JP2015218713A - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP2015218713A
JP2015218713A JP2014105451A JP2014105451A JP2015218713A JP 2015218713 A JP2015218713 A JP 2015218713A JP 2014105451 A JP2014105451 A JP 2014105451A JP 2014105451 A JP2014105451 A JP 2014105451A JP 2015218713 A JP2015218713 A JP 2015218713A
Authority
JP
Japan
Prior art keywords
amount
internal combustion
combustion engine
fuel ratio
nox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014105451A
Other languages
English (en)
Inventor
善仁 菅野
Yoshihito Sugano
善仁 菅野
鈴木 直人
Naoto Suzuki
直人 鈴木
木下 剛生
Takeo Kinoshita
剛生 木下
太輔 泉岡
Daisuke Izuoka
太輔 泉岡
泰毅 森田
Yasutake Morita
泰毅 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014105451A priority Critical patent/JP2015218713A/ja
Publication of JP2015218713A publication Critical patent/JP2015218713A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】始動時に吸気ポートや燃焼室に付着する燃料を低減でき、始動時の排気エミッションを低減可能な内燃機関の制御装置を提供する。
【解決手段】本発明の制御装置は、NOx吸蔵還元触媒が排気浄化触媒18として排気通路14に設けられ、かつ理論空燃比よりリーンの空燃比で運転可能な内燃機関10に適用される。本発明の制御装置は、内燃機関10の始動時に、排気浄化触媒18に吸蔵されているNOx量が所定の判定量未満であり、かつ排気浄化触媒18の温度が所定の活性温度域内である場合、内燃機関10の始動時の空燃比が理論空燃比よりリーンの空燃比になるように内燃機関10を始動可能な範囲内で内燃機関10に供給する燃料量を調整する。
【選択図】図2

Description

本発明は、NOx吸蔵還元触媒が排気通路に設けられ、かつ理論空燃比よりリーンの空燃比で運転可能な内燃機関に適用される制御装置に関する。
排気の空燃比が理論空燃比よりリーンの空燃比のときに窒素酸化物(NOx)を吸蔵し、排気の空燃比が理論空燃比又は理論空燃比よりリッチ側の空燃比のときに吸蔵しているNOxを放出して排気中の炭化水素(HC)、一酸化炭素(CO)成分を用いてそのNOxを還元浄化するNOx吸蔵還元触媒(以下、NOx触媒と略称することがある。)が知られている。このようなNOx触媒が排気通路に設けられた内燃機関に適用される制御装置として、始動時に内燃機関に供給する燃料量の増量値をNOx触媒に吸蔵されているNOx量が多いほど増加させる制御装置が知られている(特許文献1参照)。その他、本発明に関連する先行技術文献として特許文献2、3が存在する。
特開2006−132506号公報 特開2013−047467号公報 特開2007−138757号公報
始動時に内燃機関の温度が低い場合、吸気ポートや燃焼室に付着した燃料が気化し難くなる。空燃比が理論空燃比よりもリーンになるように、内燃機関を始動可能な範囲内で燃料量を低減することにより、吸気ポートや燃焼室に付着する燃料量を低減できる。しかしながら、特許文献1には、このような燃料の付着を考慮して燃料量を調整していない。
そこで、本発明は、始動時に吸気ポートや燃焼室に付着する燃料を低減でき、始動時の排気エミッションを低減可能な内燃機関の制御装置を提供することを目的とする。
本発明の制御装置は、排気の空燃比が理論空燃比よりリーンであり、かつ所定の活性温度域内においてNOxの吸蔵性能を発揮するNOx吸蔵還元触媒が排気通路に設けられ、かつ前記理論空燃比よりリーンの空燃比で運転可能な内燃機関に適用され、前記内燃機関に供給する燃料量を調整する燃料量調整手段を備えた制御装置において、前記NOx吸蔵還元触媒に吸蔵されているNOx量を取得するNOx量取得手段と、前記NOx吸蔵還元触媒の温度を取得する温度取得手段と、をさらに備え、前記燃料量調整手段は、前記内燃機関の始動時に、前記NOx量取得手段により取得されたNOx量が所定の判定量未満であり、かつ前記温度取得手段により取得された前記NOx吸蔵還元触媒の温度が前記活性温度域内である場合、前記内燃機関の始動時の空燃比が前記理論空燃比よりリーンの空燃比になるように前記内燃機関を始動可能な範囲内で前記内燃機関に供給する燃料量を調整する(請求項1)。
本発明の制御装置によれば、NOx吸蔵還元触媒に吸蔵されているNOx量が判定量未満であり、かつNOx吸蔵還元触媒の温度が活性温度域内である場合には、内燃機関の空燃比が理論空燃比よりリーンになるように燃料量を調整する。この場合、内燃機関に供給される燃料量が低減されるので、内燃機関の吸気ポートや気筒内に付着する燃料を低減できる。そのため、排気微粒子(PM、Particulate Matter)の量を低減できる。また、このように燃料量を調整することにより、排気中のNOxをNOx吸蔵還元触媒に吸蔵できる。したがって、始動時の排気エミッションを低減できる。さらに、このように燃料量を調整することにより、燃料消費量を低減できる。
本発明の一形態に係る制御装置が組み込まれた内燃機関が搭載された車両を概略的に示す図。 ECUが実行する始動時噴射制御ルーチンを示すフローチャート。
以下、本発明の制御装置をハイブリッド車両に搭載された内燃機関に適用した一形態を説明する。図1は、ハイブリッド車両1を概略的に示している。車両1は、内燃機関(以下、エンジンと称することがある。)10と、第1モータ・ジェネレータ(以下、第1MGと略称することがある。)2と、第2モータ・ジェネレータ(以下、第2MGと略称することがある。)3とを備えている。エンジン10は、4つの気筒11が一方向に並べられた直列4気筒の火花点火式の4サイクル内燃機関として構成されている。また、エンジン10は、理論空燃比よりもリーンの空燃比で運転可能なエンジン、いわゆるリーンバーンエンジンとして構成されている。
第1MG2及び第2MG3は、ハイブリッド車両に搭載されて電動機及び発電機として機能する周知のものである。そのため、これらの詳細な説明を省略する。エンジン10の出力軸12、第1MG2の出力軸2a、及び第2MG3の出力軸3aは、動力分割機構4に接続されている。動力分割機構4は、エンジン10、第1MG2、及び第2MG3の接続状態を切り替えてエンジン10、第1MG2、及び第2MG3の出力の伝達先を切り替える周知のものである。動力分割機構4には、例えば遊星歯車機構等が用いられる。動力分割機構4からの出力は、デファレンシャル機構等の伝達機構5を介して駆動輪6に伝達される。
エンジン10の各気筒11には、吸気通路13及び排気通路14がそれぞれ接続されている。吸気通路13には、吸気を濾過するためのエアフィルタ15及び吸気量を調整するためのスロットルバルブ16が設けられている。吸気通路13は、各気筒11の吸気ポート13aを含んでいる。各吸気ポート13aには、インジェクタ17が設けられている。インジェクタ17は、吸気ポート13a内に燃料を噴射可能な周知のものである。
排気通路14には、排気を浄化するための排気浄化触媒18が設けられている。この排気浄化触媒18としては、NOx吸蔵還元触媒(NOx触媒)が設けられている。このNOx触媒は、触媒の温度が所定の活性温度域内であり、かつ排気の空燃比が理論空燃比よりリーンの場合に排気中のNOxを吸蔵し、排気の空燃比が理論空燃比又は理論空燃比よりリッチの場合に吸蔵しているNOxを放出するとともにそのNOxを排気中のHC、CO成分を用いて還元浄化する周知のものである。そのため、詳細な説明は省略する。
エンジン10及び各MG2、3は、電子制御装置(ECU)20にて制御される。ECU20は、マイクロプロセッサ及びその動作に必要なRAM、ROM等の周辺機器を含んだコンピュータユニットとして構成されている。ECU20は、車両1を適切に走行させるための各種制御プログラムを保持している。ECU20は、これらのプログラムを実行することによりエンジン10及び各MG2、3等の制御対象に対する制御を行っている。ECU20は、例えばエンジン10の停止時にエンジン10を始動すべき所定の始動条件が成立した場合、エンジン10が始動されるように第1MG2を制御する。また、ECU20は、例えばエンジン10の回転数及び負荷等に基づいて各気筒11に供給すべき燃料量を算出し、算出した燃料量の燃料が各気筒11に供給されるように各インジェクタ17の動作を制御する。ECU20には、車両1に係る情報を取得するための種々のセンサが接続されている。ECU10には、例えばエアフローメータ21、冷却水温センサ22、床温センサ23、及びA/Fセンサ24等が接続されている。エアフローメータ21は、吸気量に対応した信号を出力する。冷却水温センサ22は、エンジン10の冷却水の温度に対応した信号を出力する。床温センサ23は、排気浄化触媒18の温度に対応した信号を出力する。A/Fセンサ24は、排気の空燃比(A/F)に対応した信号を出力する。ECU20には、この他にも車両1の速度(車速)に対応した信号を出力する車速センサ及びアクセル開度に対応した信号を出力するアクセル開度センサ(いずれも不図示)等の種々のセンサやスイッチ等が接続されているが、それらの図示は省略した。
次にECU20が実行する制御の一部について説明する。この車両1には、第2MG3のみで駆動輪6を駆動するEVモード、及び主にエンジン10で駆動輪6を駆動し、車両1への要求駆動力が大きい場合には第2MG3でアシストするハイブリッドモード等が走行モードとして設けられている。ECU20は、車両1の走行状態に応じて車両1の走行モードを切り替える。具体的には、ECU20は、車速が所定の判定速度未満の場合に走行モードをEVモードに切り替え、車速が判定速度以上の場合に走行モードをハイブリッドモードに切り替える。なお、この走行モードの切替方法は、ハイブリッド車両に適用される周知の切替方法と同じである。そのため、切替方法の詳細な説明は省略する。
走行モードをハイブリッドモードからEVモードに切り替える場合、ECU20はエンジン10を停止させる。一方、走行モードをEVモードからハイブリッドモードに切り替える場合には、ECU20はエンジン10を始動する。図2は、エンジン10を始動する際に各インジェクタ17を制御するためにECU20が実行する始動時噴射制御ルーチンを示している。この制御ルーチンは、エンジン10の停止時に所定の周期で繰り返し実行される。
この制御ルーチンにおいてECU20は、まずステップS11で所定の始動条件が成立したか否か判定する。この始動条件は、例えば上述したように走行モードをEVモードからハイブリッドモードに切り替える場合、すなわち車速が判定速度未満から判定速度以上になった場合に成立したと判定される。始動条件が不成立と判定した場合は、今回の制御ルーチンを終了する。
一方、始動条件が成立したと判定した場合はステップS12に進み、ECU20は車両1の状態を取得する。車両1の状態としては、吸気量、エンジン10の冷却水の温度、排気浄化触媒18の温度、排気の空燃比、車速、及びアクセル開度などが取得される。また、この処理では、排気浄化触媒18に吸蔵されているNOx量(以下、NOx吸蔵量と称することがある。)、燃焼室内の温度、車両1の始動後のエンジン10の延べ運転時間、車両1の始動後のエンジン10の再始動回数、直近のエンジン10の運転時間、及び直近のエンジン10の停止時間も取得される。なお、車両1の始動後とは、今回ドライバが車両1のスタートボタンやスタートキー等を操作して車両1の走行準備を完了した後のことである。
ECU20は、この制御ルーチンとは別のルーチンにおいてNOx吸蔵量を表すカウンタの値をエンジン10の運転状態に応じて増減している。周知のように、エンジン10から排出されるNOx量は、燃料噴射量、機関回転数、及び吸気量等に基づいて推定できる。そして、排気浄化触媒18に吸蔵されるNOx量は、排気流量、触媒に流入する排気のNOx量、及びNOx吸蔵量に基づいて推定できる。そこで、排気の空燃比が理論空燃比よりリーンであり、かつ排気浄化触媒18の温度が活性温度域内の場合には、これらに基づいてカウンタの値を増加させればよい。一方、排気浄化触媒18から放出されるNOx量は、排気流量(より詳しくは排気浄化触媒18に流入するHC、CO成分の量)及び排気の空燃比に基づいて推定できる。そこで、排気の空燃比が理論空燃比又は理論空燃比よりリッチの場合には、これらに基づいてカウンタの値を減少させればよい。なお、このようなNOx吸蔵量の推定方法は周知の方法を用いればよいので、詳細な説明は省略する。そして、ECU20は、このカウンタの値をNOx吸蔵量として取得する。
燃焼室内の温度は、エンジン10の冷却水の温度に基づいて周知の推定方法で算出すればよい。車両1の始動後のエンジン10の延べ運転時間、車両1の始動後のエンジン10の再始動回数、直近のエンジン10の運転時間、及び直近のエンジン10の停止時間についても上述したNOx吸蔵量と同様に、この制御ルーチンとは別のルーチンにおいてこれらの時間や回数をタイマやカウンタでカウントすればよい。そして、この処理では、それらタイマやカウンタの値を取得すればよい。
次のステップS13においてECU20は、エンジン10に要求される出力を算出する。この出力は、車速及びアクセル開度等に基づいて周知の方法で算出すればよい。続くステップS14においてECU20は、基本噴射量を算出する。この基本噴射量は、エンジン10の空燃比が理論空燃比になる燃料量である。そのため、基本噴射量は、例えば算出した要求出力及び吸気量等に基づいて周知の方法で算出すればよい。
次のステップS15においてECU20は、NOx吸蔵量が予め設定した所定の判定量未満か否か判定する。NOx吸蔵量の最大値は、排気浄化触媒18の容量に応じて定まる。そこで、NOx吸蔵量がこの判定量以上の場合には、排気の空燃比を理論空燃比よりリッチにして排気浄化触媒18からNOxを放出させ、そのNOxを還元浄化する。そして、これによりNOx吸蔵量が最大値になることを防止する。このように判定量は、排気浄化触媒18からNOxを放出させるか否か判定する基準として設定される値である。判定量は、例えば排気浄化触媒18の容量等に応じて適宜に設定すればよい。
NOx吸蔵量が判定量以上と判定した場合はステップS16に進み、ECU20はNOx還元補正係数を算出する。補正係数は、基本噴射量に乗じてインジェクタ17から噴射すべき燃料量を算出するための係数である。NOx還元補正係数は、この補正係数を基本噴射量に乗じて算出される燃料量の燃料をインジェクタ17から噴射した場合に、排気の空燃比が、排気浄化触媒18からNOxを放出でき、かつそのNOxを排気中のHC、CO成分で還元浄化できる空燃比になるように設定される。そのため、排気の空燃比が理論空燃比よりリッチになるように「1」より大きい値が設定される。
一方、NOx吸蔵量が判定量未満と判定した場合はステップS17に進み、ECU20は排気浄化触媒18の温度が活性温度域内か否か判定する。排気浄化触媒18の温度が活性温度域内の温度であると判定した場合はステップS18に進み、ECU20はリーン補正係数を算出する。リーン補正係数は、この補正係数で補正した燃料量の燃料をインジェクタ17から噴射した場合に、エンジン10を始動可能な範囲内すなわちエンジン10で失火なく燃料を燃焼できる範囲内で排気の空燃比が理論空燃比よりリーンになるように設定される。より具体的には、この範囲内で空燃比が最もリーンになるように設定される。そのため、リーン補正係数には「1」未満の値が設定される。
一方、排気浄化触媒18の温度が活性温度域外の温度であると判定した場合はステップS19に進み、ECU20は通常補正係数を算出する。通常補正係数は、この補正係数で補正した燃料量の燃料をインジェクタ17から噴射した場合、空燃比が理論空燃比よりリッチになるように設定される。ただし、この場合には排気浄化触媒18からNOxを放出させる必要がないため、エンジン10を速やかに始動できる程度に燃料量が増量補正される。そのため、通常補正係数には「1」より大きい値が設定される。この通常補正係数は、例えば、燃焼室内の温度、車両1の始動後のエンジン10の延べ運転時間、車両1の始動後のエンジン10の再始動回数、直近のエンジン10の運転時間、及び直近のエンジン10の停止時間に基づいて算出される。例えば、燃焼室内の温度が高いほど、通常補正係数を小さくする。また、直近のエンジン10の運転時間が長いほど、通常補正係数を小さくする。直近のエンジン10の停止時間が長いほど、通常補正係数を大きくする。燃焼室内の温度が高い場合、噴射した燃料の気化が促進される。そのため、点火前の燃焼室内をストイキ雰囲気にするために噴射する必要量は小さくなる。また、燃焼室内の温度が高いときに補正係数を必要以上に大きくするとCO、HC、PMの増加を引き起こす。そこで、このように通常補正係数を算出する。
ステップS16、ステップS18、又はステップS19で補正係数を算出した後はステップS20に進み、ECU20は基本噴射量に補正係数を乗じて燃料量を算出する。続くステップS21においてECU20は噴射制御を実行する。この噴射制御では、算出した燃料量の燃料が各インジェクタ17から適宜のタイミングで噴射されるように各インジェクタ17を制御する。
次のステップS22においてECU20は、エンジン10が始動したか否か判定する。エンジン10が始動したか否かは、例えばエンジン10の回転数に基づいて判定すればよい。例えば、エンジン10の回転数がエンジン10が完爆状態を得られたときの回転数よりも大きくなった場合にエンジン10が始動したと判定すればよい。エンジン10が始動していないと判定した場合はステップS12に戻り、エンジン10が始動するまでステップS12〜S22の処理を繰り返し実行する。一方、エンジン10が始動したと判定した場合は、今回の制御ルーチンを終了する。
以上に説明したように、本発明によれば、エンジン10の始動時にNOx吸蔵量が判定量未満であり、かつ排気浄化触媒18の温度が活性温度域内の場合には、エンジン10の空燃比が理論空燃比よりリーンになるように燃料量を調整する。この場合、エンジン10に供給される燃料量が低減されるので、始動時に吸気ポート13aや気筒11内に付着する燃料を低減できる。そのため、排気微粒子(PM)の量を低減できる。また、このように燃料量を調整することにより、排気中のNOxを排気浄化触媒18に吸蔵できる。したがって、始動時の排気エミッションを低減できる。さらに、このように燃料量を低減することにより、燃料消費量を低減できる。
一方、NOx吸蔵量が判定量以上の場合には、空燃比が理論空燃比よりリッチになるように燃料量を調整するので、排気浄化触媒18からNOxを放出させて還元浄化できる。そのため、排気浄化触媒18の排気浄化性能を確保できる。そして、NOx吸蔵量が判定量未満でも排気浄化触媒18の温度が活性温度域外の場合には、空燃比が理論空燃比よりリッチになるように燃料量を調整するので、エンジン10を速やかに始動できる。
なお、上述した形態では、NOx吸蔵量が判定量未満であり、かつ排気浄化触媒18の温度が活性温度域内の場合、エンジン10を始動可能な範囲内で空燃比が最もリーンになるように燃料量を調整したが、この際の燃料量はこの値に限定されない。エンジン10を始動可能な範囲内で空燃比が理論空燃比よりリーンになる適宜の燃料量に調整してよい。このように燃料量を調整しても始動時に吸気ポート13aや気筒11内に付着する燃料を低減できるので、PMを低減できる。また、排気中のNOxを排気浄化触媒18に吸蔵できる。したがって、始動時の排気エミッションを低減できる。また、燃料消費量を低減できる。
なお、上述した形態では、排気浄化触媒18が本発明のNOx吸蔵還元触媒に相当する。図2の制御ルーチンを実行することにより、ECU20が本発明の燃料量調整手段として機能する。図2のステップS12を実行することにより、ECU20が本発明のNOx量取得手段として機能する。また、同ステップS12を実行することにより、床温センサ23及びECU20が本発明の温度取得手段として機能する。
本発明は、上述した形態に限定されることなく、種々の形態にて実施することができる。例えば、本発明は、吸気ポートに燃料を噴射するポート噴射型の内燃機関に限定されず、気筒内に直接燃料を噴射する直噴型の内燃機関に適用してもよい。また、ディーゼル内燃機関に本発明を適用してもよい。
本発明が適用される内燃機関が搭載されるハイブリッド車両は、シリーズ型、パラレル型、及びシリーズパラレル型のいずれの形式のハイブリッド車両であってもよい。また、本発明が適用される内燃機関は、ハイブリッド車両に搭載される内燃機関に限定されない。例えば、停車時に内燃機関を停止させ、その停車中にドライバがアクセルペダル等を操作した場合に内燃機関を始動するアイドリングストップ制御が実行される車両の内燃機関に適用してもよい。また、減速時に発電機等で回生発電を行い、その電気をバッテリに充電する車両の内燃機関に本発明を適用してもよい。
本発明が適用される内燃機関の排気通路には、NOx吸蔵還元触媒の他に三元触媒等の排気浄化用の触媒やパティキュレートフィルタ等が設けられていてもよい。
上述した形態では、内燃機関の運転状態に基づいてNOx吸蔵量を推定したが、NOx吸蔵量を取得する方法はこの方法に限定されない。例えば、NOx吸蔵還元触媒の前後にNOxセンサを設け、それらNOxセンサの出力信号に基づいてNOx吸蔵量を推定してもよい。また、燃焼室内の温度を取得する方法は内燃機関の冷却水の温度に基づいて推定する方法に限定されず、燃焼室内の温度を取得可能な温度センサを設けて燃焼室内の温度を取得してもよい。
10 内燃機関
14 排気通路
18 排気浄化触媒(NOx吸蔵還元触媒)
20 電子制御装置(燃料量調整手段、NOx量取得手段、温度取得手段)
23 床温センサ(温度取得手段)

Claims (1)

  1. 排気の空燃比が理論空燃比よりリーンであり、かつ所定の活性温度域内においてNOxの吸蔵性能を発揮するNOx吸蔵還元触媒が排気通路に設けられ、かつ前記理論空燃比よりリーンの空燃比で運転可能な内燃機関に適用され、
    前記内燃機関に供給する燃料量を調整する燃料量調整手段を備えた制御装置において、
    前記NOx吸蔵還元触媒に吸蔵されているNOx量を取得するNOx量取得手段と、前記NOx吸蔵還元触媒の温度を取得する温度取得手段と、をさらに備え、
    前記燃料量調整手段は、前記内燃機関の始動時に、前記NOx量取得手段により取得されたNOx量が所定の判定量未満であり、かつ前記温度取得手段により取得された前記NOx吸蔵還元触媒の温度が前記活性温度域内である場合、前記内燃機関の始動時の空燃比が前記理論空燃比よりリーンの空燃比になるように前記内燃機関を始動可能な範囲内で前記内燃機関に供給する燃料量を調整する制御装置。
JP2014105451A 2014-05-21 2014-05-21 内燃機関の制御装置 Pending JP2015218713A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014105451A JP2015218713A (ja) 2014-05-21 2014-05-21 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014105451A JP2015218713A (ja) 2014-05-21 2014-05-21 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
JP2015218713A true JP2015218713A (ja) 2015-12-07

Family

ID=54778289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014105451A Pending JP2015218713A (ja) 2014-05-21 2014-05-21 内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP2015218713A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018119410A (ja) * 2017-01-23 2018-08-02 マツダ株式会社 排気浄化装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018119410A (ja) * 2017-01-23 2018-08-02 マツダ株式会社 排気浄化装置
DE102017011196B4 (de) 2017-01-23 2022-08-11 Mazda Motor Corporation Abgasemissions-Regel- bzw. Steuersystem, Verfahren zum Regeln bzw. Steuern von Abgasemissionen und Computerprogrammprodukt

Similar Documents

Publication Publication Date Title
US9821795B2 (en) Hybrid vehicle and control method for hybrid vehicle
US8844272B2 (en) Particulate filter regeneration during engine shutdown
JP4453235B2 (ja) 内燃機関の排気浄化装置
US9222420B2 (en) NOx control during cylinder deactivation
US20100251996A1 (en) Power output apparatus, hybrid vehicle provided with same, and control method of power output apparatus
US10690065B2 (en) Control device of vehicle
JP2015128935A (ja) ハイブリッド車両
JP2005273530A (ja) 内燃機関の制御装置およびこれを備える自動車
JP5267622B2 (ja) 動力装置の制御装置
JP4420024B2 (ja) 内燃機関の制御装置および内燃機関の制御方法
US11067025B2 (en) Controller for vehicle and method for controlling vehicle
JP6222323B2 (ja) ハイブリッド車両
CN113513431A (zh) 发动机装置及具备该发动机装置的混合动力汽车
JP2019048580A (ja) ハイブリッド車両の制御方法及びハイブリッド車両の制御装置
CN110821606A (zh) 内燃机的控制装置及方法
JP2015218713A (ja) 内燃機関の制御装置
CN110821697B (zh) 内燃机的控制装置和方法
JP2011084202A (ja) 動力出力装置、それを備えたハイブリッド車両および動力出力装置の制御方法
JP2020023907A (ja) 内燃機関の制御装置
JP2020185965A (ja) ハイブリッド車両の制御装置
CN113530698B (zh) 发动机装置及具备该发动机装置的混合动力车
JP2015051743A (ja) ハイブリッド車両の制御装置
JP2016056724A (ja) 内燃機関の触媒劣化判定装置
JP6015537B2 (ja) エンジン制御装置
JP2021109549A (ja) 車両制御装置