WO2016026442A1 - 对移动目标进行检查的设备及方法 - Google Patents

对移动目标进行检查的设备及方法 Download PDF

Info

Publication number
WO2016026442A1
WO2016026442A1 PCT/CN2015/087550 CN2015087550W WO2016026442A1 WO 2016026442 A1 WO2016026442 A1 WO 2016026442A1 CN 2015087550 W CN2015087550 W CN 2015087550W WO 2016026442 A1 WO2016026442 A1 WO 2016026442A1
Authority
WO
WIPO (PCT)
Prior art keywords
moving target
position sensor
channel
scanning
moving
Prior art date
Application number
PCT/CN2015/087550
Other languages
English (en)
French (fr)
Inventor
王利明
曲海波
刘喜龙
赵杰
Original Assignee
清华大学
同方威视技术股份有限公司
北京华力兴科技发展有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410409522.7A external-priority patent/CN105445808B/zh
Priority claimed from CN201410410432.XA external-priority patent/CN105445809B/zh
Application filed by 清华大学, 同方威视技术股份有限公司, 北京华力兴科技发展有限责任公司 filed Critical 清华大学
Priority to EP15834549.6A priority Critical patent/EP3185001B1/en
Priority to MYPI2017700511A priority patent/MY191339A/en
Priority to US15/503,676 priority patent/US10365234B2/en
Publication of WO2016026442A1 publication Critical patent/WO2016026442A1/zh

Links

Images

Classifications

    • G01V5/22
    • G01V5/232
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/003Measuring arrangements characterised by the use of electric or magnetic techniques for measuring position, not involving coordinate determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/20Sources of radiation
    • G01N2223/201Sources of radiation betatron
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/33Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts
    • G01N2223/3307Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts source and detector fixed; object moves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/631Specific applications or type of materials large structures, walls

Definitions

  • the present disclosure relates to a scanning imaging process for moving objects, and more particularly to an apparatus and method for imaging inspection of moving objects.
  • a device that inspects a vehicle using high-energy rays is a typical example of a device that performs an imaging inspection of a moving target.
  • the inspected vehicle is usually moved by a drag device to move at a uniform speed, and the accelerator continuously emits a high-energy ray of a fixed frequency.
  • a device has a baffle that shields the ray, and whether the high energy ray is directed at the vehicle under inspection is controlled by the baffle. When the baffle is opened, high-energy rays are emitted to the object to be inspected, and the vehicle is scanned and imaged for inspection.
  • an object of the present disclosure is to propose an apparatus and method for imaging inspection of a moving target.
  • an apparatus for performing rapid imaging inspection of a moving target comprising: a passage through which the moving target passes; a scanning imaging device including an X-ray generating electronic induction accelerator and receiving penetration An X-ray detecting device that moves a target, the X-ray accelerator emits X-rays to a moving target passing through the channel to image the moving target; and the first position sensor is disposed at a side of the scanning imaging device End, the output sensing signal indicates whether the moving target enters the channel; the second position sensor is disposed between the first position sensor and the scanning imaging device, detecting a type characteristic of the moving target and distinguishing the movement a protected portion and a non-protected portion of the target segmenting the moving target, the output sensing signal indicating that the protected portion of the moving target is passing or has passed through the radiation scanning area; the control unit, and the scanning imaging device, a position sensor and a second position sensor are connected to receive from the first position sensor The moving target enters the detection signal of the channel to power
  • the distance between the first position sensor and the scanning imaging device is set to be greater than a predetermined value such that detection of the moving target from the first sensor is calculated to enter the radiation scanning zone
  • the time between is greater than or equal to the time from the power-on to the standby state of the electronic induction accelerator.
  • the apparatus further includes a speed sensor disposed between the first position sensor and the scanning imaging device to measure a moving speed of the moving target within the channel, the first position sensor receiving When the moving target enters the detection signal of the channel, the control unit controls the speed sensor to measure the moving speed of the moving target, and controls the scanning according to the moving speed of the moving target received from the speed sensor. Reconstruction of the image and correction of the scanned image data in accordance with the moving speed.
  • the moving target passes through the channel at a predetermined speed range: if the moving target is at the upper limit of the predetermined speed range, the scanning imaging device performs sampling according to the electron inductive accelerator exit frequency; if the moving target is lower than the predetermined At the upper end of the speed range, the scanning imaging device is in an oversampling state, and the image is reconstructed by interpolation or convolution.
  • a bus, a container truck, a van, a full vehicle scan or a segmented scan through which the driver does not get off the vehicle is performed.
  • the second position sensor is further configured to detect and discriminate non-vehicles, cars, buses, trailer-type container trucks, vans.
  • control unit issues an instruction according to the sensing signal of the second position sensor to switch the operating timing of the deflection coil of the electronic induction accelerator to generate an X-ray beam of different energy.
  • the apparatus further includes a third position sensor for determining whether the moving target leaves the channel, and detecting, at the third position sensor, the moving target as a whole to remove radiation
  • the control unit sends a control signal to stop supplying power to the electronic induction accelerator.
  • the first position sensor includes a first geo-sensitive coil embedded under the surface of the channel inlet and a first quick-response light curtain switch disposed on both sides of the channel for use in conjunction therewith.
  • the channel has mounting posts on both sides, and the first fast response light curtain switch is disposed on the post.
  • the speed sensor comprises a speed measuring radar disposed on both sides of the channel.
  • the second position sensor comprises a second fast response light curtain disposed on both sides of the channel Switch and photoelectric switch.
  • the third position sensor comprises: a second inductive coil embedded under the surface of the channel biased toward the outlet and a third fast response light disposed on both sides of the channel for use in combination therewith Curtain switch.
  • a method for performing a rapid imaging inspection of a moving target comprising: outputting a sensing signal from the first position sensor indicating whether the moving target enters a passage through which the moving target passes;
  • a position sensor detects a type feature of the moving target and distinguishes between a protected portion and a non-protected portion of the moving target, segments the moving target, and outputs a sensing signal indicating that the protected portion of the moving target is passing or has been scanned by radiation
  • the distance between the first position sensor and the scanning imaging device is set to be greater than a predetermined value such that detection of the moving target from the first sensor is calculated to enter the radiation scanning zone
  • the time between is greater than or equal to the time from the power-on to the standby state of the electronic induction accelerator.
  • the method further comprises: measuring a moving speed of the moving target within the channel with a speed sensor disposed between the first position sensor and the scanning imaging device; receiving at the first position sensor When the moving target enters the detection signal of the channel, the speed sensor controls the moving speed of the moving target, and controls the reconstruction of the scanned image according to the moving speed of the moving target received from the speed sensor. And correcting the scanned image data according to the moving speed.
  • the moving target passes through the channel at a predetermined speed range: if the moving target is at the upper limit of the predetermined speed range, the scanning imaging device performs sampling according to the electron inductive accelerator exit frequency; if the moving target is lower than the predetermined At the upper end of the speed range, the scanning imaging device is in an oversampling state, and the image is reconstructed by interpolation or convolution.
  • the method further includes: determining, by the third position sensor, whether the moving target leaves the channel, and issuing a control signal after the third position sensor detects that the moving target moves out of the radiation scanning area as a whole Stop supplying power to the inductive accelerator.
  • the moving target is, for example, a moving vehicle
  • the portion to be protected is a front portion
  • an apparatus for inspecting a vehicle using high-energy rays which is inspected during travel of the vehicle, and does not require a passenger-off device to control the accelerator when the moving target passes through the scanning area.
  • the extremely fast response speed emits a beam of the corresponding energy for scanning (according to the user's needs, the scanned target can be scanned as a whole or the protected portion can be scanned), the scanning method is flexible and the inspection time can be greatly shortened.
  • the present disclosure can increase the vehicle passing rate to more than 200 container trucks per hour due to the adoption of the above technical solution. Compared with the prior art, the present disclosure can greatly improve the vehicle inspection rate, and the equipment energy consumption and cost are significantly reduced, and the overall equipment footprint is small because large-scale cooling equipment is not required. This allows the equipment to be used in all types of road bayonet applications.
  • FIG. 1 is a schematic structural view of an inspection apparatus according to an embodiment of the present disclosure
  • FIG. 2 is a block diagram showing the structure of an electronic induction accelerator used in the inspection apparatus shown in Figure 1;
  • 3 and 4 are schematic diagrams illustrating an inspection method according to an embodiment of the present disclosure.
  • FIG. 1 is an apparatus for performing rapid imaging inspection of a vehicle in which a beam of different energy is emitted from different sections of the moving target for rapid imaging inspection as shown in FIG. 1 in the implementation of the present disclosure, in accordance with an embodiment of the present disclosure.
  • the moving object 100 such as a vehicle is detected by the first position sensor 101 by entering the inspection channel, and the control device 105 issues a command to activate the electronic induction accelerator in the scanning imaging device 106, powers it on and then stands by. .
  • the second position sensor 103 detects the type feature of the moving target and distinguishes the protected portion from the unprotected portion of the moving target, and correctly segments the moving target (for example, a cockpit segment and other non-protected portions that need to be protected), respectively, outputting the transmission
  • the sense signal indicates that the moving target protected portion is passing and has passed through the scanning zone.
  • the control device 105 powers up the electronic induction accelerator to be in a standby state when the moving target received from the first position sensor 101 enters the detection signal of the channel, and detects that different sections pass in the second position sensor.
  • the time point and the beam exit mode of the electronic induction accelerator are controlled to perform corresponding inspection on two parts of the moving target. For example, the cockpit is checked with low-energy rays so that the cockpit receives a very low dose of radiation, so the driver does not have to get off the vehicle, and the part of the container is inspected with high-energy rays to obtain a clear image of the target part. .
  • the scanning imaging device 106 includes an electron inductive accelerator that generates X-rays and a detecting device that receives X-rays that penetrate the moving target, the inductive accelerator emitting X-rays to a moving target passing through the channel to image the moving target.
  • the first position sensor 101 is disposed at a distal end of the side of the scanning imaging device, and the output sensing signal indicates whether the moving target enters the channel.
  • the second position sensor 103 is disposed between the first position sensor 101 and the scan imaging device 106, detects the type feature of the moving target and distinguishes the protected portion from the unprotected portion of the moving target, and correctly segments the moving target, respectively
  • the output sensing signal indicates that the protected portion of the moving target is passing through and has passed through the scanning zone.
  • the control device 105 is connected to the scan imaging device 106, the first position sensor 101, and the second position sensor 103, and supplies the electrons when the moving target received from the first position sensor 101 enters the detection signal of the channel.
  • the induction accelerator is powered up to be in a standby state, and when the second position sensor 103 detects that different sections pass through the radiation scanning area, controlling the electron inductive accelerator to exit the beam point and the beam exit mode to move the two parts of the moving target Carry out the appropriate checks.
  • the distance between the first position sensor 101 and the scanning imaging device 106 is set to be greater than a predetermined value such that the movement target is detected from the first position sensor to the movement
  • the time between the entry of the target into the radiation scanning zone is greater than or equal to the time from the power up to the standby state of the electronic induction accelerator.
  • the inspection apparatus may further include a speed sensor 102 disposed between the first position sensor 101 and the scanning imaging device 106 to measure a moving speed of the moving target in the channel, and the first position sensor 101.
  • the control device 105 controls the speed sensor 102 to measure the moving speed of the moving target, and according to the moving target received from the speed sensor 102.
  • the moving speed is used to control the reconstruction of the scanned image, and the scanned image data is corrected in accordance with the moving speed.
  • a moving target passes through the channel at a predetermined speed range. If the moving target is at the upper limit of the predetermined speed range, the scanning imaging device 106 performs sampling in accordance with the electron inducting accelerator exit frequency. If the moving target is below the upper limit of the predetermined speed range, the scanning imaging device 106 is in an oversampling state, and the image is reconstructed by interpolation or convolution.
  • the inspection apparatus may also include a third position sensor 104.
  • the third position sensor 104 is configured to determine whether the moving target leaves the channel, and after the third position sensor 104 detects that the moving target is entirely removed from the radiation scanning area, the control device 105 may issue a control signal to stop. Powering the electronic induction accelerator. In other embodiments, if the first position sensor 101 detects that there are still other vehicles after the vehicle, the control device 105 does not issue a control signal to stop powering the electronic induction accelerator.
  • Fig. 2 is a view showing the structure of an electronic induction accelerator used in the inspection apparatus shown in Fig. 1.
  • An inductive accelerator is a cyclotron in which electrons move along a circular path in a vacuum acceleration chamber while obtaining sufficient energy through an eddy current field.
  • the eddy current field is caused by a magnetic flux pulse change that controls the motion trajectory of the electron while providing energy.
  • the accelerator mainly includes a radiator 205, a power supply unit 203, a pulse converter 204, and an interface unit (not shown).
  • the radiator includes a high pressure injection unit assembly, an acceleration chamber, a main pole and a pole winding, a deflection winding, a Contra winding (constraint winding), an ionization chamber, and the like.
  • the interface box converts, for example, the RS-422 digital signal and the corresponding protocol into a USB standard signal used by the computer.
  • the pulse converter 204 is used to generate current pulses of the Contra (constrainer) and deflection yoke, as well as voltage pulses injected into the system.
  • the converter can provide three output voltages: (1) 400V for injecting the voltage generator; (the injection voltage generator is activated by the synchronizing board of the power supply unit (starting the thyristor), and the double-chain line will be directed to the high-voltage transformer of the injection unit. The winding is discharged to generate a high voltage pulse on the secondary winding of the transformer); (2) is used to constrain the current generator's 360V voltage; the synchronous plate triggers the constrained current generator (starting the thyristor) and (3) is used to deflect the current The generator's 560V voltage.
  • the deflection current generator starts the IGBT transistor
  • the coupling elements, main power switch and operation control functions of the power supply unit connected to other units are located on the same panel.
  • the power converter is powered by a three-phase power supply 220/380V.
  • a power converter is used to excite the accelerator magnet. It consists of a three-phase rectifier, a two-level transistor bridge (distribution panel) based on the IGBT three-stage transistor, an energy input thyristor, and a protector.
  • the electronic induction accelerator further includes a power supply unit 203 that supplies voltage and filament voltage, a synchronization device 202, and a controller 201.
  • the power supply unit 203 supplies a +12 volt to the filament control circuit before the magnet is activated, which lowers the filament output voltage so that it is in standby mode.
  • the synchronizing device 202 can send a control signal to the inductive accelerator system in a specific time series, a timing signal Beam Trig to the cargo detection system (CIS), and an external signal RAD ON (starting radiation) from the cargo detecting system. Control the radiation switch and handle the emergency stop signal.
  • the controller 201 has peripherals for controlling the operation of the inductive accelerator for controlling the power converter, stabilizing the electromagnet voltage, and regulating the electron energy.
  • FIG. 3 and 4 are schematic views illustrating an inspection method according to an embodiment of the present disclosure, wherein FIG. 4 is a top plan view of the apparatus shown in FIG.
  • the apparatus for rapid imaging inspection includes an accelerator pod 309, fast response light curtain switches 302, 305 and 306, ground sensing coils 303 and 308, photoelectric switches 310, protective walls 304 and 311, and speed radar 307. , detector arm 312, control software and other parts.
  • the quick response light curtain switch 302 is mounted on the mounting posts on both sides of the channel, and the ground sensing coil 303 is buried under the surface of the channel inlet as the first switch of the vehicle inlet, and the protective walls 304, 311 are vertically mounted on both sides of the channel and respectively
  • the accelerator cabin 309 on both sides of the passage is connected to the detector arm 312, and the quick-response light curtain switches 305, 306 are mounted on the wall of the accelerator cabin 309 and the detector arm 312 on both sides of the passage, and the photoelectric switch 310 is mounted on both sides of the passage.
  • the speed measuring radar 307 is mounted on the outer wall of the accelerator cabin 309 near the passage, and the ground sensing coil 308 is buried under the surface of the passage to the outlet direction.
  • the system When the number of vehicles in the channel is 0, the system is in standby state, when a car 301A approaches the channel, the sense coil The 303 is first effective, and the fast response light curtain switch 302 is combined to determine the direction of travel of the vehicle. If the vehicle enters the passage, the number of vehicles in the passage is increased by one, and the speed measuring radar 307 measures the traveling speed of the vehicle, and the system enters the ready state. The vehicle continues to move forward, and the system records the state change of the vehicle during the passage of the passage.
  • the photoelectric switch 310 When the vehicle is at 301A through 301B to 301C at a normal speed, the photoelectric switch 310 is effective. At this time, it is determined whether the vehicle to be inspected is a container truck or a closed truck through the state of the light curtain switch 305, and different scanning trigger conditions are adopted according to different vehicle models.
  • the quick response light curtain switch 302 After the quick response light curtain switch 302 detects that the vehicle enters the inspection area, if the state of the light curtain switch 305 is determined to be a container truck, it is detected whether the vehicle's cab passes and generates a passing signal, and then the container is scanned when it reaches the inspection area. an examination.
  • the control system generates a control signal for controlling the electronic induction accelerator system to generate an electron beam based on a pass signal from the detector.
  • the third position sensor 104 includes, for example, a fast response light curtain switch 306 and a ground sense coil 308 as shown in FIGS. 3 and 4.
  • the ground-sensing coil 308 is embedded in a position in the channel below the ground surface that is biased toward the outlet, and is used in conjunction with the quick-response light curtain switch 306 disposed on both sides of the channel to detect whether the vehicle is driving out of the scanning channel.
  • the vehicle count in the channel is decremented by one. As long as the number of vehicles in the channel is not zero, the system remains in the ready state; when the number of vehicles in the channel is 0, the system enters the standby state.
  • the control device 105 controls the electronic induction accelerator in the scanning imaging device to be powered up, the electronic induction accelerator
  • the electron gun generates an electron beam, and the generated electron beam is injected into a slewing track formed by the magnet winding, thereby accelerating it.
  • the accelerated electron beam is taken out by the deflection winding, bombarding the target, and generating X-rays.
  • the Contra windings gather the electron beams to prevent the electron beams from diverging.
  • the switch 302 can be formed as a first fast response light curtain switch, and the switch 305 can be formed as a second fast response light curtain switch, and the switch 306 can be formed as a third fast response light curtain.
  • the switch 310 is formed as a photoelectric switch. In other embodiments, the photoelectric switch can also be used with another fast response light curtain switch.
  • the second position sensor 103 can include a second fast response light curtain switch 305.
  • the timing of the beam scanning is determined based on the detection result. That is, based on the vehicle speed detected by the speed sensor 102 and the vehicle type information detected by the second position sensor 103, the timing of the delivery is delayed for a period of time, and the avoidance of the front of the vehicle can also be achieved.
  • the second position sensor 103 can also include a second fast response light curtain switch, for example, in other embodiments. 305 and photoelectric switch 310.
  • the photoelectric switch may be set at a certain distance from the scanning area (for example, preferably the length of the longest head in different models). 310.
  • the photoelectric switch 310 detects the front of the vehicle, it means that the head that needs to be avoided has passed through the scanning area, and the moving compartment is about to pass through the scanning area, and the beam scanning is started at this time.
  • the photoelectric switch 310 can also be used in conjunction with the second quick response switch 305.
  • the second position sensor 103 detects a type feature of the moving target and distinguishes between a protected portion and a non-protected portion of the moving target, segments the moving target, and outputs a sensing signal indicating the receiving of the moving target
  • the protected portion is passing or has passed through the radiation scanning zone.
  • the type of the moving object is a container truck, a van, or the like
  • a predetermined type of scanning mode is performed according to the vehicle type. For example, in the case where it is determined to be a bus, the vehicle is not scanned, and if it is a closed truck, a beam scanning is performed.
  • the front part of the head exits the radiation scanning area and the container is scanned out when it reaches the radiation scanning area.
  • a first energy X-ray beam is used for the front portion of the container truck, and a second energy X-ray beam is used for the container portion, the first energy being about one third or less of the second energy.
  • control unit controls the time-out and the exit mode of the electronic induction accelerator to move the target when the second position sensor detects that different sections pass through the radiation scanning area.
  • Each section is checked accordingly, and the scanned image data is corrected in accordance with the vehicle speed.
  • a full car scan or a segmented scan through which the driver does not get off the bus is performed for a car, bus, container truck, van.
  • the second position sensor is also configured to detect and distinguish non-vehicles, cars, buses, trailer-type container trucks, vans.
  • the control unit can issue an instruction according to the sensing signal of the second position sensor to switch the working timing of the deflection coil of the electronic induction accelerator to generate different energy.
  • X-ray beam For example, by setting different operating timings, an X-ray beam of a first energy can be used for a protected portion such as a cockpit, and an X-ray beam of a second energy is used for an unprotected portion, the first energy being a second energy About a third or even lower. In this way, different sections of the moving vehicle can be scanned with different scanning modes.
  • the illuminating dose received by the cockpit is about three percent of the dose received by the container, so in this case the driver does not have to get off the vehicle. Can be checked.
  • control unit performs security checks in different modes of operation based on the sensor's sensing signals. For example, in a continuous operation in which vehicles are continuously queued for security inspection, the electronic induction accelerator can be in standby state. And work state switching. For example, in the intermittent mode of operation, when the vehicle is less dredged and passed through the security check, the electronic induction accelerator can switch between the power-on and non-power-on states.
  • the inspection is performed during the traveling of the vehicle, and the driver-in-coming device is not required to control the accelerator to emit a beam of the corresponding energy to scan at a very fast response speed when the moving target passes through the scanning area ( According to the user's needs, the scanned target can be scanned as a whole or the protected part can be scanned.
  • the scanning method is flexible and can greatly shorten the inspection time.
  • the system issues a corresponding beam-out command to the accelerator for different sections (enables the electron gun enable signal).
  • the vehicle inspection efficiency is greatly improved, and the equipment cost of the system is lowered. With the above equipment, safe and reliable imaging inspection of fast moving targets is possible.

Abstract

一种对移动目标进行快速成像检查的设备及其方法。设备包括:通道,扫描成像装置(106),第一位置传感器(101),第二位置传感器(103),和控制单元(105);控制单元(105)在从第一位置传感器(101)接收到移动目标(100)进入通道的检测信号时给扫描成像装置(106)中的电子感应加速器上电,使其处于待机状态,在第二位置传感器(103)检测到不同区段通过辐射扫描区时,控制电子感应加速器出束时点和出束模式对移动目标(100)的不同部分进行相应的检查。在车辆行进过程中检查时不需要司乘人员下车,设备在移动目标通过扫描区时控制加速器发射相应能量的射线束进行扫描,扫描方式灵活并缩短检查时间。

Description

对移动目标进行检查的设备及方法 技术领域
本公开涉及对移动目标的扫描成像过程,特别是涉及一种对移动目标进行成像检查的设备及方法。
背景技术
利用高能射线对车辆进行检查的设备是对移动目标进行成像检查的设备的一个典型实例。在利用高能射线对车辆进行检查的设备中,通常由拖动装置拖动被检查车辆匀速移动,加速器连续地发射固定频率的高能射线。这种设备具有能够屏蔽该射线的挡板,高能射线是否射向受检查车辆由该挡板进行控制。当挡板打开时,高能射线发射至受检查目标,对车辆进行扫描、成像,从而进行检查。
在这种传统的设备中,由于加速器处于常开状态,功耗大;且造成设备温度始终很高,需要大型的冷却设备从而占据很大的空间;且长期开机影响加速器的使用寿命,从而使得产品成本较高;而且始终打开加速器会存在暗电子,具有潜在危险。同时,由于采用机械挡板的开闭控制高能射线的发射,响应速度慢,使检查时间较长,车辆检查率低。
发明内容
考虑到现有技术中的问题,本公开的目的是提出一种对移动目标进行成像检查的设备及方法。
在本公开的一个方面,提出了一种对移动目标进行快速成像检查的设备,包括:供所述移动目标通过的通道;扫描成像装置,包括产生X射线的电子感应加速器和接收穿透所述移动目标的X射线的探测设备,所述电子感应加速器向通过所述通道的移动目标发射X射线来对所述移动目标进行成像;第一位置传感器,设置在所述扫描成像装置一侧的远端,输出传感信号表明所述移动目标是否进入所述通道;第二位置传感器,设置在所述第一位置传感器和所述扫描成像装置之间,检测所述移动目标的类型特征并区分移动目标的受保护部分与非受保护部分,将移动目标分段,输出传感信号表明所述移动目标的受保护部分正在通过或已经通过辐射扫描区;控制单元,与所述扫描成像装置、第一位置传感器和第二位置传感器连接,在从第一位置传感器接收 的所述移动目标进入所述通道的检测信号时给所述电子感应加速器上电,使其处于待机状态,在第二位置传感器检测到不同区段通过所述辐射扫描区时,控制所述电子感应加速器出束时点和出束模式对移动目标的各个区段进行相应的检查。
根据一些实施例,第一位置传感器与所述扫描成像装置之间的距离被设置为大于预定的数值,使得从第一传感器检测到所述移动目标算起到所述移动目标进入辐射扫描区之间的时间大于等于所述电子感应加速器从上电到处于待机状态的时间。
根据一些实施例,所述的设备还包括速度传感器,设置在所述第一位置传感器和所述扫描成像装置之间,测量移动目标在所述通道内的移动速度,在第一位置传感器接收到所述移动目标进入所述通道的检测信号时,所述控制单元控制速度传感器对所述移动目标的移动速度进行测量,并根据从所述速度传感器接收的有关移动目标的移动速度来控制对扫描图像的重建,并根据所述移动速度来修正扫描图像数据。
根据一些实施例,移动目标以预定速度范围通过所述通道:如果移动目标处于该预定速度范围上限时,所述扫描成像装置按照电子感应加速器出束频率进行采样;如有移动目标低于该预定速度范围上限时,所述扫描成像装置处于过采样状态,采用插值法或卷积法对图像进行重构。
根据一些实施例,针对小轿车、大客车、集装箱卡车、厢式货车进行司机不下车行驶通过的全车扫描或分区段扫描。
根据一些实施例,第二位置传感器还被设置为检测和判别非车辆、小轿车、大客车、拖车式集装箱卡车、厢式货车。
根据一些实施例,控制单元根据第二位置传感器的传感信号来发出指令,以切换所述电子感应加速器的偏转线圈的工作时序,产生不同能量的X射线束。
根据一些实施例,所述的设备还包括第三位置传感器,所述第三位置传感器用于判断所述移动目标是否离开所述通道,并且在第三位置传感器检测到所述移动目标整体移出辐射扫描区后,所述控制单元发出控制信号停止向所述电子感应加速器供电。
根据一些实施例,所述第一位置传感器包括:埋设于所述通道入口地表下面的第一地感线圈和与之结合使用的设置在所述通道两侧的第一快速响应光幕开关。
根据一些实施例,所述通道两侧具有安装立柱,所述第一快速响应光幕开关设置在所述立柱上。
根据一些实施例,所述速度传感器包括设置在通道两侧的测速雷达。
根据一些实施例,所述第二位置传感器包括设置在通道两侧的第二快速响应光幕 开关和光电开关。
根据一些实施例,所述第三位置传感器包括:埋设于所述通道内的地表下面偏向于出口的第二地感线圈和与之结合使用的设置在所述通道两侧的第三快速响应光幕开关。
在本公开的另一方面,提出了一种对移动目标进行快速成像检查的方法,包括:从第一位置传感器输出传感信号表明移动目标是否进入供所述移动目标通过的通道;利用第二位置传感器检测所述移动目标的类型特征并区分移动目标的受保护部分与非受保护部分,将移动目标分段,输出传感信号表明所述移动目标的受保护部分正在通过或已经通过辐射扫描区;在从第一位置传感器接收的所述移动目标进入所述通道的检测信号时给扫描成像装置的电子感应加速器上电,使其处于待机状态,其中所述扫描成像装置包括产生X射线的电子感应加速器和接收穿透所述移动目标的X射线的探测设备,所述电子感应加速器向通过所述通道的移动目标发射X射线来对所述移动目标进行成像;在第二位置传感器检测到不同区段通过所述辐射扫描区时,控制所述电子感应加速器出束时点和出束模式对移动目标的各个区段进行相应的检查。
根据一些实施例,第一位置传感器与所述扫描成像装置之间的距离被设置为大于预定的数值,使得从第一传感器检测到所述移动目标算起到所述移动目标进入辐射扫描区之间的时间大于等于所述电子感应加速器从上电到处于待机状态的时间。
根据一些实施例,所述的方法还包括:利用设置在所述第一位置传感器和所述扫描成像装置之间的速度传感器测量移动目标在所述通道内的移动速度;在第一位置传感器接收到所述移动目标进入所述通道的检测信号时,控制速度传感器对所述移动目标的移动速度进行测量,并根据从所述速度传感器接收的有关移动目标的移动速度来控制对扫描图像的重建,并根据所述移动速度来修正扫描图像数据。
根据一些实施例,移动目标以预定速度范围通过所述通道:如果移动目标处于该预定速度范围上限时,所述扫描成像装置按照电子感应加速器出束频率进行采样;如有移动目标低于该预定速度范围上限时,所述扫描成像装置处于过采样状态,采用插值法或卷积法对图像进行重构。
根据一些实施例,所述的方法还包括:利用第三位置传感器判断所述移动目标是否离开所述通道,并且在第三位置传感器检测到所述移动目标整体移出辐射扫描区后,发出控制信号停止向所述电子感应加速器供电。
根据一些实施例,上述移动目标例如是移动车辆,需要保护的部分是车头部分。
在本公开的一个实施例中,提供了利用高能射线对车辆进行检查的设备,在车辆行进的过程中进行检查,不需要司乘人员下车设备在所述移动目标通过扫描区时控制加速器以极快的响应速度发射相应能量的射线束进行扫描(根据用户需求,可以对受检移动目标进行整体扫描也可以对受保护部分不扫描),扫描方式灵活并可以大大缩短检查时间。
本公开由于采用了上述的技术方案,可将车辆通过率提高到每小时大于200辆集装箱卡车。同现有技术相比,本公开可大大提高车辆检查率,设备耗能和成本显著降低,由于不需要大型冷却设备使得整体设备占地面积小。从而可使设备在各类公路卡口场合使用。
附图说明
为了更好的理解本公开,将根据以下附图对本公开的实施例进行描述:
图1是根据本公开一个实施方式的检查设备的结构示意图;
图2示出了如图1所示的检查设备中所用的电子感应加速器的结构示意图;
图3和图4是描述根据本公开实施例的检查方法的示意图。
附图没有对实施例的所有电路或结构进行显示。贯穿所有附图相同的附图标记表示相同或相似的部件或特征。
具体实施方式
下面将详细描述本公开的具体实施例,应当注意,这里描述的实施例只用于举例说明,并不用于限制本公开。在以下描述中,为了提供对本公开的透彻理解,阐述了大量特定细节。然而,对于本领域普通技术人员显而易见的是:不必采用这些特定细节来实行本公开。在其他实例中,为了避免混淆本公开,未具体描述公知的电路、材料或方法。
在整个说明书中,对“一个实施例”、“实施例”、“一个示例”或“示例”的提及意味着:结合该实施例或示例描述的特定特征、结构或特性被包含在本公开至少一个实施例中。因此,在整个说明书的各个地方出现的短语“在一个实施例中”、“在实施例中”、“一个示例”或“示例”不一定都指同一实施例或示例。此外,可以以任何适当的组合和/或子组合将特定的特征、结构或特性组合在一个或多个实施例或示例中。此外,本领域普通技术人员应当理解,在此提供的附图都是为了说明的目的,并且附图不一定是 按比例绘制的。应当理解,当称元件“耦接到”或“连接到”另一元件时,它可以是直接耦接或耦接到另一元件或者可以存在中间元件。相反,当称元件“直接耦接到”或“直接连接到”另一元件时,不存在中间元件。相同的附图标记指示相同的元件。这里使用的术语“和/或”包括一个或多个相关列出的项目的任何和所有组合。
下面结合附图对本公开的对移动目标进行成像检查的设备进行说明。如图所示,以车辆快速检查设备作为一个实施例进行说明。下述说明只是为了结合实例对本公开进行说明,并不是为了将本公开限制于下述内容。
图1是一种根据本公开实施例的对车辆进行快速成像检查的设备,其中,对移动目标的不同区段发射不同能量的射线束进行快速成像检查如图1所示,在本公开的实施例中,诸如车辆之类的移动目标100通过进入检查通道,被第一位置传感器101检测到,控制装置105发出命令,启动扫描成像装置106中的电子感应加速器,对其上电然后处于待机状态。
第二位置传感器103检测移动目标的类型特征并区分移动目标的受保护部分与非受保护部分,将移动目标正确分段(例如需要保护的驾驶舱段和其他的非保护部分),分别输出传感信号表明所述移动目标受保护部分正在通过和已经通过扫描区。
控制装置105在从第一位置传感器101接收的所述移动目标进入所述通道的检测信号时给所述电子感应加速器上电,使其处于待机状态,在第二位置传感器检测到不同区段通过所述辐射扫描区时,控制所述电子感应加速器出束时点和出束模式对移动目标的两部分进行相应的检查。例如,针对驾驶舱使用低能量的射线进行检查,这样驾驶舱接受的射线剂量非常低,因此驾驶员不用下车,而对集装箱这样的部分使用高能量的射线进行检查,获得目标部分的清晰图像。
扫描成像装置106包括产生X射线的电子感应加速器和接收穿透所述移动目标的X射线的探测设备,该电子感应加速器向通过通道的移动目标发射X射线来对所述移动目标进行成像。第一位置传感器101设置在扫描成像装置一侧的远端,输出传感信号表明所述移动目标是否进入所述通道。第二位置传感器103设置在第一位置传感器101和所述扫描成像装置106之间,检测移动目标的类型特征并区分移动目标的受保护部分与非受保护部分,将移动目标正确分段,分别输出传感信号表明所述移动目标受保护部分正在通过和已经通过扫描区。
控制装置105与扫描成像装置106、第一位置传感器101和第二位置传感器103连接,在从第一位置传感器101接收的移动目标进入所述通道的检测信号时给所述电子 感应加速器上电,使其处于待机状态,在第二位置传感器103检测到不同区段通过所述辐射扫描区时,控制所述电子感应加速器出束时点和出束模式对移动目标的两部分进行相应的检查。
在图示的实施例中,第一位置传感器101与所述扫描成像装置106之间的距离被设置为大于预定的数值,使得从第一位置传感器检测到所述移动目标算起到所述移动目标进入辐射扫描区之间的时间大于等于所述电子感应加速器从上电到处于待机状态的时间。
如图1所示,该检查设备还可以包括速度传感器102,设置在第一位置传感器101和所述扫描成像装置106之间,测量移动目标在所述通道内的移动速度,在第一位置传感器101接收到所述移动目标进入所述通道的检测信号时,所述控制装置105控制速度传感器102对所述移动目标的移动速度进行测量,并根据从所述速度传感器102接收的有关移动目标的移动速度来控制对扫描图像的重建,并根据所述移动速度来修正扫描图像数据。
例如,移动目标以预定速度范围通过所述通道。如果移动目标处于该预定速度范围上限时,扫描成像装置106按照电子感应加速器出束频率进行采样。如有移动目标低于该预定速度范围上限时,扫描成像装置106处于过采样状态,采用插值法或卷积法对图像进行重构。
如图1所示,检查设备还可以包括第三位置传感器104。所述第三位置传感器104用于判断所述移动目标是否离开所述通道,并且在第三位置传感器104检测到所述移动目标整体移出辐射扫描区后,所述控制装置105可以发出控制信号停止向所述电子感应加速器供电。在其他实施例中,如果第一位置传感器101检测到该车辆之后仍旧有其他车辆时,则控制装置105不发出停止向电子感应加速器供电的控制信号。
图2示出了如图1所示的检查设备中所用的电子感应加速器的结构示意图。电子感应加速器是一种回旋加速器,电子会在真空加速室内沿环形轨迹移动,同时通过涡流电场获得足够能量。该涡流电场由磁通量脉冲变化引起,在提供能量的同时控制电子的运动轨迹。
如图2所示的系统中,加速器主要包括:辐射器205,供电单元203,脉冲转换器204和接口单元(未示出)。辐射器包含高压注入单元组件,加速室,主磁极和磁极绕组,偏转绕组,康特拉绕组(约束绕组),电离室等等。在实施例中,接口盒例如将RS-422数字信号和相应的协议转化为电脑使用的USB标准信号。
脉冲转换器204用于生成康特拉(约束器)和偏转系统的电流脉冲,以及注入系统的电压脉冲。转换器可以提供三种输出电压:(1)用于注入电压发生器的400V电压;(注入电压发生器通过供电单元的同步板启动(启动晶闸管),双链线路会向注入单元的高压变压器初级绕组放电,从而在该变压器的次级绕组上生成高压脉冲);(2)用于约束电流发生器的360V电压;同步板会触发约束电流发生器(启动晶闸管)以及(3)用于偏转电流发生器的560V电压。当驱动器从同步板收到脉冲时,将触发偏转电流生成器(启动IGBT晶体管)。供电单元中连接其他单元的耦合元件、主电源开关和运行控制功能均位于同一面板上。电源转换器由一个三相电源220/380V电源供电。电源转换器用于激发加速器磁体。它包含一个三相整流器,一个基于IGBT三级晶体管的二级晶体管桥(配电盘),一个能量输入闸流管,和一个保护器。
如图2所示,电子感应加速器还包括提供电压和灯丝电压的电源装置203、同步装置202、控制器201。电源装置203在磁铁激活前,会向灯丝控制电路提供+12V电压,该电压会降低灯丝输出电压,从而使其处于待机模式。当启动辐射时,该电压变为0,灯丝电压将提升2-3V。在关闭辐射时降低灯丝电压,可以提升加速室的寿命。同步装置202可以以特定时间序列向电子感应加速器系统发出控制信号、向货物检测系统(CIS)传输计时信号Beam Trig(触发电子束)、通过来自货物检测系统的外部信号RAD ON(启动辐射)来控制辐射开关、并处理紧急停机信号。控制器201具有用于控制电子感应加速器运行的外围设备,该控制器用于控制电源转换器、稳定电磁铁电压、调节电子能量。
图3和图4是描述根据本公开实施例的检查方法的示意图,其中图4是图3所示设备的俯视示意图。如图3和4所示,快速成像检查的设备包括加速器舱体309,快速响应光幕开关302、305和306,地感线圈303和308,光电开关310、防护墙304和311,测速雷达307,探测器臂312、控制软件等几部分。快速响应光幕开关302安装在通道两侧的安装立柱上,地感线圈303埋设于通道入口的地表下面为车辆入口的第一个开关,防护墙304、311立装在通道两侧并分别和通道两侧的加速器舱体309和探测器臂312连接,快速响应光幕开关305、306安装在通道两侧的加速器舱体309的墙壁和探测器臂312上,光电开关310安装在通道两侧的防护墙311上,测速雷达307安装在加速器舱体309靠近通道的外墙上,地感线圈308埋设于通道的地表下偏向于出口方向。本公开的工作过程如下:
在通道内车辆数为0时系统处于待机状态,当一辆车301A向通道驶来时地感线圈 303首先有效,并结合快速响应光幕开关302完成对车辆行驶方向的判别,若车辆驶入通道则通道内车辆数目加1,测速雷达307对车辆行驶速度进行测量,系统进入就绪状态。车辆继续向前行驶,系统全程记录车辆在通道行使过程中的状态变化。
当车辆以正常速度由301A经301B到301C时光电开关310有效,此时通过光幕开关305的状态判别被检车辆是集装箱卡车还是封闭货车,根据不同车型采用不同扫描触发条件。
在快速响应光幕开关302检测到车辆进入检查区域之后,如果上述光幕开关305的状态判别是集装箱卡车,开始检测车辆的驾驶室是否通过并产生通过信号,则待集装箱到达检查区域时进行扫描检查。所述控制系统根据从所述探测器发出的通过信号,产生用于控制所述电子感应加速器系统产生电子束的控制信号。
第三位置传感器104例如包括如图3和4所示的快速响应光幕开关306和地感线圈308。地感线圈308埋设于通道内的地表下面偏向于出口的位置,与设置在通道两侧的快速响应光幕开关306配合使用,检测车辆是否驶出扫描通道。当车辆行驶出扫描通道,通道内车辆计数减1。只要通道内车辆数量不为0,系统保持在就绪状态;当通道内车辆数量为0时,系统进入待机状态。
在本公开的实施例中,当通道前端的传感器,例如地感线圈303和光幕开关302检测到有车辆进入通道时,控制装置105控制扫描成像装置中的电子感应加速器上电,电子感应加速器的电子枪产生电子束,产生的电子束注入到磁铁绕组构成的回转轨道之中,对此对其进行加速。加速到预定的电子能量后,例如加速到几个M电子伏后,通过偏转绕组将加速的电子束引出,轰击靶,产生X射线。在加速的过程中,康特拉绕组对电子束进行聚拢,防止电子束发散。
在上述实施例中,可以将上述的开关302形成为第一快速响应光幕开关、将上述的开关305形成为第二快速响应光幕开关,将上述的开关306形成为第三快速响应光幕开关,将上述的开关310形成为光电开关。在其他实施例中,该光电开关还可以与另一快速响应光幕开关一起使用。
第二位置传感器103可以包括第二快速响应光幕开关305。例如,利用该第二快速响应光幕开关305对车辆类型进行检测后,根据检测结果确定出束扫描的时机。也就是根据速度传感器102检测的车速和第二位置传感器103检测到的车型信息,将出束时机延迟一段时间,也可以实现对车头的避让。
第二位置传感器103也可以例如在其他的实施例中包括第二快速响应光幕开关 305和光电开关310。例如,为了更准确的确定车头通过扫描区域避让后,车厢正在通过扫描区域应该开始出束,可以在距离扫描区域一定距离处(例如,优选为不同车型中最长车头的长度值)设置光电开关310。当光电开关310检测到车头时,即意味着需要避让的车头已经通过扫描区域,车厢即将通过扫描区域,此时开始出束扫描。这样,光电开关310也可以与第二快速响应开关305配合使用。
在一些实施例中,第二位置传感器103检测所述移动目标的类型特征并区分移动目标的受保护部分与非受保护部分,将移动目标分段,输出传感信号表明所述移动目标的受保护部分正在通过或已经通过辐射扫描区。例如,可以判断移动目标的类型是集装箱卡车、厢式货车等等,并且根据车型进行预定类型的扫描方式。例如,在确定是大客车的情况下,不用对车辆进行扫描,如果是封闭式卡车,则进行出束扫描。如果是集装箱卡车,则延迟一定的时间后待车头部分驶出辐射扫描区而集装箱到达辐射扫描区时出束扫描。或者,针对集装箱卡车的车头部分使用第一能量的X射线束,针对集装箱部分使用第二能量的X射线束,该第一能量是第二能量的大约三分之一甚至更低。
这样,在将车辆划分为不同的区段后,控制单元在第二位置传感器检测到不同区段通过所述辐射扫描区时,控制所述电子感应加速器出束时点和出束模式对移动目标的各个区段进行相应的检查,并且根据车速来修正扫描图像数据。
例如,在一些实施例中,针对小轿车、大客车、集装箱卡车、厢式货车进行司机不下车行驶通过的全车扫描或分区段扫描。再如,第二位置传感器还被设置为检测和判别非车辆、小轿车、大客车、拖车式集装箱卡车、厢式货车。
由于电子感应加速器在不同工作时序之间的切换时间非常短,所以控制单元可以根据第二位置传感器的传感信号来发出指令,以切换所述电子感应加速器的偏转线圈的工作时序,产生不同能量的X射线束。例如,通过设置不同的工作时序,可以针对受保护的部分例如驾驶舱使用第一能量的X射线束,针对不受保护的部分使用第二能量的X射线束,该第一能量是第二能量的大约三分之一甚至更低。这样,可以用不同的扫描模式对移动的车辆的不同区段进行扫描。例如,在第一能量为2.5MeV第二能量为7.5MeV的情况下,驾驶舱接受的照射剂量大约是集装箱接受的照射剂量的百分之三,因此在这种情况下驾驶员不用下车也可以进行检查。
在其他实施例中,控制单元根据传感器的传感信号来以不同的工作方式进行安检。例如在车辆连续排队进行安检的连续式工作中,电子感应加速器可以在待机状态 和工作状态切换。再如,在间歇式工作方式下,车辆少疏疏落落通过安检时,电子感应加速器可以在上电和非上电状态之间切换。
根据一些实施例的方案,在车辆行进的过程中进行检查,不需要司乘人员下车设备在所述移动目标通过扫描区时控制加速器以极快的响应速度发射相应能量的射线束进行扫描(根据用户需求,可以对受检移动目标进行整体扫描也可以对受保护部分不扫描),扫描方式灵活并可以大大缩短检查时间
这样,因被检车辆在检查通道内快速通过,且车辆在在接受检查时要保障司机的安全,所以系统针对不同区段给加速器发出相应地出束指令(使能电子枪使能信号)。在应用了本加速器系统后,大大提高了车辆检查效率,并且系统的设备成本降低。采用上述设备,可以对快速移动目标进行安全、可靠的成像检查。
虽然已参照几个典型实施例描述了本公开,但应当理解,所用的术语是说明和示例性、而非限制性的术语。由于本公开能够以多种形式具体实施而不脱离公开的精神或实质,所以应当理解,上述实施例不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。

Claims (18)

  1. 一种对移动目标进行快速成像检查的设备,包括:
    供所述移动目标通过的通道;
    扫描成像装置,包括产生X射线的电子感应加速器和接收穿透所述移动目标的X射线的探测设备,所述电子感应加速器向通过所述通道的移动目标发射X射线来对所述移动目标进行成像;
    第一位置传感器,设置在所述扫描成像装置一侧的远端,输出传感信号表明所述移动目标是否进入所述通道;
    第二位置传感器,设置在所述第一位置传感器和所述扫描成像装置之间,检测所述移动目标的类型特征并区分移动目标的受保护部分与非受保护部分,将移动目标分段,输出传感信号表明所述移动目标的受保护部分正在通过或已经通过辐射扫描区;
    控制单元,与所述扫描成像装置、第一位置传感器和第二位置传感器连接,在从第一位置传感器接收的所述移动目标进入所述通道的检测信号时给所述电子感应加速器上电,使其处于待机状态,在第二位置传感器检测到不同区段通过所述辐射扫描区时,控制所述电子感应加速器出束时点和出束模式对移动目标的各个区段进行相应的检查。
  2. 根据权利要求1所述的设备,其中第一位置传感器与所述扫描成像装置之间的距离被设置为大于预定的数值,使得从第一传感器检测到所述移动目标算起到所述移动目标进入辐射扫描区之间的时间大于等于所述电子感应加速器从上电到处于待机状态的时间。
  3. 根据权利要求1所述的设备,还包括速度传感器,设置在所述第一位置传感器和所述扫描成像装置之间,测量移动目标在所述通道内的移动速度,在第一位置传感器接收到所述移动目标进入所述通道的检测信号时,所述控制单元控制速度传感器对所述移动目标的移动速度进行测量,并根据从所述速度传感器接收的有关移动目标的移动速度来控制对扫描图像的重建,并根据所述移动速度来修正扫描图像数据。
  4. 根据权利要求3所述的设备,其中,移动目标以预定速度范围通过所述通道:如果移动目标处于该预定速度范围上限时,所述扫描成像装置按照电子感应加速器出束频率进行采样;
    如有移动目标低于该预定速度范围上限时,所述扫描成像装置处于过采样状态,采用插值法或卷积法对图像进行重构。
  5. 根据权利要求1所述的设备,其中针对小轿车、大客车、集装箱卡车、厢式货车进行司机不下车行驶通过的全车扫描或分区段扫描。
  6. 根据权利要求1所述的设备,其中第二位置传感器还被设置为检测和判别非车辆、小轿车、大客车、拖车式集装箱卡车、厢式货车。
  7. 根据权利要求1所述的设备,其中控制单元根据第二位置传感器的传感信号来发出指令,以切换所述电子感应加速器的偏转线圈的工作时序,产生不同能量的X射线束。
  8. 根据权利要求1所述的设备,还包括第三位置传感器,所述第三位置传感器用于判断所述移动目标是否离开所述通道,并且在第三位置传感器检测到所述移动目标整体移出辐射扫描区后,所述控制单元发出控制信号停止向所述电子感应加速器供电。
  9. 根据权利要求1所述的设备,其中所述第一位置传感器包括:
    埋设于所述通道入口地表下面的第一地感线圈和与之结合使用的设置在所述通道两侧的第一快速响应光幕开关。
  10. 根据权利要求9所述的设备,其中所述通道两侧具有安装立柱,所述第一快速响应光幕开关设置在所述立柱上。
  11. 根据权利要求3所述的设备,其中所述速度传感器包括设置在通道两侧的测速雷达。
  12. 根据权利要求1所述的设备,其中,所述第二位置传感器包括设置在通道两侧的第二快速响应光幕开关和光电开关。
  13. 根据权利要求8所述的设备,其中所述第三位置传感器包括:
    埋设于所述通道内的地表下面偏向于出口的第二地感线圈和与之结合使用的设置在所述通道两侧的第三快速响应光幕开关。
  14. 一种对移动目标进行快速成像检查的方法,包括:
    从第一位置传感器输出传感信号表明移动目标是否进入供所述移动目标通过的通道;
    利用第二位置传感器检测所述移动目标的类型特征并区分移动目标的受保护部分与非受保护部分,将移动目标分段,输出传感信号表明所述移动目标的受保护部分 正在通过或已经通过辐射扫描区;
    在从第一位置传感器接收的所述移动目标进入所述通道的检测信号时给扫描成像装置的电子感应加速器上电,使其处于待机状态,其中所述扫描成像装置包括产生X射线的电子感应加速器和接收穿透所述移动目标的X射线的探测设备,所述电子感应加速器向通过所述通道的移动目标发射X射线来对所述移动目标进行成像;
    在第二位置传感器检测到不同区段通过所述辐射扫描区时,控制所述电子感应加速器出束时点和出束模式对移动目标的各个区段进行相应的检查。
  15. 根据权利要求14所述的方法,其中第一位置传感器与所述扫描成像装置之间的距离被设置为大于预定的数值,使得从第一传感器检测到所述移动目标算起到所述移动目标进入辐射扫描区之间的时间大于等于所述电子感应加速器从上电到处于待机状态的时间。
  16. 根据权利要求14所述的方法,还包括:
    利用设置在所述第一位置传感器和所述扫描成像装置之间的速度传感器测量移动目标在所述通道内的移动速度;
    在第一位置传感器接收到所述移动目标进入所述通道的检测信号时,控制速度传感器对所述移动目标的移动速度进行测量,并根据从所述速度传感器接收的有关移动目标的移动速度来控制对扫描图像的重建,并根据所述移动速度来修正扫描图像数据。
  17. 根据权利要求16所述的方法,其中,移动目标以预定速度范围通过所述通道:如果移动目标处于该预定速度范围上限时,所述扫描成像装置按照电子感应加速器出束频率进行采样;
    如有移动目标低于该预定速度范围上限时,所述扫描成像装置处于过采样状态,采用插值法或卷积法对图像进行重构。
  18. 根据权利要求14所述的方法,还包括:利用第三位置传感器判断所述移动目标是否离开所述通道,并且在第三位置传感器检测到所述移动目标整体移出辐射扫描区后,发出控制信号停止向所述电子感应加速器供电。
PCT/CN2015/087550 2014-08-19 2015-08-19 对移动目标进行检查的设备及方法 WO2016026442A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15834549.6A EP3185001B1 (en) 2014-08-19 2015-08-19 Apparatus and method for inspecting moving target
MYPI2017700511A MY191339A (en) 2014-08-19 2015-08-19 Apparatus and method for inspecting moving target
US15/503,676 US10365234B2 (en) 2014-08-19 2015-08-19 Apparatus and method for inspecting moving target

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201410409522.7A CN105445808B (zh) 2014-08-19 2014-08-19 对移动目标进行检查的设备及方法
CN201410409522.7 2014-08-19
CN201410410432.X 2014-08-19
CN201410410432.XA CN105445809B (zh) 2014-08-19 2014-08-19 对移动目标进行检查的设备及方法

Publications (1)

Publication Number Publication Date
WO2016026442A1 true WO2016026442A1 (zh) 2016-02-25

Family

ID=55350204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/087550 WO2016026442A1 (zh) 2014-08-19 2015-08-19 对移动目标进行检查的设备及方法

Country Status (4)

Country Link
US (1) US10365234B2 (zh)
EP (1) EP3185001B1 (zh)
MY (1) MY191339A (zh)
WO (1) WO2016026442A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3487267A1 (de) * 2017-11-20 2019-05-22 Atlas Material Testing Technology GmbH Hochleistungsbelichtung für simulationsanordnung für kraftfahrzeugunfälle
CN109917479A (zh) * 2019-04-09 2019-06-21 同方威视技术股份有限公司 车辆检查方法、装置、系统和计算机可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2752763Y (zh) * 2004-11-26 2006-01-18 清华同方威视技术股份有限公司 辐射成像火车检测系统的扫描臂刚性化减振结构
CN101162205A (zh) * 2006-10-13 2008-04-16 同方威视技术股份有限公司 对移动目标进行检查的设备及避让方法
CN101162507A (zh) * 2006-10-13 2008-04-16 同方威视技术股份有限公司 一种对移动车辆进行车型识别的方法
US20120195403A1 (en) * 2011-01-31 2012-08-02 University Of Massachusetts Tomosynthesis imaging
CN204241395U (zh) * 2014-08-19 2015-04-01 清华大学 对移动目标进行快速成像检查的设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1955290B1 (en) 2005-12-01 2010-10-13 Honeywell International Inc. Distributed stand-off id verification compatible with multiple face recognition systems (frs)
JP2007247406A (ja) * 2006-03-13 2007-09-27 Ihi Corp ファンブレードの保持構造
ES2474200T3 (es) 2006-08-11 2014-07-08 American Science & Engineering, Inc. Inspección por rayos X con generación de imágenes de transmisión y retrodispersi�n contemporánea y pr�ximal
CN102147486B (zh) 2006-10-13 2012-08-22 同方威视技术股份有限公司 用于辐射源的控制单元和控制方法及辐射检查系统和方法
CN101162209B (zh) 2006-10-13 2010-08-25 清华大学 对移动目标进行快速成像检查的设备及方法
US20110268247A1 (en) 2010-04-30 2011-11-03 Nucsafe, Inc. Multi-profile penetrating radiation imaging system
EP2567267B1 (en) 2010-05-05 2019-06-26 Nauchno-Proizvodstvennoe Chastnoe Unitarnoe Predpriyatie ADANI Cargo and vehicle inspection system
US9274065B2 (en) 2012-02-08 2016-03-01 Rapiscan Systems, Inc. High-speed security inspection system
CN108445546A (zh) 2014-05-15 2018-08-24 北京君和信达科技有限公司 一种单源双模速通式移动目标辐射检查系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2752763Y (zh) * 2004-11-26 2006-01-18 清华同方威视技术股份有限公司 辐射成像火车检测系统的扫描臂刚性化减振结构
CN101162205A (zh) * 2006-10-13 2008-04-16 同方威视技术股份有限公司 对移动目标进行检查的设备及避让方法
CN101162507A (zh) * 2006-10-13 2008-04-16 同方威视技术股份有限公司 一种对移动车辆进行车型识别的方法
US20120195403A1 (en) * 2011-01-31 2012-08-02 University Of Massachusetts Tomosynthesis imaging
CN204241395U (zh) * 2014-08-19 2015-04-01 清华大学 对移动目标进行快速成像检查的设备

Also Published As

Publication number Publication date
EP3185001A1 (en) 2017-06-28
EP3185001B1 (en) 2020-12-16
EP3185001A4 (en) 2018-04-11
US10365234B2 (en) 2019-07-30
US20170269006A1 (en) 2017-09-21
MY191339A (en) 2022-06-16

Similar Documents

Publication Publication Date Title
US7688945B2 (en) System for image inspection of movable object and dodging method
CN105445808B (zh) 对移动目标进行检查的设备及方法
CN105445809B (zh) 对移动目标进行检查的设备及方法
WO2016074365A1 (zh) 一种连续通过式辐射扫描系统和方法
CN101971055B (zh) 具有控制辐射源的部件的用于安全和医疗扫描器的扫描系统
WO2017092406A1 (zh) 车辆快速检查方法及系统
CN106969715B (zh) 集装箱车辆检查系统
EP3273275B1 (en) Method and system for security inspection
JP2008096414A (ja) 移動目標の高速結像検査設備及び方法
WO2008046262A1 (fr) Accélérateur linéaire électronique à onde permanente et dispositif d'installation et de modulation correspondant
WO2016026442A1 (zh) 对移动目标进行检查的设备及方法
CN204241395U (zh) 对移动目标进行快速成像检查的设备
JP6190516B1 (ja) 飛翔速度測定装置及び飛翔速度測定システム
EA036519B1 (ru) Система для управления испусканием луча в сканирующем ускорителе
CN200989907Y (zh) 对移动目标进行检查的设备
JP2003014899A (ja) 多ヘッド電子線照射装置のビーム切れ検出運転継続機構
CN107228868A (zh) 辐射检查系统和辐射检查方法
CN117388938A (zh) 一种采用外触发脉冲驱动加速器出束和采样的车检系统
CN108362714A (zh) 一种基于磁探针的x光机触发器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15834549

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15503676

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015834549

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015834549

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE