WO2015172464A1 - 一种双模速通式移动目标辐射检查系统及方法 - Google Patents

一种双模速通式移动目标辐射检查系统及方法 Download PDF

Info

Publication number
WO2015172464A1
WO2015172464A1 PCT/CN2014/085672 CN2014085672W WO2015172464A1 WO 2015172464 A1 WO2015172464 A1 WO 2015172464A1 CN 2014085672 W CN2014085672 W CN 2014085672W WO 2015172464 A1 WO2015172464 A1 WO 2015172464A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
radiation
ray
dose rate
dual
Prior art date
Application number
PCT/CN2014/085672
Other languages
English (en)
French (fr)
Inventor
曹艳锋
王少锋
闫雄
郑建斌
张丹
李苏祺
冯志涛
Original Assignee
北京君和信达科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京君和信达科技有限公司 filed Critical 北京君和信达科技有限公司
Priority to MYPI2016704137A priority Critical patent/MY181379A/en
Priority to US15/126,837 priority patent/US10466382B2/en
Priority to EP14892122.4A priority patent/EP3109678A4/en
Priority to BR112016026285-9A priority patent/BR112016026285B1/pt
Priority to EA201691636A priority patent/EA037954B1/ru
Publication of WO2015172464A1 publication Critical patent/WO2015172464A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • G01V5/224Multiple energy techniques using one type of radiation, e.g. X-rays of different energies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays

Definitions

  • the invention relates to the field of radiation imaging, in particular to a dual-mode fast-moving mobile target radiation inspection system and method.
  • High-energy radiation systems typically have a source of radiation, a collimator that collimates the radiation from the source into a fan beam, a sensor that detects the position of the moving target, a radiation detector, a radiation imaging device, and a radiation shielding facility.
  • Automated scanning inspection of high-speed moving targets such as vehicles can find smuggling and illegal items without interrupting the high-speed passage of vehicles. It is an ideal means for cargo vehicle safety inspection.
  • the radiation source emits radiation after the cab passes the scanning position.
  • the ray scans only the trucks behind the cab, and does not scan the cab, thus ensuring that the driver is not exposed to radiation.
  • the radiation system cannot scan the cab of the vehicle (such as the front of the cargo truck).
  • the whole vehicle is not scanned and cannot be reached.
  • the vehicle's full vehicle inspection creates a potential safety hazard.
  • the present invention provides a dual-mode fast-moving mobile target radiation inspection system and method for applying different radiation scanning modes for different types of moving targets or different parts of the same moving target, in order to ensure personnel safety. Under the premise, the vehicle inspection of the vehicle can be realized.
  • the invention provides a dual mode speed mobile target radiation inspection system, comprising: a radiation source, a collimator, a sensor unit, a control module, a radiation detector and a radiation imaging device; wherein the sensor unit is used for recognizing movement The type of target and the position at which the moving target is monitored in the inspection channel; the control module is used to control according to the type and position of the moving target
  • the radiation source emits radiation according to a predetermined mode of operation; wherein the predetermined operational mode corresponds to the type of moving target, and the radiation emitted by the radiation source in different operating modes has different dose rates.
  • the predetermined working mode comprises a constant dose rate mode and a non-constant dose rate mode, wherein the dose rate of the radiation is maintained at a low dose rate in the constant dose rate mode; and the dose rate of the radiation is at a low dose in the non-constant dose rate mode Switching between rate and high dose rate; wherein the low dose rate is lower than the limit specified by the radiation safety standard, and the high dose rate is higher than the limit specified by the radiation safety standard.
  • the average electron current intensity when the radiation source emits a low dose rate ray is 1 to 20% of the average electron current intensity when the high dose rate ray is emitted.
  • the radiation source is for emitting single energy rays and/or dual energy rays.
  • the sensor unit comprises a first sensor subunit, a second sensor subunit and a third sensor subunit, the first sensor subunit being located on the upstream side of the radiation inspection area in the inspection channel; the second sensor subunit and the The third sensor subunit is located on the downstream side of the radiation inspection area; the distance between the second sensor subunit and the third sensor subunit is greater than or equal to L, where L is the maximum length of the space for accommodating people in each type of moving target .
  • the radiation detector is a two-dimensional array detector comprising a plurality of one-dimensional array detectors, each one-dimensional array detector being arranged next to each other.
  • the collimator has a plurality of slits arranged such that the radiation passing through the collimator covers the radiation detector.
  • the present invention also provides a dual-mode speed-type moving target radiation inspection method based on the above system, comprising: the moving target contains a cockpit and a cargo compartment, and when the cockpit is about to enter the inspection area, the ray is scanned at a low dose rate; When the cockpit leaves the inspection area and the cargo compartment is about to enter the inspection area, the ray is scanned at a high dose rate; after the moving target has left the inspection area, the scanning is stopped.
  • the low dose rate ray is a single energy ray or a dual energy ray
  • the high dose rate ray is a single energy ray or a dual energy ray.
  • the radiant energy is between 1-9 MeV; when the low dose rate ray is a dual energy ray, the high energy and low energy state of the dual energy ray is selected Selectively one of the following three: 1 low energy energy between 1-6 MeV, high energy energy between 4-9 MeV; 2 low energy energy between 1-3 MeV, high energy energy between 2-5 MeV; 3 low energy energy At 3-6 MeV, the high energy energy is between 4-9 MeV; the high energy energy of the dual energy ray is always higher than the low energy energy.
  • the radiant energy is between 4-9 MeV; when the high dose rate ray is a dual energy ray, the high energy, low energy state of the dual energy ray is selectively It is one of the following: 1 low energy energy is 1-6MeV, high energy energy is 4-9MeV; 2 low energy energy is 3-6MeV, high energy energy is 4-9MeV; high energy energy of dual energy ray Always higher than low energy.
  • both the low dose rate ray and the high dose rate ray are dual energy ray, at least three energy states occur during a single radiation inspection.
  • the invention also provides a dual-mode fast-moving moving target radiation inspection method based on the above system, comprising: the movement target's cabin is all used for accommodating people, and when the moving target is about to enter the inspection area, the ray scan is performed at a low dose rate. After the moving target has left the inspection area as a whole, the scanning is stopped.
  • the low dose rate ray is a single energy ray or a dual energy ray during a single radiation examination.
  • the radiant energy is between 1 and 9 MeV; when the low dose rate ray is a dual energy ray, the high energy and low energy state of the dual energy ray is selectively One of the following: 1 low energy energy between 1-6 MeV, high energy energy between 4-9 MeV; 2 low energy energy between 1-3 MeV, high energy energy between 2-5 MeV; where the high energy energy of the dual energy ray is always Higher than low energy energy.
  • the invention has the beneficial effects that the invention determines the radiation source scanning scanning mode according to the type identification of the scanning object, applies different working modes for different types of moving targets, performs 100% radiation inspection on the moving target, and realizes high in the goods. Dose rate High-energy radiation scanning ensures that the radiation dose of a single dose is below the safety level, and substance recognition is also possible in dual-energy scanning mode.
  • the invention can realize stable, reliable, fast response and high safety radiation scanning inspection, and is the best way for automatic fast scanning inspection of different types of moving targets.
  • Figure 1 is a block diagram showing the structure of a radiation inspection system of the present invention.
  • Fig. 2 is a schematic view showing the state of use of the radiation inspection system of one embodiment of the present invention.
  • Figure 3 is a schematic illustration of the radiation scanning mode of operation of a cargo vehicle in one embodiment of the present invention.
  • FIG. 4 is a schematic view showing a radiation scanning operation mode of a passenger vehicle in an embodiment of the present invention.
  • Fig. 5 is a schematic view showing a radiation scanning operation mode of a cargo vehicle in another embodiment of the present invention.
  • FIG. 6 is a schematic view showing a radiation scanning operation mode of a passenger vehicle in another embodiment of the present invention.
  • the radiation dose rate is the radiation dose per unit time. Reducing the radiation dose of radiation (hereinafter referred to as “dose”) or radiation dose rate (hereinafter referred to as “dose rate”) can reduce the biological damage caused by radiation to the human body.
  • FIG. 1 is a block diagram showing the structure of a radiation inspection system of the present invention, comprising: a radiation source, a sensor unit, a control module, a radiation detector, and a radiation imaging apparatus, wherein the radiation source can emit radiation of different dose rates, which is collimated by a collimator.
  • the radiation source can emit radiation of different dose rates, which is collimated by a collimator.
  • the sensor unit can identify the type of moving target and monitor the position of the moving target in the inspection channel
  • the control module can control the radiation source to emit radiation according to a preset working mode.
  • the beam passes through the moving target and is received by the radiation detector, and the radiation imaging device generates a radiation image.
  • there are at least two predetermined working modes of the radiation source and the dose rates of the rays are different in different working modes, and different working modes are activated according to the type of the moving target, and the overall radiation inspection of the moving target is performed.
  • FIG. 2 is a schematic diagram showing the state of use of the system according to an embodiment of the present invention, including: a radiation source 210, a collimator 220, sensor units (110, 121, 122, 150, 160), a detector array 300, and a control module 500.
  • Imaging device 400 includes: a radiation source 210, a collimator 220, sensor units (110, 121, 122, 150, 160), a detector array 300, and a control module 500.
  • the source 210 emits, for example, an X
  • the ray is collimated by the collimator 220 into a fan-shaped radiation scanning beam beam to illuminate the scanning area, the moving target is scanned while passing through the scanning area, the beam passes through the target and is received by the detector array 300, and the imaging device 400 generates a radiation image, and the sensor unit (110, 121, 122, 150, 160) cooperates with the control module 500 to control the mode of operation of the source 210 and the timing of beaming and stopping the beam.
  • the sensor unit (110, 121, 122, 150, 160) detects whether the moving target arrives (the sensor unit is triggered when the sensor unit position is reached), and detects whether the moving target is away (when leaving the sensor unit position, the sensor unit) Revert to untriggered state).
  • the sensor unit (110, 121, 122, 150, 160) may be a photoelectric sensor (such as a photoelectric switch, a light curtain switch), a metal sensor (such as a ground sense coil), a pressure sensor (such as an axle load sensor), or the like. A combination of sensors.
  • the sensor unit (110, 121, 122, 150, 160) may be arranged above the channel floor or below the channel floor for identifying different types of moving objects (eg taller trucks and smaller dimensions) Different parts of the moving target (such as the cockpit and cargo compartment of the cargo vehicle), different types of sensors can detect the moving speed, displacement and weight of the target. Depending on the actual situation, visual sensors can also be used to quickly identify the vehicle. Type and displacement, etc.
  • moving objects eg taller trucks and smaller dimensions
  • Different parts of the moving target such as the cockpit and cargo compartment of the cargo vehicle
  • visual sensors can also be used to quickly identify the vehicle. Type and displacement, etc.
  • the sensor unit 110 is arranged at the entrance of the detection channel for detecting whether there is a moving target entering the channel.
  • the sensor unit 160 is disposed at an exit of the detection channel for detecting whether a moving target leaves the channel.
  • a traffic light and a bar can also be arranged to guide the moving target to enter the detection channel at an appropriate time to prevent accidental entry of the person into the channel to be damaged by radiation.
  • sensor units 110 and 160 are not required.
  • the sensor unit 121 is disposed on the upstream side of the scanning area, and immediately adjacent to the scanning area at the boundary of the side, the sensor unit 121 is triggered to indicate that the moving target is about to enter the scanning area.
  • the control module 500 controls the radiation source 210 to emit radiation according to a signal that the sensor unit 121 is triggered to start scanning the moving target. The mode of operation when the source 210 emits radiation will be described in detail below.
  • the sensor unit 122 is disposed on the downstream side of the scanning area, and immediately after the scanning area is at the boundary of the side, the sensor unit 122 returns to the untriggered state indicating that the moving target has left the scanning area.
  • the control module 500 controls the radiation source 210 to immediately stop emitting radiation based on the signal of the sensor unit 122.
  • the sensor unit 150 is disposed on the downstream side of the scanning area at a certain distance from the side boundary of the scanning area, and the distance should be greater than or equal to a maximum value of the length of the space (for example, a cockpit) for accommodating people in each type of moving target, so that the sensor When unit 150 is triggered, the cockpit portion of the moving target has passed the scanning area and the remainder has not yet passed the scanning area.
  • the sensor unit 150 can include a plurality of photoelectric switches or light curtains mounted at different heights to facilitate identification of different types of vehicles, such as small cars or large cargo trucks, to ensure that these vehicles are inspected for radiation in the correct source operating mode.
  • the sensor unit (110, 121, 122, 150, 160) in the embodiment of Fig. 2 its main function is to identify the type of the moving target and monitor the position of the moving target in the inspection channel, and therefore, in addition to the embodiment In the way, you can also design different sensor unit settings according to actual needs.
  • two sensors are arranged upstream of the scanning area, and the time difference between the two sensors and the distance between the two sensors are triggered according to the moving target, and the traveling speed of the moving target is obtained, and then the information according to the moving target position, the cab length, and the like can be respectively Calculate the time required for the cockpit and cargo compartment of the moving target to reach the scanning area, and master the time when the cockpit and cargo compartment arrive at the scanning area, so that the radiation source activates the correct working mode and sends out when the cockpit reaches the scanning area.
  • Low dose rate rays emit high dose rate radiation as the cargo compartment reaches the scanning area.
  • the speed at which the moving target is at different positions can be calculated based on the time at which the moving target arrives or leaves the different sensors, and the distance between the different sensors.
  • the radiation source 210 it can emit radiation of different dose rates, such as a betatron or a racetrack-type electron cyclotron (RTM, Race-Track Microtron), in the case of Betaturn, by controlling the injection time of the electron beam. And the bunching time control is accelerated by the flow intensity of the electron beam, thereby controlling the dose rate of the X-ray emitted by the accelerator, obtaining the radiation of different dose rates, the accelerator can work in the same energy and different dose modes, and can be controlled in real time.
  • X-ray radiation generated by electron bombardment of a metal target
  • J x is the dose of X-rays
  • i is the average beam current intensity (in ⁇ A)
  • V is the beam energy (in MV).
  • takes 0.0271
  • n takes 3
  • V is 8 MV
  • takes 0.0964
  • n takes 2.7.
  • the radiation dose rate of the latter is about 36.1 times that of the former. It can be seen that adjusting the flow intensity i or the energy V of the electron beam can achieve the adjustment of the radiation dose rate. Therefore, proper adjustment of the electron flow intensity and radiant energy of the radiation source can achieve safety regulations when scanning in a low dose rate state, and high radiation penetration capability when scanning in a high dose rate state.
  • the collimator 220 shields rays emitted from the radiation source into a space other than the scanning area to reduce radiation exposure to the object.
  • the collimator 220 of the present invention is made of a high quality thickness material.
  • the collimator has one or more slits that cause the rays passing through the slits to form a fan beam, while the remaining rays are quasi-aligned. The straight block is blocked.
  • Detector array 300 converts radiation incident into the detector array sensitive material into a digital signal.
  • the detector array 300 of the present invention is structurally a two-dimensional array of a plurality of immediately adjacent one-dimensional arrays, which can increase the scanning speed of the system and reduce the dose of a single scan.
  • the width of the fan beam formed by one or more slits of the beam passing through the collimator 220 is the same as the width of the radiation sensitive material in the detector array 300, so that the beam can just completely cover the sensitive areas of the beam, further The dose for a single scan is reduced as much as possible.
  • the sector beam width that can be fabricated as a beam through the collimator 220 is slightly wider than the width of the radiation sensitive material of the detector array 300.
  • Imaging device 400 receives digital signals from detector array 300, which are processed to form radiation images or chart data for viewing by an operator, and the like. In addition, the imaging device 400 notifies the control module 500 of the radiation scanning operation mode of the radiation source according to the setting of the operator, and the control module 500 is based on the notified working mode and the sensor unit (110, 120, 122, 150, 160). The signal, control ray source 210 is scanned in this mode of operation.
  • FIG. 3 is a schematic view showing a radiation scanning operation mode of a radiation source for radiation inspection of a cargo vehicle in an embodiment of the present invention, wherein 3(b)-3(e) represents a dose rate and radiation of a beam source in different modes. The state of energy. It should be noted that the embodiments of FIGS. 3-6 are described in connection with the arrangement of the sensor unit shown in FIG. 2.
  • FIG. 3(a) is a moving object, that is, a cargo vehicle of the present embodiment, for performing a vehicle scanning inspection
  • the scanning process treats the front part (the driver's position) and the car part (the cargo position) differently, and scans the front part with a low dose rate of the ray to ensure that the occupant's single absorbed dose meets relevant safety regulations (eg ANSI 43.17, IEC62463) requirements; high-dose rate radiographic scanning of the cabin parts to improve beam penetration.
  • Figure 3 (b) depicts the dose rate state of the ray during the vehicle scanning process
  • Figure 3 (c), 3 (d) and 3 (e) are in the process of Figure 3 (b), The energy state diagram of the ray.
  • the time t121 is the time when the vehicle reaches the sensor unit 121, the sensor unit 121 is triggered, and the vehicle is about to enter the scanning area.
  • the control module 500 controls the radiation source 210 to emit the beam at a low dose rate DL state according to the trigger signal; the vehicle reaches the sensor unit 122 at t1221; the vehicle reaches the sensor unit 150 when t150, and the front portion (which needs to be scanned at a low dose rate) has passed.
  • the control module 500 controls the radiation source to emit the beam at a high dose rate DH state according to the signal of the sensor unit 150, and scans the car part; at t1220, the vehicle leaves the sensor unit. 122.
  • the control module 500 controls the radiation source to immediately stop emitting radiation.
  • the radiation imaging apparatus 400 obtains a complete radiation image of the scanning head, high dose rate scanning carriage at a low dose rate.
  • the source 210 is maintained in a high energy EH state throughout the scan.
  • the head portion is scanned at a low dose rate DL state, and the cabin portion is scanned at a high dose rate DH state, that is, the head portion of the cargo vehicle is scanned in a low dose rate-high energy mode, and the cabin portion is scanned in a high dose rate-high energy mode.
  • the front portion is scanned in a low dose rate-high energy mode and the cabin portion is scanned in a high dose rate-dual energy mode.
  • the dual energy mode means that the radiation source emits dual energy rays, that is, the rays alternately emerge from the beam in a high energy state and a low energy state.
  • a ray that is maintained in a single energy state is called a single energy ray, as in the case of Figure 3(c).
  • the mode of Figure 3(d) satisfies both the requirements for low-dose rate scanning of the front and the dual-energy image of the relatively high penetration of the car portion; and the dual-energy image obtained by dual-energy scanning can identify different materials,
  • the embodiment of Fig. 3(d) can also perform material identification of the cargo loaded on the vehicle.
  • the radiation source 210 emits dual-energy rays during the whole scanning process, that is, the front part of the vehicle is scanned in a low dose rate-dual energy mode, and the compartment part is scanned in a high dose rate-dual energy mode, which satisfies the low head. Dose rate scanning requirements, as well as dual-energy images of the entire vehicle.
  • 4 is a schematic view showing a radiation scanning operation mode of a radiation source for a radiation test of a passenger vehicle in an embodiment of the present invention, wherein 4(b)-4(d) represents a dose rate and radiation of a beam source in different modes. The state of energy.
  • Fig. 4(a) shows a moving target, i.e., a manned vehicle of the present embodiment, which is subjected to vehicle scanning inspection. Since the front and rear seats of the vehicle are likely to carry people, the scanning process scans the vehicle with a low dose rate of radiation.
  • Figure 4 (b) depicts the dose rate state of the ray during the vehicle scanning process for the manned vehicle.
  • Figures 4(c) and 4(d) are the energy state diagrams of the ray during the process of Figure 4(b). .
  • t121 is the time when the vehicle reaches the sensor unit 121, indicating that the vehicle is about to enter the scanning area, and the control module 500 controls the radiation source to emit the beam at a low dose rate DL state according to the signal of the sensor unit 121; t1221 is the arrival of the vehicle.
  • the time of the sensor unit 122; t1220 is the time when the vehicle leaves the sensor unit 122, indicating that the vehicle has left the scanning area, and the control module controls the radiation source to stop emitting radiation.
  • the ray source 210 always emits rays of low dose rate DL throughout the scanning process. Sensor unit 150 will not be triggered.
  • the source 210 is maintained in a high energy EH state throughout the scan, i.e., the vehicle is scanned in a low dose rate-high energy mode.
  • the source 210 emits dual energy rays throughout the scanning process, i.e., the vehicle is scanned in a low dose rate-dual energy mode.
  • Figure 5 is a schematic illustration of a radiation scanning mode of operation of a radiation source for radiation inspection of a cargo vehicle in another embodiment of the present invention.
  • the radiation dose rate state and dose rate change of the radiation source 210 in Fig. 5(b) are the same as in Fig. 3(b).
  • the radiation source 210 operates in a low energy EL state and a high energy EH state, the front portion is scanned in a low dose rate-low energy mode, and the cabin portion is scanned in a high dose rate-high energy mode.
  • the source 210 scans the head portion in a low dose rate-low energy mode, and scans the cabin portion in a high dose rate-dual energy mode, wherein the high energy of the dual energy ray is EH, and the low energy is EL. .
  • the source 210 emits dual energy rays during scanning, the front portion is scanned in a low dose rate-dual energy mode, and the cabin portion is scanned in a high dose rate-dual energy mode.
  • the high energy in the low dose rate-double energy mode is EH1
  • the low energy is EL1
  • the high dose rate is high energy in the dual energy mode.
  • EH2 low energy is EL2.
  • EL1 and EL2 may be the same or different
  • EH1 and EH2 may be the same or different, as long as the dual-energy image of the vehicle can be obtained. For example, in the scanning process shown in Fig.
  • Fig. 6 is a view showing a radiation scanning operation mode of a radiation source for radiation inspection of a manned vehicle in another embodiment of the present invention.
  • the radiation dose rate state and dose rate change of the radiation source 210 in Fig. 6(b) are the same as in Fig. 4(b).
  • the operation of the source 210 is maintained in a low-energy EL state throughout the scanning process, that is, scanning the vehicle in a low dose rate-low energy mode.
  • the source 210 emits dual-energy rays during the whole scanning process, and the whole vehicle is scanned in a low dose rate-dual energy mode.
  • the high energy and low energy of the dual energy rays are EH1 and EL1, respectively.
  • the average electron current intensity of the rays in the low dose rate state is 1 to 20% of the average electron current intensity of the high dose rate rays.
  • EH is 4 to 9 MV and EL is 1 to 6 MV.
  • EH1 is 2 to 5 MV
  • EL1 is 1 to 3 MV
  • EH2 is 4 to 9 MV
  • EL2 is 3 to 6 MV.

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Measurement Of Radiation (AREA)

Abstract

一种双模速通式移动目标辐射检查系统,包括:辐射源、准直器(220)、传感器单元(110,121,122,150,160)、控制模块(500)、辐射探测器和辐射成像设备;其中所述传感器单元(110,121,122,150,160)用于识别移动目标的类型和监测移动目标在检查通道中所处的位置;所述控制模块(500)用于根据移动目标的类型和位置,控制所述辐射源按照预定工作模式发出射线;其中,所述预定工作模式与移动目标的类型相对应,辐射源在不同的工作模式下发出的射线具有不同的剂量率。还公开了一种双模速通式移动目标辐射检查方法。上述检查系统和检查方法可对车辆等移动目标整体进行辐射检查。

Description

一种双模速通式移动目标辐射检查系统及方法 技术领域
本发明涉及辐射成像领域,具体涉及一种双模速通式移动目标辐射检查系统及方法。
背景技术
高能辐射系统通常具有辐射源、将辐射源发出的射线准直成扇形束的准直器、探测移动目标位置的传感器、辐射探测器、辐射成像设备和辐射屏蔽设施等,利用这类高能辐射系统对车辆等高速移动的目标进行自动扫描检查,能够在不中断车辆高速通过的同时查找走私、违法违禁物品,是对货物车辆安全检查的理想手段。
在对高速移动车辆进行辐射检查的过程中,需对车辆中载有人员的部分实施辐射避让,不予扫描。通常是在驾驶室驶过扫描位置之后辐射源发出射线,射线仅扫描驾驶室后面的载货车厢,不对扫描驾驶室,从而确保驾驶人员不受辐射伤害。但是,这样做的后果是辐射系统对车辆的驾驶室(如货运卡车的车头)无法实施扫描,对某些载人车辆(如乘客密度较大的客车)是整车不予扫描,无法达到对车辆的全车检查,形成了潜在的安全隐患。
发明内容
有鉴于此,本发明提出一种双模速通式移动目标辐射检查系统及方法,针对不同类型的移动目标或同一移动目标中的不同部分,应用不同的辐射扫描工作模式,在确保人员安全的前提下,可实现对车辆的整车检查。
本发明提供了一种双模速通式移动目标辐射检查系统,包括:辐射源、准直器、传感器单元、控制模块、辐射探测器和辐射成像设备;其中,所述传感器单元用于识别移动目标的类型和监测移动目标在检查通道中所处的位置;所述控制模块用于根据移动目标的类型和位置,控制 所述辐射源按照预定工作模式发出射线;其中,所述预定工作模式与移动目标的类型相对应,辐射源在不同的工作模式下发出的射线具有不同的剂量率。
优选地,所述预定工作模式包括恒定剂量率模式和非恒定剂量率模式,在恒定剂量率模式下射线的剂量率保持为低剂量率;在非恒定剂量率模式下射线的剂量率在低剂量率和高剂量率之间切换;其中,低剂量率低于辐射安全标准规定的限制,高剂量率高于辐射安全标准规定的限制。
优选地,所述辐射源发出低剂量率射线时的平均电子流强是发出高剂量率射线时的平均电子流强的1~20%。
优选地,所述辐射源用于发出单能射线和/或双能射线。
优选地,所述传感器单元包括第一传感器子单元、第二传感器子单元和第三传感器子单元,第一传感器子单元位于检查通道内的辐射检查区域的上游侧;第二传感器子单元和第三传感器子单元位于辐射检查区域的下游侧;第二传感器子单元和第三传感器子单元之间的距离大于等于L,其中L为各类型移动目标中用于容纳人的空间的长度的最大值。
优选地,所述辐射探测器为二维阵列探测器,其包含多个一维阵列探测器,各个一维阵列探测器紧邻地布置。
优选地,所述准直器具有多个狭缝,多个狭缝的布置使得穿过准直器的射线覆盖所述辐射探测器。
本发明还提供一种基于上述系统的双模速通式移动目标辐射检查方法,包括:所述移动目标含有驾驶舱和货物舱,当驾驶舱将要进入检查区域时,以低剂量率射线扫描;当驾驶舱离开检查区域且货物舱将要进入检查区域时,以高剂量率射线扫描;移动目标全部离开检查区域后,停止扫描。
优选地,在单次辐射检查过程中,所述低剂量率射线为单能射线或者双能射线,所述高剂量率射线为单能射线或者双能射线。
优选地,当所述低剂量率射线为单能射线时,辐射能量介于1-9MeV;当所述低剂量率射线为双能射线时,双能射线的高能、低能能量状态选 择性地为以下三者中的一者:①低能能量介于1-6MeV,高能能量介于4-9MeV;②低能能量介于1-3MeV,高能能量介于2-5MeV;③低能能量介于3-6MeV,高能能量介于4-9MeV;其中双能射线的高能能量始终高于低能能量。
优选地,当所述高剂量率射线为单能射线时,辐射能量介于4-9MeV;当所述高剂量率射线为双能射线时,双能射线的高能、低能的能量状态选择性地为以下二者中的一者:①低能能量介于1-6MeV,高能能量介于4-9MeV;②低能能量介于3-6MeV,高能能量介于4-9MeV;其中双能射线的高能能量始终高于低能能量。
优选地,当所述低剂量率射线和所述高剂量率射线均为双能射线时,在单次辐射检查过程中至少出现三种能量状态。
本发明还提供一种基于上述系统的双模速通式移动目标辐射检查方法,包括:所述移动目标的舱位全部用于容纳人,当移动目标将要进入检查区域时,以低剂量率射线扫描;移动目标整体离开检查区域后,停止扫描。
优选地,在单次辐射检查过程中,所述低剂量率射线为单能射线或者双能射线。
优选地,当所述低剂量率射线为单能射线时,辐射能量介于1-9MeV;当所述低剂量率射线为双能射线时,双能射线的高能、低能能量状态选择性地为以下二者中的一者:①低能能量介于1-6MeV,高能能量介于4-9MeV;②低能能量介于1-3MeV,高能能量介于2-5MeV;其中双能射线的高能能量始终高于低能能量。
本发明的有益效果:本发明根据对扫描对象的类型识别确定辐射源辐射扫描工作模式,对于不同类型的移动目标应用不同的工作模式,对移动目标实施百分百辐射检查,在对货物实现高剂量率高能辐射扫描的同时,确保人员单次接受的辐射剂量在安全级别以下,在双能扫描模式下还可实现物质识别。利用本发明可实现稳定、可靠、快速响应、安全性高的辐射扫描检查,是对不同类型移动目标进行自动快速扫描检查的最佳方式。
附图说明
图1是本发明的辐射检查系统结构框图。
图2是本发明一个实施例的辐射检查系统的使用状态示意图。
图3是本发明一个实施例中对载货车辆的辐射扫描工作模式示意图。
图4是本发明一个实施例中对载人车辆的辐射扫描工作模式示意图。
图5是本发明另一实施例中对载货车辆的辐射扫描工作模式示意图。
图6是本发明另一实施例中对载人车辆的辐射扫描工作模式示意图。
具体实施方式
以下结合附图以及具体实施例,对本发明的技术方案进行详细描述。
在描述X射线或γ射线对物体的辐射量时,可利用辐射剂量(radiation dose)和辐射剂量率(dose rate)参数描述,如吸收剂量(absorbed dose),其是指单位质量的物质接受或“吸收”辐射的平均能量,单位为焦耳每千克,国际单位为Gray(Gy),1J/kg=1Gy。辐射剂量率是单位时间内的辐射剂量。降低射线的辐射剂量(以下简称“剂量”)或辐射剂量率(以下简称“剂量率”),可减小辐射对人体造成的生物损伤。
图1示出了本发明的辐射检查系统结构框图,包括:辐射源、传感器单元、控制模块、辐射探测器和辐射成像设备,其中,辐射源可发出不同剂量率的射线,经准直器准直成扇形辐射线束,照射检查通道中的扫描区域,传感器单元可识别移动目标的类型和监测移动目标在检查通道中所处的位置,控制模块可控制辐射源按照预先设定的工作模式发出射线,移动目标通过扫描区域时被扫描,射线束穿透移动目标后由辐射探测器接收,再由辐射成像设备生成辐射图像。这里,辐射源的预定工作模式至少有两种,不同工作模式下射线的剂量率不同,根据移动目标的类型启动不同的工作模式,对移动目标整体辐射检查。
图2示出了本发明一个实施例的系统的使用状态示意图,包括:射线源210、准直器220、传感器单元(110,121,122,150,160)、探测器阵列300、控制模块500、成像设备400。其中射线源210发出例如X 射线,经准直器220准直成扇形辐射扫描线束,照射扫描区域,移动目标通过扫描区域时被扫描,射线束穿透目标后由探测器阵列300接收,成像设备400生成辐射图像,传感器单元(110,121,122,150,160)和控制模块500配合,控制射线源210的工作模式以及出束和停止出束的时机。
具体来看,传感器单元(110,121,122,150,160)检测移动目标是否到达(到达传感器单元位置时,传感器单元被触发),和检测移动目标是否离开(离开传感器单元位置时,传感器单元恢复为未触发状态)。传感器单元(110,121,122,150,160)可以是光电传感器(如光电开关、光幕开关),金属传感器(如地感线圈)、压力传感器(如轴重传感器)等,也可以是这些传感器的组合。传感器单元(110,121,122,150,160)可布置在通道地面以上,也可以布置在通道地面以下,用于识别不同类型的移动目标(例如外形尺寸较高大的货车和外形尺寸较小的轿车)和移动目标的不同部分(例如载货车辆的驾驶舱和货物舱),不同类型的传感器可以检测目标的移动速度、位移和重量等参数,根据实际情况也可以使用视觉传感器,快速识别车辆类型和位移等。
在图2实施例中,传感器单元110布置在检测通道的入口处,用于检测是否有移动目标进入通道。传感器单元160布置在检测通道的出口处,用于检测是否有移动目标离开通道。在检测通道的入口和出口处还可以布置交通信号灯和挡杆,引导移动目标适时进入检测通道,防止人员意外进入通道受到辐射伤害。在某些实施例中,传感器单元110和160并不是必须的。
传感器单元121布置在扫描区域上游侧,紧靠扫描区域在该侧的边界,传感器单元121被触发说明移动目标即将进入扫描区域。控制模块500根据传感器单元121被触发的信号,控制射线源210发出射线,开始对移动目标实施扫描。射线源210发出射线时的工作模式将在下文详细介绍。
传感器单元122布置在扫描区域下游侧,紧靠扫描区域在该侧的边界,传感器单元122恢复为未触发状态说明移动目标已经离开扫描区域。 控制模块500根据传感器单元122的信号控制射线源210立即停止发出射线。
传感器单元150布置在扫描区域下游侧,距扫描区域该侧边界一定的距离,该距离应大于等于各类型移动目标中用于容纳人的空间(例如驾驶舱)的长度的最大值,使得在传感器单元150被触发时,移动目标中的驾驶舱部分已经驶过扫描区域,剩余部分尚未驶过扫描区域。传感器单元150可包括多个安装在不同高度的光电开关或光幕,方便识别不同型号的车辆,如小型轿车或大型货运卡车,以保证这些车辆是以正确的辐射源工作模式被辐射检查。
对于图2实施例中的传感器单元(110,121,122,150,160),其主要作用是识别移动目标的类型,并监测移动目标在检查通道中所处的位置,因此,除了该实施例中的方式,还可以根据实际需求设计不同的传感器单元设置方式。例如,在扫描区域上游设置两个传感器,根据移动目标触发这两个传感器的时间差和两个传感器之间的距离,得到移动目标的行驶速度,然后根据移动目标位置、驾驶室长度等信息可分别计算出移动目标的驾驶舱和货物舱到达扫描区域所需要的时间,也就掌握了驾驶舱和货物舱到达扫描区域的时刻,令辐射源启动正确的工作模式,在驾驶舱到达扫描区域时发出低剂量率的射线,在货物舱到达扫描区域时发出高剂量率的射线。另外,根据移动目标到达或离开不同传感器的时刻,以及不同传感器之间的距离,可计算得到移动目标在不同位置的速度。
对于辐射源210,其可发出不同剂量率的射线,如电子感应加速器(Betatron)或跑道式电子回旋加速器(RTM,Race-Track Microtron,),以Betatorn为例,可通过控制电子束的注入时间和聚束时间控制被加速电子束的流强,进而控制加速器发出X射线的剂量率,获得不同剂量率的射线,加速器可以工作在相同能量不同剂量的模式,并可实时控制。根据电子轰击金属靶产生X射线辐射的关系式:
Figure PCTCN2014085672-appb-000001
其中,Jx为X射线的剂量,i为平均电子束流强度(单位μA),V为束流能量(单位MV)。当V为3MV时,η取0.0271,n取3,V为8MV时,η取0.0964,n取2.7。对于相同的电子流强i,V分别为4MV和8MV时,单位时间内,后者射线剂量率约为前者的36.1倍。可见,调节电子束的流强i或能量V,均可实现对射线剂量率的调节。因此,适当调整射线源的电子流强和辐射能量,可达到在低剂量率状态扫描时满足安全法规要求,以高剂量率状态扫描时可获得高的辐射穿透能力。
准直器220,其对射线源发出的进入扫描区域以外空间的射线进行屏蔽,减少对被检物的射线照射。本发明的准直器220由高质量厚度材料制成,在不同的实施例中准直器上有一个或多个狭缝,使通过这些狭缝的射线形成扇形射线束,而其余射线被准直器遮挡。
探测器阵列300将入射到探测器阵列敏感材料中的射线转换成数字信号。本发明的探测器阵列300在结构上是由多个紧邻的一维阵列组成的二维阵列,可提高系统的扫描速度,降低单次扫描的剂量。
优选地,射线经过准直器220一个或多个狭缝所形成的扇形射线束的宽度与探测器阵列300中的射线敏感材料的宽度相同,使射线束刚好可以完全覆盖这些射线灵敏区域,进一步使单次扫描的剂量得到尽可能的降低。在工艺上可制作为射线经准直器220的扇形射线束宽度比探测器阵列300的射线敏感材料的宽度略宽。
成像设备400从探测器阵列300接收数字信号,经过处理形成供操作人员查看的辐射图像或图表数据等。此外,成像设备400还根据操作人员的设定,将辐射源的辐射扫描工作模式通知给控制模块500,控制模块500基于通知的工作模式和传感器单元(110,120,122,150,160)的信号,控制射线源210在该工作模式下进行扫描。
图3示出了本发明一个实施例中对载货车辆辐射检查时辐射源的辐射扫描工作模式示意图,其中3(b)-3(e)表示不同模式下射线源出束的剂量率和辐射能量的状态。需要说明,图3-图6实施例均结合图2所示的传感器单元布置方式进行描述。
图3(a)为本实施例的移动目标即载货车辆,对其进行整车扫描检查, 扫描过程对车头部分(驾驶员所在位置)和车厢部分(载货位置)区别对待,对车头部分用低剂量率的射线扫描,确保乘员单次吸收的剂量满足相关安全法规(如ANSI43.17、IEC62463)要求;对车厢部分用高剂量率的射线扫描,以提高射线穿透力。图3(b)描述了对载货车辆实施整车扫描过程中,射线的剂量率状态,图3(c)、3(d)和3(e)分别为在图3(b)过程中,射线的能量状态图。
图3(b)中,时刻t121为车辆到达传感器单元121的时刻,传感器单元121被触发,车辆即将进入扫描区域。控制模块500根据触发信号控制射线源210以低剂量率DL状态出束;t1221时车辆到达传感器单元122;t150时车辆到达传感器单元150,此时车头部分(需以低剂量率扫描)已经驶过扫描区域,车厢(以高剂量率扫描)即将进入扫描区域,则控制模块500根据传感器单元150的信号,控制射线源以高剂量率DH状态出束,对车厢部分扫描;t1220时车辆离开传感器单元122,控制模块500控制射线源立即停止发出射线。至此,辐射成像设备400获得了一个以低剂量率扫描车头、高剂量率扫描车厢的完整辐射图像。
图3(c)中,整个扫描过程中射线源210工作维持在高能EH状态。车头部分以低剂量率DL状态扫描,车厢部分以高剂量率DH状态扫描,也就是对载货车辆的车头部分以低剂量率-高能模式扫描,对车厢部分以高剂量率-高能模式扫描。
图3(d)中,车头部分以低剂量率-高能模式扫描,车厢部分以高剂量率-双能模式扫描。其中双能模式是指辐射源发出双能射线,即射线以高能状态和低能状态交替出束。相对地,射线维持在单一能量状态的称为单能射线,如图3(c)的情况。图3(d)的模式既可满足对车头低剂量率扫描的要求,也可以获得车厢部分的相对高穿透力的双能图像;并且由于双能扫描获得的双能图像能够识别不同材料,因此图3(d)实施例还可以对车辆所装载的货物进行物质识别。
图3(e)中,整个扫描过程中射线源210发出双能射线,也就是车头部分以低剂量率-双能模式扫描,车厢部分以高剂量率-双能模式扫描,既满足对车头低剂量率的扫描要求,也可以获得整车的双能图像。
图4示出了本发明一个实施例中对载人车辆辐射检查时辐射源的辐射扫描工作模式示意图,其中4(b)-4(d)表示不同模式下射线源出束的剂量率和辐射能量的状态。
图4(a)为本实施例的移动目标即载人车辆,对其进行整车扫描检查,由于车辆前后排座位都有可能载人,因此扫描过程对整车用低剂量率的射线扫描。图4(b)描述了对载人车辆实施整车扫描过程中,射线的剂量率状态,图4(c)和4(d)分别为在图4(b)过程中,射线的能量状态图。
图4(b)中,t121为车辆到达传感器单元121的时刻,表示车辆即将进入扫描区域,控制模块500根据传感器单元121的信号,控制射线源以低剂量率DL状态出束;t1221为车辆到达传感器单元122的时刻;t1220为车辆离开传感器单元122的时刻,表示车辆已经离开扫描区域,控制模块控制射线源停止发出射线。在整个扫描过程中,射线源210始终发出低剂量率DL的射线。传感器单元150将不被触发。
图4(c)中,整个扫描过程中射线源210工作维持在高能EH状态,也就是对整车以低剂量率-高能模式扫描。
图4(d)中,整个扫描过程中射线源210发出双能射线,也就是对整车以低剂量率-双能模式扫描。
图5示出了本发明另-实施例中对载货车辆辐射检查时辐射源的辐射扫描工作模式示意图。
图5(b)中辐射源210的射线剂量率状态及剂量率变化与图3(b)中相同。
图5(c)中,扫描过程中射线源210工作在低能EL状态和高能EH状态,车头部分以低剂量率-低能模式扫描,车厢部分以高剂量率-高能模式扫描。
图5(d)中,扫描过程中射线源210对车头部分以低剂量率-低能模式扫描,对车厢部分以高剂量率-双能模式扫描,其中双能射线的高能为EH,低能为EL。
图5(e)中,扫描过程中射线源210发出双能射线,车头部分以低剂量率-双能模式扫描,车厢部分以高剂量率-双能模式扫描。其中,低剂量率-双能模式下的高能为EH1,低能为EL1;高剂量率-双能模式下的高能为 EH2,低能为EL2。此处,EL1与EL2可以相同也可以不同,EH1与EH2可以相同也可以不同,只要达到能够获得整车双能图像即可。举例来说,图5(e)所示的扫描过程中射线能量状态EL1≠EL2,EH1≠EH2,因而该过程中发出的射线将出现四种能量状态:EL1、EL2、EH1和EH2;如果令EL1=EL2,EH1≠EH2,则扫描过程中将总共出现三种能量状态:EL1(EL2)、EH1和EH2。
图6示出了本发明另一个实施例中对载人车辆辐射检查时辐射源的辐射扫描工作模式示意图。
图6(b)中辐射源210的射线剂量率状态及剂量率变化与图4(b)中相同。
图6(c)中,整个扫描过程中射线源210工作维持在低能EL状态,也就是对整车以低剂量率-低能模式扫描。
图6(d)中,整个扫描过程中射线源210发出双能射线,对整车以低剂量率-双能模式扫描,双能射线的高能和低能分别为EH1和EL1。
在本发明的实施例中,低剂量率状态的射线的平均电子流强为高剂量率射线平均电子流强的1~20%。
在本发明的实施例中,EH为4~9MV,EL为1~6MV。
在本发明的实施例中,EH1为2~5MV,EL1为1~3MV,EH2为4~9MV,EL2为3~6MV。
以上,结合具体实施例对本发明的技术方案进行了详细介绍,所描述的具体实施例用于帮助理解本发明的思想。本领域技术人员在本发明具体实施例的基础上做出的推导和变型也属于本发明保护范围之内。

Claims (15)

  1. 一种双模速通式移动目标辐射检查系统,其特征在于,包括:辐射源、准直器、传感器单元、控制模块、辐射探测器和辐射成像设备;其中,
    所述传感器单元用于识别移动目标的类型和监测移动目标在检查通道中所处的位置;
    所述控制模块用于根据移动目标的类型和位置,控制所述辐射源在预定工作模式下发出射线;其中,
    所述预定工作模式与移动目标的类型相对应,辐射源在不同的工作模式下发出的射线的剂量率不同。
  2. 如权利要求1所述的双模速通式移动目标辐射检查系统,其特征在于,所述预定工作模式包括恒定剂量率模式和非恒定剂量率模式,在恒定剂量率模式下射线的剂量率保持为低剂量率;在非恒定剂量率模式下射线的剂量率在低剂量率和高剂量率之间切换;其中,低剂量率低于辐射安全标准规定的限制,高剂量率高于辐射安全标准规定的限制。
  3. 如权利要求2所述的双模速通式移动目标辐射检查系统,其特征在于,所述辐射源发出低剂量率射线时的平均电子流强是发出高剂量率射线时的平均电子流强的1~20%。
  4. 如权利要求1所述的双模速通式移动目标辐射检查系统,其特征在于,所述辐射源用于发出单能射线和/或双能射线。
  5. 如权利要求1所述的双模速通式移动目标辐射检查系统,其特征在于,所述传感器单元包括第一传感器子单元、第二传感器子单元和第三传感器子单元,第一传感器子单元位于检查通道内的辐射检查区域的上游侧;第二传感器子单元和第三传感器子单元位于辐射检查区域的下游侧;第二传感器子单元和第三传感器子单元之间的距离大于等于L,其中L为各类型移动目标中用于容纳人的空间的长度的最大值。
  6. 如权利要求1所述的双模速通式移动目标辐射检查系统,其特征在于,所述辐射探测器为二维阵列探测器,其包含多个一维阵列探测 器,各个一维阵列探测器紧邻地布置。
  7. 如权利要求1所述的双模速通式移动目标辐射检查系统,其特征在于,所述准直器具有多个狭缝,多个狭缝的布置使得穿过准直器的射线覆盖所述辐射探测器。
  8. 一种双模速通式移动目标辐射检查方法,其基于权利要求1-7中任一项所述的双模速通式移动目标辐射检查系统,其特征在于,包括:
    所述移动目标含有驾驶舱和货物舱,当驾驶舱将要进入检查区域时,以低剂量率射线扫描;
    当驾驶舱离开检查区域且货物舱将要进入检查区域时,以高剂量率射线扫描;
    移动目标全部离开检查区域后,停止扫描。
  9. 如权利要求8所述的双模速通式移动目标辐射检查方法,其特征在于,在单次辐射检查过程中,所述低剂量率射线为单能射线或者双能射线,所述高剂量率射线为单能射线或者双能射线。
  10. 如权利要求9所述的双模速通式移动目标辐射检查方法,其特征在于,当所述低剂量率射线为单能射线时,辐射能量介于1-9MeV;当所述低剂量率射线为双能射线时,双能射线的高能、低能能量状态选择性地为以下三者中的一者:①低能能量介于1-6MeV,高能能量介于4-9MeV;②低能能量介于1-3MeV,高能能量介于2-5MeV;③低能能量介于3-6MeV,高能能量介于4-9MeV;其中双能射线的高能能量始终高于低能能量。
  11. 如权利要求9所述的双模速通式移动目标辐射检查方法,其特征在于,当所述高剂量率射线为单能射线时,辐射能量介于4-9MeV;当所述高剂量率射线为双能射线时,双能射线的高能、低能的能量状态选择性地为以下二者中的一者:①低能能量介于1-6MeV,高能能量介于4-9MeV;②低能能量介于3-6MeV,高能能量介于4-9MeV;其中双能射线的高能能量始终高于低能能量。
  12. 如权利要求9所述的双模速通式移动目标辐射检查方法,其特征在于,当所述低剂量率射线和所述高剂量率射线均为双能射线时,在 单次辐射检查过程中至少出现三种能量状态。
  13. 一种双模速通式移动目标辐射检查方法,其基于权利要求1-7中任一项所述的双模速通式移动目标辐射检查系统,其特征在于,包括:
    所述移动目标的舱位全部用于容纳人,当移动目标将要进入检查区域时,以低剂量率射线扫描;
    移动目标整体离开检查区域后,停止扫描。
  14. 如权利要求13所述的双模速通式移动目标辐射检查方法,其特征在于,在单次辐射检查过程中,所述低剂量率射线为单能射线或者双能射线。
  15. 如权利要求14所述的双模速通式移动目标辐射检查方法,其特征在于,当所述低剂量率射线为单能射线时,辐射能量介于1-9MeV;当所述低剂量率射线为双能射线时,双能射线的高能、低能能量状态选择性地为以下二者中的一者:①低能能量介于1-6MeV,高能能量介于4-9MeV;②低能能量介于1-3MeV,高能能量介于2-5MeV;其中双能射线的高能能量始终高于低能能量。
PCT/CN2014/085672 2014-05-15 2014-09-01 一种双模速通式移动目标辐射检查系统及方法 WO2015172464A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
MYPI2016704137A MY181379A (en) 2014-05-15 2014-09-01 Dual-mode rapidly-passing type moving target radiation inspection system and method
US15/126,837 US10466382B2 (en) 2014-05-15 2014-09-01 Dual-mode rapidly-passing type moving target radiation inspection system and method
EP14892122.4A EP3109678A4 (en) 2014-05-15 2014-09-01 Dual-mode rapidly-passing type moving target radiation inspection system and method
BR112016026285-9A BR112016026285B1 (pt) 2014-05-15 2014-09-01 Sistema e método de inspeção por radiação de modo duplo em alvo móvel do tipo passagem rápida
EA201691636A EA037954B1 (ru) 2014-05-15 2014-09-01 Двухрежимные система и способ досмотра быстро движущихся объектов с использованием излучения

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410204799.6 2014-05-15
CN201410204799.6A CN103984035A (zh) 2014-05-15 2014-05-15 一种双模速通式移动目标辐射检查系统及方法

Publications (1)

Publication Number Publication Date
WO2015172464A1 true WO2015172464A1 (zh) 2015-11-19

Family

ID=51276077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/085672 WO2015172464A1 (zh) 2014-05-15 2014-09-01 一种双模速通式移动目标辐射检查系统及方法

Country Status (8)

Country Link
US (1) US10466382B2 (zh)
EP (1) EP3109678A4 (zh)
CN (2) CN103984035A (zh)
BR (1) BR112016026285B1 (zh)
EA (1) EA037954B1 (zh)
MY (1) MY181379A (zh)
SA (1) SA516371631B1 (zh)
WO (1) WO2015172464A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107228869A (zh) * 2017-06-29 2017-10-03 北京君和信达科技有限公司 辐射检查系统和辐射检查方法
US10809415B2 (en) * 2016-08-25 2020-10-20 Beijing Haulixing Technology Development Co., Ltd. Imaging device for use in vehicle security check and method therefor
CN114690256A (zh) * 2020-12-31 2022-07-01 同方威视技术股份有限公司 车辆检查方法、装置、系统和计算机可读存储介质

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104950338B (zh) * 2014-03-24 2020-11-24 北京君和信达科技有限公司 对移动目标进行辐射检查的系统和方法
CN103984035A (zh) * 2014-05-15 2014-08-13 北京君和信达科技有限公司 一种双模速通式移动目标辐射检查系统及方法
CN105445808B (zh) * 2014-08-19 2018-10-02 清华大学 对移动目标进行检查的设备及方法
WO2016026442A1 (zh) * 2014-08-19 2016-02-25 清华大学 对移动目标进行检查的设备及方法
CN105445809B (zh) * 2014-08-19 2018-09-11 清华大学 对移动目标进行检查的设备及方法
CN104374785B (zh) * 2014-11-14 2017-12-05 北京君和信达科技有限公司 一种连续通过式辐射扫描系统和方法
CN104391338B (zh) 2014-12-17 2018-11-16 清华大学 多剂量分区域扫描的车辆快速检查系统及方法
CN104459813B (zh) 2014-12-29 2019-08-23 清华大学 车载式快速检查系统
CN105333826B (zh) 2015-12-04 2019-02-22 同方威视技术股份有限公司 车辆快速检查方法及系统
CN105652332B (zh) * 2016-02-24 2019-02-12 北京君和信达科技有限公司 一种辐射源控制方法和速通式安检系统
CN106290427A (zh) * 2016-10-17 2017-01-04 北京君和信达科技有限公司 背散射成像方法及系统
CN107479103B (zh) * 2017-09-19 2020-01-14 北京君和信达科技有限公司 辐射检查系统
CN107664774A (zh) * 2017-09-19 2018-02-06 北京君和信达科技有限公司 辐射检查系统和方法
CN108398444A (zh) * 2018-05-09 2018-08-14 清华大学 辐射检查系统和辐射检查方法
CN109407162B (zh) * 2018-12-24 2024-04-02 同方威视技术股份有限公司 检查系统及成像方法
CN109828310B (zh) * 2018-12-28 2024-05-03 同方威视技术股份有限公司 安检设备和安检方法
CN109471187B (zh) 2019-01-04 2024-04-02 清华大学 扫描检查系统和扫描检查方法
CN109917479A (zh) * 2019-04-09 2019-06-21 同方威视技术股份有限公司 车辆检查方法、装置、系统和计算机可读存储介质
GB2593677B (en) * 2020-03-25 2023-11-01 Smiths Heimann Sas Vehicle inspection controlled using image information
CN113820139B (zh) * 2020-06-18 2022-12-06 同方威视技术股份有限公司 自动引导系统和方法以及车辆检查系统
CN113281821B (zh) * 2021-07-09 2023-10-13 同方威视技术股份有限公司 检查系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101162507A (zh) * 2006-10-13 2008-04-16 同方威视技术股份有限公司 一种对移动车辆进行车型识别的方法
WO2012106730A2 (en) * 2011-01-31 2012-08-09 Rapiscan Systems, Inc. Dual mode x-ray scanning system
WO2013117694A2 (de) * 2012-02-10 2013-08-15 Smiths Heimann Gmbh Verfahren und vorrichtung zur überprüfung des laderaums eines lastkraftwagens
CN203178215U (zh) * 2012-12-28 2013-09-04 北京华力兴科技发展有限责任公司 一种用于检查海关进口“三废”的设备
CN103984035A (zh) * 2014-05-15 2014-08-13 北京君和信达科技有限公司 一种双模速通式移动目标辐射检查系统及方法
CN204009098U (zh) * 2014-05-15 2014-12-10 北京君和信达科技有限公司 一种双模速通式移动目标辐射检查系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8275091B2 (en) 2002-07-23 2012-09-25 Rapiscan Systems, Inc. Compact mobile cargo scanning system
JP4639928B2 (ja) * 2005-04-26 2011-02-23 三菱電機株式会社 電磁波発生装置
JP5377969B2 (ja) * 2005-09-30 2013-12-25 ハザードスキャン インコーポレイテッド 電子加速器をベースにしたマルチエネルギー貨物検査システム
CN102147486B (zh) * 2006-10-13 2012-08-22 同方威视技术股份有限公司 用于辐射源的控制单元和控制方法及辐射检查系统和方法
DE102006050953A1 (de) * 2006-10-28 2008-04-30 Smiths Heimann Gmbh Betatron mit Contraction- und Expansion-Spule
US7742568B2 (en) * 2007-06-09 2010-06-22 Spectrum San Diego, Inc. Automobile scanning system
GB0803642D0 (en) * 2008-02-28 2008-04-02 Rapiscan Security Products Inc Drive-through scanning systems
US9036779B2 (en) 2008-02-28 2015-05-19 Rapiscan Systems, Inc. Dual mode X-ray vehicle scanning system
PL2567267T3 (pl) * 2010-05-05 2019-12-31 Nauchno-Proizvodstvennoe Chastnoe Unitarnoe Predpriyatie Adani System kontroli ładunku i pojazdu
US8942351B2 (en) * 2010-10-01 2015-01-27 Accuray Incorporated Systems and methods for cargo scanning and radiotherapy using a traveling wave linear accelerator based X-ray source using pulse width to modulate pulse-to-pulse dosage
WO2013082005A1 (en) * 2011-11-29 2013-06-06 American Science And Engineering, Inc. System and methods for multi-beam inspection of cargo in relative motion
CN202896596U (zh) * 2012-09-26 2013-04-24 同方威视技术股份有限公司 具有改进的辐射防护的列车安全检查系统
WO2014117636A2 (zh) * 2013-11-14 2014-08-07 清华大学 多能量多剂量加速器、具有该加速器的快检系统及对应的快检方法
CN104459813B (zh) * 2014-12-29 2019-08-23 清华大学 车载式快速检查系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101162507A (zh) * 2006-10-13 2008-04-16 同方威视技术股份有限公司 一种对移动车辆进行车型识别的方法
WO2012106730A2 (en) * 2011-01-31 2012-08-09 Rapiscan Systems, Inc. Dual mode x-ray scanning system
WO2013117694A2 (de) * 2012-02-10 2013-08-15 Smiths Heimann Gmbh Verfahren und vorrichtung zur überprüfung des laderaums eines lastkraftwagens
CN203178215U (zh) * 2012-12-28 2013-09-04 北京华力兴科技发展有限责任公司 一种用于检查海关进口“三废”的设备
CN103984035A (zh) * 2014-05-15 2014-08-13 北京君和信达科技有限公司 一种双模速通式移动目标辐射检查系统及方法
CN204009098U (zh) * 2014-05-15 2014-12-10 北京君和信达科技有限公司 一种双模速通式移动目标辐射检查系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3109678A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10809415B2 (en) * 2016-08-25 2020-10-20 Beijing Haulixing Technology Development Co., Ltd. Imaging device for use in vehicle security check and method therefor
CN107228869A (zh) * 2017-06-29 2017-10-03 北京君和信达科技有限公司 辐射检查系统和辐射检查方法
CN114690256A (zh) * 2020-12-31 2022-07-01 同方威视技术股份有限公司 车辆检查方法、装置、系统和计算机可读存储介质

Also Published As

Publication number Publication date
CN103984035A (zh) 2014-08-13
SA516371631B1 (ar) 2021-02-02
BR112016026285A2 (zh) 2017-08-15
EP3109678A1 (en) 2016-12-28
EA201691636A1 (ru) 2017-05-31
EP3109678A4 (en) 2017-04-12
CN108445546A (zh) 2018-08-24
US20170090062A1 (en) 2017-03-30
MY181379A (en) 2020-12-21
EA037954B1 (ru) 2021-06-11
BR112016026285B1 (pt) 2022-06-21
US10466382B2 (en) 2019-11-05

Similar Documents

Publication Publication Date Title
WO2015172464A1 (zh) 一种双模速通式移动目标辐射检查系统及方法
US10527525B2 (en) Method and system for fast inspecting vehicle based on measure lengths
US6459764B1 (en) Drive-through vehicle inspection system
US8116431B2 (en) Automobile scanning system
AU2006346222B2 (en) System for image inspection of movable object and dodging method
JP4701290B2 (ja) 移動体の放射線結像検査方法および放射線結像検査システム
US7408160B2 (en) Density detection using real time discrete photon counting for fast moving targets
US7995707B2 (en) X-ray inspection with contemporaneous and proximal transmission and backscatter imaging
US9086496B2 (en) Feedback modulated radiation scanning systems and methods for reduced radiological footprint
CN102834738A (zh) 货物和车辆检查系统
WO2015161717A1 (zh) 一种速通式移动目标辐射检查方法和系统
CN107479103B (zh) 辐射检查系统
CN106290422B (zh) 一种用于车辆安全检查的成像装置及其方法
NL2024027B1 (en) Security inspection apparatus and security inspection method
CN104777520A (zh) 一种基于激光扫描仪的移动目标自动检查系统
US7352844B1 (en) Method and system for automatically scanning and imaging the contents of a moving target
CN204009098U (zh) 一种双模速通式移动目标辐射检查系统
CN207689689U (zh) 辐射检查系统
CN104502944A (zh) 一种降低辐射成像系统检测剂量的方法
CN107490805A (zh) 辐射装置及辐射检查系统
WO2018072670A1 (zh) 背散射辐射成像系统
US10809415B2 (en) Imaging device for use in vehicle security check and method therefor
WO2022052903A1 (zh) 安全检查系统及方法
CN214375317U (zh) 安检设备
CN115668001A (zh) 使用图像信息控制的车辆检查

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14892122

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 201691636

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 15126837

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014892122

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014892122

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016026285

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016026285

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20161109