WO2015159721A1 - 撮像レンズ - Google Patents

撮像レンズ Download PDF

Info

Publication number
WO2015159721A1
WO2015159721A1 PCT/JP2015/060481 JP2015060481W WO2015159721A1 WO 2015159721 A1 WO2015159721 A1 WO 2015159721A1 JP 2015060481 W JP2015060481 W JP 2015060481W WO 2015159721 A1 WO2015159721 A1 WO 2015159721A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging
imaging lens
refractive power
focal length
Prior art date
Application number
PCT/JP2015/060481
Other languages
English (en)
French (fr)
Inventor
久保田洋治
久保田賢一
平野整
米澤友浩
Original Assignee
株式会社オプトロジック
カンタツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201580003135.6A priority Critical patent/CN105829942B/zh
Application filed by 株式会社オプトロジック, カンタツ株式会社 filed Critical 株式会社オプトロジック
Publication of WO2015159721A1 publication Critical patent/WO2015159721A1/ja
Priority to US15/260,399 priority patent/US10067313B2/en
Priority to US15/925,936 priority patent/US10473891B2/en
Priority to US15/925,903 priority patent/US10466441B2/en
Priority to US15/925,992 priority patent/US10481364B2/en
Priority to US16/445,759 priority patent/US11092777B2/en
Priority to US16/445,797 priority patent/US11086102B2/en
Priority to US16/446,738 priority patent/US11022780B2/en
Priority to US16/446,701 priority patent/US11099356B2/en
Priority to US17/109,417 priority patent/US11668903B2/en
Priority to US17/109,451 priority patent/US11668904B2/en
Priority to US17/110,392 priority patent/US11822151B2/en
Priority to US17/110,377 priority patent/US11829006B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/005Diaphragms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/12Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration

Definitions

  • the present invention relates to an imaging lens that forms a subject image on an imaging element such as a CCD sensor or a CMOS sensor, and is a camera, digital still camera, security camera, and in-vehicle camera incorporated in a portable device such as a cellular phone or a portable information terminal.
  • the present invention relates to an imaging lens suitable for incorporation into a relatively small camera such as a network camera.
  • One method for realizing a high-resolution imaging lens is to increase the number of lenses constituting the imaging lens.
  • such an increase in the number of lenses tends to increase the size of the imaging lens, which is disadvantageous for incorporation into a small camera such as the smartphone described above. Therefore, conventionally, development of an imaging lens has been advanced in a direction to suppress the number of lenses as much as possible.
  • the technology for increasing the number of pixels in an image sensor has been rapidly progressing, and the focus of image pickup lens development is shifting to the realization of a high-resolution lens configuration rather than shortening the total optical length (Total Track Length).
  • the lens configuration consisting of seven lenses is slightly disadvantageous in terms of downsizing the imaging lens due to the large number of lenses that make up the imaging lens, but has a high degree of freedom in design, so that various aberrations are corrected well. And has the potential to achieve a well-balanced downsizing of the imaging lens.
  • a seven-lens imaging lens for example, an imaging lens described in Patent Document 1 is known.
  • the imaging lens described in Patent Literature 1 includes a biconvex first lens, a biconcave second lens joined to the first lens, and a meniscus negative third having a convex surface facing the object side.
  • a lens, a meniscus positive fourth lens with a concave surface facing the object side, a negative fifth lens with a convex surface facing the object side, a biconvex sixth lens, and a biconcave seventh lens Are arranged in order from the object side.
  • the focal length of the first lens group composed of lenses from the first lens to the fourth lens, and the second lens group composed of lenses from the fifth lens to the seventh lens.
  • Patent Document 1 Although the imaging lens described in Patent Document 1 is small in size, correction of the image plane is insufficient, and particularly distortion is relatively large. Therefore, there is a limit in realizing a high-performance imaging lens. With the lens configuration described in Patent Document 1, it is difficult to achieve better aberration correction while reducing the size of the imaging lens.
  • An object of the present invention is to provide an imaging lens capable of achieving both a reduction in size of the imaging lens and good aberration correction.
  • an imaging lens of the present invention includes, in order from the object side to the image plane side, a first lens group having a positive refractive power, a second lens group having a positive refractive power, and a negative lens group. And a third lens group having a refractive power of 2 are arranged.
  • the first lens group includes a first lens having a positive refractive power, a second lens having a positive refractive power, and a third lens having a negative refractive power.
  • the second lens group includes a fourth lens and a fifth lens.
  • the third lens group includes a sixth lens having negative refractive power and a seventh lens having negative refractive power.
  • the Abbe number of the first lens is ⁇ d1
  • the Abbe number of the second lens is ⁇ d2
  • the Abbe number of the third lens is ⁇ d3
  • the Abbe number of the seventh lens is ⁇ d7
  • the focal length is f1
  • the focal length of the second lens is f2
  • the following conditional expressions (1) to (5) are satisfied.
  • the imaging lens of the present invention has a configuration in which a second lens group having a positive refractive power and a third lens group having a negative refractive power are arranged in this order from the object side in the same manner as the first lens group having a positive refractive power. And the arrangement of the refractive power of each lens group is “positive / negative” from the object side.
  • correction of chromatic aberration is performed by arranging a lens group having a positive refractive power and a lens group having a negative refractive power in order from the object side.
  • it is necessary to increase the refractive power of the positive lens group disposed on the object side.
  • the refractive power of a lens group having a positive refractive power is increased, it is often difficult to correct chromatic aberration.
  • the positive refractive power of the entire lens system is shared by the first lens group and the second lens group. For this reason, compared with the case where there is one lens group having positive refractive power, the refractive power of the positive lens constituting each lens group can be suppressed to be relatively weak. Therefore, according to the imaging lens of the present invention, among the various aberrations, particularly chromatic aberration is corrected satisfactorily, and it is possible to obtain good imaging performance necessary for a high-resolution imaging lens. In the imaging lens of the present invention, since the third lens group has negative refractive power, the imaging lens can be suitably downsized.
  • the first lens group is composed of three lenses whose refractive power arrangement is positive and negative. These three lenses are formed from lens materials that satisfy the conditional expressions (1) to (3), respectively, and the first and second lenses and the third lens are a combination of a low dispersion material and a high dispersion material. It becomes.
  • Such an arrangement of the refractive powers of each lens and the arrangement of Abbe numbers favorably suppress the occurrence of chromatic aberration in the first lens group, and correct the generated chromatic aberration favorably.
  • the refractive power of each of the first lens and the second lens is relatively weak. Therefore, it is possible to reduce the size of the imaging lens while favorably correcting various aberrations.
  • the seventh lens arranged closest to the image plane in the imaging lens is formed of a low dispersion material. For this reason, chromatic dispersion at the seventh lens is suitably suppressed, and as a result, chromatic aberration of the imaging lens is preferably suppressed.
  • Conditional expression (5) is a condition for satisfactorily correcting coma, astigmatism, and distortion with a good balance while reducing the size of the imaging lens.
  • the refractive power of the second lens becomes relatively stronger than the refractive power of the first lens, so that the back focus (back focal length) becomes long and an insert such as an infrared cut filter is inserted. It is easy to secure a space for arranging the.
  • the refractive power of the first lens is relatively weak, it is disadvantageous for downsizing the imaging lens. In this case, inward coma is easily generated with respect to the off-axis light beam, and negative distortion increases, so that it is difficult to obtain good imaging performance.
  • the refractive power of the first lens becomes relatively stronger than the refractive power of the second lens. It will be advantageous. However, the outward coma is easily generated with respect to the off-axis light beam and the astigmatic difference is increased, so that it is difficult to obtain good imaging performance.
  • Conditional expression (6) is a condition for suppressing chromatic aberration, astigmatism, distortion, and field curvature within a preferable range.
  • the upper limit “1.1” is exceeded, the positive refractive power of the first lens group becomes relatively weak with respect to the refractive power of the entire lens system, and as a result, the negative power of the third lens in the first lens group.
  • the refractive power of becomes relatively strong. For this reason, in order to correct various aberrations satisfactorily, it is necessary to weaken the negative refractive power of the third lens.
  • the axial chromatic aberration is insufficiently corrected (the focal position of the short wavelength moves to the object side with respect to the focal position of the reference wavelength), and the off-axis light flux at the periphery of the image
  • the chromatic aberration of magnification is undercorrected (the image point of short wavelength moves in the direction approaching the optical axis with respect to the image point of reference wavelength).
  • negative distortion increases, it becomes difficult to obtain good imaging performance.
  • the value is below the lower limit “0.5”, it becomes easy to correct distortion and chromatic aberration, but it is difficult to secure the back focus.
  • the astigmatic difference increases in the off-axis light beam at the periphery of the image, it is difficult to obtain good imaging performance.
  • the focal length of the third lens is f3. -1.0 ⁇ f2 / f3 ⁇ -0.2 (7)
  • Conditional expression (7) is a condition for satisfactorily correcting chromatic aberration, distortion, and field curvature.
  • the upper limit “ ⁇ 0.2” When the upper limit “ ⁇ 0.2” is exceeded, the negative refracting power of the third lens becomes weaker than the positive refracting power of the second lens, so that the axial chromatic aberration is insufficiently corrected and negative distortion is caused. Increase.
  • the image plane is curved toward the object side, so-called field curvature is insufficiently corrected, and it is difficult to obtain good imaging performance.
  • the value is below the lower limit “ ⁇ 1.0”, it is advantageous for correcting distortion and axial chromatic aberration, but the image plane is curved toward the image plane, so-called field curvature is overcorrected. Become. Therefore, in this case, it is difficult to obtain good imaging performance.
  • Conditional expression (8) is a condition for suppressing off-axis coma aberration, chromatic aberration, and astigmatism within a preferable range in a balanced manner while reducing the size of the imaging lens.
  • Exceeding the upper limit “ ⁇ 0.1” is advantageous for downsizing the imaging lens, but the axial chromatic aberration is insufficiently corrected and the astigmatic difference increases.
  • outward coma is easily generated with respect to the off-axis light beam, and correction thereof is difficult. For this reason, it is difficult to obtain good imaging performance.
  • the value is below the lower limit “ ⁇ 1.0”, it is advantageous for good correction of axial chromatic aberration and securing of the back focus.
  • spherical aberration becomes insufficiently corrected and inward coma increases, it becomes difficult to obtain good imaging performance.
  • Conditional expression (9) is a condition for satisfactorily correcting astigmatism while reducing the size of the imaging lens.
  • Conditional expression (9) is also a condition for suppressing the incident angle of the light beam emitted from the imaging lens to the image plane within the range of CRA (Chief Ray Angle).
  • CRA chief ray angle
  • an imaging element such as a CCD sensor or a CMOS sensor has a predetermined range of incident angles of light that can be taken into the sensor, that is, a so-called chief ray angle (CRA).
  • CRA chief ray angle
  • conditional expression (9) If the upper limit “ ⁇ 0.5” in conditional expression (9) is exceeded, it is advantageous for downsizing the imaging lens, but it is difficult to ensure the back focus. In addition, since the sagittal image plane is curved toward the object side of astigmatism, the astigmatic difference increases, making it difficult to obtain good imaging performance. Furthermore, it becomes difficult to suppress the incident angle of the light beam emitted from the imaging lens to the image plane within the range of CRA. On the other hand, when the value is below the lower limit “ ⁇ 1.5”, the incident angle of the light beam emitted from the imaging lens to the image plane is easily suppressed within the CRA range, but it is difficult to reduce the size of the imaging lens. In addition, the lateral chromatic aberration is insufficiently corrected in the peripheral portion of the image and the negative distortion increases, so that it is difficult to obtain good imaging performance.
  • Conditional expression (10) is a condition for satisfactorily correcting lateral chromatic aberration, distortion, and field curvature while suppressing the incident angle of the light beam emitted from the imaging lens to the image plane within the range of CRA. . If the upper limit value “ ⁇ 0.8” is exceeded, the incident angle of the light beam emitted from the imaging lens to the image plane is easily suppressed within the range of CRA, but negative distortion increases. Further, since the lateral chromatic aberration is insufficiently corrected and the curvature of field is insufficiently corrected in the peripheral portion of the image, it is difficult to obtain good imaging performance. On the other hand, when the value is below the lower limit “ ⁇ 3”, it is advantageous for correcting lateral chromatic aberration and distortion. However, since the astigmatic difference increases, it is difficult to obtain good imaging performance.
  • Conditional expression (11) is a condition for satisfactorily correcting distortion, field curvature, and lateral chromatic aberration while ensuring back focus.
  • Exceeding the upper limit “0.3” is advantageous for good correction of lateral chromatic aberration, but it is difficult to ensure the back focus. Further, since the curvature of field becomes undercorrected and minus distortion increases, it becomes difficult to obtain good imaging performance.
  • the value is below the lower limit “0.02,” it is easy to ensure the back focus, but the lateral chromatic aberration increases in the peripheral portion of the image. Therefore, in this case, it is difficult to obtain good imaging performance.
  • Conditional expression (12) suppresses each of distortion, astigmatism, and field curvature within a favorable range while suppressing the incident angle of the light beam emitted from the imaging lens to the image plane within the range of CRA. It is a condition to do. When the upper limit value “0.2” is exceeded, it becomes easy to suppress the incident angle of the light beam emitted from the imaging lens to the image plane within the CRA range and to easily correct distortion. However, it is difficult to ensure the back focus. In addition, since the field curvature is overcorrected and the astigmatic difference increases, it is difficult to obtain good imaging performance.
  • the imaging lens of the present invention it is possible to provide a small imaging lens particularly suitable for incorporation into a small camera while having high resolution in which various aberrations are well corrected.
  • FIG. 1 is a cross-sectional view illustrating a schematic configuration of an imaging lens according to Numerical Example 1 according to an embodiment of the present invention.
  • FIG. 3 is an aberration diagram illustrating lateral aberration of the imaging lens illustrated in FIG. 1.
  • FIG. 2 is an aberration diagram illustrating spherical aberration, astigmatism, and distortion of the imaging lens illustrated in FIG. 1. It is sectional drawing which shows schematic structure of the imaging lens which concerns on numerical example 2 about one embodiment of this invention.
  • FIG. 5 is an aberration diagram showing lateral aberration of the imaging lens shown in FIG. 4.
  • FIG. 5 is an aberration diagram illustrating spherical aberration, astigmatism, and distortion of the imaging lens illustrated in FIG. 4.
  • FIG. 8 is an aberration diagram showing lateral aberration of the imaging lens shown in FIG. 7.
  • FIG. 8 is an aberration diagram illustrating spherical aberration, astigmatism, and distortion of the imaging lens illustrated in FIG. 7.
  • FIG. 11 is an aberration diagram illustrating lateral aberration of the imaging lens illustrated in FIG. 10.
  • FIG. 11 is an aberration diagram illustrating spherical aberration, astigmatism, and distortion of the imaging lens illustrated in FIG. 10.
  • FIG. 9 is a cross-sectional view illustrating a schematic configuration of an imaging lens according to Numerical Example 5 according to an embodiment of the present invention.
  • FIG. 14 is an aberration diagram illustrating lateral aberration of the imaging lens illustrated in FIG. 13.
  • FIG. 14 is an aberration diagram illustrating spherical aberration, astigmatism, and distortion of the imaging lens illustrated in FIG. 13. It is sectional drawing which shows schematic structure of the imaging lens which concerns on numerical Example 6 about one embodiment of this invention.
  • FIG. 17 is an aberration diagram illustrating lateral aberration of the imaging lens illustrated in FIG. 16.
  • FIG. 17 is an aberration diagram illustrating spherical aberration, astigmatism, and distortion of the imaging lens illustrated in FIG. 16.
  • FIG. 4 are cross-sectional views showing a schematic configuration of an imaging lens according to Numerical Examples 1 to 6 of the present embodiment. Since all the numerical examples have the same basic lens configuration, the lens configuration of the imaging lens according to the present embodiment will be described here with reference to the schematic cross-sectional view of the numerical example 1.
  • the imaging lens according to the present embodiment includes a first lens group G1 having a positive refractive power and a second lens group having a positive refractive power in order from the object side to the image plane side.
  • G2 and a third lens group G3 having negative refractive power are arranged.
  • a filter 10 is disposed between the third lens group G3 and the image plane IM of the image sensor. This filter 10 can be omitted.
  • the first lens group G1 includes, in order from the object side, a first lens L1 having a positive refractive power, an aperture stop ST, a second lens L2 having a positive refractive power, and a third lens having a negative refractive power. L3.
  • an aperture stop ST is provided on the image side surface of the first lens L1. Note that the position of the aperture stop ST is not limited to the position between the first lens L1 and the second lens L2 as in the imaging lens of Numerical Example 1.
  • the aperture stop ST may be disposed on the object side of the first lens L1.
  • the assembling property of the imaging lens can be improved and the manufacturing cost can be reduced.
  • the pre-aperture type lens configuration also has a feature that it is relatively easy to shorten the optical total length of the imaging lens, so it is also an effective lens configuration for incorporation into portable devices such as mobile phones and smartphones that have become widespread in recent years.
  • a so-called medium-aperture type lens configuration in which an aperture stop ST is disposed between the first lens L1 and the second lens L2 as in Numerical Example 1 is first compared to the optical total length of the imaging lens. Since the effective diameter of the lens L1 is increased, the presence of the imaging lens in the camera is emphasized, and it is possible to appeal to the user about a high-class feeling and high lens performance as part of the design of the camera.
  • the first lens L1 has a shape in which both the curvature radius r1 of the object side surface and the curvature radius r2 of the image side surface are positive, and has a convex surface on the object side in the vicinity of the optical axis X. It is formed in a shape that becomes a directed meniscus lens.
  • the shape of the first lens L1 is not limited to the shape according to Numerical Example 1.
  • the shape of the first lens L1 may be any shape as long as the curvature radius r1 of the object side surface is positive.
  • the shape of the first lens L1 may be a shape in which the radius of curvature r2 is negative and a biconvex lens in the vicinity of the optical axis. In order to more effectively reduce the size of the imaging lens, it is desirable to form the first lens L1 in a shape that becomes a meniscus lens having a convex surface facing the object side in the vicinity of the optical axis.
  • the second lens L2 has a shape in which the curvature radius r3 of the object-side surface is positive and the curvature radius r4 of the image-side surface is negative, and is formed into a shape that becomes a biconvex lens in the vicinity of the optical axis X. .
  • the third lens L3 is a meniscus lens having a shape in which the curvature radius r5 of the object side surface and the curvature radius r6 of the image side surface are both positive, and a convex surface facing the object side in the vicinity of the optical axis X. Is formed into a shape.
  • the shape of the third lens L3 is not limited to the shape according to Numerical Example 1 as long as the curvature radius r6 of the image side surface is positive.
  • Numerical Examples 2 to 4 are examples in which the shape of the third lens L3 is a shape in which the radius of curvature r5 of the object side surface is negative, that is, a shape that becomes a biconcave lens in the vicinity of the optical axis X.
  • the second lens group G2 includes, in order from the object side, a fourth lens L4 having a negative refractive power and a fifth lens L5 having a positive refractive power.
  • the second lens group G2 may be composed of two lenses, as long as the combined refractive power of these two lenses is positive.
  • Numerical Examples 2 to 5 are examples in which the second lens group G2 includes a fourth lens L4 having a positive refractive power and a fifth lens L5 having a negative refractive power.
  • Numerical Example 6 is an example in which the second lens group G2 includes a fourth lens L4 and a fifth lens L5 having positive refractive power.
  • the fourth lens L4 has a shape in which both the curvature radius r7 of the object side surface and the curvature radius r8 of the image side surface are negative, and has a concave surface on the object side in the vicinity of the optical axis X. It is formed in a shape that becomes a directed meniscus lens.
  • the fifth lens L5 has a shape in which the curvature radius r9 of the object-side surface is positive and the curvature radius r10 of the image-side surface is negative, and becomes a biconvex lens in the vicinity of the optical axis X. It is formed.
  • the shape of the fifth lens L5 is not limited to the shape according to Numerical Example 1.
  • Numerical Examples 2 to 5 are examples in which the radius of curvature r10 is positive, that is, a shape that becomes a meniscus lens having a convex surface facing the object side in the vicinity of the optical axis X.
  • Numerical Example 6 is an example of a shape having a negative curvature radius r9 and a meniscus lens having a concave surface facing the object side in the vicinity of the optical axis X.
  • the third lens group G3 includes, in order from the object side, a sixth lens L6 having a negative refractive power and a seventh lens L7 having a negative refractive power.
  • the sixth lens L6 is a meniscus lens having a shape in which both the curvature radius r11 of the object side surface and the curvature radius r12 of the image side surface are positive, and a convex surface facing the object side in the vicinity of the optical axis X. Is formed into a shape.
  • the seventh lens L7 has a shape in which the curvature radius r13 of the object side surface is negative and the curvature radius r14 of the image side surface is positive, and is a biconcave lens in the vicinity of the optical axis X.
  • the In the seventh lens L7, the object-side surface and the image-side surface are formed in an aspheric shape, and are formed in a shape in which the positive refractive power increases from the optical axis X toward the lens periphery.
  • Such a shape of the seventh lens L7 corrects not only axial chromatic aberration but also off-axis lateral chromatic aberration, and the incident angle of the light beam emitted from the imaging lens to the image plane IM is the principal ray angle. It is preferably suppressed within the range of (CRA: Chief Ray Angle).
  • the shape of the seventh lens L7 is not limited to the shape according to Numerical Example 1.
  • the shape of the seventh lens L7 may be a shape in which the curvature radius r14 of the image side surface is positive.
  • Numerical Example 5 is an example of a shape in which the radius of curvature 13 is positive and a meniscus lens having a convex surface facing the object side in the vicinity of the optical axis X.
  • the imaging lens according to the present embodiment satisfies the following conditional expressions (1) to (12).
  • 40 ⁇ d1 ⁇ 75 (1) 40 ⁇ d2 ⁇ 75 (2) 20 ⁇ d3 ⁇ 35 (3) 40 ⁇ d7 ⁇ 75 (4) 2.5 ⁇ f1 / f2 ⁇ 30 (5) 0.5 ⁇ f12 / f ⁇ 1.1 (6) -1.0 ⁇ f2 / f3 ⁇ -0.2 (7) -1.0 ⁇ f12 / f3 ⁇ -0.1 (8) -1.5 ⁇ f67 / f ⁇ -0.5 (9) -3 ⁇ f45 / f67 ⁇ -0.8 (10) 0.02 ⁇ f7 / f6 ⁇ 0.3 (11) 0.03 ⁇ D34 / f ⁇ 0.2 (12)
  • ⁇ d1 Abbe number of the first lens
  • L1 ⁇ d2 Abbe number of the second lens
  • L2 ⁇ d3 Abbe number of the third lens
  • L3 ⁇ d7 Abbe number of the seventh lens
  • the lens surface of each lens is formed as an aspherical surface.
  • the aspherical shape adopted for these lens surfaces is that the axis in the optical axis direction is Z, the height in the direction orthogonal to the optical axis is H, the cone coefficient is k, the aspheric coefficient is A 4 , A 6 , A 8 , When A 10 , A 12 , A 14 , and A 16 are used, they are expressed by the following formula.
  • f represents the focal length of the entire lens system
  • Fno represents the F number
  • represents the half angle of view
  • i is a surface number counted from the object side
  • r is a radius of curvature
  • d is a distance (surface interval) between lens surfaces on the optical axis
  • nd is a refractive index
  • ⁇ d is an Abbe number. Note that the surface number to which the symbol * (asterisk) is added indicates an aspherical surface.
  • FIG. 2 is an aberration diagram in which the lateral aberration corresponding to the half angle of view ⁇ is divided into the tangential direction and the sagittal direction (the same applies to FIGS. 5, 8, 11, 14, and 17).
  • FIG. 3 is an aberration diagram showing spherical aberration (mm), astigmatism (mm), and distortion (%), respectively.
  • S represents a sagittal image plane
  • T represents a tangential image plane (the same applies to FIGS. 6, 9, 12, 15 and 18).
  • the imaging lens according to Numerical Example 1 corrects various aberrations satisfactorily.
  • FIG. 5 shows lateral aberration corresponding to the half angle of view ⁇ for the imaging lens of Numerical Example 2
  • FIG. 6 shows spherical aberration (mm), astigmatism (mm), and distortion ( %).
  • various aberrations are favorably corrected by the imaging lens according to Numerical Example 2 as well.
  • FIG. 8 shows lateral aberration corresponding to the half angle of view ⁇ for the imaging lens of Numerical Example 3
  • FIG. 9 shows spherical aberration (mm), astigmatism (mm), and distortion ( %).
  • various aberrations are also satisfactorily corrected by the imaging lens according to Numerical Example 3 as well.
  • FIG. 11 shows lateral aberration corresponding to the half angle of view ⁇ for the imaging lens of Numerical Example 4.
  • FIG. 12 shows spherical aberration (mm), astigmatism (mm), and distortion ( %). As shown in FIGS. 11 and 12, various aberrations are also satisfactorily corrected by the imaging lens according to Numerical Example 4 as well.
  • FIG. 14 shows lateral aberration corresponding to the half angle of view ⁇ for the imaging lens of Numerical Example 5
  • FIG. 15 shows spherical aberration (mm), astigmatism (mm), and distortion ( %).
  • various aberrations are also favorably corrected by the imaging lens according to Numerical Example 5.
  • FIG. 17 shows lateral aberration corresponding to the half angle of view ⁇ for the imaging lens of Numerical Example 6.
  • FIG. 18 shows spherical aberration (mm), astigmatism (mm), and distortion ( %). As shown in FIGS. 17 and 18, various aberrations are favorably corrected also by the imaging lens according to Numerical Example 6.
  • the imaging lens according to the present embodiment described above a wide field angle (2 ⁇ ) of 70 ° or more can be realized.
  • the imaging lenses according to the numerical examples 1 to 6 described above have a wide field angle of 74.0 °. According to the imaging lens according to the present embodiment, it is possible to capture a wider range than the conventional imaging lens.
  • the imaging lens according to the above embodiment is applied to an imaging optical system such as a camera built in a mobile device such as a mobile phone, a portable information terminal, and a smartphone, a digital still camera, a security camera, an in-vehicle camera, and a network camera.
  • an imaging optical system such as a camera built in a mobile device such as a mobile phone, a portable information terminal, and a smartphone, a digital still camera, a security camera, an in-vehicle camera, and a network camera.
  • the present invention is applied to an imaging lens incorporated in a relatively small camera such as a camera, a digital still camera, a security camera, an in-vehicle camera, or a network camera incorporated in a portable device such as a mobile phone, a smartphone, or a portable information terminal. Can do.
  • a relatively small camera such as a camera, a digital still camera, a security camera, an in-vehicle camera, or a network camera incorporated in a portable device such as a mobile phone, a smartphone, or a portable information terminal.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

 諸収差が良好に補正される小型の撮像レンズを提供する。この目的のため、物体側から順に、正の第1レンズ群(G1)と、正の第2レンズ群(G2)と、負の第3レンズ群(G3)とを配置して撮像レンズを構成する。第1レンズ群(G1)は、正の第1レンズ(L1)、正の第2レンズ(L2)、および負の第3レンズ(L3)から構成する。第2レンズ群(G2)は第4レンズ(L49および第5レンズ(L5)から構成する。第3レンズ群(G3)は負の第6レンズ(L6)および第7レンズ(L7)から構成する。第1レンズ(L1)~第3レンズ(L3)および第7レンズ(L7)のアッベ数をνd1、νd2、νd3、およびνd7、第1レンズ(L1)の焦点距離をf1、第2レンズ(L2)の焦点距離をf2としたとき、当該撮像レンズは次の各条件式を満足する。 40<νd1<75、 40<νd2<75、 20<νd3<35、 40<νd7<75、 2.5<f1/f2<30。

Description

撮像レンズ
 本発明は、CCDセンサやCMOSセンサ等の撮像素子上に被写体像を形成する撮像レンズに係り、携帯電話機や携帯情報端末等の携帯機器に内蔵されるカメラ、デジタルスティルカメラ、セキュリティカメラ、車載カメラ、ネットワークカメラ等の比較的小型のカメラへの組み込みが好適な撮像レンズに関するものである。
 近年、音声通話主体の携帯電話機に代わり、音声通話機能に加えて様々なアプリケーションソフトウェアの実行が可能な多機能携帯電話機、いわゆるスマートフォン(smartphone)が普及している。スマートフォン上でアプリケーションソフトウェアを実行することにより、例えばデジタルスティルカメラやカーナビゲーション等の機能をスマートフォン上で実現することが可能である。このような様々な機能を実現するために、スマートフォンには携帯電話機と同様にその殆どの機種にカメラが搭載されている。
 こうしたスマートフォンの製品群は、初級者向けの製品から上級者向けの製品まで様々な仕様の製品から構成されることが多い。このうち上級者向けに開発された製品に組み込まれる撮像レンズには、近年の高画素化された撮像素子にも対応することのできる高い解像度を有するレンズ構成が要求される。
 高解像度の撮像レンズを実現する方法の一つとして、撮像レンズを構成するレンズの枚数を増加させる方法がある。しかし、こうしたレンズ枚数の増加は撮像レンズの大型化を招き易く、上述のスマートフォン等の小型のカメラへの組み込みには不利となる。そこで、従来はレンズ枚数をなるべく抑制する方向で撮像レンズの開発が進められてきた。しかし、昨今では撮像素子の高画素化技術が目まぐるしく進歩しており、撮像レンズの開発の中心は、光学全長(Total Track Length)の短縮よりもむしろ高解像度のレンズ構成の実現に移りつつある。例えば、従来では撮像レンズおよび撮像素子を含むカメラユニットをスマートフォンの内部に組み込むのが一般的であったが、最近ではスマートフォンとは別体のカメラユニットをスマートフォンに装着することでデジタルスティルカメラと比較しても遜色のない画像を得られるようにする試みもなされている。
 7枚のレンズから成るレンズ構成は、撮像レンズを構成するレンズの枚数が多いことから撮像レンズの小型化に関しては若干不利となるものの、設計上の自由度が高いため、諸収差の良好な補正や撮像レンズの小型化をバランスよく実現できる可能性を秘めている。こうした7枚構成の撮像レンズとしては、例えば特許文献1に記載の撮像レンズが知られている。
 特許文献1に記載の撮像レンズは、両凸形状の第1レンズと、当該第1レンズに接合された両凹形状の第2レンズと、物体側に凸面を向けたメニスカス形状の負の第3レンズと、物体側に凹面を向けたメニスカス形状の正の第4レンズと、物体側に凸面を向けた負の第5レンズと、両凸形状の第6レンズと、両凹形状の第7レンズとが物体側から順に配置されて構成される。特許文献1の撮像レンズでは、第1レンズから第4レンズまでのレンズで構成される第1レンズ群の焦点距離と、第5レンズから第7レンズまでのレンズで構成される第2レンズ群の焦点距離との比を一定の範囲内に抑制することにより、撮像レンズの小型化と諸収差の良好な補正とを実現する。
特開2012-155223号公報
 上記特許文献1に記載の撮像レンズは小型であるものの、像面の補正が不十分であり、特に歪曲収差が比較的大きいため、高性能の撮像レンズを実現する上では自ずと限界が生じる。上記特許文献1に記載のレンズ構成では、撮像レンズの小型化を図りつつより良好な収差補正を実現することが困難である。
 なお、こうした問題は携帯電話機やスマートフォンに組み込まれる撮像レンズに特有の問題ではなく、デジタルスティルカメラ、携帯情報端末、セキュリティカメラ、車載カメラ、ネットワークカメラ等の比較的小型のカメラに組み込まれる撮像レンズにおいても共通の問題である。
 本発明の目的は、撮像レンズの小型化と良好な収差補正との両立を図ることのできる撮像レンズを提供することにある。
 上記目的を達成するために本発明の撮像レンズは、物体側から像面側に向かって順に、正の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群とを配置して構成される。第1レンズ群は、正の屈折力を有する第1レンズと、正の屈折力を有する第2レンズと、負の屈折力を有する第3レンズとから構成される。第2レンズ群は第4レンズおよび第5レンズから構成される。第3レンズ群は、負の屈折力を有する第6レンズおよび負の屈折力を有する第7レンズから構成される。また、本発明に係る撮像レンズは、第1レンズのアッベ数をνd1、第2レンズのアッベ数をνd2、第3レンズのアッベ数をνd3、第7レンズのアッベ数をνd7、第1レンズの焦点距離をf1、第2レンズの焦点距離をf2としたとき、次の条件式(1)~(5)を満足する。
     40<νd1<75             (1)
     40<νd2<75             (2)
     20<νd3<35             (3)
     40<νd7<75             (4)
     2.5<f1/f2<30          (5)
 本発明の撮像レンズは、正の屈折力を有する第1レンズ群と同じく正の屈折力を有する第2レンズ群と負の屈折力を有する第3レンズ群とが物体側から順に配置される構成であり、各レンズ群の屈折力の配列が物体側から「正正負」となる。一般的には、物体側から順に正の屈折力を有するレンズ群と負の屈折力を有するレンズ群とを配置して色収差の補正が行われる。このようなレンズ構成において、撮像レンズの小型化を実現するためには、物体側に配置された正のレンズ群の屈折力を強くする必要がある。しかしながら、正の屈折力を有するレンズ群の屈折力が強くなると、色収差の良好な補正が困難になることが多い。
 本発明に係る撮像レンズでは、第1レンズ群と第2レンズ群とでレンズ系全体の正の屈折力が分担されることになる。このため、正の屈折力を有するレンズ群が一つの場合に比較して、各レンズ群を構成する正レンズの屈折力が比較的弱く抑えられる。よって、本発明の撮像レンズによれば、諸収差のうち特に色収差が良好に補正されることとなり、高解像度の撮像レンズに必要な良好な結像性能を得ることが可能となる。また、本発明の撮像レンズでは第3レンズ群が負の屈折力を有することから、撮像レンズの小型化が好適に図られる。
 上記第1レンズ群は、屈折力の配列が正正負となる3枚のレンズから構成される。これら3枚のレンズは条件式(1)~(3)を満足するレンズ材料からそれぞれ形成され、第1および第2レンズと第3レンズとは、低分散の材料と高分散の材料との組み合わせとなる。このような各レンズの屈折力の配列とアッベ数の並びによって、第1レンズ群においては色収差の発生が好適に抑制されるとともに、発生した色収差については良好に補正される。なお、本発明に係る撮像レンズでは、第1レンズおよび第2レンズの2枚のレンズによって正の屈折力が分担されることから、第1レンズおよび第2レンズのそれぞれの屈折力が比較的弱く抑えられ、諸収差を良好に補正しつつ撮像レンズの小型化が好適に図られる。
 また、上記条件式(4)に示されるように、撮像レンズにおいて最も像面側に配置される第7レンズは低分散の材料から形成される。このため、当該第7レンズでの色分散が好適に抑制され、ひいては撮像レンズの色収差が好適に抑制されることになる。
 条件式(5)は、撮像レンズの小型化を図りつつ、コマ収差、非点収差、および歪曲収差をバランスよく良好に補正するための条件である。上限値「30」を超えると、第1レンズの屈折力に対して第2レンズの屈折力が相対的に強くなるため、バックフォーカス(back focal length)が長くなり、赤外線カットフィルタ等の挿入物を配置するためのスペースの確保が容易となる。しかし、第1レンズの屈折力が相対的に弱くなるため、撮像レンズの小型化には不利となる。またこの場合、軸外光束に対して内方コマ収差が発生し易くなるとともにマイナスの歪曲収差が増大するため、良好な結像性能を得ることが困難となる。一方、下限値「2.5」を下回ると、第1レンズの屈折力が第2レンズの屈折力に対して相対的に強くなるため、撮像レンズの小型化や歪曲収差の良好な補正には有利となる。しかしながら、軸外光束に対して外方コマ収差が発生し易くなるとともに非点隔差が増大するため、良好な結像性能を得ることが困難となる。
 上記構成の撮像レンズにおいては、レンズ系全体の焦点距離をf、第1レンズおよび第2レンズの合成焦点距離をf12としたとき、次の条件式(6)を満足することが望ましい。
     0.5<f12/f<1.1         (6)
 条件式(6)は、色収差、非点収差、歪曲収差、および像面湾曲を好ましい範囲内に抑制するための条件である。上限値「1.1」を超えると、レンズ系全体の屈折力に対して第1レンズ群の正の屈折力が相対的に弱くなり、その結果、第1レンズ群においては第3レンズの負の屈折力が相対的に強くなる。このため、諸収差を良好に補正するためには第3レンズの負の屈折力を弱くする必要が生じる。第3レンズの負の屈折力が弱くなると、軸上の色収差が補正不足(基準波長の焦点位置に対して短波長の焦点位置が物体側に移動)になるとともに、画像周辺部の軸外光束において倍率色収差が補正不足(基準波長の結像点に対して短波長の結像点が光軸に近づく方向に移動)になる。また、マイナスの歪曲収差が増大するため、良好な結像性能を得ることが困難となる。一方、下限値「0.5」を下回ると、歪曲収差や色収差を補正し易くなるものの、バックフォーカスの確保が困難になる。さらに、画像周辺部の軸外光束において非点隔差が増大するため、良好な結像性能を得ることが困難となる。
 上記構成の撮像レンズにおいては、第3レンズの焦点距離をf3としたとき、次の条件式(7)を満足することが望ましい。
     -1.0<f2/f3<-0.2       (7)
 条件式(7)は、色収差、歪曲収差、および像面湾曲を良好に補正するための条件である。上限値「-0.2」を超えると、第2レンズの正の屈折力に対して第3レンズの負の屈折力が弱くなるため、軸上色収差が補正不足になるとともにマイナスの歪曲収差が増大する。また、結像面が物体側に湾曲する、いわゆる像面湾曲が補正不足の状態となり、良好な結像性能を得ることが困難となる。一方、下限値「-1.0」を下回ると、歪曲収差や軸上色収差の補正には有利となるものの、結像面が像面側に湾曲する、いわゆる像面湾曲が補正過剰の状態になる。よって、この場合も良好な結像性能を得ることが困難となる。
 上記構成の撮像レンズにおいては、第1レンズおよび第2レンズの合成焦点距離をf12、第3レンズの焦点距離をf3としたとき、次の条件式(8)を満足することが望ましい。
     -1.0<f12/f3<-0.1      (8)
 条件式(8)は、撮像レンズの小型化を図りつつ、軸外のコマ収差、色収差、および非点収差のそれぞれを好ましい範囲内にバランスよく抑制するための条件である。上限値「-0.1」を超えると、撮像レンズの小型化には有利となるものの、軸上色収差が補正不足になるとともに非点隔差が増大する。また、軸外光束に対して外方コマ収差が生じ易くなり、その補正が困難になる。このため、良好な結像性能を得ることが困難となる。一方、下限値「-1.0」を下回ると、軸上色収差の良好な補正やバックフォーカスの確保には有利となる。しかしながら、球面収差が補正不足になるとともに内方コマ収差が増大するため、良好な結像性能を得ることが困難となる。
 上記構成の撮像レンズにおいては、レンズ系全体の焦点距離をf、第6レンズおよび第7レンズの合成焦点距離をf67としたとき、次の条件式(9)を満足することが望ましい。
     -1.5<f67/f<-0.5       (9)
 条件式(9)は、撮像レンズの小型化を図りつつ、非点収差を良好に補正するための条件である。また、条件式(9)は、撮像レンズから出射した光線の像面への入射角度をCRA(Chief Ray Angle)の範囲内に抑制するための条件でもある。周知のように、CCDセンサーやCMOSセンサー等の撮像素子には、センサーに取り込むことのできる光線の入射角度の範囲、いわゆる主光線角度(CRA)が予め定められている。撮像レンズから出射した光線の像面への入射角度をCRAの範囲内に抑制することにより、画像の周辺部が暗くなる現象であるシェーディングの発生を好適に抑制することができる。
 条件式(9)において上限値「-0.5」を超えると、撮像レンズの小型化には有利となるものの、バックフォーカスの確保が困難となる。また、非点収差のうちサジタル像面が物体側に湾曲するため非点隔差が増大することとなり、良好な結像性能を得ることが困難となる。さらに、撮像レンズから出射した光線の像面への入射角度をCRAの範囲内に抑制することも困難となる。一方、下限値「-1.5」を下回ると、撮像レンズから出射した光線の像面への入射角度をCRAの範囲内に抑制し易くなるものの、撮像レンズの小型化が困難になる。また、画像周辺部において倍率色収差が補正不足になるとともにマイナスの歪曲収差が増大するため、良好な結像性能を得ることが困難となる。
 上記構成の撮像レンズにおいては、第4レンズおよび第5レンズの合成焦点距離をf45、第6レンズおよび第7レンズの合成焦点距離をf67としたとき、次の条件式(10)を満足することが望ましい。
     -3<f45/f67<-0.8      (10)
 条件式(10)は、撮像レンズから出射した光線の像面への入射角度をCRAの範囲内に抑制しつつ、倍率色収差、歪曲収差、および像面湾曲を良好に補正するための条件である。上限値「-0.8」を超えると、撮像レンズから出射した光線の像面への入射角度をCRAの範囲内に抑制し易くなるものの、マイナスの歪曲収差が増大する。また、画像周辺部において倍率色収差が補正不足になるとともに像面湾曲が補正不足の状態になるため、良好な結像性能を得ることが困難となる。一方、下限値「-3」を下回ると、倍率色収差および歪曲収差の補正には有利となる。しかし、非点隔差が増大するため良好な結像性能を得ることが困難となる。
 上記構成の撮像レンズにおいては、第6レンズの焦点距離をf6、第7レンズの焦点距離をf7としたとき、次の条件式(11)を満足することが望ましい。
     0.02<f7/f6<0.3       (11)
 条件式(11)は、バックフォーカスを確保しつつ、歪曲収差、像面湾曲、および倍率色収差を良好に補正するための条件である。上限値「0.3」を超えると、倍率色収差の良好な補正には有利となるものの、バックフォーカスの確保が困難となる。また、像面湾曲が補正不足の状態になるとともにマイナスの歪曲収差が増大するため、良好な結像性能を得ることが困難になる。一方、下限値「0.02」を下回ると、バックフォーカスを確保し易くなるものの、画像周辺部において倍率色収差が増大する。よって、この場合も良好な結像性能を得ることが困難となる。
 上記構成の撮像レンズにおいては、レンズ系全体の焦点距離をf、第3レンズと第4レンズとの間の光軸上の距離をD34としたとき、次の条件式(12)を満足することが望ましい。
     0.03<D34/f<0.2       (12)
 条件式(12)は、撮像レンズから出射した光線の像面への入射角度をCRAの範囲内に抑制しつつ、歪曲収差、非点収差、および像面湾曲のそれぞれを良好な範囲内に抑制するための条件である。上限値「0.2」を超えると、撮像レンズから出射した光線の像面への入射角度をCRAの範囲内に抑制し易くなるとともに歪曲収差を補正し易くなる。しかし、バックフォーカスの確保は困難になる。また、像面湾曲が補正過剰の状態になり、非点隔差も増大するため、良好な結像性能を得ることが困難となる。一方、下限値「0.03」を下回ると、バックフォーカスを確保し易くなるものの、撮像レンズから出射した光線の像面への入射角度をCRAの範囲内に抑制することが困難になる。また、マイナスの歪曲収差が増大するため良好な結像性能を得ることが困難となる。
 本発明の撮像レンズによれば、諸収差が良好に補正された高い解像度を有しながらも、小型のカメラへの組込みに特に適した小型の撮像レンズを提供することができる。
本発明の一実施の形態について、数値実施例1に係る撮像レンズの概略構成を示す断面図である。 図1に示す撮像レンズの横収差を示す収差図である。 図1に示す撮像レンズの球面収差、非点収差、歪曲収差を示す収差図である。 本発明の一実施の形態について、数値実施例2に係る撮像レンズの概略構成を示す断面図である。 図4に示す撮像レンズの横収差を示す収差図である。 図4に示す撮像レンズの球面収差、非点収差、歪曲収差を示す収差図である。 本発明の一実施の形態について、数値実施例3に係る撮像レンズの概略構成を示す断面図である。 図7に示す撮像レンズの横収差を示す収差図である。 図7に示す撮像レンズの球面収差、非点収差、歪曲収差を示す収差図である。 本発明の一実施の形態について、数値実施例4に係る撮像レンズの概略構成を示す断面図である。 図10に示す撮像レンズの横収差を示す収差図である。 図10に示す撮像レンズの球面収差、非点収差、歪曲収差を示す収差図である。 本発明の一実施の形態について、数値実施例5に係る撮像レンズの概略構成を示す断面図である。 図13に示す撮像レンズの横収差を示す収差図である。 図13に示す撮像レンズの球面収差、非点収差、歪曲収差を示す収差図である。 本発明の一実施の形態について、数値実施例6に係る撮像レンズの概略構成を示す断面図である。 図16に示す撮像レンズの横収差を示す収差図である。 図16に示す撮像レンズの球面収差、非点収差、歪曲収差を示す収差図である。
 以下、本発明を具体化した一実施の形態について、図面を参照しながら詳細に説明する。
 図1、図4、図7、図10、図13、および図16は、本実施の形態の数値実施例1~6に係る撮像レンズの概略構成を示す断面図である。いずれの数値実施例も基本的なレンズ構成は同一であるため、ここでは数値実施例1の概略断面図を参照しながら、本実施の形態に係る撮像レンズのレンズ構成について説明する。
 図1に示すように本実施の形態に係る撮像レンズは、物体側から像面側に向かって順に、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とが配列されて構成される。第3レンズ群G3と撮像素子の像面IMとの間にはフィルタ10が配置される。このフィルタ10は割愛することも可能である。
 第1レンズ群G1は、物体側から順に、正の屈折力を有する第1レンズL1と、開口絞りSTと、正の屈折力を有する第2レンズL2と、負の屈折力を有する第3レンズL3とから構成される。本実施の形態に係る撮像レンズでは、第1レンズL1の像面側の面に開口絞りSTを設けている。なお、開口絞りSTの位置は、本数値実施例1の撮像レンズのように第1レンズL1と第2レンズL2との間に限定されるものではない。例えば、第1レンズL1の物体側に開口絞りSTを配置するようにしてもよい。このように撮像レンズの物体側に開口絞りSTを配置する、いわゆる前絞りタイプのレンズ構成の場合、撮像レンズの組立性の向上や製造コストの低減を図ることができる。前絞りタイプのレンズ構成は、撮像レンズの光学全長を比較的短縮し易いといった特徴も併せ持つため、携帯電話機や近年普及しているスマートフォン等の携帯機器への組み込みに対して有効なレンズ構成でもある。一方、本数値実施例1のように第1レンズL1と第2レンズL2との間に開口絞りSTを配置する、いわゆる中絞りタイプのレンズ構成は、撮像レンズの光学全長に比較して第1レンズL1の有効径が大きくなることから、カメラにおける撮像レンズの存在感が強調され、当該カメラの意匠の一部として高級感やレンズ性能の高さ等をユーザに訴えることができる。
 第1レンズ群G1において第1レンズL1は、物体側の面の曲率半径r1および像面側の面の曲率半径r2が共に正となる形状であり、光軸Xの近傍において物体側に凸面を向けたメニスカスレンズとなる形状に形成される。この第1レンズL1の形状は本数値実施例1に係る形状に限定されるものではない。第1レンズL1の形状は、物体側の面の曲率半径r1が正となる形状であればよい。具体的には、第1レンズL1の形状は、曲率半径r2が負となる形状であって、光軸近傍において両凸レンズとなる形状でもよい。なお、撮像レンズの小型化をより有効に図るためには、第1レンズL1を、光軸近傍において物体側に凸面を向けたメニスカスレンズとなる形状に形成することが望ましい。
 第2レンズL2は、物体側の面の曲率半径r3が正となり、像面側の面の曲率半径r4が負となる形状であり、光軸Xの近傍において両凸レンズとなる形状に形成される。
 第3レンズL3は、物体側の面の曲率半径r5および像面側の面の曲率半径r6が共に正となる形状であって、光軸Xの近傍において物体側に凸面を向けたメニスカスレンズとなる形状に形成される。この第3レンズL3の形状は本数値実施例1に係る形状に限定されず、像面側の面の曲率半径r6が正となる形状であればよい。数値実施例2~4は、第3レンズL3の形状が、物体側の面の曲率半径r5が負となる形状、すなわち光軸Xの近傍において両凹レンズとなる形状の例である。
 第2レンズ群G2は、物体側から順に、負の屈折力を有する第4レンズL4と、正の屈折力を有する第5レンズL5とから構成される。この第2レンズ群G2は、2枚のレンズから構成されるとともに、これら2枚のレンズの合成屈折力が正となる構成であればよい。数値実施例2~5は、第2レンズ群G2が、正の屈折力を有する第4レンズL4と負の屈折力を有する第5レンズL5とから構成される例である。数値実施例6は、第2レンズ群G2が、正の屈折力を有する第4レンズL4および第5レンズL5から構成される例である。
 第2レンズ群G2において第4レンズL4は、物体側の面の曲率半径r7および像面側の面の曲率半径r8が共に負となる形状であり、光軸Xの近傍において物体側に凹面を向けたメニスカスレンズとなる形状に形成される。
 一方、第5レンズL5は、物体側の面の曲率半径r9が正となり、像面側の面の曲率半径r10が負となる形状であって、光軸Xの近傍において両凸レンズとなる形状に形成される。この第5レンズL5の形状は本数値実施例1に係る形状に限定されるものではない。数値実施例2~5は、曲率半径r10が正となる形状、すなわち光軸Xの近傍において物体側に凸面を向けたメニスカスレンズとなる形状の例である。また、数値実施例6は、曲率半径r9が負となる形状であって、光軸Xの近傍において物体側に凹面を向けたメニスカスレンズとなる形状の例である。
 第3レンズ群G3は、物体側から順に、負の屈折力を有する第6レンズL6と、負の屈折力を有する第7レンズL7とから構成される。第6レンズL6は、物体側の面の曲率半径r11および像面側の面の曲率半径r12が共に正となる形状であって、光軸Xの近傍において物体側に凸面を向けたメニスカスレンズとなる形状に形成される。
 第7レンズL7は、物体側の面の曲率半径r13が負となり、像面側の面の曲率半径r14が正となる形状であって、光軸Xの近傍において両凹レンズとなる形状に形成される。第7レンズL7において物体側の面および像面側の面は非球面形状に形成されるとともに、光軸Xからレンズ周辺部に向かうにつれて正の屈折力が強くなる形状に形成される。第7レンズL7の有するこのような形状により、軸上の色収差のみならず軸外の倍率色収差が良好に補正されるとともに、撮像レンズから出射した光線の像面IMへの入射角度が主光線角度(CRA:Chief Ray Angle)の範囲内に好適に抑制される。
 なお、第7レンズL7の形状は本数値実施例1に係る形状に限定されるものではない。第7レンズL7の形状は、像面側の面の曲率半径r14が正となる形状であればよい。数値実施例5は、曲率半径13が正となる形状であって、光軸Xの近傍において物体側に凸面を向けたメニスカスレンズとなる形状の例である。
 本実施の形態に係る撮像レンズは、以下に示す条件式(1)~(12)を満足する。
     40<νd1<75             (1)
     40<νd2<75             (2)
     20<νd3<35             (3)
     40<νd7<75             (4)
     2.5<f1/f2<30          (5)
     0.5<f12/f<1.1         (6)
     -1.0<f2/f3<-0.2       (7)
     -1.0<f12/f3<-0.1      (8)
     -1.5<f67/f<-0.5       (9)
     -3<f45/f67<-0.8      (10)
     0.02<f7/f6<0.3       (11)
     0.03<D34/f<0.2       (12)
 但し、
  νd1:第1レンズL1のアッベ数
  νd2:第2レンズL2のアッベ数
  νd3:第3レンズL3のアッベ数
  νd7:第7レンズL7のアッベ数
    f:レンズ系全体の焦点距離
   f1:第1レンズL1の焦点距離
   f2:第2レンズL2の焦点距離
   f3:第3レンズL3の焦点距離
   f6:第6レンズL6の焦点距離
   f7:第7レンズL7の焦点距離
  f12:第1レンズL1および第2レンズL2の合成焦点距離
  f45:第4レンズL4および第5レンズL5の合成焦点距離
  f67:第6レンズL6および第7レンズL7の合成焦点距離
  D34:第3レンズL3と第4レンズL4との間の光軸上の距離
 なお、上記各条件式の全てを満たす必要はなく、上記各条件式のそれぞれを単独に満たすことにより、各条件式に対応する作用効果をそれぞれ得ることができる。
 本実施の形態では各レンズのレンズ面が非球面で形成されている。これらレンズ面に採用される非球面形状は、光軸方向の軸をZ、光軸に直交する方向の高さをH、円錐係数をk、非球面係数をA4、A6、A8、A10、A12、A14、A16としたとき、次式により表される。
Figure JPOXMLDOC01-appb-M000001
 次に、本実施の形態に係る撮像レンズの数値実施例を示す。各数値実施例において、fはレンズ系全体の焦点距離、FnoはFナンバー、ωは半画角をそれぞれ示す。iは物体側より数えた面番号、rは曲率半径、dは光軸上のレンズ面間の距離(面間隔)、ndは屈折率、νdはアッベ数をそれぞれ示す。なお、*(アスタリスク)の符号が付加された面番号は非球面であることを示す。
数値実施例1
 基本的なレンズデータを以下に示す。
f=3.44mm、Fno=2.2、ω=37.0°
                 単位  mm
面データ
 面番号i      r     d    nd  νd
 (物面)      ∞     ∞
   1*      2.255   0.317   1.5346  56.1(=νd1)
   2*(絞り)  2.436   0.065
   3*      2.400   0.500   1.5346  56.1(=νd2)
   4*     -8.336   0.071
   5*      5.370   0.250   1.6355  24.0(=νd3)
   6*      2.997   0.436(=D34)
   7*     -1.358   0.315   1.5346  56.1(=νd4)
   8*     -1.506   0.048
   9*     57.269   0.557   1.5346  56.1(=νd5)
   10*     -1.579   0.072
   11*      6.586   0.390   1.6355  24.0(=νd6)
   12*      5.835   0.197
   13*     -3.293   0.359   1.5346  56.1(=νd7)
   14*      2.281   0.300
   15        ∞   0.200   1.5168  64.2
   16        ∞   0.601
 (像面)      ∞
非球面データ
第1面
 k=0.000,A4=-1.114E-01,A6=1.716E-01,A8=-6.753E-01,
 A10=9.113E-01,A12=-4.349E-01,A14=-1.715E-01,A16=2.030E-01
第2面
 k=0.000,A4=-2.098E-01,A6=4.528E-01,A8=-3.217,
 A10=6.995,A12=-4.687,A14=-2.463,A16=3.568
第3面
 k=0.000,A4=-4.970E-02,A6=-1.500E-01,A8=-7.221E-01,
 A10=1.724,A12=-6.829E-01,A14=-6.475E-01,A16=6.175E-01
第4面
 k=0.000,A4=-2.271E-01,A6=-7.422E-02,A8=3.681E-02,
 A10=4.386E-01,A12=-6.822E-01,A14=3.633E-01,A16=1.075E-01
第5面
 k=0.000,A4=-2.983E-01,A6=-5.158E-01,A8=1.744,
 A10=-2.258,A12=1.053,A14=8.637E-01,A16=-7.917E-01
第6面
 k=0.000,A4=-7.205E-02,A6=-4.150E-01,A8=1.298,
 A10=-1.771,A12=8.587E-01,A14=2.137E-01,A16=-2.201E-01
第7面
 k=0.000,A4=2.681E-01,A6=-2.030E-01,A8=2.977E-01,
 A10=5.153E-02,A12=-5.830E-01,A14=3.652E-01,A16=-1.807E-02
第8面
 k=0.000,A4=1.636E-01,A6=-1.044E-01,A8=1.139E-01,
 A10=-4.936E-02,A12=4.089E-03,A14=-5.458E-03,A16=7.198E-03
第9面
 k=0.000,A4=-2.036E-02,A6=1.008E-01,A8=-9.426E-02,
 A10=3.535E-02,A12=4.329E-03,A14=-6.757E-03,A16=8.930E-04
第10面
 k=0.000,A4=9.355E-02,A6=6.215E-02,A8=7.676E-03,
 A10=-9.918E-03,A12=-4.698E-04,A14=-2.538E-04,A16=2.680E-04
第11面
 k=0.000,A4=-9.058E-02,A6=1.506E-02,A8=-7.881E-03,
 A10=7.829E-03,A12=-5.240E-04,A14=-3.709E-04,A16=-1.445E-04
第12面
 k=0.000,A4=-1.402E-01,A6=4.012E-02,A8=1.525E-03,
 A10=-2.457E-03,A12=-1.461E-05,A14=1.635E-04,A16=-3.523E-05
第13面
 k=0.000,A4=-6.802E-02,A6=1.037E-01,A8=-4.345E-02,
 A10=1.099E-02,A12=-3.796E-03,A14=1.273E-03,A16=-1.683E-04
第14面
 k=0.000,A4=-1.616E-01,A6=1.157E-01,A8=-6.605E-02,
 A10=2.465E-02,A12=-5.885E-03,A14=8.025E-04,A16=-4.741E-05
  f1=35.25mm
  f2=3.54mm
  f3=-11.13mm
  f4=-99.63mm
  f5=2.88mm
  f6=-100.83mm
  f7=-2.47mm
  f12=3.38mm
  f45=2.73mm
  f67=-2.45mm
 各条件式の値を以下に示す。
  f1/f2=9.95
  f12/f=0.98
  f2/f3=-0.32
  f12/f3=-0.30
  f67/f=-0.71
  f45/f67=-1.113
  f7/f6=0.024
  D34/f=0.13
 このように、本数値実施例1に係る撮像レンズは上記各条件式を満足する。第1レンズL1の物体側の面から像面IMまでの光軸上の距離(フィルタ10は空気換算長)は4.61mmであり、撮像レンズの小型化が図られている。
 図2は、半画角ωに対応する横収差をタンジェンシャル方向とサジタル方向とに分けて示した収差図である(図5、図8、図11、図14、および図17においても同じ)。また、図3は、球面収差(mm)、非点収差(mm)、および歪曲収差(%)をそれぞれ示した収差図である。このうち非点収差図においてSはサジタル像面を、Tはタンジェンシャル像面をそれぞれ表す(図6、図9、図12、図15、および図18においても同じ)。図2および図3に示されるように、本数値実施例1に係る撮像レンズによれば諸収差が良好に補正される。
数値実施例2
 基本的なレンズデータを以下に示す。
f=3.37mm、Fno=2.2、ω=37.0°
                 単位  mm
面データ
 面番号i      r     d    nd  νd
 (物面)      ∞     ∞
   1*      1.687   0.360   1.5346  56.1(=νd1)
   2*(絞り)  2.080   0.081
   3*      2.069   0.627   1.5346  56.1(=νd2)
   4*     -2.335   0.012
   5*     -12.711   0.250   1.6355  24.0(=νd3)
   6*      2.963   0.337(=D34)
   7*     -1.851   0.511   1.5346  56.1(=νd4)
   8*     -1.255   0.036
   9*     14.291   0.415   1.6355  24.0(=νd5)
   10*     11.555   0.060
   11*      5.140   0.303   1.5346  56.1(=νd6)
   12*      3.728   0.151
   13*     -9.215   0.292   1.5346  56.1(=νd7)
   14*      2.376   0.140
   15        ∞   0.200   1.5168  64.2
   16        ∞   0.501
 (像面)      ∞
非球面データ
第1面
 k=0.000,A4=-1.035E-01,A6=1.546E-01,A8=-6.963E-01,
 A10=8.976E-01,A12=-4.726E-01,A14=-1.734E-01,A16=2.316E-01
第2面
 k=0.000,A4=-2.430E-01,A6=3.610E-01,A8=-3.129,
 A10=7.060,A12=-4.768,A14=-2.712,A16=3.926
第3面
 k=0.000,A4=-1.037E-01,A6=-2.199E-01,A8=-6.181E-01,
 A10=1.739,A12=-6.029E-01,A14=-5.764E-01,A16=4.109E-01
第4面
 k=0.000,A4=-1.993E-01,A6=1.142E-02,A8=4.385E-02,
 A10=5.225E-01,A12=-7.827E-01,A14=1.273E-02,A16=4.693E-01
第5面
 k=0.000,A4=-2.463E-01,A6=-5.153E-01,A8=1.901,
 A10=-2.250,A12=7.890E-01,A14=7.249E-01,A16=-4.881E-01
第6面
 k=0.000,A4=-9.455E-03,A6=-4.924E-01,A8=1.270,
 A10=-1.695,A12=8.868E-01,A14=9.271E-02,A16=-1.255E-01
第7面
 k=0.000,A4=2.488E-01,A6=-9.798E-02,A8=1.387E-01,
 A10=-5.087E-02,A12=-4.688E-01,A14=4.874E-01,A16=-1.679E-01
第8面
 k=0.000,A4=1.703E-01,A6=6.899E-02,A8=1.171E-01,
 A10=-6.243E-02,A12=-1.388E-02,A14=-3.738E-03,A16=7.153E-03
第9面
 k=0.000,A4=-1.639E-01,A6=1.073E-01,A8=-8.969E-02,
 A10=9.542E-03,A12=-4.894E-03,A14=-4.582E-03,A16=4.992E-03
第10面
 k=0.000,A4=-1.500E-01,A6=5.422E-02,A8=-2.166E-02,
 A10=-9.624E-03,A12=1.901E-03,A14=7.129E-04,A16=6.232E-04
第11面
 k=0.000,A4=-2.030E-01,A6=2.297E-03,A8=2.201E-02,
 A10=2.780E-04,A12=6.385E-04,A14=-7.657E-05,A16=-2.699E-04
第12面
 k=0.000,A4=-1.577E-01,A6=2.996E-02,A8=2.442E-03,
 A10=-2.418E-03,A12=-2.139E-04,A14=1.344E-04,A16=1.979E-05
第13面
 k=0.000,A4=-9.538E-02,A6=9.840E-02,A8=-4.715E-02,
 A10=1.099E-02,A12=-3.581E-03,A14=1.355E-03,A16=-1.798E-04
第14面
 k=0.000,A4=-2.024E-01,A6=1.307E-01,A8=-6.820E-02,
 A10=2.474E-02,A12=-5.882E-03,A14=7.922E-04,A16=-4.563E-05
  f1=12.65mm
  f2=2.16mm
  f3=-3.76mm
  f4=5.61mm
  f5=-100.94mm
  f6=-27.45mm
  f7=-3.50mm
  f12=2.01mm
  f45=5.88mm
  f67=-3.13mm
 各条件式の値を以下に示す。
  f1/f2=5.86
  f12/f=0.60
  f2/f3=-0.57
  f12/f3=-0.54
  f67/f=-0.93
  f45/f67=-1.88
  f7/f6=0.13
  D34/f=0.10
 このように、本数値実施例2に係る撮像レンズは上記各条件式を満足する。第1レンズL1の物体側の面から像面IMまでの光軸上の距離(フィルタ10は空気換算長)は4.21mmであり、撮像レンズの小型化が図られている。
 図5は、数値実施例2の撮像レンズについて、半画角ωに対応する横収差を示したものであり、図6は、球面収差(mm)、非点収差(mm)、および歪曲収差(%)をそれぞれ示したものである。図5および図6に示されるように、本数値実施例2に係る撮像レンズによっても諸収差が良好に補正される。
数値実施例3
 基本的なレンズデータを以下に示す。
f=3.37mm、Fno=2.3、ω=37.0°
                 単位  mm
面データ
 面番号i      r     d    nd  νd
 (物面)      ∞     ∞
   1*      1.680   0.386   1.5346  56.1(=νd1)
   2*(絞り)  2.599   0.104
   3*      3.000   0.626   1.5346  56.1(=νd2)
   4*     -1.962   0.078
   5*     -3.345   0.250   1.6355  24.0(=νd3)
   6*      2.882   0.238(=D34)
   7*     -2.871   0.452   1.5346  56.1(=νd4)
   8*     -1.267   0.050
   9*     11.980   0.486   1.6355  24.0(=νd5)
   10*      9.931   0.170
   11*      4.056   0.300   1.5346  56.1(=νd6)
   12*      3.372   0.157
   13*     -23.911   0.310   1.5346  56.1(=νd7)
   14*      2.380   0.200
   15        ∞   0.200   1.5168  64.2
   16        ∞   0.414
 (像面)      ∞
非球面データ
第1面
 k=0.000,A4=-8.241E-02,A6=1.518E-01,A8=-6.952E-01,
 A10=8.909E-01,A12=-4.931E-01,A14=-1.811E-01,A16=2.666E-01
第2面
 k=0.000,A4=-2.275E-01,A6=3.836E-01,A8=-3.017,
 A10=6.945,A12=-4.983,A14=-2.666,A16=4.176
第3面
 k=0.000,A4=-1.432E-01,A6=-1.337E-01,A8=-6.040E-01,
 A10=1.794,A12=-6.104E-01,A14=-7.571E-01,A16=2.584E-01
第4面
 k=0.000,A4=-1.073E-01,A6=-5.463E-02,A8=-4.255E-03,
 A10=5.463E-01,A12=-6.893E-01,A14=-1.210E-02,A16=1.850E-01
第5面
 k=0.000,A4=-2.576E-01,A6=-4.667E-01,A8=1.903,
 A10=-2.336,A12=6.689E-01,A14=7.776E-01,A16=-4.608E-01
第6面
 k=0.000,A4=-7.944E-02,A6=-4.418E-01,A8=1.276,
 A10=-1.711,A12=8.974E-01,A14=6.691E-02,A16=-1.087E-01
第7面
 k=0.000,A4=2.513E-01,A6=-1.421E-01,A8=1.263E-01,
 A10=-1.827E-02,A12=-4.186E-01,A14=5.029E-01,A16=-1.843E-01
第8面
 k=0.000,A4=1.919E-01,A6=7.248E-02,A8=1.153E-01,
 A10=-6.760E-02,A12=-2.090E-02,A14=-5.478E-03,A16=9.951E-03
第9面
 k=0.000,A4=-1.001E-01,A6=9.987E-02,A8=-9.297E-02,
 A10=1.434E-02,A12=1.058E-05,A14=-2.628E-03,A16=2.872E-03
第10面
 k=0.000,A4=-1.569E-01,A6=5.735E-02,A8=-1.942E-02,
 A10=-9.047E-03,A12=1.646E-03,A14=4.727E-04,A16=5.869E-04
第11面
 k=0.000,A4=-2.248E-01,A6=1.366E-03,A8=2.158E-02,
 A10=1.515E-04,A12=6.444E-04,A14=-3.185E-05,A16=-2.051E-04
第12面
 k=0.000,A4=-1.554E-01,A6=2.774E-02,A8=2.233E-03,
 A10=-2.424E-03,A12=-2.127E-04,A14=1.357E-04,A16=1.991E-05
第13面
 k=0.000,A4=-1.038E-01,A6=9.883E-02,A8=-4.721E-02,
 A10=1.096E-02,A12=-3.591E-03,A14=1.353E-03,A16=-1.801E-04
第14面
 k=0.000,A4=-1.990E-01,A6=1.305E-01,A8=-6.810E-02,
 A10=2.478E-02,A12=-5.877E-03,A14=7.925E-04,A16=-4.580E-05
  f1=7.75mm
  f2=2.32mm
  f3=-2.40mm
  f4=3.86mm
  f5=-100.64mm
  f6=-44.16mm
  f7=-4.03mm
  f12=1.98mm
  f45=3.95mm
  f67=-3.76mm
 各条件式の値を以下に示す。
  f1/f2=3.34
  f12/f=0.59
  f2/f3=-0.97
  f12/f3=-0.83
  f67/f=-1.11
  f45/f67=-1.05
  f7/f6=0.091
  D34/f=0.070
 このように、本数値実施例3に係る撮像レンズは上記各条件式を満足する。第1レンズL1の物体側の面から像面IMまでの光軸上の距離(フィルタ10は空気換算長)は4.35mmであり、撮像レンズの小型化が図られている。
 図8は、数値実施例3の撮像レンズについて、半画角ωに対応する横収差を示したものであり、図9は、球面収差(mm)、非点収差(mm)、および歪曲収差(%)をそれぞれ示したものである。図8および図9に示されるように、本数値実施例3に係る撮像レンズによっても諸収差が良好に補正される。
数値実施例4
 基本的なレンズデータを以下に示す。
f=3.37mm、Fno=2.2、ω=37.0°
                 単位  mm
面データ
 面番号i      r     d    nd  νd
 (物面)      ∞     ∞
   1*      1.740   0.353   1.5346  56.1(=νd1)
   2*(絞り)  2.078   0.074
   3*      2.105   0.642   1.5346  56.1(=νd2)
   4*     -2.421   0.021
   5*     -17.903   0.250   1.6355  24.0(=νd3)
   6*      3.540   0.331(=D34)
   7*     -1.594   0.450   1.5346  56.1(=νd4)
   8*     -1.251   0.058
   9*     11.093   0.445   1.6355  24.0(=νd5)
   10*      6.053   0.070
   11*      4.217   0.319   1.5346  56.1(=νd6)
   12*      3.806   0.129
   13*     -25.224   0.292   1.5346  56.1(=νd7)
   14*      2.369   0.140
   15        ∞   0.200   1.5168  64.2
   16        ∞   0.501
 (像面)      ∞
非球面データ
第1面
 k=0.000,A4=-1.059E-01,A6=1.519E-01,A8=-6.957E-01,
 A10=9.014E-01,A12=-4.692E-01,A14=-1.711E-01,A16=2.338E-01
第2面
 k=0.000,A4=-2.420E-01,A6=3.601E-01,A8=-3.128,
 A10=7.058,A12=-4.769,A14=-2.705,A16=3.941
第3面
 k=0.000,A4=-1.054E-01,A6=-2.159E-01,A8=-6.197E-01,
 A10=1.737,A12=-5.978E-01,A14=-5.618E-01,A16=4.096E-01
第4面
 k=0.000,A4=-1.990E-01,A6=1.660E-02,A8=5.257E-02,
 A10=5.262E-01,A12=-7.864E-01,A14=7.137E-03,A16=4.777E-01
第5面
 k=0.000,A4=-2.303E-01,A6=-5.051E-01,A8=1.902,
 A10=-2.253,A12=7.865E-01,A14=7.259E-01,A16=-4.857E-01
第6面
 k=0.000,A4=-1.269E-02,A6=-4.889E-01,A8=1.274,
 A10=-1.695,A12=8.861E-01,A14=8.995E-02,A16=-1.334E-01
第7面
 k=0.000,A4=2.686E-01,A6=-8.696E-02,A8=1.475E-01,
 A10=-4.466E-02,A12=-4.663E-01,A14=4.854E-01,A16=-1.752E-01
第8面
 k=0.000,A4=1.760E-01,A6=7.701E-02,A8=1.205E-01,
 A10=-6.102E-02,A12=-1.408E-02,A14=-5.581E-03,A16=3.934E-03
第9面
 k=0.000,A4=-1.778E-01,A6=1.010E-01,A8=-9.084E-02,
 A10=4.372E-03,A12=-1.141E-02,A14=-7.648E-03,A16=8.843E-03
第10面
 k=0.000,A4=-1.619E-01,A6=4.960E-02,A8=-2.249E-02,
 A10=-9.490E-03,A12=2.128E-03,A14=8.518E-04,A16=6.754E-04
第11面
 k=0.000,A4=-2.120E-01,A6=2.271E-03,A8=2.202E-02,
 A10=2.240E-04,A12=6.022E-04,A14=-9.079E-05,A16=-2.710E-04
第12面
 k=0.000,A4=-1.486E-01,A6=2.966E-02,A8=2.301E-03,
 A10=-2.471E-03,A12=-2.360E-04,A14=1.248E-04,A16=1.563E-05
第13面
 k=0.000,A4=-1.016E-01,A6=9.787E-02,A8=-4.729E-02,
 A10=1.095E-02,A12=-3.587E-03,A14=1.356E-03,A16=-1.785E-04
第14面
 k=0.000,A4=-2.040E-01,A6=1.305E-01,A8=-6.819E-02,
 A10=2.475E-02,A12=-5.881E-03,A14=7.921E-04,A16=-4.569E-05
  f1=14.67mm
  f2=2.22mm
  f3=-4.63mm
  f4=7.46mm
  f5=-21.71mm
  f6=-100.33mm
  f7=-4.04mm
  f12=2.09mm
  f45=11.40mm
  f67=-3.97mm
 各条件式の値を以下に示す。
  f1/f2=6.62
  f12/f=0.62
  f2/f3=-0.48
  f12/f3=-0.45
  f67/f=-1.18
  f45/f67=-2.87
  f7/f6=0.040
  D34/f=0.098
 このように、本数値実施例4に係る撮像レンズは上記各条件式を満足する。第1レンズL1の物体側の面から像面IMまでの光軸上の距離(フィルタ10は空気換算長)は4.21mmであり、撮像レンズの小型化が図られている。
 図11は、数値実施例4の撮像レンズについて、半画角ωに対応する横収差を示したものであり、図12は、球面収差(mm)、非点収差(mm)、および歪曲収差(%)をそれぞれ示したものである。図11および図12に示されるように、本数値実施例4に係る撮像レンズによっても諸収差が良好に補正される。
数値実施例5
 基本的なレンズデータを以下に示す。
f=3.33mm、Fno=2.2、ω=37.0°
                 単位  mm
面データ
 面番号i      r     d    nd  νd
 (物面)      ∞     ∞
   1*      1.998   0.312   1.5346  56.1(=νd1)
   2*(絞り)  2.029   0.079
   3*      2.212   0.529   1.5346  56.1(=νd2)
   4*     -3.987   0.031
   5*     12.215   0.250   1.6355  24.0(=νd3)
   6*      3.749   0.629(=D34)
   7*     -2.154   0.407   1.5346  56.1(=νd4)
   8*     -1.267   0.039
   9*      5.866   0.333   1.6355  24.0(=νd5)
   10*      5.255   0.060
   11*      3.137   0.298   1.5346  56.1(=νd6)
   12*      2.173   0.193
   13*    11397.590   0.297   1.5346  56.1(=νd7)
   14*      2.258   0.200
   15        ∞   0.200   1.5168  64.2
   16        ∞   0.447
 (像面)      ∞
非球面データ
第1面
 k=0.000,A4=-1.273E-01,A6=1.508E-01,A8=-6.904E-01,
 A10=9.804E-01,A12=-4.571E-01,A14=-1.739E-01,A16=1.781E-01
第2面
 k=0.000,A4=-2.502E-01,A6=3.963E-01,A8=-3.044,
 A10=7.055,A12=-4.876,A14=-2.735,A16=4.031
第3面
 k=0.000,A4=-8.921E-02,A6=-1.497E-01,A8=-6.485E-01,
 A10=1.685,A12=-5.815E-01,A14=-4.625E-01,A16=1.919E-01
第4面
 k=0.000,A4=-2.203E-01,A6=-1.224E-02,A8=3.919E-02,
 A10=5.267E-01,A12=-7.603E-01,A14=4.830E-02,A16=3.557E-01
第5面
 k=0.000,A4=-2.164E-01,A6=-5.134E-01,A8=1.864,
 A10=-2.257,A12=7.562E-01,A14=7.189E-01,A16=-4.850E-01
第6面
 k=0.000,A4=-2.237E-02,A6=-4.625E-01,A8=1.272,
 A10=-1.689,A12=9.042E-01,A14=8.765E-02,A16=-1.767E-01
第7面
 k=0.000,A4=1.892E-01,A6=-8.488E-02,A8=1.915E-01,
 A10=-6.353E-03,A12=-4.467E-01,A14=4.821E-01,A16=-1.720E-01
第8面
 k=0.000,A4=1.858E-01,A6=5.304E-02,A8=1.167E-01,
 A10=-6.230E-02,A12=-1.436E-02,A14=-1.115E-03,A16=5.918E-03
第9面
 k=0.000,A4=-1.667E-01,A6=1.096E-01,A8=-8.725E-02,
 A10=1.457E-02,A12=-4.883E-03,A14=-7.030E-03,A16=4.503E-03
第10面
 k=0.000,A4=-1.637E-01,A6=6.542E-02,A8=-2.581E-02,
 A10=-1.078E-02,A12=2.408E-03,A14=1.127E-03,A16=4.300E-04
第11面
 k=0.000,A4=-2.019E-01,A6=-3.117E-03,A8=2.040E-02,
 A10=-7.931E-05,A12=4.201E-04,A14=-7.934E-05,A16=-1.698E-04
第12面
 k=0.000,A4=-1.885E-01,A6=3.279E-02,A8=1.241E-03,
 A10=-2.764E-03,A12=-2.670E-04,A14=1.320E-04,A16=2.895E-05
第13面
 k=0.000,A4=-1.080E-01,A6=9.773E-02,A8=-4.668E-02,
 A10=1.088E-02,A12=-3.651E-03,A14=1.346E-03,A16=-1.710E-04
第14面
 k=0.000,A4=-2.023E-01,A6=1.308E-01,A8=-6.847E-02,
 A10=2.473E-02,A12=-5.880E-03,A14=7.920E-04,A16=-4.567E-05
  f1=54.33mm
  f2=2.74mm
  f3=-8.61mm
  f4=4.96mm
  f5=-100.82mm
  f6=-14.82mm
  f7=-4.23mm
  f12=2.76mm
  f45=5.10mm
  f67=-3.31mm
 各条件式の値を以下に示す。
  f1/f2=19.81
  f12/f=0.83
  f2/f3=-0.32
  f12/f3=-0.32
  f67/f=-0.99
  f45/f67=-1.54
  f7/f6=0.29
  D34/f=0.19
 このように、本数値実施例5に係る撮像レンズは上記各条件式を満足する。第1レンズL1の物体側の面から像面IMまでの光軸上の距離(フィルタ10は空気換算長)は4.24mmであり、撮像レンズの小型化が図られている。
 図14は、数値実施例5の撮像レンズについて、半画角ωに対応する横収差を示したものであり、図15は、球面収差(mm)、非点収差(mm)、および歪曲収差(%)をそれぞれ示したものである。図14および図15に示されるように、本数値実施例5に係る撮像レンズによっても諸収差が良好に補正される。
数値実施例6
 基本的なレンズデータを以下に示す。
f=3.37mm、Fno=2.2、ω=37.0°
                 単位  mm
面データ
 面番号i      r     d    nd  νd
 (物面)      ∞     ∞
   1*      1.754   0.343   1.5346  56.1(=νd1)
   2*(絞り)  1.779   0.096
   3*      2.057   0.500   1.5346  56.1(=νd2)
   4*     -5.203   0.030
   5*      8.410   0.250   1.6355  24.0(=νd3)
   6*      3.200   0.403(=D34)
   7*     -1.580   0.346   1.5346  56.1(=νd4)
   8*     -1.643   0.047
   9*     -10.498   0.470   1.5346  56.1(=νd5)
   10*     -1.513   0.060
   11*      5.245   0.342   1.6355  24.0(=νd6)
   12*      4.341   0.168
   13*     -3.342   0.365   1.5346  56.1(=νd7)
   14*      2.330   0.250
   15        ∞   0.200   1.5168  64.2
   16        ∞   0.597
 (像面)      ∞
非球面データ
第1面
 k=0.000,A4=-1.251E-01,A6=1.669E-01,A8=-6.668E-01,
 A10=9.053E-01,A12=-5.258E-01,A14=-1.012E-01,A16=1.986E-01
第2面
 k=0.000,A4=-3.204E-01,A6=4.458E-01,A8=-3.063,
 A10=6.788,A12=-5.061,A14=-1.504,A16=2.998
第3面
 k=0.000,A4=-1.540E-01,A6=-1.263E-01,A8=-7.686E-01,
 A10=1.771,A12=-6.823E-01,A14=-1.560E-01,A16=-3.715E-02
第4面
 k=0.000,A4=-2.584E-01,A6=-2.428E-02,A8=1.690E-01,
 A10=3.337E-01,A12=-7.684E-01,A14=3.283E-01,A16=1.218E-01
第5面
 k=0.000,A4=-2.665E-01,A6=-4.280E-01,A8=1.683,
 A10=-2.114,A12=5.449E-01,A14=1.011,A16=-5.988E-01
第6面
 k=0.000,A4=-2.117E-02,A6=-4.541E-01,A8=1.283,
 A10=-1.782,A12=9.159E-01,A14=1.749E-01,A16=-2.109E-01
第7面
 k=0.000,A4=1.878E-01,A6=-2.029E-01,A8=3.026E-01,
 A10=4.645E-02,A12=-5.625E-01,A14=3.660E-01,A16=-2.208E-02
第8面
 k=0.000,A4=1.055E-01,A6=-1.020E-01,A8=9.764E-02,
 A10=-3.036E-02,A12=1.045E-05,A14=6.110E-04,A16=7.310E-03
第9面
 k=0.000,A4=-1.538E-02,A6=9.087E-02,A8=-1.159E-01,
 A10=4.385E-02,A12=4.559E-03,A14=-6.675E-03,A16=2.121E-04
第10面
 k=0.000,A4=1.028E-01,A6=5.866E-02,A8=1.504E-02,
 A10=-1.355E-02,A12=-1.586E-03,A14=3.238E-04,A16=1.121E-04
第11面
 k=0.000,A4=-1.681E-01,A6=1.559E-02,A8=-2.368E-03,
 A10=1.331E-02,A12=-5.693E-04,A14=-1.351E-03,A16=-1.707E-04
第12面
 k=0.000,A4=-2.149E-01,A6=5.930E-02,A8=1.207E-03,
 A10=-3.015E-03,A12=2.723E-04,A14=1.587E-04,A16=-3.731E-05
第13面
 k=0.000,A4=-6.768E-02,A6=9.771E-02,A8=-3.986E-02,
 A10=1.101E-02,A12=-3.971E-03,A14=1.268E-03,A16=-1.682E-04
第14面
 k=0.000,A4=-1.604E-01,A6=1.128E-01,A8=-6.563E-02,
 A10=2.480E-02,A12=-5.899E-03,A14=7.955E-04,A16=-4.663E-05
  f1=40.46mm
  f2=2.83mm
  f3=-8.28mm
  f4=84.01mm
  f5=3.25mm
  f6=-46.45mm
  f7=-2.51mm
  f12=2.83mm
  f45=2.93mm
  f67=-2.43mm
 各条件式の値を以下に示す。
  f1/f2=14.32
  f12/f=0.84
  f2/f3=-0.34
  f12/f3=-0.34
  f67/f=-0.72
  f45/f67=-1.21
  f7/f6=0.054
  D34/f=0.12
 このように、本数値実施例6に係る撮像レンズは上記各条件式を満足する。第1レンズL1の物体側の面から像面IMまでの光軸上の距離(フィルタ10は空気換算長)は4.40mmであり、撮像レンズの小型化が図られている。
 図17は、数値実施例6の撮像レンズについて、半画角ωに対応する横収差を示したものであり、図18は、球面収差(mm)、非点収差(mm)、および歪曲収差(%)をそれぞれ示したものである。図17および図18に示されるように、本数値実施例6に係る撮像レンズによっても諸収差が良好に補正される。
 以上説明した本実施の形態に係る撮像レンズによれば、70°以上の広い画角(2ω)を実現することができる。ちなみに上述の数値実施例1~6に係る撮像レンズは74.0°の広い画角を有する。本実施の形態に係る撮像レンズによれば、従来の撮像レンズよりも広い範囲を撮影することが可能となる。
 また近年では、撮像レンズを通じて得られた画像の任意の領域を画像処理によって拡大するデジタルズーム技術の進歩により、高画素の撮像素子と高解像度の撮像レンズとが組み合わせられることが多くなってきた。こうした高画素の撮像素子では各画素の受光面積が減少するため、撮影した画像が暗くなる傾向にある。これを補正するための方法として、電気回路を用いて撮像素子の受光感度を向上させる方法がある。しかしながら、受光感度が上がると画像の形成に直接寄与しないノイズ成分も増幅されてしまうため、新たにノイズ低減のための回路が必要になる。数値実施例1~6の撮像レンズのFnoは2.2~2.3と小さな値になっている。本実施の形態に係る撮像レンズによれば、上記電気回路等を設けなくても十分に明るい画像を得ることができる。
 したがって、上記実施の形態に係る撮像レンズを携帯電話機、携帯情報端末、およびスマートフォン等の携帯機器に内蔵されるカメラや、デジタルスティルカメラ、セキュリティカメラ、車載カメラ、ネットワークカメラ等の撮像光学系に適用した場合、当該カメラ等の高機能化と小型化の両立を図ることができる。
 本発明は、携帯電話機、スマートフォン、携帯情報端末等の携帯機器に内蔵されるカメラ、デジタルスティルカメラ、セキュリティカメラ、車載カメラ、ネットワークカメラ等の比較的小型のカメラに組み込まれる撮像レンズに適用することができる。
 G1  第1レンズ群
 G2  第2レンズ群
 G3  第3レンズ群
 ST  開口絞り
 L1  第1レンズ
 L2  第2レンズ
 L3  第3レンズ
 L4  第4レンズ
 L5  第5レンズ
 L6  第6レンズ
 L7  第7レンズ
 10  フィルタ

Claims (6)

  1.  物体側から像面側に向かって順に、正の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群とを配置して構成され、
     前記第1レンズ群は、正の屈折力を有する第1レンズと、正の屈折力を有する第2レンズと、負の屈折力を有する第3レンズとから構成され、
     前記第2レンズ群は、第4レンズおよび第5レンズから構成され、
     前記第3レンズ群は、負の屈折力を有する第6レンズおよび負の屈折力を有する第7レンズから構成され、
     前記第1レンズのアッベ数をνd1、前記第2レンズのアッベ数をνd2、前記第3レンズのアッベ数をνd3、前記第7レンズのアッベ数をνd7、前記第1レンズの焦点距離をf1、前記第2レンズの焦点距離をf2としたとき、
         40<νd1<75
         40<νd2<75
         20<νd3<35
         40<νd7<75
         2.5<f1/f2<30
    を満足する撮像レンズ。
  2.  前記第3レンズの焦点距離をf3としたとき、
         -1.0<f2/f3<-0.2
    を満足する請求項1に記載の撮像レンズ。
  3.  前記第1レンズおよび前記第2レンズの合成焦点距離をf12、前記第3レンズの焦点距離をf3としたとき、
         -1.0<f12/f3<-0.1
    を満足する請求項1または2に記載の撮像レンズ。
  4.  前記第4レンズおよび前記第5レンズの合成焦点距離をf45、前記第6レンズおよび前記第7レンズの合成焦点距離をf67としたとき、
         -3<f45/f67<-0.8
    を満足する請求項1~3のいずれか一項に記載の撮像レンズ。
  5.  前記第6レンズの焦点距離をf6、前記第7レンズの焦点距離をf7としたとき、
         0.02<f7/f6<0.3
    を満足する請求項1~4のいずれか一項に記載の撮像レンズ。
  6.  レンズ系全体の焦点距離をf、前記第3レンズと前記第4レンズとの間の光軸上の距離をD34としたとき、
         0.03<D34/f<0.2
    を満足する請求項1~5のいずれか一項に記載の撮像レンズ。
PCT/JP2015/060481 2014-04-15 2015-04-02 撮像レンズ WO2015159721A1 (ja)

Priority Applications (13)

Application Number Priority Date Filing Date Title
CN201580003135.6A CN105829942B (zh) 2014-04-15 2015-04-02 摄像镜头
US15/260,399 US10067313B2 (en) 2014-04-15 2016-09-09 Imaging lens
US15/925,936 US10473891B2 (en) 2014-04-15 2018-03-20 Imaging lens
US15/925,903 US10466441B2 (en) 2014-04-15 2018-03-20 Imaging lens
US15/925,992 US10481364B2 (en) 2014-04-15 2018-03-20 Imaging lens
US16/445,759 US11092777B2 (en) 2014-04-15 2019-06-19 Imaging lens
US16/445,797 US11086102B2 (en) 2014-04-15 2019-06-19 Imaging lens
US16/446,738 US11022780B2 (en) 2014-04-15 2019-06-20 Imaging lens
US16/446,701 US11099356B2 (en) 2014-04-15 2019-06-20 Imaging lens
US17/109,417 US11668903B2 (en) 2014-04-15 2020-12-02 Imaging lens
US17/109,451 US11668904B2 (en) 2014-04-15 2020-12-02 Imaging lens
US17/110,392 US11822151B2 (en) 2014-04-15 2020-12-03 Imaging lens
US17/110,377 US11829006B2 (en) 2014-04-15 2020-12-03 Imaging lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014083530A JP6278354B2 (ja) 2014-04-15 2014-04-15 撮像レンズ
JP2014-083530 2014-04-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/260,399 Continuation US10067313B2 (en) 2014-04-15 2016-09-09 Imaging lens

Publications (1)

Publication Number Publication Date
WO2015159721A1 true WO2015159721A1 (ja) 2015-10-22

Family

ID=54323933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060481 WO2015159721A1 (ja) 2014-04-15 2015-04-02 撮像レンズ

Country Status (4)

Country Link
US (12) US10067313B2 (ja)
JP (1) JP6278354B2 (ja)
CN (1) CN105829942B (ja)
WO (1) WO2015159721A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9606328B2 (en) 2015-07-01 2017-03-28 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing unit and electronic device
CN110286466A (zh) * 2016-01-28 2019-09-27 三星电机株式会社 光学成像系统
US10606039B2 (en) 2014-08-01 2020-03-31 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing unit and electronic device
CN112180577A (zh) * 2020-09-25 2021-01-05 中国科学院西安光学精密机械研究所 可见光-短波红外-中波红外-长波红外四波段光学系统
US10928610B2 (en) 2015-02-17 2021-02-23 Largan Precision Co., Ltd. Photographing system, image capturing unit and electronic device
WO2021087669A1 (zh) * 2019-11-04 2021-05-14 南昌欧菲精密光学制品有限公司 光学系统、取像装置及电子装置
US11953756B2 (en) 2019-08-15 2024-04-09 Jiangxi Ofilm Optical Co., Ltd. Optical system, image capturing module and electronic device
US12085782B2 (en) 2020-03-16 2024-09-10 Jiangxi Jingchao Optical Co., Ltd. Optical system, camera module, and electronic device
US12092801B2 (en) 2020-03-16 2024-09-17 Jiangxi Jingchao Optical Co., Ltd. Optical system, imaging module and electronic device

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109116527B (zh) * 2015-07-01 2021-04-20 大立光电股份有限公司 光学摄像镜头组及取像装置
CN107037568B (zh) * 2016-02-04 2019-09-13 大立光电股份有限公司 摄像用光学镜头组、取像装置及电子装置
TWI595261B (zh) 2016-02-04 2017-08-11 大立光電股份有限公司 攝像用光學鏡頭組、取像裝置及電子裝置
CN106405796B (zh) * 2016-11-15 2019-08-09 浙江舜宇光学有限公司 光学成像系统及摄像装置
KR20180075152A (ko) * 2016-12-26 2018-07-04 삼성전기주식회사 촬상 광학계
CN110376718A (zh) * 2016-12-30 2019-10-25 玉晶光电(厦门)有限公司 光学成像镜头
TWI629535B (zh) * 2017-02-18 2018-07-11 大立光電股份有限公司 影像擷取光學系統、取像裝置及電子裝置
CN107153257B (zh) * 2017-05-15 2022-09-06 浙江舜宇光学有限公司 光学成像系统
TWI640811B (zh) 2017-06-16 2018-11-11 大立光電股份有限公司 攝像系統鏡片組、取像裝置及電子裝置
WO2019007045A1 (zh) 2017-07-06 2019-01-10 浙江舜宇光学有限公司 光学成像镜头
TWI631382B (zh) 2017-07-19 2018-08-01 大立光電股份有限公司 攝像系統透鏡組、取像裝置及電子裝置
TWI622822B (zh) 2017-09-13 2018-05-01 大立光電股份有限公司 影像系統鏡組、取像裝置及電子裝置
WO2019052180A1 (zh) 2017-09-18 2019-03-21 浙江舜宇光学有限公司 摄像镜头组
CN107621682B (zh) * 2017-10-25 2020-04-07 浙江舜宇光学有限公司 光学成像镜头
WO2019080528A1 (zh) * 2017-10-25 2019-05-02 浙江舜宇光学有限公司 光学成像镜头
CN115113374B (zh) * 2017-12-08 2024-09-13 大立光电股份有限公司 电子装置
JP6530518B1 (ja) * 2017-12-18 2019-06-12 エーエーシー テクノロジーズ ピーティーイー リミテッド 撮像光学レンズ
CN108089295B (zh) * 2017-12-18 2020-03-20 瑞声科技(新加坡)有限公司 摄像光学镜头
TWI655474B (zh) 2017-12-22 2019-04-01 大立光電股份有限公司 取像用光學鏡頭、取像裝置及電子裝置
CN113900229B (zh) * 2017-12-29 2024-08-13 玉晶光电(厦门)有限公司 光学成像镜头
US10409040B2 (en) * 2017-12-29 2019-09-10 AAC Technologies Pte. Ltd. Camera optical lens
CN108132524B (zh) * 2017-12-29 2019-11-26 玉晶光电(厦门)有限公司 光学成像镜头
WO2019140875A1 (zh) * 2018-01-19 2019-07-25 浙江舜宇光学有限公司 光学成像镜头
CN110412726B (zh) * 2018-04-28 2022-04-15 宁波舜宇车载光学技术有限公司 光学镜头
KR20190135898A (ko) * 2018-05-29 2019-12-09 삼성전기주식회사 촬상 광학계
CN112526721A (zh) 2018-05-29 2021-03-19 三星电机株式会社 光学成像系统
TWI665488B (zh) * 2018-12-26 2019-07-11 大立光電股份有限公司 攝影光學系統、取像裝置及電子裝置
JP6803641B2 (ja) * 2018-12-27 2020-12-23 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド 撮像光学レンズ
CN110007430B (zh) * 2018-12-27 2021-07-30 瑞声光学解决方案私人有限公司 摄像光学镜头
DE102019100944B4 (de) * 2019-01-15 2023-08-10 Leica Camera Aktiengesellschaft Fotografisches Objektiv mit wenigstens sechs Linsen
US11644642B2 (en) 2019-02-21 2023-05-09 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
CN110221407B (zh) * 2019-06-29 2021-07-30 瑞声光学解决方案私人有限公司 摄像光学镜头
CN110346924B (zh) * 2019-06-30 2021-11-09 瑞声光学解决方案私人有限公司 摄像光学镜头
JP6650068B1 (ja) * 2019-08-07 2020-02-19 OFILM.Japan株式会社 撮像レンズ、撮像装置および情報端末
CN110515180B (zh) * 2019-08-16 2020-10-30 瑞声通讯科技(常州)有限公司 摄像光学镜头
CN110673307B (zh) * 2019-10-15 2022-05-24 玉晶光电(厦门)有限公司 光学成像镜头
JP7449142B2 (ja) * 2020-04-03 2024-03-13 東京晨美光学電子株式会社 撮像レンズ
CN111458849B (zh) * 2020-06-16 2020-09-08 瑞声通讯科技(常州)有限公司 摄像光学镜头
CN111458848B (zh) 2020-06-16 2020-09-15 瑞声通讯科技(常州)有限公司 摄像光学镜头
CN111505811B (zh) * 2020-07-02 2020-10-16 瑞声通讯科技(常州)有限公司 摄像光学镜头
JP7481951B2 (ja) 2020-08-19 2024-05-13 東京晨美光学電子株式会社 撮像レンズ
CN111983785A (zh) * 2020-09-11 2020-11-24 南昌欧菲精密光学制品有限公司 光学成像系统、取像模组和电子装置
KR20220082447A (ko) * 2020-12-10 2022-06-17 엘지이노텍 주식회사 광학계 및 이를 포함하는 카메라 모듈
KR20230032046A (ko) * 2021-08-30 2023-03-07 삼성전기주식회사 촬상 광학계

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140009843A1 (en) * 2012-07-06 2014-01-09 Largan Precision Co., Ltd. Optical image capturing system
US20140043694A1 (en) * 2012-08-13 2014-02-13 Largan Precision Co., Ltd. Image lens assembly system
JP2014115456A (ja) * 2012-12-10 2014-06-26 Fujifilm Corp 撮像レンズおよび撮像レンズを備えた撮像装置
JP2014145961A (ja) * 2013-01-30 2014-08-14 Kantatsu Co Ltd 撮像レンズ
JP2015055728A (ja) * 2013-09-11 2015-03-23 カンタツ株式会社 撮像レンズ
EP2860564A1 (en) * 2013-10-14 2015-04-15 Samsung Electro-Mechanics Co., Ltd. Lens module

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2114729C3 (de) * 1971-03-26 1980-09-25 Ernst Leitz Wetzlar Gmbh, 6300 Lahn- Wetzlar Weitwinkel-Objektiv
JPS5147426A (en) * 1974-10-21 1976-04-23 Canon Kk Kinkyoriseinoo hoseisururetoro fuookasugatakokakutaibutsurenzu
US4176914A (en) * 1977-05-26 1979-12-04 Canon Kabushiki Kaisha Compact retrofocus wide angle objective
US5130850A (en) * 1989-12-20 1992-07-14 Mitsubishi Denki Kabushiki Kaisha Projection lens system
US5477389A (en) * 1993-06-18 1995-12-19 Asahi Kogaku Kogyo Kabushiki Kaisha Fast ultra-wide angle lens system
JPH08248305A (ja) * 1995-03-10 1996-09-27 Nikon Corp 長焦点マイクロレンズ
JP3415765B2 (ja) * 1998-03-25 2003-06-09 富士写真光機株式会社 ズームレンズ
JP2001337271A (ja) 2000-03-21 2001-12-07 Fuji Photo Optical Co Ltd 画像読取用レンズおよび画像読取装置
JP4744711B2 (ja) 2001-04-02 2011-08-10 富士フイルム株式会社 画像取込レンズ
EP2226669B1 (en) * 2002-04-09 2012-06-06 Olympus Corporation Zoom lens, and electronic imaging system using the same
JP4404591B2 (ja) 2003-09-12 2010-01-27 Hoya株式会社 紫外線用撮像系
DE10356338B4 (de) 2003-11-28 2006-02-23 Jos. Schneider Optische Werke Gmbh Hoch geöffnetes Weitwinkel-Kinoprojektionsobjektiv
JP3817245B2 (ja) 2003-12-26 2006-09-06 株式会社タムロン マクロレンズ
JP2006078702A (ja) * 2004-09-08 2006-03-23 Canon Inc ズーム光学系
JP2006154481A (ja) 2004-11-30 2006-06-15 Konica Minolta Opto Inc 変倍光学系、撮像レンズ装置及びデジタル機器
JP5084285B2 (ja) * 2007-02-02 2012-11-28 オリンパス株式会社 結像光学系及びそれを有する電子撮像装置
JP4874852B2 (ja) * 2007-04-09 2012-02-15 Hoya株式会社 マクロレンズ系
CN101373259B (zh) * 2007-08-24 2010-06-23 鸿富锦精密工业(深圳)有限公司 投影镜头
KR101446776B1 (ko) 2008-04-21 2014-10-01 삼성전자주식회사 망원 렌즈 시스템
JP5338345B2 (ja) 2009-01-30 2013-11-13 株式会社ニコン 広角レンズ、撮像装置、広角レンズの製造方法
TW201037354A (en) * 2009-04-15 2010-10-16 Young Optics Inc Fixed-focus lens
KR20120004045A (ko) * 2010-07-06 2012-01-12 삼성전자주식회사 액정 표시 장치
JP2012155223A (ja) * 2011-01-27 2012-08-16 Tamron Co Ltd 広角単焦点レンズ
JP2012198504A (ja) 2011-03-07 2012-10-18 Panasonic Corp ズームレンズ系、撮像装置及びカメラ
JP2012198503A (ja) 2011-03-07 2012-10-18 Panasonic Corp ズームレンズ系、撮像装置及びカメラ
JP2012220654A (ja) 2011-04-07 2012-11-12 Panasonic Corp インナーフォーカスレンズ、交換レンズ装置及びカメラシステム
TWI438471B (zh) 2011-08-24 2014-05-21 Largan Precision Co Ltd 光學影像擷取鏡頭
JP5638702B2 (ja) 2011-11-09 2014-12-10 富士フイルム株式会社 撮像レンズおよび撮像装置
CN103149668A (zh) * 2011-12-06 2013-06-12 佛山普立华科技有限公司 变焦投影镜头
JP5616539B2 (ja) * 2012-02-06 2014-10-29 富士フイルム株式会社 超広角レンズおよび撮像装置
CN202548427U (zh) * 2012-02-20 2012-11-21 南阳示佳光电有限公司 变焦投影镜头
JP6011921B2 (ja) * 2012-09-18 2016-10-25 株式会社リコー 結像レンズ、撮像装置および情報装置
JP6090650B2 (ja) 2012-11-19 2017-03-08 株式会社リコー 結像レンズ、撮像装置および情報装置
JP5963360B2 (ja) 2012-11-21 2016-08-03 カンタツ株式会社 撮像レンズ
WO2014097570A1 (ja) * 2012-12-21 2014-06-26 富士フイルム株式会社 撮像レンズおよび撮像装置
JP6111798B2 (ja) * 2013-03-29 2017-04-12 株式会社リコー 結像レンズおよび撮像システム
JP6393874B2 (ja) 2014-02-28 2018-09-26 カンタツ株式会社 撮像レンズ
JP6265334B2 (ja) 2014-03-20 2018-01-24 株式会社オプトロジック 撮像レンズ
KR101627133B1 (ko) 2014-03-28 2016-06-03 삼성전기주식회사 렌즈 모듈
TWI507723B (zh) * 2014-08-01 2015-11-11 Largan Precision Co Ltd 攝像光學透鏡組、取像裝置及電子裝置
US9864167B2 (en) 2014-09-17 2018-01-09 Ricoh Company, Ltd. Image forming lens and image capturing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140009843A1 (en) * 2012-07-06 2014-01-09 Largan Precision Co., Ltd. Optical image capturing system
US20140043694A1 (en) * 2012-08-13 2014-02-13 Largan Precision Co., Ltd. Image lens assembly system
JP2014115456A (ja) * 2012-12-10 2014-06-26 Fujifilm Corp 撮像レンズおよび撮像レンズを備えた撮像装置
JP2014145961A (ja) * 2013-01-30 2014-08-14 Kantatsu Co Ltd 撮像レンズ
JP2015055728A (ja) * 2013-09-11 2015-03-23 カンタツ株式会社 撮像レンズ
EP2860564A1 (en) * 2013-10-14 2015-04-15 Samsung Electro-Mechanics Co., Ltd. Lens module

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11656440B2 (en) 2014-08-01 2023-05-23 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing unit and electronic device
US11940605B2 (en) 2014-08-01 2024-03-26 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing unit and electronic device
US10606039B2 (en) 2014-08-01 2020-03-31 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing unit and electronic device
US10928610B2 (en) 2015-02-17 2021-02-23 Largan Precision Co., Ltd. Photographing system, image capturing unit and electronic device
US11714264B2 (en) 2015-02-17 2023-08-01 Largan Precision Co., Ltd. Photographing system, image capturing unit and electronic device
US12072555B2 (en) 2015-02-17 2024-08-27 Largan Precision Co., Ltd. Photographing system, image capturing unit and electronic device
US9606328B2 (en) 2015-07-01 2017-03-28 Largan Precision Co., Ltd. Photographing optical lens assembly, image capturing unit and electronic device
US11428899B2 (en) 2016-01-28 2022-08-30 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
US11927829B2 (en) 2016-01-28 2024-03-12 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
CN110286466A (zh) * 2016-01-28 2019-09-27 三星电机株式会社 光学成像系统
US11953756B2 (en) 2019-08-15 2024-04-09 Jiangxi Ofilm Optical Co., Ltd. Optical system, image capturing module and electronic device
WO2021087669A1 (zh) * 2019-11-04 2021-05-14 南昌欧菲精密光学制品有限公司 光学系统、取像装置及电子装置
US12085782B2 (en) 2020-03-16 2024-09-10 Jiangxi Jingchao Optical Co., Ltd. Optical system, camera module, and electronic device
US12092801B2 (en) 2020-03-16 2024-09-17 Jiangxi Jingchao Optical Co., Ltd. Optical system, imaging module and electronic device
CN112180577B (zh) * 2020-09-25 2021-07-27 中国科学院西安光学精密机械研究所 可见光-短波红外-中波红外-长波红外四波段光学系统
CN112180577A (zh) * 2020-09-25 2021-01-05 中国科学院西安光学精密机械研究所 可见光-短波红外-中波红外-长波红外四波段光学系统

Also Published As

Publication number Publication date
US20160377841A1 (en) 2016-12-29
US20190302406A1 (en) 2019-10-03
US20180210168A1 (en) 2018-07-26
CN105829942A (zh) 2016-08-03
US11668903B2 (en) 2023-06-06
US20210088751A1 (en) 2021-03-25
US20180210167A1 (en) 2018-07-26
US11099356B2 (en) 2021-08-24
JP6278354B2 (ja) 2018-02-14
US20190302408A1 (en) 2019-10-03
US10481364B2 (en) 2019-11-19
US10067313B2 (en) 2018-09-04
US20210080691A1 (en) 2021-03-18
US11022780B2 (en) 2021-06-01
US11668904B2 (en) 2023-06-06
US20210080692A1 (en) 2021-03-18
US20190302405A1 (en) 2019-10-03
US11822151B2 (en) 2023-11-21
CN105829942B (zh) 2018-09-28
US20210088750A1 (en) 2021-03-25
JP2015203792A (ja) 2015-11-16
US20180210169A1 (en) 2018-07-26
US10466441B2 (en) 2019-11-05
US11086102B2 (en) 2021-08-10
US10473891B2 (en) 2019-11-12
US11092777B2 (en) 2021-08-17
US20190302407A1 (en) 2019-10-03
US11829006B2 (en) 2023-11-28

Similar Documents

Publication Publication Date Title
JP6278354B2 (ja) 撮像レンズ
US10678022B2 (en) Imaging lens
JP6319765B2 (ja) 撮像レンズ
US10712540B2 (en) Imaging lens
JP6570062B2 (ja) 撮像レンズ
JP6393872B2 (ja) 撮像レンズ
JP5975386B2 (ja) 撮像レンズ
JP6393874B2 (ja) 撮像レンズ
JP6265334B2 (ja) 撮像レンズ
JP6452643B2 (ja) 撮像レンズ
JP6226295B2 (ja) 撮像レンズ
JP6541180B2 (ja) 撮像レンズ
JP6425238B2 (ja) 撮像レンズ
JP5924121B2 (ja) 撮像レンズ
JP6482509B2 (ja) 撮像レンズ
JP6146738B2 (ja) 撮像レンズ
JP6570076B2 (ja) 撮像レンズ
WO2010073522A1 (ja) 撮像レンズ
JP6643787B2 (ja) 撮像レンズ
JP6171242B2 (ja) 撮像レンズ
JP5877523B2 (ja) 撮像レンズ
JP6646128B2 (ja) 撮像レンズ
JP2011085862A (ja) 撮像レンズ
JP5839357B2 (ja) 撮像レンズ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15779688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15779688

Country of ref document: EP

Kind code of ref document: A1