WO2015162877A1 - リチウムイオン二次電池システム及びリチウム二次電池システムの運転方法 - Google Patents

リチウムイオン二次電池システム及びリチウム二次電池システムの運転方法 Download PDF

Info

Publication number
WO2015162877A1
WO2015162877A1 PCT/JP2015/002081 JP2015002081W WO2015162877A1 WO 2015162877 A1 WO2015162877 A1 WO 2015162877A1 JP 2015002081 W JP2015002081 W JP 2015002081W WO 2015162877 A1 WO2015162877 A1 WO 2015162877A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
lithium ion
ion secondary
battery system
voltage
Prior art date
Application number
PCT/JP2015/002081
Other languages
English (en)
French (fr)
Inventor
彩未 田辺
和久 須永
石橋 修
広晃 福西
小林 憲司
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2016514699A priority Critical patent/JP6497385B2/ja
Priority to US15/305,730 priority patent/US20170054184A1/en
Publication of WO2015162877A1 publication Critical patent/WO2015162877A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00711Regulation of charging or discharging current or voltage with introduction of pulses during the charging process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium ion secondary battery system and a method for operating the lithium secondary battery system.
  • the lithium ion secondary battery has a problem that the effective capacity that can be discharged decreases as the current with respect to the nominal capacity increases (see Patent Document 1).
  • Patent Document 2 proposes to make the lithium ion distribution uniform. This proposal is a technique for intermittently discharging or charging a lithium ion secondary battery.
  • Patent Document 3 discloses a technique for reducing internal resistance by performing pulse charge / discharge when the internal resistance of a lithium ion secondary battery exceeds a predetermined value.
  • a main object of the present invention is to provide a lithium ion secondary battery system and a method for operating the lithium secondary battery system that can achieve high power efficiency and a large effective capacity.
  • Continuous discharge mode for supplying electric power and pulsed power supply to the load from the lithium ion secondary battery and the lithium ion secondary from the external power source during the pulse discharge low level period when the power is not supplied to the load
  • the invention relating to the operation method of the lithium ion secondary battery system that supplies power from the lithium ion secondary battery to the load includes a step of detecting the voltage of the lithium ion secondary battery and a criterion for switching the output mode. Obtaining the switching upper limit voltage, determining whether the voltage of the lithium ion secondary battery is lower than the switching upper limit voltage, and when the voltage of the lithium ion secondary battery is lower than the switching upper limit voltage, From the continuous discharge mode in which power is continuously supplied from the ion secondary battery to the load, in the pulse discharge low level period in which the power is supplied from the lithium ion secondary battery to the load in a pulsed manner and the power is not supplied to the load. Switching the output mode to a pulse charge / discharge mode in which a lithium ion secondary battery is charged in a pulse manner from an external power source; No, characterized in that.
  • the discharge capacity can be improved while suppressing power loss.
  • FIG. 1 is a block diagram of a lithium ion secondary battery system 2 according to the present embodiment.
  • the lithium ion secondary battery system 2 includes a lithium ion secondary battery (hereinafter abbreviated as a battery) 10, a control unit 11, a current detection unit 13, a voltage detection unit 12, an input terminal T in , and an output terminal T out .
  • the input terminal T in is connected an external power source 4 provided with a charging function, the load 6 is connected to the output terminal T out.
  • the external power supply 4 and the load 6 are also shown.
  • the load 6 may be a heater, a compressor, a motor, a cooler, or other equipment that uses a lot of current.
  • the current detector 13 detects the discharge current and the charging current of the battery 10, and the voltage detector 12 detects the voltage of the battery 10.
  • the output mode when power is supplied from the battery 10 to the load 6 includes a continuous discharge mode (continuous discharge mode) and a pulse discharge mode (pulse mode).
  • the pulse mode includes a mode in which the battery 10 is charged by the external power source 4 when the pulse is at a low level (pulse charge / discharge mode) and a mode in which the battery 10 is not charged (pulse discharge mode). Note that the time when the pulse is at a low level is the T OFF period in FIG. 2, and this period is referred to as a pulse discharge low level period.
  • FIG. 2 is a diagram illustrating a discharge current waveform to the load 6 and a charge current waveform to the battery 10.
  • ID_1 is an average discharge current supplied to the load 6 in the continuous discharge mode
  • ID_2 is a peak value of the pulse current supplied to the load 6 in the pulse charge / discharge mode
  • IC is the peak value of the pulse current supplied to the battery 10 in the pulse charge / discharge mode.
  • ID_1 is described as continuous discharge current
  • ID_2 is described as pulse discharge current
  • IC is described as pulse charge current.
  • Equation 1 is the time of one cycle of pulse discharge, and the power supplied to the load 6 by pulse discharge (ID_2 * T ON ) and the power supplied to the load 6 by continuous discharge (ID_1 * (T ON + T OFF ) ) Is equal.
  • the pulse charge / discharge mode is performed when the voltage V B of the battery 10 is a value between the switching upper limit voltage V U and the switching lower limit voltage V L.
  • the output mode is switched from the continuous discharge mode to the pulse charge / discharge mode.
  • the voltage V B becomes lower than the switching lower limit voltage V L , so that the pulse charge / discharge mode is switched to the continuous discharge mode.
  • FIG. 3 shows the result of simulating the discharge capacity depending on the output mode (continuous discharge mode, pulse discharge mode, pulse charge / discharge mode).
  • the horizontal axis represents the discharge capacity, and the vertical axis represents the closed circuit voltage of the battery.
  • the simulation conditions are as follows: discharge capacity when battery 10 having a capacity of 32.5 Ah is set to 3.0 V, discharge capacity when continuously discharging at 6.25 C (curve C_10), discharge capacity when performing pulse discharge (Curve (C_11), the discharge capacity (curve C_12) at the time of pulse charge / discharge.
  • the discharge capacity in the continuous discharge mode was 12.94 Ah
  • the discharge capacity in the pulse discharge mode was 22.73 Ah
  • the discharge capacity is improved by 1.23 times compared to the case of the pulse discharge mode. From the above, it was confirmed that the discharge capacity can be greatly improved by changing the mode from the continuous discharge mode to the pulse charge mode.
  • the timing for changing the mode is important from the viewpoint of suppressing switching loss (improvement of power efficiency).
  • the switching upper limit voltage V U and the switching lower limit voltage V L are set, the pulse charge / discharge mode is set when the voltage of the battery 10 is within the range, and the continuous discharge mode is set otherwise. To do.
  • FIG. 4 is a diagram illustrating the open circuit voltage V O or the closed circuit voltage V C , the reference voltage V R , the switching upper limit voltage V U , the switching lower limit voltage V L , and the discharge end voltage V T with respect to the discharge capacity. .
  • the shaded area in FIG. 4 indicates a range where the switching lower limit voltage V L ⁇ V B ⁇ switching upper limit voltage V U is satisfied. That is, the pulse charge / discharge mode is performed when the voltage V B of the battery 10 is within this range.
  • V U V U * ⁇ (2)
  • V R is the output current flowing between T out terminals as I
  • V R V x ⁇ (I ⁇ I x ) * R O (3)
  • Is a reference voltage defined by This reference voltage is a voltage obtained by subtracting the voltage drop due to the internal resistance from the electromotive force of the battery 10 and corresponds to the terminal voltage of the battery 10.
  • V x is the open circuit voltage V O of the battery 10 or the closed circuit voltage V C of the battery 10 during low rate (1C or less) discharge.
  • V x V O
  • I x is the current I O when V O is detected
  • V x V C
  • I x is the current I C when V C is detected.
  • alpha is allowable value indicating the permitted deviation of the degree of the voltage from the reference voltage V R at (ratio) is preferably alpha ⁇ 0.9 Simulation results described below.
  • FIG. 5 is a diagram illustrating a result when the discharge capacity is simulated by changing the allowable value ⁇ .
  • curve C_2 is a characteristic curve of the reference voltage V R at the time of 3C discharge capacity 32.30Ah.
  • curve C_6 is 2 and the discharge capacity characteristic at the time of 3C continuous discharge at a discharge capacity of 5.91 Ah.
  • the allowable value ⁇ when the allowable value ⁇ is set to a value larger than 0.9000 and the pulse charge / discharge mode is changed, the discharge capacities of the curves C_3 to C_5 are 2% of the discharge capacity of the curve C_1. It can be seen that it fits within.
  • the allowable value ⁇ is preferably set to a value larger than 0.9000 in order to improve the discharge capacity.
  • the allowable value ⁇ when a semiconductor switch is used as a switching means for performing the pulse charge / discharge mode, the allowable value ⁇ is set to ⁇ 0.9000 in order to minimize the power loss in the semiconductor switch. It is good to do.
  • the switching lower limit voltage V L is a value obtained by adding a voltage drop ⁇ V due to pulse discharge to the discharge end voltage V T of the battery 10.
  • V L V T + ⁇ V (4)
  • the pulse discharge current is controlled so that the average value (average current) of the pulse discharge current over one cycle matches the continuous discharge current (when the relationship of Equation 1 is satisfied)
  • the peak value in the pulse discharge mode is continuous. It becomes higher than the discharge current (ID_2> ID_1).
  • a large current from Ohm's law means that the voltage drops. Therefore, when the continuous discharge current ID_1 and the pulse discharge current ID_2 are set so that the expression 1 is satisfied, the discharge end voltage is hit with a high discharge capacity. Therefore, when the voltage V B of the battery 10 becomes lower than the switching lower limit voltage V L (V B ⁇ V L ), the control unit 11 switches from the pulse charge / discharge mode to the continuous discharge mode, suppresses the peak current, and reaches the discharge end voltage. And thereby increase the discharge capacity.
  • FIG. 6 is a flowchart showing the mode control procedure.
  • Steps S1 and S2 First, the control unit 11 obtains the voltage V B of the battery 10 from the voltage detection unit 12. Then, it is determined whether or not voltage V B is higher than end-of-discharge voltage V T. When the voltage V B is equal to or lower than the end-of-discharge voltage V T (V B ⁇ V T ), it means that the battery 10 has no available capacity, and the process ends abnormally. Of course, at this time, the control unit 11 can also output a message indicating that the capacity is insufficient.
  • Steps S3 and S4 When the discharge capacity of the battery 10 is sufficient (V B > V T ), the control unit 11 performs discharge in the continuous discharge mode, and acquires the current I at that time from the current detection unit 13. .
  • Step S5 Next, a switching upper limit voltage value V U and a switching lower limit voltage value V L are calculated.
  • the switching upper limit voltage value V U and the switching lower limit voltage value V L are described as being calculated when the processing is started, but are calculated in advance and stored in a memory or the like. Is also possible. A method for calculating the switching upper limit voltage value V U and the switching lower limit voltage value V L will be described later.
  • Steps S6 and S7 The controller 11 sets the output mode to the continuous discharge mode and starts discharging. At the same time as the start of discharge, the current voltage V B of the battery 10 is acquired.
  • Step S8 Thereafter, the control unit 11 determines whether or not the acquired voltage V B is between the switching upper limit voltage value V U and the switching lower limit voltage value V L.
  • Step S9 When the voltage V B is between the switching upper limit voltage value V U and the switching lower limit voltage value V L (V L ⁇ V B ⁇ V U ), the output mode is changed to the pulse charge / discharge mode. Return to step S7.
  • Step S10 On the other hand, when the voltage V B is not between the switching upper limit voltage value V U and the switching lower limit voltage value V L (V B ⁇ V T , V B > V U ), the voltage V B is determining whether the discharge cutoff voltage greater than V T being set. At this time, when the voltage V B is higher than the end-of-discharge voltage V T (V B > V T ), the process returns to step S6 to set the continuous discharge mode. On the other hand, when the voltage V B is equal to or lower than the end-of-discharge voltage V T (V B ⁇ V T ), the discharge ends.
  • pulse charge from the external power supply 4 was performed in all pulse discharge low level periods.
  • the present invention is not limited to this, and for example, pulse charging as shown in FIGS. 7 and 8 is also possible.
  • pulse charging is performed only during a part of the period T 1 instead of the entire period of the pulse discharge low level period T 0 (T 0 > T 1 ).
  • pulse charging is performed in at least one pulse discharge low level period among a plurality of pulse discharge low level periods.
  • Which method is to be used may be appropriately set according to the capacity of the external power supply 4 or a desired discharge current.
  • the switching upper limit voltage VU is calculated by Equation 2.
  • the present invention is not limited to this method.
  • the slope of the discharge capacity characteristic during continuous discharge may be set as a value when it reaches a predetermined value.
  • An example of the slope m is a range in which diffusion resistance due to non-uniformity of lithium ions does not occur, and ⁇ 0.1 ⁇ m ⁇ ⁇ 0.02.
  • the continuous discharge mode is switched to the pulse charge / discharge mode, and when the switching lower limit voltage V L is reached, the pulse charge / discharge mode is continuously discharged. Switch to mode. Thereby, it becomes possible to obtain the same operation effect as 1st Embodiment.
  • Lithium ion secondary battery system Lithium ion secondary battery system 4 External power supply 6 Load 10 Battery 11 Control unit 12 Voltage detection unit 13 Current detection unit

Abstract

 高電力効率で、かつ、大きな実効容量が得られリチウムイオン二次電池システムを提供する。このため、リチウムイオン二次電池を充電する外部電源と、リチウムイオン二次電池から負荷に連続的に電力供給する連続放電モード、及び、リチウムイオン二次電池から負荷にパルス的に電力供給し、かつ、負荷に電力供給されていないパルス放電ローレベル期間のときに外部電源からリチウムイオン二次電池にパルス的に充電するパルス充放電モードの出力モード切り替えを行う制御部と、を備え、制御部は、リチウムイオン二次電池の電圧が、所定の切替上限電圧より低い場合には、出力モードをパルス充放電モードに設定する。

Description

リチウムイオン二次電池システム及びリチウム二次電池システムの運転方法
 本発明は、リチウムイオン二次電池システム、及び、リチウム二次電池システムの運転方法に関する。
 リチウムイオン二次電池では、その公称容量に対する電流が大きくなるにつれて、放電可能な実効容量が少なくなるという問題点があった(特許文献1を参照)。
 これは大電流で連続放電を長時間行うと、リチウムイオン二次電池におけるリチウムイオン分布が不均一になり、この結果リチウムイオンの拡散抵抗が増大して、上限電圧(開回路電圧)又は下限電圧(放電終止電圧)を超えてしまうことが原因と考えられる。
 かかる問題に対して、特許文献2では、リチウムイオン分布を均一化する提案がなされている。この提案では、リチウムイオン二次電池の放電又は充電を間欠的に行う技術である。
 また、特許文献3では、リチウムイオン二次電池の内部抵抗が所定値以上になると、パルス充放電を行って内部抵抗を低下させる技術が公開されている。
特開2002-260673号公報 特開2004-171864号公報 特開2011-151943号公報
 しかしながら、特許文献2にかかる技術でも放電可能な実効容量を十分に改善することができない問題があった。例えば、公称容量2Ahのリチウムイオン電池を20Cの間欠的放電を行ったときでも実効容量は0.98Ahであり、公称容量2Ahの半分以下までしか利用することができない。なお、「1C」は、電池を100%の充電量から0%までに、1時間で流すことができる電流を言う。例えば、0.98Ahの電池で20Cであれば、0.98*20=19.6Aの電流を意味する。
 また、特許文献2にかかる技術では、パルス充放電を切り替ええるため手段として、半導体スイッチ等の切り替え手段を設ける場合があるが、充放電全期間にわたりパルス制御を行うと、切り替え手段で生じるスイッチング損失が増大し、電力効率の低下を招く問題がある。
 そこで、本発明の主目的は、高電力効率で、かつ、大きな実効容量が得られリチウムイオン二次電池システム及びリチウム二次電池システムの運転方法を提供することである。
 上記課題を解決するため、リチウムイオン二次電池から負荷に電力供給するリチウムイオン二次電池システムにかかる発明は、リチウムイオン二次電池を充電する外部電源と、リチウムイオン二次電池から負荷に連続的に電力供給する連続放電モード、及び、リチウムイオン二次電池から負荷にパルス的に電力供給し、かつ、負荷に電力供給されていないパルス放電ローレベル期間のときに外部電源からリチウムイオン二次電池にパルス的に充電するパルス充放電モードの出力モード切り替えを行う制御部と、を備え、制御部は、リチウムイオン二次電池の電圧が、所定の切替上限電圧より低い場合には、出力モードをパルス充放電モードに設定する、ことを特徴とする。
 また、リチウムイオン二次電池から負荷に電力供給するリチウムイオン二次電池システムの運転方法にかかる発明は、リチウムイオン二次電池の電圧を検出するステップと、出力モードの切替を行う際の判断基準をなす切替上限電圧を取得するステップと、リチウムイオン二次電池の電圧が切替上限電圧より低いか否かを判断するステップと、リチウムイオン二次電池の電圧が切替上限電圧より低い場合に、リチウムイオン二次電池から負荷に連続的に電力供給する連続放電モードから、リチウムイオン二次電池から負荷にパルス的に電力供給し、かつ、負荷に電力供給されていないパルス放電ローレベル期間のときに外部電源からリチウムイオン二次電池にパルス的に充電するパルス充放電モードに出力モード切替を行うステップと、を含む、ことを特徴とする。
 本発明によれば、所定の条件でパルス充放電モードに切り替えるので、電力損失を抑制しながら放電容量を改善させることができるようになる。
第1実施形態にかかるリチウムイオン二次電池システムのブロック図である。 負荷への放電電流波形及び電池への充電電流波形を例示した図である。 出力モードの違いによる放電容量のシミュレーション結果を示す図である。 電池の開放電圧又は閉回路電圧、基準電圧、切替上限電圧、切替下限電圧、放電終止電圧を放電容量に対して例示した図である。 許容値を変えて放電容量をシミュレーションしたときの結果を示す図である。 モード制御手順を示したフローチャートである。 パルス充電を行うタイミングを、パルス放電ローレベル期間の期間全域ではなく、一部の期間の間だけ行う場合の負荷への放電電流波形及び電池への充電電流波形を例示した図である。 パルス充電を行うタイミングを、複数のパルス放電ローレベル期間の内の少なくとも1つのパルス放電ローレベル期間で行う場合の負荷への放電電流波形及び電池への充電電流波形を例示した図である。 連続放電時の放電容量特性の傾きから切替上限電圧を決定する方法を説明する図である。
 本発明の実施形態を説明する。
<第1実施形態>
 図1は、本実施形態にかかるリチウムイオン二次電池システム2のブロック図である。リチウムイオン二次電池システム2は、リチウムイオン二次電池(以下、電池と略記する)10、制御部11、電流検出部13、電圧検出部12、入力端子Tin、出力端子Toutを含む。
 入力端子Tinには充電機能を備える外部電源4が接続され、出力端子Toutには負荷6が接続される。なお、図1においては、これら外部電源4及び負荷6も併せて図示している。
 負荷6は、ヒーター、コンプレッサー、モーター、冷却器、その他電流を多く使用する機器等が考えられる。
 電流検出部13は電池10の放電電流や充電電流を検出し、電圧検出部12は電池10の電圧を検出する。
 電池10から負荷6に電力供給する際の出力モードには、連続的に放電するモード(連続放電モード)と、パルス的に放電するモード(パルスモード)がある。また、パルスモードには、パルスがローレベルの時に外部電源4により電池10を充電するモード(パルス充放電モード)と、充電しないモード(パルス放電モード)とがある。なお、パルスがローレベルの時とは、図2のTOFFの期間であり、この期間をパルス放電ローレベル期間と記載する。
 図2は、負荷6への放電電流波形及び電池10への充電電流波形を例示した図である。図2において、ID_1は連続放電モードにおいて負荷6に供給される平均放電電流であり、ID_2はパルス充放電モードにおいて負荷6に供給されるパルス電流のピーク値である。また、ICは、パルス充放電モードにおいて電池10に供給されるパルス電流のピーク値である。以下、ID_1を連続放電電流、ID_2をパルス放電電流、ICをパルス充電電流と記載する。
 パルスがハイレベルの期間をTON、ローレベルの期間(パルス放電ローレベル期間)をTOFFとすると、パルス放電電流ID_2は、連続放電電流ID_1を用いて、
 ID_2=ID_1*(TON+TOFF)/TON … (1)
の式1を満たすように設定する。式1は、パルス放電の1サイクルの時間で、パルス放電により負荷6に供給される電力(ID_2*TON)と、連続放電により負荷6に供給される電力(ID_1*(TON+TOFF))とを等しくすることを意味している。
 パルス充放電モードは、電池10の電圧Vが切替上限電圧Vと切替下限電圧Vとの間の値であるときに行われる。図2において、電池10の電圧Vは時刻t=t1で切替上限電圧Vより低くなるので、出力モードは、連続放電モードからパルス充放電モードに切り替えられる。また、時刻t=t2で電圧Vは切替下限電圧Vより低くなるので、パルス充放電モードから連続放電モードに切り替えられている。なお、時刻t=t3は、電圧Vが、放電終止電圧Vに達した放電終了時刻を示している。
 図3は、出力モード(連続放電モード、パルス放電モード、パルス充放電モード)の違いによる放電容量をシミュレーションした結果で、横軸は放電容量、縦軸は電池の閉回路電圧である。
 シミュレーション条件は、容量32.5Ahの電池10に対して放電終止電圧を3.0Vに設定したときの、6.25Cで連続放電した際の放電容量(曲線C_10)、パルス放電した際の放電容量(曲線(C_11)、パルス充放電した際の放電容量(曲線C_12)を示している。
 このシミュレーション結果では、連続放電モードでの放電容量は12.94Ah、パルス放電モードでの放電容量は22.73Ah、パルス充放電モードでの放電容量は25.00Ahであった。即ち、連続放電モードからパルス放電モードにモード変更したことにより、9.79Ah(=22.73-12.94)の放電容量が改善され、連続放電モードからパルス充放電モードにモード変更したことにより、12.06Ah(=25.00-12.94)の放電容量が改善されている。また、モード変更先をパルス充放電モードにすることにより、パルス放電モードにした場合に比べ、放電容量は1.23倍改善されている。以上から、連続放電モードからパルス充電モードにモード変更することで、放電容量を大幅に改善できることが確認できた。
 このようなパルス充放電モードにモード変更する際には、モード変更するタイミングがスイッチング損失の抑制(電力効率の改善)の観点から重要となる。本実施形態では、上述したように、切替上限電圧Vと切替下限電圧Vを設定して、電池10の電圧が範囲内の時にパルス充放電モードにし、それ以外の時は連続放電モードとする。
 このため切替上限電圧Vを算出する必要があり、図4を参照して、この算出方法を説明する。図4は、電池の開放電圧V又は閉回路電圧V、基準電圧V、切替上限電圧V、切替下限電圧V、放電終止電圧Vを放電容量に対して例示した図である。図4の斜線領域は、切替下限電圧V≦V≦切替上限電圧Vが満たされる範囲を示している。即ち、電池10の電圧Vがこの範囲のときにパルス充放電モードが行われる。
 切替上限電圧Vを、
 V=V*α … (2)
の式2で定義する。
は、Tout端子間を流れる出力電流をIとして、
 V=V-(I-I)*R … (3)
で定義される基準電圧である。この基準電圧は、電池10の起電力から内部抵抗による電圧降下分を差し引いた電圧で、電池10の端子電圧に相当する。
 ここで、Vは、電池10の開放電圧V、又は、ローレート(1C以下)放電時の電池10の閉回路電圧Vとする。V=Vとした場合、Iは、V検出時の電流Iであり、RはV検出時の電池10の内部抵抗である。なお、Vは開放電圧であるので、この場合はI=0となる。一方、V=Vとした場合、IはV検出時の電流Iである。
 また、αは、基準電圧Vからどの程度の電圧のずれを許容するか示す許容値(比率)で、以下に説明するシミュレーション結果からα≧0.9が望ましい。
 図5は、許容値αを変えて放電容量をシミュレーションしたときの結果を示す図である。曲線C_1は放電容量32.41Ahで0.3C時の閉回路電圧V、曲線C_2は放電容量32.30Ahで3C時の基準電圧Vの特性曲線である。また、曲線C_3~曲線C_5は、それぞれ放電容量31.91Ahで許容値α=0.9782、放電容量31.86Ahで許容値α=0.9616、放電容量31.88Ahで許容値α=0.9176として、3Cパルス放電を行った場合の放電容量特性である。さらに、曲線C_6は2、放電容量5.91Ahで3C連続放電時の放電容量特性である。
 図5に示すように、許容値αを0.9000より大きな値に設定して、パルス充放電モードに変更したときの曲線C_3~C_5の放電容量は、曲線C_1の放電容量に対して2%以内に収まることがわかる。一方、図示しないが、許容値αを0.9000より小さな値に設定すると、許容値αの増加に伴い放電容量が低下した。依って、許容値αは、0.9000より大きな値にすることが、放電容量の改善に好ましい。特に、パルス充放電モードを行うためのスイッチング手段として、半導体スイッチを用いた場合には、この半導体スイッチでの電力損失を可能な限り少なくするために、許容値αをα≒0.9000に設定することがよい。
 次に、切替下限電圧Vの算出方法について説明する。切替下限電圧Vは、電池10の放電終止電圧Vにパルス放電による降下電圧ΔVを加えた値として、
 V=V+ΔV … (4)
の式4で定義する。このとき、降下電圧ΔVは、
 ΔV=(ID_2-ID_1)*R*β … (5)
で定義する。但し、βは比例係数で、β=1.0~1.2が望ましい。
 パルス放電の電流を制御して1サイクルにわたるパルス放電電流の平均値(平均電流)を連続放電電流と一致させた場合(式1の関係を満足させた場合)、パルス放電モードにおけるピーク値は連続放電電流に比べて高くなる(ID_2>ID_1)。オームの法則から電流が大きいことは、電圧が降下することを意味する。従って、式1が満足するように連続放電電流ID_1とパルス放電電流ID_2とを設定すると、高い放電容量で放電終止電圧をたたくことが起きる。そこで、電池10の電圧Vが切替下限電圧Vより低くなると(V<V)、制御部11はパルス充放電モードから連続放電モードに切り替えてピーク電流を抑えて放電終止電圧に達するのを抑制し、これにより放電容量を増加させる。
 このように制御部11におけるモード制御手順を図6に示し説明する。図6は、モード制御手順を示したフローチャートである。
 ステップS1,S2: 先ず、制御部11は、電圧検出部12から電池10の電圧Vを取得する。そして、電圧Vが放電終止電圧Vより大きいか否かを判断する。電圧Vが放電終止電圧V以下である場合(V≦V)は、電池10に利用可能な容量がないことを意味するので、処理は異常終了する。無論、このとき制御部11は、容量が不足している旨のメッセージを出力することも可能である。
 ステップS3,S4: 電池10の放電容量が十分である場合(V>V)は、制御部11は、連続放電モードで放電を行い、そのときの電流Iを電流検出部13から取得する。
 ステップS5: 次に、切替上限電圧値V、切替下限電圧値Vを算出する。なお、本実施形態では、これら切替上限電圧値V、切替下限電圧値Vは、処理が開始した際に算出されるものとして説明するが、予め算出し、メモリ等に記憶しておくことも可能である。切替上限電圧値V、及び、切替下限電圧値Vの算出方法については、後述する。
 ステップS6,S7: 制御部11は、出力モードを連続放電モードに設定して、放電を開始する。また、この放電開始と同時に、現在の電池10の電圧Vを取得する。
 ステップS8: その後、制御部11は、取得された電圧Vが、切替上限電圧値Vと切替下限電圧値Vとの間にあるか否かを判断する。
 ステップS9: 電圧Vが、切替上限電圧値Vと切替下限電圧値Vとの間にある場合(V<V<V)は、出力モードをパルス充放電モードに変更して、ステップS7に戻る。
 ステップS10: 一方、電圧Vが、切替上限電圧値Vと切替下限電圧値Vとの間にない場合(V<V、V>V)は、電圧Vが、予め設定されている放電終止電圧Vより大きいか否かを判断する。このとき、電圧Vが放電終止電圧Vより大きい場合(V>V)、ステップS6に戻り、連続放電モードに設定する。一方、電圧Vが放電終止電圧V以下である場合(V≦V)は放電終了となる。
 以上説明したように、所定の条件でパルス充放電モードに切り替えるので、電力損失が抑制しながら放電容量を改善させることができるようになる。
<第2実施形態>
 次に、第2実施形態を説明する。なお、上述した第1実施形態と同一構成に関しては、同一符号を用いて説明を適宜省略する。
 第1実施形態におけるパルス充放電モードでは、図2に示したように、全てのパルス放電ローレベル期間では、外部電源4からのパルス充電を行った。しかし、本発明はこれに限定するものではなく、例えば図7や図8に示すようなパルス充電も可能である。
 即ち、図7に示す方法では、パルス放電ローレベル期間Tの期間全域ではなく、一部の期間Tの間だけパルス充電を行っている(T>T)。
 また、図8に示す方法では、複数のパルス放電ローレベル期間の内の少なくとも1つのパルス放電ローレベル期間でパルス充電を行っている。
 いずれの方法を用いるかは、外部電源4の容量や望む放電電流等に応じて適宜設定すればよい。
 また、第1実施形態においては、切替上限電圧Vは式2により算出した。しかし、本発明はこの方法に限定するものではない。例えば、図9に示すように連続放電時の放電容量特性の傾きが、所定値に達したときの値として設定してもよい。
 この傾きmとして、リチウムイオンの不均一による拡散抵抗が生じない範囲とし、-0.1≦m≦-0.02 が例示できる。例えば、傾きmをm=-0.02に設定した場合、この傾きに一致したときに連続放電モードからパルス充放電モードに切り替え、切替下限電圧Vに達すると、パルス充放電モードから連続放電モードに切り替える。これにより、第1実施形態と同様の作用効果を得ることが可能になる。
 以上、実施形態(及び実施例)を参照して本願発明を説明したが、本願発明は上記実施形態(及び実施例)に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
この出願は、2014年4月24日に出願された日本出願特願2014-089704を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 2  リチウムイオン二次電池システム
 4  外部電源
 6  負荷
 10  電池
 11  制御部
 12  電圧検出部
 13  電流検出部

Claims (16)

  1.  リチウムイオン二次電池から負荷に電力供給するリチウムイオン二次電池システムであって、
     前記リチウムイオン二次電池を充電する外部電源と、
     前記リチウムイオン二次電池から前記負荷に連続的に電力供給する連続放電モード、及び、前記リチウムイオン二次電池から前記負荷にパルス的に電力供給し、かつ、前記負荷に電力供給されていないパルス放電ローレベル期間のときに前記外部電源から前記リチウムイオン二次電池にパルス的に充電するパルス充放電モードの出力モード切り替えを行う制御手段と、を備え、
     前記制御手段は、
     前記リチウムイオン二次電池の電圧が、所定の切替上限電圧より低い場合には、前記出力モードを前記パルス充放電モードに設定する、
     ことを特徴とするリチウムイオン二次電池システム。
  2.  請求項1に記載のリチウムイオン二次電池システムであって、
     前記電圧が前記切替上限電圧より高い場合、及び、所定の切替下限電圧より低い場合には、前記出力モードを前記連続放電モードに設定する、
     ことを特徴とするリチウムイオン二次電池システム。
  3.  請求項1又は2に記載のリチウムイオン二次電池システムであって、
     前記パルス充放電モードでは、前記パルス放電ローレベル期間の少なくとも1つの期間内で、前記外部電源から前記リチウムイオン二次電池に充電が行われる、
     ことを特徴とするリチウムイオン二次電池システム。
  4.  請求項1乃至3のいずれか1項に記載のリチウムイオン二次電池システムであって、
     前記パルス放電ローレベル期間で行われる前記外部電源から前記リチウムイオン二次電池システムへの充電時間は、前記パルス放電ローレベル期間より短い、
     ことを特徴とするリチウムイオン二次電池システム。
  5.  請求項1乃至4のいずれか1項に記載のリチウムイオン二次電池システムであって、
     前記パルス充放電モードにおける1サイクルにわたるパルス放電電流の平均値と前記連続放電モードにおける連続放電電流とが、同じ値になるように、前記平均値を設定した、
     ことを特徴とするリチウムイオン二次電池システム。
  6.  請求項1乃至5のいずれか1項に記載のリチウムイオン二次電池システムであって、
     前記切替上限電圧は、前記リチウムイオン二次電池から電力を取り出す際の最大の電圧である基準電圧の0.90~0.98倍の値に設定されている、
     ことを特徴とするリチウムイオン二次電池システム。
  7.  請求項1乃至5のいずれか1項に記載のリチウムイオン二次電池システムであって、
     前記切替上限電圧は、放電容量に対する前記リチウムイオン二次電池の電圧の変化率mが、-0.1≦m≦-0.02の範囲になるときの前記リチウムイオン二次電池の電圧に設定した、
     ことを特徴とするリチウムイオン二次電池システム。
  8.  請求項2乃至7のいずれか1項に記載のリチウムイオン二次電池システムであって、
     前記切替下限電圧は、前記リチウムイオン二次電池の放電終止電圧とパルス放電を行った際の降下電圧との和の値に設定した、
     ことを特徴とするリチウムイオン二次電池システム。
  9.  リチウムイオン二次電池から負荷に電力供給するリチウムイオン二次電池システムの運転方法であって、
     前記リチウムイオン二次電池の電圧を検出し、
     出力モードの切替を行う際の判断基準をなす切替上限電圧を取得し、
     前記リチウムイオン二次電池の電圧が切替上限電圧より低いか否かを判断し、
     前記リチウムイオン二次電池の電圧が切替上限電圧より低い場合に、前記リチウムイオン二次電池から前記負荷に連続的に電力供給する連続放電モードから、前記リチウムイオン二次電池から前記負荷にパルス的に電力供給し、かつ、前記負荷に電力供給されていないパルス放電ローレベル期間のときに前記外部電源から前記リチウムイオン二次電池にパルス的に充電するパルス充放電モードに出力モード切替を行う、
     ことを特徴とするリチウムイオン二次電池システムの運転方法。
  10.  請求項9に記載のリチウムイオン二次電池システムの運転方法であって、
    前記運転方法は、さらに、
     出力モードの切替を行う際の判断基準をなす切替下限電圧を取得し、
     前記リチウムイオン二次電池の電圧が前記切替上限電圧より高い場合、及び、所定の切替下限電圧より低い場合には、前記出力モードを前記連続放電モードに設定する
     ことを特徴とするリチウムイオン二次電池システムの運転方法。
  11.  請求項9又は10に記載のリチウムイオン二次電池システムの運転方法であって、
     前記パルス充放電モードでは、前記パルス放電ローレベル期間の少なくとも1つの期間内で、前記外部電源から前記リチウムイオン二次電池に充電が行なわれる、
     ことを特徴とするリチウムイオン二次電池システムの運転方法。
  12.  請求項9乃至11のいずれか1項に記載のリチウムイオン二次電池システムの運転方法であって、
     前記パルス放電ローレベル期間で行われる前記外部電源から前記リチウムイオン二次電池システムの運転方法への充電時間は、前記パルス放電ローレベル期間より短い、
     ことを特徴とするリチウムイオン二次電池システムの運転方法。
  13.  請求項9乃至12のいずれか1項に記載のリチウムイオン二次電池システムの運転方法であって、
     前記パルス充放電モードにおける1サイクルにわたるパルス放電電流の平均値と前記連続放電モードにおける連続放電電流とが、同じ値になるように、前記平均値が設定されている、
     ことを特徴とするリチウムイオン二次電池システムの運転方法。
  14.  請求項9乃至13のいずれか1項に記載のリチウムイオン二次電池システムの運転方法であって、
     前記切替上限電圧は、前記リチウムイオン二次電池から電力を取り出す際の最大の電圧である基準電圧の0.90~0.98倍の値に設定されている、
     ことを特徴とするリチウムイオン二次電池システムの運転方法。
  15.  請求項9乃至13のいずれか1項に記載のリチウムイオン二次電池システムの運転方法であって、
     放電容量に対する前記リチウムイオン二次電池の電圧の変化率mが、-0.1≦m≦-0.02の範囲になるときの前記リチウムイオン二次電池の電圧を前記切替上限電圧に設定した、
     ことを特徴とするリチウムイオン二次電池システムの運転方法。
  16.  請求項10乃至15のいずれか1項に記載のリチウムイオン二次電池システムの運転方法であって、
     前記切替下限電圧は、前記リチウムイオン二次電池の放電終止電圧とパルス放電を行った際の降下電圧との和の値に設定した、
     ことを特徴とするリチウムイオン二次電池システムの運転方法。
PCT/JP2015/002081 2014-04-24 2015-04-15 リチウムイオン二次電池システム及びリチウム二次電池システムの運転方法 WO2015162877A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016514699A JP6497385B2 (ja) 2014-04-24 2015-04-15 リチウムイオン二次電池システム及びリチウム二次電池システムの運転方法
US15/305,730 US20170054184A1 (en) 2014-04-24 2015-04-15 Lithium ion secondary battery system and lithium secondary battery system operation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-089704 2014-04-24
JP2014089704 2014-04-24

Publications (1)

Publication Number Publication Date
WO2015162877A1 true WO2015162877A1 (ja) 2015-10-29

Family

ID=54332056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002081 WO2015162877A1 (ja) 2014-04-24 2015-04-15 リチウムイオン二次電池システム及びリチウム二次電池システムの運転方法

Country Status (3)

Country Link
US (1) US20170054184A1 (ja)
JP (1) JP6497385B2 (ja)
WO (1) WO2015162877A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10756557B2 (en) 2015-12-01 2020-08-25 Fuji Electric Co., Ltd. Charge apparatus to repeatedly apply a pulsed high voltage and a low voltage to charge a battery

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10594150B2 (en) 2015-04-24 2020-03-17 Manodya Limited Pulse discharge system
KR102441469B1 (ko) 2017-11-13 2022-09-06 주식회사 엘지에너지솔루션 배터리 충전 방법 및 배터리 충전 장치
GB2570356B (en) * 2018-05-29 2020-01-15 Manodya Ltd A pulse discharge system
DE102018211264A1 (de) * 2018-07-09 2020-01-09 Volkswagen Aktiengesellschaft Verfahren zum Laden einer Batterie und Steuereinheit
US20230018424A1 (en) * 2021-07-14 2023-01-19 Sk On Co., Ltd. Method for charging and discharging battery
CN114301114A (zh) * 2021-12-10 2022-04-08 华为数字能源技术有限公司 锂电池、锂电系统及控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102093A (ja) * 1999-09-30 2001-04-13 Fujitsu Ltd 二次電池の劣化防止方法、並びにこの方法を実施するための充電器および電子機器
JP2004236381A (ja) * 2003-01-28 2004-08-19 Honda Motor Co Ltd 蓄電池の充放電制御装置および車両用蓄電池の充放電制御装置
JP2011193562A (ja) * 2010-03-12 2011-09-29 Suri-Ai:Kk 車載バッテリ活性器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5595839A (en) * 1994-10-13 1997-01-21 Yardney Technical Products, Inc. Bipolar lithium-ion rechargeable battery
US6040684A (en) * 1997-06-30 2000-03-21 Compaq Computer Corporation Lithium ion fast pulse charger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102093A (ja) * 1999-09-30 2001-04-13 Fujitsu Ltd 二次電池の劣化防止方法、並びにこの方法を実施するための充電器および電子機器
JP2004236381A (ja) * 2003-01-28 2004-08-19 Honda Motor Co Ltd 蓄電池の充放電制御装置および車両用蓄電池の充放電制御装置
JP2011193562A (ja) * 2010-03-12 2011-09-29 Suri-Ai:Kk 車載バッテリ活性器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10756557B2 (en) 2015-12-01 2020-08-25 Fuji Electric Co., Ltd. Charge apparatus to repeatedly apply a pulsed high voltage and a low voltage to charge a battery

Also Published As

Publication number Publication date
JPWO2015162877A1 (ja) 2017-04-13
JP6497385B2 (ja) 2019-04-10
US20170054184A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP6497385B2 (ja) リチウムイオン二次電池システム及びリチウム二次電池システムの運転方法
US10553913B2 (en) Battery apparatus, charging control apparatus, and charging control method
CN108428951B (zh) 控制装置、平衡校正装置、蓄电系统及装置
EP3157131B1 (en) Charge control device and charge control method
JP6145712B2 (ja) 二次電池の充電システム及び方法並びに電池パック
US9472960B2 (en) Regulating device, battery assembly device and regulating method
US9413037B2 (en) Cell capacity adjusting device
KR101866020B1 (ko) 연료전지 차량의 시동 제어방법
JP6102746B2 (ja) 蓄電池装置および充電制御方法
WO2014148018A1 (ja) 二次電池の充電システム及び方法並びに電池パック
JP2009225632A (ja) 充電制御回路、電池パック、及び充電システム
JP6711221B2 (ja) 電池システム
US8324864B2 (en) Battery fast charging current control algorithm
JP2019013109A (ja) 蓄電システム
JP2003288951A (ja) 鉛蓄電池の充電方法
JP6674502B2 (ja) 充電制御装置
JP6965770B2 (ja) 鉛蓄電池の制御装置、鉛蓄電池装置、無停電電源装置、電源システム、及び充電制御方法
JPH09200968A (ja) 組電池の充電制御装置
TWI542115B (zh) 充電裝置及其充電方法
WO2012132459A1 (ja) 車載用充電装置
JP7412993B2 (ja) 電池パック、制御方法およびプログラム
CN111786450B (zh) 储能系统的控制方法
JP2010063198A (ja) 電源装置及び蓄電手段の充電方法
CN117879077A (zh) 蓄电系统
JP2015100211A (ja) 組電池の充電状態調整装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15783277

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016514699

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15305730

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15783277

Country of ref document: EP

Kind code of ref document: A1