WO2015159867A1 - トロイダル型無段変速機 - Google Patents

トロイダル型無段変速機 Download PDF

Info

Publication number
WO2015159867A1
WO2015159867A1 PCT/JP2015/061395 JP2015061395W WO2015159867A1 WO 2015159867 A1 WO2015159867 A1 WO 2015159867A1 JP 2015061395 W JP2015061395 W JP 2015061395W WO 2015159867 A1 WO2015159867 A1 WO 2015159867A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
disk
continuously variable
variable transmission
output
Prior art date
Application number
PCT/JP2015/061395
Other languages
English (en)
French (fr)
Inventor
謙一郎 田中
秀幸 今井
龍彦 五井
藤井 勲
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to EP15779298.7A priority Critical patent/EP3133316B1/en
Priority to JP2016513783A priority patent/JP6277266B2/ja
Priority to CA2945468A priority patent/CA2945468A1/en
Publication of WO2015159867A1 publication Critical patent/WO2015159867A1/ja
Priority to US15/290,155 priority patent/US10330181B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H15/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
    • F16H15/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members without members having orbital motion
    • F16H15/04Gearings providing a continuous range of gear ratios
    • F16H15/06Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B
    • F16H15/32Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line
    • F16H15/36Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface
    • F16H15/38Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface with two members B having hollow toroid surfaces opposite to each other, the member or members A being adjustably mounted between the surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/541Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/021Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings toothed gearing combined with continuous variable friction gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H15/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
    • F16H15/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members without members having orbital motion
    • F16H15/04Gearings providing a continuous range of gear ratios
    • F16H15/06Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B
    • F16H15/32Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line
    • F16H15/36Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface
    • F16H15/38Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface with two members B having hollow toroid surfaces opposite to each other, the member or members A being adjustably mounted between the surfaces
    • F16H2015/383Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface with two members B having hollow toroid surfaces opposite to each other, the member or members A being adjustably mounted between the surfaces with two or more sets of toroid gearings arranged in parallel

Definitions

  • the present invention relates to a structure of a toroidal type continuously variable transmission used for, for example, an aircraft power generation device.
  • the toroidal-type continuously variable transmission includes a toroidal transmission that includes an input disk and an output disk that are concentrically opposed to each other, and a power roller that is in contact with the curved curved concave surfaces of the two disks with a strong pressure.
  • the gear ratio can be changed steplessly (continuously) by adjusting the inclination angle of the power roller with respect to both disks.
  • a toroidal type continuously variable transmission employs a double cavity type in which two toroidal transmission parts are arranged side by side on the same shaft.
  • a transmission in which two disks adjacent to each other at the center in the axial direction of two toroidal transmission units see, for example, Patent Document 1 are separately provided
  • a formed transmission see, for example, Patent Document 2 is known.
  • the deformation in the axial direction of the two discs arranged in the central portion in the axial direction is small, and the entire transmission can be configured to be small and light.
  • an input / output gear can be arranged between adjacent discs in the central portion in the axial direction, so that the outer diameter of the gear can be reduced and the increase in the peripheral speed of the gear can be suppressed.
  • JP 2002-081519 A Japanese Patent Laid-Open No. 09-177918
  • the gear is provided on the outer peripheral portion of the input disc, so that the outer diameter of the gear is increased and the peripheral speed of the gear is increased. As a result, the oil agitation loss due to the gear is increased, and the efficiency of the power generation device is reduced.
  • an object of the present invention is to solve the above-mentioned problems by suppressing the increase in the size of a continuously variable transmission and maintaining a high reliability while reducing the oil agitation loss of the gear, which is a double cavity type toroidal type.
  • the object is to provide a step transmission.
  • a toroidal continuously variable transmission includes a first input disk and a first output disk arranged on the same axis, and between the first input disk and the first output disk. And a first transmission unit having a first power roller that transmits a driving force from the first input disk to the first output disk, and is disposed coaxially with the first transmission unit.
  • a second input disk and a second output disk which are coaxially disposed, and are tiltably interposed between the second input disk and the second output disk, A second power roller that transmits a driving force from the two-input disk to the second output disk, and is arranged so that the back surface of the second input disk faces the back surface of the first input disk.
  • a cylindrical back cylindrical wall protrudes concentrically with the first input disk on the back of one input disk, and a cylindrical back cylindrical wall on the back of the second input disk and the second input disk. Projected concentrically.
  • the back surface of the second output disk is disposed so as to face the back surface of the first output disk, and a cylindrical back cylindrical wall is concentric with the first output disk on the back surface of the first output disk.
  • a cylindrical rear cylindrical wall may be provided concentrically with the second output disk on the back surface of the second output disk.
  • the two input disks adjacent in the center in the axial direction are formed separately, and the back cylinder is formed on each of the back surfaces of the two disks facing each other.
  • the wall By projecting the wall, it becomes possible to efficiently arrange the input gear and the disk support bearing between the back surfaces of the disk using the back cylindrical wall.
  • the two output discs are configured to be adjacent to each other at the central portion in the axial direction, the same effect as described above can be obtained only by exchanging the members on the power input side and the output side.
  • an input gear for inputting power to the toroidal continuously variable transmission is connected to the outer periphery of the rear cylindrical wall so as not to be relatively rotatable.
  • the outer peripheral diameter of the gear disposed between the back surfaces of the disk can be set smaller than when the gear is provided on the outer peripheral part of the disk.
  • a bearing that rotatably supports the input disk and the input gear with respect to the input shaft is provided between an inner peripheral surface of the back cylindrical wall and an outer peripheral surface of the input shaft.
  • the bearing can be arranged by effectively using the space between the back surfaces of the disks.
  • one end of the input gear in the axial direction is in contact with the back surface of the first input disk and the other end is in contact with the back surface of the second input disk. According to this configuration, axial deformation (falling in the axial direction) of the first input disk and the second input disk by the power roller can be suppressed by the input gear without providing an additional member.
  • both input disks can be stably supported in the axial direction with the support position on the back surface of the disk being more on the outer diameter side without increasing the outer dimension of the input gear.
  • FIG. 1 is a longitudinal sectional view schematically showing a schematic configuration of a toroidal continuously variable transmission according to a first embodiment of the present invention. It is a longitudinal cross-sectional view which shows the structural example of the toroidal type continuously variable transmission of FIG. It is a longitudinal cross-sectional view which shows the principal part of the toroidal type continuously variable transmission of FIG. It is a partially broken perspective view which shows the attachment structure of the rotation prevention member used for the toroidal type continuously variable transmission of FIG. It is a partially broken perspective view which shows the attachment structure of the bearing used for the toroidal type continuously variable transmission of FIG.
  • FIG. 1 is a longitudinal sectional view schematically showing a toroidal type continuously variable transmission (hereinafter simply referred to as “continuously variable transmission”) 1 according to a first embodiment of the present invention.
  • the continuously variable transmission 1 is interposed between an aircraft engine E that is a drive source and a generator G that is a load device driven by the engine E, and keeps the rotational speed of the generator G constant.
  • the constant frequency generator is mainly composed of a continuously variable transmission 1 and a generator G.
  • the engine E is connected to the hollow input shaft 3 of the continuously variable transmission 1 through a power transmission mechanism T.
  • the power input to the input shaft 3 is output to the generator G through the continuously variable transmission 1 from the output shaft 5 disposed concentrically with the input shaft 3 in the hollow portion of the input shaft 3.
  • the continuously variable transmission 1 is configured as a double cavity type toroidal continuously variable transmission.
  • the continuously variable transmission 1 includes a first toroidal transmission 13 that forms the first cavity 11 and a second toroidal transmission 17 that forms the second cavity 15.
  • the first toroidal transmission unit 13 and the second toroidal transmission unit 17 are disposed on the same output shaft 5 with a predetermined interval.
  • the first toroidal transmission unit 13 includes a first input disk 21 that is rotatably supported on the input shaft 3, a first output disk 23 that rotates in conjunction with the output shaft 5, the first input disk 21, and the first input disk 21.
  • a plurality of (for example, two) first power rollers 25 are interposed between the output disks 23.
  • the second toroidal transmission unit 17 includes a second input disk 31 that is rotatably supported on the input shaft 3, a second output disk 33 that rotates in conjunction with the output shaft 5, and a second input disk 31.
  • a plurality of (for example, two) second power rollers 35 interposed between the second output disks 33.
  • Each of the disks 21, 23, 31, 33 includes a disk-shaped base portion 21a, 23a, 31a, 33a and a protruding portion 21b that protrudes gradually from the base portions 21a, 23a, 31a, 33a in the axial direction so as to have a smaller diameter. , 23b, 31b, 33b.
  • the side surfaces of the protruding portions 21b, 23b, 31b, and 33b are formed as curved concave surfaces 21ba, 23ba, 31ba, and 33ba.
  • the first input disk 21 and the first output disk 23 are arranged so that the protruding portions 21b and 23b face each other.
  • the second input disk 31 and the second output disk 33 are arranged so that the protruding portions 31b and 33b face each other.
  • Each of the power rollers 25 and 35 can be rotated around a roller shaft 41 by a thrust bearing and a trunnion which is a known support member, and tilted around a tilt shaft that is in a twisted position with respect to the input shaft 3. It is supported so that it can roll.
  • the power rollers 25 and 35 supported in this manner generate pressing forces of the power rollers 25 and 35 on the concave surfaces 21ba and 31ba of the input disks 21 and 31 and the concave surfaces 23ba and 33ba of the output disks 23 and 33, respectively. It is pressed at a high pressure by the power of a pressing force application mechanism (not shown).
  • the pressing force applying mechanism presses the three rolling elements of the first input disk 21, the first output disk 23, and the first power roller 25 to each other with high pressure in the first cavity 11.
  • a driving force is transmitted between the input disk 21, the output disk 23, and the power roller 25 by the shear resistance of the high-viscosity lubricating oil film generated at the contact portion between both the disks 21 and 23 and the power roller 25, that is, fluid friction.
  • the acceleration ratio and the reduction ratio of the continuously variable transmission 1, that is, the speed ratio is changed by controlling the tilt angle that is the inclination of the power rollers 25 and 35.
  • the first toroidal transmission unit 13 and the second toroidal transmission unit 17 are configured such that the input disks 21 and 31 or the output disks 23 and 33 are formed separately from each other, and It arrange
  • the first toroidal transmission unit 13 and the second toroidal transmission unit 17 are configured such that the back surfaces of the input disks 21 and 31 (the bottom surfaces of the base portions 21a and 31a) 21aa and 31aa, or the output disks 23 and 31a, respectively.
  • the back surface 33 (the bottom surfaces of the base portions 23a and 33a) 23aa and 33aa are arranged so as to face each other.
  • the 1st toroidal transmission part 13 and the 2nd toroidal transmission part 17 in this embodiment are arrange
  • the continuously variable transmission 1 has a housing through two columns 43 and 43 disposed between the first input disk 21 and the first output disk 23 and between the second input disk 31 and the second output disk 33, respectively. 45.
  • FIG. 3 shows a specific configuration example of the central portion in the axial direction of the continuously variable transmission 1 according to the present embodiment.
  • Each back surface 21aa of two disks first input disk 21 and second input disk 31 in the illustrated example
  • 31aa are respectively provided with cylindrical rear cylindrical walls 51, 53 protruding in the axial direction.
  • An input gear 55 having an external gear is connected across the outer peripheral portions of the rear cylindrical walls 51 and 53 arranged in the axial direction. That is, the input gear 55 is provided concentrically with the input disks 21 and 31 on the outer peripheral portions of the back cylindrical walls 51 and 53 of the first input disk 21 and the second input disk 31.
  • Power from the engine E (FIG. 1) is input to the continuously variable transmission 1 through the input gear 55.
  • the first input disk 21, the second input disk 31, and the input gear 55 are connected so as not to rotate relative to each other.
  • the first input disk 21, the second input disk 31, and the input gear 55 are rotatably supported by the tubular input shaft 3 via bearings exemplified below.
  • the input shaft 3 is rotatably attached to the outer periphery of the output shaft 5 as a main shaft via a bearing (not shown) such as a needle roller bearing, and both ends are supported by the support 43 from above.
  • the bearings that rotatably support the first input disk 21, the second input disk 31, and the input gear 55 with respect to the input shaft 3 are selected and arranged so as to be able to receive both a radial load and an axial load. Is done.
  • a roller bearing 59 with a cage as a bearing for receiving a radial load and an angular ball bearing 61 as a bearing for receiving both a radial load and an axial load are used in combination. Yes.
  • the roller bearing with cage 59 is interposed between the inner peripheral surface of the first input disk 21 and the inner peripheral surface of the second input disk 31 and the outer peripheral surface of the input shaft 3.
  • An annular recess 63 that is recessed in the outer diameter direction by a length corresponding to the roller diameter of the roller bearing 59 with cage is provided at a portion of the inner peripheral portion of each input disk 21, 31 where the roller bearing 59 with cage is disposed. Is formed.
  • the outer ring 59 a of the roller bearing with retainer 59 is fitted to the peripheral wall surface of the annular recess 63.
  • the central portion of the input shaft 3 in the axial direction is formed as a large-diameter portion 3a having a larger outer diameter than other portions of the input shaft 3.
  • Angular ball bearings 61 are interposed between the large-diameter portion 3a and the roller bearings 59 and 59 with a cage.
  • the angular ball bearing 61 is disposed at an axial position on the inner peripheral side of the rear cylindrical walls 51 and 53 of both the input disks 21 and 31. Therefore, the angular ball bearing 61 receives the axial load applied to both the input disks 21, 31 and the radial load applied to both the back cylindrical walls 51, 53.
  • the input gear 55 is rotatably supported with respect to the input shaft 3 by the angular ball bearings 61 via both rear cylindrical walls 51 and 53.
  • the back cylindrical walls 51 and 53 function as a bearing support that supports the angular ball bearing 61.
  • the outer diameter of the outer ring 61 a of the angular ball bearing 61 is substantially the same as the outer diameter of the outer ring 59 a of the roller bearing 59 with cage.
  • the selection and arrangement of the bearings for rotatably supporting the first input disk 21, the second input disk 31, and the input gear 55 with respect to the input shaft 3 are not limited to the illustrated example.
  • a thrust ball bearing may be used in place of the angular ball bearing 61 as a bearing for supporting the disk axial direction.
  • a spline (connecting mechanism) is connected to the inner peripheral surface 55c of the cylindrical base 55b that supports the outer teeth 55a of the input gear 55 (that is, the inner peripheral surface of the input gear 55) so as not to be relatively rotatable over the entire circumference.
  • a gear side spline) 67 is formed.
  • spline (disc-side spline) is also connected to the outer peripheral surfaces 51b and 53b of the rear cylindrical walls 51 and 53 of the first input disc 21 and the second input disc 31 so as to be relatively non-rotatable over the entire circumference. ) 69 is formed.
  • the rotation prevention ring member 71 has an annular main body 71 a and a rod-like (in this example, a prismatic shape) provided at one end in the axial direction of the main body 71 a. It has a radial protrusion 71b. Further, each of the portions corresponding to the radial projections 71b of the detent ring member 71 on the end surfaces facing the axial direction of the rear cylindrical walls 51 and 53 (only the rear cylindrical wall 53 is shown in FIG. 4) is provided with radial projections 71b.
  • Anti-rotation grooves 51d and 53d (only the anti-rotation groove 53d is shown in FIG. 4) are formed. The anti-rotation grooves 51d and 53d extend in the radial direction so as to correspond to the radial protrusions 71b on the end surfaces of the rear cylindrical walls 51 and 53 facing the axial direction.
  • rotation prevention ring member 71 and the outer ring 61a of the angular ball bearing 61 that are adjacent to each other in the axial direction, and the outer ring 61a of the angular ball bearing 61 and the outer ring 59a of the roller bearing 59 with cage are illustrated below.
  • An engaging mechanism is provided.
  • the anti-rotation ring member 71 further has an axial protrusion 71c protruding in the axial direction from the other axial end of the main body 71a.
  • the outer diameter of the main body portion 71a of the rotation preventing ring member 71 is set to be substantially the same as the outer diameter of the outer ring 61a of the angular ball bearing 61, and the outer ring 61a of each angular ball bearing 61. Is provided with an engaging recess 61aa that engages with the axial protrusion 71c of the detent ring member 71.
  • the axial protrusion 71 c of the rotation prevention ring member 71 engages with the engagement recess 61 aa of the outer ring 61 a of both angular ball bearings 61, and the radial protrusion 71 b of the rotation prevention ring member 71 corresponds to both the input disks 21 and 31. It fits in each detent groove 51d, 53d between the back cylindrical walls 51, 53. Furthermore, an engagement protrusion 61ab protruding in the axial direction is provided on an end surface of the outer ring 61a of the angular ball bearing 61 facing the roller bearing 59 side with the cage, and the engagement protrusion 61ab is held in the holding direction.
  • the roller bearing 59 is engaged with an engagement recess 59aa provided on an end surface of the outer ring 59a facing the angular ball bearing 61 on the axial direction. In this way, the relative rotation of the input disks 21 and 31, which are rotation side members with respect to the input shaft 3, the rotation stop ring member 71, and the outer rings 61a and 59a of the bearings is prevented.
  • the radial protrusion 71b and the axial protrusion 71c of the rotation prevention ring member 71 are provided at two locations in the circumferential direction of the main body 71a in this embodiment, but are provided only at one location in the circumferential direction of the main body 71a. It may be provided at three or more locations.
  • the engagement protrusions and engagement recesses of the outer rings 61a and 59a of the bearings may be provided at only one place in the circumferential direction, or may be provided at three or more places.
  • the end face of the inner ring 61b of the angular ball bearing 61 that contacts the large-diameter portion 3a of the input shaft 3 is provided with an engaging protrusion 61ba that protrudes in the axial direction.
  • 61ba is engaged with an engagement recess 3aa formed on a step surface facing the axial direction of the large diameter portion 3a. In this way, relative rotation between the input shaft 3 serving as the fixed member and the inner ring 61b is prevented.
  • the axial length of the cylindrical base portion 55b of the input gear 55 is set to be larger than the axial length of the external teeth 55a.
  • One end of the base portion 55b in the axial direction is in contact with the outer diameter side portion of the rear cylindrical wall 51 on the rear surface 21aa of the first input disk 21, and the other end is on the rear cylindrical wall 53 on the rear surface 31aa of the second input disk 31. It is in contact with the outer diameter side portion. That is, the first input disk 21 and the second input disk 31 are supported on the back side in the axial direction by the input gear 55.
  • annular support spacer 73 is interposed between the two.
  • the first input disk 21 and the second input disk 31 are further supported by the input gear 55 in the axial direction through the support spacer 73.
  • the support spacer 73 may be omitted, but the support spacer 73 is interposed between both ends of the external teeth 55a located on the outer diameter side of the base 55b of the input gear 55 and the back surfaces 21aa and 31aa of both input disks.
  • the outer diameter dimension of the surface of the support spacer 73 that contacts the disk rear surfaces 21aa and 31aa is preferable to be larger than the outer diameter dimension of the outer teeth 55a of the input gear 55 as in the illustrated example.
  • the external teeth 55a of the input gear 55 have a small diameter from the viewpoint of reducing oil stirring resistance by the input gear 55 and suppressing the radial dimension of the continuously variable transmission 1.
  • the outer peripheral end of the external teeth 55 a of the input gear 55 is positioned on the inner diameter side of the outer peripheral ends of the input disks 21 and 31.
  • the radial position where the base 55b of the input gear 55 is provided is effective for suppressing the deformation in the axial direction of the input disks 21 and 31, i.e., the fall due to the load received from the power rollers 25 and 35. It is preferable to be close to the outer peripheral end of 31.
  • the toroidal type continuously variable transmission 1 in the toroidal type continuously variable transmission 1 of the double cavity type, two input disks 21 and 31 that are adjacent at the center in the axial direction are formed separately, By projecting rear cylindrical walls 51 and 53 on the rear surfaces 21aa and 31aa facing each other of the two input disks 21 and 31, the rear cylindrical walls 51 and 53 are used to input the input gear 55 and the disk.
  • the supporting bearing 57 can be efficiently disposed between the back surfaces of the input disks 21 and 31. As a result, it is possible to easily realize a structure capable of reducing the oil stirring loss of the input gear 55 while suppressing an increase in the size of the continuously variable transmission 1 and maintaining high reliability.
  • each input disk 21 and 31 of the 1st toroidal transmission part 13 and the 2nd toroidal transmission part 17 is arrange
  • positioned in this way was shown, you may arrange
  • the continuously variable transmission 1 is used in a setting in which the rotational speed on the output disks 23 and 33 side is larger than that on the input side, it is preferable to configure in this way.
  • the toroidal continuously variable transmission used for the aircraft IDG is shown as an example.
  • the use of the toroidal continuously variable transmission to which the present invention is applied is limited to an aircraft.
  • it may be for automobiles.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Friction Gearing (AREA)

Abstract

 同軸上に配置された第1入力ディスク(21)および第1出力ディスク(23)と、これらディスク間に傾転可能に介在するパワーローラとを有する第1変速部(13)と、前記第1変速部と同軸上に配置され、同軸上に配置された第2入力ディスク(31)および第2出力ディスク(33)と、これらディスク間に傾転可能に介在する第2パワーローラとを有し、前記第2入力ディスク(31)の背面(31aa)が前記第1入力ディスク(21)の背面(21aa)に対向するように配置された第2変速部(17)とを備える無段変速機(1)において、前記第1入力ディスクおよび第2入力ディスクの各背面(21aa,31aa)に、筒状の背面円筒壁(51,53)が突設されている。

Description

トロイダル型無段変速機 関連出願
 本出願は、2014年4月14日出願の特願2014-082827の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 本発明は、例えば航空機の発電装置に使用されるトロイダル型無段変速機の構造に関する。
 航空機用の発電装置として、駆動源である航空機エンジンの回転数が変動しても発電機の回転数(周波数)を一定に維持しながら動作する一定周波数発電装置(IDG)を使用することが知られている。IDGにおいて、発電機の回転数を一定に保つための変速機として、トロイダル型の無段変速機が提案されている。トロイダル型無段変速機は、同心状に対向配置された入力ディスクおよび出力ディスクと、両ディスクの対向する湾曲した凹状面に強い圧力で接触するパワーローラとからなるトロイダル変速部を備えており、両ディスクに対するパワーローラの傾斜角度を調整することにより、無段階(連続的)に変速比を変化させることができる。
 一般に、トロイダル型無段変速機では、同一軸上に前記トロイダル変速部を2つ並べて配置したダブルキャビティ式が採用されている。ダブルキャビティ式のトロイダル型無段変速機として、2つのトロイダル変速部の、軸方向中央部で隣接する2つのディスクを一体的に形成した変速機(例えば、特許文献1参照)と、別体に形成した変速機(例えば、特許文献2参照)が知られている。ディスク一体型変速機では、軸方向中央部に配置される2つのディスクの軸方向への変形が小さく、かつ変速機全体を小型、軽量に構成できる。一方、ディスク別体型変速機では、軸方向中央部で隣接するディスク間に入出力用のギヤを配置できるので、ギヤの外径を小さくして、ギヤの周速の高速化を抑えることができる。
特開2002-081519号公報 特開平09-177918号公報
 しかし、軸方向中央部で隣接する2つのディスクを一体的に形成した場合、ギヤが入力ディスクの外周部に設けられるので、ギヤ外径が大きくなり、ギヤの周速が大きくなる。その結果、ギヤによるオイル撹拌損失が大きくなり、発電装置の効率が低下する。
 他方、軸方向中央部の2つのディスクを別体に形成した場合、インプットギヤを回転可能に支持するための軸受が、これらディスク間に配置される。軸中心に近い位置に配置された軸受によって両ディスクの背面も支持されることになるため、これらの軸受によって支持されるディスクの変形、すなわちディスクの外周部の軸方向への倒れ込み量が大きくなり、無段変速機の信頼性が低下する。
 そこで、本発明の目的は、上記の課題を解決すべく、無段変速機の大型化を抑制し、かつ高い信頼性を保ちつつ、ギヤのオイル撹拌損失を低減できるダブルキャビティ式のトロイダル型無段変速機を提供することにある。
 上記目的を達成するために、本発明に係るトロイダル型無段変速機は、同軸上に配置された第1入力ディスクおよび第1出力ディスクと、前記第1入力ディスクと第1出力ディスクとの間に傾転可能に介在して、前記第1入力ディスクから前記第1出力ディスクへ駆動力を伝達する第1パワーローラとを有する第1変速部と、前記第1変速部と同軸上に配置された第2変速部であって、同軸上に配置された第2入力ディスクおよび第2出力ディスクと、前記第2入力ディスクと第2出力ディスクとの間に傾転可能に介在して、前記第2入力ディスクから前記第2出力ディスクへ駆動力を伝達する第2パワーローラとを有し、前記第2入力ディスクの背面が前記第1入力ディスクの背面に対向するように配置された第2変速部とを備え、前記第1入力ディスクの背面に、筒状の背面円筒壁が前記第1入力ディスクと同心に突設されており、前記第2入力ディスクの背面に、筒状の背面円筒壁が前記第2入力ディスクと同心に突設されている。なお、前記第2出力ディスクの背面が前記第1出力ディスクの背面に対向するように配置されており、前記第1出力ディスクの背面に、筒状の背面円筒壁が前記第1出力ディスクと同心に突設されており、前記第2出力ディスクの背面に、筒状の背面円筒壁が前記第2出力ディスクと同心に突設されていてもよい。
 この構成によれば、ダブルキャビティ式のトロイダル型無段変速機において、軸方向中央部で隣接する2つの入力ディスクを別体に形成し、これら2つのディスクの互いに対向する各背面に、背面円筒壁を突設することにより、この背面円筒壁を利用して入力用のギヤや、ディスク支持用の軸受を、ディスクの背面間に効率的に配置することが可能となる。その結果、無段変速機の大型化を抑制し、かつ高い信頼性を保ちつつ、ギヤのオイル撹拌損失を低減できる構造を容易に実現できる。2つの出力ディスクが軸方向中央部で互いに隣接するように構成した場合にも、動力の入力側と出力側の部材が入れ替わるのみで、上記と同様の効果が得られる。
 本発明の一実施形態において、前記背面円筒壁の外周に、当該トロイダル無段変速機に動力を入力する入力ギヤが相対回転不能に連結されていることが好ましい。この構成によれば、ディスクの外周部にギヤを設ける場合に比べて、ディスクの背面間に配置されるギヤの外周径を小さく設定できる。これにより、ギヤの周速が抑制されるので、オイル撹拌抵抗による損失を効果的に低減することができる。
 本発明の一実施形態において、前記背面円筒壁の内周面と、入力軸の外周面との間に、前記入力ディスクおよび入力ギヤを前記入力軸に対して回転可能に支持する軸受を備えていることが好ましい。この構成によれば、ディスクの背面間の空間を有効に利用して軸受を配置することができる。
 本発明の一実施形態において、前記入力ギヤの軸方向の一端が前記第1入力ディスクの背面に当接し、他端が前記第2入力ディスクの背面に当接していることが好ましい。この構成によれば、追加の部材を設けることなく、入力ギヤによって第1入力ディスクおよび第2入力ディスクのパワーローラによる軸方向変形(軸方向への倒れ込み)を抑制することができる。
 本発明の一実施形態に係るトロイダル型無段変速機において、前記入力ギヤの外歯の軸方向の一端と前記第1入力ディスクの背面との間、および前記入力ギヤの外歯の軸方向の他端と前記第2入力ディスクの背面との間に、それぞれ、環状の支持スペーサが介在していることが好ましい。この構成によれば、入力ギヤの外形寸法を増大させることなく、ディスク背面の支持位置をより外径側として安定的に両入力ディスクを軸方向に支持することができる。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
本発明の第1実施形態に係るトロイダル型無段変速機の概略構成を模式的に示す縦断面図である。 図1のトロイダル型無段変速機の構成例を示す縦断面図である。 図2のトロイダル型無段変速機の要部を示す縦断面図である。 図1のトロイダル型無段変速機に使用される回り止め部材の取付構造を示す部分破断斜視図である。 図1のトロイダル型無段変速機に使用される軸受の取付構造を示す部分破断斜視図である。
 以下,本発明の好ましい実施形態を図面に基づいて説明する。図1は本発明の第1実施形態に係るトロイダル型無段変速機(以下、単に「無段変速機」と呼ぶ。)1を模式的に示す縦断面図である。無段変速機1は、駆動源である航空機用のエンジンEと、このエンジンEによって駆動される負荷装置である発電機Gとの間に介在して、発電機Gの回転数を一定に保ちながらエンジンEの駆動力を発電機Gへ伝達する。一定周波数発電装置は、主に無段変速機1と発電機Gとによって構成される。
 エンジンEは、動力伝達機構Tを介して、無段変速機1の中空の入力軸3に接続されている。入力軸3に入力された動力は、無段変速機1を介して、入力軸3の中空部に入力軸3と同心に配置された出力軸5から、発電機Gへ出力される。
 同図に示すように、無段変速機1は、ダブルキャビティ式のトロイダル型無段変速機として構成されている。すなわち、無段変速機1は、第1キャビティ11を形成する第1トロイダル変速部13と、第2キャビティ15を形成する第2トロイダル変速部17とを有している。第1トロイダル変速部13と第2トロイダル変速部17とは、同一の出力軸5上に、所定の間隔を設けて配設されている。
 第1トロイダル変速部13は、入力軸3上に回転可能に支持された第1入力ディスク21と、出力軸5と連動して回転する第1出力ディスク23と、第1入力ディスク21および第1出力ディスク23の間に介在する複数(例えば2つ)の第1パワーローラ25によって構成されている。同様に、第2トロイダル変速部17は、入力軸3上に回転可能に支持された第2入力ディスク31と、出力軸5と連動して回転する第2出力ディスク33と、第2入力ディスク31および第2出力ディスク33の間に介在する複数(例えば2つ)の第2パワーローラ35によって構成されている。
 各ディスク21,23,31,33は、円盤状のベース部21a,23a,31a,33aと、ベース部21a,23a,31a,33aから軸心方向に次第に小径となるように突出する突出部21b,23b,31b,33bとを有している。突出部21b,23b,31b,33bの側面は、湾曲した凹状面21ba,23ba,31ba,33baとして形成されている。第1入力ディスク21と第1出力ディスク23は、それぞれの突出部21b,23bが互いに対向するように配置されている。同様に、第2入力ディスク31と第2出力ディスク33は、それぞれの突出部31b,33bが互いに対向するように配置されている。
 各パワーローラ25,35は、スラスト軸受と、公知の支持部材であるトラニオンとによって、ローラ軸41回りに回転可能であり、かつ入力軸3に対してねじれの位置にある傾転軸回りに傾転可能に支持されている。このように支持されたパワーローラ25,35が、入力ディスク21,31の各凹状面21ba,31baおよび出力ディスク23,33の凹状面23ba,33baに、パワーローラ25,35の押付力を発生させる押圧力付加機構(図示せず)の動力により高圧で押し付けられている。
 すなわち、この押圧力付加機構は、第1キャビティ11において、第1入力ディスク21、第1出力ディスク23および第1パワーローラ25という3つの転動体を、高圧で互いに押し付けている。両ディスク21,23とパワーローラ25との接触部に生じる高粘度潤滑油膜の剪断抵抗、つまり流体摩擦によって、入力ディスク21、出力ディスク23およびパワーローラ25間で駆動力が伝達される。第2キャビティ15においても同様である。無段変速機1の加速比および減速比、すなわち変速比の変更は、パワーローラ25,35の傾きである傾転角を制御することにより行われる。
 図2に示すように、第1トロイダル変速部13と第2トロイダル変速部17とは、それぞれの入力ディスク21,31同士、またはそれぞれの出力ディスク23,33同士が、別体に形成され、かつ軸方向に隣接するように配置される。換言すれば、第1トロイダル変速部13と第2トロイダル変速部17とは、それぞれの入力ディスク21,31の背面(ベース部21a,31aの底面)21aa,31aa同士、またはそれぞれの出力ディスク23,33の背面(ベース部23a,33aの底面)23aa,33aa同士が対向するように配置される。本実施形態における第1トロイダル変速部13と第2トロイダル変速部17は、それぞれの入力ディスク21,31の背面21aa,31aa同士が対向するように配置されている。無段変速機1は、第1入力ディスク21と第1出力ディスク23の間および第2入力ディスク31と第2出力ディスク33の間にそれぞれ配置された2本の支柱43,43を介してハウジング45に支持されている。
 図3に、本実施形態に係る無段変速機1の軸方向中央部分の具体的な構成例を示す。無段変速機1全体の軸方向中央部に配置され、互いの背面が対向するように配置される2つのディスク(図示の例では第1入力ディスク21および第2入力ディスク31)の各背面21aa,31aaには、それぞれ、筒状の背面円筒壁51,53が軸方向に突設されている。これら軸方向に並ぶ両背面円筒壁51,53の外周部にまたがって、外歯歯車を有する入力ギヤ55が連結されている。すなわち、入力ギヤ55は、第1入力ディスク21および第2入力ディスク31の両背面円筒壁51,53の外周部に、これら入力ディスク21,31と同心状に設けられている。この入力ギヤ55を介して、エンジンE(図1)からの動力が無段変速機1に入力される。
 第1入力ディスク21,第2入力ディスク31および入力ギヤ55は、互いに相対回転不能に連結されている。また、第1入力ディスク21,第2入力ディスク31および入力ギヤ55は、それぞれ、管状の入力軸3に対して、下記に例示する各軸受を介して回転可能に支持されている。なお、入力軸3は、主軸である出力軸5の外周に、例えば、ニードルローラ軸受などの軸受(図示せず)を介して回転可能に取り付けられているとともに、支柱43によって両端を上方から支持されている。これら第1入力ディスク21,第2入力ディスク31および入力ギヤ55を入力軸3に対して回転可能に支持する軸受は、径方向荷重および軸方向荷重の両方を受けることができるように選択、配置される。図示の例では、径方向荷重を受けるための軸受としての保持器付ころ軸受59と、径方向荷重と軸方向荷重の両方を受けるための軸受としてのアンギュラ玉軸受61とを組み合わせて使用している。
 保持器付ころ軸受59は、第1入力ディスク21の内周面および第2入力ディスク31の内周面と、入力軸3の外周面との間に介装されている。各入力ディスク21,31の内周部の、保持器つきころ軸受59が配置される部分には、保持器付ころ軸受59のころ径に対応する長さ分外径方向に凹む円環状凹部63が形成されている。この円環状凹部63の周壁面に、保持器付ころ軸受59の外輪59aが嵌合している。
 入力軸3の軸方向中央部分は、入力軸3の他の部分よりも大きな外径を有する大径部3aとして形成されている。この大径部3aと各保持器付ころ軸受59,59との間に、それぞれ、アンギュラ玉軸受61が介装されている。アンギュラ玉軸受61は、両入力ディスク21,31の背面円筒壁51,53の内周側となる軸方向位置に配置される。したがって、アンギュラ玉軸受61は、両入力ディスク21,31にかかる軸方向荷重を受けるとともに、両背面円筒壁51,53にかかる径方向荷重を受ける。換言すれば、入力ギヤ55は、両背面円筒壁51,53を介して、アンギュラ玉軸受61によって入力軸3に対して回転可能に支持されている。また、背面円筒壁51,53は、アンギュラ玉軸受61を支持する軸受サポートとして機能する。なお、図示の例では、アンギュラ玉軸受61の外輪61aの外径は、保持器付ころ軸受59の外輪59aの外径とほぼ同一である。
 もっとも、第1入力ディスク21,第2入力ディスク31および入力ギヤ55を入力軸3に対して回転可能に支持するための軸受の選択および配置は、図示の例に限らない。例えば、ディスク軸方向支持用の軸受として、アンギュラ玉軸受61の代わりにスラスト玉軸受を使用してもよい。
 入力ギヤ55の外歯55aを支持する円筒状の基部55bの内周面(すなわち入力ギヤ55の内周面)55cには、全周に渡って、相対回転不能に連結する連結機構としてスプライン(ギヤ側スプライン)67が形成されている。一方、第1入力ディスク21および第2入力ディスク31の両背面円筒壁51,53の外周面51b,53bにも、全周に渡って、相対回転不能に連結する連結機構としてスプライン(ディスク側スプライン)69が形成されている。ギヤ側スプライン67にディスク側スプライン69を嵌合することにより、入力ギヤ55、第1入力ディスク21および第2入力ディスク31が互いに相対回転不能に連結されている。
 次に、入力軸3に対する回転側部材となる入力ディスク21,31、各軸受の外輪61a,59a同士の相対回転を防止する機構について説明する。入力ギヤ55、第1入力ディスクの背面円筒壁51、第2入力ディスクの背面円筒壁53、第1入力ディスク側のアンギュラ玉軸受61および第2入力ディスク側のアンギュラ玉軸受61の間には、入力ディスク21,31とアンギュラ玉軸受61,61との相対回転を防止する相対回転防止部材として、一対の環状の回り止めリング部材71,71が介装されている。図4に示すように、回り止めリング部材71は、環状の本体部71aと、本体部71aの軸方向の一端に設けられた、径方向外方に突出する棒状(この例では角柱状)の径方向突起71bを有している。また、背面円筒壁51,53(図4では背面円筒壁53のみ図示)の軸方向を向く端面の、回り止めリング部材71の径方向突起71bに対応する各部分には、径方向突起71bに嵌合する回り止め溝51d、53d(図4では回り止め溝53dのみ図示)が形成されている。回り止め溝51d、53dは、背面円筒壁51,53の軸方向を向く端面において、径方向突起71bに対応するように径方向に延びている。
 さらに、互いに軸方向に隣接する回り止めリング部材71とアンギュラ玉軸受61の外輪61a、およびアンギュラ玉軸受61の外輪61aと保持器付ころ軸受59の外輪59aとの間に、それぞれ、以下に例示する係合機構が設けられている。
 回り止めリング部材71は、さらに、本体部71aの軸方向の他端から軸方向へ突出する軸方向突起71cを有している。一方、同図に示すように、回り止めリング部材71の本体部71aの外径は、アンギュラ玉軸受61の外輪61aの外径とほぼ同一に設定されており、各アンギュラ玉軸受61の外輪61aには、回り止めリング部材71の軸方向突起71cに係合する係合凹部61aaが設けられている。回り止めリング部材71の軸方向突起71cが両アンギュラ玉軸受61の外輪61aの係合凹部61aaに係合し、かつ、回り止めリング部材71の径方向突起71bが、両入力ディスク21,31の背面円筒壁間51,53の各回り止め溝51d、53dに嵌合している。さらに、アンギュラ玉軸受61の外輪61aの、保持器付ころ軸受59側の軸方向を向く端面には、軸方向に突出する係合突起61abが設けられており、この係合突起61abが、保持器付ころ軸受59の外輪59aのアンギュラ玉軸受61側の軸方向を向く端面に設けられた係合凹部59aaに係合している。このようにして、入力軸3に対する回転側部材となる入力ディスク21,31、回転止めリング部材71、各軸受の外輪61a,59a同士の相対回転が防止される。
 なお、回り止めリング部材71の径方向突起71bおよび軸方向突起71cは、本実施形態では本体部71aの周方向の2箇所に設けているが、本体部71aの周方向の1箇所のみに設けてもよく、3箇所以上に設けてもよい。同様に、各軸受の外輪61a,59aの係合突起、係合凹部も、周方向の1箇所のみに設けてもよく、3箇所以上に設けてもよい。
 図5に示すように、アンギュラ玉軸受61の内輪61bの、入力軸3の大径部3aに当接する端面には、軸方向に突出する係合突起61baが設けられており、この係合突起61baが、大径部3aの軸方向を向く段差面に形成された係合凹部3aaに係合している。このようにして、固定側部材となる入力軸3と内輪61bとの間の相対回転が防止される。
 図3に示すように、入力ギヤ55の円筒状の基部55bの軸方向長さは、外歯55aの軸方向長さよりも大きく設定されている。この基部55bの軸方向一端が、第1入力ディスク21の背面21aaにおける背面円筒壁51の外径側の部分に当接し、他端が、第2入力ディスク31の背面31aaにおける背面円筒壁53の外径側の部分に当接している。すなわち、第1入力ディスク21および第2入力ディスク31は、入力ギヤ55によって背面側を軸方向に支持されている。
 さらに、入力ギヤ55の外歯55aの軸方向の一端と第1入力ディスク21の背面21aaとの間、および入力ギヤ55の外歯55aの軸方向の他端と第2入力ディスク31の背面31aaとの間には、それぞれ、環状の支持スペーサ73が介在している。この支持スペーサ73を介して、第1入力ディスク21および第2入力ディスク31は、さらに入力ギヤ55によって背面側を軸方向に支持されている。支持スペーサ73は省略してもよいが、入力ギヤ55の、基部55bよりも外径側に位置する外歯55aの両端と、両入力ディスクの背面21aa,31aaとの間に支持スペーサ73を介在させることにより、入力ギヤ55の外形寸法を増大させることなく、ディスク背面の支持位置をより外径側として安定的に両入力ディスク21,31を軸方向に支持することができる。そのために、図示の例のように、支持スペーサ73の、ディスク背面21aa,31aaに当接する面の外径寸法を、入力ギヤ55の外歯55aの外径寸法よりも大きく設定することが好ましい。
 なお、入力ギヤ55の外歯55aは、入力ギヤ55によるオイル撹拌抵抗を低減し、かつ無段変速機1の径方向寸法を抑制する観点から、小径であることが好ましい。具体的には、入力ギヤ55の外歯55aの外周端が、入力ディスク21,31の外周端よりも内径側に位置することが好ましい。また、入力ギヤ55の基部55bが設けられる径方向位置は、入力ディスク21,31軸方向の変形、すなわちパワーローラ25,35から受ける荷重による倒れ込みを効果的に抑制するために、入力ディスク21,31の外周端に近いことが好ましい。具体的には、入力ギヤ55の基部55bの内周面の径方向位置が、パワーローラ25,35の傾転角度がゼロ(減速比=1)の状態における、入力ディスク21,31の突出部21b、31bとパワーローラとの接点の径方向位置よりも外径側であることが好ましい。
 本実施形態に係るトロイダル型無段変速機1によれば、ダブルキャビティ式のトロイダル型無段変速機1において、軸方向中央部で隣接する2つの入力ディスク21,31を別体に形成し、これら2つの入力ディスク21,31の互いに対向する各背面21aa,31aaに、背面円筒壁51,53を突設することにより、この背面円筒壁51,53を利用して、入力ギヤ55や、ディスク支持用の軸受57を、入力ディスク21,31の背面間に効率的に配置することが可能となる。その結果、無段変速機1の大型化を抑制し、かつ高い信頼性を保ちつつ、入力ギヤ55のオイル撹拌損失を低減できる構造を容易に実現できる。
 また、本実施形態では、第1トロイダル変速部13と第2トロイダル変速部17の、各入力ディスク21,31が無段変速機1全体の軸方向中央部に配置され、互いの背面が対向するように配置された例を示したが、各出力ディスク23,33を、無段変速機1全体の軸方向中央部に、互いの背面23aa,33aaが対向するように配置してもよい。特に、無段変速機1が、出力ディスク23,33側の回転速度が入力側よりも大きくなる設定で使用される場合には、このように構成することが好ましい。出力ディスク23,33を軸方向中央部で隣接するように配置する場合は、出力ディスク23,33の各背面23aa,33aaに背面円筒壁を設け、これら背面23aa,33aa間に出力ギヤを配置する。このように構成した場合も、動力の入力側と出力側の部材が入れ替わるのみで、上記実施形態と同様の効果が得られる。
 なお、上記の各実施形態の説明においては、航空機用のIDGに使用するトロイダル型無段変速機を例として示したが、本発明が適用されるトロイダル型無段変速機の用途は航空機に限られず、例えば、自動車用であってもよい。
 以上のとおり、図面を参照しながら本発明の好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。
1 無段変速機
13 第1変速部
17 第2変速部
21 第1入力ディスク
21aa 第1入力ディスクの背面
23 第1出力ディスク
25 第1パワーローラ
31 第2入力ディスク
31aa 第2入力ディスクの背面
33 第2出力ディスク
35 第2パワーローラ
51,53 背面円筒壁
55 入力ギヤ

Claims (6)

  1.  互いに同軸上に配置された第1入力ディスクおよび第1出力ディスクと、
     前記第1入力ディスクと第1出力ディスクとの間に傾転可能に介在して、前記第1入力ディスクから前記第1出力ディスクへ駆動力を伝達する第1パワーローラと
    を有する第1変速部と、
     前記第1変速部と同軸上に配置された第2変速部であって、
     互いに同軸上に配置された第2入力ディスクおよび第2出力ディスクと、
     前記第2入力ディスクと第2出力ディスクとの間に傾転可能に介在して、前記第2入力ディスクから前記第2出力ディスクへ駆動力を伝達する第2パワーローラと
    を有し、前記第2入力ディスクの背面が前記第1入力ディスクの背面に対向するように配置された第2変速部と、
    を備え、
     前記第1入力ディスクの背面に、筒状の背面円筒壁が前記第1入力ディスクと同心に突設されており、前記第2入力ディスクの背面に、筒状の背面円筒壁が前記第2入力ディスクと同心に突設されている、
    トロイダル型無段変速機。
  2.  請求項1に記載のトロイダル型無段変速機において、前記背面円筒壁の外周に、当該トロイダル無段変速機に動力を入力する入力ギヤが相対回転不能に連結されているトロイダル型無段変速機。
  3.  請求項2に記載のトロイダル型無段変速機において、前記背面円筒壁の内周面と、入力軸の外周面との間に、前記入力ディスクおよび前記入力ギヤを前記入力軸に対して回転可能に支持する軸受を備えるトロイダル型無段変速機。
  4.  請求項2または3に記載のトロイダル型無段変速機において、前記入力ギヤの軸方向の一端が前記第1入力ディスクの背面に当接し、他端が前記第2入力ディスクの背面に当接しているトロイダル型無段変速機。
  5.  請求項4に記載のトロイダル型無段変速機において、前記入力ギヤの外歯の軸方向の一端と前記第1入力ディスクの背面との間、および前記入力ギヤの外歯の軸方向の他端と前記第2入力ディスクの背面との間に、それぞれ、環状の支持スペーサが介在しているトロイダル型無段変速機。
  6.  同軸上に配置された第1入力ディスクおよび第1出力ディスクと、
     前記第1入力ディスクと第1出力ディスクとの間に傾転可能に介在して、前記第1入力ディスクから前記第1出力ディスクへ駆動力を伝達する第1パワーローラと
    を有する第1変速部と、
     前記第1変速部と同軸上に配置された第2変速部であって、
     同軸上に配置された第2入力ディスクおよび第2出力ディスクと、
     前記第2入力ディスクと第2出力ディスクとの間に傾転可能に介在して、前記第2入力ディスクから前記第2出力ディスクへ駆動力を伝達する第2パワーローラと
    を備え、前記第2出力ディスクの背面が前記第1出力ディスクの背面に対向するように配置された第2変速部と、
    を有し、
     前記第1出力ディスクの背面に、筒状の背面円筒壁が前記第1出力ディスクと同心に突設されており、前記第2出力ディスクの背面に、筒状の背面円筒壁が前記第2出力ディスクと同心に突設されている、
    トロイダル型無段変速機。
PCT/JP2015/061395 2014-04-14 2015-04-13 トロイダル型無段変速機 WO2015159867A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15779298.7A EP3133316B1 (en) 2014-04-14 2015-04-13 Toroidal continuously variable transmission
JP2016513783A JP6277266B2 (ja) 2014-04-14 2015-04-13 トロイダル型無段変速機
CA2945468A CA2945468A1 (en) 2014-04-14 2015-04-13 Toroidal continuously variable transmission
US15/290,155 US10330181B2 (en) 2014-04-14 2016-10-11 Toroidal continuously variable transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014082827 2014-04-14
JP2014-082827 2014-04-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/290,155 Continuation US10330181B2 (en) 2014-04-14 2016-10-11 Toroidal continuously variable transmission

Publications (1)

Publication Number Publication Date
WO2015159867A1 true WO2015159867A1 (ja) 2015-10-22

Family

ID=54324072

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/061395 WO2015159867A1 (ja) 2014-04-14 2015-04-13 トロイダル型無段変速機
PCT/JP2015/061394 WO2015159866A1 (ja) 2014-04-14 2015-04-13 トロイダル型無段変速機

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061394 WO2015159866A1 (ja) 2014-04-14 2015-04-13 トロイダル型無段変速機

Country Status (5)

Country Link
US (2) US10677327B2 (ja)
EP (2) EP3133316B1 (ja)
JP (2) JP6277266B2 (ja)
CA (2) CA2945465A1 (ja)
WO (2) WO2015159867A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6421462B2 (ja) * 2014-06-02 2018-11-14 日本精工株式会社 トロイダル型無段変速機

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002512349A (ja) * 1998-04-22 2002-04-23 イナ ベルツラーゲル シエツフレル オツフエネ ハンデルスゲゼルシヤフト 転がり伝動装置、特にトロイダル式伝動装置
JP2002538394A (ja) * 1999-03-01 2002-11-12 トロトラック・(ディベロップメント)・リミテッド 連続可変比トランスミッション出力ディスクのための軸受け支持
DE10251560A1 (de) * 2002-11-06 2004-05-19 Bayerische Motoren Werke Ag Stufenloses Getriebe für allradgetriebene Fahrzeuge

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1392450A (en) * 1971-07-27 1975-04-30 Rotax Ltd Variable-ratio friction drive gears
DE3871831T2 (de) 1987-03-10 1992-12-10 Fuji Kiko Kk Hilfsantrieb.
JPS6479463A (en) * 1987-09-21 1989-03-24 Fuji Kiko Kk Auxiliary machine driving device for internal combustion engine
GB9024987D0 (en) 1990-11-16 1991-01-02 Greenwood Christopher J Improvements in or relating to variators for transmissions of the toroidal-race rolling-traction type
JP3435851B2 (ja) * 1994-11-07 2003-08-11 日本精工株式会社 トロイダル型無段変速機
JP3538996B2 (ja) * 1995-09-22 2004-06-14 日本精工株式会社 トロイダル型無段変速機
JP3567578B2 (ja) 1995-12-22 2004-09-22 いすゞ自動車株式会社 トロイダル型無段変速機
JP3470506B2 (ja) * 1996-06-04 2003-11-25 日産自動車株式会社 トロイダル型無段変速機
JP3623326B2 (ja) 1996-10-31 2005-02-23 ジヤトコ株式会社 トロイダル型無段変速機
JP3496417B2 (ja) * 1996-12-05 2004-02-09 日産自動車株式会社 トロイダル型無段変速機
US6206801B1 (en) * 1997-08-04 2001-03-27 Nsk Ltd. Continuously variable transmission
US6117043A (en) * 1997-11-05 2000-09-12 Nsk Ltd. Continously variable transmission having an oscillating trunnion-support yoke
US6325740B1 (en) * 2000-07-14 2001-12-04 Nsk Ltd. Toroidal-type continuously variable transmission
JP3726662B2 (ja) 2000-09-06 2005-12-14 日産自動車株式会社 トロイダル型無段変速機
JP4374225B2 (ja) * 2003-09-17 2009-12-02 株式会社ジェイテクト トロイダル型無段変速機
DE102004036394A1 (de) * 2004-07-27 2006-03-23 Franz Haimer Maschinenbau Kg Wuchtring und Verfahren zum Auswuchten eines rotierenden Bauteils
JP2007113593A (ja) * 2005-10-18 2007-05-10 Nsk Ltd トロイダル型無段変速機
US7959533B2 (en) * 2005-12-09 2011-06-14 Fallbrook Technologies Inc. Continuously variable transmission
US8313404B2 (en) * 2007-02-16 2012-11-20 Fallbrook Intellectual Property Company Llc Infinitely variable transmissions, continuously variable transmissions, methods, assemblies, subassemblies, and components therefor
DE102008052093A1 (de) * 2008-10-17 2010-04-22 Daimler Ag Verfahren zum Auswuchten eines Bauteils eines Ausgleichsgetriebes sowie Ausgleichsgetriebe für einen Kraftwagen
CN201982607U (zh) * 2011-02-21 2011-09-21 无锡威孚中意齿轮有限责任公司 一种可调动平衡性的齿轮
CN207964167U (zh) * 2018-01-09 2018-10-12 沈阳精力传动设备有限公司 一种齿轮动平衡机构

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002512349A (ja) * 1998-04-22 2002-04-23 イナ ベルツラーゲル シエツフレル オツフエネ ハンデルスゲゼルシヤフト 転がり伝動装置、特にトロイダル式伝動装置
JP2002538394A (ja) * 1999-03-01 2002-11-12 トロトラック・(ディベロップメント)・リミテッド 連続可変比トランスミッション出力ディスクのための軸受け支持
DE10251560A1 (de) * 2002-11-06 2004-05-19 Bayerische Motoren Werke Ag Stufenloses Getriebe für allradgetriebene Fahrzeuge

Also Published As

Publication number Publication date
EP3133317A4 (en) 2017-12-06
EP3133316A1 (en) 2017-02-22
US10330181B2 (en) 2019-06-25
JP6277266B2 (ja) 2018-02-07
JPWO2015159866A1 (ja) 2017-04-13
US10677327B2 (en) 2020-06-09
EP3133317A1 (en) 2017-02-22
EP3133316A4 (en) 2017-12-27
CA2945468A1 (en) 2015-10-22
CA2945465A1 (en) 2015-10-22
US20170030438A1 (en) 2017-02-02
EP3133317B1 (en) 2019-06-19
JPWO2015159867A1 (ja) 2017-04-13
EP3133316B1 (en) 2019-03-06
WO2015159866A1 (ja) 2015-10-22
US20170030440A1 (en) 2017-02-02
JP6178916B2 (ja) 2017-08-09

Similar Documents

Publication Publication Date Title
WO2012111562A1 (ja) トロイダル型無段変速機
JP6756580B2 (ja) トロイダル無段変速機
JP5643220B2 (ja) 連続可変変速機
JP6277266B2 (ja) トロイダル型無段変速機
WO2015159868A1 (ja) トロイダル型無段変速機
JP4923989B2 (ja) トロイダル型無段変速機
JP6221665B2 (ja) トロイダル型無段変速機
JP2013164102A (ja) トロイダル型無段変速機
JP6528358B2 (ja) トロイダル型無段変速機
JP5768400B2 (ja) トロイダル型無段変速機
JP4947492B2 (ja) トロイダル型無段変速機
JP6515697B2 (ja) トロイダル型無段変速機
JP6492614B2 (ja) トロイダル型無段変速機
JP6458443B2 (ja) トロイダル型無段変速機
JP6020110B2 (ja) トロイダル型無段変速機
JP2023082314A (ja) トロイダル型無段変速機
JP2576535Y2 (ja) トロイダル型無段変速機用ディスク
JP2016080117A (ja) トロイダル型無段変速機
JP4771117B2 (ja) トロイダル型無段変速機
JP2015090159A (ja) トロイダル型無段変速機
JP2007146873A (ja) トロイダル型無段変速機
JP2006022828A (ja) トロイダル型無段変速機
JP2007010046A (ja) トロイダル型無段変速機
JP2005249142A (ja) トロイダル型無段変速機
JP2018009597A (ja) トロイダル型無段変速機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15779298

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2945468

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2016513783

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015779298

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015779298

Country of ref document: EP