WO2016074365A1 - 一种连续通过式辐射扫描系统和方法 - Google Patents

一种连续通过式辐射扫描系统和方法 Download PDF

Info

Publication number
WO2016074365A1
WO2016074365A1 PCT/CN2015/072913 CN2015072913W WO2016074365A1 WO 2016074365 A1 WO2016074365 A1 WO 2016074365A1 CN 2015072913 W CN2015072913 W CN 2015072913W WO 2016074365 A1 WO2016074365 A1 WO 2016074365A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
scanning
radiation
dose rate
scanning area
Prior art date
Application number
PCT/CN2015/072913
Other languages
English (en)
French (fr)
Inventor
王少锋
闫雄
Original Assignee
北京君和信达科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京君和信达科技有限公司 filed Critical 北京君和信达科技有限公司
Publication of WO2016074365A1 publication Critical patent/WO2016074365A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity

Definitions

  • the present invention relates to the field of radiation imaging technology, and in particular to rapid radiation imaging of moving objects, and in particular to a continuous pass radiation scanning system and method.
  • the first is to distinguish between the area where the occupant is located in the vehicle (such as the cab of the front of the vehicle) and the area where the cargo is located (such as the cargo compartment at the rear of a large truck).
  • the vehicle to be inspected uses a low dose rate ray scan throughout the journey.
  • the second is to distinguish the area where the vehicle occupant is located and the area where the goods are located.
  • the area where the occupant is located is scanned at a low dose rate, and the area where the goods are located is scanned at a high dose rate. That is to say, the low-dose rate ray scanning cab is first issued, and then the high-dose rate ray scanning cargo compartment is issued. It is also necessary to set a traffic light and a bar at the entrance of the detection channel to prevent the rear car from entering the detection channel.
  • the invention provides a continuous pass radiation scanning system and method, by setting a safety boundary on the upstream side of the scanning area, monitoring the state of the front and rear vehicles, controlling the working mode of the radiation source, preventing the occurrence of false sweeps, and ensuring that the dose accepted by the vehicle occupant is safe. Below the limit.
  • the present invention provides a continuous pass radiation scanning system, including: a radiation source, a collimator, a radiation detector, and an imaging device, further comprising: a first detecting unit (105), a second detecting unit (108) and a control module; wherein the first detecting unit (105) is configured to detect whether the target reaches a predetermined position, the predetermined position being located upstream of the scanning area and spaced apart from the upstream side boundary of the scanning area a length L1; wherein the scanning area is an area covered by the radiation source radiation in the detection channel; the second detecting unit (108) is configured to detect that the part of the target that needs to be scanned with the low dose rate ray has left the scanning area and the target The portion that needs to be scanned at a high dose rate ray is about to enter the scanning area; the control module is configured to receive signals from the respective detecting units and control the radiation source according to the signals; wherein, when the target reaches the predetermined position and the radiation source is When the high dose rate ray is scanned, the control module
  • the first length L1 is greater than or equal to 1 meter.
  • the second detecting unit (108) is located downstream of the scanning area and is spaced apart from the downstream side boundary of the scanning area by a second length L2.
  • the second detecting unit (108) comprises a photoelectric switch and a light curtain
  • the photoelectric switch is located at a height H from the ground
  • the light curtain is located directly below the photoelectric switch
  • the distance between the photoelectric switch and the light curtain to the downstream side of the scanning region is The second length L2.
  • the height H is greater than or equal to 2 meters and the second length L2 is greater than or equal to 2.5 meters.
  • the system further includes a third detecting unit (106) located between the first detecting unit and the scanning area, and the third detecting unit is adjacent to an upstream side boundary of the scanning area.
  • a third detecting unit (106) located between the first detecting unit and the scanning area, and the third detecting unit is adjacent to an upstream side boundary of the scanning area.
  • the system further comprises a fourth detecting unit (107) located between the scanning area and the second detecting unit, and the fourth detecting unit is adjacent to the downstream side boundary of the scanning area.
  • a fourth detecting unit (107) located between the scanning area and the second detecting unit, and the fourth detecting unit is adjacent to the downstream side boundary of the scanning area.
  • the system further includes a fifth detecting unit (109) located inside the scanning area, and the fifth detecting unit is adjacent to a downstream side boundary of the scanning area.
  • the system further comprises a sixth detecting unit (112) located between the inlet and the outlet of the detecting channel, and when the target is a vehicle, the sixth detecting unit is for identifying the license plate number of the vehicle, the vehicle identification code VIN and / or container number.
  • a sixth detecting unit (112) located between the inlet and the outlet of the detecting channel, and when the target is a vehicle, the sixth detecting unit is for identifying the license plate number of the vehicle, the vehicle identification code VIN and / or container number.
  • a speed measuring radar or a visual sensor is mounted between the inlet and the outlet of the detection channel.
  • a buffer is disposed between the downstream side boundary of the scanning area and the exit of the detecting channel, and the buffer is a partial detecting channel of length L3; when the speed of the vehicle in the buffer is less than When the speed is predetermined, the control module controls the radiation scanning system to suspend operation and closes the detection channel until the vehicle is not in the buffer, the control module controls the radiation scanning system to resume operation and reopens the detection channel.
  • the length L3 of the buffer zone is greater than or equal to 20 meters and the predetermined speed is 3 km/h.
  • traffic lights and/or baffles are installed at the entrance of the detection channel.
  • the present invention also provides a continuous pass radiation scanning method for scanning a vehicle in a detection channel with radiation emitted from a radiation source, the method comprising: first step, when detecting that the first vehicle is about to enter the scanning area, The dose rate ray is scanned; the second step is to convert to a high dose rate when the portion of the first vehicle that needs to be scanned with the low dose rate ray leaves the scanning area and the portion that needs to be scanned with the high dose rate ray enters the scanning area The ray is scanned; in the third step, after the first vehicle completely leaves the scanning area, the scanning is stopped; wherein, in the second step, during the scanning with the high dose rate ray, if the second vehicle in the detection channel is detected Upon reaching the predetermined safety boundary, the radiation source is immediately controlled, and the scanning with the high dose rate ray is converted into the scanning with the low dose rate ray; the fourth step is continued when the second vehicle is detected to enter the scanning area.
  • the dose rate ray is scanned; in the fifth step, the second vehicle is taken as the new first vehicle, and the second step is entered; wherein the safety side A scanning region located upstream of the safety distance between the upstream side of the scan region boundary and the boundary is a predetermined length L1.
  • Figure 1 shows the types of four typical vehicles.
  • Figure 2 is a top plan view of a typical radiation scanning detection channel.
  • FIG. 3 is a top plan view of a continuous pass radiation scanning system in accordance with an embodiment of the present invention.
  • Figure 4 is a side elevational view of the embodiment of Figure 3.
  • 5-7 are schematic views of the continuous passage of the vehicle V1 and the vehicle V2 in the detection passage of Fig. 3.
  • FIG 8 and 9 are side views of a radiation scanning system in accordance with two embodiments of the present invention.
  • FIGS 10 and 11 are diagrams showing the system operation state transition of the present invention.
  • Fig. 12 is a plan view showing a system in which a buffer or the like is provided in the embodiment of the present invention.
  • FIG. 13 is a diagram showing a correspondence relationship between a scanned image and an identification number according to an embodiment of the present invention.
  • Fig. 1 exemplarily shows several different types of vehicles, for example (1) being ordinary cargo vehicles, such as container trucks, trucks, the gap between the front and the cargo compartment is not identifiable. (2) For containerized cargo vehicles, the gap between the front and the container can be identified. (3) A containerized cargo vehicle for towing two containers. (4) For small passenger vehicles, such as cars.
  • the principle, working process and technical details of the embodiments of the present invention are described by taking several models of the vehicle shown in FIG. 1 as an example. The object to which the embodiment of the present invention is applied is not limited to the vehicle type shown in Fig. 1, but is also applicable to all similar models.
  • Fig. 2 exemplarily shows a top view of a typical detection channel.
  • the ray source 101 emits a ray, and the ray passes through the collimator to cover a certain space in the detection channel, and the ray is scanned by the vehicle when passing through the space, and the space is marked as the scanning area 104.
  • Radiation detector array 102 receives radiation that passes through scanning region 104 for later imaging.
  • the control module 103 controls the operational state of the radiation source 101. Common collimators, imaging devices, and on-site radiation protection walls are omitted in FIG.
  • FIG. 3 is a plan view of a radiation scanning system according to an embodiment of the present invention
  • FIG. 4 is a side view of the embodiment of FIG. 3, in which the radiation source 101, the radiation detector array 102, and the control module 103 are omitted.
  • the vehicle to be inspected enters from the entrance on the upstream side of the detection channel (left side in the figure).
  • a plurality of detecting units 105, 106 and 108 are arranged in the detecting channel, and each detecting unit may be a photoelectric sensor, a metal sensor, a pressure sensor, a visual sensor, or a combination of a plurality of sensors, for example,
  • the sense coil and the light curtain are combined as a detection unit.
  • the detecting unit 105 is located at a predetermined position on the upstream side of the scanning area 104, and is separated from the upstream side boundary of the scanning area 104 by a specific distance L1, and the position of the detecting unit 105 can be regarded as a “safety boundary”. In operation, if the detection unit 105 is triggered, indicating that the vehicle has reached the safety boundary, at this time, if the radiation source 101 is emitting radiation in the high dose rate mode, it needs to be immediately converted to the low dose rate mode to prevent the vehicle from continuing. Driving causes the front part of the person to receive high dose rate rays, thus ensuring that the dose received by the rear occupant is below the safety limit to prevent false sweeps.
  • the detecting unit 105 can also be used to detect whether the vehicle is about to enter the scanning area. Such as The detection unit 105 is triggered to indicate that the vehicle is about to enter the scanning area 104 across the security boundary. Since the first entry is necessarily the front of the vehicle, the detection unit 105 should start scanning in the low dose rate mode when triggered.
  • L1 is greater than or equal to 1 m, and the detecting unit 105 can employ a light curtain.
  • the detecting unit 108 is located on the downstream side of the scanning area 104, is separated from the downstream side boundary of the scanning area 104 by a specific distance L2, and the detecting height is H; wherein, L2 is greater than or equal to the length of the longest front head, for example, in each type of vehicle, the container truck The length of the front is 2.5 meters, and the length of the front of other models is less than this value, then L2 ⁇ 2.5 meters.
  • the detection height H can be set to 2 meters, and for a vehicle with a head height of less than 2 meters, such as a small passenger car, the detection unit 108 is not triggered.
  • the detecting unit 108 is mainly used to perform three functions: 1 detecting the type of the vehicle, 2 detecting whether a portion (the front) of the vehicle to be scanned with the low dose rate ray has left the scanning area 104, and 3 detecting whether the entire vehicle has left. Scan area 104.
  • the detection unit 108 is suitably a combination of a plurality of sensors, a preferred combination being a photoelectric switch and a light curtain.
  • the photoelectric switch is disposed at a height from the ground H for performing the first function; the light curtain is disposed on the ground directly below the photoelectric switch for performing the second and third functions.
  • the light curtain is also bound to be triggered, indicating that the front of the vehicle has left the scanning area 104, after which the vehicle entering the scanning area 104 is a vehicle.
  • the cargo compartment (which should be converted to a high dose rate mode scan), when the light curtain returns to the untriggered state, indicates that the tail has left the detection unit 108, that is, the vehicle as a whole has left the scanning area 104 (this should stop scanning).
  • the light curtain is triggered and the photoelectric switch is not triggered, it indicates that the type of the vehicle is a small passenger car (head height less than 2 meters), indicating that the vehicle needs to be scanned at a low dose rate (no need to distinguish between the front and the front)
  • the cargo compartment does not need to change the scanning mode.
  • the light curtain returns to untriggered, it indicates that the vehicle has left (the scanning should be stopped).
  • all types of vehicles to be inspected are all cargo vehicles, for example, diverting the vehicles to be inspected in the prior period, and only allowing the cargo vehicles to undergo the above-described radiation scanning inspection.
  • the detection unit 108 may not have the first function.
  • the function of the detection unit 108 can also be implemented by a visual sensor that can detect the type of vehicle that is passing through the scanning area 104 and detect low doses in the vehicle. Whether the scanning portion has left the scanning area 104, detecting whether the entire vehicle has left the scanning area 104, the control module 103 controls the beam discharging mode of the radiation source 101 based on the information.
  • the detecting unit 106 may be disposed at an upstream side boundary of the adjacent scanning area 104 for detecting whether the vehicle is about to enter the scanning area 104. In operation, if the detection unit 106 is triggered, indicating that the vehicle is about to enter the scanning area 104, scanning in the low dose rate mode should begin immediately.
  • the advantage of the setting detection unit 106 is that the timing at which the vehicle enters the scanning area 104 can be detected more accurately.
  • the detection unit 106 employs a light curtain.
  • the trigger signals of all the above detection units are all transmitted to the control module 103 in real time, and the control module 103 controls the working state of the radiation source 101 according to different trigger signals.
  • FIG. 5 shows a schematic diagram of the passage of the vehicle V1 and the vehicle V2 in the detection passage of FIG.
  • both V1 and V2 are cargo vehicles, and the two vehicles sequentially enter from the left side, V1 is in front, and V2 is in the rear, continuously passing through the detection channel.
  • the vehicle V1 first enters the detection channel and triggers the detecting units 105 and 106, wherein when the 106 is triggered, the control module 103 controls the radiation source 101 to start emitting low dose rate rays according to the trigger signal, and scans the V1 head entering the scanning area 104. When the V1 head exits the scanning area 104, the detecting unit 108 is triggered.
  • the control module 103 controls the radiation source 101 to enter the high dose rate mode according to the trigger signal, and emits a high dose rate ray to scan the V1 cargo compartment entering the scanning area 104;
  • V2 enters the detection channel and triggers the detection unit 105 (as shown in FIG.
  • the control module 103 controls the radiation source 101 to enter immediately according to the trigger signal.
  • the radiation source 101 In the low dose rate mode, before detecting that the V2 head exits the scanning area 104, the radiation source 101 continues to emit radiation in a low dose rate mode, ensuring that the dose received by the rear vehicle occupant is below the safety limit, eliminating the V2 head being accidentally swept. risk. That is, after the V2 trigger detection unit 105, the radiation source 101 is switched to emit a low dose rate ray, then a low dose rate ray scan is performed for a portion of the V1 cargo compartment that has not left the scanning area 104, and the V1 is detected at the detection unit 108. When the scanning area 104 has completely left (as in FIG.
  • the radiation source 101 does not suspend operation, but maintains a low dose rate ray until the detecting unit 108 detects that the V2 head has exited the scanning area 104 (at this time, the detecting unit 108)
  • the V2 is also detected as a truck), and the control module 103 controls the radiation source 101 to be converted to a high dose again.
  • the rate mode (Fig. 7) is used to perform a high dose rate radio scan of the cargo compartment of V2; then, when the detection unit 108 detects that V2 has completely left the scanning area 104, the control module 103 causes the radiation source 101 to stop emitting radiation.
  • V2 has not completely left the scanning area 104 and the radiation source 101 is still in the high dose rate mode
  • another vehicle V3 enters the detection channel to trigger the detecting unit 105.
  • the radiation source 101 can be immediately entered into the low dose rate mode. , you can perform the above similar process.
  • the key to the above control flow is to switch the high dose rate mode of the radiation source 101 to the low dose rate mode when the following vehicle V2 reaches the detection unit 105 of the safety boundary, ensuring that the dose received by the rear vehicle occupant is below the safety limit, and will not A high dose rate ray is accidentally scanned in the cab.
  • the control unit 103 does not notify the radiation source 101 to switch to the high dose rate mode, but pairs the front in the low dose rate mode.
  • the small passenger vehicle of the vehicle V1 performs a full vehicle scan, so there is no possibility that the dose received by the rear vehicle V2 occupant exceeds the safety limit.
  • the dose received by the vehicle occupant is reduced.
  • the control module 103 stops the radiation source 101 from emitting radiation until the V2 triggers the detecting unit 106, and the control module 103 causes the control module 103 to Radiation source 101 emits a low dose rate ray and begins scanning for V2. This scanning process shortens the total time that the radiation source 101 is out of the beam and reduces the radiation dose received by the vehicle occupants without affecting the scanning inspection of the continuously passing V1 and V2.
  • FIG. 8 is a side elevational view of a radiation scanning system in accordance with another embodiment of the present invention.
  • FIG. 8 adds a detection unit 107 adjacent to the downstream side boundary of the scanning area 104 for detecting whether the vehicle as a whole has moved away from the scanning area 104.
  • the detecting unit 107 returns from the triggered state to the untriggered state, it indicates that the tail has left the detecting unit 107, that is, the vehicle as a whole has left the scanning area 104.
  • the function of the detecting unit 107 and the third function of the detecting unit 108 are The function is the same, so in the scanning process, the control module 103 can acquire the information that the vehicle leaves the scanning area 104 according to the trigger state of the detecting unit 107, instead of the third function of the detecting unit 108.
  • the detecting unit 107 Since the detecting unit 107 is closer to the downstream side boundary of the scanning area 104 than the detecting unit 108, once the vehicle leaves, the detecting unit 107 can detect it at the first time and report it to the control module 103 in time to stop the scanning of the radiation source 101.
  • the setting detecting unit 107 can shorten the scanning time of the radiation source 101 as a whole.
  • Figure 9 is a side elevational view of a radiation scanning system in accordance with yet another embodiment of the present invention. With respect to Figure 4, Figure 9 adds a detection unit 109 located within the scanning area 104 for detecting whether the front of the vehicle has moved away from the scanning area 104.
  • the action of the detecting unit 109 is the same as that of the second function of the detecting unit 108.
  • the working mechanism of the two is different, and the detecting unit 109 determines whether the front end has left the scanning area 104 by recognizing the gap between the front end of the vehicle and the cargo space (such as a container). Specifically, during operation, after the front of the vehicle enters the scanning area 104, the detecting unit 109 is triggered. If the detecting unit 109 returns to the untriggered period within a period before the vehicle is completely detached, it indicates that the scanning object corresponding to the time period is The gap between the front and the cargo compartment, after entering the scanning area 104 after this period of time, is the cargo compartment of the vehicle.
  • the change of the trigger state of the detecting unit 109 reflects the gap between the front and the cargo compartment.
  • the control module 103 identifies the gap according to the trigger signal of the detecting unit 109, and after the gap passes, the radiation source is made.
  • the 101 converts to a high dose rate mode scanning cargo compartment in place of the second function of the detection unit 108.
  • Some vehicles do not have a gap between the front and the cargo compartment, 109 will not be able to detect whether the front has passed the scanning area.
  • the control module 103 when 108 is triggered, it means that the front has passed the scanning area, and the control module 103 will be based on the detection unit.
  • the trigger signal of 108 converts the radiation source 101 into a high dose rate mode scanning cargo hold.
  • the detecting unit 109 is disposed within the scanning area 104 and near the downstream side boundary of the scanning area 104.
  • the detecting unit 109 can employ a measuring light curtain.
  • the advantage of the detection unit 109 is that once the vehicle head leaves the scanning area 104, the detecting unit 109 can detect the first time and report it to the control module 103 in time to convert the radiation source 101 into a high dose rate mode scan, thereby avoiding the cargo compartment. Leak detection to maximize equipment Suspect detection ability.
  • the embodiment of the invention can perform low dose rate radio scanning on the cockpit of the cargo vehicle, perform high dose rate radio scanning on the cargo compartment, and perform low dose rate radio scanning on the passenger vehicle; more importantly, the embodiment of the invention A safety boundary is set for the case where multiple vehicles continuously enter the detection channel, and the automatic switching of the scanning mode is realized, and a large number of vehicles to be inspected can continuously pass through the detection channel to complete the radiation scanning inspection, and the detection efficiency is high.
  • the state transition is as follows: S0->S1->S0.
  • the state transition is as follows: S0->S1->S2->S0.
  • the state transition is as follows: S0->S1->S2->S3->S5->S6->S0.
  • the state transition is as follows: S0->S1->S7->S1->S0.
  • the state transition is as follows: S0->S1->S7->S1->S2->S0.
  • the state transition is as follows: S0->S1->S2->S3->S5->S6->S2->S0.
  • the preceding vehicle is a cargo vehicle, and the state transition is as follows: S0->S1->S2->S3->(S5->S6) n ->S0.
  • the front vehicle is a small passenger vehicle, and the state transition is as follows: S0->S1->(S7->S1) n ->S0.
  • the preceding vehicle is a cargo vehicle, and the state transition is as follows: S0->S1->S2->(S3->S5->S6->S2) n ->S0.
  • the front vehicle is a small passenger vehicle, and the state transition is as follows: S0->S1->S7->S1->S2->(S3->S5->S6->S2) n-1 ->S0. among them,
  • State S2 The source 101 emits a high dose rate ray.
  • State S3 The source 101 is switched to a low dose rate mode to emit a low dose rate ray.
  • State S5 The source 101 continues to emit low dose rate rays.
  • State S6 The source 101 continues to emit low dose rate rays.
  • Fig. 11 shows another state transition diagram, which is different from Fig. 10 in that the detecting unit 108 in Fig. 11 simultaneously detects that the vehicle has left the scanning area (the third function of the detecting unit 108).
  • the source 101 can be an accelerator source such as an electron linac, an Betatron, a racetrack electron cyclotron (RTM), a neutron generator, or a source such as Co- 60, Cs-137, etc.; can also be an X-ray tube.
  • an accelerator source such as an electron linac, an Betatron, a racetrack electron cyclotron (RTM), a neutron generator, or a source such as Co- 60, Cs-137, etc.
  • RTM racetrack electron cyclotron
  • a neutron generator or a source such as Co- 60, Cs-137, etc.
  • a source such as Co- 60, Cs-137, etc.
  • a minimum value should be specified for the speed of the vehicle in the detection channel, for example, 3 km/h.
  • the system will suspend the scanning inspection work, the radiation source 101 stops the beam, and the scanning system is suspended.
  • a buffer may be provided on the downstream side of the scanning area 104 to monitor the state of the vehicle in the buffer zone.
  • a portion between the scanning area 104 and the exit of the detecting channel is used as a traffic buffer, and the length of the buffer should be not less than the maximum length of the vehicle to be inspected, for example, 20 m.
  • the scanning system is suspended and the radiation source 101 stops the beam. The scanning system resumes operation until all the vehicles in the buffer have left. Setting the buffer allows the system to automatically switch between the active state and the suspended state. There is no need for human intervention in the system when road traffic is congested.
  • sensing for vehicle information identification can be placed within the detection channel
  • the device 112 such as a license plate recognition sensor and/or a vehicle type identification sensor, can identify a license plate number and/or a vehicle identification code VIN (Vehicle Identification Number), and can reflect vehicle characteristic information (such as the model, the length of the front and the cargo compartment, and the height).
  • VIN Vehicle Identification Number
  • the sensor 112 can also be configured as a sensor that can identify the container number.
  • the vehicle information recognition sensor 112 is disposed at the entrance.
  • the control module 103 notifies the system that the scanning of the vehicle has been completed based on the signal detected by the detecting unit that the vehicle has left the scanning area 104, and will be followed by a scan of the next vehicle. In the course of such continuous scanning, segmentation of the scanned image can be achieved.
  • segmentation of the scanned image can be achieved.
  • the head portion of the cargo vehicle will be scanned at a low dose rate, and the cargo portion will be irradiated with a high dose rate. Scanning, small passenger vehicles will scan the vehicle at a low dose rate.
  • the system will generate 4 scanned images, which are IMG1, IMG2, IMG3 and IMG4 in turn; on the other hand, the license plate number of each vehicle can be identified by the license plate recognition sensor, and the container number recognition sensor can also identify the container truck The container box number, then get LP1, LP2, CN1, LP3, LP4, CN2, CN3; bind the four scanned images and each identification number according to the corresponding relationship, as shown in Figure 13, the comprehensive vehicle can be obtained. information.
  • J x is the dose of X-rays
  • i is the average beam current intensity (in ⁇ A)
  • V is the beam energy (in MV).
  • takes 0.0271
  • n takes 3
  • takes 0.0964
  • n takes 2.7
  • the latter dose rate is about 36.1 times that of the former. It can be seen that adjusting the flow intensity i or the energy V of the electron beam can achieve the adjustment of the radiation dose rate. Therefore, the electronic flow intensity and/or the radiant energy of the radiation source 101 can be appropriately adjusted to meet the safety regulations when scanning at a low dose rate state, and a high radiation penetration capability can be obtained when scanning at a high dose rate state.
  • the dose rate of the radiation is achieved by controlling the energy of the radiation source 101.
  • the ray energy is less than 4 MeV, and the ray energy is high in the high dose rate state.
  • the amount is higher than 3 MeV.
  • the emitted radiation may be single-energy or dual-energy.
  • the time during which the radiation source 101 switches between the high dose rate state and the low dose rate state is no more than 20 ms.
  • the source 101 can be a Betatron, such as a 7.5 MeV Betaron produced by the Russian Tomsk Polytechnic University (TPU).
  • TPU Tomsk Polytechnic University
  • Table 1 the output dose rate is 100% at 7.5 MeV:
  • control module 103 can calculate the speed at which the vehicle exits the scan area 104 based on the time that the different detection units are triggered.
  • a speed-measuring radar or visual sensor can be placed at the exit of the detection channel to measure the speed at which the vehicle leaves the detection channel. Based on these speed information and sensor status, the control module 103 can determine whether a traffic congestion condition or a vehicle failure parking condition occurs outside the exit of the detection channel. If a similar situation occurs, the control module 103 will control the scanning system to suspend operation.
  • a traffic light 111 and an automatic lever 110 may be disposed at the entrance of the detection channel, and the control module 103 controls the scanning system to automatically close the detection channel when the scanning system is suspended.
  • control module 103 can calculate the speed at which the vehicle passes through the scan area based on the time triggered by the detection unit described above.
  • Set the pulse frequency of the pulsed ray source 101 such as an accelerator
  • set the detector sampling frequency/time such as a radioactive source, X-ray tube
  • perform speed compensation according to the speed of the vehicle passing through the scanning area or the above technical means The combination is to ensure that the scanned image does not deform in the direction of travel of the vehicle.
  • a real-time speed when the vehicle passes through the scanning area can also be obtained using a speed measuring radar or a visual sensor or the like, and the scanned image can be corrected for the deformation of the traveling direction of the vehicle according to the real-time speed when the vehicle passes through the scanning area.
  • the inspection system will obtain an image produced by the low dose rate ray scan, the low dose from the source 101.
  • the rate ray does not pass through the vehicle being inspected, but After passing through the detection channel, it is directly received by the ray detector.
  • the inspection system will The image produced by the high dose rate ray scan is obtained, and the high dose rate ray emitted by the ray source 101 does not pass through the detected vehicle, but passes through the detection channel and is directly received by the ray detector. These image data can be used to correct for inconsistencies in the detector's high dose rate response.

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

一种连续通过式辐射扫描系统,其包括:辐射源(101)、准直器、辐射探测器阵列(102)、成像装置、第一检测单元(105)、第二检测单元(108)和控制模块(103);其中,第一检测单元(105)用于检测目标物是否到达预定位置,所述预定位置位于扫描区域的上游且与扫描区域(104)的上游侧边界相距第一长度L1;所述扫描区域(104)是检测通道中被辐射源射线覆盖的区域;第二检测单元(108)用于检测目标物中需要以低剂量率射线扫描的部分已经离开扫描区域(104)且目标物中需要以高剂量率射线扫描的部分即将进入扫描区域(104);控制模块(103)用于接收来自各个检测单元(105,108)的信号并根据信号对辐射源(101)进行控制。上述方案可实现大量待检车辆连续快速通过检测通道,完成辐射扫描检查。

Description

一种连续通过式辐射扫描系统和方法 技术领域
本发明涉及辐射成像技术领域,特别是对移动目标的快速辐射成像,具体涉及一种连续通过式辐射扫描系统和方法。
背景技术
利用射线对车辆、货物等进行扫描检查是边境检查和海关查验的常用手段。待检车辆较多时,为了提高检查效率,有必要对移动车辆实施快速辐射成像,在足够短的时间内完成扫描,待检车辆可以在不停车的情况下接受扫描检查。在这种快速、连续的扫描检查技术中,最重要的问题是需对车辆中乘员所在的区域进行避让,防止辐射伤害,对乘员所在区域的射线剂量率不得高于相关辐射安全标准规定的限制,如ANSI N43.17、IEC 62463要求的剂量安全限值。目前,可实现这种快速辐射扫描安检的设备主要有两种类型。
第一种是不区分车辆中乘员所在区域(如车头的驾驶室)和货物所在区域(如大型货车后部的货舱),对待检车辆全程使用低剂量率射线扫描。第二种是区分车辆乘员所在区域和货物所在区域,对乘员所在区域以低剂量率射线扫描,对货物所在区域以高剂量率射线扫描。也就是先发出低剂量率射线扫描驾驶室,然后发出高剂量率射线扫描货舱,还需要在检测通道入口设置交通信号灯和挡杆等装置,防止后面的车误入检测通道。
发明内容
本发明提出一种连续通过式辐射扫描系统和方法,通过在扫描区域上游侧设置安全边界,监测前后车状态,控制辐射源的工作模式,防止误扫的发生,确保车辆乘员接受的剂量在安全限值以下。
本发明提供一种连续通过式辐射扫描系统,其包括:辐射源、准直器、辐射探测器和成像装置,其特征在于,还包括:第一检测单元(105)、 第二检测单元(108)和控制模块;其中,第一检测单元(105)用于检测目标物是否到达预定位置,所述预定位置位于扫描区域的上游且与扫描区域的上游侧边界相距第一长度L1;其中,所述扫描区域是检测通道中被辐射源射线覆盖的区域;第二检测单元(108)用于检测目标物中需要以低剂量率射线扫描的部分已经离开扫描区域且目标物中需要以高剂量率射线扫描的部分即将进入扫描区域;控制模块用于接收来自各个检测单元的信号并根据信号对辐射源进行控制;其中,当目标物到达所述预定位置且辐射源正在以高剂量率射线进行扫描时,所述控制模块控制辐射源转换为以低剂量率射线进行扫描。
优选地,其中第一长度L1大于等于1米。
优选地,其中第二检测单元(108)位于扫描区域的下游且与扫描区域下游侧边界相距第二长度L2。
优选地,其中第二检测单元(108)包括光电开关和光幕,其中,光电开关位于距离地面高度H处,光幕位于光电开关正下方,光电开关和光幕到扫描区域下游侧边界的距离均为第二长度L2。
优选地,其中高度H大于等于2米,第二长度L2大于等于2.5米。
优选地,该系统进一步包括第三检测单元(106),位于第一检测单元和扫描区域之间,且第三检测单元与扫描区域的上游侧边界邻近。
优选地,该系统进一步包括第四检测单元(107),其位于扫描区域和第二检测单元之间,且第四检测单元与扫描区域的下游侧边界邻近。
优选地,该系统进一步包括第五检测单元(109),其位于扫描区域内部,且第五检测单元靠近扫描区域的下游侧边界。
优选地,该系统进一步包括第六检测单元(112),其位于检测通道的入口和出口之间,当目标物为车辆时,第六检测单元用于识别车辆的车牌号码、车辆识别码VIN和/或集装箱箱号。
优选地,在检测通道的入口和出口之间安装有测速雷达或者视觉传感器。
优选地,在扫描区域的下游侧边界和检测通道的出口之间设置有缓冲区,缓冲区是长度为L3的部分检测通道;当缓冲区内的车辆速度小于 预定速度时,控制模块控制辐射扫描系统暂停工作,关闭检测通道,直到缓冲区内没有车辆时,控制模块控制辐射扫描系统恢复工作,重新打开检测通道。
优选地,缓冲区的长度L3大于等于20米,预定速度为3km/h。
优选地,在检测通道的入口处安装有交通信号灯和/或挡杆。
本发明还提供一种连续通过式辐射扫描方法,以辐射源发出的射线对检测通道中的车辆进行扫描,该方法包括:第一步,在检测到第一车辆即将进入扫描区域时,以低剂量率射线进行扫描;第二步,在第一车辆中需要以低剂量率射线扫描的部分离开扫描区域之后,且需要以高剂量率射线扫描的部分进入扫描区域时,转换为以高剂量率射线进行扫描;第三步,在第一车辆完全离开扫描区域之后,停止扫描;其中,在第二步中,在以高剂量率射线进行扫描期间,如果检测到检测通道中的第二车辆已经到达预定的安全边界,则立即对辐射源进行控制,将以高剂量率射线进行扫描转换为以低剂量率射线进行扫描;第四步,在检测到第二车辆进入扫描区域时,继续以低剂量率射线进行扫描;第五步,将第二车辆作为新的第一车辆,转入第二步;其中,安全边界位于扫描区域的上游,安全边界与扫描区域的上游侧边界之间的距离为预定长度L1。
附图说明
图1是四种典型的车辆的类型。
图2是一种典型的辐射扫描检测通道的俯视图。
图3是本发明实施例的连续通过式辐射扫描系统的俯视图。
图4是图3实施例的侧视图。
图5-7是在图3检测通道内有车辆V1和车辆V2连续通过的示意图。
图8和图9是本发明两个实施例的辐射扫描系统侧视图。
图10和图11是本发明的系统作业状态转移图。
图12是本发明实施例的设置有缓冲区等的系统俯视图。
图13是本发明实施例扫描图像与识别号的对应关系图。
具体实施方式
以下结合附图以及具体实施例,对本发明的技术方案进行详细描述。
图1示例性地示出了几种不同类型的车辆,例如(1)为普通载货车辆,如货柜车、卡车,车头与货舱之间的间隙不可识别。(2)为集装箱式载货车辆,车头与集装箱之间的间隙可识别。(3)为拖两个集装箱的集装箱式载货车辆。(4)为小型载客车辆,如轿车。以对图1示出的几种车型进行扫描为例,描述本发明实施例的原理、工作过程和技术细节。本发明实施例的适用对象并不限于图1中示出的车型,也适用于类似的所有车型。
图2示例性地示出了一种典型的检测通道的俯视图。其中,射线源101发出射线,射线经准直器出射后在检测通道内覆盖一定空间,车辆经过这部分空间时接受射线扫描,这部分空间标记为扫描区域104。辐射探测器阵列102接收穿过扫描区域104的射线,用于后期成像。控制模块103控制射线源101的工作状态。图2中省略了常用的准直器、成像设备和现场辐射防护墙等。
图3为本发明实施例的辐射扫描系统俯视图,图4为图3实施例的侧视图,图4中省略了射线源101、辐射探测器阵列102和控制模块103。工作时,待检车辆从检测通道上游侧(图中为左侧)的入口驶入。
在该实施例中,在检测通道内布置有多个检测单元105、106和108,各个检测单元可以是光电传感器、金属传感器、压力传感器、视觉传感器,或者是多种传感器的组合,例如可将地感线圈和光幕组合作为一个检测单元。
其中,检测单元105位于扫描区域104上游侧的预定位置处,与扫描区域104的上游侧边界相距特定距离L1,检测单元105所在位置可视为“安全边界”。工作时,如果检测单元105被触发,表明有车辆到达了安全边界,此时,如果射线源101正在以高剂量率模式发出射线,则需要立即将其转换为低剂量率模式,避免该车继续行驶导致人员所在的车头部分接受高剂量率射线,从而确保后车乘员接受的剂量在安全限值以下,杜绝误扫的发生。
同时,检测单元105还可用于检测车辆是否即将进入扫描区域。如 果检测单元105被触发,表明车辆即将越过安全边界进入扫描区域104。由于最先进入的必然是车头,因此检测单元105被触发时应开始以低剂量率模式扫描。
优选地,L1大于等于1m,检测单元105可采用光幕。
检测单元108位于扫描区域104的下游侧,与扫描区域104的下游侧边界相距特定距离L2,且检测高度为H;其中,L2大于等于最长车头的长度,例如在各类型车辆中,集装箱货车的车头长度为2.5米,其它车型的车头长度均小于该值,则L2≥2.5米。检测高度H可设为2米,对于车头高度小于2米的车辆,如小型载客车,不会触发检测单元108。
该检测单元108主要用于执行三个功能:①检测车辆的类型、②检测车辆中需以低剂量率射线扫描的部分(车头)是否已经驶离扫描区域104以及③检测车辆整体是否已经驶离扫描区域104。在本发明的实施例中,检测单元108适宜采用多种传感器的组合,一种优选的组合方式是光电开关和光幕。其中,光电开关设置在距离地面H高度处,用于执行第①个功能;光幕设置在该光电开关正下方的地面上,用于执行第②和第③个功能。工作时,如果光电开关被触发,表明车辆的类型是货车(车头高度大于2米),此时光幕也必然会被触发,表明车头已经驶离扫描区域104,这之后进入扫描区域104的是车辆的货舱(此时应转换为高剂量率模式扫描),当光幕恢复为未触发状态时,表明车尾已经驶离检测单元108,也即车辆整体已经驶离扫描区域104(此时应停止扫描)。另一方面,如果光幕被触发而光电开关没有被触发,表明车辆的类型是小型载客车(车头高度小于2米),表明该车辆整车需以低剂量率射线扫描(不需要区分车头和货舱,不需要改变扫描模式),光幕恢复为未触发时表明整车已经驶离(应停止扫描)。
在某些实施例中,所有待检车辆的类型全部为载货车辆,例如,在前期对待检车辆进行分流,仅允许载货车辆接受上述辐射扫描检查。此时,上述检测单元108可以不具备第①个功能。
优选地,检测单元108的功能也可以由视觉传感器实现,视觉传感器可以检测正在通过扫描区域104的车辆的类型,检测车辆中的低剂量 扫描部分是否已经离开扫描区域104,检测整车是否已经离开扫描区域104,控制模块103根据这些信息控制射线源101的出束模式。
除此之外,可以在邻近扫描区域104的上游侧边界布置检测单元106,用于检测车辆是否即将进入扫描区域104。工作时,如果检测单元106被触发,表明车辆即将进入扫描区域104,应立即开始以低剂量率模式扫描。设置检测单元106的好处是,能够更加准确地检测到车辆进入扫描区域104的时刻。优选地,检测单元106采用光幕。
上述所有检测单元的触发信号全部实时传送至控制模块103,控制模块103根据不同的触发信号控制辐射源101的工作状态。
以下描述本发明实施例的辐射扫描流程。图5示出了在图3的检测通道内有车辆V1和车辆V2正在通过的示意图。图5实施例中V1和V2均为载货车辆,两车从左侧依次驶入,V1在前,V2在后,连续通过检测通道。
车辆V1先驶入检测通道,先后触发检测单元105和106,其中106被触发时,控制模块103根据此触发信号控制辐射源101开始发出低剂量率射线,对进入扫描区域104的V1车头实施扫描;当V1车头驶出扫描区域104时触发检测单元108,控制模块103根据此触发信号控制辐射源101进入高剂量率模式,发出高剂量率射线对进入扫描区域104的V1货舱实施扫描;在辐射源101处于高剂量率模式期间,V2驶入检测通道,并触发检测单元105(如图5),说明V2已行驶到安全边界处,此时控制模块103根据此触发信号控制辐射源101立即进入低剂量率模式,在检测到V2车头驶出扫描区域104之前,令辐射源101持续以低剂量率模式发出射线,确保后车乘员接受的剂量在安全限值以下,消除V2车头被误扫的风险。也就是说,在V2触发检测单元105之后,辐射源101转换为发出低剂量率射线,则对于尚未驶离扫描区域104的部分V1货舱为低剂量率射线扫描,在检测单元108检测到V1整体已完全离开扫描区域104时(如图6),辐射源101并不暂停工作,而是维持发出低剂量率射线,直到检测单元108检测到V2车头已驶出扫描区域104(这时检测单元108也检测到V2为货车),控制模块103控制辐射源101再次转换为高剂量 率模式(如图7),以对V2的货舱做高剂量率射线扫描;然后,在检测单元108检测到V2已完全离开扫描区域104时,控制模块103令辐射源101停止发出射线。当然,如果V2尚未完全离开扫描区域104、辐射源101还处于高剂量率模式期间,又有车辆V3驶入检测通道触发了检测单元105,类似地,可令辐射源101立即进入低剂量率模式,执行上述类似流程即可。
以上控制流程的关键是在后车V2到达安全边界的检测单元105时,将辐射源101的高剂量率模式切换为低剂量率模式,确保后车乘员接受的剂量在安全限值以下,不会发生高剂量率射线误扫驾驶室的情况。
另外,如果后车V2到达安全边界的检测单元105时,辐射源101开不处于高剂量率模式,则不需要改变辐射源101的工作状态。例如,通过检测单元108检测发现前车V1为小型载客车辆(车身高度低于H),则控制单元103不会通知辐射源101转换为高剂量率模式,而是以低剂量率模式对前车V1的小型载客车辆进行整车扫描,因此不存在后车V2乘员接受的剂量超过安全限值情况可能性。
可选地,为了缩短辐射源101出束的总时间,降低车辆乘员接受的剂量,对于图5实施例,在辐射源101处于高剂量率模式期间,在V2驶入检测通道触发检测单元105之后,但尚未触发检测单元106之前,如果检测单元108检测到前车V1整体已完全离开扫描区域104,控制模块103令辐射源101停止发出射线,直到V2触发检测单元106时,控制模块103才令辐射源101发出低剂量率射线,开始对V2的扫描。这种扫描流程缩短了辐射源101出束的总时间,且降低车辆乘员接受的辐射剂量,而且不影响对连续通过的V1和V2的扫描检查。
图8为本发明另一实施例的辐射扫描系统侧视图。相对于图4,图8增加了检测单元107,其邻近扫描区域104的下游侧边界,用于检测车辆整体是否已经驶离扫描区域104。工作时,如果检测单元107从触发状态恢复到未触发状态,表明车尾已经驶离检测单元107,也即车辆整体已经驶离扫描区域104。
注意到检测单元107的作用与检测单元108所具备的第③个功能的 作用相同,因此在扫描流程上,控制模块103可根据检测单元107的触发状态获取车辆驶离扫描区域104的信息,以此代替检测单元108的第③个功能。
由于检测单元107比检测单元108更靠近扫描区域104的下游侧边界,因此一旦车辆驶离,检测单元107能够在第一时间检测到,及时上报给控制模块103,令辐射源101停止扫描,因此设置检测单元107能够在整体上缩短辐射源101的扫描时间。
图9为本发明又一实施例的辐射扫描系统侧视图。相对于图4,图9增加了检测单元109,其位于扫描区域104内,用于检测车辆的车头是否已经驶离扫描区域104。
注意到检测单元109的作用与检测单元108所具备的第②个功能的作用相同。但是,两者的工作机制不同,检测单元109通过识别车辆的车头和货舱(如集装箱)之间的间隙,判断车头是否已经驶离扫描区域104。具体地,工作时,在车头进入扫描区域104后将触发检测单元109,在车辆整体驶离之前的一个时间段内,如果检测单元109恢复到未触发,表明该时间段所对应的扫描对象是车头和货舱之间的间隙,则在该时间段之后进入扫描区域104的是车辆的货舱。也就是说,检测单元109的触发状态的变化反映了车头和货舱之间的间隙,在扫描流程上,控制模块103根据检测单元109的触发信号识别该间隙,在该间隙通过之后,令辐射源101转换为高剂量率模式扫描货舱,以此代替检测单元108的第②个功能。有些车辆在车头和货舱之间并不存在间隙,109将无法检测车头是否已通过扫描区域,这种情况下,在108被触发时,则表示车头已经通过扫描区域,控制模块103将根据检测单元108的触发信号,令辐射源101转换为高剂量率模式扫描货舱。
优选地,将检测单元109布置在扫描区域104内且靠近扫描区域104下游侧边界处。检测单元109可采用测量光幕。
设置检测单元109的好处是,一旦车头离开扫描区域104,检测单元109能够在第一时间检测到,及时上报给控制模块103,令辐射源101转换为高剂量率模式扫描,可避免对货舱的漏检,最大限度地提高设备的 嫌疑物检出能力。
可以理解,在同时具备检测单元107和检测单元109的优选实施例中,可以仅保留检测单元108中的光电开关,用来检测车辆的类型,同时取消检测单元108中的光幕。
本发明实施例能够对载货车辆的驾驶舱做低剂量率射线扫描,对货舱做高剂量率射线扫描,对载客车辆整车做低剂量率射线扫描;更重要的是,本发明实施例为多车连续进入检测通道的情况设置了安全边界,实现了扫描模式的自动切换,大量待检车辆可以连续快速通过检测通道,完成辐射扫描检查,检测效率高。
在实际作业中,存在不同类型的车辆单车通过或者多车连续通过检测通道的情况,可针对性地对本发明实施例的辐射扫描系统设置多种工作模式,各工作模式均是基于以上描述的本发明实施例的流程,在此仅举例说明。参考图10,其中包含了大部分可设置的系统工作模式。
a)小型载客车辆
状态转移按照:S0->S1->S0。
b)载货车辆
状态转移按照:S0->S1->S2->S0。
c)小型载客车辆紧跟载货车辆
状态转移按照:S0->S1->S2->S3->S5->S6->S0。
d)小型载客车辆紧跟小型载客车辆
状态转移按照:S0->S1->S7->S1->S0。
e)载货车辆紧跟小型载客车辆
状态转移按照:S0->S1->S7->S1->S2->S0。
f)载货车辆紧跟载货车辆
状态转移按照:S0->S1->S2->S3->S5->S6->S2->S0。
g)连续紧跟前车通过n辆小型载客车辆
前车为载货车辆,状态转移按照:S0->S1->S2->S3->(S5->S6)n->S0。
前车为小型载客车辆,状态转移按照:S0->S1->(S7->S1)n->S0。
h)连续紧跟前车通过n辆载货车辆
前车为载货车辆,状态转移按照:S0->S1->S2->(S3->S5->S6->S2)n->S0。
前车为小型载客车辆,状态转移按照:S0->S1->S7->S1->S2->(S3->S5->S6->S2)n-1->S0。其中,
状态S0:检查系统就绪,射线源101停止发出射线。
状态S1:射线源101发出低剂量率射线。
状态S2:射线源101发出高剂量率射线。
状态S3:将射线源101切换至低剂量率模式,发出低剂量率射线。
状态S4:射线源101停止发出射线。
状态S5:射线源101继续发出低剂量率射线。
状态S6:射线源101继续发出低剂量率射线。
状态S7:射线源101继续发出低剂量率射线。
图11给出另一个状态转移图,与图10的不同之处是,图11中检测单元108同时检测车辆已经离开扫描区域(检测单元108的第③个功能)。
在某些实施例中,射线源101可以是加速器射线源,如电子直线加速器,电子感应加速器(Betatron),跑道式电子回旋加速器(RTM),中子发生器;也可以是放射源如Co-60、Cs-137等;也可以是X射线管。
另一方面,为确保安全,应为检测通道内车辆的行驶速度规定最小值,例如可定为3km/h。在车辆越过安全边界之后、至离开检测通道出口前的期间内,如果车速低于允许的最低速度3km/h,系统将暂停扫描检查工作,射线源101停止出束,扫描系统暂停工作。
优选地,可在扫描区域104的下游侧设置一个缓冲区,用以监测缓冲区中车辆的状态。如图12所示,将扫描区域104与检测通道出口之间的部分作为交通缓冲区,该缓冲区的长度应不小于被检车辆的最大长度,例如可定为20m。当车辆在缓冲区内的速度低于3km/h时,扫描系统暂停工作,射线源101停止出束。直到缓冲区内的车辆全部离开之后,扫描系统恢复工作。设置缓冲区可实现系统在工作状态和暂停状态之间的自动切换。在道路交通发生拥堵时,无需对系统进行人为干预。
在某些实施例中,可以在检测通道内布置用于车辆信息识别的传感 器112,如车牌识别传感器和/或车型识别传感器,可识别车牌号码和/或车辆识别码VIN(Vehicle Identification Number),可以反映车辆的特征信息(例如车型、车头和货舱的长度以及高度等信息),传感器112还可以设置为可识别集装箱箱号的传感器。在图12实施例中,车辆信息识别传感器112布置在入口处。
在某些实施例中,控制模块103根据检测单元检测到的车辆已经离开扫描区域104的信号,通知系统对于该车辆的扫描已经完成,后续进行的将是下一车辆的扫描。在这种连续扫描的过程中,可以实现扫描图像的分割。对于图1中示出的4种典型车型,如果4种车型连续依次通过本发明实施例的辐射扫描系统,载货车辆的车头部分将以低剂量率射线扫描,货舱部分将以高剂量率射线扫描,小型载客车辆将以低剂量率扫描整车。一方面,系统将产生4幅扫描图像,依次为IMG1、IMG2、IMG3和IMG4;另一方面,由车牌识别传感器可识别出各车的车牌号,并且集装箱箱号识别传感器还可识别出集装箱货车的集装箱箱号,于是得到LP1、LP2、CN1、LP3、LP4、CN2、CN3;将4幅扫描图像与各识别号按照对应关系进行绑定,如图13所示,可得到被检车辆的全面信息。
根据电子轰击金属靶产生X射线辐射的经验公式:
Figure PCTCN2015072913-appb-000001
其中,Jx为X射线的剂量,i为平均电子束流强度(单位μA),V为束流能量(单位MV)。当V为3MV时,η取0.0271,n取3;V为8MV时,η取0.0964,n取2.7。对于相同的电子流强i,V分别为3MV和8MV时,后者射线剂量率约为前者的36.1倍。可见,调节电子束的流强i或能量V,均可实现对射线剂量率的调节。因此,适当调整射线源101的电子流强和/或辐射能量,可达到在低剂量率状态扫描时满足安全法规要求,以高剂量率状态扫描时可获得高的辐射穿透能力。
在某些实施例中,射线的剂量率是通过控制射线源101的能量来实现的,低剂量率状态时,射线能量低于4MeV,高剂量率状态时,射线能 量高于3MeV。射线源101工作在低剂量率状态或高剂量率状态时,发出的射线可以是单能的,也可以是双能的。射线源101在高剂量率状态和低剂量率状态之间互相切换的时间不大于20ms。
射线源101可以是Betatron,例如俄罗斯托木斯克理工大学(TPU)生产的一种7.5MeV Betaron。它输出的X射线能量与剂量率的关系如表1(设7.5MeV时输出剂量率为100%):
E,MeV 7.5 6 5 4 3 2.5 2.0
RD,% 100 50 33 20 10 5 3
表1
在某些实施例中,控制模块103可以根据不同检测单元触发的时间,来计算获得车辆离开扫描区域104时的速度。可以在检测通道出口处布置测速雷达或视觉传感器,测量车辆离开检测通道时的速度。根据这些速度信息和传感器状态,控制模块103可以判断在检测通道出口外是否发生交通拥堵情况或车辆故障停车情况,若有类似情况发生,则控制模块103将控制扫描系统暂停工作。
优选地,如图12,可以在检测通道的入口处布置交通信号灯111和自动挡杆110,控制模块103控制扫描系统暂停工作时,自动关闭检测通道。
在某些实施例中,控制模块103可以根据上述检测单元触发的时间,来计算获得车辆通过扫描区域时的速度。根据车辆通过扫描区域时的速度,设定脉冲式射线源101(如加速器)的脉冲频率或设定探测器采样频率/时间(如放射源、X射线管)或进行速度补偿,或以上技术手段的组合,以保证扫描图像在车辆行进方向不变形。在某些实施例中,也可以使用测速雷达或视觉传感器等获得车辆通过扫描区域时的实时速度,根据车辆通过扫描区域时的实时速度,可以对扫描图像进行车辆行进方向变形的校正。
在某些实施例中,从检测单元106检测到车辆即将进入扫描区域,至车辆进入扫描区域之前的这段时间,检查系统将获得低剂量率射线扫描产生的图像,射线源101发出的低剂量率射线并未穿过被检车辆,而 是穿过检测通道后,直接被射线探测器接收。这些图像数据可以用来对探测器低剂量率响应的不一致性进行校正。
同理,在某些实施例中,从车辆离开扫描区域之后,至检测单元107检测到车辆已经离开扫描区域之前的这段时间,如果射线源101始终以高剂量率发出射线,则检查系统将获得高剂量率射线扫描产生的图像,射线源101发出的高剂量率射线并未穿过被检车辆,而是穿过检测通道后,直接被射线探测器接收。这些图像数据可以用来对探测器高剂量率响应的不一致性进行校正。
以上,结合具体实施例对本发明的技术方案进行了详细介绍,所描述的具体实施例用于帮助理解本发明的思想。本领域技术人员在本发明具体实施例的基础上做出的推导和变型也属于本发明保护范围之内。

Claims (20)

  1. 一种连续通过式辐射扫描系统,其包括:辐射源、准直器、辐射探测器和成像装置,其特征在于,还包括:第一检测单元(105)、第二检测单元(108)和控制模块;其中,
    第一检测单元(105)用于检测目标物是否到达预定位置,所述预定位置位于扫描区域的上游且与扫描区域的上游侧边界相距第一长度L1;其中,所述扫描区域是检测通道中被辐射源射线覆盖的区域;
    第二检测单元(108)用于检测目标物中需要以低剂量率射线扫描的部分已经离开扫描区域且目标物中需要以高剂量率射线扫描的部分即将进入扫描区域;
    控制模块用于接收来自各个检测单元的信号并根据信号对辐射源进行控制;其中,当目标物到达所述预定位置且辐射源正在以高剂量率射线进行扫描时,控制模块控制辐射源转换为以低剂量率射线进行扫描。
  2. 如权利要求1所述的连续通过式辐射扫描系统,其特征在于,其中所述第一长度L1大于等于1米。
  3. 如权利要求2所述的连续通过式辐射扫描系统,其特征在于,其中所述第二检测单元(108)位于扫描区域的下游且与扫描区域下游侧边界相距第二长度L2。
  4. 如权利要求1所述的连续通过式辐射扫描系统,其特征在于,其中所述第二检测单元(108)包括光电开关和光幕,其中,光电开关位于距离地面高度H处,光幕位于光电开关正下方,光电开关和光幕到扫描区域下游侧边界的距离均为所述第二长度L2。
  5. 如权利要求4所述的连续通过式辐射扫描系统,其特征在于,其中所述高度H大于等于2米,所述第二长度L2大于等于2.5米。
  6. 如权利要求1所述的连续通过式辐射扫描系统,其特征在于,所述系统进一步包括第三检测单元(106),位于第一检测单元和扫描区域之间,且第三检测单元与扫描区域的上游侧边界邻近。
  7. 如权利要求1所述的连续通过式辐射扫描系统,其特征在于, 所述系统进一步包括第四检测单元(107),其位于扫描区域和第二检测单元之间,且第四检测单元与扫描区域的下游侧边界邻近。
  8. 如权利要求1所述的连续通过式辐射扫描系统,其特征在于,所述系统进一步包括第五检测单元(109),其位于扫描区域内部,且第五检测单元靠近扫描区域的下游侧边界。
  9. 如权利要求1所述的连续通过式辐射扫描系统,其特征在于,所述系统进一步包括第六检测单元(112),其位于检测通道的入口和出口之间,当目标物为车辆时,第六检测单元用于识别车辆的车牌号码、车辆识别码VIN和/或集装箱箱号。
  10. 如权利要求1所述的连续通过式辐射扫描系统,其特征在于,在所述检测通道的入口和出口之间安装有测速雷达或者视觉传感器。
  11. 如权利要求1所述的连续通过式辐射扫描系统,其特征在于,在所述扫描区域的下游侧边界和检测通道的出口之间设置有缓冲区,缓冲区是长度为L3的部分检测通道;当缓冲区内的车辆速度小于预定速度时,所述控制模块控制辐射扫描系统暂停工作,关闭检测通道,直到缓冲区内没有车辆时,所述控制模块控制辐射扫描系统恢复工作,重新打开检测通道。
  12. 如权利要求11所述的连续通过式辐射扫描系统,其特征在于,其中所述缓冲区的长度L3大于等于20米,所述预定速度为3km/h。
  13. 如权利要求1所述的连续通过式辐射扫描系统,其特征在于,在所述检测通道的入口处安装有交通信号灯和/或挡杆。
  14. 一种连续通过式辐射扫描方法,以辐射源发出的射线对检测通道中的车辆进行扫描,其特征在于,所述方法包括:
    第一步,在检测到第一车辆即将进入扫描区域时,以低剂量率射线进行扫描;
    第二步,在第一车辆中需要以低剂量率射线扫描的部分离开扫描区域之后,且需要以高剂量率射线扫描的部分进入扫描区域时,转换为以高剂量率射线进行扫描;
    第三步,在第一车辆完全离开扫描区域之后,停止扫描;其中,
    在所述第二步中,在以高剂量率射线进行扫描期间,如果检测到检测通道中的第二车辆已经到达预定的安全边界,则立即对辐射源进行控制,将以高剂量率射线进行扫描转换为以低剂量率射线进行扫描;
    第四步,在检测到第二车辆进入扫描区域时,继续以低剂量率射线进行扫描;
    第五步,将第二车辆作为新的第一车辆,转入第二步;其中,
    所述安全边界位于所述扫描区域的上游,所述安全边界与所述扫描区域的上游侧边界之间的距离为预定长度L1。
  15. 如权利要求14所述的连续通过式辐射扫描方法,其特征在于,所述预定长度L1大于等于1米。
  16. 如权利要求14所述的连续通过式辐射扫描方法,其特征在于,在所述第一步之后且在所述第二步之前,所述方法进一步包括:检测第一车辆的类型,如果第一车辆为载货车辆,转入第二步;如果第一车辆为载客车辆,转入第三步;以及,
    在所述第四步之后且在所述第五步之前,所述方法还包括:检测第二车辆的类型,如果第二车辆为载货车辆,转入第五步;如果第二车辆为载客车辆,则将第二车辆作为新的第一车辆,转入第三步。
  17. 如权利要求14所述的连续通过式辐射扫描方法,其特征在于,其中,在所述将以高剂量率射线进行扫描转换为以低剂量率射线进行扫描之后,且在所述检测到第二车辆即将进入扫描区域之前,所述方法进一步包括:对辐射源进行控制以使辐射源暂停扫描,直到检测到第二车辆即将进入扫描区域时,以低剂量率射线开始扫描。
  18. 如权利要求14所述的连续通过式辐射扫描方法,其特征在于,在对检测通道中的车辆进行扫描时,所述方法进一步包括:识别车辆的车牌号码、车辆识别码VIN和/或集装箱箱号,并且将车辆的扫描图像与对应的车牌号码、车辆识别码VIN和/或集装箱箱号进行绑定。
  19. 如权利要求14所述的连续通过式辐射扫描方法,其特征在于,在对检测通道中的车辆进行扫描时,所述方法进一步包括:获取检测通道内车辆的行驶速度,当行驶速度小于3km/h时,控制辐射源暂停扫描, 当行驶速度大于等于3km/h时,控制辐射源恢复扫描。
  20. 如权利要求14所述的连续通过式辐射扫描方法,其特征在于,在对检测通道中的车辆进行扫描时,所述方法进一步包括:在扫描区域下游侧设置一个缓冲区,当该缓冲区内车辆的行驶速度小于3km/h时,控制辐射扫描系统暂停工作,关闭检测通道,直到所述缓冲区内没有车辆时,控制辐射扫描系统恢复工作,重新打开检测通道;其中,所述缓冲区的长度大于允许通过所述检测通道的车辆的最大长度。
PCT/CN2015/072913 2014-11-14 2015-02-12 一种连续通过式辐射扫描系统和方法 WO2016074365A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410647357.9 2014-11-14
CN201410647357.9A CN104374785B (zh) 2014-11-14 2014-11-14 一种连续通过式辐射扫描系统和方法

Publications (1)

Publication Number Publication Date
WO2016074365A1 true WO2016074365A1 (zh) 2016-05-19

Family

ID=52553830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/072913 WO2016074365A1 (zh) 2014-11-14 2015-02-12 一种连续通过式辐射扫描系统和方法

Country Status (2)

Country Link
CN (1) CN104374785B (zh)
WO (1) WO2016074365A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10646179B2 (en) 2016-12-07 2020-05-12 Nuctech Company Limited Multi-energy spectrum x-ray imaging systems and methods for recognizing article using multi-energy spectrum x-ray imaging system
GB2593677A (en) * 2020-03-25 2021-10-06 Smiths Heimann Sas Vehicle inspection controlled using image information

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104777520B (zh) * 2015-04-03 2019-09-06 北京君和信达科技有限公司 一种基于激光扫描仪的移动目标自动检查系统
CN105333826B (zh) 2015-12-04 2019-02-22 同方威视技术股份有限公司 车辆快速检查方法及系统
CN105426922B (zh) * 2015-12-08 2019-02-12 同方威视技术股份有限公司 列车车型识别方法和系统及安全检查方法和系统
CN105447528B (zh) * 2015-12-29 2018-11-27 同方威视技术股份有限公司 列车车号和车型识别方法和系统及安全检查方法和系统
CN108897055B (zh) * 2016-02-24 2020-02-21 北京君和信达科技有限公司 一种辐射源控制方法和速通式安检系统
CN106124533A (zh) * 2016-08-30 2016-11-16 北京华力兴科技发展有限责任公司 快速检测系统
CN106352912A (zh) * 2016-08-30 2017-01-25 北京华力兴科技发展有限责任公司 车辆传输系统和车辆传输方法
CN107102370A (zh) * 2017-04-11 2017-08-29 北京华力兴科技发展有限责任公司 控制方法、控制装置和基于agv的车辆检查系统
CN106969715B (zh) * 2017-05-17 2023-06-30 许昌瑞示电子科技有限公司 集装箱车辆检查系统
CN107490805A (zh) * 2017-09-19 2017-12-19 北京君和信达科技有限公司 辐射装置及辐射检查系统
CN107479102A (zh) * 2017-09-19 2017-12-15 北京君和信达科技有限公司 辐射检查系统及方法
CN107991712B (zh) * 2017-10-25 2024-03-19 深圳市日联科技有限公司 一种基于物联网的人、车、柜分离的纳米波检测系统
CN107680065A (zh) * 2017-11-22 2018-02-09 同方威视技术股份有限公司 辐射图像校正方法和校正装置及校正系统
CN109188544B (zh) * 2018-09-17 2021-05-11 重庆日联科技有限公司 车辆检测系统
CN109828310B (zh) * 2018-12-28 2024-05-03 同方威视技术股份有限公司 安检设备和安检方法
CN109471187B (zh) * 2019-01-04 2024-04-02 清华大学 扫描检查系统和扫描检查方法
CN113835131A (zh) * 2020-06-23 2021-12-24 同方威视技术股份有限公司 自动行走式的检查装置和自动分车方法
CN113835130A (zh) * 2020-06-23 2021-12-24 同方威视技术股份有限公司 自动行走式的检查装置和自动分车方法
CN114167506B (zh) * 2020-09-11 2023-10-13 同方威视技术股份有限公司 安全检查系统及方法
CN113238297B (zh) * 2021-07-09 2021-11-02 同方威视技术股份有限公司 辐射检查系统及方法
CN113238293B (zh) * 2021-07-09 2021-11-02 同方威视技术股份有限公司 检查系统及方法
CN113805251A (zh) * 2021-08-25 2021-12-17 北京营加品牌管理有限公司 一种房车拖挂状态检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1906479A (zh) * 2004-01-30 2007-01-31 科学应用国际公司 对移动目标的内容物进行自动扫描和成像的方法及系统
CN1995993A (zh) * 2005-12-31 2007-07-11 清华大学 一种利用多种能量辐射扫描物质的方法及其装置
CN101162507A (zh) * 2006-10-13 2008-04-16 同方威视技术股份有限公司 一种对移动车辆进行车型识别的方法
DE102007006757A1 (de) * 2007-02-12 2008-11-06 Fendt, Günter Kfz-Sicherheitssystem, zur Unterstützung und/oder Schutzgewährung von Fahrzeugführern bei kritischen Fahrsituationen
CN104090308A (zh) * 2014-07-22 2014-10-08 北京君和信达科技有限公司 对移动目标进行辐射扫描的系统、方法以及数据信息标签

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136804A1 (en) * 2010-04-30 2011-11-03 Nucsafe, Inc Multi-profile penetrating radiation imaging system
CN108445546A (zh) * 2014-05-15 2018-08-24 北京君和信达科技有限公司 一种单源双模速通式移动目标辐射检查系统及方法
CN204314236U (zh) * 2014-11-14 2015-05-06 北京君和信达科技有限公司 一种连续通过式辐射扫描系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1906479A (zh) * 2004-01-30 2007-01-31 科学应用国际公司 对移动目标的内容物进行自动扫描和成像的方法及系统
CN1995993A (zh) * 2005-12-31 2007-07-11 清华大学 一种利用多种能量辐射扫描物质的方法及其装置
CN101162507A (zh) * 2006-10-13 2008-04-16 同方威视技术股份有限公司 一种对移动车辆进行车型识别的方法
DE102007006757A1 (de) * 2007-02-12 2008-11-06 Fendt, Günter Kfz-Sicherheitssystem, zur Unterstützung und/oder Schutzgewährung von Fahrzeugführern bei kritischen Fahrsituationen
CN104090308A (zh) * 2014-07-22 2014-10-08 北京君和信达科技有限公司 对移动目标进行辐射扫描的系统、方法以及数据信息标签

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10646179B2 (en) 2016-12-07 2020-05-12 Nuctech Company Limited Multi-energy spectrum x-ray imaging systems and methods for recognizing article using multi-energy spectrum x-ray imaging system
GB2593677A (en) * 2020-03-25 2021-10-06 Smiths Heimann Sas Vehicle inspection controlled using image information
GB2593677B (en) * 2020-03-25 2023-11-01 Smiths Heimann Sas Vehicle inspection controlled using image information

Also Published As

Publication number Publication date
CN104374785B (zh) 2017-12-05
CN104374785A (zh) 2015-02-25

Similar Documents

Publication Publication Date Title
WO2016074365A1 (zh) 一种连续通过式辐射扫描系统和方法
US10466382B2 (en) Dual-mode rapidly-passing type moving target radiation inspection system and method
RU2396512C2 (ru) Способ и система проверки движущегося объекта путем радиационного формирования изображения
JP4621652B2 (ja) 移動目標の高速イメージング検査設備及び方法
CN204314236U (zh) 一种连续通过式辐射扫描系统
US10527525B2 (en) Method and system for fast inspecting vehicle based on measure lengths
JP6216331B2 (ja) 高速セキュリティ検査システム
CN105022095B (zh) 一种速通式移动目标辐射检查方法和系统
MXPA06008579A (es) Sistema y metodo para automaticamente rastrear y formar imagenes de los contenidos de un objetivo en movimiento.
CN104950338B (zh) 对移动目标进行辐射检查的系统和方法
CN106290422B (zh) 一种用于车辆安全检查的成像装置及其方法
CN104090308A (zh) 对移动目标进行辐射扫描的系统、方法以及数据信息标签
EP3273275B1 (en) Method and system for security inspection
RU2661299C1 (ru) Система перетаскивания транспортных средств и система контроля транспортных средств
EP3816615A1 (en) Radiation inspection system and radiation inspection method
CN109828310B (zh) 安检设备和安检方法
CN207689689U (zh) 辐射检查系统
CN107664774A (zh) 辐射检查系统和方法
CN107479103A (zh) 辐射检查系统
CN107228869A (zh) 辐射检查系统和辐射检查方法
US10809415B2 (en) Imaging device for use in vehicle security check and method therefor
CN207263667U (zh) 辐射检查系统
US20140240134A1 (en) System and method for the detection and control of illicit trafficking of special nuclear materials
CN103808742A (zh) 一种可防止小孩受意外x线照射的行李安全检查机及检查方法
US20230036700A1 (en) Systems and Methods to Determine a Safe Time to Fire in a Vehicle Inspection Portal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15859807

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - FORM 1205A (08.09.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15859807

Country of ref document: EP

Kind code of ref document: A1