WO2015174652A1 - 리튬바나듐지르코늄포스페이트를 포함하는 리튬이온전지의 양극활물질 및 그를 포함하는 리튬이온전지 - Google Patents

리튬바나듐지르코늄포스페이트를 포함하는 리튬이온전지의 양극활물질 및 그를 포함하는 리튬이온전지 Download PDF

Info

Publication number
WO2015174652A1
WO2015174652A1 PCT/KR2015/004046 KR2015004046W WO2015174652A1 WO 2015174652 A1 WO2015174652 A1 WO 2015174652A1 KR 2015004046 W KR2015004046 W KR 2015004046W WO 2015174652 A1 WO2015174652 A1 WO 2015174652A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
ion battery
active material
lithium ion
precursor
Prior art date
Application number
PCT/KR2015/004046
Other languages
English (en)
French (fr)
Inventor
강용묵
강승호
한동욱
Original Assignee
동국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동국대학교 산학협력단 filed Critical 동국대학교 산학협력단
Priority to US15/309,248 priority Critical patent/US10270098B2/en
Publication of WO2015174652A1 publication Critical patent/WO2015174652A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material of a lithium ion battery, and more particularly, to a positive electrode active material of a lithium ion battery having improved initial capacity and charge / discharge efficiency due to an increase in electrical conductivity or ion conductivity.
  • Lithium-ion battery has become the main character of secondary battery by surpassing the previously developed nickel-cadmium battery or nickel-hydrogen battery due to its high energy density and long lifespan of 75 ⁇ 160 Wh / kg.
  • lithium vanadium phosphate Li 3 V 2 (PO 4 ) 3
  • a high theoretical capacity 197 mAh / g
  • an average redox voltage at 4.0V due to its inherent low electrical conductivity, there is a big problem in commercial use.
  • conductive carbon coating, nanostructure, etc. has been proposed as a solution, but practicality is poor.
  • the present invention stabilizes the phosphate crystal structure by performing zirconium (Zr) substitution on lithium vanadium phosphate (Li 3 V 2 (PO 4 ) 3 ), and simultaneously generates a small amount of the ion conductor LiZr 2 (PO 4 ) 3 on the surface of the phosphate particles.
  • Zr zirconium
  • LiZr 2 (PO 4 ) 3 lithium vanadium phosphate
  • the present invention stabilizes the phosphate crystal structure by performing zirconium (Zr) substitution on lithium vanadium phosphate (Li 3 V 2 (PO 4 ) 3 ), and simultaneously generates a small amount of the ion conductor LiZr 2 (PO 4 ) 3 on the surface of the phosphate particles.
  • the present invention provides a positive electrode active material of a lithium ion battery including lithium vanadium zirconium phosphate (Li 3 V 2-x Zr x (PO 4 ) 3 ) particles substituted with zirconium having excellent electrochemical properties by increasing structural stability and ion conductivity.
  • the purpose is to provide.
  • an object of the present invention is to provide a positive electrode and a lithium ion battery of a lithium ion battery containing the positive electrode active material of the lithium ion battery of the present invention.
  • the present invention provides a cathode active material of a lithium ion battery including lithium vanadium phosphate (Li 3 V 2 (PO 4 ) 3 ) and lithium zirconium phosphate (LiZr 2 (PO 4 ) 3 ) formed on an outer surface of the lithium vanadium phosphate. do.
  • Some of the vanadium of the lithium vanadium phosphate may be substituted with zirconium.
  • the cathode active material of the lithium ion battery may be represented by the following Chemical Formula 1.
  • the cathode active material of the lithium ion battery may further include a carbon-containing material.
  • the cathode active material of the lithium ion battery may be prepared by a manufacturing method comprising the following steps.
  • the carbon precursor may be preferably used one or more selected from the group consisting of sucrose, citric acid, malic acid, and tartaric acid.
  • the lithium precursor is lithium carbonate (Lithium carbonate), lithium hydroxide (Lithium hydroxide), lithium acetate (Lithium acetate), lithium nitrate (Lithium nitrate) and lithium acetylacetonate (Lithium acetylacetonate)
  • the above can be used preferably.
  • the vanadium precursor may be preferably used at least one selected from the group consisting of vanadium pentoxide, vanadium dioxide, vanadium chloride, and vanadil acetylacetonate. .
  • the zirconium precursor may be preferably one or more selected from the group consisting of zirconium hydroxide, zirconium acetate, and zirconium nitride.
  • the phosphorus precursor may be preferably used one or more selected from the group consisting of ammonium dihydrogen phosphate and phosphoric acid.
  • one or more additives selected from the group consisting of aluminum precursors, molybdenum precursors, and chromium precursors may be further added.
  • the step S2 may be made by drying the mixture prepared in step S1 for 6 to 12 hours at a temperature of 120 °C.
  • the S3 step is preferably made in a reducing atmosphere.
  • the S3 step may be made by heat-treating the dry powder for 6 to 48 hours at a temperature of 650 to 850 °C.
  • the step S3 is the first heat treatment of the dry powder for 1 to 6 hours at a temperature of 100 to 120 °C, the second heat treatment for 6 to 12 hours at a temperature of 500 to 550 °C, 6 at a temperature of 650 to 850 °C By a third heat treatment for 24 hours.
  • the present invention also provides a cathode of a lithium ion battery comprising the cathode active material and a lithium ion battery comprising the same.
  • the positive electrode active material of a lithium ion battery including zirconium-doped lithium vanadium zirconium phosphate (Li 3 V 2-x Zr x (PO 4 ) 3 ) particles prepared according to the method of the present invention has a high capacity and a structure. Stability and ion conductivity are increased to have excellent electrochemical properties.
  • FIG. 1 and 2 are graphs showing the results of X-ray diffraction analysis and Rietveld analysis of lithium vanadium zirconium phosphate composite particles prepared according to Example 1.
  • FIG. 1 and 2 are graphs showing the results of X-ray diffraction analysis and Rietveld analysis of lithium vanadium zirconium phosphate composite particles prepared according to Example 1.
  • 3 to 5 are scanning electron microscope analysis results of lithium vanadium zirconium phosphate and lithium vannadium phosphate prepared according to Example 1;
  • 6 to 10 are graphs showing the results of electrochemical analysis measured in accordance with Experimental Example 3.
  • FIG. 11 and 12 are graphs showing the impedance curve analysis results of Experimental Example 4.
  • FIG. 11 and 12 are graphs showing the impedance curve analysis results of Experimental Example 4.
  • FIG. 14 and 15 show the results of X-ray photoelectron spectroscopy analysis of lithium vanadium zirconium phosphate (Li 3 V 2-x Zr x (PO 4 ) 3 ) of Example 1.
  • FIG. 14 and 15 show the results of X-ray photoelectron spectroscopy analysis of lithium vanadium zirconium phosphate (Li 3 V 2-x Zr x (PO 4 ) 3 ) of Example 1.
  • FIG. 14 and 15 show the results of X-ray photoelectron spectroscopy analysis of lithium vanadium zirconium phosphate (Li 3 V 2-x Zr x (PO 4 ) 3 ) of Example 1.
  • FIG. 14 and 15 show the results of X-ray photoelectron spectroscopy analysis of lithium vanadium zirconium phosphate (Li 3 V 2-x Zr x (PO 4 ) 3 ) of Example 1.
  • FIG. 14 and 15 show the results of X-ray photoelectron spectroscopy analysis
  • the cathode active material of the lithium ion battery of the present invention includes lithium vanadium phosphate (Li 3 V 2 (PO 4 ) 3 ) and lithium zirconium phosphate (LiZr 2 (PO 4 ) 3 ) formed on the outer surface of the lithium vanadium phosphate. Some of the vanadium of lithium vanadium phosphate is substituted with zirconium.
  • LiZr 2 (PO 4 ) 3 which is a Li ion conductor, is formed on the surface by Zr doping in lithium vanadium phosphate to improve Li ion conductivity. Internally, V 3+ -V 4+ redox is avoided by Zr 4+ doping at some of the V sites, resulting in increased structural stability.
  • the cathode active material of the lithium ion battery of the present invention may be represented by the following formula (1).
  • the cathode active material of the lithium ion battery of the present invention may further include a carbon-containing material, which is a carbon precursor remaining during the production of the cathode active material.
  • the cathode active material of the lithium ion battery of the present invention may be prepared by a manufacturing method comprising the following steps.
  • a carbon precursor, a lithium precursor, a vanadium precursor, a zirconium precursor, and a phosphorus precursor are added to a solvent and then mixed (S1).
  • the carbon precursor may be preferably used one or more selected from the group consisting of sucrose, citric acid, malic acid, and tartaric acid.
  • the carbon precursor remains below 1 wt% after the manufacturing process, and the carbon precursor acts as an activator to form a LiZr 2 (PO 4 ) 3 layer on the surface.
  • the carbon precursor serves to suppress oxidation of V in lithium vanadium phosphate (Li 3 V (PO 4 ) 3 ) as a reducing agent, thereby producing excellent crystalline Li 3 V (PO 4 ) 3 , and corresponding temperature range (650 ⁇ Residual carbon remaining after heat treatment at 750 ° C. serves to improve the electrical conductivity of Li 3 V (PO 4 ) 3 .
  • the lithium precursor is lithium carbonate (Lithium carbonate), lithium hydroxide (Lithium hydroxide), lithium acetate (Lithium acetate), lithium nitrate (Lithium nitrate) and lithium acetylacetonate (Lithium acetylacetonate)
  • the above can be used preferably.
  • the vanadium precursor may be preferably used at least one selected from the group consisting of vanadium pentoxide, vanadium dioxide, vanadium chloride, and vanadil acetylacetonate. .
  • the zirconium precursor may be preferably one or more selected from the group consisting of zirconium hydroxide, zirconium acetate, and zirconium nitride.
  • the phosphorus precursor may be preferably used one or more selected from the group consisting of ammonium dihydrogen phosphate and phosphoric acid.
  • the lithium precursor, the vanadium precursor, the zirconium precursor and the phosphorus precursor are each added at a molar ratio of 3: 2-x: x: 3 (0 ⁇ x ⁇ 1), and the carbon precursor is a target Li 3 V 2-x Zr x (PO 4 ) 3 is preferably added by 3 to 10% by weight of the final weight.
  • one or more additives selected from the group consisting of aluminum precursor, molybdenum precursor and chromium precursor may be further added in addition to the carbon precursor, the lithium precursor, the vanadium precursor, the zirconium precursor and the phosphorus precursor.
  • aluminum, molybdenum or chromium is contained in the final product produced through the production method of the present invention, which can double the structure stability and ionic conductivity improvement by Zr substitution.
  • This step can be made by drying the mixture prepared in step S1 for 6 to 12 hours at a temperature of 100 ⁇ 150 °C.
  • drying temperature exceeds the upper limit of the above range, there is a problem that precursor properties may change or the transition metal may be oxidized, and if the drying temperature is lower than the lower limit, the solvent may not evaporate completely.
  • the S3 step may be made by heat-treating the dry powder for 6 to 48 hours at a temperature of 650 to 850 °C.
  • This step is also the first heat treatment of the dry powder for 1 to 6 hours at a temperature of 100 to 120 °C, secondary heat treatment for 6 to 12 hours at a temperature of 500 to 550 °C, 6 at a temperature of 650 to 850 °C It is preferably made by the third heat treatment for 24 hours.
  • the heat treatment is performed in three stages to remove moisture during the first stage heat treatment process and to dissociate hetero bonds (-OH, -COOH, NO 3 , SO 4, etc.) attached to the lithium, vanadium, zirconium, and phosphorus precursors during the two stage heat treatment process.
  • hetero bonds -OH, -COOH, NO 3 , SO 4, etc.
  • This step is preferably performed in a reducing atmosphere.
  • the prepared solution was dried for 12 hours at 120 °C in a vacuum atmosphere to remove the organics to complete the powder mixed with each precursor.
  • the lithium vanadium zirconium phosphate (Li 3 V 1.9 Zr 0.1 (PO 4 ) 3 ) composite having x 0.1
  • the lithium zirconium phosphate (LiZr 2 (PO 4 ) 3 ) phase was 12.22 degrees (101)
  • Characteristic peaks appear at 2 theta ( ⁇ ) angles of 23.44 degrees (11-3) and 28.33 degrees (024).
  • FIG. 5 shows lithium vanadium phosphate (Li 3 V 2 (PO 4 ) 3 ) particles in a similar form.
  • FIGS. 6 to 11 The results of electrochemical analysis of lithium vanadium zirconium phosphate (Li 3 V 2-x Zr x (PO 4 ) 3 ) of Example 1 are shown in FIGS. 6 to 11.
  • the measurement results of the charge and discharge characteristics of 50 cycles were shown in FIGS. 8 and 9.
  • charge and discharge were performed at 0.1 C, 0.2 C, 0.5 C, 1 C, 2 C, 5 C, and 10 C at 3.0 to 4.3 V, and the measurement results of the charge and discharge characteristics are shown in FIG. 10.
  • the initial capacity is increased compared to 3 ), and the same oxidation / reduction reaction is shown.
  • As a control the evaluation results of preparing lithium vanadium phosphate (Li 3 V 2 (PO 4 ) 3 ) are also shown.
  • the initial capacity is increased compared to 3 ), and the same oxidation / reduction reaction is shown.
  • As a control the evaluation results of preparing lithium vanadium phosphate (Li 3 V 2 (PO 4 ) 3 ) are also shown.
  • x 0.1 lithium lithium vanadium phosphate (Li 3 V 1.9 Zr 0.1 (PO 4 ) 3 ) compared to the lithium lithium x It can be seen that the life of a lithium ion battery using a vanadium zirconium phosphate (Li 3 V 1.95 Zr 0.05 (PO 4 ) 3 ) composite is improved.
  • FIG. 10 is a discharge curve of the lithium vanadium zirconium phosphate (Li 3 V 2-x Zr x (PO 4 ) 3 ) composite prepared in Preparation Example to analyze the discharge curve in order to examine the change in capacity according to the discharge rate. Indicated. The discharge curve of lithium vanadium phosphate (Li 3 V 2 (PO 4 ) 3 ) as a control is also shown in FIG. 10 together.
  • the control lithium vanadium phosphate (Li 3 V 2 (PO 4 ) 3 ) has a relatively lower capacity as the discharge rate (C-rate) increases from 0.1C to 10C. do.
  • the lithium vanadium zirconium phosphate (Li 3 V 2-x Zr x (PO 4 ) 3 ) composite of the present invention appears to have a small capacity decrease as the discharge rate increases.
  • 11 and 12 show measurement results of Nyquist characteristics before and after discharging the half-cell manufactured by using the positive electrode active material at 0.1 C at 0.01 V at 0.1 Hz to 10 kHz.
  • lithium vanadium phosphate (Li 3 V 2 (PO 4 ) 3 ) Nyquist characteristics were shown.
  • lithium vanadium zirconium phosphate (Li 3 V 1.95 Zr 0.05 (PO 4 ) 3 ) composite having x 0.05 and lithium vanadium zirconium phosphate (Li 3 V 1.9 Zr) before charging and discharging 50 cycles.
  • the increase in Li + conductivity than the 1.9 Zr 0.1 (PO 4 ) 3 ) composite reduced the charge transfer interval and decreased the resistance.
  • the lithium vanadium zirconium phosphate (Li 3 V 2-x Zr x (PO 4 ) 3 ) complex of the present invention has a charge transfer period compared to that of the control lithium vanadium phosphate (Li 3 V 2 (PO 4 ) 3 ).
  • the resistance between the electrolyte and the active material is reduced, the Li + conductivity is improved, so that the characteristics shown in FIGS. 11 and 12 can be reliably confirmed.
  • the transmission electron microscope-EELS (Electron Energy Loss Spectroscopy) analysis of lithium vanadium zirconium phosphate (Li 3 V 2-x Zr x (PO 4 ) 3 ) of Example 1 is shown in FIG. 13.
  • the lithium vanadium zirconium phosphate (Li 3 V 2-x Zr x (PO 4 ) 3 ) of the present invention was well formed on the particle surface of the LiZr 2 (PO 4 ) 3 phase.

Abstract

본 발명은 리튬이온전지의 양극활물질에 대한 것으로, 더욱 상세하게는 전기전도성 또는 이온전도성의 증가로 초기 용량 및 충방전 효율이 향상된 리튬이온전지의 양극활물질에 대한 것이다. 본 발명의 리튬이온전지의 양극활물질은 리튬바나듐포스페이트(Li3V2(PO4)3) 및 상기 리튬바나듐포스페이트의 외면에 형성된 리튬지르코늄포스페이트(LiZr2(PO4)3)를 포함한다. 본 발명의 제조방법을 따라 제조된 리튬 바나듐 지르코늄 포스페이트(Li3V2-xZrx(PO4)3) 입자를 포함하는 리튬이온전지의 양극활물질은 높은 용량을 가짐과 더불어 우수한 구조안정성 및 이온전도도를 갖는다.

Description

리튬바나듐지르코늄포스페이트를 포함하는 리튬이온전지의 양극활물질 및 그를 포함하는 리튬이온전지
본 발명은 리튬이온전지의 양극활물질에 대한 것으로, 더욱 상세하게는 전기전도성 또는 이온전도성의 증가로 초기 용량 및 충방전 효율이 향상된 리튬이온전지의 양극활물질에 대한 것이다.
최근 화석연료의 고갈과 지구온난화 등 자원적 및 환경적인 문제가 대두됨에 따라 신재생에너지에 대한 관심이 커지고 있다. 특히, 전기자동차(EV, electric vehicle), 하이브리드 전기자동차(HEV, hybrid electric vehicle)나 휴대형 전력저장장치, 분산전원장치 등 산업 전반에서 대형화, 고출력, 고에너지 밀도의 에너지 저장장치를 필요로 하기 때문에 이러한 성능을 만족하는 전지의 개발이 산업계의 가장 중요한 이슈 중 하나가 되고 있다.
리튬이온전지는 75~160 Wh/kg 정도의 고 에너지 밀도와 장수명의 특징으로 인하여, 이보다 앞서 개발된 니켈-카드뮴전지나 니켈-수소전지를 제치고 이차전지의 주역이 되었다.
이러한 리튬이온전지의 새로운 양극재료로는 플루오리네이티드 리튬 메탈 포스페이트(Li2M(M=Fe, Mn, Co, Ni)PO4F)와 리튬 메탈 실리케이트(Li2MSiO4) 및 리튬 메탈 포스페이트(Li3M2(PO4)3가 주로 사용된다. 이들은 2개 이상의 Li+이 모 구조에 intercalate/deintercalate가 가능하다.
특히, 리튬 바나듐 포스페이트(Li3V2(PO4)3)는 높은 이론용량(197mAh/g)과 4.0V에서의 평균 산화환원 전압을 가지고 있다. 하지만 고유의 낮은 전기 전도도를 가지고 있어 상업용으로 사용하는데 큰 문제점이 있다. 이러한 리튬 바나듐 포스페이트(Li3V(PO4)3)의 단점을 보완하기 위해서는 전도성 카본 코팅, 나노구조 등이 해결책으로 제시되고 있지만 실용성이 떨어진다.
본 발명은 리튬 바나듐 포스페이트(Li3V2(PO4)3)에 지르코늄(Zr) 치환을 하여 포스페이트 결정 구조를 안정화 하고, 동시에 이온전도체인 LiZr2(PO4)3를 포스페이트 입자 표면에 소량 생성함으로써 이온전도도를 증대시켜 전기화학적 특성을 향상시킨 전극재료를 만들고자 한다.
[선행기술문헌]
[특허문헌]
한국특허등록 제10-1097546호
한국특허공개 제10-2013-0095796호
본 발명은 구조안정성 및 이온전도도를 증대시켜 우수한 전기화학적 특성을 갖는 지르코늄이 치환된 리튬 바나듐 지르코늄 포스페이트(Li3V2-xZrx(PO4)3) 입자를 포함하는 리튬이온전지의 양극활물질을 제공하는 것을 목적으로 한다.
또한, 본 발명은 상기 본 발명의 리튬이온전지의 양극활물질을 포함하는 리튬이온전지의 양극 및 리튬이온전지를 제공하는 것을 목적으로 한다.
본 발명은, 리튬바나듐포스페이트(Li3V2(PO4)3) 및 상기 리튬바나듐포스페이트의 외면에 형성된 리튬지르코늄포스페이트(LiZr2(PO4)3)를 포함하는 리튬이온전지의 양극활물질을 제공한다.
상기 리튬바나듐포스페이트의 바나듐 중 일부가 지르코늄으로 치환될 수 있다.
상기 리튬이온전지의 양극활물질은 하기 화학식 1로 표시될 수 있다.
[화학식 1]
Li3V2-xZrx(PO4)3
(x는 0을 초과하고 1 이하인 실수)
상기 리튬이온전지의 양극활물질은 탄소 함유 물질을 더 포함할 수 있다.
상기 리튬이온전지의 양극활물질은 하기 단계를 포함하는 제조방법에 의해 제조될 수 있다.
용매에 카본 전구체, 리튬 전구체, 바나듐 전구체, 지르코늄 전구체, 포스포러스 전구체를 첨가한 후 혼합하는 단계(S1);
상기 S1 단계에서 제조된 혼합물을 건조하여 건조 분말을 제조하는 단계(S2);
상기 건조 분말을 열처리하는 단계(S3)
상기 카본 전구체는 수크로스(sucrose), 시트르 산(Citric acid), 말 산(Malic acid) 및 타르타르 산(Tartaric acid)으로 이루어진 군에서 선택되는 1종 이상이 바람직하게 사용될 수 있다.
상기 리튬 전구체는 리튬 카보네이트(Lithium carbonate), 리튬 하이드로옥사이드(Lithium hydroxide), 리튬 아세테이트(Lithium acetate), 리튬 나이트레이트(Lithium nitrate) 및 리튬 아세틸아세토네이트(Lithium acetylacetonate)로 이루어진 군에서 선택되는 1종 이상이 바람직하게 사용될 수 있다.
상기 바나듐 전구체는 바나듐 펜트옥사이드(Vanadium pentoxide), 바나듐 다이옥사이드(Vanadium dioxide), 바나듐 클로라이드(Vanaddium chloride) 및 바나딜 아세틸아세토네이트(Vanadyl acetylacetonate)로 이루어진 군에서 선택되는 1종 이상이 바람직하게 사용될 수 있다.
상기 지르코늄 전구체는 지르코늄 하이드로옥사이드(Zirconium hydroxide), 지르코늄 아세테이트(Zirconium acetate) 및 지르코늄 나이트라이드(Zirconium nitride)로 이루어진 군에서 선택되는 1종 이상이 바람직하게 사용될 수 있다.
상기 포스포러스 전구체는 암모늄 디하이드로젠 포스페이트(Ammonium dihydrogen phosphate) 및 포스포릭 산(phosphoric acid)으로 이루어진 군에서 선택되는 1종 이상이 바람직하게 사용될 수 있다.
상기 S1 단계에서 알루미늄 전구체, 몰리브덴 전구체 및 크롬 전구체로 이루어진 군에서 선택되는 1종 이상의 첨가물을 더 첨가할 수 있다.
상기 S2 단계는 상기 S1 단계에서 제조된 혼합물을 120℃의 온도에서 6 내지 12 시간 동안 건조시킴에 의해 이루어질 수 있다.
상기 S3 단계는 환원성 분위기에서 이루어지는 것이 바람직하다.
상기 S3 단계는 상기 건조 분말을 650 내지 850℃의 온도에서 6 내지 48 시간 동안 열처리함에 의해 이루어질 수 있다.
상기 S3 단계는 상기 건조 분말을 100 내지 120℃의 온도에서 1 내지 6 시간 동안 1차 열처리하고, 500 내지 550℃의 온도에서 6 내지 12 시간 동안 2차 열처리하고, 650 내지 850℃의 온도에서 6 내지 24 시간 동안 3차 열처리함에 의해 이루어질 수 있다.
본 발명은 또한, 상기 양극활물질을 포함하는 리튬이온전지의 양극 및 그를 포함하는 리튬이온전지를 제공한다.
본 발명의 제조방법을 따라 제조된 지르코늄이 도핑된 리튬 바나듐 지르코늄 포스페이트(Li3V2-xZrx(PO4)3) 입자를 포함하는 리튬이온전지의 양극활물질은 높은 용량을 가짐과 더불어 구조안정성 및 이온전도도가 증대되어 우수한 전기화학적 특성을 갖는다.
도 1 및 도 2는 실시예 1에 따라 제조된 리튬 바나듐 지르코늄 포스페이트 복합체 입자의 X선 회절 분석 결과 및 리트벨드 분석 결과를 나타낸 그래프이다.
도 3 내지 도 5는 실시예 1에 따라 제조된 리튬 바나듐 지르코늄 포스페이트 및 리튬 반나듐 포스페이트의 주사전자현미경 분석 결과를 나타낸 도면이다.
도 6 내지 도 10은 실험예 3에 따라 측정된 전기화학 분석 결과를 나타낸 그래프이다.
도 11 및 도 12는 실험예 4의 임피던스 곡선 분석 결과를 나타낸 그래프이다.
도 13은 x=0.05, 0.1인 리튬 바나듐 지르코늄 포스페이트(Li3V2-xZrx(PO4)3) 복합체 입자 표면과 내부에서의 Zr, V, P의 함량을 나타낸 도면이다.
도 14 및 도 15는 실시예 1의 리튬 바나듐 지르코늄 포스페이트(Li3V2-xZrx(PO4)3)의 X-선 광전자 분광법 분석 결과이다.
이하, 본 발명을 상세히 설명한다. 본 발명을 설명함에 있어서 관련된 공지 구성 또는 기능에 대한 상세한 설명은 생략할 수 있다.
본 명세서 및 특허청구범위에 사용된 용어나 단어는 통상적이거나 사전적 의미로 한정되어 해석되지 아니하며, 본 발명의 기술적 사항에 부합하는 의미와 개념으로 해석되어야 한다.
본 명세서에 기재된 실시 예와 도면에 도시된 구성은 본 발명의 바람직한 실시예이며, 본 발명의 기술적 사상을 모두 대변하는 것이 아니므로, 본 출원 시점에서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있다.
본 발명의 리튬이온전지의 양극활물질은 리튬바나듐포스페이트(Li3V2(PO4)3) 및 상기 리튬바나듐포스페이트의 외면에 형성된 리튬지르코늄포스페이트(LiZr2(PO4)3)를 포함하며, 상기 리튬바나듐포스페이트의 바나듐 중 일부는 지르코늄으로 치환된다.
즉, 본 발명의 리튬이온전지의 양극활물질은 리튬바나듐포스페이트에 Zr 도핑(doping)에 의해 표면에 Li 이온 전도체(conductor)인 LiZr2(PO4)3)가 형성되어 Li 이온 전도성을 향상시키고, 내부적으로 V 사이트 중 일부에 Zr4+ 도핑에 의해 V3+ - V4+ 레독스가 지양되어 구조적 안정성이 증가한다.
본 발명의 리튬이온전지의 양극활물질은 하기 화학식 1로 표시될 수 있다.
[화학식 1]
Li3V2-xZrx(PO4)3
(x는 0을 초과하고 1 이하인 실수)
본 발명의 리튬이온전지의 양극활물질에는 탄소 함유 물질이 더 포함될 수 있는데, 이는 상기 양극활물질의 제조과정에서 잔류하는 탄소전구체이다.
본 발명의 리튬이온전지의 양극활물질은 아래의 단계를 포함하는 제조방법에 의해 제조될 수 있다.
용매에 카본 전구체, 리튬 전구체, 바나듐 전구체, 지르코늄 전구체, 포스포러스 전구체를 첨가한 후 혼합하는 단계(S1);
상기 S1 단계에서 제조된 혼합물을 건조하여 건조 분말을 제조하는 단계(S2);
상기 건조 분말을 열처리하는 단계(S3)
이하, 본 발명의 리튬이온전지의 양극활물질 제조방법을 단계별로 상세히 설명한다.
먼저, 용매에 카본 전구체, 리튬 전구체, 바나듐 전구체, 지르코늄 전구체, 포스포러스 전구체를 첨가한 후 혼합한다(S1).
상기 카본 전구체는 수크로스(sucrose), 시트르 산(Citric acid), 말 산(Malic acid) 및 타르타르 산(Tartaric acid)으로 이루어진 군에서 선택되는 1종 이상이 바람직하게 사용될 수 있다.
상기 카본 전구체는 제조 공정 후에는 1 wt% 미만으로 잔류하게 되는데, 카본 전구체는 표면에 LiZr2(PO4)3층이 만들어지도록 하는데 활성제 역할을 한다. 또한, 카본 전구체는 환원제로서 리튬 바나듐 포스페이트(Li3V(PO4)3) 내 V의 산화를 억제하여 우수한 결정성의 Li3V(PO4)3를 생성시키는데 기여하며, 해당 온도 범위(650 ~ 750℃)에서 열처리 후 남는 잔여 카본은 Li3V(PO4)3의 전기전도도를 향상시키는 역할을 한다. 반면, Zr 치환된 Li3V2-xZrx(PO4)3의 경우, V 자리에 고용될 수 있는 Zr 고용 한계(5 at% 미만으로 추정) 범위를 넘어서게 되면 잔여 카본이 거의 없어지는데(1 wt% 미만), 이로부터 이러한 카본 전구체의 첨가가 고용되지 않고 남은 추가 Zr으로부터 LiZr2(PO4)3 이온전도체를 Li3V2-xZrx(PO4)3 입자 표면에 생성시키는 활성제로 작용함을 알 수 있다.
상기 리튬 전구체는 리튬 카보네이트(Lithium carbonate), 리튬 하이드로옥사이드(Lithium hydroxide), 리튬 아세테이트(Lithium acetate), 리튬 나이트레이트(Lithium nitrate) 및 리튬 아세틸아세토네이트(Lithium acetylacetonate)로 이루어진 군에서 선택되는 1종 이상이 바람직하게 사용될 수 있다.
상기 바나듐 전구체는 바나듐 펜트옥사이드(Vanadium pentoxide), 바나듐 다이옥사이드(Vanadium dioxide), 바나듐 클로라이드(Vanaddium chloride) 및 바나딜 아세틸아세토네이트(Vanadyl acetylacetonate)로 이루어진 군에서 선택되는 1종 이상이 바람직하게 사용될 수 있다.
상기 지르코늄 전구체는 지르코늄 하이드로옥사이드(Zirconium hydroxide), 지르코늄 아세테이트(Zirconium acetate) 및 지르코늄 나이트라이드(Zirconium nitride)로 이루어진 군에서 선택되는 1종 이상이 바람직하게 사용될 수 있다.
상기 포스포러스 전구체는 암모늄 디하이드로젠 포스페이트(Ammonium dihydrogen phosphate) 및 포스포릭 산(phosphoric acid)로 이루어진 군에서 선택되는 1종 이상이 바람직하게 사용될 수 있다.
상기 리튬 전구체, 상기 바나듐 전구체, 상기 지르코늄 전구체 및 포스포러스 전구체는 각각 3 : 2-x : x : 3 (0 < x < 1)의 몰비 비율로 첨가되는 것이 바람직하며, 상기 카본 전구체는 목표로 하는 Li3V2-xZrx(PO4)3 최종 무게의 3~10 중량% 만큼 첨가되는 것이 바람직하다.
본 단계의 혼합 용액 제조시 상기 카본 전구체, 상기 리튬 전구체, 상기 바나듐 전구체, 상기 지르코늄 전구체 및 포스포러스 전구체 외에 알루미늄 전구체, 몰리브덴 전구체 및 크롬 전구체로 이루어진 군에서 선택되는 1종 이상의 첨가물을 더 첨가할 수 있다. 이를 통해 본 발명의 제조방법을 통해 제조되는 최종 산물에 알루미늄, 몰리브덴 또는 크롬이 함유되며, 이들은 Zr 치환에 의한 구조안정성 및 이온전도도 향상을 배가시킬 수 있다.
다음으로, 상기 S1 단계에서 제조된 혼합물을 건조하여 건조 분말을 제조한다(S2).
본 단계는 상기 S1 단계에서 제조된 혼합물을 100~150℃의 온도에서 6 내지 12 시간 동안 건조시킴에 의해 이루어질 수 있다.
건조 온도가 상기 범위의 상한을 초과하는 경우 전구체 물성이 변하거나 전이금속이 산화될 수 있는 문제가 있고, 상기 범위의 하한에 미달하는 경우 용매가 완전히 증발되지 않는 문제가 있어 바람직하지 못하다.
다음으로, 상기 S2 단계에서 제조된 건조 분말을 열처리한다(S3).
상기 S3 단계는 상기 건조 분말을 650 내지 850℃의 온도에서 6 내지 48 시간 동안 열처리함에 의해 이루어질 수 있다.
열처리 온도가 상기 범위의 상한을 초과하는 경우 고온에서 새로운 상전이가 발생하거나 제 2상이 불순물로 생성되어 Li3V2-xZrx(PO4)3의 결정구조가 붕괴되는 문제가 있고, 상기 범위의 하한에 미달하는 경우 Li3V2-xZrx(PO4)3 상 자체가 제조되지 못하거나 결정성이 낮아 우수한 전기화학적 특성의 Li3V2-xZrx(PO4)3를 얻을 수 없는 문제가 있어 바람직하지 못하다.
본 단계는 또한 상기 건조 분말을 100 내지 120℃의 온도에서 1 내지 6 시간 동안 1차 열처리하고, 500 내지 550℃의 온도에서 6 내지 12 시간 동안 2차 열처리하고, 650 내지 850℃의 온도에서 6 내지 24 시간 동안 3차 열처리함에 의해 이루어지는 것이 바람직하다.
이와 같이 3 단계로 열처리를 함으로써 1단계 열처리 공정 중 수분을 제거하고 2단계 열처리 공정 중 리튬, 바나듐, 지르코늄, 포스포러스 전구체에 붙은 이종 결합(-OH, -COOH, NO3, SO4 등)을 제거해 줌으로써, 3단계 열처리 후 고순도/고결정성의 최종 Li3V2-xZrx(PO4)3 상을 얻을 수 있다.
본 단계는 환원성 분위기에서 이루어지는 것이 바람직하다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
<실시예 1> 리튬 바나듐 지르코늄 포스페이트(Li3V2-xZrx(PO4)3) 복합체의 제조
에탄올(Ethanol)/초순수(DI water)와 카본 전구체인 수크로스(sucrose)가 교반(Stirring)된 용액에 리튬 전구체인 리튬 카보네이트(Lithium carbonate), 바나듐 전구체인 바나듐 펜트옥사이드(Vanadium pentoxide), 지르코늄 전구체인 지르코늄 하이드로옥사이드(Zirconium hydroxide), 포스포러스 전구체인 암모늄 디하이드로젠 포스페이트(Ammonium dihydrogen phosphate)를 첨가 후 상온에서 6 시간동안 교반하여 혼합 용액을 준비하였다. 이때, 지르코늄 전구체는 각각 0.05와 0.1 몰비(mol%)로 하였다.
상기 제조된 용액은 유기물 제거를 위해 진공 분위기에서 120℃ 에서 12 시간 동안 건조하여 각 전구체가 혼합된 분말를 완성하였다.
그 후, 상기 제조된 혼합 분말는 Ar/H2(95:5)의 환원성 분위기에서 750℃에서 10 시간 동안 열처리하여 본원 발명의 리튬 바나듐 지르코늄 포스페이트(Li3V2-xZrx(PO4)3) 복합체(x=0.05, 0.1)를 완성하였다.
<실험예 1> X선 회절 분석 및 리트벨트 구조분석법
실시예 1의 리튬 바나듐 지르코늄 포스페이트(Li3V2-xZrx(PO4)3) 복합체 입자의 구조를 분석하기 위하여 X선 회절 분석을 하여 도 1에 나타내었다. 또한 리트벨트 분석을 도 2에 나타내었다.
도 1에서 볼 수 있는 바와 같이, 본원발명의 리튬 바나듐 지르코늄 포스페이트(Li3V2-xZrx(PO4)3, x=0.05) 복합체는 16.39도(211), 20.07도(11-2), 23.13도(210), 24.39도(10-3), 27.49도(12-2), 29.39도(220), 33.80도(105), 47.31도(114), 47.46도(332)에서 리튬 바나듐 포스페이트(Li3V2(PO4)3)의 특징적인 피크(peak)가 나타났다. 반면에, x=0.1인 리튬 바나듐 지르코늄 포스페이트(Li3V1.9Zr0.1(PO4)3) 복합체의 경우 추가적인 2차상으로 리튬 지르코늄 포스페이트(LiZr2(PO4)3)상이 12.22도(101), 23.44도(11-3), 28.33도(024)의 2쎄타(θ) 각도에서 특징적인 피크가 나타났다.
도 2에서 볼 수 있는 바와 같이,x=0.05인 리튬 바나듐 지르코늄 포스페이트(Li3V1.95Zr0.05(PO4)3) 복합체는 구조 내부에 소량의 리튬 지르코늄 포스페이트(LiZr2(PO4)3)상이 나타났다.
<실험예 2> 주사전자현미경
실시예 1의 리튬 바나듐 지르코늄 포스페이트(Li3V2-xZrx(PO4)3) 입자의 형태를 분석하기 위하여 주사전자현미경 분석을 하여 도 3 내지 도 5에 나타냈다.
도 3 및 도 4에서 나타낸 바와 같이, 리튬 바나듐 지르코늄 포스페이트(Li3V2-xZrx(PO4)3, x=0.05, 0.1)는 마이크로 입자의 형태가 잘 나타나고 있다. 또한, 도 5는 리튬 바나듐 포스페이트(Li3V2(PO4)3) 입자도 비슷한 형태를 나타내고 있다.
상기 결과로부터, 본 발명의 리튬 바나듐 지르코늄 포스페이트(Li3V2-xZrx(PO4)3) 입자의 형태가 잘 유지되었음을 알 수 있다.
<실험예 3> 전기화학 특성 평가
실시예 1의 리튬 바나듐 지르코늄 포스페이트(Li3V2-xZrx(PO4)3)의 전기화학 분석 결과를 도 6 내지 도 11에 나타내었다. 실시예 1에서 제조된 양극 활물질을 사용해 제조된 리튬이차 전지를 3.0~4.3, 3.0~4.8V에서 0.1C로 각각 충방전을 실시하여, 그 충방전 특성의 측정결과를 도 6 및 도 7에 나타내었다. 또한, 3.0~4.3, 3.0~4.8V에서 0.1C를 기준으로 하였으며, 50 사이클(cycle) 충방전을 실행하여 그 충방전 특성의 측정 결과를 도 8 및 도 9에 나타내었다. 마지막으로, 3.0~4.3V에서 0.1C, 0.2C, 0.5C, 1C, 2C, 5C 및 10C로 충방전을 실시해, 그 충방전 특성의 측정 결과를 도 10에 나타내었다.
도 6은, 3.0~4.3V에서 x=0.05인 리튬 바나듐 지르코늄 포스페이트(Li3V1.95Zr0.05(PO4)3) 복합체가 x= 0.1인 리튬 바나듐 포스페이트(Li3V1.9Zr0.1(PO4)3)에 비해 초기 용량이 증가함을 보이고 있으며, 같은 산화/환원 반응을 보이고 있다. 대조군으로, 리튬 바나듐 포스페이트(Li3V2(PO4)3)를 제조한 것의 평가결과도 함께 나타내었다.
도 7은, 3.0~4.8V에서 x=0.05인 리튬 바나듐 지르코늄 포스페이트(Li3V1.95Zr0.05(PO4)3) 복합체가 x= 0.1인 리튬 바나듐 포스페이트(Li3V1.9Zr0.1(PO4)3)에 비해 초기 용량이 증가함을 보이고 있으며, 같은 산화/환원 반응을 보이고 있다. 대조군으로, 리튬 바나듐 포스페이트(Li3V2(PO4)3)를 제조한 것의 평가결과도 함께 나타내었다.
도 8은 3.0~4.3V에서 0.1C로 각각 충방전 시의 수명특성에 대한 것으로, x= 0.1인 리튬 바나듐 포스페이트(Li3V1.9Zr0.1(PO4)3) 복합체에 비해 x=0.05인 리튬 바나듐 지르코늄 포스페이트(Li3V1.95Zr0.05(PO4)3) 복합체를 사용한 리튬이온전지의 수명이 향상된 것을 알 수 있다.
도 9는 3.0~4.8V에서 0.1C로 각각 충방전 시의 수명특성에 대한 것으로, x= 0.1인 리튬 바나듐 포스페이트(Li3V1.9Zr0.1(PO4)3) 복합체에 비해 x=0.05인 리튬 바나듐 지르코늄 포스페이트(Li3V1.95Zr0.05(PO4)3) 복합체를 사용한 리튬이온전지의 수명이 향상된 것을 알 수 있다.
도 10은, 상기 제조예에서 제조한 리튬 바나듐 지르코늄 포스페이트(Li3V2-xZrx(PO4)3) 복합체의 방전 속도에 따른 용량의 변화를 살펴보기 위하여 방전 곡선을 분석하여 도 10에 나타내었다. 대조군으로 리튬 바나듐 포스페이트(Li3V2(PO4)3)의 방전 곡선도 도 10에 함께 함께 나타내었다.
도 10에서 볼 수 있는 바와 같이, 대조군 리튬 바나듐 포스페이트(Li3V2(PO4)3)는 방전 속도(C-rate)가 0.1C에서 10C로 증가함에 따라 용량(Capacity)이 상대적으로 더 감소한다. 반면, 본원발명의 리튬 바나듐 지르코늄 포스페이트(Li3V2-xZrx(PO4)3) 복합체는 방전 속도가 증가함에 따른 용량감소가 작은 것으로 나타난다.
<실험예 4> 임피던스 곡선 분석
양극 활물질을 사용해 제조된 반쪽 전지를 0.1C로 방전시키기 전과 후, 0.1Hz 내지 10kHz에서 0.01V로 Nyquist 특성의 측정 결과를 도 11 및 도 12에 나타내었다. 대조군으로 리튬 바나듐 포스페이트(Li3V2(PO4)3) Nyquist 특성을 나타내었다.
도 11에서 보는 바와 같이, 50 싸이클 충방전 시키기 전에 x=0.05인 리튬 바나듐 지르코늄 포스페이트(Li3V1.95Zr0.05(PO4)3) 복합체와 x=0.1인 리튬 바나듐 지르코늄 포스페이트(Li3V1.9Zr0.1(PO4)3) 복합체를 동일한 회로로 작동 시킨 결과 x=0.05인 리튬 바나듐 지르코늄 포스페이트(Li3V1.95Zr0.05(PO4)3) 복합체가 x=0.1인 리튬 바나듐 지르코늄 포스페이트(Li3V1.9Zr0.1(PO4)3) 복합체보다 Li+ conductivity의 증가로 인해 charge transfer 구간이 줄어들어 저항이 감소했다.
도 12에서 또한, 50 싸이클 충방전 시킨 후에 x=0.05인 리튬 바나듐 지르코늄 포스페이트(Li3V1.95Zr0.05(PO4)3) 복합체와 x=0.1인 리튬 바나듐 지르코늄 포스페이트(Li3V1.9Zr0.1(PO4)3) 복합체를 동일한 회로로 작동 시킨 결과 x=0.05인 리튬 바나듐 지르코늄 포스페이트(Li3V1.95Zr0.05(PO4)3) 복합체가 x=0.1인 리튬 바나듐 지르코늄 포스페이트(Li3V1.9Zr0.1(PO4)3) 복합체보다 Li+ conductivity의 증가로 인해 charge transfer 구간이 줄어들어 저항이 감소했다.
상기 결과로부터, 본원발명의 리튬 바나듐 지르코늄 포스페이트(Li3V2-xZrx(PO4)3) 복합체는 대조군인 리튬 바나듐 포스페이트(Li3V2(PO4)3)에 비해 charge transfer구간 즉, 전해액과 활물질 사이의 저항이 줄어들어 Li+ conductivity가 향상되어 도 11 및 도 12에서 나타난 특성을 확실하게 확인할 수 있으므로 고속 충방전에 유리한 리튬이차전지의 양극재료로 적합하다는 것을 알 수 있다.
<실험예 5> 투과전자현미경-EELS (Electron Energy Loss Spectroscopy) 분석
실시예 1의 리튬 바나듐 지르코늄 포스페이트(Li3V2-xZrx(PO4)3)의 투과전자현미경-EELS (Electron Energy Loss Spectroscopy) 분석 결과를 도 13에 나타내었다.
도 13은, x=0.05, 0.1인 리튬 바나듐 지르코늄 포스페이트(Li3V2-xZrx(PO4)3) 복합체 입자 표면과 내부에서의 Zr, V, P의 함량을 나타낸 것으로, Zr이 리튬 바나듐 포스페이트(Li3V2-xZrx(PO4)3) 내부가 아닌 입자 표면에서 관찰됨을 보이고 있다.
<실험예 6> X-선 광전자 분광법 (X-ray Photoelectron Spectroscopy)
실시예 1의 리튬 바나듐 지르코늄 포스페이트(Li3V2-xZrx(PO4)3)의 X-선 광전자 분광법 분석 결과를 도 14 및 도 15에 나타내었다.
도 14 및 도 15에서 나타낸 바와 같이, 리튬 바나듐 지르코늄 포스페이트(Li3V2-xZrx(PO4)3, x=0.05, 0.1)는 입자 표면에서의 높은 Zr 함량을 보여주고 있으며 입자 내부로 갈수록 Zr의 함량은 감소한다.
상기 결과로부터, 본 발명의 리튬 바나듐 지르코늄 포스페이트(Li3V2-xZrx(PO4)3)는 LiZr2(PO4)3 상이 입자 표면에 잘 형성되었음을 알 수 있다.

Claims (18)

  1. 리튬바나듐포스페이트(Li3V2(PO4)3) 및 상기 리튬바나듐포스페이트의 외면에 형성된 리튬지르코늄포스페이트(LiZr2(PO4)3)를 포함하는 리튬이온전지의 양극활물질.
  2. 제1항에 있어서,
    상기 리튬바나듐포스페이트의 바나듐 중 일부가 지르코늄으로 치환된 것을 특징으로 하는 리튬이온전지의 양극활물질.
  3. 제1항에 있어서,
    하기 화학식 1로 표시되는 것을 특징으로 하는 리튬이온전지의 양극활물질.
    [화학식 1]
    Li3V2-xZrx(PO4)3
    (x는 0을 초과하고 1 이하인 실수)
  4. 제1항에 있어서,
    탄소 함유 물질을 더 포함하는 것을 특징으로 하는 리튬이온전지의 양극활물질.
  5. 제1항에 있어서,
    하기 단계를 포함하는 제조방법에 의해 제조된 것을 특징으로 하는 리튬이온전지의 양극활물질.
  6. 제1항에 있어서,
    용매에 카본 전구체, 리튬 전구체, 바나듐 전구체, 지르코늄 전구체, 포스포러스 전구체를 첨가한 후 혼합하는 단계(S1);
    상기 S1 단계에서 제조된 혼합물을 건조하여 건조 분말을 제조하는 단계(S2); 및
    상기 건조 분말을 열처리하는 단계(S3)
    를 포함하는 것을 특징으로 하는 리튬이온전지의 양극활물질.
  7. 제6항에 있어서,
    상기 카본 전구체는 수크로스(sucrose), 시트르 산(Citric acid), 말 산(Malic acid) 및 타르타르 산(Tartaric acid)으로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 하는 리튬이온전지의 양극활물질.
  8. 제6항에 있어서,
    상기 리튬 전구체는 리튬 카보네이트(Lithium carbonate), 리튬 하이드로옥사이드(Lithium hydroxide), 리튬 아세테이트(Lithium acetate), 리튬 나이트레이트(Lithium nitrate) 및 리튬 아세틸아세토네이트(Lithium acetylacetonate)로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 하는 리튬이온전지의 양극활물질.
  9. 제6항에 있어서,
    상기 바나듐 전구체는 바나듐 펜트옥사이드(Vanadium pentoxide), 바나듐 다이옥사이드(Vanadium dioxide), 바나듐 클로라이드(Vanaddium chloride) 및 바나딜 아세틸아세토네이트(Vanadyl acetylacetonate)로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 하는 리튬이온전지의 양극활물질.
  10. 제6항에 있어서,
    상기 지르코늄 전구체는 지르코늄 하이드로옥사이드(Zirconium hydroxide), 지르코늄 아세테이트(Zirconium acetate) 및 지르코늄 나이트라이드(Zirconium nitride)로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 하는 리튬이온전지의 양극활물질.
  11. 제6항에 있어서,
    상기 포스포러스 전구체는 암모늄 디하이드로젠 포스페이트(Ammonium dihydrogen phosphate) 및 포스포릭 산(phosphoric acid)로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 하는 리튬이온전지의 양극활물질.
  12. 제6항에 있어서,
    상기 S1 단계에서 알루미늄 전구체, 몰리브덴 전구체 및 크롬 전구체로 이루어진 군에서 선택되는 1종 이상의 첨가물을 더 첨가하는 것을 특징으로 하는 리튬이온전지의 양극활물질.
  13. 제6항에 있어서,
    상기 S2 단계는 상기 S1 단계에서 제조된 혼합물을 100 내지 150℃의 온도에서 6 내지 12 시간 동안 건조시키는 것을 특징으로 하는 리튬이온전지의 양극활물질.
  14. 제6항에 있어서,
    상기 S3 단계는 환원성 분위기에서 이루어지는 것을 특징으로 하는 리튬이온전지의 양극활물질.
  15. 제6항에 있어서,
    상기 S3 단계는 상기 건조 분말을 650 내지 850℃의 온도에서 6 내지 48 시간 동안 열처리하는 것을 특징으로 하는 리튬이온전지의 양극활물질.
  16. 제6항에 있어서,
    상기 S3 단계는 상기 건조 분말을 100 내지 120℃의 온도에서 1 내지 6 시간 동안 1차 열처리하고, 500 내지 550℃의 온도에서 6 내지 12 시간 동안 2차 열처리하고, 650 내지 850℃의 온도에서 6 내지 24 시간 동안 3차 열처리하는 것을 특징으로 하는 리튬이온전지의 양극활물질.
  17. 제1항 내지 제16항 중 어느 한 항의 양극활물질을 포함하는 리튬이온전지의 양극.
  18. 제17항의 양극을 포함하는 리튬이온전지.
PCT/KR2015/004046 2014-05-16 2015-04-23 리튬바나듐지르코늄포스페이트를 포함하는 리튬이온전지의 양극활물질 및 그를 포함하는 리튬이온전지 WO2015174652A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/309,248 US10270098B2 (en) 2014-05-16 2015-04-23 Positive electrode active material for lithium ion battery, containing lithium vanadium zirconium phosphate, and lithium ion battery comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140059070A KR101579251B1 (ko) 2014-05-16 2014-05-16 리튬바나듐지르코늄포스페이트를 포함하는 리튬이온전지의 양극활물질 및 그를 포함하는 리튬이온전지
KR10-2014-0059070 2014-05-16

Publications (1)

Publication Number Publication Date
WO2015174652A1 true WO2015174652A1 (ko) 2015-11-19

Family

ID=54480155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/004046 WO2015174652A1 (ko) 2014-05-16 2015-04-23 리튬바나듐지르코늄포스페이트를 포함하는 리튬이온전지의 양극활물질 및 그를 포함하는 리튬이온전지

Country Status (3)

Country Link
US (1) US10270098B2 (ko)
KR (1) KR101579251B1 (ko)
WO (1) WO2015174652A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111924819A (zh) * 2020-07-03 2020-11-13 山东毅聪新能源有限公司 废旧拆解磷酸铁锂正极材料回收再利用的方法
CN115172720A (zh) * 2022-08-02 2022-10-11 湘潭大学 三元高镍正极材料处理方法、正极材料及固态电池

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102572648B1 (ko) * 2016-06-17 2023-08-31 삼성전자주식회사 리튬전지용 복합양극활물질, 이를 포함하는 리튬전지용 양극 및 리튬전지
KR20190036049A (ko) * 2017-09-27 2019-04-04 주식회사 엘지화학 리튬 이차전지용 양극 활물질 및 이의 제조방법
US11251430B2 (en) 2018-03-05 2022-02-15 The Research Foundation For The State University Of New York ϵ-VOPO4 cathode for lithium ion batteries
JP7276320B2 (ja) * 2018-03-29 2023-05-18 Tdk株式会社 全固体二次電池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110021384A (ko) * 2009-08-26 2011-03-04 한국과학기술연구원 신규한 리튬 이차전지용 양극 활물질 및 이를 이용한 리튬 이차전지용 양극 박막의 제조방법
JP2013084449A (ja) * 2011-10-11 2013-05-09 Fuji Heavy Ind Ltd 正極活物質、これを用いたリチウムイオン二次電池、及び正極活物質の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2949229B1 (ja) * 1998-09-16 1999-09-13 大阪大学長 燐酸リチウム・バナジウム複合化合物及び同複合化合物からなるリチウムイオン二次電池用正極材料
JP5429631B2 (ja) * 2008-03-05 2014-02-26 株式会社Gsユアサ 非水電解質電池
TW201029918A (en) 2009-02-12 2010-08-16 Enerage Inc Method for synthesizing lithium phosphate compound having olivine crystal structure
JP5489063B2 (ja) * 2009-11-02 2014-05-14 株式会社Gsユアサ リチウム二次電池用正極活物質、リチウム二次電池用電極及びリチウム二次電池
JP5761617B2 (ja) * 2010-02-17 2015-08-12 株式会社Gsユアサ 非水電解質二次電池用正極活物質及び非水電解質二次電池
US9263731B2 (en) 2010-11-12 2016-02-16 A123 Systems Llc High performance lithium or lithium ion cell
US9270134B2 (en) * 2012-01-27 2016-02-23 Medtronic, Inc. Adaptive rate recharging system
US11038178B2 (en) * 2014-09-09 2021-06-15 Sion Power Corporation Protective layers in lithium-ion electrochemical cells and associated electrodes and methods

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110021384A (ko) * 2009-08-26 2011-03-04 한국과학기술연구원 신규한 리튬 이차전지용 양극 활물질 및 이를 이용한 리튬 이차전지용 양극 박막의 제조방법
JP2013084449A (ja) * 2011-10-11 2013-05-09 Fuji Heavy Ind Ltd 正極活物質、これを用いたリチウムイオン二次電池、及び正極活物質の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M. REN ET AL.: "Preparation and electrochemical studies of Fe-doped Li3V2(P04)3 cathode materials for lithium-ion batteries.", J. OF POWER SOURCES, vol. 162, 2006, pages 1357 - 1362, XP027938602 *
M. SATO ET AL.: "Enhancement of discharge capacity of Li3V2(P04)3 by stabilizing the orthorhombic phase at room temperature.", SOLID STATE IONICS, vol. 135, 2000, pages 137 - 142, XP004221539 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111924819A (zh) * 2020-07-03 2020-11-13 山东毅聪新能源有限公司 废旧拆解磷酸铁锂正极材料回收再利用的方法
CN115172720A (zh) * 2022-08-02 2022-10-11 湘潭大学 三元高镍正极材料处理方法、正极材料及固态电池

Also Published As

Publication number Publication date
US10270098B2 (en) 2019-04-23
US20170062824A1 (en) 2017-03-02
KR101579251B1 (ko) 2015-12-22
KR20150132762A (ko) 2015-11-26

Similar Documents

Publication Publication Date Title
WO2015174652A1 (ko) 리튬바나듐지르코늄포스페이트를 포함하는 리튬이온전지의 양극활물질 및 그를 포함하는 리튬이온전지
WO2019151813A1 (ko) 음극 활물질, 이를 포함하는 음극 및 리튬 이차전지
WO2019108039A2 (ko) 음극 및 이를 포함하는 이차전지
WO2016108384A1 (ko) 리튬이온 이차전지용 양극 활물질, 그의 제조방법 및 이것을 포함하는 리튬이온 이차전지
WO2014084679A1 (ko) 음극활물질, 이를 포함하는 리튬 이차전지 및 상기 음극활물질의 제조방법
WO2014014274A1 (ko) 탄소-실리콘 복합체, 이의 제조방법 및 이를 포함하는 음극 활물질
WO2015041450A1 (ko) 다공성 실리콘계 음극 활물질 및 이를 포함하는 리튬 이차전지
WO2019112390A1 (ko) 리튬 이차전지용 음극 활물질 및 이의 제조방법
WO2015034229A1 (ko) 전이금속-피로인산화물 음극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차전지 또는 하이브리드 캐패시터
WO2011105832A2 (ko) 고용량의 양극활물질 및 이를 포함하는 리튬 이차전지
WO2019151814A1 (ko) 음극 활물질, 이를 포함하는 음극 및 리튬 이차전지
WO2011019218A9 (ko) 비정질상 음극활물질 및 이를 이용한 전극의 제조방법 및 이를 포함하는 이차전지 및 하이브리드 커패시터
WO2015065102A1 (ko) 리튬 이차전지
WO2019078690A2 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2016175426A1 (ko) 리튬 코발트 산화물의 표면처리 방법 및 이를 포함하는 리튬이차전지
WO2014196816A1 (ko) 신규한 이차전지
WO2016072649A1 (ko) 도전재의 제조방법, 이로부터 제조된 도전재 및 이를 포함하는 리튬 이차전지
WO2019225879A1 (ko) 리튬 이차전지용 음극활물질 및 이의 제조방법
WO2019098541A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019013511A2 (ko) 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2020071814A1 (ko) 실리콘계 화합물을 포함하는 다층 구조 음극 및 이를 포함하는 리튬 이차전지
WO2019088628A2 (ko) 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지
WO2019078688A2 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2019059619A2 (ko) 리튬 이차전지용 전극의 설계 방법 및 이를 포함하는 리튬 이차전지용 전극의 제조방법
WO2015034230A1 (ko) 전이금속-메타인산화물 음극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차전지 또는 하이브리드 캐패시터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15793131

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15309248

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15793131

Country of ref document: EP

Kind code of ref document: A1