WO2015162894A1 - 冷蔵庫 - Google Patents

冷蔵庫 Download PDF

Info

Publication number
WO2015162894A1
WO2015162894A1 PCT/JP2015/002135 JP2015002135W WO2015162894A1 WO 2015162894 A1 WO2015162894 A1 WO 2015162894A1 JP 2015002135 W JP2015002135 W JP 2015002135W WO 2015162894 A1 WO2015162894 A1 WO 2015162894A1
Authority
WO
WIPO (PCT)
Prior art keywords
partition
heating
partition plate
refrigerator
insulating material
Prior art date
Application number
PCT/JP2015/002135
Other languages
English (en)
French (fr)
Inventor
健一 柿田
濱田 和幸
堀尾 好正
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014124012A external-priority patent/JP5934951B2/ja
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to DE212015000112.1U priority Critical patent/DE212015000112U1/de
Priority to CN201590000453.2U priority patent/CN206449987U/zh
Publication of WO2015162894A1 publication Critical patent/WO2015162894A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/02Doors; Covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/02Details of doors or covers not otherwise covered
    • F25D2323/021French doors

Definitions

  • the present invention relates to a refrigerator that is closed in a double door manner with left and right doors in parallel with the front opening of a storage room provided in the upper part of the main body.
  • a refrigerator room that is frequently used and has the largest storage capacity has been placed at the top as a double door, and an ice making room and a temperature switching room are located below it.
  • the main type is a vegetable room at the bottom and a freezer room at the bottom.
  • the partition which rotates to the other door side at the time of closing is attached to the inner surface of one open end side of the double doors of the refrigerating room, and the adsorption surface of the gasket is provided.
  • the partition plate made of a thin steel plate forming the adsorption surface of the door gasket of the rotating partition body is configured as follows. That is, the flat suction surface and both side edges thereof are folded inward and overlapped, and further bent inward to have an angle portion. Further, the outer peripheral surface of the partition plate and the outer surface of the heat insulating member provided inside the partition plate are covered with a synthetic resin partition frame, and the partition plate is engaged and held by the partition frame. In addition, a surface heater is attached to the inner surface of the partition plate to prevent condensation that occurs on the surface of the partition plate (see, for example, Patent Document 1).
  • the rotating partition 13 forms a shell of the rotating partition 13 by covering the partition plate 16 made of a thin steel plate, which is a magnetic body that forms an attracting surface, and a molded insulating member 18 made of polystyrene foam that forms a heat insulating layer.
  • a partition frame 17 made of synthetic resin is provided.
  • a surface heater 19 made of an aluminum foil heater or the like disposed on the inner surface of the partition plate 16, and a cap member 58 disposed on the upper end portion of the rotary partition 13 and having a guide groove formed on the upper end surface. It is configured.
  • cap member 58 for the purpose of fitting the refrigerator and the rotating partition 13 also serves to cover and connect the upper ends of the partition plate 16 and the partition frame 17.
  • the door gaskets 11 and 12 cooled by the temperature effect of the refrigerator compartment which has become a low temperature are in direct contact with the partition plate 16 made of a thin steel plate having a high thermal conductivity.
  • the surface temperature of the open part of the atmosphere decreases.
  • capacitance of the surface heater 19 becomes large more than necessary, and it has the subject that the installation space becomes large because the electric wire part which connects the surface heater 19 is also arrange
  • the present invention provides a refrigerator that can reduce power input to a heating unit such as a heater of a rotating partition and can simplify the structure of the rotating partition.
  • the refrigerator according to the present invention is a door gasket in which a left and right door with a front opening of a storage chamber is closed in a double-spreading manner, and a rotary partition extending in the vertical direction is provided on the inner surface of at least one of the left and right doors.
  • the rotating partition is a partition plate that forms at least a suction surface of the door gasket, a heat insulating material disposed inside the rotating partition, a partition frame that covers a peripheral portion of the partition plate and an outer surface of the heat insulating material, And a heating section in which heating elements are linearly arranged on the inner surface of the partition plate.
  • the connection member of a heating part is arrange
  • the refrigerator of the present invention simplifies the configuration of the rotating partition and can minimize the power input for preventing condensation, thereby saving energy.
  • FIG. 1 is a front view showing an open state of a double door of the refrigerator according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a main part showing a closed state of the refrigerator compartment in the first embodiment of the present invention.
  • 3 is a cross-sectional view taken along the line 3-3 in FIG.
  • FIG. 4 is an exploded perspective view of the rotating partition of the refrigerator compartment according to the first embodiment of the present invention.
  • FIG. 5A is an assembled side view of the heat insulating material and the heating unit of the refrigerator compartment according to the first embodiment of the present invention.
  • 5B is a cross-sectional view taken along the line 5B-5B of FIG. 5A.
  • FIG. 5C is an enlarged view of a portion C in FIG. 5A.
  • FIG. 5A is a front view showing an open state of a double door of the refrigerator according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a main part showing a closed
  • FIG. 6 is a graph showing the relationship between the energization rate of the heating unit of the refrigerator and the surface temperature of the partition plate in the first embodiment of the present invention.
  • FIG. 7 is a configuration diagram of a heating unit of the refrigerator in the second embodiment of the present invention.
  • FIG. 8 is a diagram for explaining the relationship between the amount of heat generated by the heater and the partition plate surface temperature in each part of the heater of the refrigerator according to the second embodiment of the present invention.
  • FIG. 9 is principal part sectional drawing in the closed state of the refrigerator compartment in the 3rd Embodiment of this invention.
  • 10 is a cross-sectional view taken along the line 10-10 in FIG.
  • FIG. 11 is an exploded perspective view of the rotating partition of the refrigerator compartment according to the third embodiment of the present invention.
  • FIG. 12 is a specific configuration diagram of the heating unit of the refrigerator in the third embodiment of the present invention.
  • FIG. 13 is an exploded perspective view of the rotating partition of the refrigerator compartment according to the fourth embodiment of the present invention.
  • FIG. 14 is a specific configuration diagram of the heating unit of the refrigerator in the fourth embodiment of the present invention.
  • FIG. 15 is sectional drawing which shows the closed state of the refrigerator compartment door of the conventional refrigerator.
  • FIG. 16 is an exploded perspective view of a rotating partition of a conventional refrigerator.
  • FIG. 1 is a front view showing an open state of a double door of the refrigerator according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a main part showing a closed state of the refrigerator compartment in the first embodiment of the present invention.
  • 3 is a cross-sectional view taken along the line 3-3 in FIG.
  • FIG. 4 is an exploded perspective view of the rotating partition of the refrigerator compartment according to the first embodiment of the present invention.
  • FIG. 5A is an assembled side view of the heat insulating material and the heating unit of the refrigerator compartment according to the first embodiment of the present invention.
  • 5B is a cross-sectional view taken along the line 5B-5B of FIG. 5A.
  • FIG. 5C is an enlarged view of a portion C in FIG. 5A.
  • FIG. 6 is a graph showing the relationship between the energization rate of the heating unit of the refrigerator and the surface temperature of the partition plate in the first embodiment of the present invention.
  • a refrigerator 100 has a left door 102 located on the left side and a right door 103 located on the right side, and FIG. 1 shows a state in which the left door 102 and the right door 103 are opened.
  • the portion where the left door 102 and the right door 103 are provided is a portion of the refrigerated storage chamber 105, the ice making chamber 106 is provided below the left door 102, and the frozen storage chamber 107 and the vegetable compartment 108 are provided below.
  • a switching chamber 109 is provided below the right door 103 and to the right of the ice making chamber 106.
  • the left door 102 and the right door 103 are each pivotally supported by a hinge part so as to open to the left and right sides, and a rotating partition 200 is provided on the non-pivot side of the left door 102.
  • the rotating partition 200 rotates in accordance with the opening / closing operation of the left door 102.
  • the non-pivot side of the left door 102 and the right door 103 is closed via the door gasket 110 to be refrigerated. Cold air leakage from the storage chamber 105 is prevented.
  • a heat insulating partition member (not shown) is disposed between the storage compartments, and steel cover 501, 502, 503 is disposed on the front surface of the heat insulation partition member, and each storage compartment door is provided. The door is closed via a door gasket to prevent cold air leakage from each storage room.
  • the rotary partition 200 includes a partition plate 210 that forms the suction surface 111 of the door gasket 110, and a styrene foam heat insulating material 220 disposed inside the rotary partition 200. Further, the rotary partition 200 includes a synthetic resin partition frame 230 that covers the peripheral edge of the partition plate 210 and the outer surface of the heat insulating material 220, a heating body 241 and a connecting member 242 that are disposed in the center of the inner surface of the partition plate 210. It is comprised from the heating part 240 comprised by these.
  • a reinforcing plate 250 made of, for example, a metal plate having a small thermal expansion coefficient is disposed between the heat insulating material 220 and the partition frame 230 at substantially the entire height of the rotary partition 200 with respect to the height direction of the refrigerator.
  • the partition plate 210 is made of synthetic resin, and two magnetic bodies 211 are attached to the inner surface.
  • the magnetic body 211 is configured in substantially the entire height region of the rotary partition 200 with respect to the height direction of the refrigerator. Further, the magnetic body 211 is disposed so as to face the magnetic body 112 configured in the door gasket 110 in a state where the left door 102 and the right door 103 are closed.
  • a rectangular plastic magnet is used as the magnetic body 211.
  • the heating body 241 and the magnetic body 211 of the heating unit 240 are held in pressure contact between the partition plate 210 and the heat insulating material 220.
  • the heating body 241 of the heating unit 240 is a linear body composed of a linear heater, and is arranged in parallel with the magnetic body 211 between the magnetic bodies 211.
  • the connecting member 242 of the heating unit 240 is an electric wire with a small resistance value that does not generate heat, and is held in pressure contact with the heat insulating material 220 and the partition frame 230 on the side opposite to the heating body 241.
  • the rotary partition 200 includes a synthetic resin partition plate 210 that forms the suction surface 111 of the door gasket 110, and a polystyrene foam heat insulating material 220 disposed inside the rotary partition 200. Further, a reinforcing plate 250 made of a metal plate, and a synthetic resin partition frame 230 that covers the peripheral edge of the partition plate 210 and the outer surface of the heat insulating material 220 are provided.
  • the heating part 240 which consists of the heating body 241 arrange
  • a heating body 241 disposed in the center of the inner surface of the partition plate 210 and two magnetic bodies 211 are attached to the inner surface of the partition plate 210 so as to sandwich the heating body 241.
  • the heating part 240 is divided at the lowest part of the assembled heat insulating material 220 into a heating body 241 that is a heater and a connection member 242 that is an electric wire.
  • the door gaskets 11 and 12 cooled by the temperature effect of the refrigerator compartment 3 that has become low temperature directly contact the partition plate 16 made of a thin steel plate having high thermal conductivity. By doing so, the surface temperature of the air release part of the partition plate 16 is lowered more than necessary. Therefore, in order to make the lowered surface temperature of the partition plate 16 equal to or higher than the dew point temperature, it is necessary to increase the capacity of the surface heater 19.
  • suction surface 111 of the door gasket 110 of the rotary partition 200 is made from a synthetic resin.
  • the surface temperature of the partition plate 210 in this embodiment is the same under the same energization rate conditions.
  • the surface temperature of the conventional partition plate 16 is about 3K higher.
  • the electricity supply rate for maintaining the dew point temperature when external air conditions are 30 degreeC and 75% can be reduced about 10%. This is because the partition plate 210 with which the door gasket 110 contacts is made of a synthetic resin having a low thermal conductivity, so that a decrease in the temperature of the atmosphere opening portion 212 of the partition plate 210 is suppressed.
  • the magnetic body 211 so as to face the magnetic body 112 configured in the door gasket 110, the function of adsorbing to the door gasket 110, which is the basic function of the rotating partition 200, is secured. Can do.
  • the partition plate 210 and the partition frame 230 are made of synthetic resin, they are affected by thermal expansion.
  • the partition frame 230 contracts when the internal temperature is low, and the partition plate 210 extends when the external temperature is high. Accordingly, the rotating partition 200 is subjected to a warping force in the longitudinal direction due to the expansion / contraction difference, but since the metal reinforcing plate 250 is inserted in substantially the entire height region of the rotating partition 200, the influence of the warping can be eliminated. it can.
  • the rotary partition 200 extending over the entire height in the vertical direction on the inner surface of the reciprocal support side of at least one of the left and right doors (here, the left door 102) of the refrigerated storage chamber 105.
  • the adsorption surface 111 of the door gasket 110 is a synthetic resin partition plate 210, and the magnetic body 211 is disposed inside the partition plate 210 at a position facing the magnetic body 112 built in the door gasket 110.
  • the heating body 241 of the heating part 240 is arrange
  • the connecting member 242 of the heating unit 240 is disposed on the opposite side of the heating body 241 with the heat insulating material 220 interposed therebetween.
  • the heating body 241 is arranged in a straight line, a space for attaching the magnetic body 211 disposed on the inner surface of the partition plate 210 can be secured, and the magnetic body 112 on the inner surface of the door gasket 110 can be opposed with high accuracy. As a result, the reliability of the suction state between the rotary partition 200 and the door gasket 110 can be ensured.
  • the heating unit 240 is disposed on the inner surface of the partition plate 210 made of synthetic resin, a portion touched by a person is a synthetic resin, so there is no need to cope with electric leakage, and the ground wire is abolished to reduce costs. Can do.
  • the metal reinforcement plate 250 is inserted between the heat insulating material 220 and the partition frame body 230 at almost the entire height region, the rotation partition body 200 of the rotating partition body 200 due to the difference in thermal expansion between the partition plate 210 made of synthetic resin and the partition frame body 230. Warpage can be prevented, and a highly reliable door seal with reduced heat entry from the outside can be secured.
  • FIG. 7 is a specific configuration diagram of the heating unit of the refrigerator according to the second embodiment of the present invention, and FIG. It is a figure explaining the relationship of surface temperature.
  • symbol is attached
  • the heating unit 240 includes a heating element 241 of a linear heater having a length L on the right side of the alternate long and short dash line, and a connection member 242 such as an electric wire that does not generate heat on the left side.
  • the warming body 241 is disposed at the center of the partition plate 210 made of synthetic resin and has substantially the same length as the entire height of the rotary partition 200.
  • the heating element 241 has a variable calorific value, that is, a watt density, and in FIG. 7, the section a, the section b, and the section c are variable into three sections.
  • the resistance value can be changed by changing the winding pitch of the linear winding resistance wire, or the resistance paste component of the printing resistor can be changed to change the sheet resistance. Or by connecting in series the heating resistance wires having different resistance values.
  • part was made into 3 divisions in this Embodiment, what is necessary is just to change the number of divisions according to the objective.
  • the surface temperature of the partition plate 210 is low at the center (part b) as shown by the dotted line, and the temperature increases toward both ends (part a, part). c). This is because non-uniform temperature distribution occurs due to the sealing property and heat conduction between the refrigerated storage chamber 105 and the door gasket 110, or the influence of cold air circulation in the refrigerated storage chamber 105.
  • the heater is energized (heater energization: yes)
  • the surface temperature of the partition plate 210 is in the dew condensation region, so it is necessary to energize the heater to raise the temperature of each part to a temperature above the dew condensation boundary.
  • the amount of heat generated by the heater is variable depending on the part. That is, as indicated by the solid line, the part b increases the amount of heat generation, and the part a and part c decrease.
  • the surface temperature (dotted line) of the partition plate 210 without energizing the heater can be made a uniform surface temperature (solid line) exceeding the dew point boundary line as much as necessary.
  • the heat generation amount for the area surrounded by the oblique lines is unnecessary, and the power consumption can be reduced accordingly.
  • the heating body 241 of the heating unit 240 is divided into a plurality of parts, and the watt density of each part is variable, so that the shape of the rotary partition 200 of the refrigerator 100 is changed.
  • the surface temperature of the partition plate 210 is made uniform even when there is a difference in heat insulation performance due to changes or the like, so there is no variation in temperature distribution and unnecessary power input can be reduced.
  • FIG. 9 is a cross-sectional view showing a main part in the closed state of the refrigerator compartment according to the third embodiment of the present invention
  • FIG. 10 is a cross-sectional view taken along the line 10-10 in FIG.
  • FIG. 11 is an exploded perspective view of the rotating partition of the refrigerator compartment according to the third embodiment of the present invention
  • FIG. 12 is a specific configuration diagram of the heating unit of the refrigerator in the third embodiment of the present invention. It is. Note that the same components as those in the first embodiment and the second embodiment of the present invention are denoted by the same reference numerals, and different portions will be described.
  • the heating body 241 of the heating unit 240 is disposed between two magnetic bodies 211 that are linearly disposed on the partition plate 210, and two (reciprocating) heating bodies 241. Are held in pressure contact with the heat insulating material 220 so as not to contact the magnetic body 211 in parallel.
  • the number of heating elements 241 disposed between the magnetic bodies 211 is two, but the number may be increased as long as a space can be secured.
  • the heating part 240 has a switching part 243 that electrically connects the heating element 241 of the heater and the connecting member 242 of the electric wire in the range of the part a.
  • the switching portion 243 is required to be waterproof, and is generally sealed with a resin mold or tube, and is thicker than the linear shape of the heating element 241. Therefore, the number of the heating elements 241 that run side by side is smaller than that of the other parts b and c.
  • the watt density of the heater of the heating body 241 is set so that the surface temperature of the partition plate 210 shown in FIG. Is similarly variable.
  • a desired temperature increase can be obtained with a lower input than in the first and second embodiments.
  • the part a has the switching part 243, and the number of the heating bodies 241 is smaller than that of the part c, and the heater having the same watt density as the part c is insufficiently heated. Therefore, since the heater wire of the part a has two parts c, if the watt density of the part a is about twice that of the part c, an equivalent temperature rise can be obtained.
  • the watt density is increased with respect to the part a.
  • the watt density may be increased with respect to an arbitrary part where the number of heaters of the heating body 241 is smaller than the other part.
  • the plurality of heating elements 241 of the heating unit 240 are linearly arranged between the magnetic bodies 211 inside the partition plate 210, arrangement in a narrow space is possible.
  • the watt density per unit length of the heater of the heating body 241 can be reduced or the energization rate can be lowered, and the input power for preventing condensation can be reduced.
  • the heating part 240 is comprised only by the single side
  • the watt density of each part is made variable as the part which divided
  • FIG. 13 is an exploded perspective view of the rotating partition of the refrigerator compartment according to the fourth embodiment of the present invention
  • FIG. 14 is a specific configuration diagram of the heating unit of the refrigerator according to the fourth embodiment.
  • symbol is attached
  • the switching parts 243 (243 a and 243 b) that electrically connect the connecting member (electric wire) 242 and the heating element (heater) 241 of the heating unit 240 are arranged in the longitudinal direction of the rotary partition 200. Located close to the center. A part d having a watt density W1 and a length L1 is connected to the connection member 242 side of one switching part 243a, and a part j having the same watt density W1 and a length L1 is connected to the other switching part 243b. Further, a part e having a watt density W2 and a length L2 and a part f having a watt density W3 and a length L3 are sequentially connected to the part d.
  • a part i having a watt density W2 and a length L2 and a part h having a watt density W3 and a length L3 are sequentially connected to the part j.
  • a part g having a watt density W4 and a length L4 is connected to the parts f and h to form a closed loop heater having a variable watt density.
  • the heat generating parts are seven places from parts d to j.
  • the number of parts may be any number where the watt density and the length are symmetrical with respect to the switching part 243a and the switching part 243b.
  • the watt density may be increased. That is, it is general that the relationship is W4> (W1 to W3).
  • the heating unit 240 When the heating unit 240 is energized, the parts d to j of the heating body 241 generate heat, and the surface of the partition plate 210 is stabilized at a desired temperature over the entire length L.
  • the following problems may occur if some work mistake occurs and the switching part 243a and the switching part 243b are reversely installed. That is, the normal part d ⁇ part e ⁇ part f ⁇ part g ⁇ part h ⁇ part i ⁇ part j of the correct heating part 241 is wrongly part j ⁇ part i ⁇ part h ⁇ part g ⁇ part f ⁇ It becomes the order of the site
  • the watt density and the length of the part d of the warming body connected to one switching part 243a are equal to the part j of the warming body connected to the other switching part 243b.
  • the watt density is variable, and the parts e and i of the warming body connected in order to the watt density have the same watt density and length. That is, in the heating unit 240 having a symmetrical heat generation distribution around the switching part 243a and the switching part 243b, the switching part 243a and the switching part 243b are arranged at the center in the longitudinal direction of the rotary partition 200.
  • the heating part 240 when the heating part 240 is mounted in the assembly work of the rotating partition 200, even when the switching part 243a and the switching part 243b are reversed and fixed, the watt density and the length of the heating body 241 can be made variable. Is symmetrical in the vertical direction, and the surface temperature of the partition plate 210 of the rotary partition 200 is the same. Therefore, not only the assembly failure in the work process can be eliminated, but also the number of man-hours to be mounted after confirming the orientation of the heating unit 240 can be greatly reduced.
  • the present invention provides a rotating partition body that is closed in a double-split manner with the left and right doors in which the front opening of the storage chamber is juxtaposed, and extends vertically on the inner surface of at least one of the left and right doors on the side opposite to the pivot. It is provided as a suction surface for the door gasket.
  • the rotating partition is a partition plate that forms at least a suction surface of the door gasket, a heat insulating material disposed inside the rotating partition, a partition frame that covers a peripheral portion of the partition plate and an outer surface of the heat insulating material, And a heating section in which heating elements are linearly arranged on the inner surface of the partition plate.
  • the connection member of a heating part is arrange
  • the heating element of the heating unit may be divided into a plurality of parts, and the watt density of each part may be variable.
  • This configuration makes the partition plate surface temperature of the rotating partition uniform, so there is no variation in temperature distribution and unnecessary power input can be reduced.
  • a reinforcing plate may be disposed between the heat insulating material and the partition frame.
  • This configuration can prevent the rotating partition from warping due to a temperature difference between the inside and outside of the refrigerator, and can suppress the heat intrusion from outside to the inside of the refrigerator.
  • the present invention provides a door gasket in which a left and right door in which a front opening of a storage chamber is juxtaposed is closed in a double door manner, and a rotary partition extending in the vertical direction is provided on the inner surface of at least one of the left and right doors on the opposite side.
  • the rotating partition is a partition plate that forms at least an adsorption surface of the door gasket, a heat insulating material disposed inside the rotating partition, a partition frame that covers the peripheral edge of the partition plate and the outer surface of the heat insulating material, A magnetic body disposed linearly on the inner surface of the partition plate at a position facing the door gasket and a heating unit for heating the inner surface of the partition plate.
  • This configuration makes it possible to arrange the heating part in a narrow space in the upper and lower overall length of the partition plate, and prevent condensation on the partition plate surface of the rotating partition body with a minimum power input.
  • the warming body of the warming part is a part divided into a plurality of parts, and the watt density of each part is variable.
  • This configuration makes the partition plate surface temperature of the rotating partition uniform, so there is no variation in temperature distribution and unnecessary power input can be reduced.
  • a switching portion that is electrically connected between the heating body of the heating portion and the connecting member, and the switching portion may be disposed at the center in the longitudinal direction of the rotating partition.
  • the heating element of the heating unit is divided into a plurality of parts, the watt density of each part is variable, and the heating part is symmetrical about the switching part in the longitudinal direction of the rotating partition.
  • a good exothermic distribution may be used.
  • This configuration makes it possible to equalize the partition plate surface temperature and improve assembly quality.
  • the partition plate and the partition frame body may be made of a synthetic resin.
  • the refrigerator according to the present invention can prevent condensation on the surface of the partition plate of the rotating partition with a minimum power input, and thus can be applied not only to a home refrigerator but also to a commercial refrigerator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Refrigerator Housings (AREA)

Abstract

 左右扉の少なくともいずれか一方の反枢支側の内面に縦方向に亙る回転仕切体(200)を設けて扉ガスケット(110)の吸着面とする。また、回転仕切体(200)は、扉ガスケット(110)の吸着面を形成する仕切板(210)と、回転仕切体(200)の内部に配設された断熱材(220)と、仕切板(210)の周縁部および断熱材(220)の外面を覆う仕切枠体(230)を備える。さらに、回転仕切体(200)は、仕切板(210)の内面に直線的に扉ガスケット(110)と対向する位置に配設された磁性体(211)と、仕切板(210)の内面を加温する加温部(240)を備える。

Description

冷蔵庫
 本発明は、本体上部に設けた貯蔵室の前面開口を併置した左右扉で観音開き式に閉塞した冷蔵庫に関する。
 家庭用の大容量冷蔵庫は、多様なユーザニーズに対応すべく冷却貯蔵温度の多様化とともに貯蔵室ごとに多くの扉を設けた冷蔵庫が商品化されている。これまで、冷蔵庫に対して冷凍室を上部に配置したトップフリーザータイプ、上部の冷蔵室と下部の野菜室との間に冷凍室を配置したミドルフリーザータイプ、冷凍室を最下部に配置したボトムフリーザタイプが商品化されてきた。さらに、上部の冷蔵室の下方に縦長の冷凍室と野菜室を併置したタイプ、冷凍室と冷蔵室とを左右に併置したサイドバイサイドタイプなど様々な形態が商品化されてきた。
 このような商品環境の中で、近年では、使い勝手を考慮して、使用頻度が高く収納容積の最も大きい冷蔵室を観音開き式の扉として最上段に配置し、その下方に製氷室や温度切替室、そしてその下方に野菜室、最下部に冷凍室を設置したタイプが主流になっている。そして、冷蔵室の観音開き式扉の一方の開放端側の内面に閉扉時には他方の扉側へ回動する仕切体を取付けてガスケットの吸着面を設けるようにしている。
 更に、近年の冷蔵庫における観音開き式の扉では、扉が大型化して縦方向寸法も長くなっている。そして、縦方向に長い仕切体が湾曲することによる外面意匠上の課題を解決するために、回転仕切体の扉ガスケットの吸着面を形成する薄鋼板製の仕切板を以下のように構成する。すなわち、平板状の吸着面とその両側端縁を内方に折り返して重ね合わせ、さらに内方に折曲してアングル部を有する形状とする。また、仕切板の周縁部および仕切板の庫内側に設けた断熱部材の外面を合成樹脂製の仕切枠体で覆うとともにこの仕切枠体で仕切板を係合保持する。加えて仕切板内面に面ヒーターを貼付けて仕切板表面に発生する結露を防止する(例えば、特許文献1参照)。
 以下、図15、図16を用いて、従来の冷蔵庫の回転仕切体について説明する。
 回転仕切体13は、吸着面を形成する磁性体である薄鋼板製の仕切板16と断熱層を形成する発泡スチロール製の成形断熱部材18と、これらを覆って回転仕切体13の外郭を形成する合成樹脂製の仕切枠体17を備える。加えて、仕切板16の内面に配設されたアルミ箔ヒーターなどからなる面ヒーター19と、回転仕切体13の上端部に配設され、上端面にガイド溝が形成されたキャップ部材58とから構成されている。
 一般的には、上記の構成では、薄鋼板製の仕切板16と面ヒーター19が直接接触しているため、漏電対応として仕切板16と冷蔵庫1本体を接続するアース線を配設する必要がある。
 なお、冷蔵庫と回転仕切体13の嵌合を目的としたキャップ部材58は、仕切板16と仕切枠体17のそれぞれの上部終端を覆って連結する役目も果たしている。
 しかしながら、上記従来の構成では、低温となった冷蔵室の温度影響で冷やされた扉ガスケット11、12が、熱伝導率の高い薄鋼板製の仕切板16に直接接触することで、仕切板16の大気開放部の表面温度が低下する。そして、必要以上に面ヒーター19の容量が大きくなり消費電力量が増加するばかりでなく、面ヒーター19を接続する電線部分も仕切板16に配置するので取付スペースが大型化するという課題を有していた。
 本発明は、回転仕切体のヒーター等の加温部への電力入力を低減し、回転仕切体の構成をも簡素化できる冷蔵庫を提供する。
特開2010-249491号公報
 本発明の冷蔵庫は、貯蔵室の前面開口を併置した左右扉で観音開き式に閉塞し、左右扉の少なくともいずれか一方の反枢支側の内面に縦方向に亙る回転仕切体を設けて扉ガスケットの吸着面とする。また、回転仕切体は、少なくとも扉ガスケットの吸着面を形成する仕切板と、回転仕切体内部に配設された断熱材と、仕切板の周縁部および断熱材の外面を覆う仕切枠体と、仕切板内面に加温体を直線状に配設した加温部とを備える。そして、加温部の接続部材を断熱材の仕切板とは逆面側に配置する。
 これにより、回動仕切体の結露を防止するための加温部への電力入力が抑制され、アース線の廃止ができ、さらに仕切体の内側に磁性体を配設するスペースが確保でき、簡単な構成で低コスト化が図れる。
 本発明の冷蔵庫は、回転仕切体の構成を簡素化するとともに、結露を防止するための電力入力を最小限に抑制でき、省エネを図ることができる。
図1は、本発明の第1の実施の形態における冷蔵庫の観音開き式扉の開扉状態を示す正面図である。 図2は、本発明の第1の実施の形態における冷蔵室の閉扉状態を示す要部断面図である。 図3は、図2の3-3断面図である。 図4は、本発明の第1の実施の形態における冷蔵室の回転仕切体の分解斜視図である。 図5Aは、本発明の第1の実施の形態における冷蔵室の断熱材と加温部の組立て側面図である。 図5Bは、図5Aの5B-5B断面図である。 図5Cは、図5AのC部拡大図である。 図6は、本発明の第1の実施の形態における冷蔵庫の加温部の通電率と仕切板の表面温度の関係を示すグラフである。 図7は、本発明の第2の実施の形態における冷蔵庫の加温部の構成図である。 図8は、本発明の第2の実施の形態における冷蔵庫のヒーター各部位におけるヒーター発熱量と仕切板表面温度の関係を説明した図である。 図9は、本発明の第3の実施の形態における冷蔵室の閉扉状態での要部断面図である。 図10は、図9の10-10断面図である。 図11は、本発明の第3の実施の形態における冷蔵室の回転仕切体の分解斜視図である。 図12は、本発明の第3の実施の形態における冷蔵庫の加温部の具体構成図である。 図13は、本発明の第4の実施の形態における冷蔵室の回転仕切体の分解斜視図である。 図14は、本発明の第4の実施の形態における冷蔵庫の加温部の具体構成図である。 図15は、従来の冷蔵庫の冷蔵室扉の閉扉状態を示す断面図である。 図16は、従来の冷蔵庫の回転仕切体の分解斜視図である。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。
 (第1の実施の形態)
 図1は、本発明の第1の実施の形態における冷蔵庫の観音開き式扉の開扉状態を示す正面図である。図2は、本発明の第1の実施の形態における冷蔵室の閉扉状態を示す要部断面図である。図3は、図2の3-3断面図である。図4は、本発明の第1の実施の形態における冷蔵室の回転仕切体の分解斜視図である。図5Aは、本発明の第1の実施の形態における冷蔵室の断熱材と加温部の組立て側面図である。図5Bは、図5Aの5B-5B断面図である。図5Cは、図5AのC部拡大図である。図6は、本発明の第1の実施の形態における冷蔵庫の加温部の通電率と仕切板の表面温度の関係を示すグラフである。
 図1において、冷蔵庫100は向かって左側に位置する左側扉102及び向かって右側に位置する右側扉103を有し、図1では左側扉102と右側扉103を開扉させた状態を示している。左側扉102と右側扉103とが設けられている部分は冷蔵貯蔵室105の部分であり、左側扉102の下は製氷室106、さらに下は冷凍貯蔵室107、野菜室108が設けられている。右側扉103の下、製氷室106の右隣には切替室109が設けられている。
 左側扉102と右側扉103はそれぞれヒンジ部により枢支されて左側と右側に開くように構成されており、左側扉102の非枢支側には回転仕切体200を設けている。この回転仕切体200は、左側扉102の開閉動作に応じて回転し、閉扉された状態では、左側扉102、右側扉103の非枢支側を、扉ガスケット110を介して閉塞して、冷蔵貯蔵室105内からの冷気漏れを防止している。
 ここで、各貯蔵室間には断熱仕切部材(図示せず)が配置されており、この断熱仕切部材の前面には、鋼板製のカバー501、502、503が配設され、各貯蔵室扉の扉ガスケットを介して閉塞し、各貯蔵室からの冷気漏れを防止している。
 図2から図5に示すように、回転仕切体200は、扉ガスケット110の吸着面111を形成する仕切板210と、回転仕切体200内部に配設された発泡スチロール製の断熱材220を有する。また、回転仕切体200は、仕切板210の周縁部および断熱材220の外面を覆う合成樹脂製の仕切枠体230と、仕切板210内面中央に配設された加温体241と接続部材242で構成される加温部240とから構成されている。また断熱材220と仕切枠体230の間には、熱膨張係数の小さな例えば金属プレートの補強板250が、冷蔵庫の高さ方向に対して回転仕切体200の略全高域に配置される。
 ここで、仕切板210は、合成樹脂製であり、内面には2つの磁性体211が取り付けられている。磁性体211は、冷蔵庫の高さ方向に対して回転仕切体200の略全高域に構成されている。更に、磁性体211は、左側扉102、右側扉103が閉扉した状態において、扉ガスケット110内に構成された磁性体112と対向するように配置されている。本実施例では磁性体211として直方体のプラスチックマグネットを使用した。また、加温部240の加温体241及び磁性体211は、仕切板210と断熱材220の間で圧接して保持されている。また、加温部240の加温体241は線状ヒーターで構成された直線状なもので、磁性体211の間に磁性体211と並行して配置される。また加温部240の接続部材242は発熱しない抵抗値の小さな電線であり、加温体241とは逆面側で断熱材220と仕切枠体230で圧接保持されている。
 次に、回転仕切体200の全体構成を図4の分解斜視図を用いて説明し、加温部240の配置を図5A~図5Cの組立て図を用いて説明する。回転仕切体200は、扉ガスケット110の吸着面111を形成する合成樹脂製の仕切板210と、回転仕切体200内部に配設された発泡スチロール製の断熱材220を備える。また、金属製プレートの補強板250と、仕切板210の周縁部および断熱材220の外面を覆う合成樹脂製の仕切枠体230を備える。更に、断熱材220の仕切板210側に配置された加温体241と、補強板250側に配置された接続部材242からなる加温部240を備える。また、仕切板210内面中央に配設された加温体241と、仕切板210の内面には加温体241を挟む形で2つの磁性体211が取り付けられている。尚、加温部240は組立てられた断熱材220の最下部で、ヒーターである加温体241と電線である接続部材242に区切られている。
 以上のように構成された冷蔵庫について、以下その動作、作用について説明する。
 まず、従来の構成では、図15に示すように、低温となった冷蔵室3の温度影響で冷やされた扉ガスケット11,12が、熱伝導率の高い薄鋼板製の仕切板16に直接接触することで、必要以上に仕切板16の大気開放部の表面温度が低下する。そこで、低下した仕切板16の表面温度を露点温度以上にするために、面ヒーター19の容量を大きくする必要があった。これに対して、本実施の形態の場合、回転仕切体200の扉ガスケット110の吸着面111を形成する仕切板210を合成樹脂製としている。
 このことで図6の加温部240の通電率と仕切板の表面温度の関係のグラフが示す様に、同一の通電率の条件では、本実施例の場合の仕切板210の表面温度は、従来の仕切板16の表面温度に対して約3K高い。また、外気条件が30℃、75%のときの露点温度を維持するための通電率は、約10%低減できることがわかる。これは、扉ガスケット110が接触する仕切板210を熱伝導率の小さな合成樹脂にしたことで、仕切板210の大気開放部212の温度の低下が抑制されたことによる。
 加えて、扉ガスケット110内に構成された磁性体112と対向するように、磁性体211を配置することで、回転仕切体200の基本機能である扉ガスケット110に吸着するという機能を確保することができる。
 また、仕切板210と仕切枠体230を合成樹脂製とした場合、熱膨張の影響を受ける。例えば庫内温度が低いと仕切枠体230は縮み、庫外温度が高いと仕切板210は伸びる。従ってこの伸縮差により回転仕切体200は長手側に反る力が働くが、金属製の補強板250が回転仕切体200の略全高域に挿入されているので、反りの影響を排除することができる。
 以上のように、本実施の形態においては、冷蔵貯蔵室105の左右扉の少なくともいずれか一方(ここでは左側扉102)の反枢支側の内面に、縦方向全高域に亙る回転仕切体200を設ける。また、扉ガスケット110の吸着面111を合成樹脂製の仕切板210とし、仕切板210内側に磁性体211を扉ガスケット110内蔵の磁性体112と対向する位置に配置する。そして、その磁性体211の間に加温部240の加温体241を直線的に並行に配置し、仕切板210周縁部および断熱材220の外面を合成樹脂製の仕切枠体230で覆う。この構成により、仕切板210の表面温度を従来の薄鋼板製よりも高く維持でき、結露防止のための加温部240の電力入力が少なくなるので、冷蔵庫100の消費電力を削減することができる。
 また、加温部240の接続部材242を、断熱材220を介して、加温体241と逆面に配置する。この構成により、加温体241が直線状に配置され、仕切板210内面に配置する磁性体211の取り付けスペースが確保でき、扉ガスケット110内面の磁性体112と精度良く対向されることができる。その結果、回転仕切体200と扉ガスケット110との吸着状態の信頼性を確保することができる。
 さらに、加温部240は合成樹脂製の仕切板210の内面に配設されるので、人が触れる部分が合成樹脂のため漏電対応の必要がなく、アース線の廃止で低コスト化を図ることができる。
 また、断熱材220と仕切枠体230の間に略全高域に金属製の補強板250を挿入するので、合成樹脂製の仕切板210と仕切枠体230の熱膨張差による回転仕切体200の反りが防止でき、外部からの熱侵入を抑えた高信頼性の扉密閉が確保できる。
 (第2の実施の形態)
 図7は本発明の第2の実施の形態における冷蔵庫の加温部の具体構成図であり、図8は本発明の第2の実施の形態における冷蔵庫のヒーター各部位におけるヒーター発熱量と仕切板表面温度の関係を説明した図である。なお、本発明の第1の実施の形態と同一構成については同一符号を付して、異なる部分について説明する。
 図7において、加温部240は図中一点鎖線右側に長さLを持つ直線状のヒーターの加温体241、左側に発熱しない電線等の接続部材242で構成される。加温体241は第1の実施の形態の図4に示す様に、回転仕切体200の略全高域とほぼ同じ長さで、合成樹脂製の仕切板210の中央に配置される。加温体241はその発熱量すなわちワット密度が可変であり、図7では部位a、部位b、部位cと3区分を可変としている。尚、加温体241のヒーターを可変にする具体的な手段としては、線状巻線抵抗線の巻きピッチを変えて抵抗値を可変したり、印刷抵抗の抵抗ペースト成分を可変してシート抵抗としたり、抵抗値の異なる発熱抵抗線を直列接続したりすれば可能である。また、本実施の形態では部位を3区分としたが、目的に応じて区分数を変更すれば良い。
 以上のように構成された冷蔵庫について、以下その動作、作用について図8を用いて説明する。
 まず、ヒーターに通電がない場合(ヒーター通電:なし)、仕切板210の表面温度は点線で示す様に、中央部(部位b)では低く、両端に向かうほど温度は高くなる(部位a、部位c)。これは冷蔵貯蔵室105と扉ガスケット110の密閉性や熱伝導、あるいは冷蔵貯蔵室105内の冷気循環影響により温度分布の不均一が発生してしまうからである。次に、ヒーターを通電する場合(ヒーター通電:あり)、仕切板210の表面温度が結露領域にあるので、ヒーターを通電して各部位を結露境界線以上の温度に昇温させる必要がある。
 この時、従来の様な一点鎖線で示す発熱量一定のヒーターでは、各部位の温度上昇が一定のため、最も温度の低い部位bに発熱量を合わせる必要があり、部位a、部位cに対しては一点鎖線の様に不必要な温度上昇が発生してしまう。
 一方、本実施の形態では図7に示す様に、ヒーターの発熱量を部位により可変にしている。すなわち実線で示す様に、部位bは発熱量を大きくし、部位a、部位cでは小さくする。こうすることで、ヒーター通電なしの仕切板210の表面温度(点線)は、露点境界線を必要最小限越えた均一な表面温度(実線)にすることができる。これをヒーターの発熱量で従来と比較すると、斜線で囲った領域分の発熱量が不要で、その分消費電力量が削減できる。
 以上のように、本実施の形態においては、加温部240の加温体241を複数に分割した部位とし、各部位のワット密度を可変としたことにより、冷蔵庫100の回転仕切体200の形状変更等による断熱性能差に対しても、仕切板210の表面温度が均一化されるので、温度分布ばらつきがなくなり不必要な電力入力が削減できる。
 (第3の実施の形態)
 図9は本発明の第3の実施の形態における冷蔵室の閉扉状態での要部を示す断面図であり、図10は図9の10-10断面図である。また、図11は本発明の第3の実施の形態による冷蔵室の回転仕切体の分解斜視図であり、図12は本発明の第3の実施の形態における冷蔵庫の加温部の具体構成図である。なお、本発明の第1の実施の形態および第2の実施の形態と同一構成については同一符号を付して、異なる部分について説明する。
 図9から図12において、加温部240の加温体241は、仕切板210に直線的に配置された2本の磁性体211の間に配置され、2本(往復)の加温体241は並行して磁性体211と接触しないように断熱材220で圧接保持されている。尚、本実施の形態では磁性体211の間に配置する加温体241を2本としたが、スペースが確保できれば更に本数を増やしてもよい。
 また、加温部240にはヒーターの加温体241と電線の接続部材242を電気的に接続する切替え部位243が部位aの範囲にある。切替え部位243には防水性が要求され、樹脂モールドやチューブ封止するのが一般的で、加温体241の線形より太くなる。そのためその横を並走する加温体241の本数は、他の部位b、部位cと比べ少ない本数となる。
 以上のように構成された冷蔵庫について、以下その動作、作用について説明する。
 先に第1の実施の形態および第2の実施の形態で説明した様に、図8に示す仕切板210の表面温度を全長Lにおいて一定にするように、加温体241のヒーターのワット密度を同様に可変させる。本実施の形態では複数本の加温体241が配置されているので、第1の実施の形態および第2の実施の形態よりもさらに低入力で所望の温度上昇を得ることができる。
 しかしながら、部位aには切替え部位243があり部位cよりも加温体241の本数が少なくなり、部位cと同じワット密度のヒーターでは加温不足となる。そこで部位aのヒーター線は1本に対し部位cは2本であるため、部位aのワット密度を部位cの約2倍にすれば同等の温度上昇を得ることができる。
 尚、本実施の形態では部位aに関してワット密度を上げることとしたが、加温体241のヒーター本数が他の部位に対して少ない任意の部位に対してワット密度を上げれば良い。
 以上のように、本実施の形態においては、仕切板210内側の磁性体211の間に加温部240の加温体241を複数本直線的に配置するので、狭スペースでの配置が可能で、かつ加温体241のヒーターの単位長さ当たりのワット密度を小さく、あるいは通電率を下げることが可能で、結露防止のための入力電力を低減できる。さらに断熱材220の片側面だけで加温部240を構成するので、配線作業も簡素化でき工数削減を図ることができる。
 また、加温部240の加温体241を複数に分割した部位として各部位のワット密度を可変とし、切替え部位243と平行となる加温体241の範囲のワット密度を、他の範囲のワット密度よりも大きくする。この構成により、切替え部位243付近の加温体241の本数減による温度上昇不足分を補え、回転仕切体200の仕切板210の表面温度が均一化され、温度分布ばらつきがなくなりさらに電力入力が低減できる。
 (第4の実施の形態)
 図13は本発明の実施の形態4による冷蔵室の回転仕切体の分解斜視図、図14は同実施の形態4による冷蔵庫の加温部の具体構成図である。なお、実施の形態1から3と同一構成については同一符号を付して、異なる部分について説明する。
 図13および図14において、加温部240の接続部材(電線)242と加温体(ヒーター)241を電気的に接続する切替え部位243(243a、243b)は、回転仕切体200の長手方向の中心に近接して配置される。一方の切替え部位243aの接続部材242側にはワット密度W1で長さL1の部位dが接続され、他方の切替え部位243bには同じワット密度W1と長さL1の部位jが接続される。さらに、部位dにはワット密度W2で長さL2の部位eと、ワット密度W3で長さL3の部位fが順につながる。また、部位jにはワット密度W2で長さL2の部位iと、ワット密度W3で長さL3の部位hが順につながる。そして、ワット密度W4で長さL4の部位gが、部位fと部位hに接続され可変ワット密度の閉ループのヒーターを構成する。尚、本実施の形態では発熱部位を部位dからjの7か所としたが、切替え部位243a、切替え部位243bを中心としてワット密度と長さが対称となる任意の部位数にすればよい。
 また、切替え部位243a、切替え部位243bの横を並走する加温体241の部位gは、他の部位より本数が少ないため、ワット密度を大きくすればよい。すなわち、W4>(W1~W3)の関係になることが一般的である。
 以上のように構成された冷蔵庫について、以下その動作、作用について説明する。
 加温部240が通電されると、加温体241の各部位d~部位jが発熱し、仕切板210の表面を全長Lにおいて所望の温度に安定させる。
 なお、何らかの作業ミスが発生し切替え部位243aと切替え部位243bが逆設置となると以下の不具合が発生する可能性がある。すなわち加温体241の正しい発熱部位の順部位d→部位e→部位f→部位g→部位h→部位i→部位jが、間違って部位j→部位i→部位h→部位g→部位f→部位e→部位dの順になる。もし部位d~部位jのワット密度と長さが異なっていれば、切替え部位243aと切替え部位243bが逆設置されると、仕切板210の表面温度は大きくばらつき、偏った温度分布となってしまう。
 しかし、本実施の形態では切替え部位243aと切替え部位243bが逆設置されたとしても、加温体241の全長Lにおけるワット密度と長さの関係は、上下対称なため正規取付の場合と全く変わらない。
 以上のように、本実施の形態においては、一方の切替え部位243aに接続される加温体の部位dのワット密度と長さが、他方の切替え部位243bに接続される加温体の部位jと同一としている。更にワット密度を可変としてそれぞれへ順に接続される加温体の部位eおよび部位iも同様にワット密度と長さを同一としている。すなわち切替え部位243a、切替え部位243bを中心に対称な発熱分布とした加温部240において、切替え部位243a、切替え部位243bを回転仕切体200の長手方向の中心に配置している。この構成により、回転仕切体200の組立作業で加温部240を装着する時に、切替え部位243aと切替え部位243bを逆にして固定した場合でも、加温体241の可変としたワット密度と長さの関係は上下対称となり、その回転仕切体200の仕切板210の表面温度も同じになる。よって、作業工程での組立不良がなくせるばかりでなく、加温部240の向きを確認して装着する工数も大幅に短縮することができる。
 以上説明したように、本発明は、貯蔵室の前面開口を併置した左右扉で観音開き式に閉塞し、左右扉の少なくともいずれか一方の反枢支側の内面に縦方向に亙る回転仕切体を設けて扉ガスケットの吸着面としている。また、回転仕切体は、少なくとも扉ガスケットの吸着面を形成する仕切板と、回転仕切体内部に配設された断熱材と、仕切板の周縁部および断熱材の外面を覆う仕切枠体と、仕切板内面に加温体を直線状に配設した加温部とを備える。また、加温部の接続部材を断熱材の仕切板とは逆面側に配置する。
 この構成により、加温部の加温体のみが直線的に配置されるので、仕切板の内側に磁性体を配設する構成が可能になり、回転仕切体の仕切板表面の結露を最小限の電力入力で防止することができる。
 また。本発明は、加温部の加温体を複数に分割した部位とし、それぞれの部位のワット密度を可変としてもよい。
 この構成により、回転仕切体の仕切板表面温度が均一化されるので、温度分布ばらつきがなくなり不必要な電力入力が削減できる。
 また、本発明は、断熱材と仕切枠体の間に補強板を配置してもよい。
 この構成により、冷蔵庫の庫内外の温度差による回転仕切体の反りが防止でき、外部からの庫内への熱侵入を抑えることができる。
 また、本発明は、貯蔵室の前面開口を併置した左右扉で観音開き式に閉塞し、左右扉の少なくともいずれか一方の反枢支側の内面に縦方向に亙る回転仕切体を設けて扉ガスケットの吸着面とする。また、回転仕切体が、少なくとも扉ガスケットの吸着面を形成する仕切板と、回転仕切体内部に配設された断熱材と、仕切板の周縁部および断熱材の外面を覆う仕切枠体と、仕切板内面に直線的に扉ガスケットと対向する位置に配設された磁性体と、仕切板内面を加温する加温部とを備える。また、磁性体の間に加温部の加温体を直線的に複数本配置してもよい。
 この構成により、加温部を仕切板の上下全長の狭スペースに配置する構成が可能になり、回転仕切体の仕切板表面の結露を最小限の電力入力で防止することができる。
 また、本発明は、加温部の加温体を複数に分割した部位とし、各部位のワット密度を可変とする。また、加温部の加温体と接続部材との間には電気的に接続する切替え部位を有し、切替え部位と平行となる加温体の範囲のワット密度を、他の範囲のワット密度よりも大きくしてもよい。
 この構成により、回転仕切体の仕切板表面温度が均一化されるので、温度分布ばらつきがなくなり不必要な電力入力が削減できる。
 また、本発明は、加温部の加温体と接続部材との間には電気的に接続する切替え部位を有し、切替え部位を回転仕切体の長手方向の中心に配置してもよい。
 この構成により、回転仕切体の組立作業で加温部を挿入する際の取付方向の制約がなくなり、品質向上を図ることができる。
 また、本発明は、加温部の加温体を複数に分割した部位とし、各部位のワット密度を可変とするとともに、加温部は、回転仕切体の長手方向で切替え部位を中心に対称な発熱分布としてもよい。
 この構成により、仕切板表面温度の均一化と組立品質の向上を図ることができる。
 また、本発明は、仕切板と仕切枠体とを合成樹脂製で形成してもよい。
 この構成により、庫内と庫外の熱移動が低減でき、さらに回転仕切体の仕切板表面の結露を最小限の電力入力で防止することができる。
 以上のように、本発明にかかる冷蔵庫は、回転仕切体の仕切板表面の結露を最小限の電力入力で防止することができるので、家庭用冷蔵庫のみならず業務用冷蔵庫にも適用できる。
 1,100 冷蔵庫
 11,12,110 扉ガスケット
 13,200 回転仕切体
 16,210 仕切板
 17,230 仕切枠体
 102 左側扉
 103 右側扉
 105 冷蔵貯蔵室
 106 製氷室
 107 冷凍貯蔵室
 108 野菜室
 109 切替室
 111 吸着面
 112 磁性体
 211 磁性体
 212 大気開放部
 220 断熱材
 240 加温部
 241 加温体
 242 接続部材(電線)
 243,243a,243b 切替え部位
 250 補強板
 501,502,503 カバー

Claims (9)

  1. 貯蔵室の前面開口を併置した左右扉で観音開き式に閉塞し、前記左右扉の少なくともいずれか一方の反枢支側の内面に縦方向に亙る回転仕切体を設けて扉ガスケットの吸着面とした冷蔵庫において、前記回転仕切体は、少なくとも扉ガスケットの吸着面を形成する仕切板と、前記回転仕切体内部に配設された断熱材と、前記仕切板の周縁部および前記断熱材の外面を覆う仕切枠体と、前記仕切板内面に加温体を直線状に配設した加温部とを備え、前記加温部の接続部材を前記断熱材の前記仕切板とは逆面側に配置した冷蔵庫。
  2. 前記加温部の加温体を複数に分割した分割加温体とし、各分割加温体のワット密度を可変とした請求項1に記載の冷蔵庫。
  3. 前記断熱材と前記仕切枠体の間に補強板を配置した請求項1または2のいずれか1項に記載の冷蔵庫。
  4. 前記仕切板と前記仕切枠体とを合成樹脂製で形成したことを特徴とする請求項1に記載の冷蔵庫。
  5. 貯蔵室の前面開口を併置した左右扉で観音開き式に閉塞し、前記左右扉の少なくともいずれか一方の反枢支側の内面に縦方向に亙る回転仕切体を設けて扉ガスケットの吸着面とした冷蔵庫において、前記回転仕切体は、少なくとも扉ガスケットの吸着面を形成する仕切板と、前記回転仕切体内部に配設された断熱材と、前記仕切板の周縁部および前記断熱材の外面を覆う仕切枠体と、前記仕切板内面に直線的に前記扉ガスケットと対向する位置に配設された磁性体と、前記仕切板内面を加温する加温部とを備え、前記磁性体の間に前記加温部の加温体を直線的に複数本配置した冷蔵庫。
  6. 前記加温部の加温体を複数に分割した分割加温体とし、各分割加温体のワット密度を可変とするとともに、前記加温部の加温体と接続部材との間には電気的に接続する切替え部を有し、前記切替え部と平行となる加温体の範囲のワット密度を、他の範囲のワット密度よりも大きくした請求項5に記載の冷蔵庫。
  7. 前記加温部の加温体と接続部材との間には電気的に接続する切替え部を有し、前記切替え部を前記回転仕切体の長手方向の中心に配置した請求項5または6のいずれか1項に記載の冷蔵庫。
  8. 前記加温部の加温体を複数に分割した分割加温体とし、各分割加温体のワット密度を可変とするとともに、前記加温部は、前記回転仕切体の長手方向で前記切替え部を中心に対称な発熱分布とした請求項7に記載の冷蔵庫。
  9. 前記仕切板と前記仕切枠体とを合成樹脂製で形成したことを特徴とする請求項5に記載の冷蔵庫。
PCT/JP2015/002135 2014-04-24 2015-04-20 冷蔵庫 WO2015162894A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE212015000112.1U DE212015000112U1 (de) 2014-04-24 2015-04-20 Kühlschrank
CN201590000453.2U CN206449987U (zh) 2014-04-24 2015-04-20 冷藏库

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014089750 2014-04-24
JP2014-089750 2014-04-24
JP2014-124012 2014-06-17
JP2014124012A JP5934951B2 (ja) 2014-06-17 2014-06-17 冷蔵庫

Publications (1)

Publication Number Publication Date
WO2015162894A1 true WO2015162894A1 (ja) 2015-10-29

Family

ID=54332073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002135 WO2015162894A1 (ja) 2014-04-24 2015-04-20 冷蔵庫

Country Status (2)

Country Link
DE (1) DE212015000112U1 (ja)
WO (1) WO2015162894A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003548A1 (ja) * 2016-06-27 2018-01-04 パナソニックIpマネジメント株式会社 冷蔵庫
CN107940860A (zh) * 2016-10-13 2018-04-20 东芝生活电器株式会社 冰箱
WO2018181439A1 (ja) * 2017-03-30 2018-10-04 パナソニックIpマネジメント株式会社 冷蔵庫
US20180328650A1 (en) * 2017-05-10 2018-11-15 Panasonic Corporation Turnable partition member and refrigerator
US10267554B2 (en) * 2017-08-10 2019-04-23 Haier Us Appliance Solutions, Inc. Mullion for a refrigerator appliance
JP2020169811A (ja) * 2016-06-27 2020-10-15 パナソニックIpマネジメント株式会社 冷蔵庫

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228964A (ja) * 2008-03-21 2009-10-08 Toshiba Corp 冷蔵庫
JP2012072967A (ja) * 2010-09-29 2012-04-12 Toshiba Corp 冷蔵庫

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5269720B2 (ja) 2009-03-26 2013-08-21 株式会社東芝 冷蔵庫

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228964A (ja) * 2008-03-21 2009-10-08 Toshiba Corp 冷蔵庫
JP2012072967A (ja) * 2010-09-29 2012-04-12 Toshiba Corp 冷蔵庫

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003548A1 (ja) * 2016-06-27 2018-01-04 パナソニックIpマネジメント株式会社 冷蔵庫
JP2018004088A (ja) * 2016-06-27 2018-01-11 パナソニックIpマネジメント株式会社 冷蔵庫
JP2020169811A (ja) * 2016-06-27 2020-10-15 パナソニックIpマネジメント株式会社 冷蔵庫
CN107940860A (zh) * 2016-10-13 2018-04-20 东芝生活电器株式会社 冰箱
WO2018181439A1 (ja) * 2017-03-30 2018-10-04 パナソニックIpマネジメント株式会社 冷蔵庫
JP2023053336A (ja) * 2017-03-30 2023-04-12 パナソニックIpマネジメント株式会社 冷蔵庫
JP7236610B2 (ja) 2017-03-30 2023-03-10 パナソニックIpマネジメント株式会社 冷蔵庫
JP2022003294A (ja) * 2017-03-30 2022-01-11 パナソニックIpマネジメント株式会社 冷蔵庫
JPWO2018181439A1 (ja) * 2017-03-30 2020-02-06 パナソニックIpマネジメント株式会社 冷蔵庫
CN108870848B (zh) * 2017-05-10 2021-12-21 松下电器产业株式会社 旋转分隔体及冰箱
CN108870848A (zh) * 2017-05-10 2018-11-23 松下电器产业株式会社 旋转分隔体及冰箱
US20180328650A1 (en) * 2017-05-10 2018-11-15 Panasonic Corporation Turnable partition member and refrigerator
US10267554B2 (en) * 2017-08-10 2019-04-23 Haier Us Appliance Solutions, Inc. Mullion for a refrigerator appliance

Also Published As

Publication number Publication date
DE212015000112U1 (de) 2016-11-24

Similar Documents

Publication Publication Date Title
WO2015162894A1 (ja) 冷蔵庫
AU2020200727B2 (en) Home appliance door and home appliance
JP5961822B2 (ja) 冷蔵庫
KR102186861B1 (ko) 냉장고
CN107923690A (zh) 冷藏库
JP4859898B2 (ja) 冷凍冷蔵庫
JP5934953B1 (ja) 冷蔵庫
EP2213968B1 (en) Refrigerator
JP6886383B2 (ja) 冷蔵庫
JP5919582B2 (ja) 冷蔵庫
WO2015105038A1 (ja) 冷蔵庫
JP5934951B2 (ja) 冷蔵庫
JP2015129605A (ja) 冷蔵庫
TW201942532A (zh) 冷凍冰箱
JP6901370B2 (ja) 冷蔵庫
EP2083232A2 (en) Refrigerator
JP6467593B2 (ja) 冷蔵庫
JP2018066498A (ja) 冷蔵庫
JP3942856B2 (ja) 冷蔵庫
US20170131019A1 (en) Refrigerator Appliance
CN206449987U (zh) 冷藏库
US20240011698A1 (en) Heated door for a refrigerator appliance
JP6292990B2 (ja) 冷蔵庫
US20120061051A1 (en) Dispenser heater for an appliance
CN220103495U (zh) 柜口防凝霜冰柜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15783191

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 212015000112

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15783191

Country of ref document: EP

Kind code of ref document: A1