WO2015161400A1 - 硫基过渡金属复合型负极活性物质及相应负极及相应电池 - Google Patents

硫基过渡金属复合型负极活性物质及相应负极及相应电池 Download PDF

Info

Publication number
WO2015161400A1
WO2015161400A1 PCT/CN2014/075762 CN2014075762W WO2015161400A1 WO 2015161400 A1 WO2015161400 A1 WO 2015161400A1 CN 2014075762 W CN2014075762 W CN 2014075762W WO 2015161400 A1 WO2015161400 A1 WO 2015161400A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
active material
transition metal
sulfur
negative electrode
Prior art date
Application number
PCT/CN2014/075762
Other languages
English (en)
French (fr)
Inventor
赵金保
刘波
王绪向
Original Assignee
厦门大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门大学 filed Critical 厦门大学
Priority to JP2016561848A priority Critical patent/JP6567546B2/ja
Priority to US15/121,249 priority patent/US10847783B2/en
Priority to PCT/CN2014/075762 priority patent/WO2015161400A1/zh
Publication of WO2015161400A1 publication Critical patent/WO2015161400A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of electrochemical energy, and in particular to a negative active material for a lithium ion battery, a corresponding negative electrode containing the negative active material, and a high performance lithium ion battery using the negative electrode.
  • Lithium-ion secondary batteries are high-efficiency, high-energy-density electrical energy storage devices that have been widely used in small mobile electronic devices. Like other battery systems, lithium-ion batteries are mainly composed of four key materials: positive electrode material, negative electrode material, separator and electrolyte. The properties of the material have a very important relationship with the performance of lithium-ion batteries.
  • the positive electrode materials widely used in lithium ion batteries are mainly lithium ion reversible intercalation-deintercalation of lithium ion transition metal oxides, such as lithium cobalt oxide (LiCo0 2 ), ternary materials (LiNi 1/3 Co 1/3 a layered metal oxide represented by Mn 1/3 0 2 ), a spinel type metal oxide typified by lithium manganate (LiMn 2 0 4 ), and an olive represented by lithium iron phosphate (LiFeP0 4 ) A stone-type metal oxide or the like; the anode material is a compound in which a lithium ion is reversibly intercalated-deintercalated, such as layered graphite.
  • lithium cobalt oxide LiCo0 2
  • ternary materials LiNi 1/3 Co 1/3 a layered metal oxide represented by Mn 1/3 0 2
  • a spinel type metal oxide typified by lithium manganate (LiMn 2 0 4 )
  • LiMn 2 0 4 lithium
  • lithium-ion batteries are today an inescapable position as a power source for small portable communication electronic devices such as mobile phones and portable computers.
  • society such as the requirements of electric vehicles in terms of power source
  • the existing lithium-ion battery system needs to be improved in terms of price, safety, specific capacity and power performance, and the abundance of raw materials. It is extremely important to develop higher performance materials and corresponding lithium ion batteries.
  • Elemental sulfur as a positive electrode material for batteries, has many advantages such as high energy density, abundant natural resources, low price and environmental friendliness.
  • Sulfur as the cathode material of the battery has a theoretical specific capacity of 1675 mAh/g, which is considered to be an ideal cathode material for the next generation of lithium ion batteries. If the anode is made of lithium metal (theoretical specific capacity 3860 mAh/g), the formed lithium-sulfur secondary battery The theoretical energy density can reach 2680Wh/Kg, which is an ideal high energy density secondary battery.
  • An object of the present invention is to provide a novel sulfur-based transition metal composite negative electrode active material for a lithium ion battery, which has good electrical conductivity, extremely high sulfur utilization rate, and excellent cycle performance.
  • the sulfur-based transition metal composite negative electrode active material provided by the present invention makes a metal sulfide as a negative electrode material of a lithium ion secondary battery during use of the lithium ion battery.
  • Metal sulfides have a higher potential discharge platform and have long been considered as candidate cathode materials. After careful research and unremitting efforts, the inventors discovered that by selecting a suitable transition metal and changing the bonding strength of metal and sulfur, the potential of the discharge platform can be lowered, so that the metal sulfide material can be used as a negative electrode material for a lithium ion secondary battery.
  • the sulfur-based transition metal composite negative electrode active material provided by the present invention has two types: one directly exists in the form of a transition metal sulfide.
  • the other comprises at least one sulfur-based material and at least one transition metal powder, which is accompanied by a sulfur-based material during the preparation of the negative electrode and during charge and discharge activation of the battery assembled with the negative electrode.
  • the reaction of the transition metal powder forms a metal sulfide. The following is elaborated separately.
  • the first type of sulfur-based transition metal composite negative electrode active material comprising at least one valence sulfide of a metal selected from the group consisting of Cu, Ni, Co, Fe, Zn, Ti, Mo, V, or the like, or two or more thereof mixture.
  • the content of the metal sulfide in the composition of the negative electrode active material is preferably 50% by weight or more, and more preferably 80% by weight or more, from the viewpoint of high capacity and low cost of the negative electrode. Too low, the capacity of the negative electrode material as a battery is low.
  • the source of the transition metal sulfide of the present invention may be derived from a commercial product or may be synthesized by direct growth on a current collector.
  • the metal sulfide according to the present invention is usually used in the shape of powder particles in the negative electrode.
  • the size and size of the particles are not particularly limited as long as they satisfy the requirements of the electrode design, and are usually preferably 0.1 to 20 ⁇ m, more preferably 1 to 10 ⁇ m.
  • the second type of sulfur-based transition metal composite type negative electrode active material includes at least one sulfur-based material and at least one transition metal powder.
  • the negative electrode active material is accompanied by a reaction of the sulfur-based material with the transition metal powder during the preparation of the negative electrode and during the charge and discharge activation of the battery assembled with the negative electrode.
  • the sulfur-based material according to the present invention is selected from one or more of sulfur simple substance (S 8 ), Li 2 S n (n ⁇ l), an organic sulfur compound, and an inorganic sulfide. From the viewpoint of high capacity and low cost of the negative electrode, sulfur simple substance (S 8 ) and Li 2 S n ( n ⁇ 8 ) are preferable. Negative electrode active When the content of sulfur in the mass composition is 10 ⁇ 80 wt%, the comprehensive performance is better. Too low, as the negative electrode material of the battery has a low capacity, and when it is too high, the cycle characteristics of the battery are lowered.
  • the transition metal powder of the present invention comprises a selected from the group consisting of Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, An elemental metal powder of one element of Cd, Ta, W, Re, Os, Ir, Pt, and Au, or an alloy metal powder of several elements, further comprising partially or partially vulcanized the elemental metal powder or alloy metal powder product.
  • the elemental metal powder is preferably a metal material such as copper, nickel, cobalt, molybdenum or titanium.
  • the powder particle diameter is preferably on the order of micrometers, more preferably on the order of nanometers.
  • the transition metal powder combines sulfur elements in the lithium-sulfur battery during charging and discharging with the negative active material to form a compound having high electrical conductivity and stable cycle performance, which fixes the sulfur element and increases the specific capacity of the material.
  • Another object of the present invention is to provide a novel lithium ion battery negative electrode, which has the following features, the composition of which comprises:
  • At least one sulfur-based transition metal composite anode active material provided by the present invention.
  • PVDF polyvinylidene fluoride
  • the negative electrode according to the present invention can be produced by the following method: After the conductive agent and an appropriate amount of a binder such as polyvinylidene fluoride (PVDF) are appropriately added to the negative electrode active material provided by the present invention, N-methyl- A solvent such as 2-pyrrolidone (NMP) is dissolved and dispersed into a mixture composition (paste, slurry, etc.) containing a negative electrode active material, and the mixture composition is applied to one side of a conductive current collector such as copper foil or aluminum foil. On both sides, the solvent is removed to finally form a strip-shaped formed body containing the negative electrode active material mixture layer.
  • a binder such as polyvinylidene fluoride (PVDF)
  • NMP 2-pyrrolidone
  • the mixture composition is applied to one side of a conductive current collector such as copper foil or aluminum foil.
  • the solvent is removed to finally form a strip-shaped formed body containing the negative electrode active material mixture layer.
  • the conductive agent may be selected from carbon materials such as carbon black conductive agents (acetylene black, Super P, Super S, 350G, carbon fiber (VGCF), carbon nanotubes (CNTs), Ketjen black (Ketjenblack EC300J, Ketjenblack EC600JD, Carbon ECP, Carbon ECP600JD), graphite conductive agent (KS-6, KS-15, SFG-6, SFG-15, etc.) A conductive material or a mixture of several materials such as carbon nanorods and graphene.
  • carbon black conductive agents acetylene black, Super P, Super S, 350G, carbon fiber (VGCF), carbon nanotubes (CNTs)
  • Ketjen black Ketjenblack EC300J, Ketjenblack EC600JD, Carbon ECP, Carbon ECP600JD
  • graphite conductive agent KS-6, KS-15, SFG-6, SFG-15, etc.
  • a conductive material or a mixture of several materials such as carbon nanorod
  • the binder of the present invention functions to adhere the above-mentioned negative electrode active material to the current collector, and strengthen the mechanical integrity of the negative electrode, improve the physical-solid contact of the solid-solid interface and/or the solid-liquid interface, and increase the entire negative electrode. Conductive properties of electrons and ions.
  • binders such as water system and oil system may be selected, and the binder is selected from the group consisting of polyvinylidene fluoride (PVDF), polyvinyl alcohol (PVA), polytetrafluoroethylene (PTFE), and sodium carboxymethyl cellulose ( One or more of CMC), polyolefin (PP, PE, etc.), nitrile rubber (NBR), styrene butadiene rubber (SBR), polyacrylonitrile (PAN), polyvinyl alcohol (PVA) .
  • PVDF polyvinylidene fluoride
  • PVA polyvinyl alcohol
  • PTFE polytetrafluoroethylene
  • CMC sodium carboxymethyl cellulose
  • CMC polyolefin
  • NBR nitrile rubber
  • SBR styrene butadiene rubber
  • PAN polyacrylonitrile
  • PVA polyvinyl alcohol
  • the conductive current collector according to the present invention is not particularly limited as long as it has conductivity, and is usually a metal conductive material.
  • the current collector is a conductive metal material or an alloy of several metals, such as one element or several elements of one of Al, Fe, Co, Ni, Cu, Zn, Ag, Pt, and Au. alloy. Preferred use of aluminum from the perspective of price and processability And copper current collectors.
  • the copper current collector of the present invention is preferably a copper foil, and the thickness of the current collector and the material of the copper foil are not particularly limited.
  • the thickness of the copper foil is also not particularly limited, and the optimum range is 1 to 30 ⁇ m, and 5 to 15 ⁇ m is most preferable.
  • the material of the copper foil may be pure copper or alloy copper, and it is preferable to use alloy copper having a pure copper or copper component of more than 95% from the viewpoint of price and workability.
  • Another object of the present invention is to provide a battery using the above-described negative electrode active material and corresponding negative electrode.
  • the battery of the present invention includes, in addition to the negative electrode active material and the corresponding negative electrode described above, a necessary member such as a positive electrode, a separator, and a non-aqueous electrolyte. Therefore, the non-aqueous electrolyte secondary battery of the present invention may have the above-described negative electrode active material and the corresponding negative electrode, and the other constituent elements are not particularly limited, and the same configuration as the conventionally known nonaqueous electrolyte secondary battery can be employed. Elements.
  • a positive electrode material generally used for a lithium ion battery can be used in the present invention.
  • a compound capable of reversibly occluding-releasing (embedding and deintercalating) lithium ions can be used.
  • Li x M0 2 or Li y M 2 0 4 can be used (wherein M is The transition metal, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 2), a lithium-containing composite oxide, a spinel-like oxide, a layered structure of a metal chalcogenide, an olivine structure, or the like.
  • a lithium-containing composite oxide having a layered structure or a spinel structure is preferable, and lithium manganese nickel represented by LiCo0 2 , LiMn 2 0 4 , LiNi0 2 , LiNi 1/2 Mn 1/2 0 2 and the like is preferable.
  • lithium manganese nickel cobalt composite oxide represented by 2 0 2 or the like, or LiNik Z Co x Al y Mg z 0 2 (wherein, x ⁇ x ⁇ l, 0 ⁇ y ⁇ 0.1, 0 ⁇ z ⁇ 0.1, 0 ⁇ lxyz ⁇ l) and the like lithium-containing composite oxide.
  • a part of the constituent elements in the lithium-containing composite oxide is also contained in a lithium-containing composite oxide substituted with an additive element such as Ge, Ti, Zr, Mg, Al, Mo, or Sn.
  • These positive electrode active materials may be used alone or in combination of two or more.
  • a lithium-containing composite oxide having a layered structure and a lithium-containing composite oxide having a spinel structure it is possible to achieve both an increase in capacity and an improvement in safety.
  • a conductive auxiliary agent such as carbon black or acetylene black or a binder such as polyvinylidene fluoride or polyethylene oxide is appropriately added to the positive electrode active material.
  • a positive electrode mixture is prepared and applied to a belt-shaped molded body using a current collector such as aluminum foil as a core material.
  • the method of manufacturing the positive electrode is not limited to the above example.
  • the separator for separating the positive electrode from the negative electrode is also not particularly limited, and various separators used in conventionally known nonaqueous electrolyte secondary batteries can be used.
  • the role of the separator is to separate the positive and negative active materials of the battery, to avoid direct passage of any electron flow between the positive and negative electrodes, to avoid short circuit of the battery; the resistance of the ion flow is as small as possible, so most of the porous polymer membrane is used.
  • poly A fine pore separator formed of a polyolefin resin such as ethylene or polypropylene or a polyester resin such as polybutylene terephthalate is preferable.
  • these fine pore membranes (porous membranes) can also be used in combination.
  • a film obtained by modifying the surface of the polymer microporous membrane by a surface of the material, such as a ceramic powder (alumina, silica, etc.) coated on the polyolefin, may also be used.
  • the thickness of the separator is not particularly limited, but it is preferably 5 to 30 ⁇ m in consideration of both safety and high capacity of the battery.
  • the gas permeability (s/100 mL) of the separator is also not particularly limited, but is preferably 10-1000 (s/100 mL), more preferably 50-800 (s/100 mL), particularly preferably 90-700 (s/100 mL). ).
  • a nonaqueous solvent (organic solvent) is used as the nonaqueous electrolytic solution, and a high dielectric constant nonaqueous solvent is preferable.
  • Sulfide especially an inducer of elemental sulfur
  • TEGDME dimethyl ether tetraethylene glycol
  • DME ethylene glycol dimethyl ether
  • DOL 1, 3 - Dioxentane
  • an ester having a dielectric constant of 30 or more is recommended.
  • examples of such a high dielectric constant ester include ethylene carbonate, propylene carbonate, butylene carbonate, ⁇ -butyrolactone, sulfur ester (such as ethylene glycol sulfide).
  • a cyclic ester, a cyclic carbonate such as ethylene carbonate, vinylene carbonate, propylene carbonate or butylene carbonate is preferable.
  • a low-viscosity polar chain carbonate or an aliphatic branched-chain carbonate compound typified by dimethyl carbonate, diethyl carbonate or ethyl methyl carbonate can be used.
  • a mixed solvent of a cyclic carbonate (particularly ethylene carbonate) and a chain carbonate is particularly preferred.
  • a chain thiol ester such as methyl propionate or a chain phosphate triester such as trimethyl phosphate
  • a nitrile solvent such as 3-methoxypropionitrile
  • a dendrimer may be used.
  • a nonaqueous solvent (organic solvent) such as a branched compound having an ether bond.
  • a fluorine-based solvent can also be used.
  • fluorine-based solvent examples include H(CF 2 ) 2 OCH 3 , C 4 F 9 OCH 3 , H(CF 2 ) 2 OCH 2 CH 3 , H(CF 2 ) 2 OCH 2 CF 3 , H ( (Perfluorodecyl) decyl ether, such as CF 2 ) 2 CH 2 0(CF 2 ) 2 H or the like, or CF 3 CHFCF 2 OCH 3 , CF 3 CHFCF 2 OCH 2 CH 3 or the like Fluoromethyl hexafluoropropyl methyl ether, 2-trifluoromethyl hexafluoropropyl ether, 2-trifluoromethyl hexafluoropropyl propyl ether, 3-trifluoromethyl octafluorobutyl methyl ether, 3-trifluoro Methyl octafluorobutyl ether, 3-trifluoromethyl octafluorobutyl propyl
  • the above iso(perfluorodecyl)decyl ether may be used in combination with the above (linear) perfluorodecyl decyl ether.
  • a lithium salt such as a perchlorate of lithium, a lithium borohydride, a lithium salt of a fluorine-containing compound, or a lithium imide salt is preferable.
  • Examples of such an electrolyte salt include LiC10 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , L1CF3SO3 , LiCF 3 C0 2 , LiC 2 F 4 (S0 3 ) 2 , and LiN (C 2 F). 5 S0 2 ) 2 , LiC (CF 3 S0 2 ) 3 , LiCnF 2n+1 S0 3 (n ⁇ 2), LiN (RfOS0 2 ) 2 (wherein Rf is a fluoroindolyl group), and the like.
  • a fluorine-containing organic lithium salt is particularly preferred.
  • the fluorine-containing organic lithium salt is easily dissolved in the nonaqueous electrolytic solution because of its large anionic property and easy separation into ions.
  • the concentration of the electrolyte lithium salt in the nonaqueous electrolytic solution is, for example, 0.3 mol/L (mol/L) or more, more preferably 0.7 mol/L or more, preferably 1.7 mol/L or less, more preferably 1.2 mol/L or less. .
  • concentration of the electrolyte lithium salt is too low, the ion conductivity is too small, and when it is too high, it is feared that the complete electrolyte salt precipitation is not dissolved.
  • various additives which can improve the performance of the battery using the same can be added, and are not particularly limited.
  • a compound having a sulfur element mainly composed of 1,3-propane lactone or 1,2-propanediol sulfate for example, a chain or cyclic sulfonate, a chain or a cyclic sulfate, etc.
  • a carbonate Vinyl esters, vinyl vinyl carbonate, vinyl fluoride fluoride, and the like can also be used, and are sometimes very effective.
  • the negative electrode active material is a highly crystalline material, the effect of using vinylidene carbonate, vinyl vinyl carbonate, vinyl fluoride fluoride or the like is better.
  • the addition amount of these various additives is preferably from 0.05 to 5% by weight based on the total amount of the nonaqueous electrolyte.
  • the vinylene carbonate, vinyl ethylene carbonate, and vinyl fluoride carbonate are charged with a battery containing a non-aqueous electrolyte solution containing these compounds to form a protective film on the surface of the negative electrode, thereby suppressing the negative electrode active material and the non-aqueous material.
  • the reaction caused by the contact of the electrolytic solution has an effect of preventing decomposition of the nonaqueous electrolytic solution caused by the reaction.
  • an acid anhydride may be added to the nonaqueous electrolytic solution.
  • the acid anhydride which is a surface modifier of the negative electrode, has a function of forming a composite film on the surface of the negative electrode, and has a function of further improving the storage characteristics and the like of the battery at a high temperature. Further, by adding an acid anhydride to the nonaqueous electrolytic solution, the amount of gas generated in the battery using the nonaqueous electrolytic solution can be reduced because the water content in the nonaqueous electrolytic solution can be lowered.
  • the acid anhydride to be added to the nonaqueous electrolytic solution is not particularly limited, and may be a compound having at least one acid anhydride structure in the molecule or a compound having a plurality of acid anhydride structures.
  • the acid anhydride include, for example, trimellitic acid triglyceride, malonic anhydride, maleic anhydride, butyric anhydride, and C.
  • the separator is sandwiched between the positive electrode and the negative electrode, and then laminated to form an electrode laminate, which is wound into an electrode wound body.
  • the positive and negative terminals of the positive and negative electrodes and the package are connected by a lead body (lead piece), and the non-aqueous electrolyte is injected into the package, and then the package is sealed. .
  • a square or cylindrical package made of metal, a laminate package formed of a metal (aluminum or the like) laminate film, or the like can be used as the package of the battery.
  • the method for producing the nonaqueous electrolyte secondary battery and the structure of the battery are not particularly limited, and after the positive electrode, the negative electrode, the separator, and the nonaqueous electrolyte are provided in the package, charging is performed before the battery is completely sealed.
  • the open formation process is preferred.
  • the gas generated in the initial stage of charging or the moisture remaining in the battery can be removed to the outside of the battery.
  • the method of removing the gas in the battery after the above-described open formation step is not particularly limited, and any of natural removal or vacuum removal may be employed.
  • a properly formed battery such as extrusion may be used before the battery is completely sealed.
  • the non-aqueous electrolyte secondary battery provided by the present invention has good battery characteristics due to its high capacity, and can be used as a secondary battery for driving a power source in a mobile information device such as a mobile phone or a notebook computer. It is widely used as a power source for various devices such as electric vehicles and hybrid electric vehicles.
  • the inventors have discovered through careful research and unremitting efforts that one of the results of the present invention has been achieved, the first type of sulfur-based transition metal composite type negative electrode active material and the corresponding negative electrode and corresponding battery.
  • the transition metal sulfide is used as a negative electrode active material (usually a sulfide is always considered to be a positive electrode material).
  • a novel lithium-sulfur battery system having a high capacity and a long cycle life can be obtained.
  • This negative electrode material is composed of a positive electrode material widely used in a lithium ion battery, a separator, a nonaqueous electrolyte, and the like to constitute a high performance lithium ion battery.
  • the positive electrode material comprises a lithium ion transition metal oxide capable of reversibly intercalating-deintercalating lithium ions, such as lithium cobaltate (LiCo0 2 ), a ternary material (LiNi 1/3 Co 1/3 Mn 1/3 0 2 ) a layered metal oxide such as a representative, a spinel-type metal oxide typified by lithium manganate (LiMn 2 0 4 ), and an olivine type represented by lithium iron phosphate (LiFeP0 4 ) Metal oxides, etc.
  • a lithium ion transition metal oxide capable of reversibly intercalating-deintercalating lithium ions, such as lithium cobaltate (LiCo0 2 ), a ternary material (LiNi 1/3 Co 1/3 Mn 1/3 0 2 ) a layered metal oxide such as a representative, a spinel-type metal oxide typified by lithium manganate (LiMn 2 0 4 ), and an olivine type represented by lithium iron phosphate (
  • the transition metal sulfide fundamentally solves the inherent technical problems of the lithium-sulfur battery, which greatly improves the performance of the lithium-sulfur battery, and has excellent cycle performance, and the cycle performance can be comparable to the current lithium ion battery.
  • a transition metal powder such as copper powder is added to the electrode material, and the electrode material is used as a negative electrode active material of a lithium-sulfur battery (generally, elemental sulfur has been considered as a positive electrode material), which can greatly improve the cycle life of a sulfur-based material such as elemental sulfur.
  • the negative electrode material and a positive electrode material widely used in a lithium ion battery, a separator, a non-aqueous electrolyte, and the like constitute a high-performance lithium ion battery, and the second result of the present invention is obtained.
  • the positive electrode material comprises a lithium ion reversibly intercalating-deintercalating lithium ion transition metal oxide, such as lithium cobaltate (LiCo0 2 ), a ternary material (LiNi 1/3 C 0l/3 Mn 1/3 0 2 ) a layered metal oxide such as a representative, a spinel-type metal oxide typified by lithium manganate (LiMn 2 0 4 ), and an olivine type represented by lithium iron phosphate (LiFeP0 4 ) Metal oxides, etc.
  • lithium cobaltate LiCo0 2
  • a ternary material LiNi 1/3 C 0l/3 Mn 1/3 0 2
  • a layered metal oxide such as a representative, a spinel-type metal oxide typified by lithium manganate (LiMn 2 0 4 ), and an olivine type represented by lithium iron phosphate (LiF
  • a transition metal powder such as copper powder is added, and during the charging and discharging of the electrode, a transition metal such as sulfur and copper reacts to form a new compound which is insoluble in the electrolyte.
  • the transition metal such as copper improves the activity and utilization of the sulfur-sulfur bond, and also fixes the sulfur on the electrode, thereby fundamentally solving the inherent technical problems of the lithium-sulfur battery, and the performance of the sulfur battery is greatly improved.
  • the range is increased.
  • the utilization rate of elemental sulfur can reach almost 100%, and the capacity can be close to or reach the theoretical capacity of sulfur (1670 mAh/g), which is more than four times that of the cathode material for lithium ion batteries. .
  • the resulting battery has excellent cycle performance and is comparable to current lithium-ion batteries.
  • the potential of the sulfur-based transition metal composite negative electrode active material provided by the present invention is about 1.7 V (relative to the lithium metal potential).
  • the battery using the negative electrode active material and the corresponding negative electrode does not generate lithium dendrites on the surface of the negative electrode during the charge and discharge cycle, and internal short-circuit phenomenon due to lithium dendrite can be prevented. Therefore, the battery of the present invention is safer than a conventional lithium ion battery in which a negative electrode active material is a low potential metal lithium or graphite.
  • the sulfur-based transition metal composite negative electrode active material of the present invention is similar to the operating voltage by using a spinel type lithium titanate (Li 4 Ti 5 0 12: potential 1.5 V, actual capacity 150 mAh/g). However, the theoretical capacity of the active material of the present invention is more than 10 times that of the latter. Therefore, the battery using the negative electrode active material of the present invention has a higher battery capacity than the lithium titanate-based lithium ion battery having the same high safety.
  • the sulfur-based transition metal composite negative electrode active material provided by the invention has similar properties to lithium titanate, that is, the discharge curve is flat, the conductivity is good, and the cycle stability is good. In addition, it has the advantages of a wide range of sources, ease of preparation, and high specific capacity.
  • Fig. 1 is an electrode charge and discharge curve of the negative electrode of Example 1.
  • Fig. 2 is an electrode charge and discharge curve of the positive electrode of Example 1.
  • Figure 3 is a graph showing the charge and discharge curves of the LiMn 2 0 4 /Cu 2 S battery of Example 1.
  • LiMn 2 0 4 /Li battery is a comparison of cycle characteristics of a LiMn 2 0 4 /Li battery and a LiMn 2 0 4 I Cu 2 S battery.
  • Figure 5 is an XRD pattern of the cuprous sulfide material of Example 2.
  • Fig. 6 is an electrode charge and discharge curve of the negative electrode of Example 8.
  • Fig. 7 is an electrode charge and discharge curve of the positive electrode of Example 8.
  • Figure 8 is a graph showing the charge and discharge curves of the battery of Example 8.
  • Fig. 9 is a graph showing the cycle characteristics of a LiMn 2 0 4 /Li battery and a LiMn 2 0 4 I Cu-S 8 battery. Concrete real
  • Preparation of positive electrode 5 parts by mass of carbon black as a conductive agent was mixed in 90 parts by mass of spinel lithium manganate (LiMn 2 0 4 , positive electrode active material, actual capacity 106.3 mAh/g), and added to the mixture 5 parts by mass of polyvinylidene fluoride was dissolved in NMP and mixed to prepare a positive electrode slurry, which was passed through a 70-mesh sieve to remove a portion having a large particle size.
  • spinel lithium manganate LiMn 2 0 4
  • positive electrode active material actual capacity 106.3 mAh/g
  • the positive electrode slurry was uniformly coated on one surface of an aluminum foil having a thickness of 15 ⁇ m, and the coated electrode electrode sheets were dried in a vacuum oven at 80 ° C for 12 hours to remove the solvent, and then the pole pieces were punched into a disk having a diameter of 11 mm. , Weighing, for the positive pole of the battery.
  • the content of the active material in the positive electrode was designed in accordance with the ratio of the positive electrode capacity to the negative electrode capacity of 100 to 120 (i.e., the negative electrode was excessive).
  • the half-cell discharge curve of this electrode is shown in Figure 2.
  • the battery was evaluated using the above-described sulfur negative electrode and the above-described spinel lithium manganate positive electrode tab.
  • the preparation method of the battery is as follows: in a glove box under an argon atmosphere, the electrolyte is added in the order of the negative electrode sheet, the three-layer porous separator (PP/PE/PP), the liquid-absorbent paper, the positive electrode sheet, and the aluminum gasket. Assembled into a full-battery battery and in a battery test system The performance of the test battery is 1.0V ⁇ 2.6V.
  • the discharge curve of the battery, the cycle characteristics, and the discharge capacity of the battery (actually the positive discharge capacity due to the excess of the negative electrode) are shown in Figure 3, Figure 4, and Table 1.
  • Electrode sheet metal lithium foil with a diameter lmm larger than the electrode sheet, 0.1 mm thick, electrolyte (1M lithium bis(trifluoromethanesulfonate) imide (LiTFSI)-DOL/DME (3/7 volume Ratio)), as well as diaphragm (PP/PE/PP), assemble the button half-cell in an argon-filled glove box. After one night of standing, the battery characteristics were evaluated using a charge and discharge device.
  • electrolyte (1M lithium bis(trifluoromethanesulfonate) imide
  • PP/PE/PP diaphragm
  • the negative electrode case the discharge conditions: a current of 0.5mA / cm 2 constant current discharge of the battery after the termination 1.0V; charging conditions: a current of 0.5mA / cm 2 charging the battery to the 3.0V; the positive electrode case, the charging condition : The battery was charged to 4.3 V at a current of 0.5 mA/cm 2 ; Discharge conditions: The battery was terminated by a constant current discharge of 3.0 mA/cm 2 to 3.0 V.
  • the battery is first charged at room temperature, and then subjected to constant current discharge after full charge, and then repeated several times under the same conditions.
  • Charging conditions After charging the battery to a certain voltage with a charge and discharge current of 0.5C, continue charging at this voltage until the total charging time is 2.5 hours (this time is full charge);
  • Discharge condition The discharge current will be 1C
  • the battery is terminated after a constant current reaches a certain voltage.
  • the capacity retention after 100 cycles of the battery is the ratio (%) of the capacity after charge and discharge of the battery for 100 cycles and the capacity after charge and discharge for the first cycle.
  • Example 2 Example 2
  • Examples 3 to 6 and Comparative Examples 1 to 3 are the same as in Example 2, and different stoichiometrically synthesized copper sulfide (Cu x S ) powder materials (see Table 1 for composition) are used as negative electrode active materials.
  • Cu x S copper sulfide
  • a battery was fabricated and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1. Table 1 battery composition and battery characteristics
  • the (Cu x S ) powder material has good electrochemical properties as a negative electrode active material, and the utilization ratio of the active material of the battery positive electrode is high. Further, in the molar ratio x of copper to sulfur, in the range of 1.7 ⁇ x ⁇ 2, the capacity retention ratio of the battery after 100 cycles is more than 75%, and the battery cycle characteristics not in this range are not so high. When ⁇ ⁇ 1, the battery cycle characteristics deteriorate seriously.
  • Example 2 The same conditions as in Example 1, except that nickel sulfide (of NiS, Aladdin (TM)) than the alternate copper sulfide, prepared under the same conditions, a battery and evaluated. Test results were as follows, using the capacity of LiMn 2 0 4 / NiS battery LiMn 2 0 4 was 100.9mAh / g, the capacity retention after 100 cycles was 60.2%, good performance. The results show that nickel sulfide can also be used as a negative electrode material for the battery system.
  • nickel sulfide of NiS, Aladdin (TM)
  • the positive electrode slurry was uniformly coated on one surface of an aluminum foil having a thickness of 15 ⁇ m, and the coated electrode electrode sheets were dried in a vacuum oven at 80 ° C for 12 hours to remove the solvent, and then the pole pieces were punched into a disk having a diameter of 11 mm. , Weighing, for the positive pole of the battery.
  • the content of the active material in the positive electrode was designed in accordance with the ratio of the positive electrode capacity to the negative electrode capacity of 100 to 120 (i.e., the negative electrode was excessive).
  • the electrode discharge curve and discharge capacity are shown in Fig. 7.
  • the battery was evaluated using the above-described sulfur negative electrode and the above-described spinel lithium manganate positive electrode tab.
  • the preparation method of the battery is as follows: in an argon atmosphere glove box, the electrolyte is added in the order of the negative electrode sheet, the three-layer porous separator (PP/PE/PP), the liquid-absorbent paper, the positive electrode sheet, and the aluminum gasket. It is assembled into a button-type full battery, and the performance of the battery is tested in the battery test system.
  • the charge-discharge cut-off voltage is 1.0V ⁇ 2.6V.
  • the discharge curve of the battery and the discharge capacity of the battery (actually the positive discharge capacity due to the excess of the negative electrode) are shown in Figure 8 and Table 2.
  • Electrode sheet metal lithium foil with a diameter lmm larger than the electrode sheet, 0.1 mm thick, electrolyte (1 M lithium bis(trifluoromethanesulfonate) imide (LiTFSI)-DOL/DME (3/7 volume Ratio)), and diaphragm (PP/PE/PP), assemble the button half-cell in an argon-filled glove box. After one night of standing, the battery characteristics were evaluated using a charge and discharge device.
  • electrolyte (1 M lithium bis(trifluoromethanesulfonate) imide (LiTFSI)-DOL/DME (3/7 volume Ratio)
  • PP/PE/PP diaphragm
  • the negative electrode case the discharge conditions: a current of 0.5mA / cm 2 constant current discharge of the battery after the termination 1.0V; charging conditions: a current of 0.5mA / cm 2 charging the battery to the 3.0V; the positive electrode case, the charging condition : The battery was charged to 4.3 V at a current of 0.5 mA/cm 2 ; Discharge conditions: The battery was terminated by a constant current discharge of 3.0 mA/cm 2 to 3.0 V.
  • the battery is first charged at room temperature, and then subjected to constant current discharge after full charge, and then repeated several times under the same conditions.
  • Charging conditions After charging the battery to a certain voltage with a charge and discharge current of 0.5C, continue charging at this voltage until the total charging time is 2.5 hours (this time is full charge);
  • Discharge condition The discharge current will be 1C
  • the battery is terminated after a constant current reaches a certain voltage.
  • the capacity retention after 100 cycles of the battery is the ratio (%) of the capacity after charge and discharge of the battery for 100 cycles and the capacity after charge and discharge for the first cycle. Comparative example 4
  • Example 8 In the preparation of the negative electrode of Example 8, except that the copper powder was replaced by graphite carbon (i.e., no copper powder was added), a LiMn 2 0 4 IS 8 button type battery was prepared in the same manner as in Example 8, and the results of the test are shown in Table 2.
  • Example 9 A LiNi 1/3 Co 1/3 Mn 1/3 0 2 /Cu-S 8 button cell was prepared in the same manner as in Example 8. The results of the test are shown in Table 2. The battery's charge and discharge voltage ranges from 1.0V to 2.6V.
  • FIG. 6 to 9 are discharge curves of the negative electrode, the positive electrode, and the battery in Example 8, respectively. It can be seen from Fig. 6 that the discharge platform of the negative electrode is around 1.7V, and the discharge capacity per unit sulfur of the first ring discharge is as high as 1477 mAh/g, which is close to the theoretical capacity of the elemental sulfur material. The discharge capacity of elemental sulfur in the battery of Comparative Example 4 without copper powder was extremely low at 262 mAh/g, indicating that the combination of elemental sulfur and copper powder improved the utilization of elemental sulfur materials.
  • Figure 8 can be seen as a simple superposition of Figure 6 and Figure 7.
  • the median voltage of the discharge curve is 2.09V, and its discharge specific capacity is 101.3 mAh/g, which is basically the same as the capacity of the positive electrode, indicating that Cu-S 8 is used as the negative electrode.
  • the material exerts a good capacity of the positive electrode material and its reversible capacity is low.
  • the discharge capacity of the battery composed of the ternary material ((LiNi 1/3 Co 1/3 Mn 1/3 0 2 ) actual capacity 147.0 mAh/g) in the embodiment 9 in Table 2 is 142.1 mAh/g, with the positive electrode
  • the actual capacity is the same, indicating that the positive electrode capacity is well utilized by using Cu-S 8 as the negative electrode material, and its reversible capacity is lower than that of the positive electrode material.
  • Figure 9 is a comparison of the cycle characteristics of a LiMn 2 0 4 /Li battery and a LiMn 2 0 4 I Cu-S 8 battery. It can be seen that the LiMn 2 0 4 I Cu-S 8 battery and the LiMn 2 0 4 /Li battery cycle The characteristics are basically the same. After 30 cycles, the capacity retention rate is above 95%, indicating that the Cu-S 8 anode material has good charge and discharge cycle characteristics.
  • Example 10 In the preparation of the negative electrode of Example 8, except that the metal powders listed in Table 3 were used instead of the copper powder, Examples 10 to 14 were prepared in the same manner as in Example 8 except that LiMn 2 0 4 / MS 8 (M is a metal) button type. Battery, the test results are shown in Table 3.
  • transition metal powder such as nickel, cobalt, molybdenum or titanium other than copper or its partially oxidized or partially vulcanized compound is combined with elemental sulfur to improve the utilization of sulfur and improve the circulation of the battery. characteristic.
  • Example 15 In the preparation of the negative electrode in Example 15, except for using carbon and sulfur listed in Table 4 by substituting Compound (CS 3. 5) n except Examples 16 to 17 Example 15 was prepared similarly LiMn 2 0 4 / Cu- ( CS x ) n button battery, the test results are shown in Table 4.
  • the addition of copper powder greatly improves the utilization of the carbon-sulfur compound and improves the cycle characteristics of the battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

一种廉价且高容量的锂离子电池用硫基过渡金属复合型负极活性物质,并提供使用该负极的具有长寿命、高容量的非水电解液二次电池。该负极至少含有一种上述硫基过渡金属复合型负极活性物质;该非水电解液二次电池具有正极、负极、隔膜和非水电解液。

Description

硫基过渡金属复合型负极活性物质及相应负极及相应电池 技术领域
本发明涉及电化学能源领域, 尤其涉及一种锂离子电池的负极活性物质, 及含有该负极 活性物质的相应负极, 及使用该负极的高性能锂离子电池。 背景技术
锂离子二次电池是一种高效率、 高能量密度的电能存储装置, 已经被广泛应用于小型可 移动电子设备。 与其他电池体系一样, 锂离子电池主要有正极材料、 负极材料、 隔膜和电解 液四大关键材料构成, 材料的性质与锂离子电池的性能有着非常重要的关系。 目前锂离子电 池广泛使用的正极材料主要为锂离子可可逆地嵌入 -脱嵌锂离子的过渡金属氧化物、如以钴酸 锂( LiCo02 )、三元材料( LiNi1/3Co1/3Mn1/302 )等为代表的层状金属氧化物、以锰酸锂( LiMn204) 为代表的尖晶石型金属氧化物、 以磷酸铁锂(LiFeP04)为代表的橄榄石型金属氧化物等; 负 极材料为锂离子可可逆地嵌入-脱嵌的化合物、 如层状石墨。 这些高性能材料的应用, 决定了 锂离子电池今天作为小型携带式通信电子设备 (如手机、 手提式电脑等) 的电源的不可撼动 地位。但随着社会的进一步发展(如电动汽车在动力源方面的要求), 现有的锂离子电池体系 在价格、 安全性、 比容量和功率性能、 原材料的富足等方面都还有待提高。 开发更高性能的 材料和与之对应的锂离子电池极为重要。
单质硫, 作为电池的正极材料, 具有高的能量密度、 丰富的自然资源、 价格低廉和环境 友好等多种优势。 硫作为电池的正极材料的理论比容量 1675mAh/g, 被认为是十分理想的下 一代锂离子电池用正极材料; 如果负极使用锂金属(理论比容量 3860mAh/g), 形成的锂硫二 次电池理论能量密度可以达到 2680Wh/Kg,是理想的高能量密度二次电池。但在锂硫电池中, 硫及其放电产物均是电子和离子绝缘体,还原过程产生的多硫化锂易溶于有机电解液溶剂中, 这些导致 Li-S二次电池倍率性能差、 活性物质利用率低、 容量衰减迅速, 从而限制了其发展 (参见文南犬资料: 1 ) P.G. Bruce, S.A. Freunberger, L.J. Hardwick, and J-M. Tarascon, Nat. Mater., 2012, 11,19 ; 2) A. Manthiram, Y.-Z. Fu, and Y.-S. Su" Acc. Chem. Res., ASAP; 3 ) X. Ji, K.T. Lee, and L.F. Nazar, Nat. Mater., 2009, 8, 500等)。
为改善锂硫电池的循环特性, 提出了各种各样的解决方案, 如美国专利第 7250233号和 第 7078124号, 这些方法虽对电池性能有些改善, 但实际应用效果都不太明显。 本发明的主 要发明人曾通过有机化学的方法把硫固定在有机分子的 C-C骨架上(日本专利第 3871306号, 日本专利第 4208451号,日本专利第 4297673号,日本专利第 4674883号,美国专利第 6709787 号) 大大抑制了硫的溶解问题, 但相对于单质硫, 该材料的制造成本较高、 电池容量有所减 低。 发明内容
本发明的一个目的是提供一种新型锂离子电池用硫基过渡金属复合型负极活性物质, 该 负极活性物质具有良好的导电性, 极高的硫利用率, 优异的循环性能。 本发明提供的硫基过 渡金属复合型负极活性物质, 使锂离子电池在使用过程中, 金属硫化物作为锂离子二次电池 的负极材料。
金属硫化物具有较高电位的放电平台, 一直以来都被认为是候选正极材料。 发明人经过 精心研究和不懈努力发现, 通过选择合适的过渡金属, 改变金属与硫的成键强度, 可以降低 放电平台的电位, 使得金属硫化物材料可以作为锂离子二次电池的负极材料。
本发明提供的硫基过渡金属复合型负极活性物质, 有两种类型: 一种直接以过渡金属硫 化物的形式存在。 另一种则包括至少一种硫基材料和至少一种过渡金属粉末, 该负极活性物 质在负极制备过程中, 以及在用所述负极组装成的电池充放电活化过程中, 伴随硫基材料与 过渡金属粉末的反应, 形成金属硫化物。 以下分别详细阐述。
第一种类型的硫基过渡金属复合型负极活性物质, 包括至少一种选自 Cu、 Ni、 Co、 Fe、 Zn、 Ti、 Mo、 V等金属的各价态硫化物或其中两种以上的混合物。 代表的过渡金属硫化物有 MXS ( l≤x <2)或 MSy (0.5< x≤l ) (M=Cu、 Ni、 Co、 Fe、 Zn、 Ti、 Mo、 V), 如: CuS、 Cu2S、 NiS、 MoS2等。 从负极的高容量和低价格化的角度, 所述的金属硫化物在负极活性物质组成 中的含量 (即硫和过渡金属的重量之和)优选 50wt%以上, 更加优选 80 wt%以上。 太低, 作 为电池的负极材料容量较低。
本发明所述的过渡金属硫化物的来源, 没有特殊的要求, 可来自商业化产品, 也可采取 在集流体上直接生长的方法合成。 本发明所述的金属硫化物通常以粉末颗粒的形状用在负极 中, 颗粒的大小、 尺寸只要满足电极设计的要求, 没有特殊的要求, 通常优选 0.1~20μιη, 更 加优选 1~10μιη。
第二种类型的硫基过渡金属复合型负极活性物质, 包括至少一种硫基材料和至少一种过 渡金属粉末。 该负极活性物质在负极制备过程中, 以及在用所述负极组装成的电池充放电活 化过程中, 伴随硫基材料与过渡金属粉末的反应。
本发明所述的硫基材料选自硫单质 (S8)、 Li2Sn(n≥l)、有机硫化合物、无机硫化物中的一种 或一种以上。 从负极的高容量和低价格化的角度, 优选硫单质 (S8)和 Li2Sn(n≥8)。 负极活性物 质组成中的硫元素含量在 10~80 wt%时综合性能较好。太低,作为电池的负极材料容量较低, 太高时电池的循环特性降低。
本发明所述的过渡金属粉末, 包括选自 Sc、 Ti、 V、 Cr、 Mn、 Fe、 Co、 Ni、 Cu、 Zn、 Y、 Zr、 Nb、 Mo、 Tc、 Ru、 Rh、 Pd、 Ag、 Cd、 Ta、 W、 Re、 Os、 Ir、 Pt禾卩 Au 中一种元素的单 质金属粉末或几种元素的合金金属粉末, 还包括所述单质金属粉末或合金金属粉末部分氧化 或部分硫化的产物。 其中单质金属粉末优选铜、 镍、 钴、 钼、 钛等金属材料。 粉末颗粒直径 优选微米级别, 更优选纳米级别。 所述过渡金属粉末在锂硫电池充放电过程中和负极活性物 质中的硫元素化合生成电导率高、 循环性能稳定的化合物, 使硫元素得到固定, 提高了材料 的比容量。
本发明的另一个目的是提供一种新型锂离子电池负极, 本发明所述的负极具有以下特征, 其组成含有:
至少一种本发明所提供的硫基过渡金属复合型负极活性物质;
适量的导电剂和适量的聚偏二氟乙烯 (PVDF) 等粘结剂; 以及
导电集流体。
本发明所述的负极, 可以通过下述方法制备: 在本发明提供的负极活性物质中适当添加 导电剂和适量的聚偏二氟乙烯 (PVDF) 等粘结剂后, 用 N-甲基 -2-吡咯垸酮 (NMP) 等溶剂 将其溶解分散成含负极活性物质的合剂组成物 (糊、 浆等), 将所述合剂组成物涂布到铜箔、 铝箔等导电集流体的单面或两面, 再除去溶剂, 最终形成含负极活性物质合剂层的带状成形 体。 但是负极的制作方法并不限于上述例示的方法。
所述导电剂可选自碳材料, 例如碳黑导电剂 (乙炔黑、 Super P、 Super S、 350G、 碳纤 维 (VGCF)、碳纳米管( CNTs )、科琴黑( KetjenblackEC300J、 KetjenblackEC600JD、 Carbon ECP、 Carbon ECP600JD) 等)、 石墨导电剂 (KS-6、 KS-15、 SFG-6、 SFG-15等) 碳纳米棒和石墨 烯等中的一种导电材料或几种材料的混合物。
本发明中粘结剂的作用为, 将上述的负极活性物质粘合到集流体上, 并加强负极的机械 整体性,提高固-固界面和 /或固-液界面物理电接触,增加整个负极的电子和离子的传导性能。 可以选用水系、油系等不同的粘结剂,该粘结剂选自聚偏二氟乙烯 (PVDF)、聚乙烯醇(PVA)、 聚四氟乙烯(PTFE)、 羧甲基纤维素钠(CMC)、 聚烯烃类(PP, PE等)、 丁腈橡胶(NBR)、 丁苯橡胶 (SBR)、 聚丙烯腈 (PAN)、 聚乙烯醇 (PVA) 等聚合物中的一种或多种。
本发明所述的导电集流体只要具有导电性, 并不特别限定, 通常为金属导电材料。 根据 本发明的实施方案, 该集流体为导电金属材料或几种金属的合金, 如 Al、 Fe、 Co、 Ni、 Cu、 Zn、 Ag、 Pt和 Au中的一种元素单质或几种元素的合金。 从价格和加工性的角度优选使用铝 和铜集流体。
本发明所述的铜集流体优选铜箔, 集流体厚度和铜箔的材质, 并不特别限定。 铜箔的厚 度也没有特别限定,优化范围是 1-30μιη, 5-15μιη最优选。铜箔的材质可以是纯铜或合金铜, 从价格和加工性的角度优选使用纯铜或铜成分大于 95%的合金铜。
本发明的另一个目的是提供一种使用前面所述负极活性物质及相应负极的电池。 本发明 的电池除使用前面所述负极活性物质及相应负极外, 其构成中还包括正极、 隔膜和非水电解 液等必需部件。 所以本发明的非水电解液二次电池, 只要具有上述负极活性物质及相应负极 即可, 对其他构成要素未作特别限定, 可以采用与现有公知的非水电解液二次电池同样的构 成要素。
通常锂离子电池使用的正极材料都可以在本发明中使用。 正极涉及的正极活性物质, 可 以使用能可逆地吸藏 -放出 (嵌入与脱嵌) 锂离子的化合物, 例如, 可以举出用 LixM02或 LiyM204(式中, M为过渡金属, 0≤x≤l, 0≤y≤2)表示的含锂复合氧化物、 尖晶石状的氧化物、 层状结构的金属硫族化物、 橄榄石结构等。
作为其具体例子, 可以举出 LiCo02等锂钴氧化物、 LiMn204等锂锰氧化物、 LiNi02等锂 镍氧化物、 Li4/3Ti5/304等锂钛氧化物、 锂锰镍复合氧化物、 锂锰镍钴复合氧化物; 具有 LiMP04(M = Fe, Mn、 Ni)等橄榄石型结晶结构的材料等等。
特别是采用层状结构或尖晶石状结构的含锂复合氧化物是优选的, LiCo02、 LiMn204、 LiNi02、 LiNi1/2Mn1/202等为代表的锂锰镍复合氧化物、 LiNii/3Mn1/3Co1/302、 LiNio.6MnQ.2Co。.202 等为代表的锂锰镍钴复合氧化物、或 LiNik ZCoxAlyMgz02(式中, 0≤x≤l、 0≤y≤0.1、 0≤z≤0.1、 0≤l-x-y-z≤l)等含锂复合氧化物。 另外, 上述的含锂复合氧化物中的构成元素的一部分, 被 Ge、 Ti、 Zr、 Mg、 Al、 Mo、 Sn等的添加元素所取代的含锂复合氧化物等也包含其中。
这些正极活性物质, 既可单独使用 1种, 也可 2种以上并用。 例如, 通过同时使用层状 结构的含锂复合氧化物与尖晶石结构的含锂复合氧化物, 可以谋求兼顾大容量化及安全性的 提高。
用于构成非水电解液二次电池的正极, 例如, 在上述正极活性物质中适当添加炭黑、 乙 炔黑等导电助剂, 或聚偏氟乙烯、 聚环氧乙垸等粘合剂等, 配制正极合剂, 将其在以铝箔等 集电材料作为芯材的带状成型体上涂布后使用。 但是, 正极的制作方法不仅仅限于上例。
在本发明提供的非水电解液二次电池中, 用于把正极与负极隔开的隔膜也未作特别限定, 可以采用现有公知的非水电解液二次电池中采用的各种隔膜。
由于隔膜的作用是将电池的正负极活性物质隔开, 避免正负极间任何电子流直接通过, 避免电池短路; 离子流通过时阻力尽可能要小, 所以大都选用多孔聚合物膜。 例如, 采用聚 乙烯、 聚丙烯等聚烯烃类树脂, 或聚对苯二甲酸丁二醇酯等聚酯类树脂形成的细孔性隔膜是 优选的。 另外, 这些细孔性隔膜 (细孔性膜) 也可重叠使用。 上述聚合物微孔膜经材料表面 改性后得到的薄膜, 如陶瓷粉体 (氧化铝、 氧化硅等) 涂覆在聚烯烃上的复合陶瓷隔膜也可 以使用。
对隔膜的厚度也未作特别限定,但考虑到电池的安全性及高容量化两方面,优选为 5-30μιη。 另夕卜, 隔膜的透气度(s/100mL)也未作特别限定,但优选 10-1000 ( s/100mL), 更优选 50-800 ( s/100mL), 特优选 90-700 ( s/100mL)。
在本发明提供的非水电解液二次电池中, 使用非水溶剂 (有机溶剂)作为非水电解液, 其中 高介电常数的非水溶剂是优选的。 由于硫化物 (特别是单质硫的诱导体)在碳酸酯类的电解液 中不易溶剂化, 在这类溶剂构成的电解液中通常难以充放电, 所以多醚类 R(CH2CH20) n-R' (n=l-6; R和 R'为甲基或乙基等)是优选的, 特别是二甲醚四甘醇 (TEGDME), 乙二醇二甲 醚 (DME), 1, 3-二氧戊垸 (DOL) 等是更优选的, 这些溶剂对多硫化物溶解度高, 稳定性 好。
另外, 含碳酸酯类的少量添加是可行的。 其中, 推荐使用介电常数为 30以上的酯。 作为 这样的高介电常数的酯, 例如, 可以举出碳酸乙烯酯、 碳酸丙烯酯、 碳酸丁烯酯、 γ-丁内酯、 硫类酯 (乙二醇硫化物等) 等。 其中, 优选环状酯, 碳酸乙烯酯、 碳酸亚乙烯酯、 碳酸丙烯 酯、 碳酸丁烯酯等环状碳酸酯是特别优选的。 除上述溶剂外, 可以采用碳酸二甲酯、 碳酸二 乙酯、 碳酸甲乙酯等为代表的低粘度的极性链状碳酸酯、 脂肪族支链型碳酸酯类化合物。 环 状碳酸酯 (特别是碳酸乙烯酯) 与链状碳酸酯的混合溶剂是特别优选的。
另外, 除上述非水溶剂外, 可以采用丙酸甲酯等链状垸基酯类、 磷酸三甲酯等链状磷酸 三酯; 3-甲氧基丙腈等腈类溶剂; 以树枝状化合物为代表的具有醚键的支链型化合物等非水 溶剂 (有机溶剂)。
另外, 也可采用氟类溶剂。
作为氟类溶剂, 例如, 可以举出 H(CF2)2OCH3、 C4F9OCH3、 H(CF2)2OCH2CH3、 H(CF2)2OCH2CF3、 H(CF2)2CH20(CF2)2H等、 或 CF3CHFCF2OCH3、 CF3CHFCF2OCH2CH3等 直链结构的 (全氟垸基) 垸基醚, 即 2-三氟甲基六氟丙基甲醚、 2-三氟甲基六氟丙基乙醚、 2-三氟甲基六氟丙基丙醚、 3-三氟甲基八氟丁基甲醚、 3-三氟甲基八氟丁基乙醚、 3-三氟甲基 八氟丁基丙醚、 4-三氟甲基十氟戊基甲醚、 4-三氟甲基十氟戊基乙醚、 4-三氟甲基十氟戊基丙 醚、 5-三氟甲基十二氟己基甲醚、 5-三氟甲基十二氟己基乙醚、 5-三氟甲基十二氟己基丙醚、 6-三氟甲基十四氟庚基甲醚、 6-三氟甲基十四氟庚基乙醚、 6-三氟甲基十四氟庚基丙醚、 7- 三氟甲基十六氟辛基甲醚、 7-三氟甲基十六氟辛基乙醚、 7-三氟甲基十六氟辛基丙醚等。 另外, 上述异 (全氟垸基) 垸基醚与上述直链结构的 (全氟垸基) 垸基醚也可并用。 作为非水电解液中使用的电解质盐, 优选锂的高氯酸盐、 有机硼锂盐、 含氟化合物的锂 盐、 锂酰亚胺盐等锂盐。
作为这样的电解质盐的例子, 例如, 可以举出 LiC104、 LiPF6、 LiBF4、 LiAsF6、 LiSbF6、 L1CF3SO3 、 LiCF3C02、 LiC2F4 (S03) 2、 LiN (C2F5S02) 2、 LiC (CF3S02) 3、 LiCnF2n+1S03(n≥2)、 LiN (RfOS02) 2 (式中, Rf为氟垸基) 等。 在这些锂盐中, 含氟有机锂盐是特别优选的。 含 氟有机锂盐, 由于阴离子性大且易分离成离子, 在非水电解液中易溶解。
电解质锂盐在非水电解液中的浓度, 例如, 0.3mol/L (摩尔 /升)以上是优选的, 更优选 0.7mol/L以上, 优选 1.7mol/L以下, 更优选 1.2mol/L以下。 当电解质锂盐的浓度过低时, 离 子传导度过小, 过高时, 担心未能溶解完全的电解质盐析出。
另外, 在非水电解液中, 也可以添加能提高采用它的电池的性能的各种添加剂, 未作特 别限定。
例如, 采用添加了分子内具有 C=C不饱和键的化合物的非水电解液, 有时可以抑制采用 它的电池充放电循环特性的降低。
作为这种分子内具有 C=C不饱和键的化合物, 例如, 可以举出 C6H5C6Hu (环己苯) 等 芳香族化合物; H (CF2) 4CH2OOCCH=CH2, F (CF2) 8 CH2CH2OOCCH=CH2等被氟化的脂 肪族化合物; 含氟的芳香族化合物等。 另外, 1,3-丙磺内酯, 1,2-丙二醇硫酸酯为主的具有硫 元素的化合物 (例如, 链状或环状磺酸酯、 链状或环状硫酸酯等)、 碳酸亚乙烯基酯、 乙烯基 碳酸乙烯酯、 碳酸氟化乙烯酯等也可以使用, 有时非常有效。 特别是当负极活性物质采用高 结晶材料时, 碳酸亚乙烯基酯、 乙烯基碳酸乙烯酯、 碳酸氟化乙烯酯等并用效果更好。 这些 各种添加剂的添加量, 对非水电解液总量例如为 0.05-5wt%是优选的。
还有, 上述碳酸亚乙烯酯、 乙烯基碳酸乙烯酯、 碳酸氟化乙烯酯, 采用含这些化合物的 非水电解液的电池通过充电, 在负极表面形成保护膜, 抑制由负极活性物质与非水电解液接 触引起的反应, 具有防止由该反应引起的非水电解液的分解等的作用。
此外,为了实现非水电解液二次电池的高温特性的改善,在非水电解液中也可添加酸酐。 酸酐, 作为负极的表面改性剂与在负极表面形成复合膜有关, 具有使高温时电池的贮藏 特性等更加提高的功能。 另外, 通过把酸酐添加至非水电解液中, 由于可以使非水电解液中 的水分含量降低, 也可使采用该非水电解液的电池内的气体发生量减少。
添加至非水电解液的酸酐, 未作特别限定, 既可以是分子内具有至少 1 个酸酐结构的化 合物, 也可以是具有多个酸酐结构的化合物。
作为酸酐的具体例子, 例如, 可以举出苯六酸三酐、 丙二酸酐、 马来酸酐、 丁酸酐、 丙 酸酐、 枕酸酐、 酞酮酸酐、 邻苯二甲酸酐、 均苯四酸二酐、 乳酸酐、 萘二甲酸酐、 甲苯酸酐、 硫代苯甲酸酐、 联苯酸酐、 柠康酸酐、 二甘醇酰胺酸酐、 醋酸酐、 琥珀酸酐、 肉桂酸酐、 戊 二酸酐、 戊烯二酸酐、 戊酸酐、 衣康酸酐、 异酪酸酐、 异戊酸酐、 苯甲酸酐等, 这些可以使 用 1种或 2种以上。 另外, 非水电解液中的酸酐的添加量, 非水电解液总量中为 0.05-lwt% 是优选的。
本发明提供的非水电解液二次电池的制备方法, 例如, 在前述正极与负极之间, 夹住前 述隔膜后加以重叠, 制成电极层压体, 将其卷绕制成电极卷绕体后, 填装在封装体中, 正、 负极与封装体的正、 负极端子通过引线体 (引线片) 等进行连接, 再把前述非水电解液注入 封装体中后, 密封封装体而制成。
作为电池的封装体, 可以采用金属制成的四方形、 圆筒形等封装体, 或由金属 (铝等)层压 膜形成的层压体封装体等。
还有, 非水电解液二次电池的制造方法及电池的构造, 未作特别限定, 在封装体中设置 正极、 负极、 隔膜及非水电解液后, 在电池完全密封前, 设置进行充电的开放化成工序是优 选的。
这样, 充电初期产生的气体或电池内残留的水分可去除至电池外。
在进行上述开放化成工序后除去电池内气体的方法, 未作特别限定, 可采用自然除去或 真空除去的任何一种。 另外, 在电池完全密封前, 也可采用挤压等适当成型电池。
本发明提供的非水电解液二次电池, 由于高容量, 电池特性也良好, 可以利用这样的特 性, 不仅可作为手机、 笔记本电脑等可移动信息化仪器中驱动电源用的二次电池, 而且, 作 为电动汽车或混合电动车等各种机器的电源而广泛利用。
发明人经过精心研究和不懈努力发现, 取得了本发明的成果之一, 第一种类型的硫基过 渡金属复合型负极活性物质及相应负极及相应电池。 过渡金属硫化物用作负极活性物质 (通 常硫化物一直被认为是正极材料) 可获得一种新型锂硫电池系统, 该电池容量高、 循环寿命 长。 将此负极材料与在锂离子电池中广泛使用的正极材料、 隔膜、 非水电解液等组成了高性 能的锂离子电池。 所述的正极材料包括可可逆地嵌入 -脱嵌锂离子的锂离子过渡金属氧化物、 如以钴酸锂 (LiCo02)、 三元材料 (LiNi1/3Co1/3Mn1/302) 等为代表的层状的金属氧化物、 以 锰酸锂 (LiMn204) 为代表的尖晶石型的金属氧化物、 以磷酸铁锂 (LiFeP04) 为代表的橄榄 石型的金属氧化物等。该成果中,过渡金属硫化物从根本上解决了锂硫电池固有的技术问题, 使得锂硫电池的性能得到大幅度提高, 同时具有优异的循环性能, 循环性能可与现行的锂离 子电池相当。
基于上述原理, 发明人经过精心研究和不懈努力发现, 通过在单质硫等硫基材料构成的 电极材料中加入铜粉等过渡金属粉末, 并将该电极材料用作锂硫电池的负极活性物质 (通常 单质硫一直被认为是正极材料) 可以大大提高单质硫等硫基材料的循环寿命, 并将此负极材 料与在锂离子电池中广泛使用的正极材料、隔膜、非水电解液等组成了高性能的锂离子电池, 取得了本发明的成果之二, 第二种类型的硫基过渡金属复合型负极活性物质及相应负极及相 应电池。 所述的正极材料包括锂离子可可逆地嵌入 -脱嵌的锂离子过渡金属氧化物、 如以钴酸 锂 (LiCo02)、 三元材料 (LiNi1/3C0l/3Mn1/302 ) 等为代表的层状的金属氧化物、 以锰酸锂 ( LiMn204) 为代表的尖晶石型的金属氧化物、 以磷酸铁锂 (LiFeP04) 为代表的橄榄石型的 金属氧化物等。
该成果中, 铜粉等过渡金属粉末的加入, 电极在充放电过程中, 硫和铜等过渡金属反应 生成不溶于电解液的新的化合物。 铜等过渡金属在提高了硫-硫键的活性和利用率的同时, 也 把硫被固定在了电极上, 从而从根本上解决了锂硫电池固有的技术问题, 使得硫电池的性能 得到大幅度提高。在本发明的电极体系或电池中, 单质硫的利用率几乎可到达 100%, 容量可 接近或达到硫的理论容量 (1670mAh/g), 是现行的锂离子电池用负极材料石墨的 4倍以上。 该成果的电池具有优异的循环性能, 可与现行的锂离子电池相当。
本发明提供的硫基过渡金属复合型负极活性物质的电位为 1.7V左右 (相对于锂金属电位)。 使用该负极活性物质及相应负极的电池在充放电循环过程中, 不会在负极表面产生锂枝晶, 可以防止因锂枝晶而引起的内部短路现象。 所以与负极活性物质采用低电势的金属锂或者石 墨的传统锂离子电池相比, 本发明的电池更安全。 另一方面, 本发明的硫基过渡金属复合型 负极活性物质与采用尖晶石型钛酸锂(Li4Ti5012: 电位 1.5V, 实际容量 150 mAh/g左右)、 工 作电压相近, 但本发明的活性物质的理论容量是后者的 10倍以上。所以利用本发明的负极活 性物质的电池、 比同样安全性高的钛酸锂系锂离子电池相比电池容量更高。
本发明提供的硫基过渡金属复合型负极活性物质具有和钛酸锂类似的性能, 即放电曲线 平坦、 导电性好、 循环稳定性好。 另外, 它还具有来源广泛低廉、 制备容易、 比容量高等优 势。 附图说明
图 1是实施例 1负极的电极充放电曲线。
图 2是实施例 1正极的电极充放电曲线。
图 3是实施例 1 LiMn204 / Cu2S电池的充放电曲线。
图 4是 LiMn204 /Li电池与 LiMn204 I Cu2S电池的循环特性对比曲线。
图 5是实施例 2硫化亚铜材料的 XRD图。 图 6是实施例 8负极的电极充放电曲线。
图 7是实施例 8正极的电极充放电曲线。
图 8是实施例 8电池的充放电曲线。
图 9是 LiMn204 /Li电池与 LiMn204 I Cu-S8电池的循环特性对比曲线。 具体实 式
下面结合附图通过实施例对本发明做进一步说明。 但是, 应当理解, 实施例和对比例是 用于解释本发明实施方案的, 在不超出本发明主题的范围内, 本发明保护范围不受所述实施 例的限定。
本发明的其它目的及优点将部分地在随后的说明中阐述, 部分地从所述的说明中显而易 见, 或者通过本发明的实施来领会。
还有, 在以下的说明中, "% "未作特别说明的均为质量基准。 实施例 1
负极制备: 把 70g硫化亚铜 (阿拉丁 ΤΜ, 5μιη)、 20g导电剂乙炔黑研磨并混合均匀; 将 10重量份的粘结剂 PVDF溶解于 90重量份的溶剂 N-甲基 -2-吡咯垸酮中制得的粘结剂溶液; 用溶剂 N-甲基 -2-吡咯垸酮将 90重量份的负极活性物质粉末和 100重量份的粘结剂溶液混合 搅拌 1小时或更长时间, 制备成包括粘结剂涂层的负极活性物质的粉体浆料; 上述负极浆料 涂布在厚度 ΙΟμιη的铝箔集流体上, 涂布后的电极极片在 60°C的真空烘箱中干燥 12 h除去溶 剂, 然后将极片冲压成直径 12mm的圆片, 称重, 用于电池的负极。 该电极的半电池放电曲 线见图 1。
正极制备:在 90质量份的尖晶石锰酸锂 ( LiMn204,正极活性物质,实际容量 106.3mAh/g) 中,混合 5质量份的作为导电剂的炭黑,在该混合物中添加聚偏二氟乙烯 5质量份溶解于 NMP 的溶液, 混合而制成正极合浆液, 使其通过 70目筛网, 去除粒径大的部分。 将该正极浆料均 匀地涂布在厚度 15μιη的铝箔的单面上, 涂布后的电极极片在 80°C的真空烘箱中干燥 12 h除 去溶剂后, 将极片冲压成直径 11mm圆片, 称重, 用于电池的正极。 正极中的活性物质的含 量按照正极容量对负极容量的比为 100比 120 (即负极过量) 设计, 涂布制备。 该电极的半 电池放电曲线见图 2。
电池制备: 用上述的硫负极和上述的尖晶石锰酸锂正极极片组成扣式电池对电池进行了 评价。电池的制备方法如下:在氩气气氛的手套箱中,按照负极极片、三层多孔隔膜 ( PP/PE/PP)、 吸液纸、 正极极片、 铝垫片的顺序叠加, 加入电解液组装成扣式全电池, 并在电池测试系统 中测试电池的性能, 充放电截止电压为 1.0V~2.6V。 电池放电曲线、 循环特性和电池的放电 容量 (由于负极过量, 实际上也是正极放电容量) 见图 3、 图 4和表 1。
电极容量确认:
制备的电极片、直径比电极片大 lmm、厚度为 0.1mm的金属锂箔、 电解液(1M的二(三 氟甲基磺酸) 亚胺锂 (LiTFSI) -DOL/DME ( 3/7 体积比)), 以及隔膜 (PP/PE/PP) , 在充满 氩气的手套箱中组装扣式半电池。 放置一晚之后, 利用充放电装置对电池特性进行评价。 负 极的场合, 放电条件: 以 0.5mA/cm2的电流将电池定电流放电到 1.0V后终止; 充电条件: 以 0.5mA/cm2的电流将电池充电到 3.0V; 正极的场合, 充电条件: 以 0.5mA/cm2的电流将电池 充电到 4.3V; 放电条件: 以 0.5mA/cm2的电流将电池定电流放电到 3.0V后终止。
电池充放电性能的评价:
在室温下先对电池进行充电, 满充电后再进行定电流放电, 之后在同样条件下反复多次 循环。 充电条件: 以 0.5C的充放电电流将电池充到一定电压后, 再在此电压下继续充电达到 总充电时间为 2.5小时为止 (此时为满充电); 放电条件: 以 1C的放电电流将电池定电流到 一定电压后终止。 电池的 100次循环后的容量保持率为电池 100次循环充放电后的容量与第 一次循环充放电后的容量的比 (%)。 实施例 2
Cu2S的合成:
把化学计量的铜和硫的混合物(摩尔比 =2/1 )混合后, 加入耐热强化玻璃管中, 高真空封 管后, 以 3°C/分加热至 400°C后保温 3小时。之后以 5°C/分冷却至室温。取出粉碎后, 备用。 元素分析的结果表明合成的硫化铜的构成为 CUl.98S。实施例中的硫化亚铜 X线衍射谱图见图 5。
把前述的 CUl.98S用作负极活性物质, 与实施例 1同样地制作电池并进行了评价。 评价结 果见表 1。 实施例 3~6及比较例 1~3
实施例 3~6及比较例 1~3是利用与实施例 2同样的合成方法, 不同化学计量合成的铜的 硫化物 (CuxS ) 粉体材料 (组成见表 1 ) 用作负极活性物质, 并与实施例 1 同样地制作成电 池并进行了评价。 评价结果见表 1。 表 1电池的组成与电池特性
Figure imgf000012_0001
可以看出, (CuxS )粉体材料用作负极活性物质具有较好的电化学特性, 电池正极的活性 物质的利用率都很高。 另外铜与硫的摩尔比 x, 在 1.7≤x≤2的范围内, 电池在 100次循环后 的容量保持率均在 75%以上, 不在这个范围内的电池循环特性不太高。 而当 χ <1时, 电池循 环特性劣化严重。 实施例 7
与实施例 1条件相同, 除了使用硫化镍(NiS、 阿拉丁 TM)替代硫化铜之外, 以同样条件 制作成电池并进行了评价。 测试结果如下, 在 LiMn204/NiS电池中的 LiMn204的利用容量为 100.9mAh/g, 100次循环后的容量保持率为 60.2%, 性能良好。结果表明硫化镍也可用作该电 池体系的负极材料。
尽管已参照优选实施方案对本发明进行了详细的描述, 但是, 本领域的技术人员应当理 解, 可以对本发明作出多种修改或替换, 而无须脱离所附权利要求书或其等价物中阐述的本 发明的构思和范围。 实施例 8
负极制备: 把 65g硫粉、 30g导电剂乙炔黑、 130g的电解铜粉 (摩尔比 Cu : S=2 : 1 )研 磨并混合均匀, 然后加入到 100克的固含量 2%的 CMC胶黏剂水溶液中, 用溶剂 N-甲基 -2- 吡咯垸酮 (NMP)和蒸馏水分散均匀 (体积比大约 1 : 1 ), 再加入 7.5g固含量为 40%的 SBR 胶黏剂乳液, 混合搅拌 1小时或更长时间, 制备成一定粘度的粉体浆料; 上述负极浆料涂布 在厚度 ΙΟμιη的铝箔集流体上, 涂布后的电极极片在 60°C的真空烘箱中干燥 12 h除去溶剂, 然后将极片冲压成直径 12mm的圆片,称重,用于电池的负极。该负极片中的硫含量 1.4mg。 电极放电曲线和放电容量见图 6。
正极制备 在 90质量份的尖晶石锰酸锂 (LiMn204,正极活性物质,实际容量 106.3mAh/g) 中,混合 5质量份的作为导电剂的炭黑,在该混合物中添加聚偏二氟乙烯 5质量份溶解于 NMP 的溶液, 混合而制成正极合浆液, 使其通过 70目筛网, 去除粒径大的部分。 将该正极浆料均 匀地涂布在厚度 15μιη的铝箔的单面上, 涂布后的电极极片在 80°C的真空烘箱中干燥 12 h除 去溶剂后, 将极片冲压成直径 11mm圆片, 称重, 用于电池的正极。 正极中的活性物质的含 量按照正极容量对负极容量的比为 100比 120 (即负极过量) 设计, 涂布制备。 电极放电曲 线和放电容量见图 7。
电池制备 用上述的硫负极和上述的尖晶石锰酸锂正极极片组成扣式电池对电池进行了 评价。电池的制备方法如下:在氩气气氛的手套箱中,按照负极极片、三层多孔隔膜 (PP/PE/PP)、 吸液纸、 正极极片、 铝垫片的顺序叠加, 加入电解液组装成扣式全电池, 并在电池测试系统 中测试电池的性能, 充放电截止电压为 1.0V~2.6V。 电池放电曲线和电池的放电容量 (由于 负极过量, 实际上也是正极放电容量) 见图 8和表 2。
电极容量确认:
制备的电极片、直径比电极片大 lmm、厚度为 0.1mm的金属锂箔、 电解液(1M的二(三 氟甲基磺酸) 亚胺锂 (LiTFSI) -DOL/DME (3/7 体积比)), 以及隔膜 (PP/PE/PP), 在充满 氩气的手套箱中组装扣式半电池。 放置一晚之后, 利用充放电装置对电池特性进行评价。 负 极的场合, 放电条件: 以 0.5mA/cm2的电流将电池定电流放电到 1.0V后终止; 充电条件: 以 0.5mA/cm2的电流将电池充电到 3.0V; 正极的场合, 充电条件: 以 0.5mA/cm2的电流将电池 充电到 4.3V; 放电条件: 以 0.5mA/cm2的电流将电池定电流放电到 3.0V后终止。
电池充放电性能的评价:
在室温下先对电池进行充电, 满充电后再进行定电流放电, 之后在同样条件下反复多次 循环。 充电条件: 以 0.5C的充放电电流将电池充到一定电压后, 再在此电压下继续充电达到 总充电时间为 2.5小时为止 (此时为满充电); 放电条件: 以 1C的放电电流将电池定电流到 一定电压后终止。 电池的 100次循环后的容量保持率为电池 100次循环充放电后的容量与第 一次循环充放电后的容量的比 (%)。 比较例 4
在实施例 8的负极制备过程中, 除了铜粉由石墨碳替代外 (即没有加铜粉), 与实施例 8 同样制备了 LiMn204 I S8扣式电池, 测试的结果见表 2。
实施例 9
在实施例 8的负极制备过程中, 除了用正极活性物质三元材料(( LiNi1/3Co1/3Mn1/302 )实 际容量 147.0 mAh/g ) 正极替代尖晶石锰酸锂以外, 实施例 9 与实施例 8 同样制备了 LiNi1/3Co1/3Mn1/302 /Cu-S8扣式电池,测试的结果见表 2。电池的充放电电压范围为 1.0V~2.6V。
图 6~9分别为实施例 8中的负极、 正极及电池的的放电曲线。 从图 6可以看出负极的放 电平台为 1.7V前后, 首圈放电单位硫重量放电容量高达 1477mAh/g, 接近单质硫材料的理论 容量。 而没有加铜粉的对比例 4的电池中的单质硫的放电容量 262mAh/g利用率极低, 表明 单质硫与铜粉的复合提高了的单质硫材料的利用率。图 8可以看作是图 6和图 7的简单叠加, 放电曲线的中值电压为 2.09V, 其放电比容量为 101.3 mAh/g, 与正极的容量基本一致, 说明 利用 Cu-S8作为负极材料很好地发挥了正极材料的容量, 且其可逆容量较低。 表 2中实施 9 中的三元材料((LiNi1/3Co1/3Mn1/302)实际容量 147.0 mAh/g)构成的电池的放电比容量为 142.1 mAh/g, 与正极的实际容量一致, 说明利用 Cu-S8作为负极材料很好地发挥了正极容量, 且其 可逆容量低于正极材料。
图 9为 LiMn204 /Li电池与 LiMn204 I Cu-S8电池的循环特性比较, 可以看出 LiMn204 I Cu-S8电池的与 LiMn204 /Li 电池的循环特性基本一致, 经过 30周期的循环, 容量保持率为 95%以上, 说明 Cu-S8负极材料具有良好地充放电循环特性。
表 2电池的组成与电池特性
硫负极的组成 电池容量
100次循环后的 (原子数比) ( mAh/g )
实施例 正极 容量保持率
(正极容
单质硫 铜粉 ( % )
量)
8 锰酸锂 1 2 101.2 95.5
9 三元材料
1 2 142.1 94.9
NCM111
比较例 4 锰酸锂 1 0 106.3 21.1 实施例 10~14
在实施例 8的负极制备过程中, 除了用表 3所列的金属粉替代铜粉以外, 实施例 10~14 与实施例 8同样制备了 LiMn204 / M-S8 (M为金属) 扣式电池, 测试的结果见表 3。
表 3电池的组成与电池特性
Figure imgf000015_0001
不难看出, 所述利用铜以外的镍、 钴、 钼、 钛等过渡金属粉末或其部分氧化或部分硫化 的化合物与单质硫复合, 都在提高硫的利用率的同时, 提高了电池的循环特性。 实施例 15
24g Na2S溶于 50ml 乙醇 /水 (1/1 Wv) 溶液, 然后加入硫粉 10.8 g, 室温下反应 1小时, 用旋蒸仪使得乙醇溶剂蒸发,加入 150 ml DMF (二甲基甲酰胺),搅拌,再缓慢滴加 8.61g 1,3- 六氯丁二烯,室温下反应 1小时,加入 300 ml水使产物沉淀下来,离心,依次用纯水、丙酮、 甲醇清洗。 40°C烘干之后, 得到咖啡色的固体碳硫化合物 (CS3.5)n
除了用 (CS3.5)n替代单质硫且 (CS3.5)n:铜粉 =1: 2 (重量比)以外, 与实施例 1同样地制备 了负极极片。 之后, 利用上述负极与实施例 1同样地制备了 LiMn204 I Cu-(CS3.5)n扣式电池, 测试的结果见表 4。 实施例 16~17和比较例 5
在实施例 15的负极制备过程中, 除了使用表 4所列的碳硫化合物替代 (CS3.5)n以外, 实施 例 16~17与实施例 15同样制备了 LiMn204 / Cu-(CSx)n扣式电池, 测试的结果见表 4。
比较例 5中使用的负极中没有添加铜粉, 其它与实施例 15相同。 测试的结果见表 4。 表 4电池的组成与电池特性
Figure imgf000016_0001
可以看出, 与单质硫负极一样, 铜粉的添加大大提高了碳硫化合物的利用率的同时, 提 高了电池的循环特性。

Claims

权 利 要 求 书
1、 一种硫基过渡金属复合型负极活性物质, 其特征在于, 该电池负极活性物质 含有至少一种过渡金属硫化物。
2、 根据权利要求 1所述的负极活性物质, 其特征在于, 所述过渡金属硫化物选 自 Cu、 Co、 Ni、 Fe、 Zn、 Ti、 Mo、 V的各价态硫化物或其中两种以上的混合物。
3、 根据权利要求 1所述的负极活性物质, 其特征在于, 所述过渡金属硫化物为 CuxS ( l≤x≤2
4、 根据权利要求 1所述的负极活性物质, 其特征在于, 所述过渡金属硫化物为 NixS ( l≤x≤2
5、 根据权利要求 1所述的负极活性物质, 其特征在于, 所述过渡金属硫化物占 电池负极活性物质总量的 50wt%以上。
6、 根据权利要求 1所述的负极活性物质, 其特征在于, 所述过渡金属硫化物占 电池负极活性物质总量的 80wt%以上。
7、 根据权利要求 1所述的负极活性物质, 其特征在于, 所述过渡金属硫化物颗 粒粒径为 0.1~20μιη。
8、 根据权利要求 1所述的负极活性物质, 其特征在于, 所述过渡金属硫化物颗 粒粒径为 1~10μιη。
9、 一种硫基过渡金属复合型负极活性物质, 其特征在于, 该负极活性物质含有 至少一种硫基材料和一种过渡金属粉末, 所述硫基材料为硫单质、 Li2Sn(n≥l)、 有机硫化合物或无机硫化物。
10、根据权利要求 9所述的负极活性物质, 其特征在于, 所述过渡金属粉末包括 选自 Sc、 Ti、 V、 Cr、 Mn、 Fe、 Co、 Ni、 Cu、 Zn、 Y、 Zr、 Nb、 Mo、 Tc、 Ru、 Rh、 Pd、 Ag、 Cd、 Ta、 W、 Re、 Os、 Ir、 Pt和 Au 中一种元素的单质金属粉末 或几种元素的合金金属粉末,还包括所述单质金属粉末或合金金属粉末部分氧化 或部分硫化的产物。
11、 根据权利要求 9所述的负极活性物质, 其特征在于, 含有单质硫和金属铜粉 末。
12、根据权利要求 9所述的负极活性物质, 其特征在于, 含有碳硫化合物和金属 铜粉末。
13、 根据权利要求 9所述的负极活性物质, 其特征在于, 含有 Li2Sn(n≥8)和金属 铜粉末。
14、 一种电池负极, 包括导电集流体、 导电剂和粘结剂, 其特征在于, 还包括权 利要求 1-13任一权利要求所述的负极活性物质。
15、 根据权利要求 14所述的电池负极, 其特征在于, 所述导电集流体为铜箔。
16、 根据权利要求 14所述的电池负极, 其特征在于, 所述铜箔厚度为 1-30μιη。
17、 根据权利要求 14所述的电池负极, 其特征在于, 所述铜箔厚度为 5-15μιη。
18、 一种电池, 包括正极、 多孔隔膜和非水电解液, 其特征在于, 还包括权利要 求 14-17任一权利要求所述的负极。
19、 根据权利要求 18所述的电池, 其特征在于, 所述正极至少包含一种具备层 状构造的锂过渡金属复合氧化物,或者一种具备尖晶石状的锂过渡金属复合氧化 物, 或者一种具备橄榄石结构的锂过渡金属复合氧化物。
20、 根据权利要求 18所述的电池, 其特征在于, 所述非水电解液的溶剂为分子 式为 R(CH2CH20)n-R'的多醚类, 其中, n=l-6, R和 R'为甲基或乙基。
PCT/CN2014/075762 2014-04-21 2014-04-21 硫基过渡金属复合型负极活性物质及相应负极及相应电池 WO2015161400A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016561848A JP6567546B2 (ja) 2014-04-21 2014-04-21 硫黄系遷移金属複合負極活物質、対応する負極および対応する電池
US15/121,249 US10847783B2 (en) 2014-04-21 2014-04-21 Sulfur-based transition metal composite and the negative electrode comprising the same and the battery comprising the same
PCT/CN2014/075762 WO2015161400A1 (zh) 2014-04-21 2014-04-21 硫基过渡金属复合型负极活性物质及相应负极及相应电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/075762 WO2015161400A1 (zh) 2014-04-21 2014-04-21 硫基过渡金属复合型负极活性物质及相应负极及相应电池

Publications (1)

Publication Number Publication Date
WO2015161400A1 true WO2015161400A1 (zh) 2015-10-29

Family

ID=54331547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/075762 WO2015161400A1 (zh) 2014-04-21 2014-04-21 硫基过渡金属复合型负极活性物质及相应负极及相应电池

Country Status (3)

Country Link
US (1) US10847783B2 (zh)
JP (1) JP6567546B2 (zh)
WO (1) WO2015161400A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105428618A (zh) * 2015-11-17 2016-03-23 大连理工大学 一种壳核型碳包覆金属硫化物纳米复合粒子的制备方法及其应用
CN108199034A (zh) * 2018-02-09 2018-06-22 中南大学 锂离子电池用硫化锌/硫化亚铁负极复合材料及制备方法
CN110950391A (zh) * 2019-11-25 2020-04-03 中国矿业大学 一种空心立方Ni3S4/CuS2超级电容器电极材料的制备方法及其应用

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6745504B2 (ja) * 2016-04-05 2020-08-26 住友ゴム工業株式会社 リチウムイオン二次電池用正極活物質、正極およびリチウムイオン二次電池
CN108493454B (zh) * 2018-01-29 2021-01-01 湖南航盛新能源材料有限公司 一种过渡金属硫化物修饰的铜集流体及其制备方法
CN111630703A (zh) * 2018-01-31 2020-09-04 松下知识产权经营株式会社 非水电解质二次电池、电解液和非水电解质二次电池的制造方法
CN109546153B (zh) * 2018-11-15 2021-02-12 清华大学深圳研究生院 多孔铜集流体的制备方法、多孔铜集流体、负电极及电池
CN111900385B (zh) * 2020-07-29 2022-04-26 肇庆市华师大光电产业研究院 一种钾离子电池新型负极材料及其制备方法
US20230020972A1 (en) * 2021-07-09 2023-01-19 Lg Energy Solution, Ltd. Electrode Assembly
CN114400321A (zh) * 2022-02-15 2022-04-26 北京航空航天大学 一种低温充放电锂离子电池及其负极材料
CN114975994B (zh) * 2022-06-17 2024-02-13 北京航空航天大学 一种低温可快充锂离子电池负极材料及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102969501A (zh) * 2012-11-19 2013-03-13 上海交通大学 二元金属硫化物在可充镁电池中的应用方法
CN103035914A (zh) * 2013-01-08 2013-04-10 浙江大学 硫化镍薄片/石墨烯复合材料及其制备方法和应用
CN103682295A (zh) * 2012-09-26 2014-03-26 华为技术有限公司 一种锂离子电池负极材料及其制备方法、锂离子电池负极片和锂离子电池
CN103682332A (zh) * 2012-09-26 2014-03-26 华为技术有限公司 一种锂离子电池复合型负极材料及其制备方法和锂离子电池
CN103915622A (zh) * 2013-01-09 2014-07-09 厦门大学 过渡金属硫化物负极活性物质及相应负极及相应电池
CN103915621A (zh) * 2013-01-09 2014-07-09 厦门大学 新型负极活性物质及相应负极及相应电池
CN103915605A (zh) * 2013-01-09 2014-07-09 厦门大学 含硫负极及相应非水电解液二次电池

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4670363A (en) * 1986-09-22 1987-06-02 Duracell Inc. Non-aqueous electrochemical cell
USH1334H (en) * 1991-06-10 1994-07-05 The United States Of America As Represented By The Secretary Of The Army Method of making a teflon bonded cathode for use in a high temperature cell and high temperature cell including said cathode
US5814420A (en) * 1994-11-23 1998-09-29 Polyplus Battery Company, Inc. Rechargeable positive electrodes
JPH11162467A (ja) * 1997-09-26 1999-06-18 Mitsubishi Chemical Corp 非水系二次電池
JPH11297359A (ja) * 1998-04-15 1999-10-29 Matsushita Electric Ind Co Ltd 全固体リチウム二次電池
JP3723146B2 (ja) * 2001-03-29 2005-12-07 株式会社東芝 非水電解質電池
KR100502357B1 (ko) * 2003-08-29 2005-07-20 삼성에스디아이 주식회사 고분자 필름을 구비한 양극 및 이를 채용한 리튬-설퍼 전지
US20060199078A1 (en) * 2005-03-02 2006-09-07 Matsushita Electric Industrial Co., Ltd. Negative electrode for non-aqueous secondary battery
FR2961635B1 (fr) * 2010-06-17 2012-08-17 Commissariat Energie Atomique Accumulateur electrochimique au lithium a architecture bipolaire fonctionnant sur la base d'un couple d'electrodes compose lithie-soufre
KR101113976B1 (ko) * 2010-10-27 2012-03-13 한국과학기술연구원 자기조립된 전극 활물질-탄소 나노튜브 복합체와 그 제조 방법 및 이를 포함하는 이차전지
JP5729163B2 (ja) * 2011-06-24 2015-06-03 トヨタ自動車株式会社 負極活物質及び負極活物質の製造方法
CN103875097A (zh) * 2011-09-12 2014-06-18 小利兰斯坦福大学理事会 可再充电锂电池的囊封硫阴极
WO2013065787A1 (ja) * 2011-11-02 2013-05-10 独立行政法人産業技術総合研究所 ナトリウム二次電池用負極材料及びその製造方法、並びにナトリウム二次電池用負極及びナトリウム二次電池
FR2982082B1 (fr) * 2011-11-02 2013-11-22 Fabien Gaben Procede de fabrication de batteries en couches minces entierement solides
JP5999307B2 (ja) * 2012-03-07 2016-09-28 日産自動車株式会社 正極活物質、電気デバイス用正極及び電気デバイス
US20140272558A1 (en) * 2013-03-14 2014-09-18 GM Global Technology Operations LLC Electrode for a lithium-based secondary electrochemical device and method of forming same
CN104241679A (zh) * 2013-06-14 2014-12-24 上海绿孚新能源科技有限公司 二次电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103682295A (zh) * 2012-09-26 2014-03-26 华为技术有限公司 一种锂离子电池负极材料及其制备方法、锂离子电池负极片和锂离子电池
CN103682332A (zh) * 2012-09-26 2014-03-26 华为技术有限公司 一种锂离子电池复合型负极材料及其制备方法和锂离子电池
CN102969501A (zh) * 2012-11-19 2013-03-13 上海交通大学 二元金属硫化物在可充镁电池中的应用方法
CN103035914A (zh) * 2013-01-08 2013-04-10 浙江大学 硫化镍薄片/石墨烯复合材料及其制备方法和应用
CN103915622A (zh) * 2013-01-09 2014-07-09 厦门大学 过渡金属硫化物负极活性物质及相应负极及相应电池
CN103915621A (zh) * 2013-01-09 2014-07-09 厦门大学 新型负极活性物质及相应负极及相应电池
CN103915605A (zh) * 2013-01-09 2014-07-09 厦门大学 含硫负极及相应非水电解液二次电池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105428618A (zh) * 2015-11-17 2016-03-23 大连理工大学 一种壳核型碳包覆金属硫化物纳米复合粒子的制备方法及其应用
CN108199034A (zh) * 2018-02-09 2018-06-22 中南大学 锂离子电池用硫化锌/硫化亚铁负极复合材料及制备方法
CN110950391A (zh) * 2019-11-25 2020-04-03 中国矿业大学 一种空心立方Ni3S4/CuS2超级电容器电极材料的制备方法及其应用
CN110950391B (zh) * 2019-11-25 2021-02-05 中国矿业大学 一种空心立方Ni3S4/CuS2超级电容器电极材料的制备方法及其应用

Also Published As

Publication number Publication date
US20170125794A1 (en) 2017-05-04
JP2017514275A (ja) 2017-06-01
US10847783B2 (en) 2020-11-24
JP6567546B2 (ja) 2019-08-28

Similar Documents

Publication Publication Date Title
JP6567546B2 (ja) 硫黄系遷移金属複合負極活物質、対応する負極および対応する電池
JP5117021B2 (ja) 負極及びそれを採用したリチウム電池
JP5348170B2 (ja) リチウム二次電池用負極及びリチウム二次電池
CN104835961A (zh) 一种表面包覆碳的过渡金属硫化物以及制备方法和应用
JP2006344390A (ja) 非水電解液二次電池
CN109728253A (zh) 锂离子电池及其正极片及其制备方法
CN103762351A (zh) 阴极活性材料及包含该阴极活性材料的锂二次电池
JP2017520892A (ja) リチウム電池用正極
JP2021108305A (ja) 正極及び該正極を含むリチウム電池
CN103915622A (zh) 过渡金属硫化物负极活性物质及相应负极及相应电池
CN103762350B (zh) 一种用于锂电的钛系负极材料及其制备方法
JP5279045B2 (ja) 非水電解液二次電池
JP7177277B2 (ja) リチウム二次電池用電極
JP7039775B2 (ja) 長寿命に適合した二次電池用電極の製造方法
JP2003077476A (ja) リチウムイオン二次電池
WO2023070268A1 (zh) 一种电化学装置及包含该电化学装置的用电装置
JP2012099316A (ja) リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
WO2013029208A1 (zh) 高比能富锂多元系锂离子蓄电池及其制造方法
CN110024190B (zh) 非水二次电池用电极活性物质及使用其的非水二次电池
JP6346733B2 (ja) 電極、非水系二次電池及び電極の製造方法
JP5181455B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法、および、これを用いた非水系電解質二次電池
CN115411220A (zh) 正极片、电芯和电池
CN110265651B (zh) 一种非水电解液电池及其制备方法
JP2002175836A (ja) 非水電解質電池
JP5242315B2 (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14889965

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15121249

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016561848

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14889965

Country of ref document: EP

Kind code of ref document: A1