WO2015178048A1 - 異常判定装置 - Google Patents

異常判定装置 Download PDF

Info

Publication number
WO2015178048A1
WO2015178048A1 PCT/JP2015/054206 JP2015054206W WO2015178048A1 WO 2015178048 A1 WO2015178048 A1 WO 2015178048A1 JP 2015054206 W JP2015054206 W JP 2015054206W WO 2015178048 A1 WO2015178048 A1 WO 2015178048A1
Authority
WO
WIPO (PCT)
Prior art keywords
determination
determination operation
execution
failure determination
egr
Prior art date
Application number
PCT/JP2015/054206
Other languages
English (en)
French (fr)
Inventor
育恵 羽生
雅斗 天野
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to US15/311,293 priority Critical patent/US20170074198A1/en
Priority to JP2016520952A priority patent/JP6371384B2/ja
Publication of WO2015178048A1 publication Critical patent/WO2015178048A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/0205Diagnosing or detecting failures; Failure detection models
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1495Detection of abnormalities in the air/fuel ratio feedback system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0809Judging failure of purge control system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/49Detecting, diagnosing or indicating an abnormal function of the EGR system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/50Control strategies for responding to system failures, e.g. for fault diagnosis, failsafe operation or limp mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0416Methods of control or diagnosing using the state of a sensor, e.g. of an exhaust gas sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0032Controlling the purging of the canister as a function of the engine operating conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to an abnormality determination device that determines abnormality of a plurality of devices including an internal combustion engine and other devices provided in association with the internal combustion engine.
  • an abnormality in the EGR device, the evaporated fuel processing device, and the catalyst device provided in the internal combustion engine that is a power source of the vehicle is determined when each predetermined determination condition is satisfied, and the determination Satisfaction of the condition is determined in the order of the EGR device, the evaporated fuel processing device, and the catalyst device. Further, when one abnormality of these three devices is determined, when the determination condition of the other device is satisfied, the determination is continued, or the abnormality of the device corresponding to the satisfied determination condition is determined. Whether or not to determine is determined based on the priority of the determination.
  • the priority of the abnormality determination being executed is low, the abnormality determination is interrupted, and the abnormality of the device corresponding to the determination condition established later is determined. On the contrary, if the priority of the abnormality determination being executed is high, the abnormality determination is continued.
  • the priority of the abnormality determination of the EGR device and the evaporated fuel processing device is set higher than the priority of the abnormality determination of the catalyst device, and during the abnormality determination of the EGR device or the evaporated fuel processing device, the catalyst Even if the determination condition of the device is satisfied, the determination is continued without being interrupted.
  • the determination condition of the EGR device or the evaporated fuel processing device is satisfied during the abnormality determination of the catalyst device, the determination is interrupted, and the determination condition of the EGR device and the evaporated fuel processing device is the same.
  • Abnormality determination of the established one is started.
  • the abnormality determination of the EGR device and the evaporated fuel processing device is started from the one in which the determination condition is satisfied first, and then completed without being interrupted. This is for reliably executing the abnormality determination of the EGR device in which the determination condition is difficult to be satisfied, and reliably completing the abnormality determination without unnecessarily releasing the fuel captured by the evaporated fuel processing device.
  • the internal combustion engine is provided with a plurality of devices such as sensors in addition to the above-described EGR device, and the plurality of devices are supplied with evaporated fuel supplied to the intake system of the internal combustion engine by the evaporated fuel processing device. This includes determining whether there is an abnormality in a stopped state (hereinafter referred to as “purge cut”).
  • purge cut determination devices a plurality of devices that are determined to be abnormal in the purge cut state
  • the above-described conventional abnormality determination device causes an abnormality of the plurality of purge cut determination devices. The following problems occur when determining in order.
  • an object of the present invention is to provide an abnormality determination device that can increase the execution frequency of the determination and can improve the processing capability of the evaporated fuel by the evaporated fuel processing device.
  • the invention according to claim 1 captures the evaporated fuel generated in the fuel tank FT and uses the captured evaporated fuel as an intake system of an internal combustion engine (hereinafter referred to as the present invention).
  • the internal combustion engine 3 provided with the evaporated fuel processing device 31 for supplying to the intake passage 21), and other equipment (EGR device 51, LAF sensor 66, three An abnormality determination device that determines abnormality of a plurality of devices including the original catalyst (28), and the first device (engine 3, EGR) of the plurality of devices when a predetermined first execution condition is satisfied.
  • First determination means ECU 2, FIG. 5, FIG. 7 to FIG.
  • a first determination operation for determining an abnormality of the device 51 and the LAF sensor 66 in a state where the supply of the evaporated fuel by the evaporated fuel processing device 31 is stopped.
  • Second determination means ECU 2, FIG. 5, FIG. 7 to FIG. 11 for executing the second determination operation in a state where the supply of the evaporated fuel by the evaporated fuel processing device 31 is stopped.
  • the first and second determination operations for determining the abnormality of the first and second devices respectively are performed on the evaporated fuel. It is executed with the supply stopped.
  • stopping the supply of the evaporated fuel is referred to as “purge cut”.
  • the second determination operation is started while the supply of the evaporated fuel is held in the stopped state. Accordingly, unlike the conventional case described above, the supply of the evaporated fuel is not restarted between the completion of the first determination operation and the start of the second determination operation. It is not necessary to hold the determination until the amount is stabilized at the value 0 by the purge cut, and therefore it is possible to determine the abnormality of the second device at an early stage. As a result, it is possible to shorten the time required for the abnormality determination of the plurality of devices performed in the purge cut state as a whole, thereby increasing the frequency of execution of the determination and improving the processing capability of the evaporated fuel by the evaporated fuel processing device. Can be improved.
  • abnormal in the present specification and claims indicates that it is not normal, and includes “failure” and “deterioration”.
  • the second device is composed of a plurality of second devices that are separate from each other, and the second execution condition is as follows.
  • a plurality of second execution conditions that are different from each other are set, and as a second determination operation, a plurality of second determination operations that are different from each other are set for a plurality of second devices, and each of the plurality of second determination operations is
  • the control operation for controlling the internal combustion engine 3 is included (Steps 64 and 65 in FIG. 7, Step 104 in FIG. 9, Steps 144 and 145 in FIG. 11), and the second determination means executes the first determination operation.
  • the second device includes a plurality of second devices that are separate from each other, and a plurality of second execution conditions that are different from each other are set as the second execution condition. Has been. Also, as the second determination operation, a plurality of second determination operations different from each other are set for the plurality of second devices, and each of the plurality of second determination operations is for controlling the internal combustion engine. Control action is included.
  • each of the plurality of second execution conditions includes different predetermined conditions regarding the operating state of the internal combustion engine
  • one of the plurality of second devices is switched on following the completion of the first determination operation.
  • the second determination operation corresponding to the selected second device is executed arbitrarily, the second execution conditions corresponding to the remaining second devices may not be satisfied during the execution of the second determination operation. is there. In that case, the second determination operation of the plurality of second devices cannot be executed sequentially in sequence, whereby the supply of the evaporated fuel is resumed, thereby determining the abnormality of the plurality of second devices.
  • the required time cannot be reduced as a whole.
  • an abnormality is determined from the plurality of second devices following the completion of the first determination operation.
  • the second device to be performed is selected based on the plurality of second execution conditions and the second determination operation.
  • the second device whose abnormality is determined following the completion of the first determination operation is one that satisfies the second execution condition corresponding to another second determination operation during the execution of the second determination operation.
  • a plurality of second determination operations can be sequentially executed in sequence, and thus the time required for abnormality determination of the plurality of second devices can be reduced as a whole.
  • the invention according to claim 3 is the abnormality determination device according to claim 1 or 2, wherein when the predetermined third execution condition is satisfied, the first and second devices out of the plurality of devices are separated.
  • the third determination means (ECU 2, FIGS. 13 to 15) for executing a third determination operation for determining abnormality of the third device (three-way catalyst 28), and during the execution of the first determination operation,
  • a prohibiting unit (ECU2, ECU2) that prohibits execution of the third determination operation following completion of the first determination operation Steps 190 and 191 in FIG. 13 and FIG. 14) are further provided.
  • the third determination operation for determining the abnormality of the third device separate from the first and second devices is executed. Further, during execution of the first determination operation, when both the second and third execution conditions are satisfied, the third determination operation following the completion of the first determination operation is prioritized in order to prioritize the second determination operation. Execution is prohibited.
  • the second determination operation that is also subject to the purge cut can be executed following the completion of the first determination operation that is subject to the purge cut, the effect of the invention according to claim 1, that is, in the purge cut state The effect that the time required for abnormality determination of a plurality of devices to be performed can be shortened as a whole can be effectively obtained.
  • determination parameters AF variation determination parameter JUDDIS, integrated value LAFDLYP, It further includes determination parameter acquisition means (ECU 2, step 72 in FIG. 7, step 108 in FIG. 9, step 149 in FIG. 11) for acquiring the integrated value RT80AX), and the second determination means starts the second determination operation. 7 after a predetermined waiting time (initial waiting time TMDINT, initial waiting time TMLINT, initial waiting time TMAINT, decreased waiting time TMDDEC, decreased waiting time TMDDEC, decreased waiting time TMEDEC) has elapsed (step 71 in FIG. 7). : YES, Step 107 in FIG.
  • Step 148 in FIG. 11 Y S
  • the abnormality of the second device is determined based on the acquired determination parameter (Steps 73 to 75 in FIG. 7, Steps 110 to 112 in FIG. 9, Steps 151 to 153 in FIG. 11), and the first determination
  • the waiting time is reduced (steps 26 and 29 in FIG. 5, steps 92 and 95 in FIG. 8, steps 132 and 135 in FIG. 10).
  • the abnormality of the second device is determined based on the acquired determination parameter after a predetermined standby time has elapsed since the start of the second determination operation.
  • the second determination operation is executed subsequent to the completion of the first determination operation, unlike the conventional case described above, the supply amount of the evaporated fuel is reduced by the purge cut. Since it is not necessary to hold the determination until it stabilizes to 0, the waiting time can be reduced accordingly.
  • the second determination operation is executed following the completion of the first determination operation, the waiting time is reduced. Therefore, the effect of the invention according to claim 1, that is, in the purge cut state. The effect that the time required for abnormality determination of a plurality of devices to be performed can be shortened as a whole can be effectively obtained.
  • acquisition includes detection by a sensor or the like, “calculation” by calculation, and “setting”.
  • the internal combustion engine 3 includes an electric motor (a first motor 4 and a second motor) that constitutes a power source together with the internal combustion engine 3. 5) are connected, and the first and second execution conditions include predetermined first and second engine operating conditions different from each other regarding the operating state of the internal combustion engine 3, and the second determination means includes: During execution of the 1 determination operation, the internal combustion engine 3 is controlled so that the second engine operating condition is satisfied in addition to the first engine operating condition (steps 163, 167, 173, and 175 in FIG. 12). To do.
  • the first and second execution conditions include predetermined first and second engine operating conditions related to the operating state of the internal combustion engine, respectively.
  • the internal combustion engine is controlled so that the second engine operation condition is satisfied in addition to the first engine operation condition. Therefore, the second determination operation is performed following the completion of the first determination operation.
  • the internal combustion engine is connected to an electric motor that constitutes a power source together with the internal combustion engine.
  • the shortage is supplemented with an electric motor, and when the output is surplus with respect to the desired output, The surplus can be consumed by the power generation by the electric motor, thereby ensuring good drivability.
  • the invention according to claim 6 is the abnormality determination device according to any one of claims 1 to 4, wherein the second determination means relaxes the second execution condition during execution of the first determination operation (FIG. 24). Steps 231 to 234 and FIGS. 25 to 27).
  • the second execution condition that is the execution condition of the second determination operation is relaxed during the execution of the first determination operation, the second execution condition is easily satisfied. It is possible to increase the possibility that the operations are sequentially executed in sequence. Therefore, the effect of the invention according to claim 1, that is, the effect that the time required for determining the abnormality of the plurality of devices performed in the purge cut state can be shortened as a whole can be obtained more effectively.
  • FIG. 1 is a diagram schematically showing a vehicle to which an abnormality determination device according to a first embodiment of the present invention is applied. It is a figure which shows roughly the internal combustion engine etc. which were provided in the vehicle. It is a block diagram which shows ECU etc. of an abnormality determination apparatus. It is a flowchart which shows the process performed by ECU. 5 is a flowchart showing a subroutine of AF variation determination condition determination processing executed in the processing shown in FIG. 4. It is a flowchart which shows the subroutine of the 1st continuous execution permission process performed by AF variation determination condition determination processing. 5 is a flowchart showing a subroutine of AF variation determination processing executed in the processing shown in FIG.
  • FIG. 6 is a flowchart showing a subroutine of catalyst deterioration determination processing executed in the processing shown in FIG. It is a figure which shows the driving
  • 18 is a timing chart showing an operation example different from FIG.
  • FIG. 19 is a timing chart illustrating an operation example different from those in FIGS. 17 and 18.
  • FIG. FIG. 20 is a timing chart showing an operation example different from those shown in FIGS. It is a timing chart which shows an example of transition of the timer value etc.
  • (A) It is a figure which shows an example of transition of the purge flow rate etc. during execution of the determination operation
  • a hybrid vehicle (hereinafter simply referred to as “vehicle”) V shown in FIG. 1 has an internal combustion engine (hereinafter referred to as “engine”) 3, a first motor 4, and a second motor 5 as power sources, and as drive wheels.
  • engine an internal combustion engine
  • This is a four-wheeled vehicle having left and right front wheels WF (only one shown) and left and right rear wheels (not shown) as driven wheels.
  • the first and second motors 4 and 5 are both so-called motor generators, and are constituted by, for example, brushless DC motors.
  • a stator (not shown) of the first motor 4 is electrically connected to a first power drive unit (hereinafter referred to as “first PDU”) 6.
  • a stator (not shown) of the second motor 5 is electrically connected to the battery 8 via a second power drive unit (hereinafter referred to as “second PDU”) 7.
  • 1st and 2nd PDU6, 7 is comprised by electric circuits, such as an inverter, and is mutually connected electrically. Therefore, the first motor 4 and the second motor 5 can input and output power to each other via the first and second PDUs 6 and 7. Further, the first and second PDUs 6 and 7 are controlled by a control signal from the ECU 2 described later (see FIG. 3), whereby powering or power generation of the first and second motors 4 and 5 and charging / discharging of the battery 8 are performed. Etc. are controlled.
  • the gear 4b provided on the rotating shaft 4a of the first motor 4 is engaged with the gear 3b provided on the crankshaft 3a of the engine 3, and the engine 3 and the first motor 4 are connected via these gears 3b and 4b.
  • the gear 5b provided on the rotating shaft 5a of the second motor 5 meshes with the first gear 9a provided on the drive shaft 9, and the second gear 9b of the drive shaft 9 is provided on the axle 10 of the front wheel WF. Is engaged with the final gear 10a.
  • the second motor 5 and the front wheel WF can input and output power to each other via the gear 5b, the first and second gears 9a and 9b, the final gear 10a, and the like.
  • crankshaft 3a of the engine 3 is connected to the intermediate shaft 12 via the OD clutch 11, and the gear 12a provided on the intermediate shaft 12 is engaged with the first gear 9a.
  • the OD clutch 11 is composed of an electromagnetic clutch, and its connection and disconnection are controlled by a control signal from the ECU 2 (see FIG. 3).
  • the gear ratio from the gear 12a of the intermediate shaft 12 and the first and second gears 9a, 9b of the drive shaft 9 to the final gear 10a is set to approximately 1: 1. Therefore, in the state where the OD clutch 11 is connected, the power of the engine 3 is transmitted from the crankshaft 3a to the front wheels WF at a substantially constant speed via the gear.
  • the drive system of the vehicle V is operated in various operation modes by controlling the engine 3, the first and second motors 4, 5 and the OD clutch 11.
  • This operation mode is classified into an ECVT travel mode, an ENG direct connection travel mode, an EV travel mode, a deceleration power generation mode, and the like.
  • these operation modes will be described in order.
  • the ECVT travel mode power is generated by the first motor 4 using the power generated by the combustion of the engine 3, and the generated power is supplied to the second motor 5 (electrical path) while the second motor 5 is powered.
  • the front wheels WF are driven to travel.
  • the power of the engine 3 can be changed steplessly under the control of the first and second PDUs 6 and 7. Further, due to the nature of the first and second motors 4 and 5, high efficiency can be obtained by selecting this ECVT travel mode in the low and medium speed range.
  • the ENG direct-coupled travel mode is a mode in which the power of the engine 3 is transmitted (mechanical path) to the front wheel WF via the OD clutch 11 and the intermediate shaft 12 with the OD clutch 11 connected.
  • the gear ratio from the OD clutch 11 to the front wheels WF is set to approximately 1: 1, and high efficiency can be obtained by selecting this ENG direct-coupled travel mode in the high speed range.
  • the OD clutch 11 is disconnected in other operation modes.
  • the EV travel mode is a mode in which the vehicle 3 travels while driving the front wheels WF by the power running of the second motor 5 using the power supplied from the battery 8 in a state where the operation of the engine 3 is stopped.
  • the deceleration power generation mode in the predetermined deceleration operation state of the vehicle V, the fuel supply to the engine 3 is stopped (fuel cut), the operation is stopped, and the second motor 5 uses the kinetic energy of the vehicle V. In this mode, power is generated. In this case, a braking force acts on the vehicle V along with the power generation operation of the second motor 5. Further, the electric power generated by the second motor 5 is charged in the battery 8 and regenerated when there is a margin in the state of charge of the battery 8. On the other hand, when the battery 8 is fully charged, the electric power generated by the second motor 5 is supplied to the first motor 4, and the engine 3 is motored by the power running of the first motor 4. It is converted into energy and heat energy.
  • FIG. 2 shows the engine 3 and its peripheral devices to which the abnormality determination device according to the first embodiment is applied.
  • the engine 3 is, for example, a gasoline engine having four cylinders C (only one is shown in FIG. 2).
  • the crankshaft 3a of the engine 3 is provided with a crank angle sensor 61.
  • the crank angle sensor 61 outputs a CRK signal, which is a pulse signal, to the ECU 2 as the crankshaft 3a rotates (see FIG. 3). .
  • the CRK signal is output every predetermined crank angle (for example, 1 °).
  • the ECU 2 calculates the engine speed (hereinafter referred to as “engine speed”) NE of the engine 3 based on the CRK signal.
  • engine speed hereinafter referred to as “engine speed”
  • a combustion chamber 3e is formed between the piston 3c and the cylinder head 3d of each cylinder C.
  • An intake passage 21 and an exhaust passage 22 communicating with the combustion chamber 3e are connected to the cylinder head 3d, and an intake valve 23 that opens and closes the intake port 21a and the exhaust port 22a of the exhaust passage 22 is connected to the cylinder head 3d.
  • an exhaust valve 24 are provided.
  • a water temperature sensor 62 is provided in the cylinder block 3 f of the engine 3. The water temperature sensor 62 detects the temperature (hereinafter referred to as “engine water temperature”) TW of the cooling water circulating through the cylinder block 3f, and outputs a detection signal to the ECU 2 (see FIG. 3).
  • the engine 3 is provided with a spark plug 25 and a fuel injection valve (hereinafter referred to as “injector”) 26 for each cylinder C.
  • the spark plug 25 is attached to the cylinder head 3d and ignites the air-fuel mixture in the cylinder C by generating a spark.
  • the injector 26 is attached to the intake manifold of the intake passage 21 and injects fuel toward the intake port 21a. The ignition timing of these spark plugs 25 and the fuel injection amount and fuel injection timing of the injector 26 are controlled by a control signal from the ECU 2 (see FIG. 3).
  • a throttle valve 27 is provided in the intake passage 21, and a TH actuator 27a made of, for example, a DC motor is connected to the throttle valve 27.
  • the TH actuator 27a is controlled by a control signal from the ECU 2 (see FIG. 3), whereby the opening degree of the throttle valve 27 (hereinafter referred to as “throttle valve opening degree”) is changed to be sucked into the cylinder C. The amount of air is adjusted.
  • the engine 3 is provided with an evaporated fuel processing device 31.
  • the evaporative fuel processing device 31 captures evaporative fuel generated in the fuel tank FT that stores the fuel of the engine 3 and supplies it to the intake passage 21 as appropriate, thereby processing it.
  • the charge passage 32 is connected to the fuel tank FT and the canister 33, and sends the evaporated fuel generated in the fuel tank FT to the canister 33.
  • the charge passage 32 is provided with a two-way valve 35, and the two-way valve 35 is constituted by a mechanical valve in which a diaphragm type positive pressure valve and a negative pressure valve are combined.
  • the positive pressure valve is configured to open when the pressure in the charge passage 32 corresponding to the pressure in the fuel tank FT reaches an upper limit pressure, that is, a predetermined pressure higher than the atmospheric pressure. As a result, the evaporated fuel in the fuel tank FT is sent to the canister 33.
  • the negative pressure valve is configured to open when the pressure in the charge passage 32 reaches a lower limit value, that is, a predetermined pressure lower than the pressure on the canister 33 side. By opening the valve, the canister The evaporated fuel adsorbed by 33 is returned to the fuel tank FT.
  • the charge passage 32 is provided with a charge bypass passage 36 that bypasses the two-way valve 35.
  • a bypass valve 41 is provided in the charge bypass passage 36.
  • the bypass valve 41 is constituted by a normally closed type ON / OFF type electromagnetic valve, and normally closes the charge bypass passage 36 and opens when energized by the control of the ECU 2 (see FIG. 3). Thus, the charge bypass passage 36 is opened.
  • the canister 33 contains activated carbon for adsorbing evaporated fuel.
  • the canister 33 is connected to an atmosphere passage 37 that opens to the atmosphere side.
  • the atmosphere passage 37 is provided with a vent shut valve 42 that opens and closes the atmosphere passage 37.
  • the vent shut valve 42 is constituted by a normally open type ON / OFF type electromagnetic valve. Normally, the atmosphere passage 37 is opened when the atmosphere passage 37 is opened and excited by the control of the ECU 2 (see FIG. 3). Close.
  • the purge passage 34 is for supplying (purging) the evaporated fuel adsorbed by the canister 33 to the intake passage 21, and is connected to the canister 33 and the downstream side of the throttle valve 27 of the intake passage 21.
  • a purge control valve 43 is provided in the middle of the purge passage 34.
  • the purge control valve 43 is composed of an electromagnetic valve, and its opening degree is controlled by a control signal from the ECU 2 (see FIG. 3).
  • an air flow sensor 63 and an intake air temperature sensor 64 are provided in the intake passage 21 upstream of the throttle valve 27.
  • the air flow sensor 63 detects the amount of intake air (hereinafter referred to as “intake air amount”) GAIR sucked into the engine 3 and outputs a detection signal representing it to the ECU 2 (see FIG. 3).
  • the intake air temperature sensor 64 detects a temperature TA (hereinafter referred to as “intake air temperature”) TA in the intake passage 21 and outputs a detection signal indicating the detected temperature to the ECU 2.
  • the engine 3 is further provided with an EGR device 51.
  • the EGR device 51 recirculates a part of the exhaust gas discharged to the exhaust passage 22 to the intake passage 21.
  • the EGR device 51 is provided on the downstream side of the throttle valve 27 of the intake passage 21 and the EGR passage 52 connected to the exhaust passage 22.
  • An EGR control valve 53 for opening and closing the EGR passage 52 is provided.
  • the EGR control valve 53 is composed of an electromagnetic valve whose opening degree changes continuously.
  • the opening degree of the EGR control valve 53 is controlled by a control signal from the ECU 2 (see FIG. 3), thereby changing the recirculation amount of the exhaust gas (hereinafter referred to as “EGR gas amount”). Further, the opening degree of the EGR control valve 53 (hereinafter referred to as “EGR control valve opening degree OEV”) is detected by the EGR valve opening degree sensor 65, and the detection signal is output to the ECU 2.
  • a LAF sensor 66 is provided on the downstream side of the exhaust manifold 22 in the exhaust passage 22.
  • the LAF sensor 66 linearly detects the oxygen concentration in the exhaust gas flowing in the exhaust passage 22 in a wide range of air-fuel ratios from a rich region richer than the stoichiometric air-fuel ratio to the extreme lean, and sends the detection signal to the ECU 2. Output (see FIG. 3). Based on the detection signal from the LAF sensor 66, the ECU 2 calculates the equivalent ratio of the air-fuel ratio of the air-fuel mixture combusted by the engine 3 as the detected equivalent ratio KACT.
  • the exhaust passage 22 is provided with a three-way catalyst 28 and a binary O2 sensor 67 on the downstream side of the LAF sensor 66.
  • the three-way catalyst 28 purifies harmful components such as HC, CO, and NOx in the exhaust gas.
  • the O2 sensor 67 has a characteristic that its output changes abruptly before and after the theoretical air-fuel ratio, and its detection signal SVO2 becomes a high level on the rich side and a low level on the lean side.
  • the detection signal SVO2 from the O2 sensor 67 is output to the ECU 2 (see FIG. 3).
  • the ECU 2 further receives a detection signal indicating an operation amount (hereinafter referred to as “accelerator opening”) AP of an accelerator pedal (not shown) of the vehicle V from the accelerator opening sensor 68 from the vehicle speed sensor 69.
  • Detection signals representing VP are respectively output.
  • the ECU 2 is composed of a microcomputer including a CPU, a RAM, a ROM, an I / O interface (all not shown), and the like.
  • the ECU 2 controls the operation of the engine 3, the evaporated fuel processing device 31, and the EGR device 51 according to the control program stored in the ROM in accordance with the detection signals from the various sensors 61 to 69 described above, and the four cylinders.
  • the air-fuel ratio variation between C hereinafter referred to as “AF variation”
  • LAF sensor 66 failure LAF sensor 66 failure
  • EGR device 51 failure failure
  • three-way catalyst 28 deterioration are determined.
  • AF variation, LAF sensor 66 failure, EGR device 51 failure, and three-way catalyst 28 deterioration are caused when the engine 3 is controlled to each specific operating state by a control operation for determination set individually.
  • the determination is made on the basis of the determination parameters acquired in (1). Therefore, determination operations (FIGS. 7, 9, 11, and 15 to be described later) for determining AF variation, LAF sensor 66 failure, EGR device 51 failure, and deterioration of the three-way catalyst 28 are mutually performed. They are not executed concurrently and are executed in order.
  • determination operations for determining the AF variation, the LAF sensor 66 failure, the EGR device 51 failure, and the deterioration of the three-way catalyst 28 are “AF variation determination operation”, “sensor failure determination operation”, “EGR failure determination”, respectively. This is called “operation” and “catalyst deterioration determination operation”.
  • these AF variation determination operation, sensor failure determination operation, EGR failure determination operation, and catalyst deterioration determination operation satisfy the individually set execution conditions (FIGS. 5, 8, 10, and 13 to be described later). are executed, basically starting in order from the condition in which the execution condition is satisfied.
  • Each execution condition includes a condition related to the operating state of the engine 3.
  • the AF variation determination operation, the sensor failure determination operation, and the EGR failure determination operation are executed in a purge cut state on condition that supply of the evaporated fuel by the evaporated fuel processing device 31 is stopped (hereinafter referred to as “purge cut”).
  • the catalyst deterioration determination operation is executed without (or needing) purge cut as a condition.
  • the AF variation determination operation, the sensor failure determination operation, and the EGR failure determination operation are collectively referred to as “three determination operations with purge cut” as appropriate.
  • the first and second of the three determination operations with the purge cut are sequentially executed in order. Even if the execution condition for the catalyst deterioration determination operation is satisfied during execution of the determination operation, if the execution condition for the other determination operation among the three determination operations with purge cut is satisfied, the determination during the execution is being performed. It is prohibited to perform the catalyst deterioration determination operation following the completion of the operation (FIGS. 13 and 14 to be described later).
  • the order is the following order A, order B, order C from the relationship between each determination operation and each execution condition. And in order D. Further, in order to appropriately continue the three determination operations involving purge cuts in this order B, the AF variation determination operation is appropriately prohibited (FIGS. 5 and 6 described later). Further, during the execution of each of the three determination operations involving purge cut, the operating point of the engine 3 is controlled so that the execution condition for the next determination operation to be executed is satisfied in addition to the execution condition for the determination operation being executed. (FIG. 12 described later).
  • Step 1 (illustrated as “S1”, the same applies hereinafter), AF variation determination condition determination processing is executed, and then AF variation determination processing is executed (Step 2).
  • sensor failure determination condition determination processing is executed (step 3) and sensor failure determination processing is executed (step 4).
  • an EGR failure determination condition determination process is executed (step 5) and an EGR failure determination process is executed (step 6).
  • catalyst deterioration determination condition determination processing is executed (step 7), and catalyst deterioration determination processing is executed (step 8), and this processing is terminated.
  • FIG. 5 shows the AF variation determination condition determination process executed in step 1 of FIG. This process is for determining whether or not an execution condition for the AF variation determination operation (hereinafter referred to as “AF variation determination execution condition”) is satisfied.
  • flags used in this process and various processes described later are reset to “0” when the system (ECU 2 or the like) is started or when the engine 3 is stopped.
  • various determination execution condition establishment flags such as an AF variation determination execution condition establishment flag F_MCNDDIS, which will be described later, are reset to “0” when the system is started, and the flag for determining the operating condition of the engine 3 is “ After being reset to “0”, it is reset to “0” when the engine 3 is stopped.
  • step 11 it is determined whether or not an AF variation determination execution condition is satisfied.
  • the AF variation determination execution condition is determined to be satisfied when, for example, a plurality of predetermined conditions including the following conditions a1 to e1 are satisfied. Note that another appropriate condition may be further included in the AF variation determination execution condition.
  • a1 Engine 3 represented by engine speed NE and intake air amount GAIR 16 is in the region ⁇ in the operation point determination map shown in FIG. 16.
  • b1 The LAF sensor 66 is activated.
  • C1 The engine water temperature TW is higher than a predetermined temperature.
  • D1 The amount of change in the engine speed NE. Is smaller than a predetermined value.
  • E1 The detection equivalent ratio KACT is within a predetermined range.
  • step 11 If the answer to step 11 is NO and the AF variation determination execution condition is not satisfied, an AF variation determination execution condition satisfaction flag F_MCNDDIS is set to “0” to indicate that fact (step 12).
  • step 13 the continuous execution permission flag F_PERDIS for the AF variation determination operation is set to “0” (step 13), and the timer value tDIS1 of the down-count type first standby timer is set to a predetermined stable time TMSTE (step 14). ).
  • step 15 and 16 it is determined whether or not the sensor failure determination execution condition establishment flag F_MCNDLAF and the EGR failure determination execution condition establishment flag F_MCNDEGR are “1”, respectively.
  • These flags F_MCNDLAF and F_MCNDEGR satisfy the execution condition of the sensor failure determination operation (hereinafter referred to as “sensor failure determination execution condition”) and the execution condition of the EGR failure determination operation (hereinafter referred to as “EGR failure determination execution condition”), respectively. This is represented by “1”.
  • the purge cut flag F_PURCUT is set to “0” (step 17), and the process proceeds to step 18.
  • the purge cut flag F_PURCUT indicates that purge purge is being executed by “1”.
  • Step 17 is skipped and the process proceeds to Step 18. .
  • the AF variation determination in-progress flag F_MIDDIS is set to “0”, and this process ends.
  • the AF variation determining operation flag F_MIDDIS indicates that the AF variation determining operation is being executed by “1”.
  • step 11 determines whether or not an AF variation determination operation flag F_MIDDIS is “1” (step 19).
  • F_MIDDIS 0
  • an AF variation determination execution condition satisfaction flag F_MCNDDIS is set to “1” in order to indicate that the AF variation determination execution condition is satisfied (step 20).
  • This first earliest establishment flag F_THR1st indicates that the AF variation determination execution condition is established before the sensor failure determination execution condition and the EGR failure determination execution condition by “1”, and the AF variation determination execution condition It is set based on the establishment flag F_MCNDDIS, the sensor failure determination execution condition establishment flag F_MCNDLAF, and the EGR failure determination execution condition establishment flag F_MCNDEGR.
  • the first earliest establishment flag F_THR1st is reset to “0” when the AF variation determination operation is completed.
  • the first earliest establishment flag F_THR1st indicates that, even if the AF variation determination execution condition is first established, the AF variation determination execution condition is not satisfied before the AF variation determination operation is completed, and the sensor failure determination is performed. When the execution condition or the EGR failure determination execution condition is satisfied, it is reset to “0”.
  • FIG. 6 shows the first continuous execution permission process. This process is for permitting / prohibiting the execution of the AF variation determination operation following the completion of the sensor failure determination operation or the EGR failure determination operation.
  • a sensor failure determination operation flag F_MIDLAF is “1”. This sensor failure determination operation flag F_MIDLAF indicates that the sensor failure determination operation is being executed by “1”.
  • step 43 it is determined whether or not a sensor failure determination operation completion flag F_DONLAF is “1” (step 43). This sensor failure determination operation completion flag F_DONLAF indicates that the sensor failure determination operation is completed by “1”.
  • step 44 it is determined whether or not an EGR failure determination operation completion flag F_DONEGR is “1” (step 44).
  • the EGR failure determination operation completion flag F_DONEGR indicates that the EGR failure determination operation is completed by “1”.
  • step 41 determines whether or not the first determination operation flag F_MID1st is “1” (step 46). .
  • This first determination operation flag F_MID1st indicates that the determination operation started first among the three determination operations with purge cut is being executed, and is indicated by “1”.
  • AF variation determination operation Set based on medium flag F_MIDDIS, sensor failure determination operation flag F_MIDLAF, EGR failure determination operation flag F_MIDEGR, AF variation determination operation completion flag F_DONDIS, sensor failure determination operation completion flag F_DONLAF, and EGR failure determination operation completion flag F_DONEGR Is done.
  • the first determination operation flag F_MID1st is reset to “0” when the first determination operation is completed. Further, the first determination operation flag F_MID1st is once reset to “0” when the first determination operation is interrupted without being completed, and is set to “1” when the operation is resumed. It is also set to “1” when the first determination operation is interrupted without being completed and a determination operation different from the determination operation is started.
  • step 46: NO when the sensor failure determination operation is being performed and the first determination operation is not being performed (step 46: NO), the sensor failure determination operation is being performed as the second determination operation. This is because the AF variation determination condition determination processing including this processing is not executed until a predetermined time elapses after the completion of the AF variation determination operation.
  • step 49 it is determined whether or not the first determination operation flag F_MID1st is “1” (step 49).
  • This pre-establishment flag F_BEFLAF indicates that “1” indicates that the sensor failure determination execution condition is satisfied before the AF variation determination execution condition during the execution of the EGR failure determination operation as the first determination operation.
  • the sensor failure determination execution condition establishment flag F_MCNDLAF and the AF variation determination execution condition establishment flag F_MCNDDIS are set. Note that the pre-establishment flag F_BEFLAF does not satisfy the sensor failure determination execution condition before the start of the sensor failure determination operation even if the sensor failure determination execution condition is satisfied earlier than the AF variation determination execution condition. Is reset to “0”.
  • the preceding establishment flag F_BEFLAF is reset to “0” when all three determination operations involving purge cut are completed.
  • step 49 when the determination operation being executed is not the first determination operation among the three determination operations involving purge cut (step 49: NO), it is considered that the second determination operation is the second determination operation. For the same reason as step 46.
  • step 45 is executed, and this process is terminated.
  • step 23 following step 22 it is determined whether or not the continuous execution permission flag F_PERDIS set in step 45 or 48 of FIG. 6 is “1”.
  • step 18 is executed to suspend the AF variation determination operation (F_MIDDIS ⁇ 0), and this process ends.
  • step 29 the timer value tDIS2 of the second standby timer is set to a predetermined post-decrease standby time TMDDEC (step 29). This decreased waiting time TMDDEC is set to be shorter than the initial waiting time TMDINT.
  • Step 30 and 31 it is determined whether or not the sensor failure determination operation flag F_MIDLAF and the EGR failure determination operation flag F_MIDEGR are “1”.
  • the AF variation determination operation is suspended. Step 18 is executed, and this process is terminated.
  • FIG. 7 shows the AF variation determination processing executed in step 2 of FIG. 4, and this processing is for executing the AF variation determination operation.
  • this processing since AF variation is determined by the same method as that of Japanese Patent No. 5335704 proposed by the present applicant, this processing will be briefly described below.
  • step 61 of FIG. 7 it is determined whether or not the AF variation determination operation flag F_MIDDIS set in step 18 or 32 of FIG. 5 is “1”.
  • F_MIDDIS 0
  • an EGR cut flag F_EGRCUT described later is set to “0” (step 62), and this process ends.
  • step 63 the purge cut flag F_PURCUT is set to “1”, and purge cut (evaporated fuel supply stop) is executed.
  • determination air-fuel ratio control is executed (step 64). In this determination air-fuel ratio control, the target equivalent ratio is set to change at a predetermined control cycle, and the fuel injection amount is controlled so that the detected equivalent ratio KACT becomes the set target equivalent ratio.
  • the EGR cut flag F_EGRCUT is set to “1” (step 65).
  • the EGR stop control is executed, the EGR control valve 53 is controlled to be fully closed, and the exhaust gas recirculation by the EGR device 51 is stopped.
  • the detected equivalence ratio KACT is filtered by a predetermined first bandpass filter to obtain the first
  • the filtered equivalent ratio KACTF1 is calculated (step 67).
  • the first band-pass filter is configured to extract a 0.5th-order frequency component of the engine speed NE from the detected equivalent ratio KACT.
  • step 68 the first integrated value SUMKF1 of this time is calculated by adding the calculated first filtered equivalent ratio KACTF1 to the previous value of the first integrated value SUMKF1. Note that at the first execution of this process, the previous value of the first integrated value SUMKF1 is set to the value 0.
  • a second filtered equivalent ratio KACTF2 is calculated by filtering the detected equivalent ratio KACT with a predetermined second bandpass filter (step 69).
  • the second band pass filter is configured to extract a frequency component corresponding to the control period in the detected equivalent ratio KACT.
  • Step 70 the calculated second filtered equivalent sum ratio KACTF2 is added to the previous value of the second integrated value SUMKF2, thereby calculating the second integrated value SUMKF2. Note that, when this process is executed for the first time, the previous value of the second integrated value SUMKF2 is set to the value 0.
  • step 71 it is determined whether or not the timer value tDIS2 of the second standby timer set in step 28 or 29 of FIG. 5 is 0 (step 71).
  • the AF variation determination parameter JUDDIS is calculated by dividing the first integrated value SUMKF1 calculated in step 68 by the second integrated value SUMKF2 calculated in step 70 (step 72).
  • step 73 it is determined whether or not the calculated AF variation determination parameter JUDDIS is larger than a predetermined threshold value DISREF (step 73).
  • DISREF a predetermined threshold value
  • the answer to step 73 is NO, it is determined that no AF variation has occurred, and the AF variation flag F_DISPNG is set to “0” to indicate that fact (step 75).
  • step 76 following step 74 or 75, the AF variation determination operation completion flag F_DONDIS is set to “1” to indicate that the AF variation determination operation has been completed.
  • various flags related to the AF variation determination operation are reset (step 77), and this process is terminated. That is, the AF variation determination execution condition establishment flag F_MCNDDIS, the continuous execution permission flag F_PERDIS, and the AF variation determination operation flag F_MIDDIS are all reset to “0”.
  • step 3 of FIG. 4 the sensor failure determination condition determination process executed in step 3 of FIG. 4 will be described with reference to FIG. This process is for determining whether or not the sensor failure determination execution condition (execution condition of the sensor failure determination operation) is satisfied.
  • a sensor failure determination execution condition is determined to be satisfied when, for example, a plurality of predetermined conditions including the following conditions a2 to c2 are satisfied.
  • the sensor failure determination execution condition may further include other appropriate conditions.
  • step 81 If the answer to step 81 is NO and the sensor failure determination execution condition is not satisfied, the sensor failure determination execution condition satisfaction flag F_MCNDLAF is set to “0” to indicate this (step 82) and down
  • the timer value tLAF1 of the count type first standby timer is set to the stable time TMSTE (step 83).
  • steps 84 and 85 it is determined whether or not the AF variation determination execution condition satisfaction flag F_MCNDDIS and the EGR failure determination execution condition satisfaction flag F_MCNDREGR are “1”, respectively.
  • the purge cut flag F_PURCUT is set to “0” (step 86), and the process proceeds to step 87.
  • step 86 is skipped and the process proceeds to step 87. .
  • the sensor failure determination in-progress flag F_MIDLAF is set to “0”, and this process ends.
  • the sensor failure determination operation flag F_MIDLAF indicates that the sensor failure determination operation is being executed by “1”.
  • step 90 it is determined whether or not the catalyst deterioration determination in-progress flag F_MIDCAT is “1” (step 90).
  • F_MIDCAT 1
  • step 90 it is determined whether or not the timer value tLAF1 of the first standby timer set in the step 83 is a value 0 (step 91).
  • step 91 the step 87 is executed (F_MIDLAF ⁇ 0), and this process is terminated.
  • step 95 the timer value tLAF2 of the second standby timer is set to a predetermined post-decrease standby time TMLDEC (step 95).
  • the post-decrease waiting time TMLDEC is set to a time shorter than the initial waiting time TMLINT.
  • steps 96 and 97 following step 94 or 95 it is determined whether or not the AF variation determination operation flag F_MIDDIS and the EGR failure determination operation flag F_MIDEGR are “1”.
  • the above-described step 87 is executed to suspend the sensor failure determination operation. This process is terminated.
  • Step 98 the sensor failure determination operation flag is set to start the sensor failure determination operation.
  • F_MIDLAF is set to “1” (step 98), and this process ends.
  • FIG. 9 shows the sensor failure determination process executed in step 4 of FIG. 4. This process is for executing the sensor failure determination operation.
  • a failure of the LAF sensor 66 is determined by a method similar to that of Japanese Patent No. 4459566 proposed by the applicant of the present application. Therefore, the process will be briefly described below.
  • step 103 the purge cut flag F_PURCUT is set to “1”, and purge cut is executed.
  • determination injection control is executed (step 104).
  • the correction term KIDSIN is calculated by adding a predetermined offset amount to a sine wave having a predetermined frequency and amplitude, and the basic fuel injection amount is multiplied by the calculated correction term KIDSIN. Then, the fuel injection amount INJ is calculated. A control signal based on the calculated fuel injection amount INJ is input to the injector 26, whereby the fuel injection amount from the injector 26 is controlled. This basic fuel injection amount is calculated by a predetermined map search based on the intake air amount GAIR.
  • the EGR control valve opening degree OEV is controlled according to the operating state of the engine 3 such as the engine speed NE, unlike the AF variation determination operation.
  • the filtered equivalent ratio KACTF is calculated by filtering the detected equivalent ratio KACT with a predetermined bandpass filter.
  • This bandpass filter is configured to extract a frequency component having the same height as the frequency of the sine wave in the detected equivalent ratio KACT.
  • step 106 the absolute value KACTFA of the filtered equivalent ratio KACTTF is calculated.
  • step 107 it is determined whether or not the timer value tLAF2 of the second standby timer set in step 94 or 95 of FIG. 8 is 0 (step 107). When this answer is NO, the step 102 is executed, and this process is terminated.
  • the absolute value KACTFA is added to the previous value of the integrated value LAFDLYP to calculate the current integrated value LAFDLYP (step 108). Note that, when this process is executed for the first time, the previous value of the integrated value LAFDLYP is set to 0.
  • step 109 it is determined whether or not the timer value tLAFDET of the integration timer set in step 102 is 0 (step 109).
  • step 110 When the answer to step 110 is YES (LAFDLYP ⁇ LAFDLYPOK), it is determined that the LAF sensor 66 has failed, and the sensor failure flag F_LAFSNG is set to “1” to indicate this (step 111). . On the other hand, if the answer to step 110 is NO (LAFDDLP ⁇ LAFDLYPOK), it is determined that the LAF sensor 66 has not failed, and the sensor failure flag F_LAFSNG is set to “0” to indicate this (step 112). ).
  • step 113 the sensor failure determination operation completion flag F_DONLAF is set to “1” to indicate that the sensor failure determination operation has been completed.
  • various flags related to the sensor failure determination operation are reset (step 114), and this process is terminated. That is, both the sensor failure determination execution condition establishment flag F_MCNDLAF and the sensor failure determination operation flag F_MIDLAF are set to “0”.
  • EGR failure determination condition determination process executed in step 5 of FIG. 4 will be described with reference to FIG. This process is for determining whether or not an EGR failure determination execution condition (execution condition of EGR failure determination operation) is satisfied.
  • an EGR failure determination execution condition is determined to be satisfied when, for example, a plurality of predetermined conditions including the following conditions a3 to e3 are satisfied. Whether the condition of b3 is satisfied is determined based on the detected EGR control valve opening degree OEV. Further, other appropriate conditions may be further included in the EGR failure determination execution conditions.
  • a3 Engine 3 represented by engine speed NE and intake air amount GAIR B3: Exhaust gas recirculation was performed by the EGR device 51 before the start of the EGR failure determination operation (or exhaust gas recirculation can be executed). (There must be)
  • c3 The detected intake air temperature TA is higher than the predetermined intake air temperature.
  • d3 The engine water temperature TW is higher than the predetermined water temperature.
  • e3 The vehicle speed VP is higher than the predetermined vehicle speed.
  • step 121 When the answer to step 121 is NO and the EGR failure determination execution condition is not satisfied, the EGR failure determination execution condition satisfaction flag F_MCNDEGR is set to “0” to indicate this (step 122) and the down The timer value tEGR1 of the count type first standby timer is set to the stable time TMSTE (step 123).
  • steps 124 and 125 it is determined whether or not the AF variation determination execution condition satisfaction flag F_MCNDDIS and the sensor failure determination execution condition satisfaction flag F_MCNDLAF are “1”, respectively.
  • the purge cut flag F_PURCUT is set to “0” (step 126), and the process proceeds to step 127.
  • Step 126 is skipped and the process proceeds to Step 127.
  • step 127 the EGR failure determination in-progress flag F_MIDEGR is set to “0”, and this process is terminated.
  • the EGR failure determination operation flag F_MIDEGR indicates that the EGR failure determination operation is being executed by “1”.
  • step 121 determines whether or not an EGR failure determination operation flag F_MIDEGR is “1” (step 128).
  • an EGR failure determination execution condition satisfaction flag F_MCNDEGR is set to “1” to indicate that the EGR failure determination execution condition is satisfied (step 129).
  • step 130 it is determined whether or not the catalyst deterioration determination in-progress flag F_MIDCAT is “1” (step 130).
  • F_MIDCAT 1
  • the purge cut flag F_PURCUT is set to “1” in order to execute purge cut (step 133) and the second count-down type second
  • the timer value tEGR2 of the standby timer is set to a predetermined initial standby time TMEINT (step 134).
  • step 132 if the answer to step 132 is YES and the purge cut is being executed, the timer value tEGR2 of the second standby timer is set to a predetermined post-decrease standby time TMEDEC (step 135).
  • the post-decrease waiting time TMEDEC is set to a time shorter than the initial waiting time TMEINT.
  • step 136 following step 134 or 135, it is determined whether or not a sensor failure determination operation flag F_MIDLAF is “1”. If the answer is YES (F_MIDLAF 1) and the sensor failure determination operation is being executed, the step 127 is executed to suspend the EGR failure determination operation, and this processing is terminated.
  • step 137 the EGR failure determination operation flag F_MIDEGR is set to “1” in order to start the EGR failure determination operation (step 137).
  • FIG. 11 shows the EGR failure determination process executed in step 6 of FIG. 4. This process is for executing the EGR failure determination operation.
  • a failure of the EGR device 51 is determined by a method similar to that of Japanese Patent No. 4531597 proposed by the applicant of the present application. Therefore, this process will be briefly described below.
  • step 143 the purge cut flag F_PURCUT is set to “1” and purge cut is executed.
  • determination EGR control is executed (step 144). In this determination EGR control, the EGR control valve opening degree OEV is repeatedly controlled to open and close a plurality of times at a constant cycle.
  • air-fuel ratio F / B control is executed (step 145).
  • the air-fuel ratio correction coefficient KAF is calculated using a predetermined feedback control algorithm so that the detected equivalent ratio KACT becomes the target equivalent ratio, and the calculated air-fuel ratio correction coefficient KAF is used.
  • the fuel injection amount INJ is calculated by correcting the basic fuel injection amount.
  • a control signal based on the calculated fuel injection amount INJ is input to the injector 26, whereby the fuel injection amount from the injector 26 is controlled.
  • the calculation method of the basic fuel injection amount is as described above.
  • step 146 the filtered correction coefficient KAFF is calculated by filtering the air-fuel ratio correction coefficient KAF with a predetermined bandpass filter.
  • a predetermined bandpass filter For the filter type, see Japanese Patent No. 4531597.
  • step 147 the absolute value KAFFA of the filtered correction coefficient KAFF is calculated.
  • step 148 it is determined whether or not the timer value tEGR2 of the second standby timer set in step 134 or 135 in FIG. 10 is 0 (step 148). When this answer is NO, the step 142 is executed, and this process is terminated.
  • the current integrated value RT80AX is calculated by adding the absolute value KAFFA to the previous value of the integrated value RT80AX (step 149). Note that at the first execution of this process, the previous value of the integrated value RT80AX is set to the value 0.
  • step 150 it is determined whether or not the timer value tEGRDET of the integration timer set in step 142 is 0 (step 150).
  • step 151 When the answer to step 151 is YES (RT80AX> LT80A), it is determined that the EGR device 51 has failed (the EGR device 51 has a leak), and the EGR failure flag F_EGRNG is set to “ 1 "(step 152). On the other hand, if the answer to step 151 is NO (RT80AX ⁇ LT80A), it is determined that the EGR device 51 has not failed, and the EGR failure flag F_EGRNG is set to “0” to indicate that (step 153). ).
  • step 154 following step 152 or 153, the EGR failure determination operation completion flag F_DONEGR is set to “1” to indicate that the EGR failure determination operation has been completed.
  • various flags related to the EGR failure determination operation are reset (step 155), and this process is terminated. That is, both the EGR failure determination execution condition establishment flag F_MCNDEGR and the EGR failure determination operation flag F_MIDEGR are set to “0”.
  • This process is defined in FIG. 16 described above during execution of each of the three determination operations with purge cut in order to continuously execute the three determination operations with purge cut in the order A to D described above.
  • This is a process for controlling the operating point of the engine 3 so that the execution condition relating to the operating point of the engine 3 is established, and is repeatedly executed at the predetermined cycle in parallel with the process shown in FIG.
  • This third determination operation flag F_MID3rd indicates that the third determination operation of the three determination operations involving purge cut is being performed by “1”, and the AF variation determination operation completion flag F_DONDIS, It is set based on the sensor failure determination operation completion flag F_DONLAF and the EGR failure determination operation completion flag F_DONEGR.
  • the third determination operation in-progress flag F_MID3rd is reset to “0” when the third determination operation is completed. Further, the third determination operation flag F_MID3rd is once reset to “0” when the third determination operation is interrupted without being completed, and is set to “1” when restarted.
  • ⁇ operation point control is executed (step 163), and this process is terminated.
  • the operation mode of the drive system is set to the ECVT travel mode, and the operation point of the engine 3 represented by the engine speed NE and the intake air amount GAIR is set in the region ⁇ and the operation point determination map.
  • the throttle valve opening is controlled so that it falls within the region ⁇ (FIG. 16) overlapping each other.
  • the operation mode of the drive system may be set to the ENG direct connection travel mode.
  • the throttle valve opening degree and the throttle valve opening and the throttle valve opening amount The power generated by the first motor 4 is controlled.
  • the operation mode of the drive system is set to the ECVT travel mode, and the operation point of the engine 3 represented by the engine speed NE and the intake air amount GAIR falls within the region ⁇ in the operation point determination map.
  • the throttle valve opening is controlled.
  • the operation mode of the drive system may be set to the ENG direct connection travel mode.
  • the throttle valve opening and the generated power of the first motor 4 are controlled so that the intake air amount GAIR falls within the region ⁇ .
  • step 161 determines whether or not the sensor failure determination operation flag F_MIDLAF is “1” (step 165). If the answer is YES and the sensor failure determination operation is being executed, it is determined whether or not the first determination operation flag F_MID1st is “1” (step 166).
  • ⁇ operation point control is executed (step 167), and this processing is terminated.
  • the operation mode of the drive system is set to the ECVT travel mode, and the throttle valve is set so that the operation point of the engine 3 falls within the region ⁇ and the region ⁇ that overlap each other in the operation point determination map. The opening is controlled.
  • the drive system operation mode may be set to the ENG direct-coupled travel mode.
  • the throttle valve opening and the first motor 4 are adjusted so that the intake air amount GAIR falls within a region overlapping the region ⁇ and region ⁇ in the operating point determination map. The generated power is controlled.
  • step 168 it is determined whether or not the second determination operation flag F_MID2nd is “1” (step 168).
  • This second determination operation in-progress flag F_MID2nd indicates that the determination operation started second out of the three determination operations with purge cut is being executed, and is indicated by “1”.
  • AF variation determination operation It is set based on the medium flag F_MIDDIS, the sensor failure determination operation flag F_MIDLAF, the EGR failure determination operation flag F_MIDEGR, the AF variation determination operation completion flag F_DONDIS, the sensor failure determination operation completion flag F_DONLAF, and the EGR failure determination operation completion flag F_DONEGR.
  • the second determination operation flag F_MID2nd is reset to “0” when the second determination operation is completed. Further, the second determination operation flag F_MID2nd is once reset to “0” when the second determination operation is interrupted without being completed, and is set to “1” when the second determination operation is resumed. It is also set to “1” when the second determination operation is interrupted without being completed and a determination operation different from the determination operation is started.
  • the sensor failure determination operation In order to increase the possibility that the AF variation determination operation is executed following the completion of the sensor failure determination operation, the ⁇ operating point control is executed by executing the step 163. This process is terminated.
  • Point control is executed (step 170), and this process is terminated.
  • the operation mode of the drive system is set to the ECVT travel mode, and the throttle valve opening is controlled so that the operation point of the engine 3 falls within the region ⁇ in the operation point determination map.
  • the drive system operation mode may be set to the ENG direct connection travel mode.
  • the throttle valve opening and the generated power of the first motor 4 are controlled so that the intake air amount GAIR falls within the region ⁇ .
  • ⁇ operation point control is executed (step 173).
  • the operation mode of the drive system is set to ECVT travel mode, and among the region ⁇ and region ⁇ in the operation point determination map, the region close to the operation point of the engine 3 at that time and the region ⁇
  • the throttle valve opening is controlled so that the operating point of the engine 3 falls within the overlapping region. Further, when the operating point of the engine 3 at that time is within the region ⁇ and / or the region ⁇ and the region ⁇ that overlap each other, the throttle valve opening is controlled so as to maintain the state. .
  • the drive system operation mode may be set to the ENG direct connection travel mode.
  • the region close to the intake air amount GAIR and the region ⁇ overlap each other.
  • the throttle valve opening and the electric power generated by the first motor 4 are controlled so that the intake air amount GAIR falls within the range. Further, when the intake air amount GAIR at that time is within the region ⁇ and / or the region ⁇ and the region ⁇ overlapping each other, the throttle valve opening and the first motor 4 are maintained so as to maintain the state. The generated power is controlled.
  • step 174 it is determined whether or not the second determination operation flag F_MID2nd is “1” (step 174).
  • ⁇ operating point control is executed (step 175), and this process is terminated.
  • the operation mode of the drive system is set to the ECVT travel mode, and the throttle valve is set so that the operation point of the engine 3 falls within the region where the region ⁇ and the region ⁇ overlap in the operation point determination map.
  • the opening is controlled.
  • the operation mode of the drive system may be set to the ENG direct connection travel mode.
  • the throttle valve opening and the first motor 4 are adjusted so that the intake air amount GAIR falls within the overlapping region of the region ⁇ and the region ⁇ in the operating point determination map. The generated power is controlled.
  • step 174 when the answer to step 174 is NO, that is, when the EGR failure determination operation is being executed as the third determination operation among the three determination operations involving purge cut, the ⁇ operation point control is executed. (Step 176), the process is terminated.
  • the operating mode of the drive system is set to the ECVT traveling mode, and the throttle valve opening is controlled so that the operating point of the engine 3 falls within the region ⁇ in the operating point determination map.
  • the operation mode of the drive system may be set to the ENG direct connection travel mode.
  • the throttle valve opening and the generated power of the first motor 4 are controlled so that the intake air amount GAIR falls within the region ⁇ .
  • step 7 of FIG. 4 the catalyst deterioration determination condition determination process executed in step 7 of FIG. 4 will be described with reference to FIG. This process is for determining whether or not the catalyst deterioration determination execution condition (execution condition of the failure determination operation of the three-way catalyst 28) is satisfied.
  • a catalyst deterioration determination execution condition is determined to be satisfied when, for example, the following condition a4 is satisfied.
  • the catalyst deterioration determination execution condition may further include other appropriate conditions.
  • step 181 When the answer to step 181 is NO and the catalyst deterioration determination execution condition is not satisfied, the catalyst deterioration determination execution condition satisfaction flag F_MCNDCAT is set to “0” to indicate that fact (step 182).
  • step 183 the continuous execution permission flag F_PERCAT for the catalyst deterioration determination operation is set to “0” (step 183), and the catalyst deterioration determination in-progress flag F_MIDCAT is set to “0” (step 184), and this process ends. .
  • step 187 it is determined whether or not the second earliest establishment flag F_FOU1st is “1” (step 187).
  • This second earliest establishment flag F_FOU1st indicates that “1” indicates that the catalyst deterioration determination execution condition is satisfied before the AF variation determination execution condition, the sensor failure determination execution condition, and the EGR failure determination execution condition.
  • AF variation determination execution condition establishment flag F_MCNDDIS indicates that “1” indicates that the catalyst deterioration determination execution condition is satisfied before the AF variation determination execution condition, the sensor failure determination execution condition, and the EGR failure determination execution condition.
  • AF variation determination execution condition establishment flag F_MCNDDIS sensor failure determination execution condition establishment flag F_MCNDLAF
  • EGR failure determination execution condition establishment flag F_MCNDREGR EGR failure determination execution condition establishment flag
  • the second earliest establishment flag F_FOU1st is reset to “0” when the catalyst deterioration determination operation started first is completed.
  • the second earliest establishment flag F_FOU1st indicates that, even if the catalyst deterioration determination execution condition is satisfied first, the catalyst deterioration determination execution condition is not satisfied before the catalyst deterioration determination operation is completed, and the AF variation determination is performed.
  • the execution condition, the sensor failure determination execution condition, or the EGR failure determination execution condition is satisfied, it is reset to “0”.
  • FIG. 14 shows the second continuous execution permission process. This process is for permitting / prohibiting the execution of the catalyst deterioration determination operation following the completion of the first or second determination operation among the three determination operations involving purge cut.
  • step 201 of FIG. 14 it is determined whether or not the third determination operation completion flag F_DON3rd is “1”.
  • This third determination operation completion flag F_DON3rd indicates that all three determination operations involving purge cut have been completed by “1”.
  • AF variation determination operation completion flag F_DONDIS sensor failure determination operation completion flag F_DONLAF And EGR failure determination operation completion flag F_DONEGR.
  • the third determination operation completion flag F_DON3rd is reset to “0” when all of the three determination operations with purge cut and the catalyst deterioration determination operation are completed.
  • the continuous execution permission flag F_PERCAT for the catalyst deterioration determination operation is set to “0” (step 206), and this process is terminated.
  • step 207 it is determined whether or not a sensor failure determination operation flag F_MIDLAF is “1” (step 207).
  • F_MIDLAF 1
  • the EGR failure determination execution condition establishment flag F_MCNDEGR is “1”.
  • step 207 when the answer to step 207 is NO, that is, when the EGR failure determination operation as the first determination operation is being performed, the AF variation determination execution condition satisfaction flag F_MCNDDIS and the sensor failure are respectively detected in steps 209 and 210. It is determined whether or not a determination execution condition satisfaction flag F_MCNDLAF is “1”. When both of these answers are NO, that is, when the AF variation determination execution condition and the sensor failure determination execution condition are not satisfied during the execution of the EGR failure determination operation as the first determination operation, the EGR failure In order to permit the execution of the catalyst deterioration determination operation subsequent to the completion of the determination operation, the step 205 is executed, and this process is terminated.
  • Steps 209 and 210 if any of the answers to Steps 209 and 210 is YES, that is, during execution of the EGR failure determination operation as the first determination operation, any of the AF variation determination execution condition and the sensor failure determination execution condition is When the condition is established, the step 206 is executed to prohibit the execution of the catalyst deterioration determination operation following the completion of the EGR failure determination operation, and this processing is terminated.
  • step 211 it is determined whether or not the second determination operation completion flag F_DON2nd is “1” (step 211).
  • This second determination operation completion flag F_DON2nd indicates that the first and second determination operations of the three determination operations involving purge cut are completed by “1”, and the AF variation determination operation completion flag It is set based on F_DONDIS, sensor failure determination operation completion flag F_DONLAF, and EGR failure determination operation completion flag F_DONEGR.
  • the second determination operation completion flag F_DON2nd is reset to “0” when all of the three determination operations involving purge cut and the catalyst deterioration determination operation are completed.
  • the first order flag F_ORDER1 indicates that the first and second determination operations are completed in the order A, that is, that the AF variation determination operation is completed in the order of the sensor failure determination operation. And is set based on the AF variation determination operation completion flag F_DONDIS, the sensor failure determination operation completion flag F_DONLAF, and the EGR failure determination operation completion flag F_DONEGR. Further, the first order flag F_ORDER1 is reset to “0” when all of the three determination operations accompanied with the purge cut and the catalyst deterioration determination operation are completed.
  • step 206 is executed, and this process is terminated.
  • step 214 it is determined whether or not the second order flag F_ORDER2 is “1” (step 214).
  • the second order flag F_ORDER2 indicates that the first and second determination operations are completed in the order B, that is, that the sensor failure determination operation is completed in the order of the EGR failure determination operation. And is set based on the AF variation determination operation completion flag F_DONDIS, the sensor failure determination operation completion flag F_DONLAF, and the EGR failure determination operation completion flag F_DONEGR. Further, the second order flag F_ORDER2 is reset to “0” when all of the three determination operations accompanied with the purge cut and the catalyst deterioration determination operation are completed.
  • step 206 is executed, and this process is terminated.
  • step 216 it is determined whether or not the third order flag F_ORDER3 is “1” (step 216).
  • the third order flag F_ORDER3 indicates that the first and second determination operations are completed in the order C, that is, that the EGR failure determination operation is completed in the order of the sensor failure determination operation. And is set based on the AF variation determination operation completion flag F_DONDIS, the sensor failure determination operation completion flag F_DONLAF, and the EGR failure determination operation completion flag F_DONEGR.
  • the third order flag F_ORDER3 is reset to “0” when all of the three determination operations involving the purge cut and the catalyst deterioration determination operation are completed.
  • the catalyst deterioration determination operation is executed following the completion of the sensor failure determination operation.
  • the AF variation determination execution condition is satisfied, the execution of the catalyst deterioration determination operation following the completion of the sensor failure determination operation is prohibited.
  • F_MCNDLAF 0
  • F_MCNDLAF 1
  • step 191 it is determined whether or not the continuous execution permission flag F_PERCAT set in step 205 or 206 in FIG. 14 is “1”.
  • step 184 is executed, The process ends.
  • Step 184 is executed and the present process is terminated.
  • step 188 is executed, and this process is terminated.
  • FIG. 15 shows the catalyst deterioration determination process executed in step 8 of FIG. 4. This process is for executing the catalyst deterioration determination operation.
  • step 222 the purge cut flag F_PURCUT is set to “0” in order to permit the supply of the evaporated fuel by the evaporated fuel processing device 31.
  • step 223 the deterioration of the three-way catalyst 28 is determined (step 223). Specifically, the fuel injection amount is controlled so that the detection signal SVO2 of the O2 sensor 67 becomes a value corresponding to the theoretical air-fuel ratio, and the average value of the inversion period of the detection signal SVO2 is predetermined during the control. When the value falls below the value, it is determined that the three-way catalyst 28 has deteriorated.
  • step 224 it is determined whether or not the catalyst deterioration determination operation has been completed (step 224). When this answer is NO, the present process is finished as it is, while when YES, the catalyst deterioration determination operation completion flag F_DONCAT is set to “1” to indicate that the catalyst deterioration determination operation is completed (step 225). .
  • various flags related to the catalyst deterioration determination operation are reset (step 226), and this process is terminated. That is, the catalyst deterioration determination execution condition flag F_MCNDCAT, the continuous execution permission flag F_PERCAT, and the catalyst deterioration determination operation flag F_MIDCAT are reset to “0”.
  • the processing shown in FIGS. 13 to 15 is performed when any of the other three determination operations (AF variation determination operation, sensor failure determination operation, and EGR failure determination operation) is performed when the catalyst deterioration determination operation is completed as described above. If that is not completed, then the execution is stopped until all the other three determination operations are completed (steps 7 and 8 in FIG. 4 are skipped). When the four determination operations including the catalyst deterioration determination operation are completed, the catalyst deterioration determination operation completion flag F_DONCAT is reset to “0”, and the execution of the processes shown in FIGS. 13 to 15 is resumed.
  • the other three determination operations AF variation determination operation, sensor failure determination operation, and EGR failure determination operation
  • FIG. 17 shows an operation example when three determination operations involving purge cuts are successively executed in order A (AF variation determination operation ⁇ sensor failure determination operation ⁇ EGR failure determination operation).
  • the sensor failure determination execution condition (conditions a2 to c2) does not include a condition related to the EGR device 51, whereas the EGR failure determination execution condition is determined by the EGR device 51 before the start of the EGR failure determination operation.
  • Condition b3 that exhaust gas recirculation has been performed (or that exhaust gas recirculation can be performed) is included.
  • the sensor failure determination execution condition satisfaction flag F_MCNDLAF is set to “1” (step 89 in FIG. 8).
  • the sensor failure determination operation flag F_MIDLAF is set to “0” (step 87), and the sensor failure determination operation is suspended (step 101 in FIG. 9: NO).
  • the AF variation determination operation completion flag F_DONDIS is set to “1” (step 76 in FIG. 7) and AF The variation determination execution condition satisfaction flag F_MCNDDIS and the AF variation determination operation flag F_MIDDIS are reset to “0” (step 77).
  • the sensor failure determination execution condition is satisfied (step 81: YES in FIG. 8), and when the stable time TMSTE has elapsed since the determination (step 91: YES), The sensor failure determination in-progress flag F_MIDLAF is set to “1” (steps 96 and 97 in FIG. 8: NO, step 98), and the suspension of the sensor failure determination operation is released.
  • the sensor failure determination operation is started as the second determination operation (step 101 in FIG. 9: YES).
  • the EGR failure determination execution condition is satisfied (F_MCNDEGR ⁇ 1) with the completion of the AF variation determination operation.
  • F_MCNDEGR ⁇ 1 the EGR failure determination execution condition is satisfied (F_MCNDEGR ⁇ 1) with the completion of the AF variation determination operation.
  • the flag F_MIDEGR is held at “0” (step 131 in FIG. 10: NO, step 127), and the EGR failure determination operation is suspended (step 141 in FIG. 11: NO).
  • the EGR failure determination operation flag F_MIDEGR is held at “0” during execution of the sensor failure determination operation (step 136 in FIG. 10: YES, step 127), also in this case, the EGR failure determination operation is suspended.
  • ⁇ operation point control is executed (step 167).
  • the operation point of the engine 3 is controlled so as to fall within a region overlapping with the region ⁇ and the region ⁇ in the operation point determination map.
  • the sensor failure determination operation completion flag F_DONLAF is set to “1” (step 113 in FIG. 9), and the sensor failure The determination execution condition satisfaction flag F_MCNDLAF and the sensor failure determination operation flag F_MIDLAF are reset to “0” (step 114).
  • the EGR failure determination execution condition is satisfied (step 121: YES in FIG. 10), and when the stable time TMSTE has elapsed since the satisfaction (step 131: YES), The EGR failure determination operation flag F_MIDEGR is set to “1” (step 136: NO, step 137), and the suspension of the EGR failure determination operation is released.
  • the EGR failure determination operation is started as the third determination operation (step 141 in FIG. 11: YES).
  • the determination EGR control is executed (step 144), whereby the EGR control valve opening degree OEV is repeatedly controlled to open and close a plurality of times (or once) at a constant period. .
  • the EGR failure determination operation completion flag F_DONEGR is set to “1” (step 154 in FIG. 11) and the EGR failure is accordingly performed.
  • the determination execution condition satisfaction flag F_MCNDEGR and the EGR failure determination in-progress flag F_MIDEGR are reset to “0” (step 155).
  • the AF variation determination processing (FIG. 7), the sensor failure determination processing (FIG. 9), and the EGR failure determination processing (FIG. 11)
  • the AF variation determination operation the sensor failure determination operation, and the EGR failure determination.
  • the purge cut flag F_PURCUT is set to “1”
  • the purge cut is executed (steps 63, 103, and 143), so that the purge flow rate QPU is zero.
  • the purge cut flag F_PURCUT has completed one of the three determination operations involving purge cut. Even so, as long as the execution condition of the determination operation to be executed next is satisfied, it is not switched to “0” but is held at “1”. Accordingly, as shown in FIG. 17, the purge cut is continued from the start of the first AF variation determination operation to the completion of the third EGR failure determination operation, and the purge flow rate QPU is maintained at the value 0. Is done.
  • the purge cut flag F_PURCUT is reset to “0”, and then the evaporated fuel processing is performed unless the three determination operations with purge cut are executed again.
  • the device 31 is controlled according to the operating state (NE or the like) of the engine 3.
  • the above-described setting of the purge cut flag F_PURCUT is similarly applied to other operation examples described later of the first embodiment.
  • FIG. 18 shows an operation example when three determination operations involving purge cuts are successively executed in order B (sensor failure determination operation ⁇ EGR failure determination operation ⁇ AF variation determination operation).
  • the ⁇ operating point control is executed (step 167).
  • the operating point of the engine 3 is controlled so as to fall within the overlapping region of the region ⁇ and the region ⁇ in the driving point determination map. In some cases, ⁇ may fall within the overlapping region.
  • the AF variation determination execution condition is established before the EGR failure determination execution condition, and accordingly, the AF variation determination execution condition establishment flag F_MCNDDIS is set to “ 1 ”(time t7).
  • the AF variation determination in-operation flag F_MIDDIS is set to “0” after the EGR failure determination execution condition is satisfied during the execution of the sensor failure determination operation until the EGR failure determination operation is completed. (Step 23 in FIG. 5: NO, step 18). As a result, the execution of the AF variation determination operation following the completion of the sensor failure determination operation as the first determination operation is prohibited (step 61 in FIG. 7: NO).
  • the ⁇ operating point control is executed while the EGR failure determination operation as the second determination operation is being executed (step 171: YES, step 172: NO, step 174: YES). (Step 175).
  • the operation point of the engine 3 is controlled so as to fall within a region that overlaps the region ⁇ and the region ⁇ in the operation point determination map.
  • the AF variation determination operation flag F_MIDDIS is set to “1” because the stabilization time TMSTE has elapsed since the establishment of the AF variation determination execution condition (FIG. 5).
  • the AF variation determination operation is started as the third determination operation (step 61 in FIG. 7: YES).
  • FIG. 19 shows an operation example when three determination operations involving purge cuts are successively executed in order C (EGR failure determination operation ⁇ sensor failure determination operation ⁇ AF variation determination operation).
  • ⁇ operating point control is executed (step 173).
  • the operation of the engine 3 is performed in the region ⁇ and the region ⁇ in the operation point determination map that overlap the region ⁇ and the region close to the operation point of the engine 3 at that time. It is controlled so that the point is settled.
  • the continuous execution permission flag F_PERDIS Is set to “0” (steps 42, 49 and 50: YES, step 48).
  • the continuous execution permission flag F_PERDIS is held at “0” until the sensor failure determination operation as the second determination operation is completed (step 44).
  • step 44 the continuous execution permission flag F_PERDIS is held at “0” until the sensor failure determination operation as the second determination operation is completed (step 44).
  • step 44 the continuous execution permission flag F_PERDIS
  • the AF variation determination in-progress flag F_MIDDIS is set to “0” after the sensor failure determination execution condition is satisfied during the execution of the EGR failure determination operation until the sensor failure determination operation is completed. (Step 23 in FIG. 5: NO, step 18). As a result, the execution of the AF variation determination operation following the completion of the EGR failure determination operation as the first determination operation is prohibited (step 61 in FIG. 7: NO).
  • Step 165 YES
  • Step 166 NO
  • Step 168 YES
  • Step 169 NO
  • ⁇ operation point control is executed (Step 163).
  • the operation point of the engine 3 is controlled so as to fall within a region that overlaps the region ⁇ and the region ⁇ in the operation point determination map.
  • the AF variation determination execution condition may be satisfied before the sensor failure determination execution condition.
  • the execution of the AF variation determination operation subsequent to the completion of the EGR failure determination operation is permitted (step 50: NO in FIG. 6, step 45).
  • the continuous execution permission flag for the sensor failure determination operation is not set, as shown in FIG. 4, AF variation determination condition determination processing ⁇ AF variation determination processing ⁇ sensor failure determination condition determination processing ⁇ sensor failure determination processing in this order. Since it is executed, the AF variation determination operation in which the execution condition is established first is started before the sensor failure determination operation.
  • FIG. 20 shows that three determination operations involving purge cuts are successively executed in order D (EGR failure determination operation ⁇ AF variation determination operation ⁇ sensor failure determination operation) and EGR as the first determination operation.
  • EGR failure determination operation ⁇ AF variation determination operation ⁇ sensor failure determination operation EGR failure determination operation
  • EGR the first determination operation.
  • the execution condition satisfaction flag F_MCNDCAT is set to “1” (step 186 in FIG. 13).
  • Step 202 in FIG. 14 YES, Steps 203 and 207: NO, Steps 209 and 210: NO, Step 205)
  • the continuous execution permission flag F_PERCAT is switched to “0” (FIG. 14).
  • step 209: YES, step 206) as long as the AF variation determination execution condition is satisfied, “0” is maintained.
  • the continuous execution permission flag F_PERCAT is held at a value immediately before the completion of the first determination operation after the completion of the first determination operation until the second determination operation is completed (steps 202 and 211: NO). ).
  • the catalyst deterioration determination in-progress flag F_MIDCAT is set to “0” after the AF variation determination execution condition is satisfied during the execution of the EGR failure determination operation until the AF variation determination operation is completed. (Step 191 in FIG. 13: NO, step 184). As a result, the execution of the catalyst deterioration determination operation following the completion of the EGR failure determination operation as the first determination operation is prohibited (step 221: NO in FIG. 15). In this case, as is apparent from the execution contents of the second continuous execution permission process (FIG. 14), and as shown in FIG. 20, the catalyst deterioration determination execution condition is established before the AF variation determination execution condition.
  • the stabilization time TMSTE has elapsed since the AF variation determination execution condition is satisfied. Therefore, with the completion of the EGR failure determination operation, the AF variation determination operation as the second determination operation is started (F_MIDDIS ⁇ 1). If the sensor failure determination execution condition is satisfied during the AF variation determination operation (time t22), the sensor failure determination execution condition satisfaction flag F_MCNDLAF is set to “1” accordingly.
  • the sensor failure determination operation is suspended (F_MIDLAF ⁇ 0) as in the operation example shown in FIG. Furthermore, as described with reference to FIG. 12, the ⁇ operating point control is executed during the execution of the AF variation determination operation as the second determination operation (step 161: YES, step 162: NO) (step 163). ).
  • the above-described operation example shown in FIG. 20 is an example in which three determination operations involving purge cuts are performed in order D (EGR failure determination operation ⁇ AF variation determination operation ⁇ sensor failure determination operation). As is apparent from the execution contents of the second continuous execution permission process described above, the execution of the catalyst deterioration determination operation is similarly prohibited when executed in any of the orders A to C.
  • FIG. 21 shows an example of transition of the timer values tLAF1 and tLAF2 of the first and second standby timers when the sensor failure determination operation is executed following the AF variation determination operation.
  • the timer value tLAF2 is set to a shorter waiting time after decrease TMLDEC.
  • the sensor failure determination operation is started (F_MIDLAF ⁇ 1) and the timer value tLAF2 starts to be counted down.
  • FIG. 21 shows an example of the transition of the timer values tLAF1 and tLAF2 when the sensor failure determination operation is executed following the AF variation determination operation.
  • the two combinations are sequentially executed in sequence, the corresponding timer values tDIS1, tDIS2, tLAF1, tLAF2, tEGR1, and tEGR2 change in the same manner.
  • the purge cut flag F_PURCUT is reset to “0” when the engine 3 is started, when the first determination operation of the three determination operations involving purge cut is started, the purge cut flag F_PURCUT is It is still set to “0”.
  • the answer to step 26 in FIG. 5, step 92 in FIG. 8, and step 132 in FIG. 10 is NO.
  • the timer value tDIS2, tLAF2 or tEGR2 of the second standby timer corresponding to this first determination operation is The initial standby time TMDINT, TMLINT or TMEINT is set (steps 28, 94, 134), and the first determination operation is started as it is.
  • FIG. 22 (A) shows the transition of the purge flow rate QPU in the comparative example
  • FIG. 22 (B) shows that the three determination operations with purge cut are sequentially executed in sequence according to the first embodiment. Shows the transition of the purge flow rate QPU in the case of the failure.
  • the stabilization time TMSTE elapses from the end of each of the three determination operations with purge cut
  • the next determination operation is started and the three determination operations with purge cut are started. Judgment operations are not executed sequentially.
  • the purge cut is canceled until the stable time TMSTE elapses, and the evaporated fuel processing device 31 supplies the evaporated fuel.
  • the determination must be suspended until the purge flow rate QPU is stabilized at a value of 0, Minutes, the time required for the second and third determination operations (hereinafter referred to as “second determination operation time” and “third determination operation time”, respectively) TM2ndC and TM3rdC are increased, resulting in three determination operations with a purge cut. It takes a long time to complete.
  • the three determination operations accompanied by the purge cut are sequentially performed in order, and in this case, the three determination operations from the start of the first determination operation are performed.
  • the purge flow rate QPU is held at the value 0.
  • the second and third determination operation times TM2nd and TM3rd are shorter than in the above-described operation example, and as a result, the entire three determination operations with purge cut are required. Time is getting shorter. As a result, the purge cut execution period can be shortened, so that more evaporated fuel can be supplied to the intake passage 21 by the hatching shown in FIG.
  • the correspondence between various elements in the first embodiment and various elements in the present invention is as follows. That is, the engine 3, the EGR device 51, and the LAF sensor 66 in the first embodiment correspond to a plurality of devices in the present invention and also correspond to the first or second device in the present invention.
  • the EGR device 51 and the LAF sensor 66 in the first embodiment correspond to other devices in the present invention
  • the three-way catalyst 28 in the first embodiment includes a plurality of devices, other devices, and third devices in the present invention.
  • the first and second motors 4 and 5 in the first embodiment correspond to the electric motor in the present invention.
  • the ECU 2 in the first embodiment corresponds to the first determination means, the second determination means, the third determination means, the prohibition means, and the determination parameter acquisition means in the present invention.
  • the AF variation determination operation is performed when the predetermined AF variation determination execution condition is satisfied, and the sensor failure determination is performed when the predetermined sensor failure determination execution condition is satisfied.
  • the operation is performed in the purge cut state when the predetermined EGR failure determination execution condition is satisfied. Further, when a predetermined catalyst deterioration determination execution condition is satisfied, the catalyst deterioration determination operation is executed without using the purge cut as a condition.
  • the execution condition corresponding to the second determination operation and the catalyst deterioration determination execution are performed during the execution of the first determination operation among the three determination operations involving purge cut.
  • both of the conditions are satisfied, in order to give priority to the second determination operation, execution of the catalyst deterioration determination operation following the completion of the first determination operation is prohibited.
  • the second determination operation with the purge cut as a condition is executed following the completion of the first determination operation with the purge cut as a condition.
  • the second determination operation is started while the purge cut is continued.
  • the supply of the evaporated fuel is not resumed between the completion of the first determination operation and the start of the second determination operation. Therefore, it is not necessary to hold the determination until the supply amount is stabilized at the value of 0 by the purge cut, and therefore an abnormality (failure) of the device corresponding to the second determination operation can be determined at an early stage.
  • the time required for the three determination operations involving purge cut can be shortened as a whole, whereby the frequency of execution of the determination operation can be increased and the processing capability of the evaporated fuel processing device 31 can be improved. be able to.
  • AF variation determination execution conditions includes determination air-fuel ratio control and EGR stop control
  • sensor failure determination operation includes determination injection control and normal EGR control
  • EGR failure determination operation includes air-fuel ratio F / B control.
  • determination EGR control are included.
  • the control operations for controlling the engine 3 are included in the three determination operations involving purge cut, respectively.
  • the EGR failure determination execution condition includes the condition b3 that exhaust gas recirculation has been performed by the EGR device 51 (or exhaust gas recirculation can be performed) before the start of the EGR failure determination operation. It is included (step 121 in FIG. 10), and the exhaust gas recirculation by the EGR device 51 is stopped during the execution of the AF variation determination operation (step 65 in FIG. 7).
  • the EGR control valve opening degree OEV is repeatedly controlled to be opened and closed a plurality of times at a constant period, whereby the exhaust gas recirculation and the recirculation stop by the EGR device 51 are repeated.
  • the variation determination execution condition does not include a condition regarding exhaust gas recirculation. Therefore, during the execution of the sensor failure determination operation as the first determination operation, when both the AF variation determination execution condition and the EGR failure determination execution condition are satisfied, the EGR failure is performed following the completion of the sensor failure determination operation. If the determination operation is executed, the AF variation determination execution condition can be satisfied during the execution of the EGR failure determination operation, whereby the AF variation determination operation can be executed following the completion of the EGR failure determination operation. it can.
  • the AF variation determination execution condition and the EGR are determined during the execution of the sensor failure determination operation as the first determination operation.
  • both of the failure determination execution conditions are satisfied, execution of the AF variation determination operation following the completion of the sensor failure determination operation is prohibited (see FIG. 18).
  • the EGR device 51 is selected as a device for determining an abnormality following the completion of the sensor failure determination operation.
  • the EGR failure determination operation and the AF variation determination operation can be executed sequentially in sequence.
  • the time required for the AF variation determination operation can be reduced as a whole. *
  • the AF variation is determined based on the calculated AF variation determination parameter JUDDIS.
  • a failure of the LAF sensor 66 is determined based on the calculated integrated value LAFDLYP.
  • the failure of the EGR device 51 is determined based on the calculated integrated value RT80AX.
  • the shorter post-decrease waiting times TMDDEC, TMLDEC, and TMEDEC are used. Since the waiting time is reduced, the above-described effect, that is, the effect that the time required for the three determination operations involving the purge cut can be shortened as a whole can be effectively obtained.
  • each execution condition includes a predetermined engine operating condition related to the engine speed NE and the intake air amount GAIR. (Conditions a1, b1, and c1). Further, as described with reference to FIG. 12, during the execution of the first determination operation, the engine operation condition corresponding to the second determination operation is satisfied in addition to the engine operation condition corresponding to the first determination operation. Thus, the engine 3 is controlled. Therefore, it is possible to increase the possibility that the second determination operation is executed following the completion of the first determination operation. As a result, the above-described effect, that is, the time required for the three determination operations accompanied by the purge cut is entirely reduced. The effect that it can be shortened as follows can be obtained more effectively.
  • FIG. 23 shows an operation example of a modified example of the engine operating point control process described above.
  • F_MOE2nd is a second partial execution condition satisfaction flag, and among the execution conditions corresponding to the second determination operation, the above-described conditions relating to parameters other than the operating point (NE, GAIR) of the engine 3 (for example, “1” represents that the conditions b1 to e1 and the like (hereinafter referred to as “second partial execution condition”) are satisfied.
  • NEW1 is a threshold value on the lower side of engine speed NE (hereinafter referred to as “first engine speed threshold value”) that defines a region corresponding to the first determination operation among regions ⁇ to ⁇ . It is said).
  • NELOW2 is a threshold value on the lower side of engine speed NE (hereinafter referred to as “second engine speed threshold value”) that defines a region corresponding to the second determination operation among regions ⁇ to ⁇ .
  • second engine speed threshold value is a threshold value on the lower side of engine speed NE (hereinafter referred to as “second engine speed threshold value”) that defines a region corresponding to the second determination operation among regions ⁇ to ⁇ .
  • a thick two-dot chain line indicates a transition of the engine speed NE when the engine operating point control process according to the modification is not executed.
  • the throttle valve opening degree is different from that in the engine.
  • the operation point 3 is controlled so as to fall within only the region corresponding to the first determination operation in the regions ⁇ to ⁇ .
  • the engine speed NE changes in a constant state that is higher than the first engine speed threshold value NELOW1 and lower than the second engine speed threshold value NELOW2.
  • the engine speed NE is higher than the second speed threshold value NELOW2 and changes in a constant state.
  • the abnormality determination device differs from the first embodiment only in that an operation region correction process shown in FIG. 24 is executed instead of the engine operation point control process (FIG. 12) described above. ing.
  • This operation region correction process is performed in order to make it easy to satisfy the execution condition of the next determination operation performed during the execution of the first and second determination operations among the three determination operations involving purge cut.
  • the region ⁇ , region ⁇ , and region ⁇ in the operating point determination map shown in FIG. 16 are for appropriate enlargement correction, and are repeatedly executed at the predetermined period in parallel with the processing shown in FIG.
  • the same step number is attached
  • a description will be given focusing on differences from the first embodiment.
  • ⁇ enlargement correction is executed (step 231), and this process ends.
  • the region ⁇ in the operating point determination map is corrected so as to enlarge both the engine speed NE and the intake air amount GAIR.
  • the two-dot chain line indicates the region ⁇ before enlargement correction (the same as the region ⁇ indicated by the one-dot chain line in FIG. 16), and the solid line indicates the region ⁇ after enlargement correction.
  • this ⁇ enlargement correction the region ⁇ in the operating point determination map is corrected so as to enlarge both the engine speed NE and the intake air amount GAIR.
  • a two-dot chain line indicates a region ⁇ before enlargement correction (the same as the region ⁇ indicated by a two-dot chain line in FIG. 16), and a solid line indicates a region ⁇ after enlargement correction.
  • step 233 the region ⁇ in the operating point determination map is corrected so as to enlarge both the engine speed NE and the intake air amount GAIR.
  • a two-dot chain line indicates the region ⁇ before enlargement correction (the same as the region ⁇ indicated by the solid line in FIG. 16), and the solid line indicates the region ⁇ after enlargement correction.
  • step 172 When the answer to step 172 is YES, that is, when the EGR failure determination operation as the first determination operation is being performed, the AF variation determination operation or the sensor failure determination operation is performed following the completion of the EGR failure determination operation. Is increased (step 234), and this process is terminated.
  • this ⁇ enlargement correction the region ⁇ and the region ⁇ that are closer to the operating point of the engine 3 at that time are enlarged and corrected. Further, when the operating point of the engine 3 at that time falls within the region ⁇ and / or the region ⁇ in addition to the region ⁇ , the region where the engine 3 is within the two regions ⁇ and ⁇ is enlarged and corrected.
  • the method is the same as the method described in steps 231 and 233 above.
  • step 174 when the answer to step 174 is NO, that is, when the EGR failure determination operation as the third determination operation is being executed, this processing is ended as it is.
  • the second determination operation of the region ⁇ , the region ⁇ , and the region ⁇ is performed during the execution of the first determination operation among the three determination operations involving purge cut.
  • the execution condition corresponding to the second determination operation is relaxed. Therefore, it is possible to increase the possibility that the first and second determination operations are sequentially performed in sequence, and the effect described above, that is, the time required for the three determination operations with purge cut as a whole can be shortened. Can be obtained more effectively.
  • the conditions a1, a2, and a3 related to the operating point (NE, GAIR) of the engine 3 included in the AF variation determination execution condition, the sensor failure determination execution condition, and the EGR failure determination execution condition are relaxed.
  • other conditions included in each of the AF variation determination execution condition, the sensor failure determination execution condition, and the EGR failure determination execution condition may be relaxed.
  • the present invention is not limited to the first and second embodiments described below (hereinafter collectively referred to as “embodiments”), and can be implemented in various modes.
  • the plurality of devices in the present invention are the EGR device 51 and the LAF sensor 66, but other suitable devices provided in connection with the internal combustion engine, such as the injector 26 and the evaporated fuel processing device 31. Etc.
  • the number of the plurality of devices is four, but may be three or five or more.
  • the order of the three determination operations accompanied by the purge cut is limited to the order A to the order D. From the relationship between the execution condition of each determination operation and the control operation of the internal combustion engine in each determination operation, Of course, if the three determination operations involving purge cuts can be executed successively in an arbitrary order, they may be executed in the order in which the execution conditions are satisfied. In this case, the engine operating point control process described above is executed as follows, for example.
  • the throttle valve opening is controlled so that the operating point of the internal combustion engine is in a region overlapping with the region closest to the operating point of the internal combustion engine at that time. Further, when the operating point of the internal combustion engine is within a region where the region corresponding to the determination operation being executed and the other region overlap each other, the throttle valve opening is controlled so as to maintain that state. .
  • the operation region correction process is executed as follows, for example. That is, during the execution of each of the three determination operations accompanied by the purge cut, a region other than the region corresponding to the determination operation being executed out of the plurality of regions defined by the operation point determination map, and the internal combustion at that time The region closest to the engine operating point is enlarged and corrected. Further, when the operating point of the internal combustion engine is within a region where the region corresponding to the determination operation being executed and the other region overlap each other, the other region is enlarged and corrected.
  • control operations of the internal combustion engine included in the second determination operation in the present invention are EGR stop control (step 65 in FIG. 7) and EGR control for determination (step 144 in FIG. 11).
  • Other suitable control operations may be used.
  • the engine 3 which is a gasoline engine for the vehicle V is used as the internal combustion engine in the present invention, but other suitable internal combustion engines such as a diesel engine, an LPG engine, a marine engine, an aircraft A special engine may be used.
  • the vehicle 3 is configured so that the engine 3 and the front wheel WF can be connected / disconnected, the first motor 4 is coupled to the engine 3, and the second motor 5 is coupled to the front wheel WF.
  • the internal combustion engine is connected to the drive wheel via the transmission
  • the electric motor is connected to the drive wheel via the transmission or without the transmission. It can also be applied to other vehicles.
  • embodiment is an example which applied this invention to the hybrid vehicle V provided with the engine 3 and the 1st and 2nd electric motors 4 and 5 as a motive power source
  • this invention is an internal combustion engine as a motive power source. It is applicable also to the vehicle provided only with. In this case, the engine operating point control process may be omitted. Variations regarding the above embodiments can be applied in combination as appropriate. In addition, it is possible to appropriately change the detailed configuration within the scope of the gist of the present invention.
  • Evaporated fuel processing device 51 EGR device (multiple devices, other devices, first device, second device) 66 LAF sensor (multiple devices, other devices, first device, second device) JUDDIS AF variation judgment parameter (judgment parameter) LAFDLYP integrated value (determination parameter) RT80AX integrated value (judgment parameter) TMDINT initial waiting time (waiting time) TMLINT initial waiting time (waiting time) TMEINT initial waiting time (waiting time) Waiting time after waiting for TMDDEC (waiting time) TLDDEC waiting time after decrease (waiting time) TMEDEC Waiting time after decrease (waiting time)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Human Computer Interaction (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

 吸気系への蒸発燃料の供給を停止した状態で行われる複数の機器の異常判定に要する時間を全体として短縮でき、それにより、当該判定の実行頻度を高めることができるとともに、蒸発燃料処理装置による蒸発燃料の処理能力を向上させることができる異常判定装置を提供する。第1及び第2実行条件がそれぞれ成立しているときに、第1及び第2機器の異常をそれぞれ判定するための第1及び第2判定動作が、蒸発燃料の供給を停止した状態で実行される。第1判定動作が完了した場合において、第2実行条件が成立しているときに、蒸発燃料の供給を停止状態に保持したまま、第2判定動作が開始される。

Description

異常判定装置
 本発明は、内燃機関と、内燃機関に関連して設けられた他の機器とを含む複数の機器の異常を判定する異常判定装置に関する。
 従来、この種の異常判定装置として、例えば特許文献1に開示されたものが知られている。この異常判定装置では、車両の動力源である内燃機関に設けられたEGR装置、蒸発燃料処理装置及び触媒装置の異常が、各々の所定の判定条件が成立しているときに判定され、当該判定条件の成立が、EGR装置、蒸発燃料処理装置及び触媒装置の順に判定される。また、これらの3つの装置の1つの異常を判定している場合において、他の装置の判定条件が成立したときに、当該判定を継続するか、当該成立した判定条件に対応する装置の異常を判定するか否かが、その判定の優先度に基づいて判定される。すなわち、実行中の異常判定の優先度が低ければ、当該異常判定を中断し、後に成立した判定条件に対応する装置の異常が判定される。これとは逆に、実行中の異常判定の優先度が高ければ、当該異常判定が継続される。
 具体的には、EGR装置及び蒸発燃料処理装置の異常判定の優先度は、触媒装置の異常判定の優先度よりも高く設定されており、EGR装置又は蒸発燃料処理装置の異常判定中に、触媒装置の判定条件が成立しても、当該判定は中断されずに、継続される。これとは逆に、触媒装置の異常判定中に、EGR装置又は蒸発燃料処理装置の判定条件が成立したときには、当該判定が中断されるとともに、EGR装置及び蒸発燃料処理装置のうち、判定条件が成立したものの異常判定が開始される。また、EGR装置及び蒸発燃料処理装置の異常判定は、判定条件が先に成立したものから開始され、その後、中断されずに完了される。これは、判定条件が成立しにくいEGR装置の異常判定を確実に実行するとともに、蒸発燃料処理装置に捕捉された燃料を不要に放出させずに、その異常判定を確実に完了させるためである。
特開平4-238241号公報
 内燃機関には、上述したEGR装置などに加え、センサなどの複数の機器が設けられており、これらの複数の機器には、蒸発燃料処理装置による内燃機関の吸気系への蒸発燃料の供給を停止(以下「パージカット」という)した状態で、その異常を判定するものが含まれる。パージカットした状態で異常が判定される機器(以下「パージカット判定機器」という)が複数、設けられている場合において、上述した従来の異常判定装置により、これらの複数のパージカット判定機器の異常を順に判定するときには、次のような不具合が発生する。
 すなわち、従来の異常判定装置では、上述したように、複数の機器の異常判定の継続/中断が、その優先度に基づいて判定されるにすぎない。このため、1つのパージカット判定機器の異常判定が完了してから、次のパージカット判定機器の異常が判定されるまでの間に、蒸発燃料の供給が一旦、再開される場合がある。その場合には、供給される蒸発燃料の量がパージカットにより値0に安定するまで、次のパージカット判定機器の異常判定を保留しなければならず、それにより、当該判定に要する時間が全体として長くなる結果、複数のパージカット機器の異常判定の実行頻度が低下してしまう。同じ理由により、パージカットの実行期間が全体として長くなることによって、蒸発燃料処理装置に残存する蒸発燃料の量が多くなる結果、その処理能力が低下してしまう。
 本発明は、以上のような課題を解決するためになされたものであり、吸気系への蒸発燃料の供給を停止した状態で行われる複数の機器の異常判定に要する時間を全体として短縮でき、それにより、当該判定の実行頻度を高めることができるとともに、蒸発燃料処理装置による蒸発燃料の処理能力を向上させることができる異常判定装置を提供することを目的とする。
 上記の目的を達成するために、請求項1に係る発明は、燃料タンクFT内で発生した蒸発燃料を捕捉するとともに、捕捉された蒸発燃料を内燃機関の吸気系(実施形態における(以下、本項において同じ)吸気通路21)に供給するための蒸発燃料処理装置31が設けられた内燃機関3と、内燃機関3に関連して設けられた他の機器(EGR装置51、LAFセンサ66、三元触媒28)とを含む複数の機器の異常を判定する異常判定装置であって、所定の第1実行条件が成立しているときに、複数の機器のうちの第1機器(エンジン3、EGR装置51、LAFセンサ66)の異常を判定するための第1判定動作を、蒸発燃料処理装置31による蒸発燃料の供給を停止した状態で実行する第1判定手段(ECU2、図5、図7~図11)と、所定の第2実行条件が成立しているときに、複数の機器のうちの第1機器とは別個の第2機器(エンジン3、EGR装置51、LAFセンサ66)の異常を判定するための第2判定動作を、蒸発燃料処理装置31による蒸発燃料の供給を停止した状態で実行する第2判定手段(ECU2、図5、図7~図11)と、を備え、第2判定手段は、第1判定動作が完了した場合において、第2実行条件が成立しているときに、蒸発燃料の供給を停止状態に保持したまま、第2判定動作を開始する(図5、図7~図11)ことを特徴とする。
 この構成によれば、所定の第1及び第2実行条件がそれぞれ成立しているときに、第1及び第2機器の異常をそれぞれ判定するための第1及び第2判定動作が、蒸発燃料の供給を停止した状態で実行される。以下、蒸発燃料の供給を停止することを「パージカット」という。
 また、第1判定動作が完了した場合において、第2実行条件が成立しているときに、蒸発燃料の供給を停止状態に保持したまま、第2判定動作が開始される。これにより、前述した従来の場合と異なり、第1判定動作が完了してから第2判定動作が開始されるまでの間に、蒸発燃料の供給が再開されることがないので、蒸発燃料の供給量がパージカットにより値0に安定するまで判定を保留する必要がなく、したがって、第2機器の異常を早期に判定することができる。これにより、パージカット状態で行われる複数の機器の異常判定に要する時間を全体として短縮でき、それにより、当該判定の実行頻度を高めることができるとともに、蒸発燃料処理装置による蒸発燃料の処理能力を向上させることができる。
 なお、本明細書及び特許請求の範囲における「異常」は、正常でないことを表し、「故障」や「劣化」などを含む。
 請求項2に係る発明は、請求項1に記載の異常判定装置において、第2機器は、互いに別個の複数の第2機器で構成され、第2実行条件として、複数の第2機器に対して互いに異なる複数の第2実行条件がそれぞれ設定され、第2判定動作として、複数の第2機器に対して互いに異なる複数の第2判定動作がそれぞれ設定され、複数の第2判定動作の各々には、内燃機関3を制御するための制御動作が含まれ(図7のステップ64、65、図9のステップ104、図11のステップ144、145)、第2判定手段は、第1判定動作の実行中、複数の第2実行条件がいずれも成立しているときに、複数の第2機器から、第1判定動作の完了に続いて異常を判定する第2機器を、複数の第2実行条件及び第2判定動作に基づいて選択する(図5のステップ22、23、図6)ことを特徴とする。
 この構成によれば、第2機器が、互いに別個の複数の第2機器で構成されており、第2実行条件として、複数の第2機器に対して互いに異なる複数の第2実行条件がそれぞれ設定されている。また、第2判定動作として、複数の第2機器に対して互いに異なる複数の第2判定動作がそれぞれ設定されており、当該複数の第2判定動作の各々には、内燃機関を制御するための制御動作が含まれている。
 このため、複数の第2実行条件の各々に、内燃機関の運転状態に関する互いに異なる所定の条件が含まれている場合、第1判定動作の完了に続いて、複数の第2機器の1つを任意に選択し、選択した第2機器に対応する第2判定動作を実行したときには、当該第2判定動作の実行中に、残りの第2機器に対応する第2実行条件が成立しなくなる場合がある。その場合には、複数の第2機器の第2判定動作を順に連続して実行することができず、それにより、蒸発燃料の供給が再開されることによって、複数の第2機器の異常判定に要する時間を全体として短縮できなくなる可能性がある。
 上述した構成によれば、第1判定動作の実行中、複数の第2実行条件がいずれも成立しているときに、複数の第2機器から、第1判定動作の完了に続いて異常が判定される第2機器が、複数の第2実行条件及び第2判定動作に基づいて選択される。これにより、第1判定動作の完了に続いて異常が判定される第2機器として、その第2判定動作の実行中に、他の第2判定動作に対応する第2実行条件が成立するものを、選択することができる。それにより、複数の第2判定動作を順に連続して実行できるので、複数の第2機器の異常判定に要する時間を全体として短縮することができる。
 請求項3に係る発明は、請求項1又は2に記載の異常判定装置において、所定の第3実行条件が成立しているときに、複数の機器のうちの第1及び第2機器とは別個の第3機器(三元触媒28)の異常を判定するための第3判定動作を実行する第3判定手段(ECU2、図13~図15)と、第1判定動作の実行中、第2及び第3実行条件の両方が成立しているときに、第2判定動作を優先するために、第1判定動作の完了に続いて第3判定動作が実行されるのを禁止する禁止手段(ECU2、図13のステップ190、191、図14)と、をさらに備えることを特徴とする。
 この構成によれば、所定の第3実行条件が成立しているときに、前記第1及び第2機器とは別個の第3機器の異常を判定するための第3判定動作が実行される。また、第1判定動作の実行中、第2及び第3実行条件の両方が成立しているときに、第2判定動作を優先するために、第1判定動作の完了に続く第3判定動作の実行が禁止される。これにより、パージカットを条件とする第1判定動作の完了に続いて、同じくパージカットを条件とする第2判定動作を実行できるので、請求項1に係る発明による効果、すなわち、パージカット状態で行われる複数の機器の異常判定に要する時間を全体として短縮できるという効果を、有効に得ることができる。
 請求項4に係る発明は、請求項1ないし3のいずれかに記載の異常判定装置において、複数の機器の各々の異常を判定するための判定用パラメータ(AFバラツキ判定パラメータJUDDIS、積算値LAFDLYP、積算値RT80AX)を取得する判定用パラメータ取得手段(ECU2、図7のステップ72、図9のステップ108、図11のステップ149)をさらに備え、第2判定手段は、第2判定動作が開始されてから所定の待機時間(初期待機時間TMDINT、初期待機時間TMLINT、初期待機時間TMEINT、減少後待機時間TMDDEC、減少後待機時間TMLDEC、減少後待機時間TMEDEC)が経過した後に(図7のステップ71:YES、図9のステップ107:YES、図11のステップ148:YES)、第2機器の異常を、取得された判定用パラメータに基づいて判定し(図7のステップ73~75、図9のステップ110~112、図11のステップ151~153)、第1判定動作の完了に続いて第2判定動作を実行するときには、待機時間を減少させる(図5のステップ26、29、図8のステップ92、95、図10のステップ132、135)ことを特徴とする。
 この構成によれば、第2判定動作が開始されてから所定の待機時間が経過した後に、第2機器の異常が、取得された判定用パラメータに基づいて判定される。請求項1に係る発明の説明で述べたように、第1判定動作の完了に続いて第2判定動作を実行するときには、前述した従来の場合と異なり、蒸発燃料の供給量がパージカットにより値0に安定するまで判定を保留する必要がないので、その分、待機時間を減少させることができる。上述した構成によれば、第1判定動作の完了に続いて第2判定動作を実行するときに、上記の待機時間を減少させるので、請求項1に係る発明による効果、すなわち、パージカット状態で行われる複数の機器の異常判定に要する時間を全体として短縮できるという効果を、有効に得ることができる。
 なお、本発明の明細書及び特許請求の範囲において、「取得」には、センサなどによる検出や、演算による「算出」、「設定」が含まれる。
 請求項5に係る発明は、請求項1ないし4のいずれかに記載の異常判定装置において、内燃機関3には、内燃機関3とともに動力源を構成する電気モータ(第1モータ4、第2モータ5)が連結されており、第1及び第2実行条件には、内燃機関3の運転状態に関する、互いに異なる所定の第1及び第2エンジン運転条件がそれぞれ含まれ、第2判定手段は、第1判定動作の実行中に、第1エンジン運転条件に加え、第2エンジン運転条件が成立するように、内燃機関3を制御する(図12のステップ163、167、173、175)ことを特徴とする。
 この構成によれば、第1及び第2実行条件には、内燃機関の運転状態に関する所定の第1及び第2エンジン運転条件がそれぞれ含まれている。また、第1判定動作の実行中に、第1エンジン運転条件に加え、第2エンジン運転条件が成立するように、内燃機関を制御するので、第1判定動作の完了に続いて第2判定動作が実行される可能性を高めることができ、ひいては、請求項1に係る発明による効果、すなわち、パージカット状態で行われる複数の機器の異常判定に要する時間を全体として短縮できるという効果を、より有効に得ることができる。
 この場合、内燃機関には、内燃機関とともに動力源を構成する電気モータが連結されている。このため、上述したようにして制御される内燃機関の出力が所望の出力に対して不足する場合には、その不足分を電気モータで補うとともに、所望の出力に対して余る場合には、その余剰分を電気モータによる発電で消費することができ、それにより、良好なドライバビリティを確保することができる。
 請求項6に係る発明は、請求項1ないし4のいずれかに記載の異常判定装置において、第2判定手段は、第1判定動作の実行中に、第2実行条件を緩和する(図24のステップ231~234、図25~図27)ことを特徴とする。
 この構成によれば、第1判定動作の実行中に、第2判定動作の実行条件である第2実行条件を緩和するため、第2実行条件が成立しやすくなるので、第1及び第2判定動作が順に連続して実行される可能性を高めることができる。したがって、請求項1に係る発明による効果、すなわち、パージカット状態で行われる複数の機器の異常判定に要する時間を全体として短縮できるという効果を、より有効に得ることができる。
本発明の第1実施形態による異常判定装置が適用された車両を概略的に示す図である。 車両に設けられた内燃機関などを概略的に示す図である。 異常判定装置のECUなどを示すブロック図である。 ECUによって実行される処理を示すフローチャートである。 図4に示す処理で実行されるAFバラツキ判定条件判定処理のサブルーチンを示すフローチャートである。 AFバラツキ判定条件判定処理で実行される第1連続実行許可処理のサブルーチンを示すフローチャートである。 図4に示す処理で実行されるAFバラツキ判定処理のサブルーチンを示すフローチャートである。 図4に示す処理で実行されるセンサ故障判定条件判定処理のサブルーチンを示すフローチャートである。 図4に示す処理で実行されるセンサ故障判定処理のサブルーチンを示すフローチャートである。 図4に示す処理で実行されるEGR故障判定条件判定処理のサブルーチンを示すフローチャートである。 図4に示す処理で実行されるEGR故障判定処理のサブルーチンを示すフローチャートである。 エンジン運転点制御処理を示すフローチャートである。 図4に示す処理で実行される触媒劣化判定条件判定処理のサブルーチンを示すフローチャートである。 触媒劣化判定条件判定処理で実行される第2連続実行許可処理のサブルーチンを示すフローチャートである。 図4に示す処理で実行される触媒劣化判定処理のサブルーチンを示すフローチャートである。 図5、図8及び図10に示す処理で用いられる運転点判定マップを示す図である。 異常判定装置の動作例を示すタイミングチャートである。 図17とは別の動作例を示すタイミングチャートである。 図17及び図18とは別の動作例を示すタイミングチャートである。 図17~図19とは別の動作例を示すタイミングチャートである。 第1及び第2待機タイマのタイマ値などの推移の一例を示すタイミングチャートである。 (A)第1実施形態による異常判定装置における判定動作の実行中におけるパージ流量などの推移の一例を、(B)比較例とともに示す図である。 第1実施形態の変形例の動作例を示すタイミングチャートである。 本発明の第2実施形態による異常判定装置で実行される運転領域補正処理を示すフローチャートである。 拡大補正前の領域β(二点鎖線)と拡大補正後の領域β(実線)を示す図である。 拡大補正前の領域γ(二点鎖線)と拡大補正後の領域γ(実線)を示す図である。 拡大補正前の領域α(二点鎖線)と拡大補正後の領域α(実線)を示す図である。
 以下、図面を参照しながら、本発明の好ましい実施形態について詳細に説明する。図1に示すハイブリッド車両(以下、単に「車両」という)Vは、動力源として、内燃機関(以下「エンジン」という)3、第1モータ4及び第2モータ5を有するとともに、駆動輪としての左右の前輪WF(1つのみ図示)、及び従動輪としての左右の後輪(図示せず)を有する四輪車両である。
 第1及び第2モータ4、5はいずれも、いわゆるモータジェネレータであり、例えばブラシレスDCモータで構成されている。第1モータ4のステータ(図示せず)は、第1パワードライブユニット(以下「第1PDU」という)6に電気的に接続されている。また、第2モータ5のステータ(図示せず)は、第2パワードライブユニット(以下「第2PDU」という)7を介して、バッテリ8に電気的に接続されている。
 第1及び第2PDU6、7は、インバータなどの電気回路によって構成されており、互いに電気的に接続されている。したがって、第1モータ4と第2モータ5は、第1及び第2PDU6、7を介して、互いに電力を入出力することが可能である。また、第1及び第2PDU6、7は、後述するECU2からの制御信号によって制御され(図3参照)、それにより、第1及び第2モータ4、5の力行又は発電や、バッテリ8の充放電などの動作が制御される。
 第1モータ4の回転軸4aに設けられたギヤ4bは、エンジン3のクランクシャフト3aに設けられたギヤ3bに噛み合っており、エンジン3と第1モータ4は、これらのギヤ3b、4bを介して、互いに動力を入出力することが可能である。また、第2モータ5の回転軸5aに設けられたギヤ5bは、駆動軸9に設けられた第1ギヤ9aに噛み合い、この駆動軸9の第2ギヤ9bは、前輪WFの車軸10に設けられたファイナルギヤ10aに噛み合っている。以上の構成により、第2モータ5と前輪WFは、上記のギヤ5b、第1及び第2ギヤ9a、9b、ならびにファイナルギヤ10aなどを介して、互いに動力を入出力することが可能である。
 さらに、エンジン3のクランクシャフト3aは、ODクラッチ11を介して、中間軸12に連結されており、この中間軸12に設けられたギヤ12aは、前記第1ギヤ9aに噛み合っている。ODクラッチ11は、電磁クラッチで構成されており、その接続及び遮断は、ECU2からの制御信号によって制御される(図3参照)。また、上記の中間軸12のギヤ12a、駆動軸9の第1及び第2ギヤ9a、9bからファイナルギヤ10aまでのギヤ比は、ほぼ1:1に設定されている。したがって、ODクラッチ11が接続された状態では、エンジン3の動力は、クランクシャフト3aから上記のギヤを介して、ほぼ等速状態で前輪WFに伝達される。
 以上の構成により、車両Vの駆動系は、エンジン3、第1及び第2モータ4、5及びODクラッチ11などを制御することによって、各種の運転モードで運転される。この運転モードは、ECVT走行モード、ENG直結走行モード、EV走行モード及び減速発電モードなどに分類される。以下、これらの運転モードについて順に説明する。
 ECVT走行モードは、エンジン3の燃焼によって発生した動力を用いて第1モータ4で発電を行い、発電された電力を第2モータ5に供給(電気パス)しながら、第2モータ5の力行によって前輪WFを駆動し、走行するモードである。このECVT走行モードでは、第1及び第2PDU6、7の制御により、エンジン3の動力を無段階に変速することが可能である。また、第1及び第2モータ4、5の性質上、このECVT走行モードを低中速域で選択することで、高い効率が得られる。
 ENG直結走行モードは、ODクラッチ11を接続した状態で、エンジン3の動力をODクラッチ11や中間軸12などを介して前輪WFに伝達(機械パス)しながら、走行するモードである。前述したように、ODクラッチ11から前輪WFまでのギヤ比はほぼ1:1に設定されており、このENG直結走行モードを高速域で選択することで、高い効率が得られる。なお、ODクラッチ11は、他の運転モードでは遮断される。
 EV走行モードは、エンジン3の運転を停止した状態で、バッテリ8から供給された電力を用い、第2モータ5の力行によって前輪WFを駆動しながら、走行するモードである。
 減速発電モードは、車両Vの所定の減速運転状態において、エンジン3への燃料の供給を停止(フューエルカット)し、その運転を停止するとともに、車両Vの運動エネルギを用いて第2モータ5で発電を行うモードである。この場合、第2モータ5での発電動作に伴って、制動力が車両Vに作用する。また、第2モータ5で発電された電力は、バッテリ8の充電状態に余裕がある場合には、バッテリ8に充電され、回生される。一方、バッテリ8が満充電状態の場合などには、第2モータ5で発電された電力は、第1モータ4に供給され、第1モータ4の力行によりエンジン3をモータリングすることによって、機械エネルギや熱エネルギに変換される。
 また、図2は、第1実施形態による異常判定装置が適用されたエンジン3及びその周辺機器を示している。エンジン3は、例えば4つの気筒C(図2に1つのみ図示)を有するガソリンエンジンである。エンジン3のクランクシャフト3aには、クランク角センサ61が設けられており、クランク角センサ61は、クランクシャフト3aの回転に伴い、パルス信号であるCRK信号を、ECU2に出力する(図3参照)。CRK信号は、所定クランク角(例えば1°)ごとに出力される。ECU2は、このCRK信号に基づき、エンジン3の回転数(以下「エンジン回転数」という)NEを算出する。
 各気筒Cのピストン3cとシリンダヘッド3dの間には、燃焼室3eが形成されている。シリンダヘッド3dには、燃焼室3eに連通する吸気通路21及び排気通路22が接続されており、吸気通路21の吸気ポート21a及び排気通路22の排気ポート22aには、これらを開閉する吸気弁23及び排気弁24がそれぞれ設けられている。また、エンジン3のシリンダブロック3fには、水温センサ62が設けられている。水温センサ62は、シリンダブロック3fを循環する冷却水の温度(以下「エンジン水温」という)TWを検出し、その検出信号をECU2に出力する(図3参照)。
 また、エンジン3には、気筒Cごとに、点火プラグ25及び燃料噴射弁(以下「インジェクタ」という)26が設けられている。点火プラグ25は、シリンダヘッド3dに取り付けられており、火花を発生させることにより、気筒C内の混合気に点火を行う。インジェクタ26は、吸気通路21の吸気マニホルドに取り付けられており、吸気ポート21aに向かって燃料を噴射する。これらの点火プラグ25の点火時期、及びインジェクタ26の燃料噴射量及び燃料噴射時期は、ECU2からの制御信号によって制御される(図3参照)。
 吸気通路21には、スロットル弁27が設けられており、このスロットル弁27には、例えばDCモータで構成されたTHアクチュエータ27aが連結されている。THアクチュエータ27aはECU2からの制御信号によって制御され(図3参照)、それにより、スロットル弁27の開度(以下「スロットル弁開度」という)が変更されることによって、気筒Cに吸入される空気の量が調整される。
 また、エンジン3には、蒸発燃料処理装置31が設けられている。この蒸発燃料処理装置31は、エンジン3の燃料を貯留する燃料タンクFT内で発生した蒸発燃料を捕捉し、吸気通路21に適宜、供給することによって、処理するものであり、チャージ通路32、キャニスタ33及びパージ通路34を有している。
 チャージ通路32は、燃料タンクFTとキャニスタ33に接続されており、燃料タンクFT内で発生した蒸発燃料をキャニスタ33に送るものである。チャージ通路32には、2方向弁35が設けられており、2方向弁35は、ダイアフラム式の正圧弁及び負圧弁を組み合わせた機械式弁で構成されている。この正圧弁は、燃料タンクFT内の圧力に相当するチャージ通路32内の圧力が上限圧、すなわち大気圧よりも高い所定圧力に達したときに開弁するように構成されており、その開弁により、燃料タンクFT内の蒸発燃料がキャニスタ33に送られる。また、上記の負圧弁は、チャージ通路32内の圧力が下限値、すなわちキャニスタ33側の圧力よりも低い所定圧力に達したときに開弁するように構成されており、その開弁により、キャニスタ33に吸着されていた蒸発燃料が燃料タンクFTに戻される。
 また、チャージ通路32には、2方向弁35をバイパスするチャージバイパス通路36が設けられている。チャージバイパス通路36には、バイパス弁41が設けられている。バイパス弁41は、常閉タイプのON/OFF式の電磁弁で構成されており、通常はチャージバイパス通路36を閉鎖し、ECU2の制御(図3参照)により励磁されたときに開弁することによって、チャージバイパス通路36を開放する。
 キャニスタ33には、蒸発燃料を吸着するための活性炭が内蔵されている。また、キャニスタ33には、大気側に開口する大気通路37が接続されており、大気通路37には、これを開閉するベントシャット弁42が設けられている。ベントシャット弁42は、常開タイプのON/OFF式の電磁弁で構成されており、通常は大気通路37を開放し、ECU2の制御(図3参照)により励磁されたときに、大気通路37を閉鎖する。
 パージ通路34は、キャニスタ33に吸着された蒸発燃料を吸気通路21に供給(パージ)するためのものであり、キャニスタ33と吸気通路21のスロットル弁27よりも下流側とに接続されている。パージ通路34の途中には、パージ制御弁43が設けられている。パージ制御弁43は、電磁弁で構成されており、その開度は、ECU2からの制御信号によって制御される(図3参照)。
 また、吸気通路21には、スロットル弁27よりも上流側に、エアフローセンサ63及び吸気温センサ64が設けられている。エアフローセンサ63は、エンジン3に吸入される吸入空気の量(以下「吸入空気量」という)GAIRを検出し、それを表す検出信号をECU2に出力する(図3参照)。吸気温センサ64は、吸気通路21内の温度(以下「吸気温」という)TAを検出し、それを表す検出信号をECU2に出力する。
 エンジン3にはさらに、EGR装置51が設けられている。EGR装置51は、排気通路22に排出された排ガスの一部を吸気通路21に還流させるものであり、吸気通路21のスロットル弁27よりも下流側と排気通路22に接続されたEGR通路52と、EGR通路52を開閉するEGR制御弁53を有している。
 EGR制御弁53は、その開度が連続的に変化する電磁弁で構成されている。EGR制御弁53の開度は、ECU2からの制御信号によって制御され(図3参照)、それにより、排ガスの還流量(以下「EGRガス量」という)が変更される。また、EGR制御弁53の開度(以下「EGR制御弁開度OEV」という)は、EGR弁開度センサ65によって検出され、その検出信号はECU2に出力される。
 また、排気通路22の排気マニホルドの集合部よりも下流側には、LAFセンサ66が設けられている。LAFセンサ66は、理論空燃比よりもリッチなリッチ領域から極リーンまでの広範囲な空燃比の領域において、排気通路22内を流れる排ガス中の酸素濃度をリニアに検出し、その検出信号をECU2に出力する(図3参照)。ECU2は、LAFセンサ66からの検出信号に基づいて、エンジン3で燃焼した混合気の空燃比の当量比を、検出当量比KACTとして算出する。
 排気通路22には、LAFセンサ66よりも下流側に、三元触媒28及び二値型のO2センサ67が設けられている。三元触媒28によって、排ガス中のHCや、CO、NOxなどの有害成分が浄化される。また、O2センサ67は、その出力が理論空燃比の前後において急激に変化する特性を有し、その検出信号SVO2は、理論空燃比よりリッチ側で高レベルとなり、リーン側で低レベルとなる。O2センサ67の検出信号SVO2はECU2に出力される(図3参照)。ECU2にはさらに、アクセル開度センサ68から、車両Vのアクセルペダル(図示せず)の操作量(以下「アクセル開度」という)APを表す検出信号が、車速センサ69から、車両Vの車速VPを表す検出信号が、それぞれ出力される。
 ECU2は、CPU、RAM、ROM及びI/Oインターフェース(いずれも図示せず)などから成るマイクロコンピュータで構成されている。ECU2は、前述した各種のセンサ61~69からの検出信号などに応じ、ROMに記憶された制御プログラムに従って、エンジン3、蒸発燃料処理装置31及びEGR装置51の動作を制御するとともに、4つの気筒C間における空燃比のばらつき(以下「AFバラツキ」という)、LAFセンサ66の故障、EGR装置51の故障、及び三元触媒28の劣化を判定する。
 次に、本発明の第1実施形態によるAFバラツキ、LAFセンサ66の故障、EGR装置51の故障、及び三元触媒28の劣化の判定の概要について説明する。
 AFバラツキ、LAFセンサ66の故障、EGR装置51の故障、及び三元触媒28の劣化は、個々に設定された判定用の制御動作によりエンジン3を各々の特定の運転状態に制御しているときに取得された判定用パラメータに基づいて、判定される。このため、AFバラツキ、LAFセンサ66の故障、EGR装置51の故障、及び三元触媒28の劣化を判定するための判定動作(後述する図7、図9、図11及び図15)は、互いに併行して実行されることはなく、順に実行される。以下、AFバラツキ、LAFセンサ66の故障、EGR装置51の故障、及び三元触媒28の劣化を判定するための判定動作をそれぞれ、「AFバラツキ判定動作」「センサ故障判定動作」「EGR故障判定動作」及び「触媒劣化判定動作」という。
 また、これらのAFバラツキ判定動作、センサ故障判定動作、EGR故障判定動作及び触媒劣化判定動作は、個々に設定された実行条件(後述する図5、図8、図10及び図13)が成立しているときに、実行され、基本的には、その実行条件が成立したものから順に開始される。各実行条件には、エンジン3の運転状態に関する条件が含まれる。さらに、AFバラツキ判定動作、センサ故障判定動作及びEGR故障判定動作は、蒸発燃料処理装置31による蒸発燃料の供給の停止(以下「パージカット」という)を条件として、パージカットした状態で実行される。一方、触媒劣化判定動作は、パージカットを条件とせずに(必要とせずに)実行される。以下、AFバラツキ判定動作、センサ故障判定動作及びEGR故障判定動作をまとめて適宜、「パージカットを伴う3つの判定動作」という。
 このため、パージカットの実行/停止が繰り返されないようにすべく、パージカットを伴う3つの判定動作が順に連続して実行されるようにするために、それらのうちの1番目及び2番目の判定動作の実行中に、触媒劣化判定動作の実行条件が成立しても、パージカットを伴う3つの判定動作のうちの他の判定動作の実行条件が成立しているときには、当該実行中の判定動作の完了に続いて触媒劣化判定動作を実行することが禁止される(後述する図13及び図14)。
 また、パージカットを伴う3つの判定動作が順に連続して実行される場合には、各々の判定動作と各々の実行条件との関係から、その順番は、次の順番A、順番B、順番C及び順番Dのいずれかにならざるを得ない。さらに、パージカットを伴う3つの判定動作を、この順番Bで適切に連続させるために、AFバラツキ判定動作が適宜、禁止される(後述する図5及び図6)。さらに、パージカットを伴う3つの判定動作の各々の実行中、実行中の判定動作の実行条件に加え、次に実行される判定動作の実行条件が成立するように、エンジン3の運転点が制御される(後述する図12)。
 A:AFバラツキ判定動作→センサ故障判定動作→EGR故障判定動作
 B:センサ故障判定動作→EGR故障判定動作→AFバラツキ判定動作
 C:EGR故障判定動作→センサ故障判定動作→AFバラツキ判定動作
 D:EGR故障判定動作→AFバラツキ判定動作→センサ故障判定動作
 以下、図4を参照しながら、第1実施形態によるAFバラツキ、LAFセンサ66の故障、EGR装置51の故障、及び三元触媒28の劣化を判定するための処理について説明する。本処理は、所定周期で繰り返し実行される。
 まず、ステップ1(「S1」と図示。以下同じ)において、AFバラツキ判定条件判定処理を実行し、次いで、AFバラツキ判定処理を実行する(ステップ2)。次に、センサ故障判定条件判定処理を実行する(ステップ3)とともに、センサ故障判定処理を実行する(ステップ4)。次いで、EGR故障判定条件判定処理を実行する(ステップ5)とともに、EGR故障判定処理を実行する(ステップ6)。次に、触媒劣化判定条件判定処理を実行する(ステップ7)とともに、触媒劣化判定処理を実行し(ステップ8)、本処理を終了する。
 図5は、図4のステップ1で実行されるAFバラツキ判定条件判定処理を示している。本処理は、AFバラツキ判定動作の実行条件(以下「AFバラツキ判定実行条件」という)が成立しているか否かを判定するためのものである。なお、本処理及び後述する各種の処理で用いられるフラグはいずれも、システム(ECU2など)の起動時又はエンジン3の停止時に「0」にリセットされる。例えば、後述するAFバラツキ判定実行条件成立フラグF_MCNDDISなどの各種の判定実行条件成立フラグは、システムの起動時に「0」にリセットされ、エンジン3の作動条件を判定するフラグは、システムの起動時に「0」にリセットされた後、エンジン3の停止時に「0」にリセットされる。
 まず、ステップ11では、AFバラツキ判定実行条件が成立しているか否かを判別する。AFバラツキ判定実行条件は、例えば次の条件a1~e1から成る所定の複数の条件がいずれも成立しているときに、成立していると判別される。なお、AFバラツキ判定実行条件に、他の適当な条件をさらに含めてもよい。
 a1:エンジン回転数NE及び吸入空気量GAIRで表されるエンジン3
    の運転点が図16に示す運転点判定マップにおける領域αにあるこ
    と
 b1:LAFセンサ66が活性化していること
 c1:エンジン水温TWが所定温度よりも高いこと
 d1:エンジン回転数NEの変化量が所定値よりも小さいこと
 e1:検出当量比KACTが所定の範囲内にあること
 上記ステップ11の答がNOで、AFバラツキ判定実行条件が成立していないときには、そのことを表すために、AFバラツキ判定実行条件成立フラグF_MCNDDISを「0」に設定する(ステップ12)。次いで、AFバラツキ判定動作用の連続実行許可フラグF_PERDISを「0」に設定する(ステップ13)とともに、ダウンカウント式の第1待機タイマのタイマ値tDIS1を所定の安定時間TMSTEに設定する(ステップ14)。
 次に、ステップ15及び16においてそれぞれ、センサ故障判定実行条件成立フラグF_MCNDLAF及びEGR故障判定実行条件成立フラグF_MCNDEGRが「1」であるか否かを判別する。これらのフラグF_MCNDLAF及びF_MCNDEGRはそれぞれ、センサ故障判定動作の実行条件(以下「センサ故障判定実行条件」という)及びEGR故障判定動作の実行条件(以下「EGR故障判定実行条件」)が成立していることを「1」で表すものである。
 ステップ15及び16の答がいずれもNO(F_MCNDLAF=0、かつF_MCNDEGR=0)のとき、すなわち、AFバラツキ判定実行条件、センサ故障判定実行条件及びEGR故障判定実行条件がいずれも成立していないときには、パージカットフラグF_PURCUTを「0」に設定し(ステップ17)、ステップ18に進む。パージカットフラグF_PURCUTは、パージカットの実行中であることを「1」で表すものである。
 一方、ステップ15及び16の答のいずれかがYESのとき、すなわち、センサ故障判定実行条件及びEGR故障判定実行条件のいずれかが成立しているときには、上記ステップ17をスキップし、ステップ18に進む。
 このステップ18では、AFバラツキ判定動作中フラグF_MIDDISを「0」に設定し、本処理を終了する。AFバラツキ判定動作中フラグF_MIDDISは、AFバラツキ判定動作の実行中であることを「1」で表すものである。
 一方、前記ステップ11の答がYESで、AFバラツキ判定実行条件が成立しているときには、AFバラツキ判定動作中フラグF_MIDDISが「1」であるか否かを判別する(ステップ19)。この答がNO(F_MIDDIS=0)のときには、AFバラツキ判定実行条件が成立していることを表すために、AFバラツキ判定実行条件成立フラグF_MCNDDISを「1」に設定する(ステップ20)。
 次いで、第1最先成立フラグF_THR1stが「1」であるか否かを判別する(ステップ21)。この第1最先成立フラグF_THR1stは、AFバラツキ判定実行条件が、センサ故障判定実行条件及びEGR故障判定実行条件よりも先に成立したことを「1」で表すものであり、AFバラツキ判定実行条件成立フラグF_MCNDDIS、センサ故障判定実行条件成立フラグF_MCNDLAF及びEGR故障判定実行条件成立フラグF_MCNDEGRに基づいて設定される。
 また、第1最先成立フラグF_THR1stは、AFバラツキ判定動作が完了したときに「0」にリセットされる。さらに、第1最先成立フラグF_THR1stは、一旦、AFバラツキ判定実行条件が最先に成立しても、AFバラツキ判定動作が完了する前にAFバラツキ判定実行条件が不成立になるとともに、センサ故障判定実行条件又はEGR故障判定実行条件が成立したときには、「0」にリセットされる。
 上記ステップ21の答がYESのときには、後述するステップ24を実行する一方、NO(F_THR1st=0)のとき、すなわち、センサ故障判定実行条件及び/又はEGR故障判定実行条件が、AFバラツキ判定実行条件よりも先に成立しているときには、第1連続実行許可処理を実行する(ステップ22)。
 図6は、この第1連続実行許可処理を示している。本処理は、センサ故障判定動作又はEGR故障判定動作の完了に続くAFバラツキ判定動作の実行を許可/禁止するためのものである。まず、図6のステップ41では、センサ故障判定動作中フラグF_MIDLAFが「1」であるか否かを判別する。このセンサ故障判定動作中フラグF_MIDLAFは、センサ故障判定動作の実行中であることを「1」で表すものである。
 上記ステップ41の答がNO(F_MIDLAF=0)のときには、EGR故障判定動作中フラグF_MIDEGRが「1」であるか否かを判別する(ステップ42)。このEGR故障判定動作中フラグF_MIDEGRは、EGR故障判定動作の実行中であることを「1」で表すものである。
 上記ステップ42の答がNO(F_MIDEGR=0)のときには、センサ故障判定動作完了フラグF_DONLAFが「1」であるか否かを判別する(ステップ43)。このセンサ故障判定動作完了フラグF_DONLAFは、センサ故障判定動作が完了していることを「1」で表すものである。
 上記ステップ43の答がNO(F_DONLAF=0)のときには、EGR故障判定動作完了フラグF_DONEGRが「1」であるか否かを判別する(ステップ44)。このEGR故障判定動作完了フラグF_DONEGRは、EGR故障判定動作が完了していることを「1」で表すものである。
 上記ステップ44の答がNO(F_DONEGR=0)のとき、すなわち、センサ故障判定動作及びEGR故障判定動作が開始されていないときには、連続実行許可フラグF_PERDISを「1」に設定し(ステップ45)、本処理を終了する。
 一方、前記ステップ41の答がYES(F_MIDLAF=1)で、センサ故障判定動作の実行中であるときには、1番目判定動作中フラグF_MID1stが「1」であるか否かを判別する(ステップ46)。
 この1番目判定動作中フラグF_MID1stは、パージカットを伴う3つの判定動作のうちの1番目に開始された判定動作が実行中であることを、「1」で表すものであり、AFバラツキ判定動作中フラグF_MIDDIS、センサ故障判定動作中フラグF_MIDLAF及びEGR故障判定動作中フラグF_MIDEGR、後述するAFバラツキ判定動作完了フラグF_DONDIS、センサ故障判定動作完了フラグF_DONLAF、及びEGR故障判定動作完了フラグF_DONEGRに基づいて設定される。
 また、1番目判定動作中フラグF_MID1stは、1番目の判定動作が完了したときに「0」にリセットされる。さらに、1番目判定動作中フラグF_MID1stは、1番目の判定動作が完了せずに中断された場合には、一旦「0」にリセットされ、再開されたときに「1」に設定される。1番目の判定動作が完了せずに中断され、当該判定動作と異なる判定動作が開始されたときにも、「1」に設定される。
 上記ステップ46の答がYES(F_MID1st=1)のとき、すなわち、パージカットを伴う3つの判定動作のうちの1番目の判定動作として、センサ故障判定動作が実行されるとともに、当該判定動作の実行中であるときには、EGR故障判定実行条件成立フラグF_MCNDEGRが「1」であるか否かを判別する(ステップ47)。この答がNO(F_MCNDEGR=0)のとき、すなわち、1番目の判定動作としてのセンサ故障判定動作の実行中で、かつ、EGR故障判定実行条件が成立していないときには、センサ故障判定動作の完了に続くAFバラツキ判定動作の実行を許可するために、前記ステップ45を実行し、本処理を終了する。
 一方、上記ステップ47の答がYES(F_MCNDEGR=1)のとき、すなわち、1番目の判定動作としてのセンサ故障判定動作の実行中で、かつ、EGR故障判定実行条件が成立しているときには、センサ故障判定動作の完了に続くAFバラツキ判定動作の実行を禁止するために、連続実行許可フラグF_PERDISを「0」に設定し(ステップ48)、本処理を終了する。
 一方、前記ステップ46の答がNO(F_MID1st=0)のとき、すなわち、パージカットを伴う3つの判定動作のうちの2番目の判定動作として、センサ故障判定動作が実行されるとともに、当該判定動作の実行中であるときには、そのまま本処理を終了する。
 上記のように、センサ故障判定動作の実行中で、かつ、1番目の判定動作の実行中でないとき(ステップ46:NO)に、2番目の判定動作としてのセンサ故障判定動作の実行中であるとみなすのは、本処理を含むAFバラツキ判定条件判定処理が、AFバラツキ判定動作の完了から所定時間が経過するまで実行されないためである。
 一方、前記ステップ42の答がYES(F_MIDEGR=1)で、EGR故障判定動作の実行中であるときには、1番目判定動作中フラグF_MID1stが「1」であるか否かを判別する(ステップ49)。この答がYES(F_MID1st=1)のとき、すなわち、パージカットを伴う3つの判定動作のうちの1番目の判定動作として、EGR故障判定動作が実行されるとともに、当該判定動作の実行中であるときには、先行成立フラグF_BEFLAFが「1」であるか否かを判別する(ステップ50)。
 この先行成立フラグF_BEFLAFは、1番目の判定動作としてのEGR故障判定動作の実行中にセンサ故障判定実行条件がAFバラツキ判定実行条件よりも先に成立したことを、「1」で表すものであり、センサ故障判定実行条件成立フラグF_MCNDLAF及びAFバラツキ判定実行条件成立フラグF_MCNDDISに基づいて設定される。なお、先行成立フラグF_BEFLAFは、一旦、センサ故障判定実行条件がAFバラツキ判定実行条件よりも先に成立しても、その後、センサ故障判定動作の開始前に、センサ故障判定実行条件が成立しなくなったときには、「0」にリセットされる。また、先行成立フラグF_BEFLAFは、パージカットを伴う3つの判定動作がすべて完了したときに「0」にリセットされる。
 上記ステップ50の答がNO(F_BEFLAF=0)のとき、すなわち、1番目の判定動作としてのEGR故障判定動作の実行中で、かつ、センサ故障判定実行条件がAFバラツキ判定実行条件よりも先に成立していないときには、EGR故障判定動作の完了に続くAFバラツキ判定動作の実行を許可するために、前記ステップ45を実行し、本処理を終了する。
 一方、ステップ50の答がYES(F_BEFLAF=1)のとき、すなわち、1番目の判定動作としてのEGR故障判定動作の実行中で、かつ、センサ故障判定実行条件がAFバラツキ判定実行条件よりも先に成立しているときには、EGR故障判定動作の完了に続くAFバラツキ判定動作の実行を禁止するために、前記ステップ48を実行し、本処理を終了する。
 一方、前記ステップ49の答がNO(F_MID1st=0)のとき、すなわち、パージカットを伴う3つの判定動作のうちの2番目の判定動作として、EGR故障判定動作が実行されるとともに、当該判定動作の実行中であるときには、前記ステップ48を実行し、本処理を終了する。
 上記のように、実行中の判定動作がパージカットを伴う3つの判定動作のうちの1番目の判定動作でないとき(ステップ49:NO)に、2番目の判定動作であるとみなすのは、前記ステップ46と同じ理由による。
 一方、前記ステップ44の答がYES(F_DONEGR=1)のとき、すなわち、パージカットを伴う3つの判定動作のうちの1番目の判定動作として、EGR故障判定動作が完了するとともに、センサ故障判定動作の実行中でなく、当該判定動作が完了していないときには、前記ステップ50以降を実行し、本処理を終了する。
 一方、前記ステップ43の答がYES(F_DONLAF=1)のとき、すなわち、センサ故障判定動作が完了しているときには、EGR故障判定動作完了フラグF_DONEGRが「1」であるか否かを判別する(ステップ51)。この答がNO(F_DONEGR=0)のとき、すなわち、センサ故障判定動作が完了するとともに、EGR故障判定動作が完了していないときには、そのまま本処理を終了する。
 一方、上記ステップ51の答がYES(F_DONEGR=1)のとき、すなわち、センサ故障判定動作及びEGR故障判定動作がいずれも完了しているときには、センサ故障判定動作又はEGR故障判定動作の完了に続くAFバラツキ判定動作の実行を許可するために、前記ステップ45を実行し、本処理を終了する。
 図5に戻り、前記ステップ22に続くステップ23では、図6のステップ45又は48で設定された連続実行許可フラグF_PERDISが「1」であるか否かを判別する。この答がNO(F_PERDIS=0)のとき、すなわち、センサ故障判定動作又はEGR故障判定動作の完了に続くAFバラツキ判定動作の実行が禁止されているときには、前記ステップ18を実行し、本処理を終了する。
 一方、上記ステップ23の答がYES(F_PERDIS=1)で、センサ故障判定動作又はEGR故障判定動作の完了に続くAFバラツキ判定動作の実行が許可されているときには、触媒劣化判定動作中フラグF_MIDCATが「1」であるか否かを判別する(ステップ24)。触媒劣化判定動作中フラグF_MIDCATは、触媒劣化判定動作の実行中であることを「1」で表すものである。
 このステップ24の答がYES(F_MIDCAT=1)で、触媒劣化判定動作の実行中であるときには、AFバラツキ判定動作を保留するために、前記ステップ18を実行し(F_MIDDIS←0)、本処理を終了する。一方、ステップ24の答がNOのときには、前記ステップ14で設定した第1待機タイマのタイマ値tDIS1が値0であるか否かを判別する(ステップ25)。
 このステップ25の答がNOのときには、AFバラツキ判定動作を保留するために、前記ステップ18を実行し(F_MIDDIS←0)、本処理を終了する。
 一方、ステップ25の答がYES(tDIS1=0)のとき、すなわち、AFバラツキ判定実行条件が成立してから前記安定時間TMSTEが経過したときには、パージカットフラグF_PURCUTが「1」であるか否かを判別する(ステップ26)。この答がNO(F_PURCUT=0)で、パージカットの実行中でないときには、パージカットを実行するために、パージカットフラグF_PURCUTを「1」に設定する(ステップ27)とともに、ダウンカウント式の第2待機タイマのタイマ値tDIS2を所定の初期待機時間TMDINTに設定する(ステップ28)。
 一方、上記ステップ26の答がYESで、パージカットの実行中であるときには、第2待機タイマのタイマ値tDIS2を所定の減少後待機時間TMDDECに設定する(ステップ29)。この減少後待機時間TMDDECは、上記の初期待機時間TMDINTよりも短い時間に設定されている。
 上記ステップ28又は29に続くステップ30及び31ではそれぞれ、センサ故障判定動作中フラグF_MIDLAF及びEGR故障判定動作中フラグF_MIDEGRが「1」であるか否かを判別する。これらのステップ30及び31の答のいずれかがYES(F_MIDLAF=1orF_MIDEGR=1)で、センサ故障判定動作及びEGR故障判定動作の一方の実行中であるときには、AFバラツキ判定動作を保留するために、前記ステップ18を実行し、本処理を終了する。
 一方、ステップ30及び31の答がいずれもNO(F_MIDLAF=0、かつF_MIDEGR=0)で、センサ故障判定動作及びEGR故障判定動作がいずれも実行中でないときには、AFバラツキ判定動作を開始するために、AFバラツキ判定動作中フラグF_MIDDISを「1」に設定し(ステップ32)、本処理を終了する。このステップ32の実行により、前記ステップ19の答がYES(F_MIDDIS=1)になり、その場合には、そのまま本処理を終了する。
 また、図7は、図4のステップ2で実行されるAFバラツキ判定処理を示しており、本処理は、AFバラツキ判定動作を実行するためのものである。本処理では、本出願人によって提案された特許第5335704号と同様の手法によって、AFバラツキが判定されるので、以下、本処理について簡単に説明する。
 まず、図7のステップ61では、図5のステップ18又は32で設定されるAFバラツキ判定動作中フラグF_MIDDISが「1」であるか否かを判別する。このステップ61の答がNO(F_MIDDIS=0)のときには、後述するEGRカットフラグF_EGRCUTを「0」に設定し(ステップ62)、本処理を終了する。
 一方、ステップ61の答がYES(F_MIDDIS=1)のときには、次のステップ63以降において、AFバラツキ判定動作を実行する。まず、ステップ63において、パージカットフラグF_PURCUTを「1」に設定し、パージカット(蒸発燃料の供給停止)を実行する。次いで、判定用空燃比制御を実行する(ステップ64)。この判定用空燃比制御では、目標当量比が所定の制御周期で変化するように設定されるとともに、検出当量比KACTが設定された目標当量比になるように、燃料噴射量が制御される。
 次に、EGRカットフラグF_EGRCUTを「1」に設定する(ステップ65)。これにより、EGR停止制御が実行されることによって、EGR制御弁53が全閉状態に制御され、EGR装置51による排ガスの還流が停止される。次いで、周期的変化フラグF_VARCYCが「1」であるか否かを判別する(ステップ66)。この周期的変化フラグF_VARCYCは、上記ステップ64による判定用空燃比制御の実行により目標当量比が制御周期で変化していることを「1」で表すものである。このステップ66の答がNO(F_VARCYC=0)のときには、そのまま本処理を終了する。
 一方、上記ステップ66の答がYES(F_VARCYC=1)で、目標当量比が制御周期で変化しているときには、検出当量比KACTを、所定の第1バンドパスフィルタでフィルタリングすることによって、第1フィルタ済み当量比KACTF1を算出する(ステップ67)。この第1バンドパスフィルタは、検出当量比KACTのうちのエンジン回転数NEの0.5次の周波数成分を抽出するように、構成されている。そのフィルタ式については、特許第5335704号を参照されたい。
 上記ステップ67に続くステップ68では、算出された第1フィルタ済み当量比KACTF1を、第1積算値SUMKF1の前回値に加算することによって、今回の第1積算値SUMKF1を算出する。なお、本処理の初回の実行時には、第1積算値SUMKF1の前回値は値0に設定される。
 次に、検出当量比KACTを、所定の第2バンドパスフィルタでフィルタリングすることによって、第2フィルタ済み当量比KACTF2を算出する(ステップ69)。この第2バンドパスフィルタは、検出当量比KACTのうちの前記制御周期に対応する周波数成分を抽出するように構成されている。そのフィルタ式については、特許第5335704号を参照されたい。
 上記ステップ69に続くステップ70では、算出された第2フィルタ済み当量比KACTF2を、第2積算値SUMKF2の前回値に加算することによって、今回の第2積算値SUMKF2を算出する。なお、本処理の初回の実行時には、第2積算値SUMKF2の前回値は値0に設定される。
 次いで、図5のステップ28又は29で設定された第2待機タイマのタイマ値tDIS2が値0であるか否かを判別する(ステップ71)。この答がNOのときには、そのまま本処理を終了する一方、YES(tDIS2=0)のとき、すなわち、AFバラツキ判定動作の実行開始から、初期待機時間TMDINT又は減少後待機時間TMDDECが経過したときには、前記ステップ68で算出された第1積算値SUMKF1を、ステップ70で算出された第2積算値SUMKF2で除算することによって、AFバラツキ判定パラメータJUDDISを算出する(ステップ72)。
 次に、算出されたAFバラツキ判定パラメータJUDDISが所定のしきい値DISREFよりも大きいか否かを判別する(ステップ73)。この答がYES(JUDDIS>DISREF)のときには、AFバラツキが発生していると判定するとともに、そのことを表すために、AFバラツキフラグF_DISPNGを「1」に設定する(ステップ74)。一方、ステップ73の答がNOのときには、AFバラツキが発生していないと判定するとともに、そのことを表すために、AFバラツキフラグF_DISPNGを「0」に設定する(ステップ75)。
 上記ステップ74又は75に続くステップ76では、AFバラツキ判定動作が完了したことを表すために、AFバラツキ判定動作完了フラグF_DONDISを「1」に設定する。次いで、AFバラツキ判定動作に関連する各種のフラグをリセットし(ステップ77)、本処理を終了する。すなわち、AFバラツキ判定実行条件成立フラグF_MCNDDIS、連続実行許可フラグF_PERDIS及びAFバラツキ判定動作中フラグF_MIDDISをいずれも、「0」にリセットする。
 なお、図5~図7に示す処理は、AFバラツキ判定動作が上述したように完了した場合において、他の3つの判定動作(センサ故障判定動作、EGR故障判定動作及び触媒劣化判定動作)のいずれかが完了していないときには、その後、他の3つの判定動作がすべて完了するまで、その実行が停止される(図4のステップ1及び2がスキップされる)。また、AFバラツキ判定動作を含む4つの判定動作が完了すると、AFバラツキ判定動作完了フラグF_DONDISが「0」にリセットされるとともに、図5~図7に示す処理の実行が再開される。
 次に、図8を参照しながら、図4のステップ3で実行されるセンサ故障判定条件判定処理について説明する。本処理は、センサ故障判定実行条件(センサ故障判定動作の実行条件)が成立しているか否かを判定するためのものである。
 まず、図8のステップ81では、センサ故障判定実行条件が成立しているか否かを判別する。センサ故障判定実行条件は、例えば次の条件a2~c2から成る所定の複数の条件がいずれも成立しているときに、成立していると判別される。なお、センサ故障判定実行条件に、他の適当な条件をさらに含めてもよい。
 a2:エンジン回転数NE及び吸入空気量GAIRで表されるエンジン3
    の運転点が図16に示す運転点判定マップにおける領域βにあるこ
    と
 b2:LAFセンサ66が活性化していること
 c2:検出された車速VPが所定の範囲内にあること
 上記ステップ81の答がNOで、センサ故障判定実行条件が成立していないときには、そのことを表すために、センサ故障判定実行条件成立フラグF_MCNDLAFを「0」に設定する(ステップ82)とともに、ダウンカウント式の第1待機タイマのタイマ値tLAF1を安定時間TMSTEに設定する(ステップ83)。
 次いで、ステップ84及び85においてそれぞれ、AFバラツキ判定実行条件成立フラグF_MCNDDIS及びEGR故障判定実行条件成立フラグF_MCNDEGRが「1」であるか否かを判別する。ステップ84及び85の答のいずれもがNO(F_MCNDDIS=0、かつF_MCNDEGR=0)のとき、すなわち、センサ故障判定実行条件、AFバラツキ判定実行条件及びEGR故障判定実行条件がいずれも成立していないときには、パージカットフラグF_PURCUTを「0」に設定し(ステップ86)、ステップ87に進む。
 一方、ステップ84及び85の答のいずれかがYESのとき、すなわち、AFバラツキ判定実行条件及びEGR故障判定実行条件のいずれかが成立しているときには、上記ステップ86をスキップし、ステップ87に進む。
 このステップ87では、センサ故障判定動作中フラグF_MIDLAFを「0」に設定し、本処理を終了する。センサ故障判定動作中フラグF_MIDLAFは、センサ故障判定動作の実行中であることを「1」で表すものである。
 一方、前記ステップ81の答がYESで、センサ故障判定実行条件が成立しているときには、センサ故障判定動作中フラグF_MIDLAFが「1」であるか否かを判別する(ステップ88)。この答がNO(F_MIDLAF=0)のときには、センサ故障判定実行条件が成立していることを表すために、センサ故障判定実行条件成立フラグF_MCNDLAFを「1」に設定する(ステップ89)。
 次いで、触媒劣化判定動作中フラグF_MIDCATが「1」であるか否かを判別する(ステップ90)。この答がYES(F_MIDCAT=1)のとき、すなわち、触媒劣化判定動作の実行中であるときには、センサ故障判定動作を保留するために、前記ステップ87を実行し、本処理を終了する。
 一方、ステップ90の答がNO(F_MIDCAT=0)のときには、前記ステップ83で設定された第1待機タイマのタイマ値tLAF1が値0であるか否かを判別する(ステップ91)。この答がNOのときには、センサ故障判定動作を保留するために、前記ステップ87を実行し(F_MIDLAF←0)、本処理を終了する。
 一方、上記ステップ91の答がYES(tLAF1=0)のとき、すなわち、センサ故障判定実行条件が成立してから安定時間TMSTEが経過したときには、パージカットフラグF_PURCUTが「1」であるか否かを判別する(ステップ92)。この答がNO(F_PURCUT=0)で、パージカットの実行中でないときには、パージカットを実行するために、パージカットフラグF_PURCUTを「1」に設定する(ステップ93)とともに、ダウンカウント式の第2待機タイマのタイマ値tLAF2を所定の初期待機時間TMLINTに設定する(ステップ94)。
 一方、上記ステップ92の答がYESで、パージカットの実行中であるときには、第2待機タイマのタイマ値tLAF2を所定の減少後待機時間TMLDECに設定する(ステップ95)。この減少後待機時間TMLDECは、上記の初期待機時間TMLINTよりも短い時間に設定されている。
 上記ステップ94又は95に続くステップ96及び97ではそれぞれ、AFバラツキ判定動作中フラグF_MIDDIS及びEGR故障判定動作中フラグF_MIDEGRが「1」であるか否かを判別する。これらのステップ96及び97の答のいずれかがYESで、AFバラツキ判定動作及びEGR故障判定動作のいずれかが実行中であるときには、センサ故障判定動作を保留するために、前記ステップ87を実行し、本処理を終了する。
 一方、ステップ96及び97の答がいずれもNOのとき、すなわち、AFバラツキ判定動作及びEGR故障判定動作がいずれも実行中でないときには、センサ故障判定動作を開始するために、センサ故障判定動作中フラグF_MIDLAFを「1」に設定し(ステップ98)、本処理を終了する。このステップ98の実行により、前記ステップ88の答がYES(F_MIDLAF=1)になり、その場合には、そのまま本処理を終了する。
 また、図9は、図4のステップ4で実行されるセンサ故障判定処理を示しており、本処理は、センサ故障判定動作を実行するためのものである。本処理では、本出願人によって提案された特許第4459566号と同様の手法によって、LAFセンサ66の故障が判定されるので、以下、本処理について簡単に説明する。
 まず、図9のステップ101では、図8のステップ87又は98で設定されるセンサ故障判定動作中フラグF_MIDLAFが「1」であるか否かを判別する。この答がNO(F_MIDLAF=0)のときには、ダウンカウント式の積算タイマのタイマ値tLAFDETを所定時間TLREFに設定し(ステップ102)、本処理を終了する。
 一方、ステップ101の答がYES(F_MIDLAF=1)のときには、次のステップ103以降において、センサ故障判定動作を実行する。まず、ステップ103において、パージカットフラグF_PURCUTを「1」に設定し、パージカットを実行する。次いで、判定用噴射制御を実行する(ステップ104)。
 この判定用噴射制御では、所定の周波数及び振幅を有する正弦波に、所定のオフセット量を加算することによって補正項KIDSINが算出され、算出された補正項KIDSINを基本燃料噴射量に乗算することによって、燃料噴射量INJが算出される。そして、算出された燃料噴射量INJに基づく制御信号がインジェクタ26に入力されることによって、インジェクタ26からの燃料噴射量が制御される。この基本燃料噴射量は、吸入空気量GAIRに基づく所定のマップ検索によって算出される。
 なお、センサ故障判定動作の実行中、EGR制御弁開度OEVは、AFバラツキ判定動作の場合と異なり、エンジン回転数NEなどのエンジン3の運転状態に応じて制御される。
 上記ステップ104に続くステップ105では、検出当量比KACTを、所定のバンドパスフィルタでフィルタリングすることによって、フィルタ済み当量比KACTFを算出する。このバンドパスフィルタは、検出当量比KACTのうちの上記正弦波の周波数と同じ高さの周波数成分を抽出するように構成されている。そのフィルタ式については、特許第4459566号を参照されたい。
 上記ステップ105に続くステップ106では、フィルタ済み当量比KACTFの絶対値KACTFAを算出する。次いで、図8のステップ94又は95で設定された第2待機タイマのタイマ値tLAF2が値0であるか否かを判別する(ステップ107)。この答がNOのときには、前記ステップ102を実行し、本処理を終了する。
 一方、上記ステップ107の答がYES(tLAF2=0)のとき、すなわち、センサ故障判定動作の実行開始から、初期待機時間TMLINT又は減少後待機時間TMLDECが経過したときには、上記ステップ106で算出された絶対値KACTFAを、積算値LAFDLYPの前回値に加算することによって、今回の積算値LAFDLYPを算出する(ステップ108)。なお、本処理の初回の実行時には、積算値LAFDLYPの前回値は値0に設定される。
 次いで、前記ステップ102で設定された積算タイマのタイマ値tLAFDETが値0であるか否かを判別する(ステップ109)。この答がNOのときには、そのまま本処理を終了する一方、YES(tLAFDET=0)のとき、すなわち、ステップ108による絶対値KACTFAの積算が所定時間TLREFにわたって繰り返されたときには、積算値LAFDLYPが判定値LAFDLYPOKよりも小さいか否かを判別する(ステップ110)。
 このステップ110の答がYES(LAFDLYP<LAFDLYPOK)のときには、LAFセンサ66が故障していると判定するとともに、そのことを表すために、センサ故障フラグF_LAFSNGを「1」に設定する(ステップ111)。一方、ステップ110の答がNO(LAFDLYP≧LAFDLYPOK)のときには、LAFセンサ66が故障していないと判定するとともに、そのことを表すために、センサ故障フラグF_LAFSNGを「0」に設定する(ステップ112)。
 上記ステップ111又は112に続くステップ113では、センサ故障判定動作が完了したことを表すため、センサ故障判定動作完了フラグF_DONLAFを「1」に設定する。次いで、センサ故障判定動作に関連する各種のフラグをリセットし(ステップ114)、本処理を終了する。すなわち、センサ故障判定実行条件成立フラグF_MCNDLAF及びセンサ故障判定動作中フラグF_MIDLAFをいずれも、「0」に設定する。
 なお、図8及び図9に示す処理は、センサ故障判定動作が上述したように完了した場合において、他の3つの判定動作(AFバラツキ判定動作、EGR故障判定動作及び触媒劣化判定動作)のいずれかが完了していないときには、その後、他の3つの判定動作がすべて完了するまで、その実行が停止される(図4のステップ3及び4がスキップされる)。また、センサ故障判定動作を含む4つの判定動作が完了すると、センサ故障判定動作完了フラグF_DONLAFが「0」にリセットされるとともに、図8及び図9に示す処理の実行が再開される。
 次に、図10を参照しながら、図4のステップ5で実行されるEGR故障判定条件判定処理について説明する。本処理は、EGR故障判定実行条件(EGR故障判定動作の実行条件)が成立しているか否かを判定するためのものである。
 まず、図10のステップ121では、EGR故障判定実行条件が成立しているか否かを判別する。EGR故障判定実行条件は、例えば次の条件a3~e3から成る所定の複数の条件がいずれも成立しているときに、成立していると判別される。なお、b3の条件の成立は、検出されたEGR制御弁開度OEVに基づいて判別れる。また、EGR故障判定実行条件に、他の適当な条件をさらに含めてもよい。
 a3:エンジン回転数NE及び吸入空気量GAIRで表されるエンジン3
    の運転点が図16に示す運転点判定マップにおける領域γにあるこ
    と
 b3:EGR故障判定動作の開始前にEGR装置51による排ガスの還流
    が行われていたこと(あるいは排ガスの還流を実行可能であること)
 c3:検出された吸気温TAが所定吸気温よりも高いこと
 d3:エンジン水温TWが所定水温よりも高いこと
 e3:車速VPが所定車速よりも高いこと
 上記ステップ121の答がNOで、EGR故障判定実行条件が成立していないときには、そのことを表すために、EGR故障判定実行条件成立フラグF_MCNDEGRを「0」に設定する(ステップ122)とともに、ダウンカウント式の第1待機タイマのタイマ値tEGR1を安定時間TMSTEに設定する(ステップ123)。
 次いで、ステップ124及び125においてそれぞれ、AFバラツキ判定実行条件成立フラグF_MCNDDIS及びセンサ故障判定実行条件成立フラグF_MCNDLAFが「1」であるか否かを判別する。ステップ124及び125の答がいずれもNO(F_MCNDDIS=0、かつF_MCNDLAF=0)のとき、すなわち、EGR故障判定実行条件、AFバラツキ判定実行条件及びセンサ故障判定実行条件がいずれも成立していないときには、パージカットフラグF_PURCUTを「0」に設定し(ステップ126)、ステップ127に進む。
 一方、ステップ124及び125の答のいずれかがYESのとき、すなわち、AFバラツキ判定実行条件及びLAF判定実行条件のいずれかが成立しているときには、上記ステップ126をスキップし、ステップ127に進む。
 このステップ127では、EGR故障判定動作中フラグF_MIDEGRを「0」に設定し、本処理を終了する。EGR故障判定動作中フラグF_MIDEGRは、EGR故障判定動作の実行中であることを「1」で表すものである。
 一方、前記ステップ121の答がYESで、EGR故障判定実行条件が成立しているときには、EGR故障判定動作中フラグF_MIDEGRが「1」であるか否かを判別する(ステップ128)。この答がNO(F_MIDEGR=0)のときには、EGR故障判定実行条件が成立していることを表すために、EGR故障判定実行条件成立フラグF_MCNDEGRを「1」に設定する(ステップ129)。
 次いで、触媒劣化判定動作中フラグF_MIDCATが「1」であるか否かを判別する(ステップ130)。この答がYES(F_MIDCAT=1)のとき、すなわち、触媒劣化判定動作の実行中であるときには、EGR故障判定動作を保留するために、前記ステップ127を実行し、本処理を終了する。
 一方、上記ステップ130の答がNO(F_MIDCAT=0)のときには、前記ステップ123で設定された第1待機タイマのタイマ値tEGR1が値0であるか否かを判別する(ステップ131)。この答がNOのときには、EGR故障判定動作を保留するために、前記ステップ127を実行し(F_MIDEGR←0)、本処理を終了する。
 一方、上記ステップ131の答がYES(tEGR1=0)のとき、すなわち、EGR故障判定実行条件が成立してから安定時間TMSTEが経過したときには、パージカットフラグF_PURCUTが「1」であるか否かを判別する(ステップ132)。この答がNO(F_PURCUT=0)で、パージカットの実行中でないときには、パージカットを実行するために、パージカットフラグF_PURCUTを「1」に設定する(ステップ133)とともに、ダウンカウント式の第2待機タイマのタイマ値tEGR2を所定の初期待機時間TMEINTに設定する(ステップ134)。
 一方、上記ステップ132の答がYESで、パージカットの実行中であるときには、第2待機タイマのタイマ値tEGR2を所定の減少後待機時間TMEDECに設定する(ステップ135)。この減少後待機時間TMEDECは、上記の初期待機時間TMEINTよりも短い時間に設定されている。上記ステップ134又は135に続くステップ136では、センサ故障判定動作中フラグF_MIDLAFが「1」であるか否かを判別する。この答がYES(F_MIDLAF=1)で、センサ故障判定動作の実行中であるときには、EGR故障判定動作を保留するために、前記ステップ127を実行し、本処理を終了する。
 一方、ステップ136の答がNOで、センサ故障判定動作の実行中でないときには、EGR故障判定動作を開始するために、EGR故障判定動作中フラグF_MIDEGRを「1」に設定し(ステップ137)、本処理を終了する。このステップ137の実行により、前記ステップ128の答がYES(F_MIDEGR=1)になり、その場合には、そのまま本処理を終了する。
 また、図11は、図4のステップ6で実行されるEGR故障判定処理を示しており、本処理は、EGR故障判定動作を実行するためのものである。本処理では、本出願人によって提案された特許第4531597号と同様の手法によって、EGR装置51の故障が判定されるので、以下、本処理について簡単に説明する。
 まず、図11のステップ141では、図10のステップ127又は137で設定されるEGR故障判定動作中フラグF_MIDEGRが「1」であるか否かを判別する。この答がNO(F_MIDEGR=0)のときには、ダウンカウント式の積算タイマのタイマ値tEGRDETを所定時間TEREFに設定し(ステップ142)、本処理を終了する。
 一方、ステップ141の答がYES(F_MIDEGR=1)のときには、次のステップ143以降において、EGR故障判定動作を実行する。まず、ステップ143において、パージカットフラグF_PURCUTを「1」に設定し、パージカットを実行する。次いで、判定用EGR制御を実行する(ステップ144)。この判定用EGR制御では、EGR制御弁開度OEVが一定周期で複数回、繰り返して開閉制御される。
 次いで、空燃比F/B制御を実行する(ステップ145)。この空燃比F/B制御では、検出当量比KACTが目標当量比になるように、所定のフィードバック制御アルゴリズムを用いて、空燃比補正係数KAFを算出するとともに、算出された空燃比補正係数KAFで基本燃料噴射量を補正することによって、燃料噴射量INJが算出される。そして、算出された燃料噴射量INJに基づく制御信号がインジェクタ26に入力されることによって、インジェクタ26からの燃料噴射量が制御される。基本燃料噴射量の算出手法は、前述したとおりである。
 上記ステップ145に続くステップ146では、空燃比補正係数KAFを、所定のバンドパスフィルタでフィルタリングすることによって、フィルタ済み補正係数KAFFを算出する。そのフィルタ式については、特許第4531597号を参照されたい。
 次いで、フィルタ済み補正係数KAFFの絶対値KAFFAを算出する(ステップ147)。次いで、図10のステップ134又は135で設定された第2待機タイマのタイマ値tEGR2が値0であるか否かを判別する(ステップ148)。この答がNOのときには、前記ステップ142を実行し、本処理を終了する。
 一方、上記ステップ148の答がYES(tEGR2=0)のとき、すなわち、EGR故障判定動作の実行開始から、初期待機時間TMEINT又は減少後待機時間TMEDECが経過したときには、上記ステップ147で算出された絶対値KAFFAを、積算値RT80AXの前回値に加算することによって、今回の積算値RT80AXを算出する(ステップ149)。なお、本処理の初回の実行時には、積算値RT80AXの前回値は値0に設定される。
 次いで、前記ステップ142で設定された積算タイマのタイマ値tEGRDETが値0であるか否かを判別する(ステップ150)。この答がNOのときには、そのまま本処理を終了する一方、YES(tEGRDET=0)のとき、すなわち、ステップ149による絶対値KAFFAの積算が所定時間TEREFにわたって繰り返されたときには、積算値RT80AXがしきい値LT80Aよりも大きいか否かを判別する(ステップ151)。
 このステップ151の答がYES(RT80AX>LT80A)のときには、EGR装置51が故障している(EGR装置51に漏れがある)と判定するとともに、そのことを表すために、EGR故障フラグF_EGRNGを「1」に設定する(ステップ152)。一方、ステップ151の答がNO(RT80AX≦LT80A)のときには、EGR装置51が故障していないと判定するとともに、そのことを表すために、EGR故障フラグF_EGRNGを「0」に設定する(ステップ153)。
 上記ステップ152又は153に続くステップ154では、EGR故障判定動作が完了したことを表すため、EGR故障判定動作完了フラグF_DONEGRを「1」に設定する。次いで、EGR故障判定動作に関連する各種のフラグをリセットし(ステップ155)、本処理を終了する。すなわち、EGR故障判定実行条件成立フラグF_MCNDEGR及びEGR故障判定動作中フラグF_MIDEGRをいずれも、「0」に設定する。
 なお、図10及び図11に示す処理は、EGR故障判定動作が上述したように完了した場合において、他の3つの判定動作(AFバラツキ判定動作、センサ故障判定動作及び触媒劣化判定動作)のいずれかが完了していないときには、その後、他の3つの判定動作がすべて完了するまで、その実行が停止される(図4のステップ5及び6がスキップされる)。また、EGR故障判定動作を含む4つの判定動作が完了すると、EGR故障判定動作完了フラグF_DONEGRが「0」にリセットされるとともに、図10及び図11に示す処理の実行が再開される。
 次に、図12を参照しながら、エンジン運転点制御処理について説明する。本処理は、パージカットを伴う3つの判定動作を前述した順番A~Dで連続して実行するために、パージカットを伴う3つの判定動作の各々の実行中に、前述した図16で規定されるエンジン3の運転点に関する実行条件が成立するように、エンジン3の運転点を制御するための処理であり、図4に示す処理と併行して、前記所定周期で繰り返し実行される。
 まず、図12のステップ161では、AFバラツキ判定動作中フラグF_MIDDISが「1」であるか否かを判別する。この答がYES(F_MIDDIS=1)で、AFバラツキ判定動作の実行中であるときには、3番目判定動作中フラグF_MID3rdが「1」であるか否かを判別する(ステップ162)。
 この3番目判定動作中フラグF_MID3rdは、パージカットを伴う3つの判定動作のうちの3番目の判定動作の実行中であることを「1」で表すものであり、AFバラツキ判定動作完了フラグF_DONDIS、センサ故障判定動作完了フラグF_DONLAF及びEGR故障判定動作完了フラグF_DONEGRに基づいて設定される。また、3番目判定動作中フラグF_MID3rdは、3番目の判定動作が完了したときに「0」にリセットされる。さらに、3番目判定動作中フラグF_MID3rdは、3番目の判定動作が完了せずに中断された場合には、一旦「0」にリセットされ、再開されたときに「1」に設定される。
 上記ステップ162の答がNO(F_MID3rd=0)のとき、すなわち、パージカットを伴う3つの判定動作のうちの1番目又は2番目の判定動作として、AFバラツキ判定動作が実行中であるときには、AFバラツキ判定動作の完了に続いてセンサ故障判定動作が実行される可能性を高めるために、αβ運転点制御を実行し(ステップ163)、本処理を終了する。このαβ運転点制御では、駆動系の運転モードが前記ECVT走行モードに設定されるとともに、エンジン回転数NE及び吸入空気量GAIRで表されるエンジン3の運転点が運転点判定マップにおける領域α及び領域β(図16)の互いに重複する領域に収まるように、スロットル弁開度が制御される。
 また、αβ運転点制御では、上記のように制御されるエンジン3の動力が、運転者により要求される要求動力よりも小さいときには、その不足分に相当する電力がバッテリ8から第2モータ5に供給される。一方、エンジン3の動力が要求動力よりも大きいときには、第1モータ4で発電した電力のうち、その余剰分に相当する電力がバッテリ8に充電される。この要求動力は、検出されたアクセル開度APに応じたマップ検索によって算出される。以上の第1及び第2モータ4、5の電力制御は、後述する各種の運転点制御(ステップ164、167、170、173、175及び176)においても、同様に行われる。
 あるいは、αβ運転点制御において、駆動系の運転モードを前記ENG直結走行モードに設定してもよい。この場合、エンジン回転数NEが車速VPに拘束されるので、吸入空気量GAIRが運転点判定マップにおける領域α及び領域β(図16)の互いに重複する領域に収まるように、スロットル弁開度及び第1モータ4の発電電力が制御される。
 一方、ステップ162の答がYES(F_MID3rd=1)のとき、すなわち、3番目の判定動作としてのAFバラツキ判定動作の実行中であるときには、α運転点制御を実行し(ステップ164)、本処理を終了する。このα運転点制御では、駆動系の運転モードがECVT走行モードに設定されるとともに、エンジン回転数NE及び吸入空気量GAIRで表されるエンジン3の運転点が運転点判定マップにおける領域αに収まるように、スロットル弁開度が制御される。
 あるいは、α運転点制御において、駆動系の運転モードをENG直結走行モードに設定してもよい。この場合、エンジン回転数NEが車速VPに拘束されるので、吸入空気量GAIRが領域αに収まるように、スロットル弁開度及び第1モータ4の発電電力が制御される。
 一方、前記ステップ161の答がNO(F_MIDDIS=0)で、AFバラツキ判定動作の実行中でないときには、センサ故障判定動作中フラグF_MIDLAFが「1」であるか否かを判別する(ステップ165)。この答がYESで、センサ故障判定動作の実行中であるときには、1番目判定動作中フラグF_MID1stが「1」であるか否かを判別する(ステップ166)。
 このステップ166の答がYES(F_MID1st=1)のとき、すなわち、パージカットを伴う3つの判定動作のうちの1番目の判定動作として、センサ故障判定動作が実行中であるときには、センサ故障判定動作の完了に続いてEGR故障判定動作が実行される可能性を高めるために、βγ運転点制御を実行し(ステップ167)、本処理を終了する。このβγ運転点制御では、駆動系の運転モードがECVT走行モードに設定されるとともに、エンジン3の運転点が運転点判定マップにおける領域β及び領域γの互いに重複する領域に収まるように、スロットル弁開度が制御される。
 あるいは、βγ運転点制御において、駆動系の運転モードをENG直結走行モードに設定してもよい。この場合、エンジン回転数NEが車速VPに拘束されるので、吸入空気量GAIRが運転点判定マップにおける領域β及び領域γの互いに重複する領域に収まるように、スロットル弁開度及び第1モータ4の発電電力が制御される。
 一方、上記ステップ166の答がNO(F_MID1st=0)のときには、2番目判定動作中フラグF_MID2ndが「1」であるか否かを判別する(ステップ168)。この2番目判定動作中フラグF_MID2ndは、パージカットを伴う3つの判定動作のうちの2番目に開始された判定動作が実行中であることを、「1」で表すものであり、AFバラツキ判定動作中フラグF_MIDDIS、センサ故障判定動作中フラグF_MIDLAF及びEGR故障判定動作中フラグF_MIDEGR、AFバラツキ判定動作完了フラグF_DONDIS、センサ故障判定動作完了フラグF_DONLAF及びEGR故障判定動作完了フラグF_DONEGRに基づいて設定される。
 また、2番目判定動作中フラグF_MID2ndは、2番目の判定動作が完了したときに「0」にリセットされる。さらに、2番目判定動作中フラグF_MID2ndは、2番目の判定動作が完了せずに中断された場合には、一旦「0」にリセットされ、再開されたときに「1」に設定される。2番目の判定動作が完了せずに中断され、当該判定動作と異なる判定動作が開始されたときにも、「1」に設定される。
 上記ステップ168の答がYES(F_MID2nd=1)のとき、すなわち、パージカットを伴う3つの判定動作のうちの2番目の判定動作として、センサ故障判定動作が実行中であるときには、AFバラツキ判定動作完了フラグF_DONDISが「1」であるか否かを判別する(ステップ169)。
 このステップ169の答がNO(F_DONDIS=0)で、AFバラツキ判定動作が完了していないとき、すなわち、1番目の判定動作としてのEGR故障判定動作が完了し、かつ、2番目の判定動作としてのセンサ故障判定動作の実行中であるときには、センサ故障判定動作の完了に続いてAFバラツキ判定動作が実行される可能性を高めるために、前記ステップ163の実行により、αβ運転点制御を実行し、本処理を終了する。
 一方、ステップ169の答がYES(F_DONDIS=1)のとき、すなわち、1番目の判定動作としてのAFバラツキ判定動作が完了し、かつ、2番目の判定動作としてのセンサ故障判定動作の実行中であるときには、前記ステップ167の実行により、βγ運転点制御を実行し、本処理を終了する。
 一方、前記ステップ168の答がNO(F_MId2nd=0)のとき、すなわち、パージカットを伴う3つの判定動作のうちの3番目の判定動作として、センサ故障判定動作が実行中であるときには、β運転点制御を実行し(ステップ170)、本処理を終了する。このβ運転点制御では、駆動系の運転モードがECVT走行モードに設定されるとともに、エンジン3の運転点が運転点判定マップにおける領域βに収まるように、スロットル弁開度が制御される。
 あるいは、β運転点制御において、駆動系の運転モードをENG直結走行モードに設定してもよい。この場合、エンジン回転数NEが車速VPに拘束されるので、吸入空気量GAIRが領域βに収まるように、スロットル弁開度及び第1モータ4の発電電力が制御される。
 一方、前記ステップ165の答がNO(F_MIDLAF=0)のとき、すなわち、AFバラツキ判定動作の実行中及びセンサ故障判定動作の実行中のいずれでもないときには、EGR故障判定動作中フラグF_MIDEGRが「1」であるか否かを判別する(ステップ171)。この答がNO(F_MIDEGR=0)のとき、すなわち、パージカットを伴う3つの判定動作がいずれも実行中でないときには、そのまま本処理を終了する一方、YESで、EGR故障判定動作の実行中であるときには、1番目判定動作中フラグF_MID1stが「1」であるか否かを判別する(ステップ172)。
 このステップ172の答がYESのとき、すなわち、パージカットを伴う3つの判定動作のうちの1番目の判定動作として、EGR故障判定動作が実行中であるときには、EGR故障判定動作の完了に続いてAFバラツキ判定動作又はセンサ故障判定動作が実行される可能性を高めるために、αβγ運転点制御を実行し(ステップ173)。本処理を終了する。このαβγ運転点制御では、駆動系の運転モードがECVT走行モードに設定されるとともに、運転点判定マップにおける領域α及び領域βのうち、そのときのエンジン3の運転点に近い領域と領域γとの互いに重複する領域に、エンジン3の運転点が収まるように、スロットル弁開度が制御される。また、そのときのエンジン3の運転点が、領域α及び/又は領域βと領域γとの互いに重複する領域に収まっているときには、その状態を保持するように、スロットル弁開度が制御される。
 あるいは、αβγ運転点制御において、駆動系の運転モードをENG直結走行モードに設定してもよい。この場合、エンジン回転数NEが車速VPに拘束されるので、運転点判定マップにおける領域α及び領域βのうち、そのときの吸入空気量GAIRに近い領域と領域γとの互いに重複する領域に、吸入空気量GAIRが収まるように、スロットル弁開度および第1モータ4の発電電力が制御される。また、そのときの吸入空気量GAIRが、領域α及び/又は領域βと領域γとの互いに重複する領域に収まっているときには、その状態を保持するように、スロットル弁開度および第1モータ4の発電電力が制御される。
 一方、ステップ172の答がNO(F_MID1st=0)のときには、2番目判定動作中フラグF_MID2ndが「1」であるか否かを判別する(ステップ174)。この答がYES(F_MID2nd=1)のとき、すなわち、パージカットを伴う3つの判定動作のうちの2番目の判定動作として、EGR故障判定動作が実行中であるときには、EGR故障判定動作の完了に続いてAFバラツキ判定動作が実行される可能性を高めるために、αγ運転点制御を実行し(ステップ175)、本処理を終了する。このαγ運転点制御では、駆動系の運転モードがECVT走行モードに設定されるとともに、エンジン3の運転点が、運転点判定マップにおける領域α及び領域γが重複する領域に収まるように、スロットル弁開度が制御される。
 あるいは、αγ運転点制御において、駆動系の運転モードをENG直結走行モードに設定してもよい。この場合、エンジン回転数NEが車速VPに拘束されるので、吸入空気量GAIRが運転点判定マップにおける領域α及び領域γの互いに重複する領域に収まるように、スロットル弁開度及び第1モータ4の発電電力が制御される。
 一方、上記ステップ174の答がNOのとき、すなわち、パージカットを伴う3つの判定動作のうちの3番目の判定動作として、EGR故障判定動作が実行中であるときには、γ運転点制御を実行し(ステップ176)、本処理を終了する。このγ運転点制御では、駆動系の運転モードがECVT走行モードに設定されるとともに、エンジン3の運転点が運転点判定マップにおける領域γに収まるように、スロットル弁開度が制御される。
 あるいは、γ運転点制御において、駆動系の運転モードをENG直結走行モードに設定してもよい。この場合、エンジン回転数NEが車速VPに拘束されるので、吸入空気量GAIRが領域γに収まるように、スロットル弁開度及び第1モータ4の発電電力が制御される。
 次に、図13を参照しながら、図4のステップ7で実行される触媒劣化判定条件判定処理について説明する。本処理は、触媒劣化判定実行条件(三元触媒28の故障の判定動作の実行条件)が成立しているか否かを判定するためのものである。
 まず、図13のステップ181では、触媒劣化判定実行条件が成立しているか否かを判別する。この触媒劣化判定実行条件は、例えば次の条件a4が成立しているときに、成立していると判別される。なお、触媒劣化判定実行条件に、他の適当な条件をさらに含めてもよい。
 a4:エンジン回転数NE及び吸入空気量GAIRで表されるエンジン3の運転点が運    転点判定マップにおける領域δ(図16)にあること
 上記ステップ181の答がNOで、触媒劣化判定実行条件が成立していないときには、そのことを表すために、触媒劣化判定実行条件成立フラグF_MCNDCATを「0」に設定する(ステップ182)。次いで、触媒劣化判定動作用の連続実行許可フラグF_PERCATを「0」に設定する(ステップ183)とともに、触媒劣化判定動作中フラグF_MIDCATを「0」に設定し(ステップ184)、本処理を終了する。
 一方、前記ステップ181の答がYESで、触媒劣化判定実行条件が成立しているときには、触媒劣化判定動作中フラグF_MIDCATが「1」であるか否かを判別する(ステップ185)。この答がNO(F_MIDCAT=0)のときには、触媒劣化判定実行条件が成立していることを表すために、触媒劣化判定実行条件成立フラグF_MCNDCATを「1」に設定する(ステップ186)。
 次いで、第2最先成立フラグF_FOU1stが「1」であるか否かを判別する(ステップ187)。この第2最先成立フラグF_FOU1stは、触媒劣化判定実行条件が、AFバラツキ判定実行条件、センサ故障判定実行条件及びEGR故障判定実行条件よりも先に成立したことを「1」で表すものであり、AFバラツキ判定実行条件成立フラグF_MCNDDIS、センサ故障判定実行条件成立フラグF_MCNDLAF、及びEGR故障判定実行条件成立フラグF_MCNDEGRに基づいて設定される。
 また、第2最先成立フラグF_FOU1stは、最先に開始された触媒劣化判定動作が完了したときに「0」にリセットされる。さらに、第2最先成立フラグF_FOU1stは、一旦、触媒劣化判定実行条件が最先に成立しても、触媒劣化判定動作が完了する前に触媒劣化判定実行条件が不成立になるとともに、AFバラツキ判定実行条件、センサ故障判定実行条件又はEGR故障判定実行条件が成立したときには、「0」にリセットされる。
 上記ステップ187の答がYES(F_FOU1st=1)のとき、すなわち、触媒劣化判定実行条件が、AFバラツキ判定実行条件、センサ故障判定実行条件及びEGR故障判定実行条件よりも先に成立しているときには、触媒劣化判定動作を開始するために、触媒劣化判定動作中フラグF_MIDCATを「1」に設定し(ステップ188)、本処理を終了する。このステップ188の実行により、前記ステップ185の答がYESになり、その場合には、そのまま本処理を終了する。
 一方、ステップ187の答がNO(F_FOU1st=0)のとき、すなわち、AFバラツキ判定実行条件、センサ故障判定実行条件及びEGR故障判定実行条件のいずれかが、触媒劣化判定実行条件よりも先に成立しているときには、最先判定動作開始済みフラグF_STA1stが「1」であるか否かを判別する(ステップ189)。この最先判定動作開始済みフラグF_STA1stは、パージカットを伴う3つの判定動作のうちの1番目の判定動作が開始済みであることを「1」で表すものであり、AFバラツキ判定動作中フラグF_MIDDIS、センサ故障判定動作中フラグF_MIDLAF及びEGR故障判定動作中フラグF_MIDEGRに基づいて設定される。
 このステップ189の答がNO(F_STA1st=0)のときには、前記ステップ184を実行し、本処理を終了する一方、YESで、実行条件が最先に成立した判定動作が開始済みであるときには、第2連続実行許可処理を実行する(ステップ190)。
 図14は、この第2連続実行許可処理を示している。本処理は、パージカットを伴う3つの判定動作のうちの1番目又は2番目の判定動作の完了に続いて触媒劣化判定動作を実行することを、許可/禁止するためのものである。まず、図14のステップ201では、3番目判定動作完了フラグF_DON3rdが「1」であるか否かを判別する。この3番目判定動作完了フラグF_DON3rdは、パージカットを伴う3つの判定動作がすべて完了していることを「1」で表すものであり、AFバラツキ判定動作完了フラグF_DONDIS、センサ故障判定動作完了フラグF_DONLAF、及びEGR故障判定動作完了フラグF_DONEGRに基づいて設定される。また、3番目判定動作完了フラグF_DON3rdは、パージカットを伴う3つの判定動作及び触媒劣化判定動作がすべて完了したときに、「0」にリセットされる。
 上記ステップ201の答がNO(F_DON3rd=0)で、パージカットを伴う3つの判定動作のいずれかが完了していないときには、1番目判定動作中フラグF_F_MID1stが「1」であるか否かを判別する(ステップ202)。この場合、図13の前記ステップ189の答がYES(F_STA1st=1)で、1番目の判定動作がすでに開始されているので、1番目の判定動作が完了するまでは、このステップ202の答はYES(F_F_MID1st=1)になる。ステップ202の答がYESで、パージカットを伴う3つの判定動作のうちの1番目の判定動作が実行中であるときには、AFバラツキ判定動作中フラグF_MIDDISが「1」であるか否かを判別する(ステップ203)。
 このステップ203の答がYES(F_MIDDIS=1)のとき、すなわち、1番目の判定動作としてAFバラツキ判定動作が実行中であるときには、センサ故障判定実行条件成立フラグF_MCNDLAFが「1」であるか否かを判別する(ステップ204)。この答がNO(F_MCNDLAF=0)のとき、すなわち、1番目の判定動作としてのAFバラツキ判定動作の実行中に、センサ故障判定実行条件が成立していないときには、AFバラツキ判定動作の完了に続く触媒劣化判定動作の実行を許可するために、触媒劣化判定動作用の連続実行許可フラグF_PERCATを「1」に設定し(ステップ205)、本処理を終了する。
 一方、上記ステップ204の答がYES(F_MCNDLAF=1)のとき、すなわち、1番目の判定動作としてのAFバラツキ判定動作の実行中に、センサ故障判定実行条件が成立しているときには、AFバラツキ判定動作の完了に続く触媒劣化判定動作の実行を禁止するために、触媒劣化判定動作用の連続実行許可フラグF_PERCATを「0」に設定し(ステップ206)、本処理を終了する。
 一方、前記ステップ203の答がNO(F_MIDDIS=0)のときには、センサ故障判定動作中フラグF_MIDLAFが「1」であるか否かを判別する(ステップ207)。この答がYES(F_MIDLAF=1)のとき、すなわち、1番目の判定動作としてセンサ故障判定動作が実行中であるときには、EGR故障判定実行条件成立フラグF_MCNDEGRが「1」であるか否かを判別する(ステップ208)。
 このステップ208の答がNO(F_MCNDEGR=0)のとき、すなわち、1番目の判定動作としてのセンサ故障判定動作の実行中に、EGR故障判定実行条件が成立していないときには、センサ故障判定動作の完了に続く触媒劣化判定動作の実行を許可するために、前記ステップ205を実行し、本処理を終了する。
 一方、ステップ208の答がYES(F_MCNDEGR=1)のとき、すなわち、1番目の判定動作としてのセンサ故障判定動作の実行中に、EGR故障判定実行条件が成立しているときには、センサ故障判定動作の完了に続く触媒劣化判定動作の実行を禁止するために、前記ステップ206を実行し、本処理を終了する。
 一方、前記ステップ207の答がNOのとき、すなわち、1番目の判定動作としてのEGR故障判定動作の実行中であるときには、ステップ209及び210においてそれぞれ、AFバラツキ判定実行条件成立フラグF_MCNDDIS及びセンサ故障判定実行条件成立フラグF_MCNDLAFが「1」であるか否かを判別する。これらの答がいずれもNOのとき、すなわち、1番目の判定動作としてのEGR故障判定動作の実行中に、AFバラツキ判定実行条件及びセンサ故障判定実行条件がいずれも成立していないときには、EGR故障判定動作の完了に続く触媒劣化判定動作の実行を許可するために、前記ステップ205を実行し、本処理を終了する。
 一方、上記ステップ209及び210の答のいずれかがYESのとき、すなわち、1番目の判定動作としてのEGR故障判定動作の実行中に、AFバラツキ判定実行条件及びセンサ故障判定実行条件のいずれかが成立しているときには、EGR故障判定動作の完了に続く触媒劣化判定動作の実行を禁止するために、前記ステップ206を実行し、本処理を終了する。
 一方、前記ステップ202の答がNO(F_MID1st=0)のときには、2番目判定動作完了フラグF_DON2ndが「1」であるか否かを判別する(ステップ211)。この2番目判定動作完了フラグF_DON2ndは、パージカットを伴う3つの判定動作のうち1番目及び2番目の判定動作が完了していることを「1」で表すものであり、AFバラツキ判定動作完了フラグF_DONDIS、センサ故障判定動作完了フラグF_DONLAF、及びEGR故障判定動作完了フラグF_DONEGRに基づいて設定される。また、2番目判定動作完了フラグF_DON2ndは、パージカットを伴う3つの判定動作及び触媒劣化判定動作がすべて完了したときに、「0」にリセットされる。
 上記ステップ211の答がNO(F_DON2nd=0)のときには、そのまま本処理を終了する一方、ステップ211の答がYESのとき、すなわち、パージカットを伴う3つの判定動作のうち1番目及び2番目の判定動作が完了しているときには、第1順番フラグF_ORDER1が「1」であるか否かを判別する(ステップ212)。
 この第1順番フラグF_ORDER1は、1番目及び2番目の判定動作が前記順番Aで完了していることを、すなわち、AFバラツキ判定動作→センサ故障判定動作の順に完了していることを、「1」で表すものであり、AFバラツキ判定動作完了フラグF_DONDIS、センサ故障判定動作完了フラグF_DONLAF、及びEGR故障判定動作完了フラグF_DONEGRに基づいて設定される。また、第1順番フラグF_ORDER1は、パージカットを伴う3つの判定動作及び触媒劣化判定動作がすべて完了したときに、「0」にリセットされる。
 上記ステップ212の答がYES(F_ORDER1=1)のときには、EGR故障判定実行条件成立フラグF_MCNDEGRが「1」であるか否かを判別する(ステップ213)。この答がNO(F_MCNDEGR=0)のとき、すなわち、AFバラツキ判定動作→センサ故障判定動作の順に判定動作が完了しており、かつ、EGR故障判定実行条件が成立していないときには、2番目の判定動作としてのセンサ故障判定動作の完了に続く触媒劣化判定動作の実行を許可するために、前記ステップ205を実行し、本処理を終了する。
 一方、上記ステップ213の答がYES(F_MCNDEGR=1)のとき、すなわち、AFバラツキ判定動作→センサ故障判定動作の順に判定動作が完了しており、かつ、EGR故障判定実行条件が成立しているときには、2番目の判定動作としてのセンサ故障判定動作の完了に続く触媒劣化判定動作の実行を禁止するために、前記ステップ206を実行し、本処理を終了する。
 一方、上記ステップ212の答がNO(F_ORDER1=0)のときには、第2順番フラグF_ORDER2が「1」であるか否かを判別する(ステップ214)。この第2順番フラグF_ORDER2は、1番目及び2番目の判定動作が前記順番Bで完了していることを、すなわち、センサ故障判定動作→EGR故障判定動作の順に完了していることを、「1」で表すものであり、AFバラツキ判定動作完了フラグF_DONDIS、センサ故障判定動作完了フラグF_DONLAF、及びEGR故障判定動作完了フラグF_DONEGRに基づいて設定される。また、第2順番フラグF_ORDER2は、パージカットを伴う3つの判定動作及び触媒劣化判定動作がすべて完了したときに、「0」にリセットされる。
 上記ステップ214の答がYES(F_ORDER2=1)のときには、AFバラツキ判定実行条件成立フラグF_MCNDDISが「1」であるか否かを判別する(ステップ215)。この答がNO(F_MCNDDIS=0)のとき、すなわち、センサ故障判定動作→EGR故障判定動作の順に判定動作が完了しており、かつ、AFバラツキ判定実行条件が成立していないときには、2番目の判定動作としてのEGR故障判定動作の完了に続く触媒劣化判定動作の実行を許可するために、前記ステップ205を実行し、本処理を終了する。
 一方、上記ステップ215の答がYES(F_MCNDDIS=1)のとき、すなわち、センサ故障判定動作→EGR故障判定動作の順に判定動作が完了しており、かつ、AFバラツキ判定実行条件が成立しているときには、2番目の判定動作としてのEGR故障判定動作の完了に続く触媒劣化判定動作の実行を禁止するために、前記ステップ206を実行し、本処理を終了する。
 一方、前記ステップ214の答がNO(F_ORDER2=0)のときには、第3順番フラグF_ORDER3が「1」であるか否かを判別する(ステップ216)。この第3順番フラグF_ORDER3は、1番目及び2番目の判定動作が前記順番Cで完了していることを、すなわち、EGR故障判定動作→センサ故障判定動作の順に完了していることを、「1」で表すものであり、AFバラツキ判定動作完了フラグF_DONDIS、センサ故障判定動作完了フラグF_DONLAF、及びEGR故障判定動作完了フラグF_DONEGRに基づいて設定される。また、第3順番フラグF_ORDER3は、パージカットを伴う3つの判定動作及び触媒劣化判定動作がすべて完了したときに、「0」にリセットされる。
 上記ステップ216の答がYES(F_ORDER3=1)のとき、すなわち、判定動作がEGR故障判定動作→センサ故障判定動作の順に完了しているときには、前記ステップ215以降を実行する。これにより、EGR故障判定動作→センサ故障判定動作の順に判定動作が完了しており、かつ、AFバラツキ判定実行条件が成立していないときには、センサ故障判定動作の完了に続く触媒劣化判定動作の実行が許可される一方、AFバラツキ判定実行条件が成立しているときには、センサ故障判定動作の完了に続く触媒劣化判定動作の実行が禁止される。
 一方、ステップ216の答がNO(F_ORDER3=0)のとき、すなわち、1番目及び2番目の判定動作が前記順番D(EGR故障判定動作→AFバラツキ判定動作)で完了しているときには、センサ故障判定実行条件成立フラグF_MCNDLAFが「1」であるか否かを判別する(ステップ217)。この答がNO(F_MCNDLAF=0)のとき、すなわち、EGR故障判定動作→AFバラツキ判定動作の順に判定動作が完了しており、かつ、センサ故障判定実行条件が成立していないときには、2番目の判定動作としてのAFバラツキ判定動作の完了に続く触媒劣化判定動作の実行を許可するために、前記ステップ205を実行し、本処理を終了する。
 一方、上記ステップ217の答がYES(F_MCNDLAF=1)のとき、すなわち、EGR故障判定動作→AFバラツキ判定動作の順に判定動作が完了しており、かつ、センサ故障判定実行条件が成立しているときには、2番目の判定動作としてのAFバラツキ判定動作の完了に続く触媒劣化判定動作の実行を禁止するために、前記ステップ206を実行し、本処理を終了する。
 一方、前記ステップ201の答がYES(F_DON3rd=1)で、パージカットを伴う3つの判定動作がすべて完了しているときには、3番目の判定動作の完了に続く触媒劣化判定動作の実行を許可するために、前記ステップ205を実行し、本処理を終了する。
 図13に戻り、前記ステップ190に続くステップ191では、図14のステップ205又は206で設定された連続実行許可フラグF_PERCATが「1」であるか否かを判別する。このステップ191の答がNO(F_PERCAT=0)のとき、すなわち、1番目又は2番目の判定動作の完了に続く触媒劣化判定動作の実行が禁止されているときには、前記ステップ184を実行し、本処理を終了する。
 一方、ステップ191の答がYES(F_PERCAT=1)で、1番目又は2番目の判定動作の完了に続く触媒劣化判定動作の実行が許可されているときには、ステップ192、193及び194においてそれぞれ、AFバラツキ判定動作中フラグF_MIDDIS、センサ故障判定動作中フラグF_MIDLAF、及びEGR故障判定動作中フラグF_MIDEGRが「1」であるか否かを判別する。
 これらのステップ192~194の答のいずれかがYESで、AFバラツキ判定動作、センサ故障判定動作及びEGR故障判定動作のいずれかが実行中であるときには、触媒劣化判定動作を保留するために、前記ステップ184を実行し、本処理を終了する。一方、ステップ192~194の答がいずれもNOのときには、前記ステップ188を実行し、本処理を終了する。
 また、図15は、図4のステップ8で実行される触媒劣化判定処理を示しており、本処理は、触媒劣化判定動作を実行するためのものである。
 まず、図15のステップ221では、図13のステップ184又は188で設定された触媒劣化判定動作中フラグF_MIDCATが「1」であるか否かを判別する。この答がNOのときには、そのまま本処理を終了する一方、YES(F_MIDCAT=1)のときには、続くステップ222以降において、触媒劣化判定動作を実行する。
 まず、ステップ222では、蒸発燃料処理装置31による蒸発燃料の供給を許可するために、パージカットフラグF_PURCUTを「0」に設定する。次いで、三元触媒28の劣化を判定する(ステップ223)。具体的には、前記O2センサ67の検出信号SVO2が理論空燃比に相当する値になるように、燃料噴射量を制御するとともに、その制御中に、検出信号SVO2の反転周期の平均値が所定値以下になったときに、三元触媒28が劣化していると判定される。
 次いで、触媒劣化判定動作が完了したか否かを判別する(ステップ224)。この答がNOのときには、そのまま本処理を終了する一方、YESのときには、触媒劣化判定動作が完了したことを表すために、触媒劣化判定動作完了フラグF_DONCATを「1」に設定する(ステップ225)。次いで、触媒劣化判定動作に関連する各種のフラグをリセットし(ステップ226)、本処理を終了する。すなわち、触媒劣化判定実行条件フラグF_MCNDCAT、連続実行許可フラグF_PERCAT及び触媒劣化判定動作中フラグF_MIDCATを「0」にリセットする。
 なお、図13~図15に示す処理は、触媒劣化判定動作が上述したように完了した場合において、他の3つの判定動作(AFバラツキ判定動作、センサ故障判定動作及びEGR故障判定動作)のいずれかが完了していないときには、その後、他の3つの判定動作がすべて完了するまで、その実行が停止される(図4のステップ7及び8がスキップされる)。また、触媒劣化判定動作を含む4つの判定動作が完了すると、触媒劣化判定動作完了フラグF_DONCATが「0」にリセットされるとともに、図13~図15に示す処理の実行が再開される。
 次に、図17~図22を参照しながら、第1実施形態による異常判定装置の動作例について説明する。図17は、パージカットを伴う3つの判定動作が順番A(AFバラツキ判定動作→センサ故障判定動作→EGR故障判定動作)で連続して実行された場合の動作例を示している。
 前述したように、AFバラツキ判定動作の実行中、EGRカットフラグF_EGRCUTが「1」に設定され(図7のステップ65)、それにより、EGR制御弁開度OEVが全閉状態(=値0)に制御される。また、センサ故障判定実行条件(条件a2~c2)には、EGR装置51に関する条件が含まれていないのに対し、EGR故障判定実行条件には、EGR故障判定動作の開始前にEGR装置51による排ガスの還流が行われていたこと(あるいは排ガスの還流を実行可能であること)という条件b3が含まれる。
 以上から、図17に示すように、AFバラツキ判定動作の実行中(時点t1~、F_MIDDIS=1)には、EGR故障判定実行条件が成立せず、EGR故障判定実行条件成立フラグF_MCNDEGRが「0」に保持される。また、図12を参照して説明したように、パージカットを伴う3つの判定動作のうちの1番目の判定動作としてのAFバラツキ判定動作の実行中(ステップ161:YES、ステップ162:NO)、αβ運転点制御が実行される(ステップ163)。これにより、AFバラツキ判定動作の実行中、エンジン3の運転点が、図16に示す運転点判定マップにおける領域α及び領域βの互いに重複する領域に収まるように制御される。
 そして、AFバラツキ判定動作の実行中、センサ故障判定実行条件が成立すると(時点t2)、それに伴って、センサ故障判定実行条件成立フラグF_MCNDLAFが「1」に設定される(図8のステップ89)。センサ故障判定実行条件が成立しても、その成立から安定時間TMSTEが経過しない限り(図8のステップ91:NO)、また、AFバラツキ判定動作の実行中である限り(ステップ96:YES)、センサ故障判定動作中フラグF_MIDLAFが「0」に設定され(ステップ87)、センサ故障判定動作が保留される(図9のステップ101:NO)。
 そして、1番目の判定動作としてのAFバラツキ判定動作が完了すると(時点t3)、それに伴って、AFバラツキ判定動作完了フラグF_DONDISが「1」に設定される(図7のステップ76)とともに、AFバラツキ判定実行条件成立フラグF_MCNDDIS及びAFバラツキ判定動作中フラグF_MIDDISが「0」にリセットされる(ステップ77)。このAFバラツキ判定動作の完了時、センサ故障判定実行条件が成立しており(図8のステップ81:YES)、かつ、その成立から安定時間TMSTEが経過しているときには(ステップ91:YES)、センサ故障判定動作中フラグF_MIDLAFが「1」に設定され(図8のステップ96及び97:NO、ステップ98)、センサ故障判定動作の保留が解除される。その結果、2番目の判定動作として、センサ故障判定動作が開始される(図9のステップ101:YES)。
 また、この動作例では、AFバラツキ判定動作の完了に伴って、EGR故障判定実行条件が成立している(F_MCNDEGR←1)。しかし、EGR故障判定条件判定処理(図10)の実行内容から明らかなように、EGR故障判定実行条件が成立しても、その成立から安定時間TMSTEが経過していないときには、EGR故障判定動作中フラグF_MIDEGRが「0」に保持され(図10のステップ131:NO、ステップ127)、EGR故障判定動作が保留される(図11のステップ141:NO)。また、EGR故障判定実行条件の成立から安定時間TMSTEが経過しても、センサ故障判定動作の実行中には、EGR故障判定動作中フラグF_MIDEGRが「0」に保持され(図10のステップ136:YES、ステップ127)、この場合にも、EGR故障判定動作が保留される。
 また、図12を参照して説明したように、1番目の判定動作としてのAFバラツキ判定動作の完了後で、2番目の判定動作としてのセンサ故障判定動作の実行中(ステップ168及び169:YES)、βγ運転点制御が実行される(ステップ167)。これにより、センサ故障判定動作の実行中、エンジン3の運転点が、運転点判定マップにおける領域β及び領域γの互いに重複する領域に収まるように制御される。
 そして、2番目の判定動作としてのセンサ故障判定動作が完了すると(時点t4)、それに伴い、センサ故障判定動作完了フラグF_DONLAFが「1」に設定される(図9のステップ113)とともに、センサ故障判定実行条件成立フラグF_MCNDLAF及びセンサ故障判定動作中フラグF_MIDLAFが「0」にリセットされる(ステップ114)。このセンサ故障判定動作の完了時、EGR故障判定実行条件が成立しており(図10のステップ121:YES)、かつ、その成立から安定時間TMSTEが経過しているときには(ステップ131:YES)、EGR故障判定動作中フラグF_MIDEGRが「1」に設定され(ステップ136:NO、ステップ137)、EGR故障判定動作の保留が解除される。その結果、3番目の判定動作として、EGR故障判定動作が開始される(図11のステップ141:YES)。
 また、EGR故障判定動作の実行中、判定用EGR制御が実行され(ステップ144)、それにより、EGR制御弁開度OEVは、一定周期で複数回(又は1回)、繰り返して開閉制御される。
 そして、3番目の判定動作としてのEGR故障判定動作が完了すると(時点t5)、それに伴い、EGR故障判定動作完了フラグF_DONEGRが「1」に設定される(図11のステップ154)とともに、EGR故障判定実行条件成立フラグF_MCNDEGR及びEGR故障判定動作中フラグF_MIDEGRが「0」にリセットされる(ステップ155)。
 また、AFバラツキ判定処理(図7)、センサ故障判定処理(図9)及びEGR故障判定処理(図11)の実行内容から明らかなように、AFバラツキ判定動作、センサ故障判定動作及びEGR故障判定動作の実行中、パージカットフラグF_PURCUTが「1」に設定され、パージカットが実行される(ステップ63、103、143)ことによって、パージ流量QPUは値0になっている。
 図5のステップ15~17、図8のステップ84~86及び図10のステップ124~126の実行内容から明らかなように、パージカットフラグF_PURCUTは、パージカットを伴う3つの判定動作の1つが完了しても、次に実行される判定動作の実行条件が成立している限り、「0」に切り替えられず、「1」に保持される。これにより、図17に示すように、1番目のAFバラツキ判定動作が開始されてから3番目のEGR故障判定動作が完了するまでの間、パージカットが継続され、パージ流量QPUが値0に保持される。また、図示しないものの、パージカットを伴う3つの判定動作が完了すると、パージカットフラグF_PURCUTが「0」にリセットされ、その後、パージカットを伴う3つの判定動作が再度、実行されない限り、蒸発燃料処理装置31が、エンジン3の運転状態(NEなど)に応じて制御される。以上のパージカットフラグF_PURCUTの設定は、第1実施形態の後述する他の動作例についても同様に当てはまる。
 また、図18は、パージカットを伴う3つの判定動作が順番B(センサ故障判定動作→EGR故障判定動作→AFバラツキ判定動作)で連続して実行された場合の動作例を示している。
 前述したように、センサ故障判定動作の実行中、EGR制御弁開度OEVは、エンジン3の運転状態に応じて制御される。このため、図18に示す動作例では、センサ故障判定動作の実行中(時点t6~、F_MIDLAF=1)、EGR制御弁開度OEVは値0よりも大きくなっている。
 また、図12を参照して説明したように、1番目の判定動作としてのセンサ故障判定動作の実行中(ステップ165及び166:YES)、βγ運転点制御が実行される(ステップ167)。これにより、センサ故障判定動作の実行中、エンジン3の運転点が、運転点判定マップにおける領域β及び領域γの互いに重複する領域に収まるように制御されるものの、その前に、領域α及び領域βの互いに重複する領域に収まることがある。図18に示す動作例では、センサ故障判定動作の実行中、AFバラツキ判定実行条件がEGR故障判定実行条件よりも先に成立しており、それに伴って、AFバラツキ判定実行条件成立フラグF_MCNDDISが「1」に設定されている(時点t7)。
 また、センサ故障判定動作の実行中、AFバラツキ判定動作用の連続実行許可フラグF_PERDISは、EGR故障判定実行条件が成立していない(F_MCNDEGR=0)ときには「1」に設定され(図6のステップ41及び46:YES、ステップ47:NO、ステップ45)、EGR故障判定実行条件が成立すると(時点t8、F_MCNDEGR←1)、それに伴って、「0」に切り替えられる(ステップ41、46及び47:YES、ステップ48)。この場合、1番目の判定動作としてのセンサ故障判定動作の完了後、2番目の判定動作としてのEGR故障判定動作が完了するまで、連続実行許可フラグF_PERDISは「0」に保持される(ステップ41:NO、ステップ42:YES、ステップ49:NO、ステップ48)。
 以上の連続実行許可フラグF_PERDISの設定により、センサ故障判定動作の実行中にEGR故障判定実行条件が成立してからEGR故障判定動作が完了するまでの間、AFバラツキ判定動作中フラグF_MIDDISが「0」に設定される(図5のステップ23:NO、ステップ18)。その結果、1番目の判定動作としてのセンサ故障判定動作の完了に続くAFバラツキ判定動作の実行が禁止される(図7のステップ61:NO)。
 また、図17に示す動作例と同様、EGR故障判定実行条件の成立から安定時間TMSTEが経過しても、センサ故障判定動作の実行中には、EGR故障判定動作が保留される(F_MIDEGR←0)。
 さらに、図17に示す動作例と同様、センサ故障判定動作の完了時(図18の時点9、F_DONLAF←1、F_MCNDLAF←0、F_MIDLAF←0)、EGR故障判定実行条件が成立しており、かつ、その成立から安定時間TMSTEが経過しているときには、EGR故障判定動作の保留が解除される(F_MIDEGR←1)。その結果、2番目の判定動作として、EGR故障判定動作が開始される。
 また、図12を参照して説明したように、2番目の判定動作としてのEGR故障判定動作の実行中(ステップ171:YES、ステップ172:NO、ステップ174:YES)、αγ運転点制御が実行される(ステップ175)。これにより、EGR故障判定動作の実行中、エンジン3の運転点が、運転点判定マップにおける領域γ及び領域αの互いに重複する領域に収まるように制御される。
 さらに、2番目の判定動作としてのEGR故障判定動作の完了時(図18の時点t10、F_DONEGR←1、F_MCNDEGR←0、F_MIDEGR←0)、AFバラツキ判定実行条件が成立しているときには(F_MCNDDIS=1)、連続実行許可フラグF_PERDISが「1」に切り替えられ(図6のステップ43及び51:YES、ステップ45)、AFバラツキ判定動作の実行の禁止が解除される(図5のステップ23:YES)。また、EGR故障判定動作の完了時(時点t10)、AFバラツキ判定実行条件の成立から安定時間TMSTEが経過しているため、AFバラツキ判定動作中フラグF_MIDDISが「1」に設定される(図5のステップ25:YES、ステップ30及び31:NO、ステップ32)。その結果、3番目の判定動作として、AFバラツキ判定動作が開始される(図7のステップ61:YES)。
 そして、3番目の判定動作としてのAFバラツキ判定動作が完了すると(図18の時点t11)、それに伴い、図17に示す動作例と同様、AFバラツキ判定動作に関連する各種のフラグが設定される(F_DONDIS←1、F_MCNDDIS←0、F_MIDDIS←0)。
 また、図19は、パージカットを伴う3つの判定動作が順番C(EGR故障判定動作→センサ故障判定動作→AFバラツキ判定動作)で連続して実行された場合の動作例を示している。
 図12を参照して説明したように、1番目の判定動作としてのEGR故障判定動作の実行中(ステップ171及び172:YES)、αβγ運転点制御が実行される(ステップ173)。これにより、EGR故障判定動作の実行中、運転点判定マップにおける領域α及び領域βのうち、そのときのエンジン3の運転点に近い領域と領域γとの互いに重複する領域に、エンジン3の運転点が収まるように制御される。
 図19に示す動作例では、1番目の判定動作としてのEGR故障判定動作の実行中(時点t12~、F_MIDEGR=1)、まず、センサ故障判定実行条件が成立するのに伴って、センサ故障判定実行条件成立フラグF_MCNDLAFが「1」に設定されており(時点t13)、その後、AFバラツキ判定実行条件が成立するのに伴って、AFバラツキ判定実行条件成立フラグF_MCNDDISが「1」に設定されている(時点t14)。
 図6を参照して説明したように、1番目の判定動作としてのEGR故障判定動作の実行中、センサ故障判定実行条件がAFバラツキ判定実行条件よりも先に成立したときには、連続実行許可フラグF_PERDISは「0」に設定される(ステップ42、49及び50:YES、ステップ48)。この場合、1番目の判定動作としてのEGR故障判定動作の完了後、2番目の判定動作としてのセンサ故障判定動作が完了するまで、連続実行許可フラグF_PERDISは「0」に保持される(ステップ44及び50:YES、ステップ48、ステップ41:YES、ステップ46:NO)。
 以上の連続実行許可フラグF_PERDISの設定により、EGR故障判定動作の実行中にセンサ故障判定実行条件が成立してからセンサ故障判定動作が完了するまでの間、AFバラツキ判定動作中フラグF_MIDDISが「0」に設定される(図5のステップ23:NO、ステップ18)。その結果、1番目の判定動作としてのEGR故障判定動作の完了に続くAFバラツキ判定動作の実行が禁止される(図7のステップ61:NO)。
 また、図17に示す動作例と同様、センサ故障判定実行条件の成立から安定時間TMSTEが経過しても、EGR故障判定動作の実行中には、センサ故障判定動作が保留される(F_MIDLAF←0)。
 さらに、1番目の判定動作としてのEGR故障判定動作の完了時(時点t15、F_DONEGR←1、F_MCNDEGR←0、F_MIDEGR←0)、センサ故障判定実行条件の成立から安定時間TMSTEが経過しているときには、センサ故障判定動作の保留が解除される(F_MIDLAF←1)。その結果、2番目の判定動作として、センサ故障判定動作が開始される。
 また、図12を参照して説明したように、1番目の判定動作としてのEGR故障判定動作の完了後で、2番目の判定動作としてのセンサ故障判定動作の実行中には(ステップ165:YES、ステップ166:NO、ステップ168:YES、ステップ169:NO)、αβ運転点制御が実行される(ステップ163)。これにより、センサ故障判定動作の実行中、エンジン3の運転点が、運転点判定マップにおける領域β及び領域αの互いに重複する領域に収まるように制御される。
 さらに、2番目の判定動作としてのセンサ故障判定動作の完了時(図19の時点t16、F_DONLAF←1、F_MCNDLAF←0、F_MIDLAF←0)、AFバラツキ判定実行条件が成立しているときには(F_MCNDDIS=1)、図18に示す動作例と同様、連続実行許可フラグF_PERDISが「1」に切り替えられ、AFバラツキ判定動作の実行の禁止が解除される。また、センサ故障判定動作の完了時、AFバラツキ判定実行条件の成立から安定時間TMSTEが経過しているため、図18に示す動作例と同様、3番目の判定動作として、AFバラツキ判定動作が開始される。
 そして、3番目の判定動作としてのAFバラツキ判定動作が完了すると(時点t17)、それに伴い、AFバラツキ判定動作に関連する各種のフラグが設定される(F_DONDIS←1、F_MCNDDIS←0、F_MIDDIS←0)。
 ちなみに、図19に示す動作例とは異なり、1番目の判定動作としてのEGR故障判定動作の実行中、AFバラツキ判定実行条件がセンサ故障判定実行条件よりも先に成立する場合がある。その場合には、EGR故障判定動作の完了に続くAFバラツキ判定動作の実行が許可される(図6のステップ50:NO、ステップ45)。この場合、センサ故障判定動作用の連続実行許可フラグは設定されないものの、図4に示すように、AFバラツキ判定条件判定処理→AFバラツキ判定処理→センサ故障判定条件判定処理→センサ故障判定処理の順に実行されるので、実行条件が先に成立したAFバラツキ判定動作が、センサ故障判定動作よりも先に開始されることになる。
 また、図20は、パージカットを伴う3つの判定動作が順番D(EGR故障判定動作→AFバラツキ判定動作→センサ故障判定動作)で連続して実行されるとともに、1番目の判定動作としてのEGR故障判定動作の実行中に、触媒劣化判定実行条件が成立した場合の動作例を示している。
 1番目の判定動作としてのEGR故障判定動作の実行中、図19に示す動作例と同様、αβγ運転点制御が実行される。また、図20に示すように、このEGR故障判定動作の実行中(時点t18~、F_MIDEGR=1、F_MID1st=1)、触媒劣化判定実行条件が成立すると(時点t19)、それに伴い、触媒劣化判定実行条件成立フラグF_MCNDCATが「1」に設定される(図13のステップ186)。この時点では、AFバラツキ判定実行条件及びセンサ故障判定実行条件がいずれも成立していない(F_MCNDDIS=0かつF_MCNDLAF=0)ため、触媒劣化判定動作用の連続実行許可フラグF_PERCATが「1」に設定される(図14のステップ202:YES、ステップ203及び207:NO、ステップ209及び210:NO、ステップ205)。
 また、1番目の判定動作としてのEGR故障判定動作の実行中、AFバラツキ判定実行条件が成立すると(時点t20、F_MCNDDIS←1)、連続実行許可フラグF_PERCATが、「0」に切り替えられる(図14のステップ209:YES、ステップ206)とともに、AFバラツキ判定実行条件が成立している限り、「0」に保持される。また、連続実行許可フラグF_PERCATは、1番目の判定動作が完了してから2番目の判定動作が完了するまで、1番目の判定動作の完了直前の値に保持される(ステップ202及び211:NO)。
 以上の連続実行許可フラグF_PERCATの設定により、EGR故障判定動作の実行中にAFバラツキ判定実行条件が成立してからAFバラツキ判定動作が完了するまでの間、触媒劣化判定動作中フラグF_MIDCATが「0」に設定される(図13のステップ191:NO、ステップ184)。その結果、1番目の判定動作としてのEGR故障判定動作の完了に続く触媒劣化判定動作の実行が禁止される(図15のステップ221:NO)。この場合、第2連続実行許可処理(図14)の実行内容から明らかなように、また、図20に示すように、触媒劣化判定実行条件がAFバラツキ判定実行条件よりも先に成立した場合であっても、EGR故障判定動作の完了に続く触媒劣化判定動作の実行が禁止される。また、EGR故障判定動作の実行中、AFバラツキ判定実行条件が成立しても、図17などに示す動作例と同様、AFバラツキ判定動作が保留される(F_MIDDIS←0)。
 そして、1番目の判定動作としてのEGR故障判定動作が完了すると(時点t21、F_MIDEGR←0、F_MID1st←0)、この動作例では、AFバラツキ判定実行条件の成立から安定時間TMSTEが経過しているため、EGR故障判定動作の完了に伴って、2番目の判定動作としてのAFバラツキ判定動作が開始される(F_MIDDIS←1)。AFバラツキ判定動作の実行中、センサ故障判定実行条件が成立すると(時点t22)、それに伴い、センサ故障判定実行条件成立フラグF_MCNDLAFが「1」に設定される。
 また、AFバラツキ判定動作の実行中、センサ故障判定実行条件が成立しても、図17などに示す動作例と同様、センサ故障判定動作が保留される(F_MIDLAF←0)。さらに、図12を参照して説明したように、2番目の判定動作としてのAFバラツキ判定動作の実行中(ステップ161:YES、ステップ162:NO)、αβ運転点制御が実行される(ステップ163)。
 そして、2番目の判定動作としてのAFバラツキ判定動作が完了した場合において(時点t23、F_MCNDDIS←0、F_MIDDIS←0、F_DON2nd=1)、センサ故障判定実行条件が成立しているとき(F_MCNDLAF=1)には、連続実行許可フラグF_PERCATが継続して「0」に保持される(図14のステップ211:YES、ステップ212、214及び216:NO、ステップ217:YES、ステップ206)。これにより、AFバラツキ判定動作の完了に続く触媒劣化判定動作の実行も禁止される。また、AFバラツキ判定動作の完了時(時点t23)、センサ故障判定実行条件の成立から安定時間TMSTEが経過しているため、3番目の判定動作としてのセンサ故障判定動作が開始される(F_MIDLAF←1)。
 そして、触媒劣化判定実行条件が成立している状態で(F_MCNDCAT=1)、3番目の判定動作としてのセンサ故障判定動作が完了し(F_MCNDLAF←0、F_MIDLAF←0)、3番目判定動作完了フラグF_DON3rdが「1」に設定されると(時点t24)、それに伴い、連続実行許可フラグF_PERCATが「1」に切り替えられる(図14のステップ201:YES、ステップ205)。これにより、センサ故障判定動作の完了に続く触媒劣化判定動作の実行の禁止が解除され(ステップ191:YES)、それに伴い、触媒劣化判定動作中フラグF_MIDCATが「1」に設定され(ステップ192~194:NO、ステップ188)、触媒劣化判定動作が開始される。
 なお、上述した図20に示す動作例は、パージカットを伴う3つの判定動作が順番D(EGR故障判定動作→AFバラツキ判定動作→センサ故障判定動作)で実行された場合の例であるが、前述した第2連続実行許可処理の実行内容から明らかなように、順番A~Cのいずれで実行された場合にも、触媒劣化判定動作の実行が同様にして禁止される。
 また、図21は、センサ故障判定動作がAFバラツキ判定動作に続いて実行された場合における第1及び第2待機タイマのタイマ値tLAF1、tLAF2の推移の一例を示している。
 図21に示すように、AFバラツキ判定動作の実行中(時点t25~、F_MIDDIS=1)、センサ故障判定実行条件が成立すると(時点t26、F_MCNDLAF←1)、その時点から、安定時間TMSTEに設定された第1待機タイマのタイマ値tLAF1のカウントダウンが開始される。そして、センサ故障判定実行条件が成立してから、安定時間TMSTEが経過した後(時点t27~、図8のステップ91:YES)に、第2待機タイマのタイマ値tLAF2が、初期待機時間TMLINT又は減少後待機時間TMLDECに設定される(ステップ94、95)。
 この場合、AFバラツキ判定動作の実行中であり、パージカットフラグF_PURCUTが「1」であるため、タイマ値tLAF2は、より短い減少後待機時間TMLDECに設定される。そして、AFバラツキ判定動作が完了すると(時点t28、F_MIDDIS←0)、それに伴い、センサ故障判定動作が開始される(F_MIDLAF←1)とともに、タイマ値tLAF2のダウンカウントが開始される。
 ちなみに、図21は、センサ故障判定動作がAFバラツキ判定動作に続いて実行された場合におけるタイマ値tLAF1、tLAF2の推移の一例を示しているが、パージカットを伴う3つの判定動作のうちの他の2つの組み合わせで順に連続して実行された場合にも、対応するタイマ値tDIS1、tDIS2、tLAF1、tLAF2、tEGR1、tEGR2が、同じように推移する。
 また、パージカットフラグF_PURCUTは、エンジン3の始動時に「0」にリセットされるため、パージカットを伴う3つの判定動作のうちの1番目の判定動作が開始される際、パージカットフラグF_PURCUTは、依然として「0」に設定されている。これにより、図5のステップ26、図8のステップ92及び図10のステップ132の答がNOになる結果、この1番目の判定動作に対応する第2待機タイマのタイマ値tDIS2、tLAF2又はtEGR2は、初期待機時間TMDINT、TMLINT又はTMEINTに設定され(ステップ28、94、134)、そのまま1番目の判定動作が開始される。
 また、図22(A)は、比較例におけるパージ流量QPUの推移などを示しており、図22(B)は、第1実施形態によりパージカットを伴う3つの判定動作が順に連続して実行された場合におけるパージ流量QPUの推移などを示している。この比較例では、第1実施形態と異なり、パージカットを伴う3つの判定動作の各々の終了から安定時間TMSTEが経過するのを待って、次の判定動作が開始され、パージカットを伴う3つの判定動作が順に連続して実行されない。また、この安定時間TMSTEが経過するまでの間、パージカットが解除され、蒸発燃料処理装置31による蒸発燃料の供給が行われる。
 このため、図22(A)に示すように、比較例では、2番目及び3番目の判定動作の実行中、パージ流量QPUが値0に安定するまで、判定を保留しなければならず、その分、2番目及び3番目の判定動作に要する時間(以下、それぞれ「2番目判定動作時間」及び「3番目判定動作時間」という)TM2ndC、TM3rdCが長くなる結果、パージカットを伴う3つの判定動作の全体で要する時間が長くなってしまう。
 これに対して、第1実施形態によれば、これまでに説明したように、パージカットを伴う3つの判定動作が順に連続して実行され、その場合に、1番目の判定動作の開始から3番目の判定動作の終了まで、パージカットが継続されることによって、パージ流量QPUが値0に保持される。これにより、図22(B)に示すように、2番目及び3番目判定動作時間TM2nd、TM3rdが、上述した動作例の場合よりも短くなる結果、パージカットを伴う3つの判定動作の全体で要する時間が短くなっている。それにより、パージカットの実行期間を短くできるので、図22(B)に示すハッチングの分、より多くの蒸発燃料を吸気通路21に供給することができる。
 また、第1実施形態における各種の要素と、本発明における各種の要素との対応関係は、次のとおりである。すなわち、第1実施形態におけるエンジン3、EGR装置51及びLAFセンサ66が、本発明における複数の機器に相当するとともに、本発明における第1又は第2機器に相当する。また、第1実施形態におけるEGR装置51及びLAFセンサ66が、本発明における他の機器に相当し、第1実施形態における三元触媒28が、本発明における複数の機器、他の機器及び第3機器に相当するとともに、第1実施形態における第1及び第2モータ4、5が、本発明における電気モータに相当する。さらに、第1実施形態におけるECU2が、本発明における第1判定手段、第2判定手段、第3判定手段、禁止手段及び判定用パラメータ取得手段に相当する。
 以上のように、第1実施形態によれば、所定のAFバラツキ判定実行条件が成立しているときにAFバラツキ判定動作が、所定のセンサ故障判定実行条件が成立しているときにセンサ故障判定動作が、所定のEGR故障判定実行条件が成立しているときにEGR故障判定動作が、パージカット状態で実行される。また、所定の触媒劣化判定実行条件が成立しているときに、触媒劣化判定動作が、パージカットを条件とせずに実行される。
 さらに、図20などを参照して説明したように、パージカットを伴う3つの判定動作のうちの1番目の判定動作の実行中、2番目の判定動作に対応する実行条件と、触媒劣化判定実行条件の両方が成立しているときに、2番目の判定動作を優先するために、1番目の判定動作の完了に続く触媒劣化判定動作の実行が禁止される。これにより、パージカットを条件とする1番目の判定動作の完了に続いて、同じくパージカットを条件とする2番目の判定動作が実行される。
 また、1番目の判定動作が完了した場合において、2番目の判定動作に対応する実行条件が成立しているときに、パージカットを継続したまま、2番目の判定動作が開始される。これにより、前述した従来の場合と異なり、1番目の判定動作が完了してから2番目の判定動作が開始されるまでの間に、蒸発燃料の供給が再開されることがないので、蒸発燃料の供給量がパージカットにより値0に安定するまで判定を保留する必要がなく、したがって、2番目の判定動作に対応する機器の異常(故障)を早期に判定することができる。これにより、パージカットを伴う3つの判定動作に要する時間を全体として短縮でき、それにより、当該判定動作の実行頻度を高めることができるとともに、蒸発燃料処理装置31による蒸発燃料の処理能力を向上させることができる。
 さらに、AFバラツキ判定動作、センサ故障判定動作及びEGR故障判定動作の実行条件として、互いに異なるAFバラツキ判定実行条件、センサ故障判定実行条件及びEGR故障判定実行条件がそれぞれ設定されている。AFバラツキ判定動作には判定用空燃比制御及びEGR停止制御が含まれており、センサ故障判定動作には判定用噴射制御及び通常のEGR制御が、EGR故障判定動作には空燃比F/B制御及び判定用EGR制御が、それぞれ含まれている。このように、パージカットを伴う3つの判定動作には、エンジン3を制御するための制御動作がそれぞれ含まれている。
 前述したように、EGR故障判定実行条件には、EGR故障判定動作の開始前にEGR装置51による排ガスの還流が行われていたこと(あるいは排ガスの還流を実行可能であること)という条件b3が含まれており(図10のステップ121)、AFバラツキ判定動作の実行中には、EGR装置51による排ガスの還流が停止される(図7のステップ65)。このため、パージカットを伴う3つの判定動作のうちの1番目の判定動作としてのセンサ故障判定動作の実行中、AFバラツキ判定実行条件及びEGR故障判定実行条件がいずれも成立しているときに、センサ故障判定動作の完了に続いてAFバラツキ判定動作を実行すると、当該AFバラツキ判定動作の実行中に、EGR故障判定実行条件が成立せず、その結果、AFバラツキ判定動作の完了に続いてEGR故障判定動作を実行できなくなってしまう。
 一方、EGR故障判定動作の実行中、EGR制御弁開度OEVが一定周期で複数回、繰り返して開閉制御され、それにより、EGR装置51による排ガスの還流と還流停止が繰り返されるのに対し、AFバラツキ判定実行条件には、排ガスの還流に関する条件が含まれていない。このため、1番目の判定動作としてのセンサ故障判定動作の実行中、AFバラツキ判定実行条件及びEGR故障判定実行条件がいずれも成立しているときに、センサ故障判定動作の完了に続いてEGR故障判定動作を実行すれば、当該EGR故障判定動作の実行中に、AFバラツキ判定実行条件を成立させることができ、それにより、EGR故障判定動作の完了に続いてAFバラツキ判定動作を実行することができる。
 上述したEGR故障判定実行条件及びAFバラツキ判定実行条件ならびにEGR故障判定動作及びAFバラツキ判定動作の関係に基づき、1番目の判定動作としてのセンサ故障判定動作の実行中、AFバラツキ判定実行条件及びEGR故障判定実行条件がいずれも成立しているときに、センサ故障判定動作の完了に続くAFバラツキ判定動作の実行が禁止される(図18参照)。これにより、センサ故障判定動作の完了に続いて異常を判定する機器として、EGR装置51が選択される結果、EGR故障判定動作及びAFバラツキ判定動作を順に連続して実行できるので、EGR故障判定動作及びAFバラツキ判定動作に要する時間を全体として短縮することができる。 
 さらに、AFバラツキ判定動作が開始されてから初期待機時間TMDINT又は減少後待機時間TMDDECが経過した後に、AFバラツキが、算出されたAFバラツキ判定パラメータJUDDISに基づいて判定される。また、センサ故障判定動作が開始されてから初期待機時間TMLINT又は減少後待機時間TMLDECが経過した後に、LAFセンサ66の故障が、算出された積算値LAFDLYPに基づいて判定される。さらに、EGR故障判定動作が開始されてから初期待機時間TMEINT又は減少後待機時間TMEDECが経過した後に、EGR装置51の故障が、算出された積算値RT80AXに基づいて判定される。
 また、図21を参照して説明したように、1番目の判定動作の完了に続いて2番目の判定動作を実行するときに、より短い減少後待機時間TMDDEC、TMLDEC、TMEDECを用いることによって、待機時間を減少させるので、前述した効果、すなわち、パージカットを伴う3つの判定動作に要する時間を全体として短縮できるという効果を、有効に得ることができる。
 さらに、AFバラツキ判定実行条件、センサ故障判定実行条件及びEGR故障判定実行条件は、互いに異なっており、各実行条件にはエンジン回転数NE及び吸入空気量GAIRに関する所定のエンジン運転条件が含まれている(条件a1、b1、c1)。また、図12を参照して説明したように、1番目の判定動作の実行中に、1番目の判定動作に対応するエンジン運転条件に加え、2番目の判定動作に対応するエンジン運転条件が成立するように、エンジン3が制御される。したがって、1番目の判定動作の完了に続いて2番目の判定動作が実行される可能性を高めることができ、ひいては、前述した効果、すなわち、パージカットを伴う3つの判定動作に要する時間を全体として短縮できるという効果を、より有効に得ることができる。
 また、上述したエンジン3の制御中、エンジン3の動力が、運転者により要求される要求動力よりも小さいときには、その不足分に相当する電力がバッテリ8から第2モータ5に供給される。一方、エンジン3の動力が要求動力よりも大きいときには、第1モータ4で発電した電力のうち、その余剰分に相当する電力がバッテリ8に充電される。以上により、良好なドライバビリティを確保することができる。
 また、図23は、上述したエンジン運転点制御処理の変形例の動作例を示している。同図において、F_MOE2ndは、2番目部分実行条件成立フラグであり、2番目の判定動作に対応する実行条件のうち、エンジン3の運転点(NE、GAIR)以外のパラメータなどに関する前述した条件(例えば前記条件b1~e1など、以下「2番目部分実行条件」という)が成立していることを「1」で表すものである。
 また、図23において、NELOW1は、領域α~γのうちの1番目の判定動作に対応する領域を規定するエンジン回転数NEの低い側のしきい値(以下「第1回転数しきい値」という)である。NELOW2は、領域α~γのうちの2番目の判定動作に対応する領域を規定するエンジン回転数NEの低い側のしきい値(以下「第2回転数しきい値」という)である。さらに、太い二点鎖線は、変形例によるエンジン運転点制御処理を実行しなかった場合におけるエンジン回転数NEの推移を示している。
 図23に示すように、このエンジン運転点制御処理の変形例では、1番目の判定動作の実行中(時点t29~、F_MID1st=1)、第1実施形態と異なり、スロットル弁開度が、エンジン3の運転点が領域α~γのうちの1番目の判定動作に対応する領域にのみ収まるように、制御される。これにより、エンジン回転数NEが、第1回転数しきい値NELOW1よりも高く、かつ、第2回転数しきい値NELOW2よりも低い一定の状態で推移する。
 また、1番目の判定動作の実行中、2番目部分実行条件が成立し(時点t30、F_MOE2nd←1)、さらに、その状態で1番目の判定動作が完了したとき(時点t31、F_MOE2nd=1、F_MID1st←0)に、スロットル弁開度が、エンジン3の運転点が2番目の判定動作に対応する領域に収まるように、制御される。これにより、エンジン回転数NEが、第2回転数しきい値NELOW2よりも高く、かつ、一定の状態で推移する。
 さらに、パージカットフラグF_PURCUTは、1番目の判定動作が完了しても、その際に、2番目部分実行条件が成立している(F_MOE2nd=1)限り、「1」に保持される。
 次に、本発明の第2実施形態による異常判定装置について説明する。第2実施形態による異常判定装置は、第1実施形態と比較して、前述したエンジン運転点制御処理(図12)に代えて、図24に示す運転領域補正処理が実行される点のみが異なっている。この運転領域補正処理は、パージカットを伴う3つの判定動作のうちの1番目及び2番目の判定動作の実行中に、次に実行される判定動作の実行条件を成立しやすくするために、前述した図16に示す運転点判定マップにおける領域α、領域β及び領域γが適宜、拡大補正するためのものであり、図4に示す処理と併行して、前記所定周期で繰り返し実行される。図24において、図12と同じ実行内容については、同じステップ番号を付している。以下、第1実施形態と異なる点を中心に説明する。
 図24に示すように、前記ステップ162の答がNO(F_MID3rd=0)のとき、すなわち、1番目又は2番目の判定動作としてのAFバラツキ判定動作の実行中であるときには、AFバラツキ判定動作の完了に続いてセンサ故障判定動作が実行される可能性を高めるために、β拡大補正を実行し(ステップ231)、本処理を終了する。このβ拡大補正では、運転点判定マップにおける領域βが、エンジン回転数NE及び吸入空気量GAIRの両方について拡大するように補正される。図25において、二点鎖線は拡大補正前の領域βを(図16における一点鎖線で示された領域βと同じ)、実線は拡大補正後の領域βを、それぞれ示している。
 一方、ステップ162の答がYES(F_MID3rd=1)のとき、すなわち、3番目の判定動作としてのAFバラツキ判定動作の実行中であるときには、そのまま本処理を終了する。
 前記ステップ166の答がYES(F_MID1st=1)のとき、すなわち、1番目の判定動作としてのセンサ故障判定動作の実行中であるときには、センサ故障判定動作の完了に続いてEGR故障判定動作が実行される可能性を高めるために、γ拡大補正を実行し(ステップ232)、本処理を終了する。このγ拡大補正では、運転点判定マップにおける領域γが、エンジン回転数NE及び吸入空気量GAIRの両方について拡大するように補正される。図26において、二点鎖線は拡大補正前の領域γを(図16における二点鎖線で示された領域γと同じ)、実線は拡大補正後の領域γを、それぞれ示している。
 また、前記ステップ168の答がNO(F_MId2nd=0)のとき、すなわち、3番目の判定動作としてのセンサ故障判定動作の実行中であるときには、そのまま本処理を終了する。
 また、前記ステップ169の答がYES(F_DONDIS=1)のとき、すなわち、1番目の判定動作としてのAFバラツキ判定動作が完了し、かつ、2番目の判定動作としてのセンサ故障判定動作の実行中であるときには、上記ステップ232(γ拡大補正)を実行し、本処理を終了する。
 一方、ステップ169の答がNO(F_DONDIS=0)のとき、すなわち、1番目の判定動作としてのEGR故障判定動作が完了し、かつ、2番目の判定動作としてのセンサ故障判定動作の実行中であるときには、センサ故障判定動作の完了に続いてAFバラツキ判定動作が実行される可能性を高めるために、α拡大補正を実行し(ステップ233)、本処理を終了する。このα拡大補正では、運転点判定マップにおける領域αが、エンジン回転数NE及び吸入空気量GAIRの両方について拡大するように補正される。図27において、二点鎖線は拡大補正前の領域αを(図16における実線で示された領域αと同じ)、実線は拡大補正後の領域αを、それぞれ示している。
 また、前記ステップ172の答がYESのとき、すなわち、1番目の判定動作としてのEGR故障判定動作の実行中であるときには、EGR故障判定動作の完了に続いてAFバラツキ判定動作又はセンサ故障判定動作が実行される可能性を高めるために、αβ拡大補正を実行し(ステップ234)、本処理を終了する。このαβ拡大補正では、領域α及び領域βのうち、そのときのエンジン3の運転点に近い方が拡大補正される。また、そのときのエンジン3の運転点が領域γに加え、領域α及び/又は領域βに収まっているときには、両領域α、βのうちのエンジン3が収まっている領域が拡大補正される。その手法は、上記ステップ231及び233で説明した手法と同じである。
 また、前記ステップ174の答がYES(F_MID2nd=1)のとき、すなわち、2番目の判定動作としてのEGR故障判定動作の実行中であるときには、前記ステップ233を実行し(α拡大補正を実行)、本処理を終了する。
 一方、ステップ174の答がNOのとき、すなわち、3番目の判定動作としてのEGR故障判定動作の実行中であるときには、そのまま本処理を終了する。
 以上のように、第2実施形態によれば、パージカットを伴う3つの判定動作のうちの1番目の判定動作の実行中に、領域α、領域β及び領域γのうちの2番目の判定動作に対応する領域を拡大補正することによって、2番目の判定動作に対応する実行条件が緩和される。したがって、1番目及び2番目の判定動作が順に連続して実行される可能性を高めることができ、前述した効果、すなわち、パージカットを伴う3つの判定動作に要する時間を全体として短縮できるという効果を、より有効に得ることができる。
 なお、第2実施形態では、AFバラツキ判定実行条件、センサ故障判定実行条件及びEGR故障判定実行条件に含まれるエンジン3の運転点(NE、GAIR)に関する条件a1、a2及びa3を緩和しているが、AFバラツキ判定実行条件、センサ故障判定実行条件及びEGR故障判定実行条件の各々に含まれる他の条件を緩和してもよいことはもちろんである。
 なお、本発明は、説明した第1及び第2実施形態(以下、総称して「実施形態」という)に限定されることなく、種々の態様で実施することができる。例えば、実施形態では、本発明における複数の機器は、EGR装置51及びLAFセンサ66であるが、内燃機関に関連して設けられた他の適当な機器、例えばインジェクタ26や、蒸発燃料処理装置31などでもよい。また、実施形態では、複数の機器の数は、4つであるが、3つ又は5つ以上でもよい。
 さらに、実施形態では、パージカットを伴う3つの判定動作の順番が順番A~順番Dに制限されているが、各判定動作の実行条件と各判定動作における内燃機関の制御動作との関係から、パージカットを伴う3つの判定動作を任意の順番で連続して実行可能な場合には、実行条件が成立した順に、実行してもよいことはもちろんである。この場合、前述したエンジン運転点制御処理は、例えば次のようにして実行される。
 すなわち、パージカットを伴う3つの判定動作の各々の実行中、運転点判定マップで規定された複数の領域のうち、実行中の判定動作に対応する領域と、それ以外の領域で、かつ、そのときの内燃機関の運転点に最も近い領域との互いに重複する領域に、内燃機関の運転点が収まるように、スロットル弁開度が制御される。また、内燃機関の運転点が、実行中の判定動作に対応する領域と他の領域との互いに重複する領域に収まっているときには、その状態を保持するように、スロットル弁開度が制御される。
 また、上述したようにパージカットを伴う3つの判定動作を任意の順番で連続して実行する場合、運転領域補正処理は、例えば次のようにして実行される。すなわち、パージカットを伴う3つの判定動作の各々の実行中、運転点判定マップで規定された複数の領域のうち、実行中の判定動作に対応する領域以外の領域で、かつ、そのときの内燃機関の運転点に最も近い領域が拡大補正される。また、内燃機関の運転点が、実行中の判定動作に対応する領域と他の領域との互いに重複する領域に収まっているときには、この他の領域が拡大補正される。
 また、実施形態では、本発明における第2判定動作に含まれる内燃機関の制御動作は、EGR停止制御(図7のステップ65)と、判定用EGR制御(図11のステップ144)であるが、他の適当な制御動作でもよい。さらに、実施形態では、本発明における内燃機関として、車両V用のガソリンエンジンであるエンジン3を用いているが、他の適当な内燃機関、例えばディーゼルエンジンや、LPGエンジン、船舶用のエンジン、航空機用のエンジンなどを用いてもよい。
 また、実施形態は、エンジン3と前輪WFの間を接続/遮断可能に構成され、第1モータ4がエンジン3に連結されるとともに、第2モータ5が前輪WFに連結された車両Vに、本発明を適用した例であるが、本発明は、内燃機関が変速機を介して駆動輪に連結されるとともに、電気モータが変速機を介してあるいは変速機を介さずに駆動輪に連結された車両にも適用可能である。さらに、実施形態は、動力源としてエンジン3、第1及び第2電気モータ4、5を備えるハイブリッド式の車両Vに、本発明を適用した例であるが、本発明は、動力源として内燃機関のみを備える車両にも適用可能である。この場合、エンジン運転点制御処理を省略してもよい。以上の実施形態に関するバリエーションは、適宜、組み合わせて適用可能である。その他、本発明の趣旨の範囲内で、細部の構成を適宜、変更することが可能である。
      2 ECU(第1判定手段、第2判定手段、第3判定手段、禁
        止手段、判定用パラメータ取得手段)
      3 エンジン(複数の機器、第1機器、第2機器)
      4 第1モータ(電気モータ)
      5 第2モータ(電気モータ)
     21 吸気通路(吸気系)
     28 三元触媒(複数の機器、他の機器、第3機器)
     FT 燃料タンク
     31 蒸発燃料処理装置
     51 EGR装置(複数の機器、他の機器、第1機器、第2機器)
     66 LAFセンサ(複数の機器、他の機器、第1機器、第2機
        器)
 JUDDIS AFバラツキ判定パラメータ(判定用パラメータ)
LAFDLYP 積算値(判定用パラメータ)
 RT80AX 積算値(判定用パラメータ)
 TMDINT 初期待機時間(待機時間)
 TMLINT 初期待機時間(待機時間)
 TMEINT 初期待機時間(待機時間)
 TMDDEC 減少後待機時間(待機時間)
 TMLDEC 減少後待機時間(待機時間)
 TMEDEC 減少後待機時間(待機時間)

Claims (6)

  1.  燃料タンク内で発生した蒸発燃料を捕捉するとともに、捕捉された蒸発燃料を内燃機関の吸気系に供給するための蒸発燃料処理装置が設けられた内燃機関と、当該内燃機関に関連して設けられた他の機器とを含む複数の機器の異常を判定する異常判定装置であって、
     所定の第1実行条件が成立しているときに、前記複数の機器のうちの第1機器の異常を判定するための第1判定動作を、前記蒸発燃料処理装置による蒸発燃料の供給を停止した状態で実行する第1判定手段と、
     所定の第2実行条件が成立しているときに、前記複数の機器のうちの前記第1機器とは別個の第2機器の異常を判定するための第2判定動作を、前記蒸発燃料処理装置による蒸発燃料の供給を停止した状態で実行する第2判定手段と、を備え、
     当該第2判定手段は、前記第1判定動作が完了した場合において、前記第2実行条件が成立しているときに、前記蒸発燃料の供給を停止状態に保持したまま、前記第2判定動作を開始することを特徴とする異常判定装置。
  2.  前記第2機器は、互いに別個の複数の第2機器で構成され、
     前記第2実行条件として、前記複数の第2機器に対して互いに異なる複数の第2実行条件がそれぞれ設定され、
     前記第2判定動作として、前記複数の第2機器に対して互いに異なる複数の第2判定動作がそれぞれ設定され、当該複数の第2判定動作の各々には、前記内燃機関を制御するための制御動作が含まれ、
     前記第2判定手段は、前記第1判定動作の実行中、前記複数の第2実行条件がいずれも成立しているときに、前記複数の第2機器から、前記第1判定動作の完了に続いて異常を判定する前記第2機器を、前記複数の第2実行条件及び第2判定動作に基づいて選択することを特徴とする、請求項1に記載の異常判定装置。
  3.  所定の第3実行条件が成立しているときに、前記複数の機器のうちの前記第1及び第2機器とは別個の第3機器の異常を判定するための第3判定動作を実行する第3判定手段と、
     前記第1判定動作の実行中、前記第2及び第3実行条件の両方が成立しているときに、前記第2判定動作を優先するために、前記第1判定動作の完了に続いて前記第3判定動作が実行されるのを禁止する禁止手段と、をさらに備えることを特徴とする、請求項1又は2に記載の異常判定装置。
  4.  前記複数の機器の各々の異常を判定するための判定用パラメータを取得する判定用パラメータ取得手段をさらに備え、
     前記第2判定手段は、前記第2判定動作が開始されてから所定の待機時間が経過した後に、前記第2機器の異常を、前記取得された判定用パラメータに基づいて判定し、前記第1判定動作の完了に続いて前記第2判定動作を実行するときには、前記待機時間を減少させることを特徴とする、請求項1ないし3のいずれかに記載の異常判定装置。
  5.  前記内燃機関には、当該内燃機関とともに動力源を構成する電気モータが連結されており、
     前記第1及び第2実行条件には、前記内燃機関の運転状態に関する、互いに異なる所定の第1及び第2エンジン運転条件がそれぞれ含まれ、
     前記第2判定手段は、前記第1判定動作の実行中に、前記第1エンジン運転条件に加え、前記第2エンジン運転条件が成立するように、前記内燃機関を制御することを特徴とする、請求項1ないし4のいずれかに記載の異常判定装置。
  6.  前記第2判定手段は、前記第1判定動作の実行中に、前記第2実行条件を緩和することを特徴とする、請求項1ないし4のいずれかに記載の異常判定装置。
PCT/JP2015/054206 2014-05-20 2015-02-17 異常判定装置 WO2015178048A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/311,293 US20170074198A1 (en) 2014-05-20 2015-02-17 Abnormality determination device
JP2016520952A JP6371384B2 (ja) 2014-05-20 2015-02-17 異常判定装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-103991 2014-05-20
JP2014103991 2014-05-20

Publications (1)

Publication Number Publication Date
WO2015178048A1 true WO2015178048A1 (ja) 2015-11-26

Family

ID=54553726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054206 WO2015178048A1 (ja) 2014-05-20 2015-02-17 異常判定装置

Country Status (3)

Country Link
US (1) US20170074198A1 (ja)
JP (1) JP6371384B2 (ja)
WO (1) WO2015178048A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017210884A (ja) * 2016-05-23 2017-11-30 トヨタ自動車株式会社 内燃機関装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7488027B2 (ja) * 2019-03-28 2024-05-21 ヤンマーパワーテクノロジー株式会社 エンジン制御装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04238241A (ja) * 1991-01-23 1992-08-26 Nissan Motor Co Ltd 内燃機関の自己診断装置
JP2003120380A (ja) * 2001-10-16 2003-04-23 Honda Motor Co Ltd 内燃機関の制御装置
JP2005315132A (ja) * 2004-04-28 2005-11-10 Honda Motor Co Ltd 内燃機関の吸気系異常検出装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754108B2 (ja) * 1986-06-23 1995-06-07 トヨタ自動車株式会社 空燃比制御システムの故障診断方法
JPH0233443A (ja) * 1988-07-22 1990-02-02 Toyota Motor Corp 空燃比制御系の故障診断装置
JP2807769B2 (ja) * 1990-08-30 1998-10-08 本田技研工業株式会社 内燃エンジンの制御装置の故障診断方法
US5230319A (en) * 1990-10-05 1993-07-27 Toyota Jidosha Kabushiki Kaisha Apparatus for detecting malfunction in evaporated fuel purge system
JP3321837B2 (ja) * 1992-08-06 2002-09-09 株式会社日立製作所 車両の診断制御方法
JPH0742632A (ja) * 1993-07-27 1995-02-10 Mitsubishi Electric Corp パージエア制御システムの自己診断装置
JPH0742595A (ja) * 1993-07-29 1995-02-10 Toyota Motor Corp 内燃機関の異常判定装置
JPH07119559A (ja) * 1993-10-26 1995-05-09 Mitsubishi Electric Corp 内燃機関の制御装置
JP3305136B2 (ja) * 1994-10-31 2002-07-22 本田技研工業株式会社 内燃エンジンの燃料供給系の異常検出装置
JPH09209845A (ja) * 1996-01-30 1997-08-12 Hitachi Ltd 内燃機関の制御装置
US6098603A (en) * 1996-12-24 2000-08-08 Denso Corporation Blow-by gas passage abnormality detecting system for internal combustion engines
US6739177B2 (en) * 2001-03-05 2004-05-25 Toyota Jidosha Kabushiki Kaisha Combustible-gas sensor, diagnostic device for intake-oxygen concentration sensor, and air-fuel ratio control device for internal combustion engines
JP4061528B2 (ja) * 2001-12-27 2008-03-19 株式会社デンソー 車両の異常診断装置
WO2005001273A1 (ja) * 2003-06-30 2005-01-06 Hitachi, Ltd. エバポリーク診断装置及び方法及び内燃機関の制御装置
JP4531597B2 (ja) * 2005-03-15 2010-08-25 本田技研工業株式会社 内燃機関の制御装置
US8122758B2 (en) * 2008-02-21 2012-02-28 GM Global Technology Operations LLC Purge valve leak diagnostic systems and methods
US8439017B2 (en) * 2009-10-06 2013-05-14 Ford Global Technologies, Llc Diagnostic strategy for a fuel vapor control system
JP2013160156A (ja) * 2012-02-06 2013-08-19 Honda Motor Co Ltd 内燃機関の故障判定装置および車両
US9188045B2 (en) * 2012-08-30 2015-11-17 Ford Global Technologies, Llc Non-intrusive exhaust gas sensor monitoring based on fuel vapor purge operation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04238241A (ja) * 1991-01-23 1992-08-26 Nissan Motor Co Ltd 内燃機関の自己診断装置
JP2003120380A (ja) * 2001-10-16 2003-04-23 Honda Motor Co Ltd 内燃機関の制御装置
JP2005315132A (ja) * 2004-04-28 2005-11-10 Honda Motor Co Ltd 内燃機関の吸気系異常検出装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017210884A (ja) * 2016-05-23 2017-11-30 トヨタ自動車株式会社 内燃機関装置

Also Published As

Publication number Publication date
JP6371384B2 (ja) 2018-08-08
JPWO2015178048A1 (ja) 2017-04-20
US20170074198A1 (en) 2017-03-16

Similar Documents

Publication Publication Date Title
US8844272B2 (en) Particulate filter regeneration during engine shutdown
JP4479830B2 (ja) 動力出力装置及びこれを搭載する車両並びに動力出力装置の制御方法
US20170306893A1 (en) System and methods for improving fuel economy
JP5786814B2 (ja) 内燃機関の制御装置および制御方法
US11325579B2 (en) Controller and control method for hybrid vehicle
US10690065B2 (en) Control device of vehicle
JP5704109B2 (ja) ハイブリッド車両
CN111963325A (zh) 用于发动机控制的方法和系统
WO2009150859A1 (ja) 内燃機関装置およびその制御方法並びに車両
JP4420024B2 (ja) 内燃機関の制御装置および内燃機関の制御方法
JP6371384B2 (ja) 異常判定装置
JP7070217B2 (ja) 内燃機関の制御装置
US8423212B2 (en) Vehicle control apparatus
CN113513431A (zh) 发动机装置及具备该发动机装置的混合动力汽车
JP5229035B2 (ja) 車両の制御装置
JP2012255374A (ja) エンジンブレーキ制御装置
JP2018105214A (ja) 自動車
CN115217657B (zh) 用于内燃机的控制设备
JP5516226B2 (ja) 内燃機関装置および自動車
JP6451492B2 (ja) エンジン装置
JP2017210884A (ja) 内燃機関装置
JP6304051B2 (ja) ハイブリッド自動車
JP2015218713A (ja) 内燃機関の制御装置
JP2023161873A (ja) 車両の制御システム
JP2009264233A (ja) 内燃機関装置、それを備えるハイブリッド自動車および内燃機関装置の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15796914

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016520952

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15311293

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15796914

Country of ref document: EP

Kind code of ref document: A1