレータ
JP5450929B2 (ja) * 2007-04-09 2014-03-26 東レバッテリーセパレータフィルム株式会社 ポリオレフィン多層微多孔膜、その製造方法、電池用セパレータ及び電池
JP5202866B2 (ja) 2007-04-09 2013-06-05 東レバッテリーセパレータフィルム株式会社 ポリオレフィン多層微多孔膜、その製造方法、電池用セパレータ及び電池
US8012622B2 (en) * 2007-11-14 2011-09-06 Toray Tonen Specialty Separator Godo Kaisha Multi-layer, microporous membrane, battery separator and battery
EP2111910A1 (en) * 2008-04-24 2009-10-28 Tonen Chemical Corporation System And Process For Producing A Multilayer Microporous Membrane
WO2010082069A1 (en) * 2009-01-19 2010-07-22 Fujifilm Manufacturing Europe Bv Process for preparing membranes
KR101303459B1 (ko) 2011-09-30 2013-09-05 장지은 발효 초콜릿 조성물과 이를 이용하여 제조된 발효 초콜릿 및 그 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013035293A (ja) * 2006-08-31 2013-02-21 Toray Battery Separator Film Co Ltd 多層微多孔膜及びその製造方法、並びに電池用セパレータ及び電池
JP2010245028A (ja) * 2009-03-19 2010-10-28 Asahi Kasei E-Materials Corp 積層微多孔膜及び非水電解質二次電池用セパレータ
JP2011126275A (ja) * 2009-11-20 2011-06-30 Mitsubishi Plastics Inc 積層多孔フィルム、電池用セパレータおよび電池

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168871A1 (ja) * 2017-03-17 2018-09-20 東レ株式会社 ポリオレフィン微多孔膜
JPWO2018168871A1 (ja) * 2017-03-17 2020-01-16 東レ株式会社 ポリオレフィン微多孔膜
WO2018180713A1 (ja) * 2017-03-30 2018-10-04 東レ株式会社 ポリオレフィン微多孔膜およびそれを用いた電池
WO2019074122A1 (ja) 2017-10-13 2019-04-18 旭化成株式会社 ポリオレフィン微多孔膜及びこれを用いたリチウムイオン二次電池
KR20200034767A (ko) 2017-10-13 2020-03-31 아사히 가세이 가부시키가이샤 폴리올레핀 미다공막 및 이것을 사용한 리튬 이온 이차 전지
US11504674B2 (en) 2017-10-13 2022-11-22 Asahi Kasei Kabushiki Kaisha Polyolefin microporous film and lithium-ion secondary cell in which same is used
JP2020095950A (ja) * 2018-12-10 2020-06-18 東レ株式会社 ポリオレフィン微多孔膜、電池用セパレータ及びポリオレフィン微多孔膜の製造方法
JP7463704B2 (ja) 2018-12-10 2024-04-09 東レ株式会社 ポリオレフィン微多孔膜、電池用セパレータ及びポリオレフィン微多孔膜の製造方法
WO2020195948A1 (ja) * 2019-03-28 2020-10-01 東レ株式会社 多孔性フィルム、二次電池用セパレータおよび二次電池
WO2023002818A1 (ja) * 2021-07-19 2023-01-26 東レ株式会社 ポリオレフィン多層微多孔膜、積層ポリオレフィン多層微多孔膜、電池用セパレータ

Also Published As

Publication number Publication date
EP3085531A1 (en) 2016-10-26
CN106029380A (zh) 2016-10-12
EP3085531A4 (en) 2017-03-08
CN106029380B (zh) 2017-07-18
MY176001A (en) 2020-07-21
JPWO2015182689A1 (ja) 2017-04-20
JP5876631B1 (ja) 2016-03-02
HUE039856T2 (hu) 2019-02-28
EP3085531B1 (en) 2018-05-02
KR101686409B1 (ko) 2016-12-28
US9843030B2 (en) 2017-12-12
US20170149038A1 (en) 2017-05-25
PL3085531T3 (pl) 2018-10-31
KR20160094448A (ko) 2016-08-09
SG11201606671PA (en) 2016-10-28

Similar Documents

Publication Publication Date Title
JP5876631B1 (ja) ポリオレフィン多層微多孔膜及び電池用セパレータ
JP5202949B2 (ja) ポリオレフィン多層微多孔膜及び電池用セパレータ
US10680224B2 (en) Polyolefin multilayer microporous film, method for producing same, and cell separator
JP5548290B2 (ja) 多層微多孔膜、電池用セパレータ及び電池
JP5094844B2 (ja) 微多孔膜、電池用セパレータ及び電池
JP4902455B2 (ja) ポリオレフィン多層微多孔膜、その製造方法、電池用セパレータ及び電池
KR101143106B1 (ko) 미세다공성 중합체 막
JP5450929B2 (ja) ポリオレフィン多層微多孔膜、その製造方法、電池用セパレータ及び電池
US9799870B2 (en) Multilayered microporous polyolefin film
US20090253032A1 (en) Multi-layer, microporous polyolefin membrane, its production method, battery separator, and battery
WO2014126079A1 (ja) 電池用セパレータ及びその電池用セパレータの製造方法
JP5202866B2 (ja) ポリオレフィン多層微多孔膜、その製造方法、電池用セパレータ及び電池
US20190088917A1 (en) Polyolefin microporous membrane, method of producing polyolefin microporous membrane, battery separator, and battery
TW201922498A (zh) 聚烯烴複合多孔質膜及其製造方法、以及電池用隔離材及電池
TW201838224A (zh) 聚烯烴微多孔膜、非水電解液系二次電池用隔離材、及非水電解液系二次電池
JP7088162B2 (ja) ポリオレフィン微多孔膜

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015548517

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15800063

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015800063

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015800063

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167019862

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15113004

Country of ref document: US