WO2019080528A1 - 光学成像镜头 - Google Patents

光学成像镜头

Info

Publication number
WO2019080528A1
WO2019080528A1 PCT/CN2018/092868 CN2018092868W WO2019080528A1 WO 2019080528 A1 WO2019080528 A1 WO 2019080528A1 CN 2018092868 W CN2018092868 W CN 2018092868W WO 2019080528 A1 WO2019080528 A1 WO 2019080528A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical imaging
focal length
imaging lens
effective focal
Prior art date
Application number
PCT/CN2018/092868
Other languages
English (en)
French (fr)
Inventor
张凯元
李明
徐标
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201711007397.7A external-priority patent/CN107621682B/zh
Priority claimed from CN201721384690.0U external-priority patent/CN207281377U/zh
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Priority to US16/274,718 priority Critical patent/US11169362B2/en
Publication of WO2019080528A1 publication Critical patent/WO2019080528A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/005Diaphragms

Definitions

  • the present application relates to an optical imaging lens, and more particularly, to an optical imaging lens including seven lenses.
  • the present application provides an optical imaging lens that is applicable to a portable electronic product that can at least solve or partially address at least one of the above disadvantages of the prior art, such as a large aperture imaging lens.
  • the present application discloses an optical imaging lens that sequentially includes, from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, and a fourth lens having power. a fifth lens, a sixth lens, and a seventh lens.
  • the first lens may have a negative power
  • the object side may be a convex surface
  • the image side may be a concave surface
  • the image side of the third lens may be a concave surface
  • the object side of the seventh lens may be a concave surface.
  • the total effective focal length f of the optical imaging lens, the effective focal length f4 of the fourth lens, and the effective focal length f5 of the fifth lens may satisfy
  • the total effective focal length f of the optical imaging lens and the entrance pupil diameter EPD of the optical imaging lens may satisfy f/EPD ⁇ 1.60.
  • the total effective focal length f of the optical imaging lens and the effective focal length f1 of the first lens may satisfy -0.5 ⁇ f / f1 ⁇ 0.
  • the effective focal length f2 of the second lens and the radius of curvature R3 of the object side of the second lens may satisfy 1.5 ⁇ f2/R3 ⁇ 2.5.
  • the effective focal length f6 of the sixth lens and the radius of curvature R12 of the image side of the sixth lens may satisfy -2 ⁇ f6 / R12 ⁇ -1.
  • the effective focal length f6 of the sixth lens and the effective focal length f7 of the seventh lens may satisfy -1.5 ⁇ f6 / f7 ⁇ -1.
  • the center thickness CT4 of the fourth lens on the optical axis and the center thickness CT5 of the fifth lens on the optical axis may satisfy 0.5 ⁇ CT4/CT5 ⁇ 2.0.
  • the center thickness CT1 of the first lens on the optical axis and the center thickness CT7 of the seventh lens on the optical axis may satisfy 1.00 ⁇ CT1/CT7 ⁇ 1.50.
  • the optical total length TTL of the optical imaging lens is half the ImgH of the diagonal length of the effective pixel area on the imaging surface of the optical imaging lens to satisfy TTL/ImgH ⁇ 1.5.
  • the radius of curvature R13 of the object side of the seventh lens and the radius of curvature R14 of the image side of the seventh lens may satisfy
  • the radius of curvature R5 of the object side surface of the third lens and the curvature radius R6 of the image side surface of the third lens may satisfy 1.5 ⁇ (R5+R6)/(R5-R6) ⁇ 80.
  • the present application discloses an imaging lens that sequentially includes, from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, and a fourth lens having optical power. a fifth lens, a sixth lens, and a seventh lens.
  • the object side surface of the first lens may be a convex surface
  • the image side surface may be a concave surface
  • the image side surface of the third lens may be a concave surface
  • the object side surface of the seventh lens may be a concave surface.
  • the center thickness CT1 of the first lens on the optical axis and the center thickness CT7 of the seventh lens on the optical axis may satisfy 1.00 ⁇ CT1/CT7 ⁇ 1.50.
  • a plurality of (for example, seven) lenses are used, and the above optical imaging lens is super-over by rationally distributing the power, the surface shape, the center thickness of each lens, and the on-axis spacing between the lenses.
  • FIG. 1 is a schematic structural view of an optical imaging lens according to Embodiment 1 of the present application.
  • 2A to 2D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Embodiment 1;
  • FIG. 3 is a schematic structural view of an optical imaging lens according to Embodiment 2 of the present application.
  • 4A to 4D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Embodiment 2.
  • FIG. 5 is a schematic structural view of an optical imaging lens according to Embodiment 3 of the present application.
  • 6A to 6D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Embodiment 3.
  • FIG. 7 is a schematic structural view of an optical imaging lens according to Embodiment 4 of the present application.
  • 8A to 8D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 4;
  • FIG. 9 is a schematic structural view of an optical imaging lens according to Embodiment 5 of the present application.
  • 10A to 10D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 5;
  • FIG. 11 is a schematic structural view of an optical imaging lens according to Embodiment 6 of the present application.
  • 12A to 12D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 6;
  • FIG. 13 is a schematic structural view of an optical imaging lens according to Embodiment 7 of the present application.
  • 14A to 14D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Embodiment 7;
  • FIG. 15 is a schematic structural view of an optical imaging lens according to Embodiment 8 of the present application.
  • 16A to 16D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Embodiment 8;
  • FIG. 17 is a schematic structural view of an optical imaging lens according to Embodiment 9 of the present application.
  • 18A to 18D respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a magnification chromatic aberration curve of the optical imaging lens of Example 9.
  • first, second, third, etc. are used to distinguish one feature from another, and do not represent any limitation of the feature.
  • first lens discussed below may also be referred to as a second lens or a third lens without departing from the teachings of the present application.
  • the thickness, size, and shape of the lens have been somewhat exaggerated for convenience of explanation.
  • the spherical or aspherical shape shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspherical surface is not limited to the spherical or aspherical shape shown in the drawings.
  • the drawings are only examples and are not to scale.
  • a paraxial region refers to a region near the optical axis. If the surface of the lens is convex and the position of the convex surface is not defined, it indicates that the surface of the lens is convex at least in the paraxial region; if the surface of the lens is concave and the position of the concave surface is not defined, it indicates that the surface of the lens is at least in the paraxial region. Concave.
  • the surface closest to the object in each lens is referred to as the object side, and the surface of each lens closest to the image plane is referred to as the image side.
  • the optical imaging lens may include, for example, seven lenses having powers, that is, a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, and a Seven lenses.
  • the seven lenses are sequentially arranged from the object side to the image side along the optical axis.
  • the first lens may have a negative power
  • the object side may be a convex surface
  • the image side may be a concave surface
  • the second lens has a positive power or a negative power
  • the third lens has a positive power Or a negative power
  • the image side may be a concave surface
  • the fourth lens has a positive power or a negative power
  • the fifth lens has a positive power or a negative power
  • the sixth lens has a positive power or a negative optical power Degree
  • the seventh lens has a positive power or a negative power
  • the object side is a concave surface.
  • the second lens may have positive power and the object side may be convex.
  • the object side of the third lens may be convex.
  • the sixth lens may have a positive power, and the image side may be a convex surface.
  • the seventh lens may have a negative power, and the image side may be a concave surface.
  • the optical imaging lens of the present application may satisfy the conditional expression f/EPD ⁇ 1.60, where f is the total effective focal length of the optical imaging lens and the EPD is the entrance pupil diameter of the optical imaging lens. More specifically, f and EPD can further satisfy 1.46 ⁇ f / EPD ⁇ 1.60. The smaller the aperture number Fno of the optical imaging lens (ie, the total effective focal length of the lens f/the diameter of the lens entrance EPD), the larger the aperture of the lens, and the greater the amount of light entering the same unit time.
  • the reduction of the aperture number Fno can effectively enhance the brightness of the image surface, so that the lens can better satisfy the shooting requirements when the light is insufficient, such as cloudy weather and dusk, and has a large aperture advantage.
  • the lens is configured to satisfy the conditional expression f/EPD ⁇ 1.60, which can enhance the illumination of the imaging surface in the process of increasing the amount of light passing through, thereby improving the imaging effect of the lens in a dark environment.
  • the optical imaging lens of the present application may satisfy the conditional expression
  • the focal length, f5, is the effective focal length of the fifth lens. More specifically, f, f4, and f5 may further satisfy 0 ⁇
  • the optical imaging lens of the present application may satisfy the conditional expression -0.5 ⁇ f / f1 ⁇ 0, where f is the total effective focal length of the optical imaging lens, and f1 is the effective focal length of the first lens. More specifically, f and f1 may further satisfy -0.25 ⁇ f / f1 ⁇ -0.10, for example, -0.19 ⁇ f / f1 ⁇ -0.16.
  • the negative third-order spherical aberration and the positive fifth-order spherical aberration contributed by the first lens are reasonably controlled, so that the negative third-order spherical aberration and the positive fifth-order contribution contributed by the first lens are obtained.
  • the spherical aberration can cancel the positive third-order spherical aberration and the negative fifth-order spherical aberration generated by the subsequent positive lenses (ie, the lenses having positive refractive power between the first lens and the image side), thereby ensuring the on-axis
  • the field of view has good image quality.
  • the optical imaging lens of the present application may satisfy the conditional expression -1.5 ⁇ f6 / f7 ⁇ -1, where f6 is the effective focal length of the sixth lens and f7 is the effective focal length of the seventh lens. More specifically, f6 and f7 may further satisfy -1.5 ⁇ f6 / f7 ⁇ -1.3, for example, -1.44 ⁇ f6 / f7 ⁇ - 1.32.
  • the remaining spherical aberration after the balance of the sixth lens and the seventh lens can be used to balance the first five lenses (ie, the first lens to the fifth lens)
  • the resulting spherical aberration achieves fine-tuning and control of the spherical aberration of the system, and improves the precise control of the on-axis field aberration.
  • the optical imaging lens of the present application may satisfy the conditional formula 1.00 ⁇ CT1/CT7 ⁇ 1.50, where CT1 is the center thickness of the first lens on the optical axis, and CT7 is the seventh lens on the optical axis. Center thickness. More specifically, CT1 and CT7 may further satisfy 1.00 ⁇ CT1/CT7 ⁇ 1.30, for example, 1.00 ⁇ CT1/CT7 ⁇ 1.27. Reasonable control of the ratio of the center thickness of the first lens and the seventh lens can ensure the good optical film length TTL of the lens within a reasonable range while ensuring good lens workability, thereby avoiding a large vertical dimension of the system. burden.
  • the optical imaging lens of the present application may satisfy the conditional expression 1.5 ⁇ f2/R3 ⁇ 2.5, where f2 is the effective focal length of the second lens and R3 is the radius of curvature of the object side of the second lens. More specifically, f2 and R3 may further satisfy 1.7 ⁇ f2 / R3 ⁇ 2.5, for example, 1.73 ⁇ f2 / R3 ⁇ 2.46.
  • f2 and R3 may further satisfy 1.7 ⁇ f2 / R3 ⁇ 2.5, for example, 1.73 ⁇ f2 / R3 ⁇ 2.46.
  • the optical imaging lens of the present application may satisfy the conditional expression-2 ⁇ f6/R12 ⁇ -1, where f6 is the effective focal length of the sixth lens and R12 is the radius of curvature of the image side of the sixth lens. More specifically, f6 and R12 may further satisfy -1.90 ⁇ f6 / R12 ⁇ - 1.50, for example, -1.83 ⁇ f6 / R12 ⁇ - 1.56.
  • the amount of astigmatism contribution of the side of the sixth lens image is within a reasonable range, and the amount of astigmatism contribution of the side of the sixth lens image can better balance the front side lenses (ie, the object side) The amount of astigmatism accumulated by each lens between the sixth lens and the lens, so that the optical imaging system has good imaging quality on both the meridional plane and the sagittal plane.
  • the optical imaging lens of the present application may satisfy the conditional expression 0.5 ⁇ CT4/CT5 ⁇ 2.0, where CT4 is the center thickness of the fourth lens on the optical axis, and CT5 is the fifth lens on the optical axis. Center thickness. More specifically, CT4 and CT5 can further satisfy 0.9 ⁇ CT4 / CT5 ⁇ 1.7, for example, 0.98 ⁇ CT4 / CT5 ⁇ 1.59.
  • the distortion contributions of the fourth lens and the fifth lens can be controlled within a reasonable range, so that the final distortion of each field of view is controlled below 3%. To avoid the need for software debugging later.
  • the optical imaging lens of the present application can satisfy the conditional TTL/ImgH ⁇ 1.5, where TTL is the total optical length of the optical imaging lens (ie, from the center of the object side of the first lens to the optical imaging lens) The distance of the imaging surface on the optical axis), ImgH is half the diagonal length of the effective pixel area on the imaging surface. More specifically, TTL and ImgH can further satisfy 1.43 ⁇ TTL / ImgH ⁇ 1.46. By reasonably controlling the ratio of TTL and ImgH, it is advantageous for the ultra-thinning of optical imaging lenses and the simultaneous realization of high pixels.
  • the optical imaging lens of the present application may satisfy the conditional expression 1.5 ⁇ (R5+R6)/(R5-R6) ⁇ 80, where R5 is the radius of curvature of the object side of the third lens, and R6 is the first The radius of curvature of the image side of the three lenses. More specifically, R5 and R6 may further satisfy 1.68 ⁇ (R5 + R6) / (R5 - R6) ⁇ 79.1.
  • R5 and R6 may further satisfy 1.68 ⁇ (R5 + R6) / (R5 - R6) ⁇ 79.1.
  • the optical imaging lens of the present application may satisfy the conditional expression
  • the optical imaging lens may further include at least one aperture to further enhance the imaging quality of the lens.
  • the diaphragm may be disposed between the object side and the first lens.
  • the above optical imaging lens may further include a filter for correcting the color deviation and/or a cover glass for protecting the photosensitive element on the imaging surface.
  • the optical imaging lens according to the above embodiment of the present application may employ a plurality of lenses, such as the seven sheets described above.
  • a plurality of lenses such as the seven sheets described above.
  • the volume of the lens can be effectively reduced, the sensitivity of the lens can be reduced, and the processability of the lens can be improved.
  • the optical imaging lens is made more advantageous for production processing and can be applied to portable electronic products.
  • the optical imaging lens of the above configuration has advantages such as ultra-thin, large aperture, high pixel, high image quality, and the like.
  • At least one of the mirror faces of each lens is an aspherical mirror.
  • the aspherical lens is characterized by a continuous change in curvature from the center of the lens to the periphery of the lens. Unlike a spherical lens having a constant curvature from the center of the lens to the periphery of the lens, the aspherical lens has better curvature radius characteristics, and has the advantages of improving distortion and improving astigmatic aberration. With an aspherical lens, the aberrations that occur during imaging can be eliminated as much as possible, improving image quality.
  • optical imaging lens is not limited to including seven lenses.
  • the optical imaging lens can also include other numbers of lenses if desired.
  • FIG. 1 is a block diagram showing the structure of an optical imaging lens according to Embodiment 1 of the present application.
  • an optical imaging lens sequentially includes an aperture STO, a first lens E1, a second lens E2, and a third lens E3, along the optical axis from the object side to the image side.
  • the first lens E1 has a negative refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface.
  • the fourth lens E4 has a negative refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface.
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a negative refractive power
  • the object side surface S13 is a concave surface
  • the image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. Light from the object sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging plane S17.
  • Table 1 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 1, in which the unit of curvature radius and thickness are all millimeters (mm).
  • each aspherical lens can be defined by using, but not limited to, the following aspherical formula:
  • x is the distance of the aspherical surface at height h from the optical axis, and the distance from the aspherical vertex is high;
  • k is the conic coefficient (given in Table 1);
  • Ai is the correction coefficient of the a-th order of the aspherical surface.
  • Table 2 gives the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , A 16 , A 18 and A 20 which can be used for each aspherical mirror surface S1-S14 in the embodiment 1. .
  • the optical imaging lens of Embodiment 1 satisfies:
  • f/EPD 1.59, where f is the total effective focal length of the optical imaging lens, and EPD is the diameter of the entrance pupil of the optical imaging lens;
  • f/f1 -0.18, where f is the total effective focal length of the optical imaging lens, and f1 is the effective focal length of the first lens E1;
  • F6/f7 -1.35, where f6 is the effective focal length of the sixth lens E6, and f7 is the effective focal length of the seventh lens E7;
  • CT1/CT7 1.13, where CT1 is the center thickness of the first lens E1 on the optical axis, and CT7 is the center thickness of the seventh lens E7 on the optical axis;
  • F2/R3 1.88, where f2 is the effective focal length of the second lens E2, and R3 is the radius of curvature of the side surface S3 of the second lens E2;
  • F6 / R12 -1.63, wherein f6 is the effective focal length of the sixth lens E6, and R12 is the radius of curvature of the image side S12 of the sixth lens E6;
  • CT4/CT5 1.40, wherein CT4 is the center thickness of the fourth lens E4 on the optical axis, and CT5 is the center thickness of the fifth lens E5 on the optical axis;
  • TTL/ImgH 1.45, where TTL is the total optical length of the optical imaging lens, and ImgH is half of the diagonal length of the effective pixel area on the imaging surface S17;
  • R5+R6/(R5-R6) 3.44, wherein R5 is the radius of curvature of the side surface S5 of the third lens E3, and R6 is the radius of curvature of the image side surface S6 of the third lens E3;
  • 1.76, where R13 is the radius of curvature of the object side surface S13 of the seventh lens E7, and R14 is the radius of curvature of the image side surface S14 of the seventh lens E7.
  • FIG. 2A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 1, which indicates that light of different wavelengths is deviated from a focus point after the lens.
  • 2B shows an astigmatism curve of the optical imaging lens of Embodiment 1, which shows meridional field curvature and sagittal image plane curvature.
  • 2C shows a distortion curve of the optical imaging lens of Embodiment 1, which shows distortion magnitude values in the case of different viewing angles.
  • 2D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 1, which indicates a deviation of different image heights on the imaging plane after the light passes through the lens.
  • the optical imaging lens given in Embodiment 1 can achieve good imaging quality.
  • FIG. 3 is a block diagram showing the structure of an optical imaging lens according to Embodiment 2 of the present application.
  • an optical imaging lens sequentially includes an aperture STO, a first lens E1, a second lens E2, and a third lens E3, along the optical axis from the object side to the image side.
  • the first lens E1 has a negative refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a convex surface.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface.
  • the fourth lens E4 has a negative refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface.
  • the fifth lens E5 has a positive refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a negative refractive power
  • the object side surface S13 is a concave surface
  • the image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. Light from the object sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging plane S17.
  • Table 3 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 2, in which the unit of curvature radius and thickness are both millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the seventh lens E7 are aspherical.
  • Table 4 shows the high order term coefficients which can be used for each aspherical mirror in Embodiment 2, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • 4A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 2, which shows that light of different wavelengths is deviated from a focus point after the lens.
  • 4B shows an astigmatism curve of the optical imaging lens of Embodiment 2, which shows meridional field curvature and sagittal image plane curvature.
  • 4C shows a distortion curve of the optical imaging lens of Embodiment 2, which shows distortion magnitude values in the case of different viewing angles.
  • 4D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 2, which shows deviations of different image heights on the imaging plane after the light passes through the lens.
  • the optical imaging lens given in Embodiment 2 can achieve good imaging quality.
  • FIG. 5 is a block diagram showing the structure of an optical imaging lens according to Embodiment 3 of the present application.
  • an optical imaging lens sequentially includes an aperture STO, a first lens E1, a second lens E2, and a third lens E3, along the optical axis from the object side to the image side.
  • the first lens E1 has a negative refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a convex surface.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface.
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a negative refractive power
  • the object side surface S13 is a concave surface
  • the image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. Light from the object sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging plane S17.
  • Table 5 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 3, in which the unit of curvature radius and thickness are both millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the seventh lens E7 are aspherical.
  • Table 6 shows the high order term coefficients which can be used for each aspherical mirror surface in Embodiment 3, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Fig. 6A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 3, which shows that light of different wavelengths is deviated from a focus point after the lens.
  • Fig. 6B shows an astigmatism curve of the optical imaging lens of Embodiment 3, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 6C shows a distortion curve of the optical imaging lens of Embodiment 3, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 6D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 3, which shows deviations of different image heights on the imaging plane after the light passes through the lens. 6A to 6D, the optical imaging lens given in Embodiment 3 can achieve good imaging quality.
  • FIG. 7 is a block diagram showing the structure of an optical imaging lens according to Embodiment 4 of the present application.
  • an optical imaging lens sequentially includes an aperture STO, a first lens E1, a second lens E2, and a third lens E3, along the optical axis from the object side to the image side.
  • the first lens E1 has a negative refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a convex surface.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface.
  • the fourth lens E4 has a negative refractive power
  • the object side surface S7 is a concave surface
  • the image side surface S8 is a concave surface.
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a negative refractive power
  • the object side surface S13 is a concave surface
  • the image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. Light from the object sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging plane S17.
  • Table 7 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 4, in which the unit of curvature radius and thickness are both millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the seventh lens E7 are aspherical.
  • Table 8 shows the high order term coefficients which can be used for the respective aspherical mirrors in Embodiment 4, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • the focal length f7 -2.05mm.
  • Fig. 8A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 4, which shows that light of different wavelengths is deviated from the focus point after the lens.
  • Fig. 8B shows an astigmatism curve of the optical imaging lens of Embodiment 4, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 8C shows a distortion curve of the optical imaging lens of Embodiment 4, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 8D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 4, which shows deviations of different image heights on the imaging plane after the light passes through the lens. 8A to 8D, the optical imaging lens given in Embodiment 4 can achieve good imaging quality.
  • FIG. 9 is a block diagram showing the structure of an optical imaging lens according to Embodiment 5 of the present application.
  • an optical imaging lens includes, in order from an object side to an image side along an optical axis, a stop STO, a first lens E1, a second lens E2, and a third lens E3, Four lenses E4, fifth lens E5, sixth lens E6, seventh lens E7, filter E8, and imaging surface S17.
  • the first lens E1 has a negative refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a convex surface.
  • the fifth lens E5 has a negative refractive power
  • the object side surface S9 is a concave surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a negative refractive power
  • the object side surface S13 is a concave surface
  • the image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. Light from the object sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging plane S17.
  • Table 9 shows the surface type, the radius of curvature, the thickness, the material, and the conical coefficient of each lens of the optical imaging lens of Example 5, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the seventh lens E7 are aspherical.
  • Table 10 shows the high order term coefficients which can be used for each aspherical mirror surface in Embodiment 5, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Fig. 10A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 5, which shows that light of different wavelengths is deviated from a focus point after passing through the lens.
  • Fig. 10B shows an astigmatism curve of the optical imaging lens of Embodiment 5, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 10C shows a distortion curve of the optical imaging lens of Embodiment 5, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 10D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 5, which shows deviations of different image heights on the imaging plane after the light passes through the lens. 10A to 10D, the optical imaging lens given in Embodiment 5 can achieve good imaging quality.
  • FIG. 11 is a view showing the configuration of an optical imaging lens according to Embodiment 6 of the present application.
  • an optical imaging lens sequentially includes an aperture STO, a first lens E1, a second lens E2, and a third lens E3, along the optical axis from the object side to the image side.
  • the first lens E1 has a negative refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface.
  • the fourth lens E4 has a positive refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface.
  • the fifth lens E5 has a positive refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a convex surface.
  • the sixth lens E6 has a positive refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a negative refractive power
  • the object side surface S13 is a concave surface
  • the image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. Light from the object sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging plane S17.
  • Table 11 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 6, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the seventh lens E7 are aspherical.
  • Table 12 shows the high order term coefficients which can be used for the respective aspherical mirrors in Embodiment 6, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Fig. 12A shows an axial chromatic aberration curve of the optical imaging lens of Example 6, which shows that light of different wavelengths is deviated from the focus point after the lens.
  • Fig. 12B shows an astigmatism curve of the optical imaging lens of Example 6, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 12C shows a distortion curve of the optical imaging lens of Embodiment 6, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 12D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 6, which shows the deviation of different image heights on the imaging plane after the light passes through the lens. 12A to 12D, the optical imaging lens given in Embodiment 6 can achieve good imaging quality.
  • FIG. 13 is a view showing the configuration of an optical imaging lens according to Embodiment 7 of the present application.
  • an optical imaging lens sequentially includes an aperture STO, a first lens E1, a second lens E2, and a third lens E3, along the optical axis from the object side to the image side.
  • the first lens E1 has a negative refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface.
  • the fourth lens E4 has a negative refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface.
  • the fifth lens E5 has a positive refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive refractive power
  • the object side surface S11 is a concave surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a negative refractive power
  • the object side surface S13 is a concave surface
  • the image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. Light from the object sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging plane S17.
  • Table 13 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 7, in which the unit of curvature radius and thickness are both millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the seventh lens E7 are aspherical.
  • Table 14 shows the high order term coefficients which can be used for each aspherical mirror surface in Embodiment 7, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Fig. 14A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 7, which indicates that light of different wavelengths is deviated from a focus point after the lens.
  • Fig. 14B shows an astigmatism curve of the optical imaging lens of Embodiment 7, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 14C shows a distortion curve of the optical imaging lens of Embodiment 7, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 14D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 7, which shows the deviation of the different image heights on the imaging plane after the light passes through the lens. 14A to 14D, the optical imaging lens given in Embodiment 7 can achieve good imaging quality.
  • FIG. 15 is a view showing the configuration of an optical imaging lens according to Embodiment 8 of the present application.
  • an optical imaging lens sequentially includes an aperture STO, a first lens E1, a second lens E2, and a third lens E3, along the optical axis from the object side to the image side.
  • the first lens E1 has a negative refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface.
  • the third lens E3 has a positive refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface.
  • the fourth lens E4 has a negative refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface.
  • the fifth lens E5 has a positive refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a negative refractive power
  • the object side surface S13 is a concave surface
  • the image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. Light from the object sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging plane S17.
  • Table 15 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 8, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the seventh lens E7 are aspherical.
  • Table 16 shows the high order term coefficients which can be used for the respective aspherical mirrors in Embodiment 8, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Fig. 16A shows an axial chromatic aberration curve of the optical imaging lens of Embodiment 8, which indicates that light of different wavelengths is deviated from a focus point after the lens.
  • Fig. 16B shows an astigmatism curve of the optical imaging lens of Embodiment 8, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 16C shows a distortion curve of the optical imaging lens of Embodiment 8, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 16D shows a magnification chromatic aberration curve of the optical imaging lens of Embodiment 8, which shows the deviation of the different image heights on the imaging plane after the light passes through the lens. According to Figs. 16A to 16D, the optical imaging lens given in Embodiment 8 can achieve good image quality.
  • FIG. 17 is a view showing the configuration of an optical imaging lens according to Embodiment 9 of the present application.
  • an optical imaging lens sequentially includes an aperture STO, a first lens E1, a second lens E2, and a third lens E3, along the optical axis from the object side to the image side.
  • the first lens E1 has a negative refractive power
  • the object side surface S1 is a convex surface
  • the image side surface S2 is a concave surface.
  • the second lens E2 has a positive refractive power
  • the object side surface S3 is a convex surface
  • the image side surface S4 is a concave surface.
  • the third lens E3 has a negative refractive power
  • the object side surface S5 is a convex surface
  • the image side surface S6 is a concave surface.
  • the fourth lens E4 has a negative refractive power
  • the object side surface S7 is a convex surface
  • the image side surface S8 is a concave surface.
  • the fifth lens E5 has a positive refractive power
  • the object side surface S9 is a convex surface
  • the image side surface S10 is a concave surface.
  • the sixth lens E6 has a positive refractive power
  • the object side surface S11 is a convex surface
  • the image side surface S12 is a convex surface.
  • the seventh lens E7 has a negative refractive power
  • the object side surface S13 is a concave surface
  • the image side surface S14 is a concave surface.
  • the filter E8 has an object side surface S15 and an image side surface S16. Light from the object sequentially passes through the respective surfaces S1 to S16 and is finally imaged on the imaging plane S17.
  • Table 17 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the optical imaging lens of Example 9, in which the unit of curvature radius and thickness are both millimeters (mm).
  • the object side surface and the image side surface of any one of the first lens E1 to the seventh lens E7 are aspherical.
  • Table 18 shows the high order coefficient which can be used for each aspherical mirror surface in Embodiment 9, wherein each aspherical surface type can be defined by the formula (1) given in the above Embodiment 1.
  • Fig. 18A shows an axial chromatic aberration curve of the optical imaging lens of Example 9, which shows that light of different wavelengths is deviated from the focus point after the lens.
  • Fig. 18B shows an astigmatism curve of the optical imaging lens of Example 9, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 18C shows a distortion curve of the optical imaging lens of Embodiment 9, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 18D shows a magnification chromatic aberration curve of the optical imaging lens of Example 9, which shows the deviation of the different image heights on the imaging plane after the light passes through the lens.
  • the optical imaging lens given in Embodiment 9 can achieve good imaging quality.
  • Embodiments 1 to 9 respectively satisfy the relationship shown in Table 19.
  • the present application also provides an image forming apparatus whose electronic photosensitive element may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS).
  • the imaging device may be a stand-alone imaging device such as a digital camera, or an imaging module integrated on a mobile electronic device such as a mobile phone.
  • the imaging device is equipped with the optical imaging lens described above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学成像镜头,该镜头沿着光轴由物侧至像侧依序包括:具有光焦度的第一透镜(E1)、第二透镜(E2)、第三透镜(E3)、第四透镜(E4)、第五透镜(E5)、第六透镜(E6)和第七透镜(E7)。其中,第一透镜(E1)具有负光焦度,其物侧面为凸面,像侧面为凹面;第三透镜(E3)的像侧面为凹面;第七透镜(E7)的物侧面为凹面;其中,光学成像镜头的总有效焦距f、第四透镜(E4)的有效焦距f4和第五透镜(E5)的有效焦距f5满足|f/f4|+|f/f5|<1。

Description

光学成像镜头
相关申请的交叉引用
本申请要求于2017年10月25日提交于中国国家知识产权局(SIPO)的、专利申请号为201711007397.7的中国专利申请以及于2017年10月25日提交至SIPO的、专利申请号为201721384690.0的中国专利申请的优先权和权益,以上中国专利申请通过引用整体并入本文。
技术领域
本申请涉及一种光学成像镜头,更具体地,本申请涉及一种包括七片透镜的光学成像镜头。
背景技术
近年来,随着CCD(Charge-Coupled Device,感光耦合元件)或CMOS(Complementary Metal-Oxide Semiconductor,互补性氧化金属半导体元件)等芯片技术的发展,芯片的像素尺寸越来越小,对相配套使用的光学成像镜头的成像质量的要求也就越来越高,要求相配套的成像镜头需要同时具备高像素和小型化特性。
另外,随着例如手机或数码相机等便携带电子设备的应用普及,便携式电子产品应用的场合越来越广泛,也对相配套使用的光学成像镜头的大孔径、高分辨率等方面提出了相应的要求。
发明内容
本申请提供了可适用于便携式电子产品的、可至少解决或部分解决现有技术中的上述至少一个缺点的光学成像镜头,例如,大孔径成像镜头。
一方面,本申请公开了一种光学成像镜头,该镜头沿着光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。其中,第一透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面;第三透镜的像侧面 可为凹面;第七透镜的物侧面可为凹面。其中,该光学成像镜头的总有效焦距f、第四透镜的有效焦距f4和第五透镜的有效焦距f5可满足|f/f4|+|f/f5|<1。
在一个实施方式中,光学成像镜头的总有效焦距f与光学成像镜头的入瞳直径EPD可满足f/EPD≤1.60。
在一个实施方式中,光学成像镜头的总有效焦距f与第一透镜的有效焦距f1可满足-0.5<f/f1<0。
在一个实施方式中,第二透镜的有效焦距f2与第二透镜的物侧面的曲率半径R3可满足1.5<f2/R3<2.5。
在一个实施方式中,第六透镜的有效焦距f6与第六透镜的像侧面的曲率半径R12可满足-2<f6/R12<-1。
在一个实施方式中,第六透镜的有效焦距f6与第七透镜的有效焦距f7可满足-1.5<f6/f7<-1。
在一个实施方式中,第四透镜于光轴上的中心厚度CT4与第五透镜于光轴上的中心厚度CT5可满足0.5<CT4/CT5<2.0。
在一个实施方式中,第一透镜于光轴上的中心厚度CT1与第七透镜于光轴上的中心厚度CT7可满足1.00≤CT1/CT7<1.50。
在一个实施方式中,光学成像镜头的光学总长度TTL与光学成像镜头成像面上有效像素区域对角线长的一半ImgH可满足TTL/ImgH≤1.5。
在一个实施方式中,第七透镜的物侧面的曲率半径R13与第七透镜的像侧面的曲率半径R14可满足|R13/R14|≤2。
在一个实施方式中,第三透镜的物侧面的曲率半径R5与第三透镜的像侧面的曲率半径R6可满足1.5<(R5+R6)/(R5-R6)≤80。
另一方面,本申请公开了这样一种成像镜头,该镜头沿着光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。其中,第一透镜的物侧面可为凸面,像侧面可为凹面;第三透镜的像侧面可为凹面;第七透镜的物侧面可为凹面。其中,第一透镜于光轴上的中心厚度CT1与第七透镜于光轴上的中心厚度CT7可满足1.00≤CT1/CT7<1.50。
本申请采用了多片(例如,七片)透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述光学成像镜头具有超薄、小型化、大孔径、低敏感度、良好的可加工性、高像素、高成像品质等至少一个有益效果。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本申请的其他特征、目的和优点将变得更加明显。在附图中:
图1示出了根据本申请实施例1的光学成像镜头的结构示意图;
图2A至图2D分别示出了实施例1的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图3示出了根据本申请实施例2的光学成像镜头的结构示意图;
图4A至图4D分别示出了实施例2的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图5示出了根据本申请实施例3的光学成像镜头的结构示意图;
图6A至图6D分别示出了实施例3的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图7示出了根据本申请实施例4的光学成像镜头的结构示意图;
图8A至图8D分别示出了实施例4的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图9示出了根据本申请实施例5的光学成像镜头的结构示意图;
图10A至图10D分别示出了实施例5的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图11示出了根据本申请实施例6的光学成像镜头的结构示意图;
图12A至图12D分别示出了实施例6的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图13示出了根据本申请实施例7的光学成像镜头的结构示意图;
图14A至图14D分别示出了实施例7的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图15示出了根据本申请实施例8的光学成像镜头的结构示意图;
图16A至图16D分别示出了实施例8的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
图17示出了根据本申请实施例9的光学成像镜头的结构示意图;
图18A至图18D分别示出了实施例9的光学成像镜头的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜中最靠近物体的表面称为物侧面,每个透镜中最靠近成像面的表面称为像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此 外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
根据本申请示例性实施方式的光学成像镜头可包括例如七片具有光焦度的透镜,即,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。这七片透镜沿着光轴由物侧至像侧依序排列。
在示例性实施方式中,第一透镜可具有负光焦度,其物侧面可为凸面,像侧面可为凹面;第二透镜具有正光焦度或负光焦度;第三透镜具有正光焦度或负光焦度,其像侧面可为凹面;第四透镜具有正光焦度或负光焦度;第五透镜具有正光焦度或负光焦度;第六透镜具有正光焦度或负光焦度;第七透镜具有正光焦度或负光焦度,其物侧面为凹面。
在示例性实施方式中,第二透镜可具有正光焦度,其物侧面可为凸面。
在示例性实施方式中,第三透镜的物侧面可为凸面。
在示例性实施方式中,第六透镜可具有正光焦度,其像侧面可为凸面。
在示例性实施方式中,第七透镜可具有负光焦度,其像侧面可为凹面。
在示例性实施方式中,本申请的光学成像镜头可满足条件式 f/EPD≤1.60,其中,f为光学成像镜头的总有效焦距,EPD为光学成像镜头的入瞳直径。更具体地,f和EPD进一步可满足1.46≤f/EPD≤1.60。光学成像镜头的光圈数Fno(即,镜头的总有效焦距f/镜头的入瞳直径EPD)越小,镜头的通光孔径越大,在同一单位时间内的进光量便越多。光圈数Fno的减小,可有效地提升像面亮度,使得镜头能够更好地满足例如阴天、黄昏等光线不足时的拍摄需求,具有大孔径优势。将镜头配置成满足条件式f/EPD≤1.60,可在加大通光量的过程中,增强成像面的照度,从而提升镜头在暗环境下的成像效果。
在示例性实施方式中,本申请的光学成像镜头可满足条件式|f/f4|+|f/f5|<1,其中,f为光学成像镜头的总有效焦距,f4为第四透镜的有效焦距,f5为第五透镜的有效焦距。更具体地,f、f4和f5进一步可满足0<|f/f4|+|f/f5|<0.50,例如,0.02≤|f/f4|+|f/f5|≤0.44。合理配置各透镜的光焦度,有利于实现高像素的成像效果。
在示例性实施方式中,本申请的光学成像镜头可满足条件式-0.5<f/f1<0,其中,f为光学成像镜头的总有效焦距,f1为第一透镜的有效焦距。更具体地,f和f1进一步可满足-0.25<f/f1<-0.10,例如,-0.19≤f/f1≤-0.16。通过合理控制第一透镜的负光焦度,合理控制第一透镜贡献的负的三阶球差和正的五阶球差,从而使得第一透镜所贡献的负的三阶球差和正的五阶球差能够与其后的各正透镜(即,第一透镜与像侧间各具有正光焦度的透镜)所产生的正的三阶球差和负的五阶球差相互抵消,进而保证轴上视场具有良好的成像质量。
在示例性实施方式中,本申请的光学成像镜头可满足条件式-1.5<f6/f7<-1,其中,f6为第六透镜的有效焦距,f7为第七透镜的有效焦距。更具体地,f6和f7进一步可满足-1.5<f6/f7<-1.3,例如,-1.44≤f6/f7≤-1.32。通过合理控制第六透镜和第七透镜光焦度的比值,使得第六透镜和第七透镜平衡后的剩余球差能够用以平衡前五片透镜(即,第一透镜至第五透镜)所产生的球差,进而实现对系统球差的微调和控制,提高对轴上视场像差的精确控制。
在示例性实施方式中,本申请的光学成像镜头可满足条件式1.00≤CT1/CT7<1.50,其中,CT1为第一透镜于光轴上的中心厚度,CT7 为第七透镜于光轴上的中心厚度。更具体地,CT1和CT7进一步可满足1.00≤CT1/CT7<1.30,例如,1.00≤CT1/CT7≤1.27。合理控制第一透镜和第七透镜的中心厚度的比值,可以在保证镜头良好的可加工性的同时将镜头的光学总长度TTL控制在合理的范围内,避免对系统的纵向尺寸带来较大负担。
在示例性实施方式中,本申请的光学成像镜头可满足条件式1.5<f2/R3<2.5,其中,f2为第二透镜的有效焦距,R3为第二透镜的物侧面的曲率半径。更具体地,f2和R3进一步可满足1.7<f2/R3<2.5,例如,1.73≤f2/R3≤2.46。通过合理控制f2和R3的比值,可以使得第二透镜的物侧面和像侧面均承担合理的光焦度,从而在确保第二透镜满足系统光学性能要求的同时,具有尽可能低的敏感度。
在示例性实施方式中,本申请的光学成像镜头可满足条件式-2<f6/R12<-1,其中,f6为第六透镜的有效焦距,R12为第六透镜的像侧面的曲率半径。更具体地,f6和R12进一步可满足-1.90<f6/R12<-1.50,例如,-1.83≤f6/R12≤-1.56。通过合理控制f6/R12的比值,使得第六透镜像侧面的象散贡献量在合理范围内,并且第六透镜像侧面的象散贡献量可以较好地平衡前侧各透镜(即,物侧与第六透镜之间的各透镜)所累积的象散量,从而使得光学成像系统在子午面和弧矢面均具有良好的成像质量。
在示例性实施方式中,本申请的光学成像镜头可满足条件式0.5<CT4/CT5<2.0,其中,CT4为第四透镜于光轴上的中心厚度,CT5为第五透镜于光轴上的中心厚度。更具体地,CT4和CT5进一步可满足0.9<CT4/CT5<1.7,例如,0.98≤CT4/CT5≤1.59。通过合理控制第四透镜和第五透镜的中心厚度的比值,可以将第四透镜和第五透镜的畸变贡献量控制在合理范围内,使得各视场最终的畸变量都被控制在3%以下,从而避免后期进行软件调试的需要。
在示例性实施方式中,本申请的光学成像镜头可满足条件式TTL/ImgH≤1.5,其中,TTL为光学成像镜头的光学总长度(即,从第一透镜的物侧面的中心至光学成像镜头的成像面在光轴上的距离),ImgH为成像面上有效像素区域对角线长的一半。更具体地,TTL和 ImgH进一步可满足1.43≤TTL/ImgH≤1.46。通过合理控制TTL和ImgH的比值,有利于光学成像镜头的超薄化和高像素的同时实现。
在示例性实施方式中,本申请的光学成像镜头可满足条件式1.5<(R5+R6)/(R5-R6)≤80,其中,R5为第三透镜的物侧面的曲率半径,R6为第三透镜的像侧面的曲率半径。更具体地,R5和R6进一步可满足1.68≤(R5+R6)/(R5-R6)≤79.1。通过合理控制第三透镜物侧面和像侧面的曲率半径,能够将第三透镜的慧差贡献量控制在合理范围内,从而使得轴上视场和轴外视场的像质不会由于慧差的贡献而产生明显的退化。
在示例性实施方式中,本申请的光学成像镜头可满足条件式|R13/R14|≤2,其中,R13为第七透镜的物侧面的曲率半径,R14为第七透镜的像侧面的曲率半径。更具体地,R13和R14进一步可满足1.3<|R13/R14|≤2,例如,1.37≤|R13/R14|≤1.91。合理控制第七透镜物侧面和像侧面的曲率半径的比值,有利于提升轴上视场像差的精确控制。
在示例性实施方式中,光学成像镜头还可包括至少一个光阑,以进一步提升镜头的成像质量。例如,光阑可设置在物侧与第一透镜之间。
可选地,上述光学成像镜头还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。
根据本申请的上述实施方式的光学成像镜头可采用多片镜片,例如上文所述的七片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地缩小镜头的体积、降低镜头的敏感度并提高镜头的可加工性,使得光学成像镜头更有利于生产加工并且可适用于便携式电子产品。同时,通过上述配置的光学成像镜头,还具有例如超薄、大孔径、高像素、高成像品质等有益效果。
在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面 透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学成像镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以七个透镜为例进行了描述,但是该光学成像镜头不限于包括七个透镜。如果需要,该光学成像镜头还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学成像镜头的具体实施例。
实施例1
以下参照图1至图2D描述根据本申请实施例1的光学成像镜头。图1示出了根据本申请实施例1的光学成像镜头的结构示意图。
如图1所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第七透镜E7具有负光焦度,其物侧面S13为凹面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表1示出了实施例1的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018092868-appb-000001
表1
由表1可知,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。在本实施例中,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2018092868-appb-000002
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数(在表1中已给出);Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1-S14的高次项系数A 4、A 6、A 8、A 10、A 12、A 14、A 16、A 18和A 20
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -3.9768E-02 9.7233E-03 -7.7534E-02 1.8204E-01 -2.8031E-01 2.6401E-01 -1.4489E-01 4.2765E-02 -5.2788E-03
S2 4.4667E-02 -3.1302E-01 5.1259E-01 -6.0762E-01 6.3228E-01 -5.0532E-01 2.6453E-01 -7.9137E-02 1.0210E-02
S3 -8.9871E-02 3.3714E-02 -1.5395E-01 5.4449E-01 -8.2914E-01 7.7297E-01 -4.5782E-01 1.5661E-01 -2.3329E-02
S4 -1.3255E-01 3.6741E-01 -7.0919E-01 8.8183E-01 -6.5104E-01 2.5869E-01 -3.5765E-02 -4.5412E-03 8.5803E-05
S5 -2.0432E-01 4.5307E-01 -7.1546E-01 6.9863E-01 -2.4970E-01 -2.2800E-01 3.0720E-01 -1.3277E-01 1.9074E-02
S6 -7.3833E-02 9.6591E-02 1.9058E-01 -8.6916E-01 1.5617E+00 -1.4896E+00 6.9209E-01 -6.4171E-02 -3.8123E-02
S7 -8.6647E-02 2.0603E-01 -9.6163E-01 2.9346E+00 -6.0252E+00 8.0921E+00 -6.7678E+00 3.1894E+00 -6.4254E-01
S8 -1.5042E-01 1.4002E-01 -4.5287E-01 1.4133E+00 -3.1544E+00 4.1317E+00 -3.0715E+00 1.2106E+00 -1.9661E-01
S9 -2.2207E-01 2.5240E-01 -7.3991E-01 2.1956E+00 -4.2270E+00 4.7152E+00 -2.9898E+00 1.0021E+00 -1.3792E-01
S10 -1.5980E-01 -5.6877E-02 1.4361E-01 1.3976E-01 -6.0705E-01 7.0922E-01 -4.1097E-01 1.2079E-01 -1.4331E-02
S11 2.4497E-02 -2.7461E-01 2.4998E-01 -1.1097E-01 7.2476E-03 9.7471E-03 -2.0491E-03 0.0000E+00 0.0000E+00
S12 1.2629E-01 -3.0430E-01 2.4206E-01 -1.2242E-01 5.6033E-02 -2.1116E-02 5.1196E-03 -6.7247E-04 3.6261E-05
S13 -6.9117E-02 -2.5198E-01 3.3066E-01 -1.7764E-01 5.4432E-02 -1.0305E-02 1.2006E-03 -7.9327E-05 2.2828E-06
S14 -1.9203E-01 1.1414E-01 -4.6772E-02 1.4920E-02 -3.9452E-03 7.9812E-04 -1.0891E-04 8.6258E-06 -2.9394E-07
表2
在实施例1中,光学成像镜头的总有效焦距f=4.05mm;第一透镜E1的有效焦距f1=-22.47mm;第二透镜E2的有效焦距f2=2.77mm;第三透镜E3的有效焦距f3=-8.59mm;第四透镜E4的有效焦距f4=-293.01mm;第五透镜E5的有效焦距f5=-1801.76mm;第六透镜E6的有效焦距f6=2.85mm;第七透镜E7的有效焦距f7=-2.12mm。成像镜头的光学总长度(即,从第一透镜E1的物侧面S1的中心至成像面S17在光轴上的距离)TTL=4.99mm。成像面S17上有效像素区域对角线长的一半ImgH=3.43mm。
实施例1中的光学成像镜头满足:
f/EPD=1.59,其中,f为光学成像镜头的总有效焦距,EPD为光学成像镜头的入瞳直径;
|f/f4|+|f/f5|=0.02,其中,f为光学成像镜头的总有效焦距,f4为第四透镜E4的有效焦距,f5为第五透镜E5的有效焦距;
f/f1=-0.18,其中,f为光学成像镜头的总有效焦距,f1为第一透镜E1的有效焦距;
f6/f7=-1.35,其中,f6为第六透镜E6的有效焦距,f7为第七透镜E7的有效焦距;
CT1/CT7=1.13,其中,CT1为第一透镜E1于光轴上的中心厚度,CT7为第七透镜E7于光轴上的中心厚度;
f2/R3=1.88,其中,f2为第二透镜E2的有效焦距,R3为第二透 镜E2物侧面S3的曲率半径;
f6/R12=-1.63,其中,f6为第六透镜E6的有效焦距,R12为第六透镜E6像侧面S12的曲率半径;
CT4/CT5=1.40,其中,CT4为第四透镜E4于光轴上的中心厚度,CT5为第五透镜E5于光轴上的中心厚度;
TTL/ImgH=1.45,其中,TTL为光学成像镜头的光学总长度,ImgH为成像面S17上有效像素区域对角线长的一半;
(R5+R6)/(R5-R6)=3.44,其中,R5为第三透镜E3物侧面S5的曲率半径,R6为第三透镜E3像侧面S6的曲率半径;
|R13/R14|=1.76,其中,R13为第七透镜E7物侧面S13的曲率半径,R14为第七透镜E7像侧面S14的曲率半径。
另外,图2A示出了实施例1的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图2B示出了实施例1的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图2D示出了实施例1的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图2A至图2D可知,实施例1所给出的光学成像镜头能够实现良好的成像品质。
实施例2
以下参照图3至图4D描述根据本申请实施例2的光学成像镜头。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的光学成像镜头的结构示意图。
如图3所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为 凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第七透镜E7具有负光焦度,其物侧面S13为凹面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表3示出了实施例2的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018092868-appb-000003
表3
由表3可知,在实施例2中,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。表4示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施 例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -4.3215E-02 1.9031E-02 -9.4746E-02 1.8740E-01 -2.6846E-01 2.4677E-01 -1.3393E-01 3.8946E-02 -4.6882E-03
S2 3.2628E-02 -2.4697E-01 2.4460E-01 4.8567E-02 -3.2681E-01 3.5007E-01 -1.9692E-01 5.9488E-02 -7.5741E-03
S3 -1.0505E-01 7.5819E-02 -2.8183E-01 8.6046E-01 -1.2611E+00 1.0988E+00 -5.9118E-01 1.8213E-01 -2.4554E-02
S4 -1.3017E-01 3.7241E-01 -7.6504E-01 9.6229E-01 -5.9092E-01 -1.2401E-02 2.5820E-01 -1.4736E-01 2.7097E-02
S5 -1.6847E-01 4.2426E-01 -8.7464E-01 1.2568E+00 -1.0900E+00 4.5926E-01 1.9815E-02 -9.3085E-02 2.4313E-02
S6 -4.3171E-02 4.0929E-02 2.2264E-01 -9.7346E-01 2.1131E+00 -2.7079E+00 2.0657E+00 -8.5669E-01 1.4842E-01
S7 -7.3324E-02 1.9065E-01 -1.1478E+00 3.4785E+00 -6.5943E+00 7.9146E+00 -5.8711E+00 2.4757E+00 -4.5247E-01
S8 -2.4126E-01 9.3508E-01 -3.9576E+00 9.9095E+00 -1.5513E+01 1.5170E+01 -9.0107E+00 2.9865E+00 -4.2492E-01
S9 -3.1232E-01 1.0592E+00 -4.1768E+00 1.0351E+01 -1.5853E+01 1.5032E+01 -8.6294E+00 2.7589E+00 -3.7901E-01
S10 -1.8932E-01 2.7994E-01 -1.1192E+00 2.5484E+00 -3.2594E+00 2.4787E+00 -1.1230E+00 2.8062E-01 -2.9742E-02
S11 2.5521E-02 -1.7261E-01 -1.8130E-02 1.2834E-01 -2.4238E-02 -7.5539E-02 5.7594E-02 -1.5882E-02 1.5526E-03
S12 1.0548E-01 -1.8380E-01 1.5970E-02 8.9025E-02 -5.6229E-02 1.4402E-02 -1.5232E-03 5.4075E-06 7.2130E-06
S13 -1.0153E-01 -1.6324E-01 2.2658E-01 -1.1069E-01 2.8684E-02 -4.2057E-03 3.2511E-04 -9.2559E-06 -1.2495E-07
S14 -2.2720E-01 1.7315E-01 -9.5288E-02 3.9610E-02 -1.2144E-02 2.5750E-03 -3.5105E-04 2.7426E-05 -9.2627E-07
表4
在实施例2中,光学成像镜头的总有效焦距f=4.13mm;第一透镜E1的有效焦距f1=-23.95mm;第二透镜E2的有效焦距f2=2.63mm;第三透镜E3的有效焦距f3=-6.67mm;第四透镜E4的有效焦距f4=-90.96mm;第五透镜E5的有效焦距f5=2571.93mm;第六透镜E6的有效焦距f6=2.82mm;第七透镜E7的有效焦距f7=-2.03mm。成像镜头的光学总长度TTL=4.99mm。成像面S17上有效像素区域对角线长的一半ImgH=3.41mm。
图4A示出了实施例2的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图4B示出了实施例2的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图4D示出了实施例2的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图4A至图4D可知,实施例2所给出的光学成像镜头能够实现良好的成像品质。
实施例3
以下参照图5至图6D描述了根据本申请实施例3的光学成像镜 头。图5示出了根据本申请实施例3的光学成像镜头的结构示意图。
如图5所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第七透镜E7具有负光焦度,其物侧面S13为凹面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表5示出了实施例3的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018092868-appb-000004
Figure PCTCN2018092868-appb-000005
表5
由表5可知,在实施例3中,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。表6示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -4.3347E-02 1.8910E-02 -1.0709E-01 2.2944E-01 -3.4193E-01 3.2054E-01 -1.7552E-01 5.1287E-02 -6.1944E-03
S2 3.4283E-02 -2.7133E-01 3.0470E-01 -4.3235E-02 -2.3620E-01 2.9867E-01 -1.8199E-01 5.7982E-02 -7.6621E-03
S3 -9.6749E-02 3.6023E-02 -1.7794E-01 6.6117E-01 -9.9609E-01 8.7102E-01 -4.7048E-01 1.4614E-01 -1.9946E-02
S4 -1.3424E-01 4.4381E-01 -1.1695E+00 2.0909E+00 -2.4216E+00 1.7937E+00 -8.0713E-01 1.9638E-01 -1.9392E-02
S5 -1.7096E-01 4.4771E-01 -1.1228E+00 2.0208E+00 -2.3450E+00 1.6801E+00 -6.8004E-01 1.2174E-01 -2.3179E-03
S6 -4.1617E-02 2.6136E-02 2.3395E-01 -9.8981E-01 2.1987E+00 -2.8954E+00 2.2701E+00 -9.7225E-01 1.7488E-01
S7 -7.2990E-02 1.8948E-01 -9.1237E-01 2.6370E+00 -4.9576E+00 5.9987E+00 -4.5121E+00 1.9309E+00 -3.5776E-01
S8 -2.0525E-01 5.2312E-01 -1.7839E+00 4.1245E+00 -6.4044E+00 6.3489E+00 -3.8364E+00 1.2922E+00 -1.8620E-01
S9 -2.7913E-01 6.5373E-01 -2.1807E+00 5.1875E+00 -7.9514E+00 7.5714E+00 -4.3521E+00 1.3934E+00 -1.9287E-01
S10 -1.8289E-01 1.9114E-01 -6.9974E-01 1.6172E+00 -2.0951E+00 1.5941E+00 -7.1285E-01 1.7363E-01 -1.7738E-02
S11 1.1044E-02 -1.0992E-01 -2.3413E-01 6.0724E-01 -6.4656E-01 4.0119E-01 -1.5574E-01 3.5716E-02 -3.6443E-03
S12 1.1931E-01 -2.3498E-01 9.7435E-02 1.6646E-02 -1.8685E-02 2.7257E-03 6.3816E-04 -2.1628E-04 1.7033E-05
S13 -9.1644E-02 -1.9390E-01 2.6777E-01 -1.4000E-01 4.0788E-02 -7.2246E-03 7.7586E-04 -4.6510E-05 1.1916E-06
S14 -2.2049E-01 1.5818E-01 -8.0342E-02 3.0849E-02 -8.9927E-03 1.8666E-03 -2.5382E-04 1.9970E-05 -6.8145E-07
表6
在实施例3中,光学成像镜头的总有效焦距f=4.12mm;第一透镜E1的有效焦距f1=-24.37mm;第二透镜E2的有效焦距f2=2.79mm;第三透镜E3的有效焦距f3=-8.04mm;第四透镜E4的有效焦距f4=44458.05mm;第五透镜E5的有效焦距f5=-215.18mm;第六透镜E6的有效焦距f6=2.82mm;第七透镜E7的有效焦距f7=-2.04mm。成像镜头的光学总长度TTL=4.99mm。成像面S17上有效像素区域对角线长的一半ImgH=3.41mm。
图6A示出了实施例3的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图6B示出了实施例3的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图6D示出了实施例3的光学成像镜头的倍率 色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图6A至图6D可知,实施例3所给出的光学成像镜头能够实现良好的成像品质。
实施例4
以下参照图7至图8D描述了根据本申请实施例4的光学成像镜头。图7示出了根据本申请实施例4的光学成像镜头的结构示意图。
如图7所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凹面,像侧面S8为凹面。第五透镜E5具有负光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第七透镜E7具有负光焦度,其物侧面S13为凹面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表7示出了实施例4的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018092868-appb-000006
Figure PCTCN2018092868-appb-000007
表7
由表7可知,在实施例4中,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。表8示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -4.6168E-02 1.8024E-02 -1.0344E-01 2.4222E-01 -3.9202E-01 3.9199E-01 -2.2759E-01 7.0602E-02 -9.0891E-03
S2 3.6539E-02 -2.7933E-01 3.9169E-01 -3.6760E-01 3.2052E-01 -2.2394E-01 9.6608E-02 -2.1283E-02 1.6825E-03
S3 -8.9458E-02 1.9309E-02 -7.2209E-02 2.7414E-01 -3.1397E-01 2.0295E-01 -9.2847E-02 2.9710E-02 -4.6057E-03
S4 -9.6279E-02 2.0207E-01 -4.0077E-01 5.5805E-01 -4.4455E-01 1.7978E-01 -2.3048E-02 -3.1382E-03 5.6909E-05
S5 -1.2560E-01 2.1811E-01 -4.4838E-01 7.4715E-01 -7.7012E-01 4.6044E-01 -1.5476E-01 2.9638E-02 -3.7639E-03
S6 -3.0435E-02 3.5316E-02 -4.5945E-02 2.4644E-01 -7.1155E-01 1.2193E+00 -1.2171E+00 6.5182E-01 -1.4344E-01
S7 -5.6803E-02 6.5976E-02 -2.7165E-01 3.8263E-01 -3.9366E-02 -7.4284E-01 1.1684E+00 -7.5859E-01 1.8879E-01
S8 -1.9005E-01 3.3524E-01 -1.1080E+00 2.8446E+00 -5.1424E+00 5.6319E+00 -3.5065E+00 1.1367E+00 -1.4756E-01
S9 -2.5361E-01 4.5207E-01 -1.6594E+00 4.9412E+00 -9.1864E+00 1.0078E+01 -6.4178E+00 2.2132E+00 -3.2379E-01
S10 -1.4686E-01 -3.7870E-02 -8.7226E-02 7.5466E-01 -1.4122E+00 1.2997E+00 -6.5853E-01 1.7639E-01 -1.9530E-02
S11 -2.7526E-01 1.6146E-01 3.6704E-02 -9.5536E-02 4.2590E-02 -6.0208E-03 0.0000E+00 0.0000E+00 0.0000E+00
S12 1.2133E-01 -2.3752E-01 8.8297E-02 3.9345E-02 -3.8440E-02 1.1556E-02 -1.5504E-03 7.1095E-05 1.3790E-06
S13 -8.6217E-02 -1.9336E-01 2.5886E-01 -1.3232E-01 3.7655E-02 -6.4998E-03 6.7801E-04 -3.9303E-05 9.6765E-07
S14 -2.1139E-01 1.4779E-01 -7.1994E-02 2.6006E-02 -7.1171E-03 1.4036E-03 -1.8425E-04 1.4184E-05 -4.7780E-07
表8
在实施例4中,光学成像镜头的总有效焦距f=4.09mm;第一透镜E1的有效焦距f1=-24.31mm;第二透镜E2的有效焦距f2=2.79mm;第三透镜E3的有效焦距f3=-8.33mm;第四透镜E4的有效焦距f4=-181.98mm;第五透镜E5的有效焦距f5=-48.05mm;第六透镜E6的有效焦距f6=2.70mm;第七透镜E7的有效焦距f7=-2.05mm。成像镜头的光学总长度TTL=4.99mm。成像面S17上有效像素区域对角线长的一半ImgH=3.41mm。
图8A示出了实施例4的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图8B示出了实施例4的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图8D示出了实施例4的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图8A至图8D可知,实施例4所给出的光学成像镜头能够实现良好的成像品质。
实施例5
以下参照图9至图10D描述了根据本申请实施例5的光学成像镜头。图9示出了根据本申请实施例5的光学成像镜头的结构示意图。
如图9所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第七透镜E7具有负光焦度,其物侧面S13为凹面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表9示出了实施例5的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018092868-appb-000008
Figure PCTCN2018092868-appb-000009
表9
由表9可知,在实施例5中,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。表10示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -4.4162E-02 5.7748E-02 -2.4885E-01 4.9957E-01 -6.4202E-01 5.2015E-01 -2.5348E-01 6.7878E-02 -7.7092E-03
S2 3.1822E-02 -1.2643E-01 -3.8412E-01 1.5517E+00 -2.3968E+00 2.0884E+00 -1.0744E+00 3.0463E-01 -3.6778E-02
S3 -1.0092E-01 1.7283E-01 -8.2740E-01 2.1835E+00 -3.1118E+00 2.6894E+00 -1.4212E+00 4.2429E-01 -5.4970E-02
S4 -1.3303E-01 3.1426E-01 -3.5320E-01 -1.6224E-01 1.1118E+00 -1.5809E+00 1.1356E+00 -4.2156E-01 6.3694E-02
S5 -1.9378E-01 4.5734E-01 -9.4444E-01 1.5631E+00 -1.8658E+00 1.5004E+00 -7.5144E-01 2.0768E-01 -2.4379E-02
S6 -5.5010E-02 4.9491E-02 1.8831E-01 -8.1543E-01 1.7690E+00 -2.2744E+00 1.7307E+00 -7.0780E-01 1.1902E-01
S7 -1.0998E-01 5.6640E-01 -2.8299E+00 8.3504E+00 -1.5600E+01 1.8526E+01 -1.3541E+01 5.5565E+00 -9.7696E-01
S8 -1.4328E-01 2.9213E-01 -8.5159E-01 1.6030E+00 -2.2493E+00 2.1366E+00 -1.2245E+00 3.6966E-01 -4.2720E-02
S9 -2.2545E-01 3.3890E-01 -7.8969E-01 1.6158E+00 -2.5010E+00 2.4475E+00 -1.3812E+00 4.0233E-01 -4.5924E-02
S10 -1.8905E-01 1.0995E-01 -3.4507E-01 9.4376E-01 -1.4310E+00 1.2532E+00 -6.3756E-01 1.7504E-01 -2.0005E-02
S11 2.5686E-02 -2.2545E-01 5.2454E-02 2.1450E-01 -3.1933E-01 2.2434E-01 -9.3510E-02 2.2816E-02 -2.4758E-03
S12 1.2492E-01 -2.8009E-01 1.8577E-01 -6.5892E-02 2.6217E-02 -1.2303E-02 3.6861E-03 -5.5931E-04 3.3436E-05
S13 -7.6268E-02 -2.3763E-01 3.1601E-01 -1.6853E-01 5.0940E-02 -9.4819E-03 1.0843E-03 -7.0289E-05 1.9853E-06
S14 -2.1029E-01 1.4507E-01 -7.4013E-02 2.9432E-02 -8.9373E-03 1.9103E-03 -2.6344E-04 2.0753E-05 -7.0265E-07
表10
在实施例5中,光学成像镜头的总有效焦距f=4.10mm;第一透镜E1的有效焦距f1=-22.01mm;第二透镜E2的有效焦距f2=2.82mm; 第三透镜E3的有效焦距f3=-8.81mm;第四透镜E4的有效焦距f4=21.39mm;第五透镜E5的有效焦距f5=-16.63mm;第六透镜E6的有效焦距f6=2.80mm;第七透镜E7的有效焦距f7=-2.06mm。成像镜头的光学总长度TTL=4.99mm。成像面S17上有效像素区域对角线长的一半ImgH=3.48mm。
图10A示出了实施例5的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图10B示出了实施例5的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图10D示出了实施例5的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图10A至图10D可知,实施例5所给出的光学成像镜头能够实现良好的成像品质。
实施例6
以下参照图11至图12D描述了根据本申请实施例6的光学成像镜头。图11示出了根据本申请实施例6的光学成像镜头的结构示意图。
如图11所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凸面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第七透镜E7具有负光焦度,其物侧面S13为凹面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表11示出了实施例6的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018092868-appb-000010
表11
由表11可知,在实施例6中,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。表12示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -4.2889E-02 4.7161E-02 -1.9335E-01 3.5643E-01 -4.2013E-01 3.0922E-01 -1.3398E-01 3.0751E-02 -2.8264E-03
S2 3.3826E-02 -1.8203E-01 -9.8136E-02 8.8128E-01 -1.4946E+00 1.3443E+00 -7.0217E-01 2.0058E-01 -2.4272E-02
S3 -9.6313E-02 1.0493E-01 -5.1224E-01 1.4508E+00 -2.1143E+00 1.8498E+00 -9.8913E-01 2.9939E-01 -3.9432E-02
S4 -1.5348E-01 5.0151E-01 -1.1861E+00 1.9295E+00 -2.0631E+00 1.3909E+00 -5.3817E-01 9.7306E-02 -4.1887E-03
S5 -2.1002E-01 5.8987E-01 -1.4790E+00 2.8072E+00 -3.6360E+00 3.0546E+00 -1.5638E+00 4.3496E-01 -4.9704E-02
S6 -5.9768E-02 7.8530E-02 1.1554E-01 -7.4078E-01 1.8569E+00 -2.6441E+00 2.1996E+00 -9.8450E-01 1.8260E-01
S7 -8.8565E-02 3.3229E-01 -1.7354E+00 5.2165E+00 -9.8748E+00 1.1873E+01 -8.8072E+00 3.6846E+00 -6.6288E-01
S8 -1.9625E-01 5.2673E-01 -2.1109E+00 5.3058E+00 -8.6489E+00 8.9047E+00 -5.5457E+00 1.9006E+00 -2.7351E-01
S9 -2.4885E-01 5.5945E-01 -1.9703E+00 4.7594E+00 -7.3882E+00 7.1497E+00 -4.1559E+00 1.3251E+00 -1.7839E-01
S10 -1.4935E-01 5.2049E-02 -2.0983E-01 6.6192E-01 -1.0026E+00 8.5151E-01 -4.1939E-01 1.1200E-01 -1.2508E-02
S11 1.9567E-02 -1.9625E-01 6.8001E-02 1.0313E-01 -1.4513E-01 8.5535E-02 -3.1146E-02 7.5521E-03 -8.9247E-04
S12 1.1604E-01 -2.5499E-01 1.4976E-01 -3.4145E-02 7.6047E-03 -5.2307E-03 2.0416E-03 -3.4808E-04 2.1976E-05
S13 -7.2645E-02 -2.4346E-01 3.2011E-01 -1.7011E-01 5.1237E-02 -9.4885E-03 1.0769E-03 -6.9073E-05 1.9247E-06
S14 -1.9727E-01 1.2241E-01 -5.3670E-02 1.8386E-02 -5.0486E-03 1.0186E-03 -1.3555E-04 1.0403E-05 -3.4440E-07
表12
在实施例6中,光学成像镜头的总有效焦距f=4.10mm;第一透镜E1的有效焦距f1=-22.15mm;第二透镜E2的有效焦距f2=2.78mm;第三透镜E3的有效焦距f3=-8.24mm;第四透镜E4的有效焦距f4=120.45mm;第五透镜E5的有效焦距f5=142.42mm;第六透镜E6的有效焦距f6=2.98mm;第七透镜E7的有效焦距f7=-2.07mm。成像镜头的光学总长度TTL=4.99mm。成像面S17上有效像素区域对角线长的一半ImgH=3.49mm。
图12A示出了实施例6的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图12B示出了实施例6的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图12D示出了实施例6的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图12A至图12D可知,实施例6所给出的光学成像镜头能够实现良好的成像品质。
实施例7
以下参照图13至图14D描述了根据本申请实施例7的光学成像镜头。图13示出了根据本申请实施例7的光学成像镜头的结构示意图。
如图13所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6 为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凹面,像侧面S12为凸面。第七透镜E7具有负光焦度,其物侧面S13为凹面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表13示出了实施例7的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018092868-appb-000011
表13
由表13可知,在实施例7中,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。表14示出了可用于实施例7中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -4.1151E-02 2.7407E-02 -1.3018E-01 2.4893E-01 -3.1406E-01 2.4889E-01 -1.1590E-01 2.8730E-02 -2.9055E-03
S2 3.7422E-02 -2.3137E-01 1.2643E-01 3.5479E-01 -7.7309E-01 7.4012E-01 -3.9648E-01 1.1450E-01 -1.3883E-02
S3 -9.2155E-02 6.2488E-02 -3.2346E-01 1.0021E+00 -1.4842E+00 1.3037E+00 -6.9951E-01 2.1258E-01 -2.8099E-02
S4 -1.5234E-01 5.0803E-01 -1.2557E+00 2.1398E+00 -2.3998E+00 1.7177E+00 -7.3228E-01 1.6199E-01 -1.3343E-02
S5 -1.9726E-01 5.1659E-01 -1.1881E+00 2.0105E+00 -2.2262E+00 1.4917E+00 -5.1956E-01 5.0734E-02 1.0152E-02
S6 -5.3647E-02 6.7228E-02 9.1060E-02 -5.4615E-01 1.3381E+00 -1.8924E+00 1.5783E+00 -7.1029E-01 1.3254E-01
S7 -8.0660E-02 2.9174E-01 -1.4911E+00 4.3640E+00 -8.0310E+00 9.3675E+00 -6.7394E+00 2.7400E+00 -4.8035E-01
S8 -1.9497E-01 4.1233E-01 -1.3490E+00 2.8443E+00 -3.9186E+00 3.3695E+00 -1.7218E+00 4.7511E-01 -5.3357E-02
S9 -2.6819E-01 5.2214E-01 -1.7859E+00 4.2969E+00 -6.5181E+00 6.1301E+00 -3.5149E+00 1.1421E+00 -1.6408E-01
S10 -1.5328E-01 1.0704E-01 -5.7486E-01 1.4289E+00 -1.8234E+00 1.3418E+00 -5.8121E-01 1.3851E-01 -1.4035E-02
S11 7.0857E-02 -1.8128E-01 -1.6600E-01 4.9373E-01 -4.6360E-01 2.3678E-01 -7.7110E-02 1.6760E-02 -1.8441E-03
S12 9.3212E-02 -1.6344E-01 -1.3479E-02 1.2195E-01 -7.8871E-02 2.3502E-02 -3.6192E-03 2.6223E-04 -5.7761E-06
S13 -6.6240E-02 -2.4060E-01 3.0920E-01 -1.6249E-01 4.8566E-02 -8.9397E-03 1.0095E-03 -6.4473E-05 1.7894E-06
S14 -2.0541E-01 1.3559E-01 -6.4999E-02 2.4052E-02 -6.8083E-03 1.3652E-03 -1.7805E-04 1.3382E-05 -4.3563E-07
表14
在实施例7中,光学成像镜头的总有效焦距f=4.14mm;第一透镜E1的有效焦距f1=-22.54mm;第二透镜E2的有效焦距f2=2.80mm;第三透镜E3的有效焦距f3=-8.28mm;第四透镜E4的有效焦距f4=-1090.27mm;第五透镜E5的有效焦距f5=282.81mm;第六透镜E6的有效焦距f6=2.79mm;第七透镜E7的有效焦距f7=-2.00mm。成像镜头的光学总长度TTL=4.99mm。成像面S17上有效像素区域对角线长的一半ImgH=3.48mm。
图14A示出了实施例7的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图14B示出了实施例7的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14C示出了实施例7的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图14D示出了实施例7的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图14A至图14D可知,实施例7所给出的光学成像镜头能够实现良好的成像品质。
实施例8
以下参照图15至图16D描述了根据本申请实施例8的光学成像镜头。图15示出了根据本申请实施例8的光学成像镜头的结构示意图。
如图15所示,根据本申请示例性实施方式的光学成像镜头沿光轴 由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有正光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第七透镜E7具有负光焦度,其物侧面S13为凹面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表15示出了实施例8的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018092868-appb-000012
表15
由表15可知,在实施例8中,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。表16示出了可用于实施例8中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -4.3851E-02 2.4308E-02 -9.3954E-02 1.5825E-01 -1.9274E-01 1.5963E-01 -8.1162E-02 2.2772E-02 -2.7159E-03
S2 -9.0807E-03 -1.6499E-01 2.9365E-01 -3.5015E-01 3.6199E-01 -2.8783E-01 1.4996E-01 -4.4254E-02 5.5432E-03
S3 -1.3231E-01 1.5382E-01 -2.7004E-01 5.8934E-01 -8.1559E-01 7.3230E-01 -4.2235E-01 1.4189E-01 -2.1070E-02
S4 -2.0954E-01 5.5538E-01 -9.0651E-01 8.7838E-01 -4.4566E-01 6.0552E-02 4.0697E-02 -1.5090E-02 3.2582E-04
S5 -3.3839E-01 6.5536E-01 -7.4195E-01 5.5488E-02 1.2476E+00 -1.9759E+00 1.5019E+00 -5.9358E-01 9.7701E-02
S6 -3.1617E-02 -1.4859E-01 1.2218E+00 -3.8295E+00 7.2965E+00 -8.7909E+00 6.5648E+00 -2.7676E+00 5.0453E-01
S7 -9.1614E-02 3.2990E-01 -1.7443E+00 5.7434E+00 -1.2183E+01 1.6514E+01 -1.3794E+01 6.4662E+00 -1.2998E+00
S8 -1.7885E-01 2.8066E-01 -9.9251E-01 2.5979E+00 -4.6795E+00 5.3621E+00 -3.7165E+00 1.4223E+00 -2.3001E-01
S9 -2.3924E-01 4.3751E-01 -1.4155E+00 3.3717E+00 -5.3032E+00 5.1761E+00 -3.0107E+00 9.5057E-01 -1.2440E-01
S10 -1.7938E-01 1.9148E-01 -4.6466E-01 9.3545E-01 -1.1970E+00 9.3417E-01 -4.3515E-01 1.1142E-01 -1.2034E-02
S11 -3.6485E-02 -7.9734E-02 -1.7313E-03 8.8564E-02 -8.6547E-02 3.3314E-02 -4.4911E-03 0.0000E+00 0.0000E+00
S12 1.1102E-01 -2.8331E-01 2.2606E-01 -1.1664E-01 5.6327E-02 -2.1981E-02 5.3840E-03 -7.0714E-04 3.8048E-05
S13 -1.0233E-01 -1.7092E-01 2.3671E-01 -1.1636E-01 3.0670E-02 -4.6851E-03 4.0171E-04 -1.6398E-05 1.6554E-07
S14 -2.0930E-01 1.5863E-01 -8.7860E-02 3.6798E-02 -1.1364E-02 2.4215E-03 -3.3081E-04 2.5833E-05 -8.7002E-07
表16
在实施例8中,光学成像镜头的总有效焦距f=4.05mm;第一透镜E1的有效焦距f1=-23.29mm;第二透镜E2的有效焦距f2=3.54mm;第三透镜E3的有效焦距f3=537.79mm;第四透镜E4的有效焦距f4=-83.83mm;第五透镜E5的有效焦距f5=177.55mm;第六透镜E6的有效焦距f6=2.61mm;第七透镜E7的有效焦距f7=-1.93mm。成像镜头的光学总长度TTL=4.97mm。成像面S17上有效像素区域对角线长的一半ImgH=3.41mm。
图16A示出了实施例8的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图16B示出了实施例8的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图16C示出了实施例8的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图16D示出了实施例8的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图16A至图16D可知,实施例8所给出的光学成像镜头能够实现 良好的成像品质。
实施例9
以下参照图17至图18D描述了根据本申请实施例9的光学成像镜头。图17示出了根据本申请实施例9的光学成像镜头的结构示意图。
如图17所示,根据本申请示例性实施方式的光学成像镜头沿光轴由物侧至像侧依序包括:光阑STO、第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、第七透镜E7、滤光片E8和成像面S17。
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有负光焦度,其物侧面S7为凸面,像侧面S8为凹面。第五透镜E5具有正光焦度,其物侧面S9为凸面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凸面。第七透镜E7具有负光焦度,其物侧面S13为凹面,像侧面S14为凹面。滤光片E8具有物侧面S15和像侧面S16。来自物体的光依序穿过各表面S1至S16并最终成像在成像面S17上。
表17示出了实施例9的光学成像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018092868-appb-000013
Figure PCTCN2018092868-appb-000014
表17
由表17可知,在实施例9中,第一透镜E1至第七透镜E7中的任意一个透镜的物侧面和像侧面均为非球面。表18示出了可用于实施例9中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16 A18 A20
S1 -2.9879E-02 1.1638E-02 -8.1609E-02 1.5796E-01 -1.9806E-01 1.5333E-01 -6.9499E-02 1.6981E-02 -1.7373E-03
S2 5.0252E-02 -3.3824E-01 4.5984E-01 -2.8824E-01 3.9978E-02 7.0726E-02 -5.3591E-02 1.6134E-02 -1.8702E-03
S3 -8.4367E-02 -2.7909E-03 -1.1180E-01 5.5157E-01 -8.5441E-01 7.2852E-01 -3.7005E-01 1.0534E-01 -1.3009E-02
S4 -7.2065E-02 1.3849E-01 -1.8578E-01 1.3689E-01 -3.3113E-02 -1.5509E-02 1.0407E-02 -1.8602E-03 3.1829E-05
S5 -1.3709E-01 1.8255E-01 -1.8603E-01 1.5184E-01 -1.2690E-01 1.3225E-01 -1.0070E-01 3.9335E-02 -5.9472E-03
S6 -4.4370E-02 -3.5029E-03 2.7184E-01 -6.6744E-01 9.4673E-01 -8.3373E-01 4.6174E-01 -1.4746E-01 2.1881E-02
S7 -6.6487E-02 1.2338E-01 -5.6003E-01 1.4579E+00 -2.5752E+00 3.0124E+00 -2.2132E+00 9.2210E-01 -1.6440E-01
S8 -1.5149E-01 1.7065E-01 -6.9053E-01 2.3235E+00 -5.0005E+00 6.1163E+00 -4.1774E+00 1.4936E+00 -2.1814E-01
S9 -2.0806E-01 2.8381E-01 -1.0113E+00 3.1279E+00 -6.0281E+00 6.6723E+00 -4.1647E+00 1.3645E+00 -1.8260E-01
S10 -1.1448E-01 -5.3816E-02 1.1643E-01 1.1082E-01 -4.8469E-01 5.5720E-01 -3.1461E-01 8.9532E-02 -1.0243E-02
S11 1.1556E-02 -1.7534E-01 1.4020E-01 -4.4589E-02 -1.5847E-02 1.3469E-02 -2.2079E-03 0.0000E+00 0.0000E+00
S12 8.4619E-02 -2.1635E-01 1.7791E-01 -1.0490E-01 5.7918E-02 -2.3469E-02 5.6958E-03 -7.3226E-04 3.8455E-05
S13 -9.7517E-02 -1.5386E-01 2.0407E-01 -9.3814E-02 2.2261E-02 -2.8077E-03 1.4886E-04 2.6646E-06 -4.5491E-07
S14 -2.0330E-01 1.3596E-01 -7.1613E-02 3.0778E-02 -1.0033E-02 2.2435E-03 -3.1769E-04 2.5470E-05 -8.7539E-07
表18
在实施例9中,光学成像镜头的总有效焦距f=3.99mm;第一透镜E1的有效焦距f1=-25.51mm;第二透镜E2的有效焦距f2=2.97mm;第三透镜E3的有效焦距f3=-11.83mm;第四透镜E4的有效焦距f4=-45.58mm;第五透镜E5的有效焦距f5=47.68mm;第六透镜E6的有效焦距f6=2.90mm;第七透镜E7的有效焦距f7=-2.13mm。成像镜头的光学总长度TTL=4.99mm。成像面S17上有效像素区域对角线长的一半ImgH=3.41mm。
图18A示出了实施例9的光学成像镜头的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图18B示出了实施例9 的光学成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图18C示出了实施例9的光学成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图18D示出了实施例9的光学成像镜头的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图18A至图18D可知,实施例9所给出的光学成像镜头能够实现良好的成像品质。
综上,实施例1至实施例9分别满足表19中所示的关系。
条件式/实施例 1 2 3 4 5 6 7 8 9
f/EPD 1.59 1.59 1.59 1.59 1.58 1.58 1.58 1.60 1.46
|f/f4|+|f/f5| 0.02 0.05 0.02 0.11 0.44 0.06 0.02 0.07 0.17
f/f1 -0.18 -0.17 -0.17 -0.17 -0.19 -0.18 -0.18 -0.17 -0.16
f6/f7 -1.35 -1.39 -1.38 -1.32 -1.36 -1.44 -1.39 -1.35 -1.36
CT1/CT7 1.13 1.03 1.00 1.00 1.00 1.01 1.00 1.17 1.27
f2/R3 1.88 1.73 1.81 1.79 1.87 1.85 1.85 2.46 1.99
f6/R12 -1.63 -1.58 -1.64 -1.56 -1.61 -1.71 -1.83 -1.71 -1.65
CT4/CT5 1.40 0.98 1.28 1.01 1.59 1.14 1.09 1.29 1.33
TTL/ImgH 1.45 1.46 1.46 1.46 1.44 1.43 1.44 1.46 1.46
(R5+R6)/(R5-R6) 3.44 1.68 2.94 3.08 3.29 3.10 3.19 79.10 4.76
|R13/R14| 1.76 1.74 1.69 1.71 1.76 1.85 1.91 1.65 1.37
表19
本申请还提供一种成像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。成像装置可以是诸如数码相机的独立成像设备,也可以是集成在诸如手机等移动电子设备上的成像模块。该成像装置装配有以上描述的光学成像镜头。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (22)

  1. 光学成像镜头,沿着光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜,其特征在于,
    所述第一透镜具有负光焦度,其物侧面为凸面,像侧面为凹面;
    所述第三透镜的像侧面为凹面;
    所述第七透镜的物侧面为凹面;
    其中,所述光学成像镜头的总有效焦距f、所述第四透镜的有效焦距f4和所述第五透镜的有效焦距f5满足|f/f4|+|f/f5|<1。
  2. 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述光学成像镜头的入瞳直径EPD满足f/EPD≤1.60。
  3. 根据权利要求1或2所述的光学成像镜头,其特征在于,所述第一透镜的有效焦距f1与所述光学成像镜头的总有效焦距f满足-0.5<f/f1<0。
  4. 根据权利要求1或2所述的光学成像镜头,其特征在于,所述第二透镜的有效焦距f2与所述第二透镜的物侧面的曲率半径R3满足1.5<f2/R3<2.5。
  5. 根据权利要求1或2所述的光学成像镜头,其特征在于,所述第六透镜的有效焦距f6与所述第六透镜的像侧面的曲率半径R12满足-2<f6/R12<-1。
  6. 根据权利要求5所述的光学成像镜头,其特征在于,所述第六透镜的有效焦距f6与所述第七透镜的有效焦距f7满足-1.5<f6/f7<-1。
  7. 根据权利要求1或2所述的光学成像镜头,其特征在于,所述第四透镜于所述光轴上的中心厚度CT4与所述第五透镜于所述光轴上的中心厚度CT5满足0.5<CT4/CT5<2.0。
  8. 根据权利要求7所述的光学成像镜头,其特征在于,所述第一透镜于所述光轴上的中心厚度CT1与所述第七透镜于所述光轴上的中心厚度CT7满足1.00≤CT1/CT7<1.50。
  9. 根据权利要求7所述的光学成像镜头,其特征在于,所述光学成像镜头的光学总长度TTL与所述光学成像镜头成像面上有效像素区域对角线长的一半ImgH满足TTL/ImgH≤1.5。
  10. 根据权利要求1或2所述的光学成像镜头,其特征在于,所述第三透镜的物侧面的曲率半径R5与所述第三透镜的像侧面的曲率半径R6满足1.5<(R5+R6)/(R5-R6)≤80。
  11. 根据权利要求1或2所述的光学成像镜头,其特征在于,所述第七透镜的物侧面的曲率半径R13与所述第七透镜的像侧面的曲率半径R14满足|R13/R14|≤2。
  12. 光学成像镜头,沿着光轴由物侧至像侧依序包括:具有光焦度的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜,其特征在于,
    所述第一透镜的物侧面为凸面,像侧面为凹面;
    所述第三透镜的像侧面为凹面;
    所述第七透镜的物侧面为凹面;
    其中,所述第一透镜于所述光轴上的中心厚度CT1与所述第七透镜于所述光轴上的中心厚度CT7满足1.00≤CT1/CT7<1.50。
  13. 根据权利要求12所述的光学成像镜头,其特征在于,所述第 七透镜的物侧面的曲率半径R13与所述第七透镜的像侧面的曲率半径R14满足|R13/R14|≤2。
  14. 根据权利要求13所述的光学成像镜头,其特征在于,所述第三透镜的物侧面的曲率半径R5与所述第三透镜的像侧面的曲率半径R6满足1.5<(R5+R6)/(R5-R6)≤80。
  15. 根据权利要求12所述的光学成像镜头,其特征在于,所述第六透镜的有效焦距f6与所述第六透镜的像侧面的曲率半径R12满足-2<f6/R12<-1。
  16. 根据权利要求12所述的光学成像镜头,其特征在于,所述第六透镜的有效焦距f6与所述第七透镜的有效焦距f7满足-1.5<f6/f7<-1。
  17. 根据权利要求12所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f、所述第四透镜的有效焦距f4和所述第五透镜的有效焦距f5满足|f/f4|+|f/f5|<1。
  18. 根据权利要求12所述的光学成像镜头,其特征在于,所述第二透镜的有效焦距f2与所述第二透镜的物侧面的曲率半径R3满足1.5<f2/R3<2.5。
  19. 根据权利要求12所述的光学成像镜头,其特征在于,所述第一透镜具有负光焦度,其有效焦距f1与所述光学成像镜头的总有效焦距f满足-0.5<f/f1<0。
  20. 根据权利要求12所述的光学成像镜头,其特征在于,所述第四透镜于所述光轴上的中心厚度CT4与所述第五透镜于所述光轴上的中心厚度CT5满足0.5<CT4/CT5<2.0。
  21. 根据权利要求12至20中任一项所述的光学成像镜头,其特征在于,所述光学成像镜头的总有效焦距f与所述光学成像镜头的入瞳直径EPD满足f/EPD≤1.60。
  22. 根据权利要求12至20中任一项所述的光学成像镜头,其特征在于,所述光学成像镜头的光学总长度TTL与所述光学成像镜头成像面上有效像素区域对角线长的一半ImgH满足TTL/ImgH≤1.5。
PCT/CN2018/092868 2017-10-25 2018-06-26 光学成像镜头 WO2019080528A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/274,718 US11169362B2 (en) 2017-10-25 2019-02-13 Optical imaging lens assembly

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201711007397.7A CN107621682B (zh) 2017-10-25 2017-10-25 光学成像镜头
CN201721384690.0 2017-10-25
CN201721384690.0U CN207281377U (zh) 2017-10-25 2017-10-25 光学成像镜头
CN201711007397.7 2017-10-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/274,718 Continuation US11169362B2 (en) 2017-10-25 2019-02-13 Optical imaging lens assembly

Publications (1)

Publication Number Publication Date
WO2019080528A1 true WO2019080528A1 (zh) 2019-05-02

Family

ID=66246188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092868 WO2019080528A1 (zh) 2017-10-25 2018-06-26 光学成像镜头

Country Status (2)

Country Link
US (1) US11169362B2 (zh)
WO (1) WO2019080528A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110221402A (zh) * 2019-05-27 2019-09-10 浙江舜宇光学有限公司 光学成像镜头

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI656377B (zh) 2018-03-28 2019-04-11 大立光電股份有限公司 取像光學鏡頭、取像裝置及電子裝置
CN109298511A (zh) * 2018-11-26 2019-02-01 浙江舜宇光学有限公司 光学成像系统
CN110989139B (zh) * 2019-12-24 2021-11-23 浙江舜宇光学有限公司 光学成像镜头
CN115508986B (zh) * 2022-11-16 2023-05-12 江西联益光学有限公司 光学镜头

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202886713U (zh) * 2012-08-13 2013-04-17 大立光电股份有限公司 影像镜片系统组
CN105319681A (zh) * 2014-08-01 2016-02-10 大立光电股份有限公司 摄像光学透镜组、取像装置及电子装置
CN105829942A (zh) * 2014-04-15 2016-08-03 株式会社光学逻辑 摄像镜头
CN106199922A (zh) * 2016-07-13 2016-12-07 浙江舜宇光学有限公司 七片式广角镜头
CN107621682A (zh) * 2017-10-25 2018-01-23 浙江舜宇光学有限公司 光学成像镜头

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6798270B2 (ja) * 2016-11-21 2020-12-09 セイコーエプソン株式会社 撮像レンズ系、撮像装置及びプロジェクター

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202886713U (zh) * 2012-08-13 2013-04-17 大立光电股份有限公司 影像镜片系统组
CN105829942A (zh) * 2014-04-15 2016-08-03 株式会社光学逻辑 摄像镜头
CN105319681A (zh) * 2014-08-01 2016-02-10 大立光电股份有限公司 摄像光学透镜组、取像装置及电子装置
CN106199922A (zh) * 2016-07-13 2016-12-07 浙江舜宇光学有限公司 七片式广角镜头
CN107621682A (zh) * 2017-10-25 2018-01-23 浙江舜宇光学有限公司 光学成像镜头

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110221402A (zh) * 2019-05-27 2019-09-10 浙江舜宇光学有限公司 光学成像镜头

Also Published As

Publication number Publication date
US20190179122A1 (en) 2019-06-13
US11169362B2 (en) 2021-11-09

Similar Documents

Publication Publication Date Title
WO2021073275A1 (zh) 光学成像镜头
WO2019100868A1 (zh) 光学成像镜头
WO2019169853A1 (zh) 光学成像镜头
WO2020019794A1 (zh) 光学成像镜头
WO2019134602A1 (zh) 光学成像镜头
WO2019091170A1 (zh) 摄像透镜组
WO2020001066A1 (zh) 摄像镜头
WO2019210672A1 (zh) 光学成像系统
WO2020088022A1 (zh) 光学成像镜片组
WO2020007069A1 (zh) 光学成像镜片组
WO2020010879A1 (zh) 光学成像系统
WO2020010878A1 (zh) 光学成像系统
WO2020168717A1 (zh) 光学成像镜头
WO2019114366A1 (zh) 光学成像镜头
WO2018192126A1 (zh) 摄像镜头
WO2018153012A1 (zh) 摄像镜头
WO2019100768A1 (zh) 光学成像镜头
WO2020024635A1 (zh) 光学成像镜头
WO2019095865A1 (zh) 光学成像镜头
WO2019056758A1 (zh) 摄像透镜组
WO2019137246A1 (zh) 光学成像镜头
WO2019169856A1 (zh) 摄像镜头组
WO2019080528A1 (zh) 光学成像镜头
WO2020042799A1 (zh) 光学成像镜片组
WO2019237776A1 (zh) 光学成像系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18870808

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18870808

Country of ref document: EP

Kind code of ref document: A1