WO2015166682A1 - ボトル - Google Patents
ボトル Download PDFInfo
- Publication number
- WO2015166682A1 WO2015166682A1 PCT/JP2015/053795 JP2015053795W WO2015166682A1 WO 2015166682 A1 WO2015166682 A1 WO 2015166682A1 JP 2015053795 W JP2015053795 W JP 2015053795W WO 2015166682 A1 WO2015166682 A1 WO 2015166682A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bottle
- wall portion
- radial direction
- depth
- main body
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D1/00—Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
- B65D1/02—Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D1/00—Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
- B65D1/02—Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
- B65D1/0223—Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by shape
- B65D1/0261—Bottom construction
- B65D1/0276—Bottom construction having a continuous contact surface, e.g. Champagne-type bottom
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D1/00—Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
- B65D1/40—Details of walls
- B65D1/42—Reinforcing or strengthening parts or members
- B65D1/44—Corrugations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D11/00—Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, components made wholly or mainly of plastics material
- B65D11/02—Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, components made wholly or mainly of plastics material of curved cross-section
- B65D11/04—Bottles or similar containers with necks or like restricted apertures designed for pouring contents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D11/00—Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, components made wholly or mainly of plastics material
- B65D11/20—Details of walls made of plastics material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D41/00—Caps, e.g. crown caps or crown seals, i.e. members having parts arranged for engagement with the external periphery of a neck or wall defining a pouring opening or discharge aperture; Protective cap-like covers for closure members, e.g. decorative covers of metal foil or paper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D79/00—Kinds or details of packages, not otherwise provided for
- B65D79/005—Packages having deformable parts for indicating or neutralizing internal pressure-variations by other means than venting
- B65D79/008—Packages having deformable parts for indicating or neutralizing internal pressure-variations by other means than venting the deformable part being located in a rigid or semi-rigid container, e.g. in bottles or jars
- B65D79/0081—Packages having deformable parts for indicating or neutralizing internal pressure-variations by other means than venting the deformable part being located in a rigid or semi-rigid container, e.g. in bottles or jars in the bottom part thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D90/00—Component parts, details or accessories for large containers
- B65D90/22—Safety features
- B65D90/32—Arrangements for preventing, or minimising the effect of, excessive or insufficient pressure
- B65D90/36—Weakened parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D2501/00—Containers having bodies formed in one piece
- B65D2501/0009—Bottles or similar containers with necks or like restricted apertures designed for pouring contents
- B65D2501/0018—Ribs
- B65D2501/0036—Hollow circonferential ribs
Definitions
- the present invention relates to a bottle.
- This application claims priority on April 30, 2014 based on Japanese Patent Application No. 2014-093353 for which it applied to Japan, and uses the content here.
- the bottom wall portion of the bottom portion has a grounding portion located at the outer peripheral edge portion, a rising peripheral wall portion extending from the inside in the bottle radial direction to the grounding portion and extending upward, and a bottle diameter from the upper end portion of the rising peripheral wall portion. And a movable wall portion projecting inward in the direction.
- the movable wall portion rotates upward about the connecting portion with the rising peripheral wall portion to absorb the reduced pressure in the bottle.
- the present invention has been made in view of the above-described circumstances, and an object thereof is to improve the vacuum absorption performance in a bottle.
- the bottle according to the present invention is a bottomed cylindrical bottle formed of a synthetic resin material, the bottom wall portion of the bottom portion is a grounding portion located at the outer peripheral edge portion, and the grounding portion from the inside in the bottle radial direction.
- a rising peripheral wall portion extending continuously upward and a movable wall portion projecting inward in the bottle radial direction from the upper end portion of the rising peripheral wall portion, and the movable wall portion is centered on a connecting portion with the rising peripheral wall portion
- a plurality of ribs are radially arranged around the bottle axis, and the rib includes a main body recess and a connection recess that are recessed upward.
- a plurality of main body concave portions are arranged at intervals in the bottle radial direction, and the connection concave portions connect the main body concave portions adjacent in the bottle radial direction in the bottle radial direction, and the depth D2 of the connection concave portion with respect to the depth D1 of the main body concave portion.
- the depth ratio D2 / D1 which is the ratio of / 1 or less greater than 9.
- the depth ratio D2 / D1 by setting the depth ratio D2 / D1 to be greater than 2/9 and 1 or less, it becomes possible to secure a large amount of upward movement of the movable wall portion during decompression in the bottle.
- the vacuum absorption performance can be improved. That is, when the depth ratio D2 / D1 is 2/9 or less, it may be difficult to largely displace the movable wall portion in the bottle axis direction when the bottle is depressurized.
- the movable wall portion in the configuration in which the movable wall portion gradually extends downward from the outside in the bottle radial direction toward the inside, when the depth ratio D2 / D1 is greater than 2/9 and 1 or less, the bottle
- the movable wall portion can be largely displaced in the bottle axis direction, for example, the movable wall portion can be deformed in an inverted manner in the bottle axis direction.
- the depth ratio D2 / D1 may be less than 1.
- the main body recess can be formed deeper than the connection recess.
- the depth ratio D2 / D1 may be 2.5 / 9 or more and 5/9 or less.
- the movable wall portion can be moved more effectively upward so that the reduced pressure absorption performance in the bottle is reliably improved.
- the vacuum absorption performance in the bottle can be improved.
- FIG. 3 is a cross-sectional view taken along line AA in FIG. 2. It is an enlarged view of the X section shown in FIG. It is a graph showing the result of having analyzed about the influence which a depth ratio has on absorption capacity.
- the bottle 1 according to the present embodiment includes a mouth part 11, a shoulder part 12, a body part 13, and a bottom part 14, and these 11 to 14 have their respective central axes as a common axis. It is a schematic configuration that is arranged in this order in a state of being positioned above.
- the common axis is referred to as the bottle axis O
- the mouth part 11 side is referred to as the upper side
- the bottom part 14 side is referred to as the lower side along the bottle axis O direction.
- a direction orthogonal to the bottle axis O is referred to as a radial direction (bottle radial direction)
- a direction around the bottle axis O is referred to as a circumferential direction.
- the bottle 1 is formed by blow molding a preform formed into a bottomed cylindrical shape by injection molding, and is integrally formed of a synthetic resin material.
- a cap (not shown) is attached to the mouth portion 11.
- Each of the mouth portion 11, the shoulder portion 12, the body portion 13, and the bottom portion 14 has a circular cross-sectional shape orthogonal to the bottle axis O.
- a first annular groove 16 is continuously formed over the entire circumference at the connecting portion between the shoulder portion 12 and the body portion 13.
- drum 13 is formed in a cylindrical shape, and between both ends of the bottle axis
- a plurality of second annular grooves 15 are continuously formed in the body portion 13 over the entire circumference at intervals in the bottle axis O direction.
- a third annular groove 20 is continuously formed over the entire circumference at the connection portion between the body portion 13 and the bottom portion 14.
- the bottom portion 14 includes a heel portion 17 whose upper end opening is connected to the lower end opening of the body portion 13, and a bottom wall portion 19 that closes the lower end opening of the heel portion 17 and whose outer peripheral edge portion is a grounding portion 18. Are formed in a cup shape.
- a fourth annular groove 31 having the same depth as the third annular groove 20 is continuously formed over the entire circumference.
- the heel lower end portion 27 that is continuous with the ground contact portion 18 from the outside in the radial direction is formed to have a smaller diameter than the upper heel portion 28 that is continuous with the heel lower end portion 27 from above and is formed with the fourth annular groove 31.
- a connecting portion 29 between the heel lower end portion 27 and the upper heel portion 28 is gradually reduced in diameter from the upper side toward the lower side.
- the upper heel portion 28 is the maximum outer diameter portion of the bottle 1 together with both end portions of the body portion 13 in the bottle axis O direction.
- An uneven portion 17 a is formed on the outer peripheral surface of the heel portion 17 and the outer peripheral surface of the lower end portion of the body portion 13.
- the bottom wall portion 19 is connected to the grounding portion 18 from the inside in the radial direction and extends upward, and protrudes from the upper end portion of the rising peripheral wall portion 21 toward the inside in the radial direction.
- An annular movable wall portion 22 and a bottom center portion 30 connected to the radially inner end portion of the movable wall portion 22.
- the movable wall portion 22 and the bottom center portion 30 are disposed inside the rising peripheral wall portion 21 in the radial direction, and close the upper end opening of the rising peripheral wall portion 21.
- the rising peripheral wall portion 21 is gradually reduced in diameter from the lower side toward the upper side.
- the movable wall portion 22 is formed in a curved shape that protrudes downward, and gradually extends downward from the outside in the radial direction toward the inside.
- the movable wall portion 22 and the rising peripheral wall portion 21 are connected via a curved surface portion 25 that protrudes upward.
- the movable wall portion 22 is rotatable around a curved surface portion (connection portion with the rising peripheral wall portion) 25 so as to move the depressed peripheral wall portion 23 upward.
- the bottom center portion 30 is disposed on the bottle axis O and is located on the inner side in the radial direction of the movable wall portion 22.
- the bottom center portion 30 closes an opening formed inside the movable wall portion 22 in the radial direction by an inner end portion in the radial direction of the movable wall portion 22.
- the portion located on the bottle axis O in the bottom center portion 30 is located above the radially inner end portion of the movable wall portion 22.
- the bottom center portion 30 is disposed coaxially with the bottle axis O on the depressed peripheral wall portion 23 extending upward from the radial inner end of the movable wall portion 22 and on the upper end portion of the depressed peripheral wall portion 23. And a top wall 24.
- the depressed peripheral wall portion 23 is disposed coaxially with the bottle axis O and gradually increases in diameter from the upper side toward the lower side.
- a top wall 24 is connected to the upper end portion of the depressed peripheral wall portion 23, and the entire depressed peripheral wall portion 23 and the top wall 24 form a top tube shape.
- the depressed peripheral wall portion 23 is formed in a circular shape when viewed in cross section.
- the top wall 24 is formed in a disk shape arranged coaxially with the bottle axis O.
- the depressed peripheral wall portion 23 includes a curved wall portion 23a that is formed in a curved shape protruding toward the inside in the radial direction, and an inclined wall portion 23c that gradually increases in diameter from the upper side toward the lower side.
- the upper end of the curved wall portion 23 a is connected to the top wall 24.
- the lower end of the curved wall portion 23a is connected to the inclined wall portion 23c via the bent portion 23b.
- the lower end of the inclined wall portion 23 c is connected to the inner end portion in the radial direction of the annular movable wall portion 22.
- a plurality of ribs 26 are radially arranged around the bottle axis O in the movable wall portion 22.
- Each rib 26 extends straight along the radial direction.
- the plurality of ribs 26 are arranged at equal intervals along the circumferential direction.
- the ribs 26 are limited to the movable wall portion 22 and are disposed so as to surround the bottom center portion 30 from the outside in the radial direction in plan view.
- the rib 26 includes a main body recess 26 a and a connection recess 26 b that are recessed upward from the movable wall portion 22. As shown in FIGS. 3 and 4, a plurality of main body recesses 26 a are arranged at intervals in the radial direction, and five in the illustrated example. The inner surface of the main body recess 26a is formed in a spherical shape that protrudes upward.
- connection recess 26b connects the main body recesses 26a adjacent in the radial direction in the radial direction.
- the inner surface of the connection recess 26 b is formed in a convex curved surface that is convex downward in the longitudinal sectional view of the bottle 1 that passes through the rib 26.
- the inner surface of the connection recess 26b smoothly connects the inner surfaces of the main body recesses 26a adjacent to each other in the radial direction without any step in the radial direction.
- the rib 26 is formed in the wave shape which becomes convex alternately in the bottle axis
- the main body recesses 26a are formed in the same shape and size, and are arranged at equal intervals along the radial direction. In each of the plurality of ribs 26, the positions along the radial direction where the plurality of main body recesses 26 a are disposed are equal to each other.
- Each connection recessed part 26b is formed in the same shape and the same size, respectively, and is arrange
- the depth ratio D2 / D1 which is the ratio of the depth D2 of the connection recess 26b to the depth D1 of the main body recess 26a, is greater than 2/9 and 1 or less. Further, in the illustrated example, the depth ratio D2 / D1 is less than 1, and more specifically, the depth ratio D2 / D1 is 2.5 / 9 or more and 5/9 or less.
- the movable wall portion 22 When the inside of the bottle 1 configured in this way is in a decompressed state, the movable wall portion 22 is rotated upward about the curved surface portion 25 of the bottom wall portion 19, so that the movable wall portion 22 It moves so that the part 23 (bottom center part 30) may be lifted upwards. That is, by positively deforming the bottom wall portion 19 of the bottle 1 during decompression, it is possible to absorb changes in the internal pressure (decompression) of the bottle 1 without accompanying deformation of the body portion 13 or the like.
- the connecting portion between the rising peripheral wall portion 21 and the movable wall portion 22 is formed on the curved surface portion 25 that protrudes upward, so that the movable wall is centered on the upper end portion of the rising peripheral wall portion 21.
- the part 22 can be easily moved (turned).
- a plurality of ribs 26 are formed on the movable wall portion 22 of the bottom wall portion 19 and the surface area of the movable wall portion 22 is increased, the pressure receiving area in the movable wall portion 22 is increased, and the movable wall portion 22 is bottled. Therefore, it is possible to easily respond to a change in the internal pressure of 1 and easily deform it.
- the inventors of the present application have found that the reduced-pressure absorption performance in the bottle 1 can be improved by adjusting the depth ratio D2 / D1 described above.
- the inventor of this application analyzed the reduced pressure absorption performance in each of the plurality of bottles 1 having different depth ratios D2 / D1.
- bottles 1 of Comparative Examples 1 to 3 and Examples 1 to 6 were targeted. All the bottles 1 have the same configuration as that of the above-described embodiment except for the form of the ribs 26, and are bottles 1 having an internal volume of 350 ml, a bottle height of 155.58 mm, a bottle diameter of 66 mm, and a weight of 21 g. .
- the form of the ribs 26 was varied as shown in Table 1 below. Table 1 also shows the analysis results.
- the bottle 1 of Comparative Example 1 has a configuration in which the rib 26 is not formed on the bottom wall portion 19. In the bottle 1 of Comparative Example 2, the rib 26 is not provided with the connection recess 26b. Therefore, in Table 1, the depth D1 of the main body recess 26a and the depth D2 of the connection recess 26b of Comparative Example 1 and the depth D2 of the connection recess 26b of Comparative Example 2 are all described as 0.
- the depth D1 of the main body recess 26a and the depth D2 of the connection recess 26b were the same.
- the rib 26 is formed in a groove shape having the same depth regardless of the position in the radial direction, and the bottom surface of the rib 26 extends linearly in the radial direction in a longitudinal sectional view. Yes.
- the depth D1 of the main body recess 26a is equal to the radius of curvature of the inner surface of the main body recess 26a.
- the depth ratio D2 / D1 in the bottle 1 of Comparative Example 3 is 2/9 (22.2%), and the depth ratio D2 / D1 in the bottle 1 of Example 6 is 1 (100%). It has become. Therefore, from this analysis, when the depth ratio D2 / D1 is greater than 2/9 and equal to or less than 1, it is possible to ensure a large amount of movement of the movable wall portion 22 when the pressure in the bottle 1 is reduced. Was confirmed.
- the bottle 1 of Examples 1 to 4 has an absorption capacity of 10.0 ml or more. It was.
- the depth ratio D2 / D1 in the bottle 1 of Example 1 is 2.5 / 9 (27.8%), and the depth ratio D2 / D1 in the bottle 1 of Example 4 is 5/9. (55.6%). Therefore, from this analysis, it was confirmed that a sufficient absorption capacity can be secured when the depth ratio D2 / D1 is 2.5 / 9 or more and 5/9 or less.
- the depth ratio D2 / D1 is set to be greater than 2/9 and equal to or less than 1 so that the upper portion of the movable wall portion 22 at the time of decompression in the bottle 1 is reached. It is possible to ensure a large amount of movement to the bottle, and the vacuum absorption performance in the bottle 1 can be improved. That is, when the depth ratio D2 / D1 is 2/9 or less, it may be difficult to largely displace the movable wall portion 22 in the bottle axis O direction when the bottle 1 is decompressed.
- the depth ratio D2 / D1 is greater than 2/9 and equal to or less than 1/9 in the configuration in which the movable wall portion 22 gradually extends downward from the outer side in the radial direction.
- the movable wall portion 22 can be greatly displaced in the bottle axis O direction, and for example, the movable wall portion 22 can be deformed in an inverted manner in the bottle axis O direction.
- the main body recess 26a can be formed deeper than the connection recess 26b.
- the movable wall portion 22 can be effectively moved upward so that the reduced pressure absorption performance in the bottle 1 is further improved.
- the depth ratio D2 / D1 is set to 2.5 / 9 or more and 5/9 or less, the movable wall portion 22 is further improved upward so that the reduced pressure absorption performance in the bottle 1 is reliably improved. Can be moved.
- the bottom center portion 30 includes the depressed peripheral wall portion 23 and the top wall 24, but the present invention is not limited to this.
- the bottom center portion 30 may be a flat plate having a circular shape in plan view.
- the bottom center part 30 may have a curved plate shape that protrudes in the bottle axis O direction in the longitudinal sectional view.
- connection recess 26b is formed in a convex curved shape in a longitudinal sectional view, but the present invention is not limited to this.
- the inner surface of the connection recess 26b may be formed in a concave curved surface in a longitudinal sectional view, or may be formed in a flat shape.
- the rising peripheral wall portion 21 may be appropriately changed, for example, by extending in parallel along the bottle axis O direction.
- the movable wall portion 22 may be changed as appropriate, for example, by projecting in parallel along the radial direction, or gradually extending upward as it goes from the outer side to the inner side in the radial direction.
- the depressed peripheral wall portion 23 gradually increases in diameter as it goes downward from above, but the present invention is not limited to this.
- the depressed peripheral wall portion 23 extends over the entire length in the bottle axis O direction. You may change suitably, such as making it the same diameter.
- the uneven portion 17a may not be formed.
- the synthetic resin material forming the bottle 1 may be appropriately changed, for example, polyethylene terephthalate, polyethylene naphthalate, amorphous polyester, or a blend material thereof. Further, the bottle 1 is not limited to a single layer structure, and may be a laminated structure having an intermediate layer. Examples of the intermediate layer include a layer made of a resin material having a gas barrier property, a layer made of a recycled material, or a layer made of a resin material having an oxygen absorbing property. And in the said embodiment, although the cross-sectional view shape orthogonal to each bottle axis
- the vacuum absorption performance in the bottle can be improved.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Ceramic Engineering (AREA)
- Containers Having Bodies Formed In One Piece (AREA)
Abstract
Description
本願は、2014年4月30日に、日本に出願された特願2014-093353号に基づき優先権を主張し、その内容をここに援用する。
本発明に係るボトルは、合成樹脂材料で形成された有底筒状のボトルであって、底部の底壁部が、外周縁部に位置する接地部と、接地部にボトル径方向の内側から連なり上方に向けて延びる立ち上がり周壁部と、立ち上がり周壁部の上端部からボトル径方向の内側に向けて突出する可動壁部と、を備え、可動壁部は、立ち上がり周壁部との接続部分を中心に上方に向けて移動自在に配設され、可動壁部には、複数のリブがボトル軸を中心に放射状に配設され、リブは、上方に向けて窪む本体凹部および接続凹部を備え、本体凹部は、ボトル径方向に間隔をあけて複数配置され、接続凹部は、ボトル径方向に隣り合う本体凹部同士をボトル径方向に接続し、本体凹部の深さD1に対する接続凹部の深さD2の比率である深さ比率D2/D1は、2/9よりも大きく1以下である。
本実施形態に係るボトル1は、図1~図4に示されるように、口部11、肩部12、胴部13および底部14を備え、これら11~14が、それぞれの中心軸線を共通軸上に位置させた状態で、この順に連設された概略構成となっている。
胴部13は筒状に形成され、ボトル軸O方向の両端部同士の間は、これら両端部より小径に形成されている。胴部13には、ボトル軸O方向に間隔をあけて複数の第2環状凹溝15が全周に亘って連続して形成されている。
底部14は、上端開口部が胴部13の下端開口部に接続されたヒール部17と、ヒール部17の下端開口部を閉塞し、かつ外周縁部が接地部18とされた底壁部19と、を備えるカップ状に形成されている。
可動壁部22は、下方に向けて突の曲面状に形成されるとともに、径方向の外側から内側に向かうに従い漸次下方に向けて延びている。可動壁部22と立ち上がり周壁部21とは上方に向けて突の曲面部25を介して連結されている。可動壁部22は、陥没周壁部23を上方に向けて移動させるように、曲面部(立ち上がり周壁部との接続部分)25を中心に回動自在となっている。
図3および図4に示すように、本体凹部26aは、径方向に間隔をあけて複数、図示の例では5つ配置されている。本体凹部26aの内面は、上側に向けて凸となる球面状に形成されている。
比較例1~3および実施例1~6の各ボトル1では、以下の表1に示すようにリブ26の形態を異ならせた。なお表1には、解析結果も併記している。
これらの各ボトル1において、減圧強度を20kPaとしたときの可動壁部22の底壁部19中心の変位量、吸収容量について比較した。ここで、底壁部19中心の変位量とは、底壁部19においてボトル軸O上に位置する部分の上方に向けた変位量である。
ここで、実施例1のボトル1における深さ比率D2/D1は2.5/9(27.8%)となっていて、実施例4のボトル1における深さ比率D2/D1は5/9(55.6%)となっている。よって本解析より、深さ比率D2/D1が、2.5/9以上5/9以下であることで、十分な吸収容量を確保できることが確認された。
さらに、深さ比率D2/D1を、2.5/9以上5/9以下にした場合には、ボトル1内の減圧吸収性能が確実に向上するように、可動壁部22を上方に一層効果的に移動させることができる。
そして、可動壁部22を、例えば径方向に沿って平行に突出させたり、径方向の外側から内側に向かうに従い漸次上方に向けて延ばしたり等、適宜変更してもよい。
その上、上記実施形態では、陥没周壁部23が、上方から下方に向かうに従い漸次拡径しているが、本発明はこれに限られず、例えば陥没周壁部23を、ボトル軸O方向の全長にわたって同径にする等、適宜変更してもよい。
さらに、凹凸部17aを形成しなくてもよい。
さらに、ボトル1は単層構造体に限らず中間層を有する積層構造体としてもよい。この中間層としては、例えばガスバリア性を有する樹脂材料からなる層、再生材からなる層、若しくは酸素吸収性を有する樹脂材料からなる層等が挙げられる。
そして、上記実施形態では、肩部12、胴部13および底部14のそれぞれのボトル軸Oに直交する横断面視形状を円形状としたが、これに限らず例えば、多角形状にする等に適宜変更してもよい。
14 底部
18 接地部
19 底壁部
21 立ち上がり周壁部
22 可動壁部
23 陥没周壁部
25 曲面部(立ち上がり周壁部との接続部分)
26 リブ
26a 本体凹部
26b 接続凹部
O ボトル軸
Claims (3)
- 合成樹脂材料で形成された有底筒状のボトルであって、
底部の底壁部が、
外周縁部に位置する接地部と、
前記接地部にボトル径方向の内側から連なり上方に向けて延びる立ち上がり周壁部と、
前記立ち上がり周壁部の上端部からボトル径方向の内側に向けて突出する可動壁部と、を備え、
前記可動壁部は、前記立ち上がり周壁部との接続部分を中心に上方に向けて移動自在に配設され、
前記可動壁部には、複数のリブがボトル軸を中心に放射状に配設され、
前記リブは、上方に向けて窪む本体凹部および接続凹部を備え、
前記本体凹部は、ボトル径方向に間隔をあけて複数配置され、
前記接続凹部は、ボトル径方向に隣り合う前記本体凹部同士をボトル径方向に接続し、
前記本体凹部の深さD1に対する前記接続凹部の深さD2の比率である深さ比率D2/D1は、2/9よりも大きく1以下であるボトル。 - 前記深さ比率D2/D1は1未満である請求項1記載のボトル。
- 前記深さ比率D2/D1は、2.5/9以上5/9以下である請求項2記載のボトル。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020167030138A KR102247296B1 (ko) | 2014-04-30 | 2015-02-12 | 병 |
US15/304,343 US10167127B2 (en) | 2014-04-30 | 2015-02-12 | Cylindrical bottle with bottom |
EP15786067.7A EP3138782B1 (en) | 2014-04-30 | 2015-02-12 | Bottle |
CA2946512A CA2946512C (en) | 2014-04-30 | 2015-02-12 | Bottle |
CN201580022648.1A CN106255645B (zh) | 2014-04-30 | 2015-02-12 | 瓶 |
AU2015254468A AU2015254468B2 (en) | 2014-04-30 | 2015-02-12 | Bottle |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-093353 | 2014-04-30 | ||
JP2014093353A JP6397652B2 (ja) | 2014-04-30 | 2014-04-30 | ボトル |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015166682A1 true WO2015166682A1 (ja) | 2015-11-05 |
Family
ID=54358423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/053795 WO2015166682A1 (ja) | 2014-04-30 | 2015-02-12 | ボトル |
Country Status (8)
Country | Link |
---|---|
US (1) | US10167127B2 (ja) |
EP (1) | EP3138782B1 (ja) |
JP (1) | JP6397652B2 (ja) |
KR (1) | KR102247296B1 (ja) |
CN (1) | CN106255645B (ja) |
AU (1) | AU2015254468B2 (ja) |
CA (1) | CA2946512C (ja) |
WO (1) | WO2015166682A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019093114A1 (ja) * | 2017-11-07 | 2019-05-16 | 東洋製罐株式会社 | 合成樹脂製容器 |
JP7114276B2 (ja) * | 2018-03-05 | 2022-08-08 | サントリーホールディングス株式会社 | プラスチックボトル |
EP3763630B1 (en) * | 2018-03-05 | 2023-09-06 | Suntory Holdings Limited | Plastic bottle |
JP7162517B2 (ja) * | 2018-12-18 | 2022-10-28 | 株式会社吉野工業所 | 角形ボトル |
CN112874968B (zh) * | 2020-12-31 | 2023-01-24 | 鹿啄泉矿泉水有限公司 | 一次性真空保鲜软桶及真空保鲜取水设备 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60182309U (ja) * | 1984-05-15 | 1985-12-03 | 株式会社吉野工業所 | 2軸延伸ブロ−成形壜体の底部構造 |
JPH0199949A (ja) * | 1987-10-09 | 1989-04-18 | Toyo Seikan Kaisha Ltd | 耐圧プラスチック容器 |
JP2004524236A (ja) * | 2001-04-03 | 2004-08-12 | シデル | 底面に交差形の刻印を含む熱可塑性容器 |
JP2010500241A (ja) * | 2006-08-08 | 2010-01-07 | シデル パーティシペイションズ | 熱可塑性材料によるプリフォームの吹き込み成型または吹き込み引き抜き成型により得られる中空体底ならびにこれからなる中空体 |
JP2012091860A (ja) * | 2010-09-30 | 2012-05-17 | Yoshino Kogyosho Co Ltd | ボトル |
JP2013079096A (ja) * | 2011-10-04 | 2013-05-02 | Daiwa Can Co Ltd | 合成樹脂製容器 |
WO2013129480A1 (ja) * | 2012-02-29 | 2013-09-06 | 株式会社吉野工業所 | ボトル |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
LU77042A1 (ja) * | 1977-03-29 | 1978-11-03 | ||
FR2379443A1 (fr) * | 1977-02-04 | 1978-09-01 | Solvay | Corps creux en matiere thermoplastique |
JP2002370721A (ja) * | 2001-06-13 | 2002-12-24 | Toyo Seikan Kaisha Ltd | 合成樹脂製ボトル |
US8276774B2 (en) * | 2003-05-23 | 2012-10-02 | Amcor Limited | Container base structure responsive to vacuum related forces |
KR200409332Y1 (ko) * | 2005-11-30 | 2006-02-22 | 김용재 | 페트병 |
JP6216492B2 (ja) * | 2012-02-29 | 2017-10-18 | 株式会社吉野工業所 | ボトル |
-
2014
- 2014-04-30 JP JP2014093353A patent/JP6397652B2/ja active Active
-
2015
- 2015-02-12 CN CN201580022648.1A patent/CN106255645B/zh active Active
- 2015-02-12 AU AU2015254468A patent/AU2015254468B2/en active Active
- 2015-02-12 EP EP15786067.7A patent/EP3138782B1/en active Active
- 2015-02-12 CA CA2946512A patent/CA2946512C/en active Active
- 2015-02-12 US US15/304,343 patent/US10167127B2/en active Active
- 2015-02-12 WO PCT/JP2015/053795 patent/WO2015166682A1/ja active Application Filing
- 2015-02-12 KR KR1020167030138A patent/KR102247296B1/ko active IP Right Grant
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60182309U (ja) * | 1984-05-15 | 1985-12-03 | 株式会社吉野工業所 | 2軸延伸ブロ−成形壜体の底部構造 |
JPH0199949A (ja) * | 1987-10-09 | 1989-04-18 | Toyo Seikan Kaisha Ltd | 耐圧プラスチック容器 |
JP2004524236A (ja) * | 2001-04-03 | 2004-08-12 | シデル | 底面に交差形の刻印を含む熱可塑性容器 |
JP2010500241A (ja) * | 2006-08-08 | 2010-01-07 | シデル パーティシペイションズ | 熱可塑性材料によるプリフォームの吹き込み成型または吹き込み引き抜き成型により得られる中空体底ならびにこれからなる中空体 |
JP2012091860A (ja) * | 2010-09-30 | 2012-05-17 | Yoshino Kogyosho Co Ltd | ボトル |
JP2013079096A (ja) * | 2011-10-04 | 2013-05-02 | Daiwa Can Co Ltd | 合成樹脂製容器 |
WO2013129480A1 (ja) * | 2012-02-29 | 2013-09-06 | 株式会社吉野工業所 | ボトル |
Also Published As
Publication number | Publication date |
---|---|
EP3138782A1 (en) | 2017-03-08 |
CN106255645A (zh) | 2016-12-21 |
US20170036803A1 (en) | 2017-02-09 |
EP3138782B1 (en) | 2019-01-02 |
JP6397652B2 (ja) | 2018-09-26 |
JP2015209240A (ja) | 2015-11-24 |
CA2946512C (en) | 2021-09-28 |
AU2015254468A1 (en) | 2016-11-03 |
KR20170005408A (ko) | 2017-01-13 |
AU2015254468B2 (en) | 2019-06-13 |
US10167127B2 (en) | 2019-01-01 |
CN106255645B (zh) | 2018-09-07 |
CA2946512A1 (en) | 2015-11-05 |
EP3138782A4 (en) | 2017-12-20 |
KR102247296B1 (ko) | 2021-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012043362A1 (ja) | ボトル | |
WO2015166682A1 (ja) | ボトル | |
WO2012057026A1 (ja) | ボトル | |
WO2012147885A1 (ja) | ボトル | |
JP5986733B2 (ja) | ボトル | |
JP5719677B2 (ja) | ボトル | |
JP5785823B2 (ja) | ボトル | |
JP2017013845A (ja) | 円形ボトル | |
JP5684534B2 (ja) | ボトル | |
JP6535786B2 (ja) | ボトル | |
JP6335736B2 (ja) | ボトル | |
JP5789440B2 (ja) | ボトル | |
JP2012076747A (ja) | ボトル | |
JP5645604B2 (ja) | ボトル | |
JP5645602B2 (ja) | ボトル | |
JP6151881B2 (ja) | ブローボトル | |
JP5568440B2 (ja) | ボトル | |
JP5568439B2 (ja) | ボトル | |
JP2012091827A (ja) | ボトル | |
JP2012091816A (ja) | ボトル |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15786067 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15304343 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2015786067 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015786067 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2946512 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 20167030138 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2015254468 Country of ref document: AU Date of ref document: 20150212 Kind code of ref document: A |