WO2015159657A1 - 脱硫装置及びそれを用いた排ガス処理システム - Google Patents

脱硫装置及びそれを用いた排ガス処理システム Download PDF

Info

Publication number
WO2015159657A1
WO2015159657A1 PCT/JP2015/058873 JP2015058873W WO2015159657A1 WO 2015159657 A1 WO2015159657 A1 WO 2015159657A1 JP 2015058873 W JP2015058873 W JP 2015058873W WO 2015159657 A1 WO2015159657 A1 WO 2015159657A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
desulfurization
gypsum
carbon dioxide
unit
Prior art date
Application number
PCT/JP2015/058873
Other languages
English (en)
French (fr)
Inventor
俊之 内藤
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to CA2939524A priority Critical patent/CA2939524C/en
Priority to JP2016513689A priority patent/JP6217845B2/ja
Priority to AU2015247201A priority patent/AU2015247201B2/en
Priority to CN201580007748.7A priority patent/CN105980036A/zh
Publication of WO2015159657A1 publication Critical patent/WO2015159657A1/ja
Priority to US15/225,059 priority patent/US10603631B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • B01D53/502Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound characterised by a specific solution or suspension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/26Separation of sediment aided by centrifugal force or centripetal force
    • B01D21/262Separation of sediment aided by centrifugal force or centripetal force by using a centrifuge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/26Separation of sediment aided by centrifugal force or centripetal force
    • B01D21/267Separation of sediment aided by centrifugal force or centripetal force by using a cyclone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/04Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the present invention is a desulfurization apparatus for removing sulfur oxides from exhaust gas containing carbon dioxide such as combustion gas, and can be used to separate and recover carbon dioxide by removing sulfur oxides, nitrogen oxides, etc.
  • the present invention relates to an exhaust gas treatment system.
  • Facilities such as thermal power plants, steelworks, and boilers use large amounts of fuel such as coal, heavy oil, and super heavy oil. Sulfur oxides, nitrogen oxides, and carbon dioxide emitted by the combustion of fuel are There is a need for quantitative and concentration restrictions on emissions from the perspective of air pollution prevention and global environmental protection. In recent years, carbon dioxide has been seen as a major cause of global warming, and movements to suppress emissions have become active worldwide. For this reason, various researches are energetically advanced to enable recovery and storage of carbon dioxide from combustion exhaust gas and process exhaust gas without releasing them into the atmosphere. Combustion exhaust gas contains nitrogen oxides, sulfur oxides, mercury, hydrogen chloride, dust (particulate matter), etc. as trace components in addition to carbon dioxide and moisture. It is important for environmental conservation to increase the purity by reducing the amount of impurities contained.
  • nitrogen dioxide can be removed by a wet absorption process using an alkaline agent, but nitric oxide is hardly soluble in water, so denitration is generally performed.
  • the technology is often based on a dry ammonia catalytic reduction method, and a nitrogen source is reduced by a catalytic reaction by supplying a hydrogen source such as ammonia. If a desulfurization denitration apparatus is configured based on this, in the desulfurization part, the sulfur oxide in the exhaust gas is treated in the form of ammonium salt.
  • Patent Document 1 describes a wet exhaust gas treatment method in which a slurry containing a desulfurization agent and exhaust gas are in gas-liquid contact, and carbon dioxide is recovered by desulfurization of the exhaust gas.
  • alkali agents that can be used in such a desulfurization method include sodium hydroxide (or sodium carbonate), limestone (or slaked lime, dolomite), magnesium hydroxide, and the like.
  • Sodium hydroxide has a very high removal efficiency of sulfur oxides. However, it is expensive and processing cost is high. For this reason, in a large plant such as a thermal power plant, a limestone-gypsum method using inexpensive limestone (calcium carbonate) or slaked lime (calcium hydroxide) is generally applied.
  • JP 2012-106163 A International publication pamphlet WO2012-107953
  • the reduction method using a hydrogen source such as ammonia is difficult to reduce the processing cost, and it is desirable that nitrogen oxides can be processed without using such resources.
  • a hydrogen source such as ammonia
  • Patent Document 2 since the technology of Patent Document 2 removes sulfur oxides and nitrogen oxides together with condensed water by pressurization and cooling of exhaust gas, no chemical agent such as a desulfurizing agent is required. Equipment such as a compressor is easily damaged by (sulfuric acid, sulfurous acid). Accordingly, if desulfurization and denitration are performed using this technology alone, there is a problem in terms of equipment maintenance costs because the burden on the apparatus is large. It is also difficult to achieve desulfurization and denitration with high removal efficiency.
  • the desulfurization method by the limestone-gypsum method is a desulfurization method advantageous in terms of processing cost because it uses a relatively inexpensive limestone as an absorbent, and is economically preferable.
  • the main component of the exhaust gas after the desulfurization and denitration treatment is carbon dioxide, which is currently stored in the ground. However, if the recovered carbon dioxide is effectively used, the economic efficiency will be improved. Carbon dioxide recovered from the exhaust gas after desulfurization and denitrification contains a small amount of argon, oxygen, nitrogen, etc., but if high-purity carbon dioxide can be recovered efficiently, it will be provided to the market as a product such as liquefied carbon dioxide It becomes possible and becomes industrially useful.
  • An object of the present invention is a desulfurization apparatus that solves the above-mentioned problems and is excellent in economic efficiency by utilizing a desulfurization technique based on a limestone-gypsum method, and that can eliminate obstacles caused by scattered particles in a subsequent apparatus.
  • An object of the present invention is to provide a desulfurization apparatus that can be suitably applied to an exhaust gas treatment system capable of recovering pure carbon dioxide.
  • the problem of the present invention is that there is little damage and obstacles to equipment when processing exhaust gas, and it is possible to efficiently recover the carbon dioxide with high purity by performing exhaust gas desulfurization and denitration.
  • the object is to provide an exhaust gas treatment system that can reduce the required energy and is economical.
  • an object of the present invention is to provide a desulfurization apparatus and an exhaust gas treatment system using the desulfurization apparatus that can reduce the operation cost and are easy to maintain and maintain without limiting the installation conditions and the installation environment.
  • the present inventors have conducted extensive research, and as a result, the problem of scattered particles in the desulfurization apparatus using the limestone-gypsum method can be solved with a simple configuration, and the desulfurization treatment can be suitably performed. As a result, the present invention has been completed. Also, exhaust gas treatment by pressurization and cooling, which can efficiently recover high-purity carbon dioxide, is combined with desulfurization treatment by the limestone-gypsum method to effectively perform exhaust gas treatment while using energy efficiently. It has also been realized.
  • the desulfurization apparatus is a desulfurization apparatus that removes sulfur oxides from exhaust gas by a limestone-gypsum method, wherein an absorption liquid containing a calcium compound is contacted with the exhaust gas to remove sulfur from the exhaust gas.
  • the first fraction is classified into the second fraction containing relatively small gypsum, and the filter supplies the filtered absorption liquid by filtering the gypsum from the first fraction to the washing section. This is the gist.
  • an exhaust gas treatment system is disposed after the desulfurization device, a denitration device that is disposed downstream of the desulfurization device and removes nitrogen oxides from the exhaust gas, and is disposed downstream of the denitration device.
  • a carbon dioxide recovery device that recovers carbon dioxide from the exhaust gas, and an oxygen supply unit that supplies a part of the recovered gas discharged from the carbon dioxide recovery device as an oxygen source to the removal unit of the desulfurization device This is the gist.
  • the removal part is advantageous in terms of filtration efficiency.
  • a belt filter that separates the absorption liquid under reduced pressure can be used.
  • the cleaning unit includes a pair of mist removing members disposed so that the exhaust gas that has passed through the desulfurization unit sequentially passes, and a cleaning nozzle that supplies the cleaning liquid to the exhaust gas between the pair of mist removing members.
  • Each of the mist removing members can be constituted by a plurality of swash plates that are inclined with respect to the exhaust gas passage direction and are arranged in parallel with a gap.
  • the desulfurization apparatus further includes an oxidation tank between the desulfurization unit and the removal unit, which supplies an oxygen source to the absorbing solution that has been in contact with the exhaust gas in the desulfurization unit to oxidize the oxidation tank.
  • the absorbing liquid that has been oxidized in the tank can be supplied to the removing section.
  • it has an analyzer for measuring the pH of the absorption liquid that has been in contact with the exhaust gas in the desulfurization section, and a replenishment section for supplying calcium compound to the absorption liquid in the desulfurization section according to the measured value of the analyzer. You may comprise as follows.
  • Air can be used as an oxygen source supplied to the oxidation tank, and the cyclone separator can be configured to return the second fraction to the oxidation tank.
  • the problem of particle scattering in the desulfurization process by the limestone-gypsum method can be solved by a simple method, it is not necessary to cool the exhaust gas in advance, and the exhaust gas desulfurization process and a comprehensive process using the exhaust gas Contributes to reducing operating costs in exhaust gas treatment and improves economy.
  • the installation conditions of the apparatus and the system are not limited unnecessarily, and exhaust gas desulfurization and denitration can be performed efficiently without increasing the processing cost.
  • high-purity carbon dioxide can be efficiently recovered by utilizing the structure of the desulfurization treatment by the limestone-gypsum method, which is advantageous for developing the use of the recovered carbon dioxide.
  • the schematic block diagram which shows one Embodiment of the waste gas processing system containing the desulfurization apparatus which concerns on this invention.
  • the schematic block diagram which shows other embodiment of the waste gas processing system containing the desulfurization apparatus which concerns on this invention.
  • the main components of exhaust gas such as combustion gas are water and carbon dioxide, and further, impurities such as sulfur oxide, nitrogen oxide, hydrogen chloride, oxygen, mercury, dust (particulate matter), etc. are contained in small amounts.
  • Sulfur oxides are generally derived from fuel, and nitrogen oxides are mainly derived from nitrogen in the air.
  • the amount of oxygen remaining in the exhaust gas varies depending on the combustion conditions. In the oxygen combustion exhaust gas in which the combustion efficiency is increased using oxygen, the oxygen amount is about 5%, the remainder is about 20% moisture, and carbon dioxide is Although it becomes about 75%, the point which contains the above-mentioned impurity is the same.
  • Sulfur oxides include sulfur dioxide, sulfur trioxide, etc., which are mainly present in the exhaust gas as sulfur dioxide, but all of them are dissolved in water to become sulfurous acid or sulfuric acid.
  • Nitrogen oxide (NOx) includes several types including nitrogen monoxide and nitrogen dioxide, and exists mainly as nitrogen monoxide or nitrogen dioxide. Nitrogen dioxide dissolves in water, but nitric oxide is insoluble in water. Therefore, in order to perform denitration using water, it is necessary to oxidize nitrogen oxides. In this regard, when pressure is applied to the exhaust gas, an oxidation reaction in which nitrogen monoxide is converted into nitrogen dioxide by oxygen remaining in the exhaust gas proceeds, so that removal treatment using water becomes possible.
  • the desulfurization apparatus is configured such that a cleaning unit that removes scattered particles is provided in the desulfurization apparatus, and the absorption liquid after removing gypsum generated by desulfurization is used as the cleaning liquid in the cleaning unit. .
  • a desulfurization apparatus based on the limestone-gypsum method is incorporated in the exhaust gas treatment system, it is possible to prevent the occurrence of obstacles due to scattered particles even if a pressurizing facility such as a compressor is subsequently disposed.
  • the cleaning unit is arranged in the desulfurization tower together with the desulfurization unit, and is configured to have a simple structure capable of collecting the scattered particles without increasing the ventilation resistance of the exhaust gas, so that power consumption can be suppressed. Since it is possible to apply pressure to the exhaust gas after desulfurization, it is possible to convert the nitric oxide to nitrogen dioxide by advancing the oxidation reaction with the oxygen remaining in the exhaust gas, and wet denitration treatment using washing water Is possible. Sulfur oxide is prone to damage to compressors and the like because sulfuric acid produced from sulfur trioxide and water vapor generated by oxidation reaction corrodes the metal, but desulfurization treatment is performed on the exhaust gas first. Corrosion due to sulfuric acid can be avoided.
  • an exhaust gas treatment system capable of performing desulfurization and denitration inexpensively and safely by sequentially performing desulfurization treatment by the limestone-gypsum method, oxidation reaction by pressurization, and wet denitration treatment on the exhaust gas can be constructed.
  • the recovered gas discharged as the purification residue after recovering carbon dioxide from the exhaust gas contains oxygen
  • the recovered gas is sulfite ions generated from the sulfur dioxide of the exhaust gas in the desulfurization process. It can be used as an oxygen source for oxidizing oxygen.
  • the main component of the post-recovery gas is carbon dioxide
  • carbon dioxide in the post-recovery gas is recovered again by configuring the system so that the post-recovery gas that has undergone oxidation of the sulfite ions in the absorption liquid undergoes a treatment process again. Monkey. Therefore, it is advantageous in terms of the purification efficiency of carbon dioxide.
  • an excessive increase in concentration due to concentration of impurities (argon, nitrogen, etc.) other than oxygen is avoided in the exhaust gas after the desulfurization and denitration treatment.
  • the desulfurization apparatus is a desulfurization apparatus that removes sulfur oxides from exhaust gas by the limestone-gypsum method, and removes sulfur oxides from exhaust gas by contacting an absorption liquid containing calcium compounds with the exhaust gas.
  • the desulfurization part the removal part for removing gypsum generated from the calcium compound and sulfur oxide from the absorption liquid, and the absorption liquid from which the gypsum has been removed by the removal part as cleaning liquid, and contact with the absorption liquid in the desulfurization part
  • a cleaning section for removing calcium-containing particles contained in the exhaust gas is a desulfurization apparatus that removes sulfur oxides from exhaust gas by the limestone-gypsum method, and removes sulfur oxides from exhaust gas by contacting an absorption liquid containing calcium compounds with the exhaust gas.
  • the removal unit has a cyclone separator that promotes separation of the gypsum from the absorbing liquid due to a difference in specific gravity using centrifugal force, and thereby classifies the gypsum particles into relatively large gypsum and small gypsum. Only the absorption liquid containing relatively large gypsum is filtered and separated, and the absorption liquid obtained as the filtrate is used as the cleaning liquid in the washing section, and the relatively small gypsum is not subjected to filtration and separation.
  • the filtration efficiency is increased, and the absorption liquid from which the gypsum has been removed can be stably and continuously supplied as a cleaning liquid, and the residual of small gypsum in the absorption liquid after filtration is prevented and supplied to the cleaning unit as the cleaning liquid. It is suppressed that it becomes a cause of scattering particles.
  • FIG. 1 describes a first embodiment of an exhaust gas treatment system including a desulfurization apparatus according to the present invention.
  • the exhaust gas treatment system 1 includes a desulfurization device 2 that removes sulfur oxide from the exhaust gas G, a denitration device 3 that is disposed downstream of the desulfurization device 2 to remove nitrogen oxides from the exhaust gas G, and the desulfurization device 2 and the denitration device 3. And a carbon dioxide recovery device 4 that is disposed at a later stage and recovers carbon dioxide from the exhaust gas G.
  • the exhaust gas treatment system 1 includes a drying device 5 that removes moisture from the exhaust gas and a mercury removal device 6 that removes mercury from the exhaust gas between the denitration device 3 and the carbon dioxide recovery device 4.
  • the desulfurization apparatus 2 includes a desulfurization unit 10 that removes sulfur oxide from the exhaust gas G using the absorption liquid A1, and a removal unit 20 that removes gypsum from the absorption liquid A1 in which gypsum (calcium sulfate) is generated and precipitated from the sulfur oxide. And a cleaning unit 21 that cleans the exhaust gas discharged from the desulfurization unit 10.
  • the desulfurization unit 10 and the cleaning unit 21 are arranged in series in the desulfurization tower 7, and sequentially pass through the desulfurization unit 10 and the cleaning unit 21 while the exhaust gas G supplied from the bottom of the desulfurization tower 7 rises to the top. To do.
  • the desulfurization section 10 is a section for performing a desulfurization process by a limestone-gypsum method, and uses an aqueous dispersion containing a calcium compound such as limestone as an alkaline absorbent for absorbing sulfur oxide as the absorbent A1. To do.
  • the desulfurization part 10 it has the spraying means which disperse
  • a spray nozzle 11 for spraying the absorbing liquid A1 is provided at the upper part in the desulfurization unit 10, and a circulation path 12 that connects the lower part and the upper part of the desulfurization part 10 at the outer part of the desulfurization tower 7. Provided.
  • the absorbing liquid A1 sprayed from the spray nozzle 11 and stored in the bottom of the desulfurization unit 10 is returned to the spray nozzle 11 by driving the pump 13 on the circulation path 12, and the absorbing liquid A1 is repeatedly sprayed.
  • the exhaust gas G is introduced from the gas introduction part 14 below the spray nozzle 11, and the gas-liquid contact phase where the exhaust gas G and the absorption liquid A1 come into contact with each other by spraying the absorption liquid A1 is between the spray nozzle 11 and the gas introduction part 14. Formed.
  • an analyzer S1 is provided in order to measure the nitrogen oxide concentration and sulfur dioxide concentration of the exhaust gas G introduced into the desulfurization section 10.
  • a water-cooled cooler 15 is provided in the circulation path 12, and the absorption liquid A ⁇ b> 1 in the desulfurization unit 10 is cooled by the cooler 15 while flowing through the circulation path 12, thereby preventing an increase in liquid temperature. Furthermore, an inlet 71 for supplying a part of the recovered gas G ′ discharged from the carbon dioxide recovery device 4 to the absorbing liquid A1 at the bottom of the desulfurization unit 10 is provided, and a pipe 66 for discharging the recovered gas G ′. A branch pipe 72 branched from (details will be described later) is connected to the introduction section 71. Flow rate adjustment valves 73 and 74 for adjusting the gas flow rate are attached to the pipe 66 and the branch pipe 72, respectively.
  • the flow rate adjustment valves 73 and 74 are adjusted from the carbon dioxide recovery device 4 by adjusting their opening degrees. It functions as an adjusting device that adjusts the distribution ratio of the post-recovery gas G ′ supplied to the desulfurization unit 10 in the exhausted post-recovery gas G ′.
  • Oxygen contained in the recovered gas G ' oxidizes sulfite ions dissolved in the absorbing liquid A1 to sulfate ions and deposits them as calcium sulfate.
  • the post-recovery gas G 'in which oxygen has been consumed is mainly composed of carbon dioxide, and is contained in the exhaust gas G that has floated up the absorption liquid A1 and from which sulfur oxides have been removed.
  • the exhaust gas G is cooled by the sprayed absorbing liquid A1, but when the temperature of the exhaust gas G to be introduced is high, the sprayed absorbing liquid vaporizes moisture due to the temperature rise, and the components contained in the absorbing liquid are fine. It is scattered as solid particles (mist) and is accompanied by the exhaust gas G.
  • the components of the scattered particles are calcium-containing solids such as limestone, gypsum, and calcium sulfite.
  • a removal unit 20 is provided above the spray nozzle 11, and the exhaust gas G rising through the gas-liquid contact phase is generated. It is configured to pass through the cleaning unit 21 before being discharged from the desulfurization tower 7.
  • the cleaning unit 21 includes a pair of mist removing members 16a and 16b disposed above and below, and a cleaning nozzle 17 disposed between the mist removing members 16a and 16b.
  • the mist removing members 16a and 16b are each configured in a horizontal layer by a plurality of swash plates arranged in parallel with a gap. Since the plurality of swash plates are inclined with respect to the passage direction (vertical direction) of the exhaust gas G, the solid particles contained in the exhaust gas G passing through the mist removing member easily collide with the swash plate.
  • the height (vertical direction) of the mist removing members 16a and 16b is set to about 150 to 250 mm and the gap between the swash plates (aeration width) is set to about 50 to 100 mm, particles are suppressed while suppressing an increase in exhaust gas ventilation resistance. Is effectively removed from the exhaust gas G, and when the inclination angle of the swash plate (with respect to the vertical direction) is about 20 to 45 degrees, it is preferable for efficiently removing particles. If the colliding solid particles are deposited on the swash plate, the gap may be closed. However, since the cleaning nozzle 17 always sprays the cleaning liquid in both the upper and lower directions, the exhaust gas G is cleaned and the mist removing member 16a. There is also an effect of washing 16b.
  • the cleaning liquid sprayed from the cleaning nozzle 17 is an absorption liquid from which the gypsum deposit has been removed in the removal section 20, the calcium content is lower than the absorption liquid A1 at the bottom of the desulfurization tower 7, and the scattered particles are washed (dissolved and trapped). Further, since the temperature is lowered before reaching the cleaning nozzle 17, it is suitable for cooling the exhaust gas G.
  • This cleaning liquid can also absorb acidic halides such as hydrogen chloride, residual sulfur oxides, and nitrogen dioxide contained in the exhaust gas G.
  • the cleaning liquid (absorbing liquid) after cleaning flows down to the desulfurization section 10 through the lower mist removing member 16a and falls to the tower bottom together with the absorbing liquid A1 supplied from the spray nozzle 11. Mist removing member 16a.
  • the mist removing member 16b on the upper side of the cleaning nozzle 17 further suppresses the minute droplets of the cleaning liquid accompanying the exhaust gas G and being discharged to the outside.
  • the mist removing member 16b may have a different form from the mist removing member 16a.
  • the mist removing member 16b may be configured using a net-like member, a porous thin plate, or the like.
  • the top of the desulfurization tower 7 is connected to a dust filter 29 by a pipe 18, and the exhaust gas G that has passed through the cleaning unit 21 is supplied to the dust filter 29 through the pipe 18.
  • the pipe 18 is provided with an analyzer S2 for measuring the sulfur dioxide concentration of the exhaust gas G.
  • the dust filter 29 is provided in order to sufficiently remove a very small amount of scattered particles that have not been removed by the cleaning unit 21 of the desulfurization tower 7 from the exhaust gas G, and the dust filter 29 has ventilation that proceeds due to clogging of the filter.
  • a spray nozzle 29s for cleaning is provided in order to eliminate the increase in resistance.
  • the increase in the ventilation resistance of the dust filter 29 is considerably suppressed, so that the frequency of filter cleaning is reduced and the pressure loss can be suppressed low.
  • the cleaning section 21 By constructing the cleaning section 21 in multiple stages, cleaning of the dust filter 29 can be substantially omitted.
  • sulfur dioxide absorbed from the exhaust gas G is dissolved as sulfite ions in the absorbing liquid A ⁇ b> 1 and is oxidized by oxygen contained in the recovered gas G ′ supplied from the branch pipe 72 to generate gypsum.
  • the oxygen supply amount may be insufficient.
  • an oxidation tank 30 for sufficiently oxidizing sulfite ions is provided, and the absorption liquid A1 ′ in which the gypsum is sufficiently deposited in the oxidation tank 30 is supplied to the removing unit 20 to separate and remove the gypsum.
  • a part of the absorbing liquid A1 flowing through the circulation path 12 is supplied to the oxidation tank 30 through the branch path 31, and an on-off valve 32 for controlling the supply is provided in the branch path 31.
  • the oxidation tank 30 is provided with an introduction portion 33 for introducing a gas containing oxygen such as air, whereby the sulfurous acid in the absorbing liquid A1 'is sufficiently oxidized to sulfuric acid.
  • the oxidation tank 30 is provided with a stirrer 34 for stirring the absorption liquid.
  • a stirrer 34 for stirring the absorption liquid.
  • the air in which oxygen is consumed has nitrogen as a main component and is released from the oxidation tank 30 to the outside.
  • the oxidation tank 30 is provided with an analyzer S3 for measuring the liquid level, the open / close valve 32 is electrically connected to the analyzer S3, and the amount of liquid in the oxidation tank 30 is based on signal information from the analyzer S3. Is adjusted so that the flow rate of the absorbing liquid A1 supplied to the oxidation tank 30 is adjusted.
  • the absorption liquid A1 'in the oxidation tank 30 is supplied to the cyclone separator 22 of the removal unit 20 through the pipe 36 by driving the pump 35, and the gypsum is separated and recovered from the absorption liquid A1' in the removal unit 20.
  • the removal unit 20 includes a cyclone separator 22 that functions as a classification device and a vacuum belt filter 23 that functions as a filter.
  • the cyclone separator 22 also functions as a gypsum concentrator.
  • concentration classification of gypsum in the absorption liquid A1 'and filtration separation of the concentrated classification gypsum are performed.
  • the cyclone separator 22 accelerates the separation due to the difference in specific gravity by centrifugal force, and thereby absorbs the absorbing liquid A1 ′ containing the gypsum deposit supplied from the oxidation tank 30 into a relatively large gypsum.
  • Classification is made into a first fraction containing and concentrated and a second fraction diluted and containing relatively small gypsum.
  • the first fraction containing large gypsum is supplied to the vacuum belt filter 23 through the pipe 25, and the gypsum is separated by filtration and separation of the first fraction.
  • the filtered gypsum is accommodated in the container V through the pipe 26.
  • the absorption liquid of the first fraction from which the gypsum has been removed is supplied as a cleaning liquid to the cleaning nozzle 17 of the cleaning unit 21 through the pipe 28 by driving the pump 27, captures scattered particles in the exhaust gas G, and is contained in limestone. Dissolves in the cleaning solution.
  • the cyclone separator 22 pressurizes and introduces the absorbing liquid A1 ′ into the conical vortex chamber, and promotes the separation of the gypsum from the absorbing liquid A1 ′ due to the difference in specific gravity using centrifugal force. Classification and concentration separation can be performed. In particular, when a multi-cyclone system that performs parallel processing by arranging a plurality of vortex chambers in parallel is used, the time required for classification and concentration of gypsum can be shortened.
  • the vacuum belt filter 23 is a filter that separates a liquid material under reduced pressure. Gypsum is deposited on the filter by supplying the first fraction of the absorbing liquid onto the circulating band filter and filtering it under reduced pressure.
  • the accumulated gypsum can be peeled and collected sequentially from the circulating filter using a scraper or the like, it can be filtered and separated continuously and efficiently. Since the first fraction supplied to the vacuum belt filter 23 is an absorption liquid in which relatively large gypsum is concentrated, clogging is unlikely to occur in filter filtration, and liquid leakage from the gypsum deposited on the filter is prevented. Since it is easy, the working efficiency of recovering the gypsum deposit from the absorbent is good. Therefore, by combining the continuous classification and concentration as described above with continuous filtration, gypsum is efficiently removed from the absorbent, and the removed absorbent is continuously supplied to the cleaning unit. Can do.
  • the second fraction containing relatively small gypsum is returned to the oxidation tank 30 through the reflux path 24 and is not supplied to the vacuum belt filter 23, so that fine gypsum remains in the absorption liquid after filtration. Can be prevented. Therefore, it becomes difficult to generate scattered particles when supplied to the cleaning unit 21 as a cleaning liquid.
  • the reflux path 24 is changed so as to connect the cyclone separator 22 and the desulfurization tower 7, so that the second fraction separated by the cyclone separator 22 is supplied to the desulfurization section 10 of the desulfurization tower 7.
  • the device 2 may be configured.
  • the vacuum belt filter 23 may be changed to other means capable of continuous filtration, and continuous filtration is possible even if a plurality of filtration devices are used in parallel and sequentially switched. is there.
  • the desulfurizer 2 contains a slurry in which the absorbent (limestone) is dispersed at a high content as a replenisher for replenishing the absorbent.
  • a tank 37 is attached, and the absorbent is supplied from the tank 37 to the desulfurization unit 10.
  • the absorbent supplied to the desulfurization unit 10 is uniformly mixed with the absorbent A1 by the stirrer 19 provided at the bottom of the desulfurization unit 10.
  • An analyzer S4 for measuring the pH of the absorption liquid A1 that has contacted the exhaust gas G is installed at the bottom of the desulfurization tower 7, and an on-off valve 38 for adjusting the supply of the absorbent from the tank 37 to the desulfurization tower 7; Electrically connected.
  • the on-off valve 38 is controlled so as to replenish the absorbent in the tank 37 and maintain the pH of the absorbing liquid A1 constant when the measured pH value of the absorbing liquid A1 by the analyzer S4 decreases.
  • an appropriate amount of absorbent is replenished corresponding to the amount of sulfur oxide introduced from the exhaust gas G into the absorbent A1, and excessive supply of the absorbent is prevented.
  • a denitration device 3 that removes nitrogen oxides from the exhaust gas G is disposed downstream of the desulfurization device 2.
  • the denitration apparatus 3 includes a reaction unit 40 that causes an oxidation reaction to generate nitrogen dioxide from nitric oxide, and a denitration unit 50 that removes nitrogen dioxide from the exhaust gas using an aqueous absorbent, and is included in the exhaust gas. By converting nitric oxide, which is not soluble in water, into nitrogen dioxide, the denitration efficiency by the denitration unit 50 is increased.
  • the reaction unit 40 a means capable of pressurizing exhaust gas is used. Specifically, at least one compressor for compressing the exhaust gas G discharged from the desulfurization apparatus 2 is used. In the exhaust gas treatment system 1 of FIG.
  • the reaction unit 40 includes the first compressor 41 and the second compression. It is comprised by the device 42.
  • the exhaust gas G discharged from the desulfurization apparatus 2 is pressurized in stages by the first compressor 41 and the second compressor 42, and oxygen and nitrogen oxides contained in the exhaust gas G act by pressurization in the compressor.
  • a reaction in which nitric oxide is oxidized to nitrogen dioxide proceeds.
  • the concentration of nitrogen monoxide in the pressurized exhaust gas G decreases and the concentration of nitrogen dioxide increases.
  • the sulfur oxide remains in the exhaust gas G, the oxidation of the sulfur oxide also proceeds.
  • the denitration apparatus 3 of the present invention further includes at least one cooler for cooling the compressed exhaust gas, and cools the exhaust gas G to an appropriate temperature.
  • the 1st cooler 43 and the 2nd cooler 44 are arranged in the latter part of each of the 1st compressor 41 and the 2nd compressor 42, and compression and cooling are repeated alternately.
  • the cooling method of the first cooler 43 and the second cooler 44 may be either a water cooling method or a cooling method using other refrigerants, and has a drain function for separating and discharging the condensate generated by cooling by gas-liquid separation. Anything can be used.
  • a general cooler or heat exchanger and a gas-liquid separator may be connected and used as the first cooler 43 and the second cooler 44.
  • the compressed exhaust gas G is cooled by the first cooler 43 and the second cooler 44, the water vapor contained in the exhaust gas G is condensed and the water is separated, and the water-soluble component contained in the exhaust gas G is dissolved in the water. That is, nitrogen dioxide in the exhaust gas moves to condensed water, and even when sulfur oxides or the like remain, they are dissolved in the condensed water, and the concentrations of nitrogen oxides and other water-soluble impurities in the exhaust gas G are lowered. .
  • the exhaust gas G in which the concentrations of nitrogen oxides and other impurities are reduced is recovered.
  • An analyzer S5 for measuring the nitrogen oxide concentration of the exhaust gas G is installed at the rear stage of the reaction unit 40.
  • a drain function is provided in the same manner as the first and second coolers 43 and 44 for the purpose of adjusting the temperature of the exhaust gas G to a temperature suitable for the treatment temperature in the denitration unit 50.
  • the 3rd cooler 45 which has is provided in the front
  • coolers having no drain function can be used. In that case, condensed water is introduced into the denitration unit 50 together with the compressed exhaust gas G.
  • the denitration unit 50 in the exhaust gas treatment system 1 of the present invention has a denitration tower 8 that performs wet treatment, and uses an approximately neutral or basic aqueous solution having a pH of about 5 to 9 as the absorbing liquid A2.
  • the absorbent A2 contains an alkali metal compound such as sodium hydroxide as a strong alkaline absorbent that absorbs nitrogen oxides (nitrogen dioxide).
  • a spray nozzle 51 is provided in the upper part of the denitration tower 8 as spraying means for spraying the absorbing liquid A2 into the exhaust gas G in the form of droplets, and a circulation path 52 that connects the bottom and the upper part is provided outside the tower.
  • the absorbing liquid A2 sprayed from the spray nozzle 51 and stored at the bottom of the denitration tower 8 is returned to the spray nozzle 51 by driving the pump 53 on the circulation path 52, and the absorbing liquid A2 is repeatedly sprayed.
  • a filler 54 is loaded below the spray nozzle 51 to form a gas-liquid contact phase for contacting the exhaust gas G with the absorbing liquid A2.
  • a water-cooled cooler 55 is provided on the circulation path 52, and by cooling the absorption liquid A2 flowing through the circulation path 52, the temperature rise of the absorption liquid A2 in the denitration tower 8 is prevented and maintained at an appropriate temperature. Is done.
  • a mist removing member 56 is disposed above the spray nozzle 51 and passes through the filler 54 in order to prevent fine droplets or the like caused by the absorbing liquid A2 from being accompanied by the exhaust gas G and discharged to the outside.
  • the exhaust gas G that rises in this manner passes through the mist removing member 56 and is then discharged from the denitration tower 8 through the pipe 57.
  • the mist removing member 56 may be configured as a horizontal layer by a plurality of swash plates arranged in parallel with a gap, or may be in another form. For example, you may comprise using a net-like member, a porous thin plate, etc.
  • a tank 58 for storing an aqueous solution containing the absorbent at a high concentration is attached, and the absorbent in the tank 58 passes through the circulation path 52.
  • the denitration unit 50 is appropriately supplemented.
  • the pH of the absorbing liquid A2 in the denitration unit 50 is monitored by the analyzer S6 at the bottom.
  • the exhaust gas treatment system 1 of the present invention includes a drying device 5 that removes moisture from the exhaust gas and a mercury removal device 6 that removes mercury from the exhaust gas, and is discharged from the denitration unit 50 through a pipe 57. Moisture and mercury are removed from the denitrated exhaust gas G before being supplied to the carbon dioxide recovery device 4. An analyzer S7 for measuring the nitrogen oxide concentration of the exhaust gas is provided in the pipe 57.
  • the drying device 5 is configured by using a desiccant D that adsorbs moisture, and the desiccant D is loaded into the pair of columns 61a and 61b so that the drying of the exhaust gas G and the regeneration of the desiccant D can be alternately repeated.
  • the end of the pipe 57 is branched and connected to each of the columns 61a and 61b, and a three-way switching valve 62a for controlling the supply of the exhaust gas G to the columns 61a and 61b is provided.
  • the exhaust gas G dried in the columns 61a and 61b is supplied to the mercury removing device 6 through the pipe 63 and the three-way switching valve 62b.
  • the three-way switching for controlling the gas supply to the columns 61a and 61b is performed by branching the end of the pipe 65 for refluxing the recovered gas G ′ discharged from the carbon dioxide recovery device 4 and connecting it to each of the columns 61a and 61b.
  • a valve 64a is provided in order to discharge the recovered gas G ′ supplied to the columns 61 a and 61 b.
  • a pipe 66 and a three-way switching valve 64 b are provided in order to discharge the recovered gas G ′ supplied to the columns 61 a and 61 b.
  • the desiccant D can be appropriately selected from those generally used as a desiccant, and examples thereof include molecular sieves and silica gel.
  • the mercury removing device 6 can be configured by filling a column with a material capable of adsorbing mercury as an adsorbent, and examples of the adsorbent include activated carbon.
  • the dried exhaust gas G discharged from the columns 61a and 61b is supplied to the mercury removing device 6 through the pipe 63 and passes through the adsorbent, whereby mercury is adsorbed and removed from the exhaust gas G.
  • the exhaust gas G from which sulfur oxides, nitrogen oxides, water and mercury have been removed through the desulfurization device 2, the denitration device 3, the drying device 5 and the mercury removal device 6 contains carbon dioxide at a high concentration and is contained as an impurity. Substantially becomes oxygen, nitrogen and argon.
  • the exhaust gas G is supplied to a carbon dioxide recovery device 4 provided with a heat exchanger for cooling the gas and a low-temperature distillation tower. Carbon dioxide can be liquefied when compressed at a pressure higher than the boiling line in the temperature range from the triple point to the critical point, but the exhaust gas G supplied to the carbon dioxide recovery device 4 can be liquefied in the denitration device 3.
  • the carbon dioxide in the exhaust gas G is liquefied when it is cooled below the boiling line temperature in the heat exchanger of the carbon dioxide recovery device 4. Since liquefied carbon dioxide contains impurities such as oxygen, it is distilled at a distillation temperature of about ⁇ 30 ° C. in a low-temperature distillation column, and impurities such as oxygen are released from the liquefied carbon dioxide as a gas. Therefore, the post-recovery gas G ′ discharged from the carbon dioxide recovery device 4 through the pipe 65 is carbon dioxide gas having a higher ratio of impurities such as oxygen than the exhaust gas G supplied to the carbon dioxide recovery device 4. The recovered gas G 'is refluxed to the columns 61a and 61b and used as a regeneration gas for drying the desiccant D. The purified liquefied carbon dioxide C is recovered from the carbon dioxide recovery device 4.
  • the recovered gas G ′ discharged from the pipe 65 is heated to about 100 ° C. or more by the heating device 67 in order to regenerate the desiccant D.
  • the carbon dioxide recovery device 4 uses a heat pump (refrigeration cycle) device to supply a cooling refrigerant to the heat exchanger, and the exhaust heat released in the heat pump device can be used as a heat source for heating.
  • the exhaust gas can be configured to be heated by the heating device 67 so as to heat the recovered gas G ′ discharged from the pipe 65.
  • the heated post-recovery gas G ′ for regeneration is refluxed to the columns 61a and 61b of the drying device 5 through the pipe 65, and as described above, the exhaust gas G is controlled by the control of the three-way switching valves 62a, 62b, 64a, and 64b.
  • the desiccant D is supplied to the non-supplied column and the desiccant D is heated, and moisture is released from the desiccant D. Thereby, the post-recovery gas G 'containing water vapor is discharged from the columns 61a and 61b.
  • the desiccant D is heated by regeneration, it is desirable to cool the regenerated desiccant D before using it for drying.
  • a desulfurization section of the desulfurization tower 7 branched from the pipe 66 is used as an oxygen supply section for supplying a part of the recovered gas G ′ discharged from the carbon dioxide capture apparatus 4 to the absorbing liquid A1 of the desulfurization apparatus 2 as an oxygen source.
  • 10 is provided with a branch pipe 72 connected to the bottom. The ratio of the post-recovery gas G ′ supplied to the desulfurization device 2 in the post-recovery gas G ′ discharged from the carbon dioxide recovery device 4 is adjusted by the flow rate adjusting valves 73 and 74.
  • the purity and recovery of liquefied carbon dioxide C recovered by the carbon dioxide recovery device 4 using an analyzer S8 capable of measuring carbon dioxide.
  • a monitoring device (not shown) for monitoring the rate is provided and is electrically connected to the flow rate adjusting valves 73 and 74. Since the post-recovery gas G ′ is carbon dioxide containing nitrogen and argon as impurities, if the ratio supplied to the desulfurization unit 10 is excessive, the amount of these impurities contained in the exhaust gas G increases, and liquefied carbon dioxide C The purity of is likely to decrease.
  • the monitoring device reduces the distribution ratio of the recovered gas G ′ supplied to the desulfurization tower 7 when the purity of the recovered carbon dioxide is lower than the target purity based on the signal information transmitted from the analyzer S8.
  • the flow rate adjusting valves 73 and 74 are controlled so that the distribution ratio of the recovered gas G ′ supplied to the desulfurization tower 7 is increased.
  • the monitoring device can be configured to monitor the sulfur dioxide concentration of the exhaust gas G discharged from the desulfurization device 2 by the analyzer S2, and the sulfur dioxide concentration of the exhaust gas G discharged from the desulfurization device 2 is the target concentration. If higher, the distribution ratio of the recovered gas G ′ to be refluxed to the desulfurization section 10 is increased. Thereby, the carbon dioxide concentration of the exhaust gas G becomes relatively high, and the sulfur dioxide concentration becomes relatively low.
  • the cleaning unit 21 of the desulfurization apparatus 2 captures solid particles scattered from the desulfurization unit 10 by the limestone-gypsum method without increasing the flow resistance of the exhaust gas G introduced from the combustion system.
  • wear, damage, and the like in the subsequent first compressor 41 can be suitably prevented, it is suitable for improving the durability of the system.
  • the absorption liquid from which gypsum has been removed as the cleaning liquid of the cleaning unit 21, it is advantageous to use the classification function by the cyclone separator.
  • the first compressor 41 and the second compressor 42 allow the use of a wet denitration process by advancing the oxidation reaction, eliminating the need to use a reducing denitration process using ammonia, a catalyst, or the like. . Moreover, it not only functions as the reaction part 40 which advances an oxidation reaction, but also acts as a means for applying a pressure necessary for liquefying carbon dioxide. That is, the pressure required to liquefy carbon dioxide is used for the denitration process.
  • the desulfurization treatment by the limestone-gypsum method and the wet denitration treatment are advantageous options in terms of treatment costs, etc., and in combination with these treatments, an economical exhaust gas treatment system is realized.
  • the desulfurization apparatus of the present invention is useful because it prevents particle scattering and enables the incorporation of a compressor into the system.
  • the exhaust gas treatment method of the present invention includes a desulfurization treatment for removing sulfur oxide from the exhaust gas G by a limestone-gypsum method, a denitration treatment for removing nitrogen oxide from the exhaust gas G, and a carbon dioxide recovery for recovering carbon dioxide from the exhaust gas G. Processing. Furthermore, by performing a drying process and a mercury removal process between the denitration process and the carbon dioxide recovery process, the aluminum parts of the heat exchanger used in the liquefaction of carbon dioxide are prevented from being damaged by mercury. Liquefied carbon dioxide can be efficiently recovered.
  • the desulfurization treatment includes a desulfurization process for removing sulfur oxide from exhaust gas using an absorption liquid, a removal process for removing gypsum from an absorption liquid in which gypsum is precipitated from sulfur oxide using classification, and the removal process.
  • an aqueous dispersion containing an absorbent is prepared and accommodated in the desulfurization section 10.
  • the absorbent calcium compounds such as limestone (calcium carbonate), quick lime (calcium oxide), slaked lime (calcium hydroxide) can be used, and limestone is preferably used from the viewpoint of cost. Since the calcium compound is not highly water-soluble, it is preferably pulverized into a powder and mixed with water to prepare a dispersion liquid in which fine particles are dispersed and used as the absorbent A1.
  • the desulfurization process proceeds by spraying the absorbing liquid A1 from the spray nozzle 11 by driving the pump 13 and introducing the exhaust gas G from the gas introduction part 14 to bring it into gas-liquid contact.
  • the absorbing liquid A1 is sprayed as droplets of a suitable size.
  • the absorbing liquid A1 sprayed from the spray nozzle 11 is cooled by the cooler 15 in the circulation path 12, and an increase in the liquid temperature is prevented.
  • the introduction rate of the exhaust gas G is appropriately adjusted according to the sulfur oxide concentration of the exhaust gas G so that the residence time during which the sulfur oxide in the exhaust gas G is sufficiently absorbed by the absorbent A can be obtained. Sulfur oxide contained in the exhaust gas G is absorbed by the absorption liquid A1 to form a calcium salt.
  • Sulfur dioxide dissolves as sulfite ions in the absorbing liquid A1, and sulfur trioxide forms and precipitates calcium sulfate (gypsum). Therefore, the dispersion in the absorbing liquid A1 includes limestone and gypsum. Limestone gradually dissolves as gypsum precipitates. Acid halides such as hydrogen chloride contained in the exhaust gas G are also absorbed and dissolved in the absorbing liquid A1, and dust is also captured.
  • the temperature of the exhaust gas G supplied from the combustion system is generally about 100 to 200 ° C.
  • the temperature after gas-liquid contact in the desulfurization section 10 is about 50 to 100 ° C.
  • the moisture of the droplet of the absorbing liquid A1 is vaporized, and the solid component contained in the absorbing liquid is scattered as particles (mist) and is accompanied by the exhaust gas G.
  • the solid particles collide with the swash plate and are removed to some extent. Further, it is sufficiently washed and removed by the washing liquid sprayed from the washing nozzle 17 (absorbing liquid from which gypsum has been removed).
  • the introduction temperature of the exhaust gas G is allowed up to about 200 ° C.
  • the absorbing liquid A1 in which the sulfur oxide is absorbed from the exhaust gas G in the desulfurization unit 10 calcium sulfite generated from sulfur dioxide dissolves, but at least a part of the oxygen contained in the recovered gas G ′ supplied from the branch pipe 72 It is oxidized and deposited as calcium sulfate.
  • the main component of the post-recovery gas G ′ is carbon dioxide, and the post-recovery gas G ′ in which oxygen has been consumed floats the absorbing liquid A1 and mainly supplies carbon dioxide to the exhaust gas G from which sulfur oxides have been removed. .
  • a part of the absorption liquid A1 that has undergone the desulfurization process in the desulfurization unit 10 is supplied from the circulation path 12 to the oxidation tank 30 through the branch path 31, and here, a gas containing oxygen such as air is supplied.
  • a gas containing oxygen such as air is supplied.
  • the residual sulfurous acid in the absorption liquid A1 is oxidized into sulfuric acid and precipitates from the absorption liquid A1 as gypsum (calcium sulfate).
  • gypsum calcium sulfate
  • the gas supplied to the oxidation tank 30 may be any gas that can supply oxygen such as air, and supplies an amount capable of sufficiently oxidizing sulfurous acid.
  • the stirring speed of the stirrer 34 is adjusted so that the oxidation reaction proceeds uniformly in the absorbing solution.
  • the liquid level in the oxidation tank 30 is kept constant by the analyzer S3 and the on-off valve 32.
  • an aqueous slurry in which the absorbent is dispersed in a high content is supplied from the tank 37 to the desulfurization unit 10 to replenish the absorbent, and are uniformly mixed by the stirrer 19. .
  • the concentration of the aqueous slurry supplied from the tank 37 may be adjusted in consideration of the water content of gypsum recovered from the desulfurization unit 10.
  • the supply of the absorbent from the tank 37 to the absorption liquid A1 of the desulfurization unit 10 is controlled by adjusting the opening of the on-off valve 38 based on the measured pH value of the absorption liquid A1 by the analyzer S4, thereby adjusting the pH of the absorption liquid A1. It is maintained within a certain range, preferably about pH 4-7. Accordingly, an appropriate amount of absorbent is replenished corresponding to the amount of sulfur oxide introduced from the exhaust gas G, and excessive supply of the absorbent to the absorbent A1 is prevented.
  • the absorption liquid A1 ′ that has undergone oxidation in the oxidation tank 30 is subjected to concentration separation and filtration separation in the removal step in the cyclone separator 22 and the vacuum belt filter 23 of the removal unit 20 by driving the pump 35, and the absorption liquid A1. 'Gypsum is removed from.
  • the cyclone separator 22 classifies the absorption liquid A1 'into a first fraction that contains relatively large gypsum and is concentrated, and a second fraction that contains relatively small gypsum and is diluted. By introducing the absorbing liquid A1 'into the cyclone separator 22 at a pressure of about 0.1 to 0.5 MPa, the absorbing liquid A1' is suitably classified.
  • the classified first fraction of the absorbing liquid A1 ' is supplied to the vacuum belt filter 23, and gypsum is filtered out and stored in the container V.
  • the separation in the cyclone separator 22 is adjusted so that the particle size of the gypsum contained in the first fraction is about 50 ⁇ m or more, preferably about 20 ⁇ m or more.
  • the gypsum can be separated at a suitable filtration efficiency in the vacuum belt filter 23.
  • it does not require excessive pressure reduction and can be filtered well at about 10 kPa.
  • the second fraction of the absorption liquid A1 ' is refluxed from the cyclone separator 22 to the oxidation tank 30 and mixed with the newly flowing absorption liquid A1.
  • the absorbing liquid from which the gypsum has been removed from the first fraction in the vacuum belt filter 23 is supplied as a cleaning liquid to the cleaning nozzle 17 of the cleaning unit 21 by driving the pump 27 and captures scattered particles of the exhaust gas G.
  • the exhaust gas G rising from the desulfurization section 10 through the desulfurization process is subjected to a cleaning process in the cleaning section 21 using an absorbing liquid supplied as a cleaning liquid from the removal section 20 to the cleaning nozzle 17.
  • a cleaning process in the cleaning section 21 using an absorbing liquid supplied as a cleaning liquid from the removal section 20 to the cleaning nozzle 17.
  • the temperature of the exhaust gas G introduced into the cleaning unit 21 is reduced to about 40 to 80 ° C. by the cleaning.
  • the cleaning liquid has a reduced concentration of components derived from sulfur oxide and calcium, and is suitable for use as cleaning water for the mist removing members 16a and 16b.
  • the limestone and gypsum particles absorb water and fall, and while absorbing the sulfur oxide from the exhaust gas G, the bottom of the desulfurization unit 10 together with the absorbing liquid A1 sprayed from the spray nozzle 11 Dripping into.
  • the scattered particles are sufficiently removed by passing the exhaust gas G through the dust filter 29.
  • the filter in the dust filter 29 is appropriately cleaned using a cleaning spray nozzle 29s as necessary, so that clogging is prevented and the pressure loss of gas flow is suppressed.
  • the exhaust gas G that has undergone the desulfurization process is subjected to a reaction process, a cooling process, and a denitration process as a denitration process.
  • the first compressor 41 compresses the pressure to about 1.0 to 2.0 MPa, and the temperature rises to about 100 to 200 ° C., generally about 150 ° C., by the heat of compression.
  • the oxidation reaction proceeds in the exhaust gas G, nitrogen dioxide is generated from nitric oxide, and the oxygen content decreases.
  • the sulfur oxides of the exhaust gas G are almost removed by the desulfurization treatment, if they remain, the oxidation reaction also proceeds to the sulfur oxides, and sulfur trioxide is generated from the sulfur dioxide.
  • the compressed exhaust gas G is cooled by the first cooler 43, and water vapor contained in the exhaust gas G is condensed.
  • the cooling is generally performed at about 40 ° C.
  • nitrogen dioxide, sulfur oxide, and mercury contained in the exhaust gas G are dissolved in the condensed water, the amount of these contained in the exhaust gas G is reduced.
  • the condensed water is separated from the exhaust gas G and discharged by the drain.
  • the reaction process of the exhaust gas G is further repeated by the second compressor 42. At this time, the carbon dioxide is compressed at a pressure capable of liquefying carbon dioxide.
  • the oxidation reaction proceeds again to produce nitrogen dioxide from the remaining nitric oxide, further reducing the oxygen content.
  • the oxidation reaction also proceeds to the sulfur oxide, and sulfur trioxide is generated from sulfur dioxide.
  • Mercury oxidation proceeds as well.
  • the exhaust gas G compressed by the second compressor 42 is cooled again by the second cooler 44 as a cooling step, and water vapor contained in the exhaust gas G is condensed. In the water-cooling type cooling, the cooling is generally about 40 ° C.
  • Nitrogen dioxide, sulfur oxides and mercury contained in the exhaust gas G are dissolved in the condensed water, and these amounts contained in the exhaust gas G are further reduced.
  • the condensed water is separated from the exhaust gas G and discharged by the drain.
  • the exhaust gas G cooled by the second cooler 44 is further cooled by the third cooler 45 and adjusted to a temperature of about 0 to 10 ° C. suitable for the wet treatment temperature in the denitration tower 8.
  • Condensed water is likewise discharged by the drain.
  • impurities nitrogen dioxide, sulfur oxide, Hg 2+
  • the exhaust gas G that has passed through the third cooler 45 is supplied to the denitration unit 50 to perform a denitration process.
  • the absorption liquid A2 is sprayed from the spray nozzle 51 by driving the pump 53, and the exhaust gas G rising between the fillers 54 from the bottom of the denitration tower 8 and the absorption liquid A2 are brought into gas-liquid contact.
  • Nitrogen dioxide contained in the exhaust gas G is absorbed by the absorbing liquid A2 and dissolved as nitrate.
  • Acid halides such as hydrogen chloride and residual sulfur oxides contained in the exhaust gas G are also absorbed by the absorbent A2.
  • a substantially neutral or basic aqueous liquid containing an absorbent for absorbing nitrogen oxide is used, and the pH of the absorbing liquid A2 in use is adjusted to about 5 to 9.
  • an alkali metal compound preferably, a strongly basic alkali metal hydroxide such as sodium hydroxide or potassium hydroxide is used, and an aqueous solution in which the absorbent is dissolved in water is prepared and used. preferable.
  • the absorbing liquid A2 to be sprayed is prevented from rising in temperature by the cooler 55.
  • the absorbent is appropriately supplied from the tank 58.
  • the exhaust gas G that has undergone the denitration process is subjected to a drying process in the drying device 5. That is, the exhaust gas G is supplied to one of the columns 61a and 61b, and moisture is removed by the desiccant D. During this time, in the other column, the regeneration gas supplied from the carbon dioxide recovery device 4 is used to generate the desiccant D. Playback is performed. Since the treatment capacity of the exhaust gas G can be set in advance based on the hygroscopic capacity of the desiccant D accommodated in the column, the three-way switching valves 62a and 62b are required before the supply amount of the exhaust gas G reaches the maximum processable amount.
  • the column for supplying the exhaust gas G is changed and at the same time the column for regenerating the desiccant D is changed by switching the three-way switching valves 64a and 64b. This switching may be performed every certain processing time.
  • the desiccant D can be appropriately selected from those generally used as a desiccant. For example, it absorbs or adsorbs moisture physically or chemically such as molecular sieve, silica gel, alumina, zeolite, etc. Possible ones.
  • the post-recovery gas G ′ for regeneration supplied from the carbon dioxide recovery device 4 is dry carbon dioxide having a high concentration of oxygen, nitrogen, and argon, and is heated to a temperature suitable for regeneration, preferably about 100 ° C. or higher. Then, the moisture is released from the desiccant D and regenerated. Before switching from regeneration to drying, it is desirable to stop heating the post-recovery gas G 'for regeneration in order to cool the column temperature to a temperature suitable for the drying process.
  • the dried exhaust gas G discharged from the columns 61a and 61b is supplied to the mercury removing device 6 and adsorbed and removed by the adsorbent.
  • the adsorbent of the mercury removing device 6 include activated carbon, activated carbon supporting potassium iodide, ion exchange resin, and the like.
  • the exhaust gas G that has undergone mercury removal has sulfur oxides, nitrogen oxides, water and mercury removed, so it contains carbon dioxide at a very high concentration, and the components contained as impurities are substantially oxygen, nitrogen and Argon.
  • the temperature of the exhaust gas G in the denitration device 3, the drying device 5, and the mercury removal device 6 substantially depends on the temperature in the denitration unit 50, and the pressure of the exhaust gas G depends on the degree of compression in the second compressor 42.
  • the exhaust gas G that has been pressurized and compressed to about 2.0 to 4.0 MPa capable of liquefying carbon dioxide and this pressure is maintained is supplied to the carbon dioxide recovery device 4.
  • the exhaust gas G is cooled to a boiling line temperature or lower, preferably about ⁇ 20 to ⁇ 50 ° C. by a heat exchanger in a carbon dioxide recovery device, and the carbon dioxide in the exhaust gas G is liquefied.
  • the liquefied carbon dioxide is distilled at a temperature of about ⁇ 20 to ⁇ 50 ° C. in a low-temperature distillation tower, and impurities such as oxygen, nitrogen, and argon are removed from the liquefied carbon dioxide.
  • the carbon dioxide gas in which the ratio of these impurities is increased is discharged from the low-temperature distillation tower as the recovered gas G ′.
  • the recovered gas G ′ is heated to 100 ° C. or more, preferably about 100 to 200 ° C., and then refluxed to the desiccant D of the columns 61a and 61b from the pipe 65 and used as a regeneration gas.
  • the recovered gas G ′ containing water vapor is discharged from the columns 61 a and 61 b by regenerating the drying agent D.
  • the liquefied carbon dioxide C purified to a purity of about 95 to 99% is recovered from the carbon dioxide recovery device 4.
  • the post-recovery gas G ′ discharged from the carbon dioxide recovery device 4 is carbon dioxide containing about several tens of percent of impurities (oxygen, nitrogen, argon), and after being used for regeneration of the desiccant D, a part thereof It supplies to absorption liquid A1 which passed the desulfurization process as an oxygen source.
  • the ratio of the post-recovery gas G ′ supplied to the absorption liquid A ⁇ b> 1 of the desulfurization unit 10 is adjusted by the flow rate adjusting valves 73 and 74. For this adjustment, the target recovery rate and target purity of the liquefied carbon dioxide C are set in advance, and the purity and recovery rate of the liquefied carbon dioxide C monitored by the analyzer S8 are respectively set to the target recovery rate and target.
  • the recovery rate of the recovered carbon dioxide is set so as to decrease the ratio of the recovered gas G ′ supplied to the absorbing liquid A1 of the desulfurization unit 10.
  • the flow rate adjusting valves 73 and 74 are controlled so that the ratio of the recovered gas G ′ supplied to the absorbing liquid A1 of the desulfurization unit 10 is increased. If both the purity and the recovery rate of the recovered carbon dioxide are lower than the target value, it is necessary to change the setting of at least one of the target values.
  • the ratio of the recovered gas G supplied to the desulfurization section 10 When the ratio of the recovered gas G supplied to the desulfurization section 10 is increased, the carbon dioxide in the exhaust gas G increases, the recovery rate of the liquefied carbon dioxide C can be increased, and the ratio supplied to the desulfurization section 10 is decreased. If it does, the amount of impurities (nitrogen, argon) contained in the exhaust gas G will become low, and it will become easy to raise the purity of the liquefied carbon dioxide C. Note that the ratio of the recovered gas G ′ supplied to the desulfurization unit 10 can be changed based on only one of the purity and the recovery rate of the liquefied carbon dioxide C.
  • a specific example of the procedure for determining the ratio X of the post-recovery gas G ′ supplied to the desulfurization unit 10 is illustrated below.
  • the target purity of the liquefied carbon dioxide C is set, and the exhaust gas treatment is performed by opening only the flow rate adjusting valve 73 so that the ratio X of the recovered gas G ′ supplied to the desulfurization unit 10 becomes zero.
  • Monitor the recovery and purity of carbon dioxide C It is confirmed that the purity of the liquefied carbon dioxide C is equal to or higher than the target purity, and when the target purity is not reached, the purification accuracy of the carbon dioxide recovery device 4 is adjusted so as to be equal to or higher than the target purity.
  • a value higher than the recovery rate obtained at this time is set as the target recovery rate, and the flow rate adjustment valve 74 is opened so that the change amount of the ratio X becomes ⁇ X, and the recovery rate and purity of the liquefied carbon dioxide C are monitored.
  • the adjustment of the flow rate adjusting valves 73 and 74 can be repeated so as to increase the ratio X by ⁇ X until the recovery rate reaches the target recovery rate, and the purity is below the target purity. In the case, the increase in the ratio X is stopped. When the purity is lower than the target purity, the ratio X is decreased. In this way, the recovery efficiency when recovering the liquefied carbon dioxide C with the target purity can be increased to the upper limit.
  • the ratio X for reducing the sulfur dioxide concentration of the exhaust gas G after the desulfurization treatment using the post-recovery gas G ′ is adjusted as follows.
  • the sulfur dioxide concentration of the exhaust gas G discharged from the desulfurization apparatus 2 is monitored by the analyzer S2, and the sulfur dioxide concentration of the exhaust gas G is compared with the target sulfur dioxide concentration.
  • the sulfur dioxide concentration of the exhaust gas G discharged from the desulfurization apparatus 2 is higher than the target sulfur dioxide concentration, the carbon dioxide concentration of the exhaust gas G increases by increasing the ratio X of the recovered gas G ′ to be refluxed to the desulfurization unit 10. , The sulfur dioxide concentration decreases.
  • the adjustment of the ratio X can be performed simultaneously with the adjustment based on the purity and recovery rate of the liquefied carbon dioxide C described above. However, if the sulfur dioxide concentration of the exhaust gas G is reduced by adjusting the ratio X of the recovered gas G ′, the purity of the liquefied carbon dioxide C is lowered. Therefore, if both cannot be satisfied, the desulfurization efficiency is increased. Next, the processing conditions of the desulfurization apparatus 2 will be reviewed.
  • the first cooler 43 can be omitted. However, by cooling each time compression is performed and removing condensed water as shown in FIG. The amount decreases and the load decreases.
  • the reaction part 40 of the exhaust gas treatment system 1 is constituted by two compressors, it may be constituted by a single or three or more compressors, and the number of compressors constituting the reaction part 40 may be determined. By increasing, the amount of compression for increasing the pressure to the pressure required for liquefaction of carbon dioxide is dispersed in each compressor, and the load on each compressor is reduced.
  • the desulfurization device 2 of the exhaust gas treatment system 1 can be modified so as to omit the oxidation tank 30.
  • the oxygen source (air) supplied to the oxidation tank 30 is desulfurization of the desulfurization tower 7.
  • the absorption liquid A1 supplied to the absorption liquid A1 stored in the section 10 and flowing through the branch path 31 is directly supplied to the cyclone separator 22, and the second fraction of the absorption liquid classified in the cyclone separator 22 (relatively small particles). (Including gypsum) is preferably refluxed to the desulfurization section 10.
  • the exhaust gas treatment system 1 for exhaust gas shown in FIG. 1 is an embodiment configured to cope with introduction of high-temperature exhaust gas G. However, when the temperature of the exhaust gas G is a low temperature less than 100 ° C., the response Changes that improve processing efficiency based on capabilities are possible. Such an embodiment is shown in FIG.
  • the exhaust gas treatment system 1 ′ shown in FIG. 2 is configured by using the same components as the exhaust gas treatment system 1 of FIG. 1, but the arrangement of the first compressor 41 is changed and the first cooler 43 is omitted. Is different. That is, in the exhaust gas treatment system 1 ′, the reaction unit 40 of FIG. 1 is divided into a first reaction unit and a second reaction unit, and the first compressor 41 ′ constituting the first reaction unit is provided in the desulfurization apparatus 2 ′.
  • the second reactor is arranged at the front stage of the desulfurization section 10 and is constituted only by the second compressor 42 ′ in the denitration apparatus 3 ′ subsequent to the desulfurization apparatus 2 ′. Therefore, in both the desulfurization apparatus 2 'and the denitration apparatus 3', the oxidation reaction proceeds by pressurization in the exhaust gas G before processing.
  • the exhaust gas G when the exhaust gas G is supplied to the exhaust gas treatment system 1 ′, it is first compressed to about 1.0 to 2.0 MPa in the first compressor 41 ′, and the range of about 100 to 200 ° C. by the compression heat. The temperature rises to As the pressure increases, the oxidation reaction proceeds in the exhaust gas G, and sulfur trioxide is generated from sulfur dioxide. Further, nitrogen dioxide is generated from nitric oxide, mercury is also oxidized to Hg 2+ and is easily dissolved in water, and the oxygen content is reduced. Since the temperature of the compressed exhaust gas G matches the initial temperature condition of the exhaust gas G supplied to the exhaust gas treatment system 1 of FIG. 1, the desulfurization unit 10 and the cleaning unit 21 can suitably perform the desulfurization process.
  • the temperature of the exhaust gas G after the gas-liquid contact with the absorbing liquid A1 is about 50 to 100 ° C. as in the case of FIG.
  • the absorption liquid spraying of the desulfurization unit 10 also serves as the first cooler 43 in FIG.
  • the particles scattered from the absorbing liquid A1 are removed by washing with the washing liquid while passing through the mist removing members 16a and 16b in the washing section 21 and cooled to about 40 to 80 ° C.
  • the component absorbed by the absorbing liquid A ⁇ b> 1 of the desulfurization unit 10 decreases sulfur dioxide and increases sulfur trioxide, so that the initial amount of gypsum deposited increases. Therefore, the oxygen supply amount to the oxidation tank 30 necessary for the oxidation of sulfite ions and the supply amount of the recovered gas G ′ to the desulfurization section 10 are reduced. Further, the amount of nitrogen dioxide and Hg 2+ absorbed by the absorbing liquid A1 also increases. Therefore, the contents of nitrogen monoxide and mercury in the exhaust gas G discharged from the cleaning unit 21 of the desulfurization apparatus 2 ′ are reduced as compared with the case of FIG.
  • the exhaust gas G discharged from the cleaning unit 21 is supplied to the second compressor 42 ', and is compressed to a pressure capable of liquefying carbon dioxide, as in the second compressor 42 of FIG. 1, and the temperature rises. .
  • the oxidation reaction proceeds again, nitrogen dioxide is generated from the remaining nitric oxide, and the oxygen content is further reduced.
  • the sulfur oxide remains, the oxidation reaction proceeds also in the sulfur oxide, and sulfur trioxide is generated from the sulfur dioxide.
  • Mercury oxidation proceeds as well.
  • the exhaust gas G compressed by the second compressor 42 is cooled in the second cooler 44, and water vapor contained in the exhaust gas G is condensed. Nitrogen dioxide, sulfur oxides and mercury contained in the exhaust gas G are dissolved in the condensed water, and these amounts contained in the exhaust gas G are further reduced.
  • the condensed water is separated from the exhaust gas G and discharged by the drain.
  • the exhaust gas G cooled by the second cooler 44 is cooled by the third cooler 45, denitrated by the denitration unit 50, dried by the drying device 5, and adsorbed and removed by mercury by the mercury removing device 6.
  • these are the same as the exhaust gas treatment system 1 of FIG.
  • the configuration of supplying and distributing a part of the recovered gas G ′ discharged from the carbon dioxide recovery device 4 to the desulfurization unit 10 in the exhaust gas treatment system 1 ′ and the operation of the supply control are the same as in the exhaust gas treatment system 1 of FIG. Therefore, these explanations are omitted.
  • the second reactor of the denitration device 3 ′ can be configured by using a plurality of compressors, which is a front stage of the desulfurization device 2 of the exhaust gas treatment system 1 of FIG. This is equivalent to adding a compressor.
  • the compression rate of each compressor may be set so that the pressure of the exhaust gas G discharged from the final compressor becomes a pressure at which carbon dioxide can be liquefied.
  • high-purity carbon dioxide can be efficiently recovered by applying desulfurization by the limestone-gypsum method in the treatment of exhaust gas discharged from facilities such as thermal power plants, steelworks, and boilers. Economical efficiency for use in providing liquefied carbon dioxide is improved.
  • the present invention is useful for reducing the carbon dioxide emission amount and the influence on the environment by using the present invention for the treatment of carbon dioxide-containing gas. Processing costs can be reduced while ensuring the durability of the apparatus, and an exhaust gas treatment system that can perform system management without problems can be provided, contributing to environmental protection.

Abstract

 経済性に優れ、飛散粒子による障害を解消可能な石灰石-石膏法による脱硫装置、及び、高純度の二酸化炭素を回収可能な排ガス処理システムを提供する。脱硫装置は、カルシウム化合物を含有する吸収液を排ガスと接触させて排ガスから硫黄酸化物を除去する脱硫部と、硫黄酸化物から生じる石膏を吸収液から除去する除去部と、石膏が除去された吸収液を洗浄液として、吸収液との接触を経た排ガスを洗浄して排ガスに含まれるカルシウム含有粒子を除去する洗浄部とを有する。除去部では、サイクロン分離器によって大粒の石膏と小粒の石膏とに分級し、大粒の石膏を含む吸収液を濾別して濾液を洗浄部へ供給する。排ガス処理システムは、脱硫装置、脱硝装置及び二酸化炭素回収装置を有し、二酸化炭素回収装置から排出される回収後ガスの一部を脱硫装置の除去部に酸素源として供給する。

Description

脱硫装置及びそれを用いた排ガス処理システム
 本発明は、燃焼ガス等の二酸化炭素を含む排ガスから硫黄酸化物を除去するための脱硫装置、及び、それを用い、硫黄酸化物、窒素酸化物等を除去して二酸化炭素を分離回収可能な排ガス処理システムに関する。
 火力発電所や製鉄所、ボイラーなどの設備では、石炭、重油、超重質油などの燃料を多量に使用しており、燃料の燃焼によって排出される硫黄酸化物、窒素酸化物及び二酸化炭素は、大気汚染防止や地球環境保全の見地から放出に関する量的及び濃度的制限が必要とされている。近年、二酸化炭素は地球温暖化の主原因として問題視され、世界的にも排出を抑制する動きが活発化している。このため、燃焼排ガスやプロセス排ガスの二酸化炭素を大気中に放出せずに回収・貯蔵を可能とするために、様々な研究が精力的に進められている。燃焼排ガスには、二酸化炭素及び水分に加えて、微量成分として、窒素酸化物、硫黄酸化物、水銀、塩化水素、煤塵(粒子状物質)等が含まれるので、排ガスから回収される二酸化炭素に含まれる不純物量を低下させて純度を高めることは、環境保全上重要である。
 燃焼排ガスに含まれる窒素酸化物のうち、二酸化窒素は、アルカリ剤を用いた湿式の吸収処理により除去可能であるが、一酸化窒素は水に難溶性であるため、一般的に実施される脱硝技術は、乾式のアンモニア接触還元法によるものであることが多く、アンモニア等の水素源を供給して触媒反応により窒素酸化物を還元する。これに基づいて脱硫脱硝装置を構成すると、脱硫部分においては、排ガス中の硫黄酸化物はアンモニウム塩の状態で処理される。
 一方、脱硫方法については、アルカリ性の脱硫剤を用いて硫黄酸化物を除去する乾式又は湿式の処理技術が種々研究されている。例えば下記特許文献1には、脱硫剤を含有するスラリーと排ガスとを気液接触させる湿式の排ガス処理方法が記載され、排ガスの脱硫によって二酸化炭素が回収される。このような脱硫方法において使用可能なアルカリ剤には、水酸化ナトリウム(又は炭酸ナトリウム)、石灰石(又は消石灰、ドロマイト)、水酸化マグネシウム等があり、水酸化ナトリウムは硫黄酸化物の除去効率が非常に高いが、高価であり、処理費用が高くなる。このため、火力発電所等の大型プラントでは、安価な石灰石(炭酸カルシウム)又は消石灰(水酸化カルシウム)を用いる石灰石-石膏法が適用されるのが一般的である。
 又、上述のような水素源や脱硫剤を用いない排ガスの処理方法として、排ガスを加圧した後に冷却して排ガス中の水分を凝縮する方法が提案されている(下記特許文献2参照)。この方法においては、加圧後の排ガスに含まれる硫黄酸化物及び窒素酸化物は凝縮水に溶解し、凝縮水を排ガスから分離することによって排ガスは脱硝及び脱硫される。
特開2012-106163号公報 国際公開パンフレットWO2012-107953
 脱硝方法に関して、アンモニア等の水素源を使用する還元法は、処理費用の削減が難しく、このような資源を使用せずに窒素酸化物を処理可能であることが望ましい。一方、上記特許文献2の技術は、排ガスの加圧及び冷却によって凝縮水と共に硫黄酸化物及び窒素酸化物を除去するので、脱硫剤等の化学薬剤を必要としないが、硫黄酸化物から生じる酸(硫酸、亜硫酸)によってコンプレッサ等の機器が損傷し易い。従って、この技術を単独で利用して脱硫及び脱硝を行うと、装置の負担が大きいため設備の維持費の面で問題がある。又、高い除去効率での脱硫及び脱硝を達成するのも難しい。この点について、石灰石-石膏法による脱硫方法は、吸収剤として比較的安価な石灰石を使用するので、処理費用の点で有利な脱硫方法であり、経済的に好ましい。
 但し、石灰石-石膏法による脱硫方法では、吸収剤を水に分散させたスラリーを吸収液として排ガス中の硫黄酸化物を捕捉する際に、燃焼系から導入される高温の排ガスと接触すると、吸収液から水分が奪われて、微細な固体粒子が飛散して排ガスに同伴し易い。このような飛散粒子は、後続の機械装置において摩耗や故障等の障害を起こし易いので、飛散粒子を排ガスから除去する必要がある。飛散粒子を分離するためにフィルターバッグ等の濾過材を用いると、排ガスの通気抵抗が非常に大きくなって、送気を付勢するためのエネルギー及び動力装置が必要となる。従って、排ガスの処理プロセスにおいて石灰石-石膏法による脱硫方法を利用する際には、上述のような飛散粒子の問題に対処するように工夫することも重要である。
 又、排ガスの処理を普及する上で経済性は重要であり、排ガスの処理プロセス全体における経済性を高めるには、処理プロセス中で実施される処理技術の各々について経済性を高めることが重要である。脱硫及び脱硝処理を施した後の排ガスの主成分は二酸化炭素であり、現状では地中に貯蔵しているが、回収二酸化炭素の有効利用が実現すれば経済性は高まる。脱硫及び脱硝後の排ガスから回収される二酸化炭素は、少量のアルゴン、酸素、窒素等を含有するが、高純度の二酸化炭素を効率良く回収できれば、液化二酸化炭素等の製品としての市場への提供も可能となり、産業上有用となる。その際、経済的に有利な技術となるためには、高純度二酸化炭素の回収効率は重要である。このような高度な排ガス処理を行うシステムにおいて石灰石-石膏法による脱硫方法を利用した場合、前述の飛散粒子は、脱硫後の処理装置においてより深刻な障害を引き起こし易いので、飛散粒子の対処は重要である。
 本発明の課題は、上述の問題を解決し、石灰石-石膏法による脱硫技術を利用して、経済性に優れ、後続の装置への飛散粒子による障害を解消可能な脱硫装置であって、高純度の二酸化炭素を回収可能な排ガス処理システムへ好適に適用可能な脱硫装置を提供することである。
 更に、本発明の課題は、排ガスを処理する際の機器の損傷及び障害が少なく、効率的に排ガスの脱硫及び脱硝を実施して二酸化炭素を高純度で回収することが可能であり、処理に必要なエネルギーを削減可能な、経済性に優れた排ガスの処理システムを提供することである。
 又、本発明の課題は、設置条件や設置環境が制限されず、操業費用の低減が可能で維持管理が行い易い脱硫装置及びそれを用いた排ガス処理システムを提供することである。
 上記課題を解決するために、本発明者らは、鋭意研究を重ねた結果、石灰石-石膏法による脱硫装置における飛散粒子の問題を簡易な構成によって解消可能であり、好適に脱硫処理を実施できることを見出し、本発明を完成するに至った。又、高純度の二酸化炭素を効率良く回収可能である加圧及び冷却による排ガス処理を、石灰石-石膏法による脱硫処理と組み合わせて、エネルギーを効率的に使用しつつ排ガス処理を効果的に実施することも実現している。
 本発明の一態様によれば、脱硫装置は、石灰石-石膏法によって排ガスから硫黄酸化物を除去する脱硫装置であって、カルシウム化合物を含有する吸収液を前記排ガスと接触させて前記排ガスから硫黄酸化物を除去する脱硫部と、前記カルシウム化合物と前記硫黄酸化物とから生じる石膏を、分級及び濾過によって前記吸収液から除去する除去部と、前記除去部によって前記石膏が除去された吸収液を洗浄液として用いて、前記脱硫部における吸収液との接触を経た排ガスを洗浄して前記排ガスに含まれるカルシウム含有粒子を除去する洗浄部とを有し、前記除去部は、前記石膏を分級するサイクロン分離器と、吸収液から石膏を濾別するための濾過器とを有し、前記サイクロン分離器は、石膏を生じた前記吸収液を、相対的に大粒の石膏を含む第1画分と、相対的に小粒の石膏を含む第2画分とに分級し、前記濾過器は、前記第1画分から石膏を濾別して濾過された吸収液を前記洗浄部へ供給することを要旨とする。
 又、本発明の一態様によれば、排ガス処理システムは、上記脱硫装置と、前記脱硫装置より後段に配置されて排ガスから窒素酸化物を除去する脱硝装置と、前記脱硝装置より後段に配置されて排ガスから二酸化炭素を回収する二酸化炭素回収装置と、前記二酸化炭素回収装置から排出される回収後ガスの一部を、前記脱硫装置の前記除去部に酸素源として供給する酸素供給部とを有することを要旨とする。
 前記除去部は、濾過効率において有利である。前記濾過器として、減圧下で吸収液を濾別するベルトフィルターを用いることができる。
 前記洗浄部は、前記脱硫部を経た排ガスが順次通過するように配置される一対のミスト除去部材と、前記一対のミスト除去部材の間の排ガスへ前記洗浄液を供給する洗浄ノズルとを有するように構成するとよい。ミスト除去部材は、各々、前記排ガスの通過方向に対して傾斜させて間隙を設けて並列される複数の斜板によって構成することができる。
 上記脱硫装置は、更に、前記脱硫部と前記除去部との間に、前記脱硫部での排ガスとの接触を経た吸収液に酸素源を供給して酸化を施す酸化槽を有し、前記酸化槽において酸化を施された吸収液は前記除去部に供給されるように構成することができる。更に、前記脱硫部での排ガスとの接触を経た吸収液のpHを測定する分析器と、前記分析器の測定値に応じて前記脱硫部の吸収液にカルシウム化合物を補給する補給部とを有するように構成しても良い。
 前記酸化槽に供給される酸素源として空気を用いることができ、前記サイクロン分離器は、前記第2画分を前記酸化槽へ還流するように構成することができる。
 本発明によれば、石灰石-石膏法による脱硫処理における粒子飛散の問題を簡易な手法で解消できるので、排ガスを予め冷却する必要が無く、又、排ガスの脱硫処理及びそれを利用した総合的な排ガス処理における操業費用の削減に貢献し、経済性が向上する。又、装置及びシステムの設置条件等がむやみに制限されず、処理コストを増大させずに排ガスの脱硫及び脱硝を効率良く行うことができる。更に、石灰石-石膏法による脱硫処理の構成を利用して高純度の二酸化炭素を効率良く回収することができ、回収される二酸化炭素の用途開発に有利である。従って、酸素燃焼ガス等の二酸化炭素を含む排ガスの処理システムの設置及び処理方法の普及に寄与し、環境問題への対応に有用である。特殊な装備や高価な装置を必要とせず、一般的な設備を利用して簡易に実施できるので、経済的に有利である。
本発明に係る脱硫装置を含む排ガス処理システムの一実施形態を示す概略構成図。 本発明に係る脱硫装置を含む排ガス処理システムの他の実施形態を示す概略構成図。
 燃焼ガス等の排ガスの主成分は、水及び二酸化炭素であり、更に、不純物として、硫黄酸化物、窒素酸化物、塩化水素、酸素、水銀、煤塵(粒子状物質)等が少量含まれる。硫黄酸化物は、概して燃料由来であり、窒素酸化物は主として空気中の窒素に由来する。排ガス中に残存する酸素の量は、燃焼条件によって変化し、酸素を用いて燃焼効率を高めた酸素燃焼の排ガスでは、酸素量が5%程度となり、残部は水分が20%程度、二酸化炭素が75%程度となるが、更に上述の不純物を含む点は同様である。硫黄酸化物(SOx)には、二酸化硫黄、三酸化硫黄等があり、主として二酸化硫黄として排ガス中に存在するが、何れも水に溶解して亜硫酸又は硫酸となる。窒素酸化物(NOx)には、一酸化窒素、二酸化窒素を含む幾つかの種類が含まれ、主として一酸化窒素又は二酸化窒素として存在する。二酸化窒素は水に溶解するが、一酸化窒素は水には不溶であるので、水を用いて脱硝を行うには、窒素酸化物の酸化が必要である。この点に関し、排ガスに圧力を加えると、排ガス中に残存する酸素によって一酸化窒素が二酸化窒素に変換される酸化反応が進行するので、水を用いた除去処理が可能になる。但し、硫黄酸化物については、酸化反応によって生じる三酸化硫黄と水蒸気とから硫酸が生じるので、これが金属を腐食してコンプレッサ等の損傷を生じ易いが、予め脱硫処理を施した排ガスの場合は、圧力を加えても硫酸による腐食を回避できる。従って、石灰石-石膏法による脱硫処理と、加圧による酸化反応と、湿式の脱硝処理とを排ガスに順次施すことによって、脱硫及び脱硝を安価且つ安全に行うことができ、不純物の除去性能も高くなる。但し、石灰石-石膏法による脱硫処理には、高温の排ガスに接触した際に生じる飛散粒子が後続の機器に障害を引き起こす問題があるので、脱硫後の排ガスをそのまま加圧する構成は好ましくない。
 本発明では、この問題を解決するために、飛散粒子を除去する洗浄部を脱硫装置に設け、脱硫によって生じる石膏を除去した後の吸収液を洗浄液として洗浄部で用いるように脱硫装置を構成する。これによって、石灰石-石膏法による脱硫装置を排ガス処理システムに組み込んだ際に、後続にコンプレッサ等の加圧設備を配置しても飛散粒子による障害が生じるのを防止可能である。洗浄部は、脱硫部と共に脱硫塔内に配置され、排ガスの通気抵抗を増加させずに飛散粒子を捕集可能な簡易な構造に構成されるので、動力の消費を抑制可能である。脱硫後の排ガスに圧力を加えることが可能であるので、排ガス中に残存する酸素によって酸化反応を進行させて一酸化窒素を二酸化窒素に変換することができ、洗浄水を用いた湿式の脱硝処理が可能になる。硫黄酸化物は、酸化反応によって生じる三酸化硫黄と水蒸気とから生じる硫酸が金属を腐食するのでコンプレッサ等の損傷を生じ易いが、先に脱硫処理を排ガスに施すので、加圧装置を用いても硫酸による腐食を回避できる。従って、加圧による酸化反応の進行を利用した一酸化窒素の酸化と、湿式の脱硝処理とを組み合わせて、経済的に窒素酸化物を除去することが可能になり、還元法による脱硝処理を利用する場合に比べて非常に有利である。この結果、石灰石-石膏法による脱硫処理と、加圧による酸化反応と、湿式の脱硝処理とを排ガスに順次施して、脱硫及び脱硝を安価且つ安全に行うことができる排ガス処理システムが構築できる。
 上述の排ガス処理システムの構成に関して、排ガスから二酸化炭素を回収した後に精製残として排出される回収後ガスは酸素を含むので、この回収後ガスは、脱硫処理において排ガスの二酸化硫黄から生成する亜硫酸イオンを酸化するための酸素源として利用することができる。回収後ガスの主成分は二酸化炭素であるので、吸収液中の亜硫酸イオンの酸化を経た回収後ガスが再び処理プロセスを経るようにシステムを構成することによって、回収後ガスの二酸化炭素は再度回収さる。故に、二酸化炭素の精製効率の点で好都合である。回収後ガスの全部ではなく、一部のみを利用することで、脱硫及び脱硝処理後の排ガスにおいて、酸素以外の不純物(アルゴン、窒素等)の濃縮による極度の濃度上昇が回避される。
 つまり、本発明に係る脱硫装置は、石灰石-石膏法によって排ガスから硫黄酸化物を除去する脱硫装置であって、カルシウム化合物を含有する吸収液を排ガスと接触させて排ガスから硫黄酸化物を除去する脱硫部と、カルシウム化合物と硫黄酸化物とから生じる石膏を吸収液から除去するための除去部と、除去部によって石膏が除去された吸収液を洗浄液として用いて、脱硫部における吸収液との接触を経た排ガスを洗浄して排ガスに含まれるカルシウム含有粒子を除去する洗浄部とを有する。除去部は、遠心力を利用して比重差による石膏の吸収液からの分離を促進するサイクロン分離器を有し、これによって石膏粒子を相対的に大粒の石膏と小粒の石膏とに分級する。相対的に大粒の石膏を含む吸収液についてのみ濾過分離を行って、濾液として得られる吸収液を洗浄部での洗浄液として利用し、相対的に小粒の石膏は濾過分離に供されない。これにより、濾過効率が高まって、石膏を除去した吸収液を洗浄液として安定して連続的に供給できると共に、濾過後の吸収液における小粒の石膏の残留が防止され、洗浄液として洗浄部に供給する際に飛散粒子の原因になることが抑制される。
 以下に、本発明の脱硫装置を含む排ガス処理システムの実施形態を、添付の図面を参照して説明する。尚、図において、破線で表す線は電気的接続を示す。
 図1は、本発明に係る脱硫装置を含む排ガス処理システムの第1の実施形態を記載する。排ガス処理システム1は、排ガスGから硫黄酸化物を除去する脱硫装置2と、脱硫装置2より後段に配置されて排ガスGから窒素酸化物を除去する脱硝装置3と、脱硫装置2及び脱硝装置3より後段に配置されて排ガスGから二酸化炭素を回収する二酸化炭素回収装置4とを有する。更に、排ガス処理システム1は、脱硝装置3と二酸化炭素回収装置4との間に、排ガスから水分を除去する乾燥装置5と、排ガスから水銀を除去する水銀除去装置6とを有する。
 脱硫装置2は、吸収液A1を用いて排ガスGから硫黄酸化物を除去する脱硫部10と、硫黄酸化物から石膏(硫酸カルシウム)が生じて析出した吸収液A1から石膏を除去する除去部20と、脱硫部10から排出される排ガスを洗浄する洗浄部21とによって構成される。脱硫部10及び洗浄部21は、脱硫塔7内に直列に配置して設けられ、脱硫塔7の底部から供給される排ガスGが頂部へ上昇する間に脱硫部10及び洗浄部21を順次通過する。脱硫部10は、石灰石-石膏法による脱硫処理を行う区画であり、硫黄酸化物を吸収するためのアルカリ性の吸収剤として石灰石等のカルシウム化合物を含有する水性の分散液を、吸収液A1として使用する。脱硫部10内には、排ガスGに吸収液A1を液滴状に散布する噴霧手段を有する。具体的には、脱硫部10内の上部に、吸収液A1を散布するためのスプレーノズル11が設けられ、脱硫塔7の外側部において脱硫部10の下部と上部とを接続する循環路12が設けられる。スプレーノズル11から散布されて脱硫部10の底部に貯留される吸収液A1は、循環路12上のポンプ13の駆動によってスプレーノズル11に還流され、吸収液A1は繰り返し散布される。スプレーノズル11より下方のガス導入部14から排ガスGが導入され、吸収液A1の散布によって、排ガスGと吸収液A1とが接触する気液接触相がスプレーノズル11とガス導入部14との間に形成される。脱硫部10へ導入される排ガスGの窒素酸化物濃度及び二酸化硫黄濃度を測定するために、分析器S1が設けられる。排ガスGと吸収液A1との接触によって、排ガスGに含まれる硫黄酸化物は吸収液A1に吸収されてカルシウム塩を形成する。この際、二酸化硫黄は、吸収液A1中で亜硫酸イオンとして溶解するのに対し、三酸化硫黄は、吸収液A1に吸収されると石膏(硫酸カルシウム)となって析出分散する。又、排ガスGに含まれる塩化水素等の酸性ハロゲン化物も吸収液A1に吸収され、更に、煤塵を洗浄除去する効果もある。ガス導入部14の配置は、底部に貯留する吸収液A1中に排ガスGを吹き込むように変更しても良い。循環路12には水冷式の冷却器15が設けられ、脱硫部10の吸収液A1は、循環路12を流通する間に冷却器15によって冷却されることにより、液温上昇が防止される。更に、二酸化炭素回収装置4から排出される回収後ガスG’の一部を脱硫部10底部の吸収液A1に供給するための導入部71が設けられ、回収後ガスG’を排出する配管66(詳細は後述する)から分岐する分岐管72が導入部71に接続される。ガス流量を調整するための流量調整弁73,74が配管66及び分岐管72の各々に付設され、流量調整弁73,74は、これらの開度を調節することによって、二酸化炭素回収装置4から排出される回収後ガスG’のうち脱硫部10へ供給される回収後ガスG’の分配割合を調節する調節装置として機能する。回収後ガスG’に含まれる酸素は、吸収液A1中に溶解する亜硫酸イオンを硫酸イオンに酸化して、硫酸カルシウムとして沈積させる。酸素が消費された回収後ガスG’は、主として二酸化炭素で構成され、吸収液A1を浮上して、硫黄酸化物が除去された排ガスGに含まれる。
 排ガスGは、散布される吸収液A1によって冷却されるが、導入される排ガスGの温度が高い場合、散布される吸収液は、温度上昇により水分が気化し、吸収液に含まれる成分が細かい固体粒子(ミスト)となって飛散して排ガスGに同伴される。飛散粒子の成分は、石灰石、石膏、亜硫酸カルシウム等のカルシウム含有固体である。このような固体粒子が排ガスGに同伴されて外部に排出されるのを抑制するために、スプレーノズル11の上方に除去部20が設けられ、気液接触相を通過して上昇する排ガスGが脱硫塔7から排出される前に洗浄部21を通過するように構成される。洗浄部21は、上下に配置される一対のミスト除去部材16a,16bと、ミスト除去部材16a、16bの間に配置される洗浄ノズル17とを有する。ミスト除去部材16a,16bは、各々、間隙を設けて並列される複数の斜板によって水平な層状に構成される。複数の斜板は、排ガスGの通過方向(鉛直方向)に対して傾斜するので、ミスト除去部材を通過する排ガスGに含まれる固体粒子は斜板に衝突し易い。ミスト除去部材16a,16bの高さ(鉛直方向)が150~250mm程度、斜板の間隙(通気幅)が50~100mm程度となるように構成すると、排ガスの通気抵抗の増加を抑制しつつ粒子を効果的に排ガスGから除去するのに好ましく、斜板の傾斜角度(鉛直方向に対する)が20~45度程度であると、粒子を効率的に除去する上で好ましい。衝突した固体粒子が斜板上に堆積すると間隙が閉塞し得るが、洗浄ノズル17は、洗浄液を上下両方向に向けて常時散布するので、排ガスGを洗浄すると共にミスト除去部材16a.16bを洗浄する作用もある。洗浄ノズル17から散布する洗浄液は、除去部20において石膏析出物を除去した吸収液であるので、脱硫塔7底部の吸収液A1よりカルシウム含有量が少なく、飛散粒子の洗浄(溶解、捕捉)に適しており、又、その温度は、洗浄ノズル17に達するまでに低下するので、排ガスGの冷却に適している。又、この洗浄液は、排ガスGに含まれる塩化水素等の酸性ハロゲン化物や残留硫黄酸化物、二酸化窒素も吸収し得る。洗浄後の洗浄液(吸収液)は、下側のミスト除去部材16aを通って脱硫部10へ流下し、スプレーノズル11から供給される吸収液A1と共に塔底部へ落下する。ミスト除去部材16a.16bと洗浄液の散布との組み合わせによって、飛散粒子の除去効率は格段に向上する。洗浄ノズル17の上側のミスト除去部材16bは、更に、洗浄液の微小液滴等が排ガスGに同伴されて外部に排出されるのを抑制する。このミスト除去部材16bは、ミスト除去部材16aと異なる形態であってもよく、例えば、網状部材や多孔薄板等を用いて構成してもよい。
 脱硫塔7の頂部は、配管18によって煤塵フィルター29と接続され、洗浄部21を経た排ガスGは、配管18を通じて煤塵フィルター29に供給される。配管18には、排ガスGの二酸化硫黄濃度を測定する分析器S2が設けられる。煤塵フィルター29は、脱硫塔7の洗浄部21によって除去されなかった極微量の飛散粒子を排ガスGから十分に除去するために設けられ、煤塵フィルター29内には、フィルターの目詰まりによって進行する通気抵抗の増加を解消するために、洗浄用のスプレーノズル29sを備えている。脱硫塔7内に洗浄部をもうけることによって煤塵フィルター29の通気抵抗の上昇はかなり抑制されるので、フィルター洗浄の頻度は減少し、圧力損失を低く抑えることができる。洗浄部21を多段に構成することによって煤塵フィルター29の洗浄を実質的に省略することも可能である。
 脱硫部10において、排ガスGから吸収される二酸化硫黄は、吸収液A1中で亜硫酸イオンとして溶解し、分岐管72から供給される回収後ガスG’に含まれる酸素によって酸化されて石膏を生じる。但し、回収後ガスG’の供給量は、脱硫装置2から排出される排ガスGの状況に応じて調整される(詳細は後述する)ので、酸素の供給量が不足する場合がある。これに対処するために亜硫酸イオンを十分に酸化するための酸化槽30が設けられ、酸化槽30において十分に石膏を析出させた吸収液A1’を除去部20に供給して石膏を分離除去する。具体的には、循環路12を流れる吸収液A1の一部が、分岐路31を通じて酸化槽30に供給され、その供給を制御する開閉弁32が分岐路31に設けられる。酸化槽30には、空気等の酸素を含むガスを導入する導入部33が設けられ、これにより、吸収液A1’中の亜硫酸が硫酸に十分に酸化される。又、酸化槽30には、吸収液を攪拌する攪拌器34が設けられ、吸収液A1’を均一に攪拌混合することによって、吸収液中で酸化反応が均一に進行する。酸素が消費された空気は、主成分が窒素であり、酸化槽30から外部へ放出される。酸化槽30には液面レベルを測定する分析器S3が設けられ、開閉弁32は分析器S3と電気的に接続され、分析器S3からの信号情報に基づいて、酸化槽30内の液量が一定になるように酸化槽30へ供給する吸収液A1の流量が調節される。
 酸化槽30での酸化によって生成した硫酸カルシウムは吸収液A1’から析出する。従って、脱硫部10において排ガスGから吸収される硫黄酸化物と、吸収剤から溶出するカルシウムイオンとによって形成される亜硫酸塩、硫酸塩等は、最終的に石膏(硫酸カルシウム)として吸収液A1’から析出する。酸化槽30の吸収液A1’は、ポンプ35の駆動により、配管36を通じて除去部20のサイクロン分離器22に供給され、除去部20において吸収液A1’から石膏が分離回収される。
 除去部20は、分級装置として機能するサイクロン分離器22と、濾過器として機能する真空ベルトフィルター23とを有する。サイクロン分離器22は、石膏の濃縮器としても機能する。除去部20においては、吸収液A1’中の石膏の濃縮分級と、濃縮分級された石膏の濾過分離が行われる。具体的には、サイクロン分離器22は、比重差による分離を遠心力によって促進することによって、酸化槽30から供給される石膏析出物を含んだ吸収液A1’を、相対的に大粒の石膏を含み濃縮された第1画分と、相対的に小粒の石膏を含み希釈された第2画分とに分級する。大粒の石膏を含む第1画分は、配管25を通じて真空ベルトフィルター23へ供給され、第1画分の濾過分離によって石膏が濾別される。濾別された石膏は、配管26を通じて容器Vに収容される。石膏が除去された第1画分の吸収液は、ポンプ27の駆動によって配管28を通じて洗浄部21の洗浄ノズル17へ洗浄液として供給されて、排ガスG中の飛散粒子を捕捉し、それに含まれる石灰石は洗浄液に溶解する。
 サイクロン分離器22は、円錐形の渦流室内へ吸収液A1’を加圧導入して、遠心力を利用して比重差による石膏の吸収液A1’からの分離を促進し、連続的に効率良く分級及び濃縮分離を行うことができる。特に、複数の渦流室を並設して並列処理を行うマルチサイクロン方式のものを利用すると、石膏の分級及び濃縮に要する時間を短縮できる。一方、真空ベルトフィルター23は、液状物を減圧下で濾別する濾過器であり、循環する帯状フィルター上に吸収液の第1画分を供給して減圧濾過することによってフィルター上に石膏が堆積し、堆積した石膏は、スクレーパー等を用いて、循環するフィルターから順次剥離回収できるので、連続的に効率良く濾過分離を行うことができる。真空ベルトフィルター23に供給される第1画分は、相対的に大粒の石膏が濃縮された吸収液であるので、フィルター濾過において目詰まりを生じ難く、フィルター上に堆積する石膏からの液抜けが容易であるので、石膏析出物を吸収液から回収する作業効率が良い。従って、上述のような連続的な分級及び濃縮と連続的な濾過とを組み合わせることで、効率的に吸収液から石膏を除去して、除去後の吸収液を連続的に洗浄部へ供給することができる。又、相対的に小粒な石膏を含む第2画分は、還流路24を通じて酸化槽30へ戻されて、真空ベルトフィルター23には供給されないので、濾過後の吸収液に微小な石膏が残留するのを防止できる。従って、洗浄液として洗浄部21に供給した際に飛散粒子を生じ難くなる。又、還流路24がサイクロン分離器22と脱硫塔7とを接続するように変更して、サイクロン分離器22で分離された第2画分を脱硫塔7の脱硫部10へ供給するように脱硫装置2を構成してもよい。更に、真空ベルトフィルター23についても、連続的な濾過が可能な他の手段に変えても良く、複数の濾過装置を並列させて順次切り替えて使用するように構成しても、連続濾過は可能である。
 脱硫処理の進行に従って吸収液A1中の吸収剤は消費されるので、脱硫装置2には、吸収剤を補給する補給部として、吸収剤(石灰石)を高含有量で分散させたスラリーを収容するタンク37が付設され、タンク37から脱硫部10へ吸収剤が供給される。脱硫部10に供給される吸収剤は、脱硫部10の底部に設けられる攪拌器19によって吸収液A1に均一に混合される。排ガスGとの接触を経た吸収液A1のpHを測定する分析器S4が脱硫塔7の底部に設置されて、タンク37から脱硫塔7への吸収剤の供給を調節するための開閉弁38と電気的に接続される。開閉弁38は、分析器S4による吸収液A1のpH測定値が低下した時にタンク37の吸収剤を補給して吸収液A1のpHを一定に維持するように制御される。これにより、排ガスGから吸収液A1へ導入される硫黄酸化物量に対応して適切な量の吸収剤が補給され、吸収剤の過剰供給が防止される。
 脱硫装置2の後段には、排ガスGから窒素酸化物を除去する脱硝装置3が配置される。脱硝装置3は、酸化反応を進行させて一酸化窒素から二酸化窒素を生成する反応部40と、水性の吸収液を用いて排ガスから二酸化窒素を除去する脱硝部50とを有し、排ガスに含まれる窒素酸化物のうち、水に溶けない一酸化窒素を二酸化窒素に変換することによって、脱硝部50による脱硝効率を高める。反応部40としては、排ガスを加圧可能な手段を利用する。具体的には、脱硫装置2から排出される排ガスGを圧縮するための少なくとも1つの圧縮器を用い、図1の排ガス処理システム1では、反応部40は、第1圧縮器41及び第2圧縮器42によって構成される。脱硫装置2から排出される排ガスGは、第1圧縮器41及び第2圧縮器42によって段階的に加圧され、圧縮器での加圧によって排ガスGに含まれる酸素と窒素酸化物とが作用し、これによって一酸化窒素が二酸化窒素に酸化する反応が進行する。従って、加圧された排ガスG中の一酸化窒素濃度が減少し、二酸化窒素濃度が高まる。又、排ガスGに硫黄酸化物が残留する場合、硫黄酸化物の酸化も進行する。圧縮された排ガスGの温度は高温になるが、本発明の脱硝装置3は、更に、圧縮される排ガスを冷却する少なくとも1つの冷却器を有し、適正な温度に排ガスGを冷却する。具体的には、第1圧縮器41及び第2圧縮器42の各々の後段に、第1冷却器43及び第2冷却器44が配置され、圧縮と冷却とが交互に繰り返される。第1冷却器43及び第2冷却器44の冷却方式は、水冷式又は他の冷媒を用いた冷却方式の何れでも良く、冷却によって生じる凝縮液を気液分離して排出するドレイン機能を有する構成であれば如何なるものでも良い。例えば、一般的な冷却器又は熱交換器と気液分離器とを接続して、第1冷却器43及び第2冷却器44として用いても良い。圧縮された排ガスGを第1冷却器43及び第2冷却器44によって冷却すると、排ガスGに含まれる水蒸気が凝縮して水分が分離し、排ガスGに含まれる水溶性成分は水分に溶解する。つまり、排ガス中の二酸化窒素は凝縮水に移行し、硫黄酸化物等が残留する場合にもこれらは凝縮水に溶解して、排ガスGの窒素酸化物及び他の水溶性不純物の濃度は低下する。従って、第1冷却器43及び第2冷却器44の冷却によって生じる凝縮水を排ガスGから分離除去することで、窒素酸化物及び他の不純物の濃度が減少した排ガスGが回収される。このように、複数の圧縮器及び複数の冷却器を交互に配置して、排ガスの圧縮及び冷却を交互に繰り返すことによって、酸化反応の進行及び酸化生成物の溶解/除去が繰り返され、排ガスGの窒素酸化物、硫黄酸化物及び他の水溶性不純物の濃度が段階的に減少する。排ガスGの窒素酸化物濃度を測定するための分析器S5が反応部40の後段に設置される。
 図1の排ガス処理システム1では、更に、排ガスGの温度を脱硝部50での処理温度に適した温度に調整することを目的として、第1及び第2冷却器43,44と同様にドレイン機能を有する第3冷却器45が脱硝部50の前段に設けられ、排ガスGは適正温度まで十分に冷却される。第3冷却器45における冷却温度は、第1及び第2冷却器43,44より低いので、より低温に冷却可能な冷却方式のものを用いると良く、冷媒を用いたヒートポンプ等を利用してもよい。
 尚、第1~第3冷却器43~45に関して、ドレイン機能のない冷却器も使用可能であるが、その場合、圧縮された排ガスGと共に凝縮水が脱硝部50に導入される。
 本発明の排ガス処理システム1における脱硝部50は、湿式処理を行う脱硝塔8を有し、吸収液A2として、pH5~9程度の略中性又は塩基性水性溶液を使用する。吸収液A2は、窒素酸化物(二酸化窒素)を吸収する強アルカリ性の吸収剤として、水酸化ナトリウム等のようなアルカリ金属化合物を含有する。脱硝塔8内の上部に、吸収液A2を排ガスGに液滴状に散布するための噴霧手段としてスプレーノズル51が設けられ、塔外部において底部と上部とを接続する循環路52が設けられる。スプレーノズル51から散布されて脱硝塔8の底部に貯留される吸収液A2は、循環路52上のポンプ53の駆動によってスプレーノズル51に還流され、吸収液A2は繰り返し散布される。スプレーノズル51の下方には充填材54が装填されて、排ガスGを吸収液A2と接触させる気液接触相が形成される。スプレーノズル51から吸収液A2を散布して脱硝塔8の底部から排ガスGを導入することによって、充填材54の間隙において排ガスGと吸収液A2とが接触して、排ガスGに含まれる二酸化窒素は吸収液A2に吸収されて硝酸塩として溶解する。又、排ガスGに含まれる塩化水素等の酸性ハロゲン化物や残留硫黄酸化物も吸収液A2に吸収される。循環路52上には水冷式の冷却器55が設けられ、循環路52を流通する吸収液A2を冷却することにより、脱硝塔8内の吸収液A2の温度上昇が防止され、適正温度に維持される。
 吸収液A2に起因する微小液滴等が排ガスGに同伴されて外部に排出されるのを抑制するために、スプレーノズル51の上方にはミスト除去部材56が配置され、充填材54を通過して上昇する排ガスGは、ミスト除去部材56を通過した後に脱硝塔8から配管57を通じて排出される。ミスト除去部材56は、脱硫塔7のミスト除去部材16bと同様に、間隙を設けて並列される複数の斜板によって水平な層状に構成してもよく、或いは、他の形態であってもよく、例えば、網状部材や多孔薄板等を用いて構成してもよい。脱硝処理の進行に従って吸収液A2中の吸収剤は消費されるので、吸収剤を高濃度で含有する水溶液を収容するタンク58が付設され、タンク58内の吸収剤は、循環路52を介して脱硝部50へ適宜補充される。脱硝部50内の吸収液A2のpHは、底部の分析器S6によって監視される。
 本発明の排ガス処理システム1は、脱硝装置3の後段に、排ガスから水分を除去する乾燥装置5と、排ガスから水銀を除去する水銀除去装置6とを有し、配管57を通じて脱硝部50から排出される脱硝後の排ガスGは、二酸化炭素回収装置4に供給される前に、水分及び水銀が除去される。排ガスの窒素酸化物濃度を測定する分析器S7が配管57に設けられる。
 乾燥装置5は、湿分を吸着する乾燥剤Dを用いて構成され、排ガスGの乾燥と乾燥剤Dの再生とを交互に繰り返せるように、一対のカラム61a,61bに乾燥剤Dを装填して使用する。具体的には、配管57の末端は分岐してカラム61a,61bの各々に接続され、カラム61a,61bへの排ガスGの供給を制御する三方切替弁62aが設けられる。カラム61a,61bにおいて乾燥した排ガスGは、配管63及び三方切替弁62bを通じて水銀除去装置6に供給される。更に、二酸化炭素回収装置4から排出される回収後ガスG’を還流させる配管65の末端が分岐してカラム61a,61bの各々に接続され、カラム61a,61bへのガス供給を制御する三方切替弁64aが設けられる。カラム61a,61bに供給される回収後ガスG’を排出するために、配管66及び三方切替弁64bが設けられる。三方切替弁62a,62b,64a,64bの接続切り換えを制御することによって、排ガスGをカラム61a,61bの一方にのみ供給し、他方に回収後ガスG’を供給することが可能である。つまり、三方切替弁62a,62bをカラム61aに連通させて三方切替弁64a,64bをカラム61bに連通させると、配管57からカラム61aに排ガスGが供給され、二酸化炭素回収装置4から還流する回収後ガスG’が配管65からカラム61bに供給される。三方切替弁を上述とは反対に連通させると、ガス供給は逆になる。乾燥剤Dは、一般的に乾燥剤として使用されるものから適宜選択して使用することができ、例えば、モレキュラーシーブ、シリカゲル等が挙げられる。
 水銀除去装置6は、水銀を吸着可能な素材を吸着剤としてカラムに充填することによって構成することができ、吸着剤としては、例えば、活性炭等が挙げられる。カラム61a,61bから排出される乾燥した排ガスGは、配管63を通じて水銀除去装置6に供給され、吸着剤中を通過することによって、排ガスGから水銀が吸着除去される。
 脱硫装置2、脱硝装置3、乾燥装置5及び水銀除去装置6を経て硫黄酸化物、窒素酸化物、水及び水銀が除去された排ガスGは、高い濃度で二酸化炭素を含み、不純物として含まれる成分は、実質的に酸素、窒素及びアルゴンとなる。この排ガスGは、ガスを冷却するための熱交換器と、低温蒸留塔とを備えた二酸化炭素回収装置4に供給される。二酸化炭素は、三重点~臨界点の温度範囲において沸騰線以上の圧力で圧縮すると液化できるが、二酸化炭素回収装置4に供給される排ガスGは、脱硝装置3において、二酸化炭素の液化が可能な圧力に加圧されているので、二酸化炭素回収装置4の熱交換器において沸騰線温度以下に冷却されると、排ガスG中の二酸化炭素が液化する。液化二酸化炭素は、酸素等の不純物を含むので、低温蒸留塔において-30℃程度の蒸留温度で蒸留され、酸素等の不純物はガスとして液化二酸化炭素から放出される。従って、二酸化炭素回収装置4から配管65を通じて排出される回収後ガスG’は、二酸化炭素回収装置4へ供給される排ガスGより酸素等の不純物の割合が高い二酸化炭素ガスである。この回収後ガスG’は、カラム61a,61bへ還流されて、乾燥剤Dを乾燥するための再生用ガスとして使用される。精製された液化二酸化炭素Cは、二酸化炭素回収装置4から回収される。
 配管65から排出される回収後ガスG’は、乾燥剤Dを再生するために、加熱装置67により100℃程度以上に加熱される。二酸化炭素回収装置4は、熱交換器に冷却用の冷媒を供給するために、ヒートポンプ(冷凍サイクル)装置を使用し、このヒートポンプ装置において放出される排熱は加熱用熱源として利用できるので、この排熱を加熱装置67で利用して配管65から排出される回収後ガスG’を加熱するように構成可能である。加熱された再生用の回収後ガスG’は、配管65を通じて乾燥装置5のカラム61a,61bへ還流され、前述したように、三方切替弁62a,62b,64a,64bの制御によって、排ガスGが供給されない方のカラムに供給されて乾燥剤Dを加熱し、乾燥剤Dから水分が放出される。これにより、水蒸気を含んだ回収後ガスG’がカラム61a,61bから排出される。尚、再生によって乾燥剤Dが加熱されるので、再生された乾燥剤Dを乾燥に使用する前に冷却することが望ましい。このためには、乾燥剤Dの再生が完了した時点で、排熱による回収後ガスG’の加熱を止めて、加熱されない回収後ガスG’を供給して乾燥剤Dを冷却した後に、三方切替弁を切り換えて排ガスGの乾燥に使用するカラムを代えると良い。
 更に、二酸化炭素回収装置4から排出される回収後ガスG’の一部を酸素源として脱硫装置2の吸収液A1に供給する酸素供給部として、配管66から分岐されて脱硫塔7の脱硫部10底部に接続される分岐管72が設けられる。二酸化炭素回収装置4から排出される回収後ガスG’のうち脱硫装置2に供給される回収後ガスG’の割合は、流量調整弁73,74によって調節される。この調節を、液化二酸化炭素Cの純度及び回収率に基づいて行うために、二酸化炭素を測定可能な分析器S8を用いて、二酸化炭素回収装置4によって回収される液化二酸化炭素Cの純度及び回収率を監視する監視装置(図示略)が設けられ、流量調整弁73,74と電気的に接続される。回収後ガスG’は、不純物として窒素及びアルゴンを含む二酸化炭素であるので、脱硫部10へ供給する割合が過剰であると、排ガスGに含まれるこれらの不純物量が高くなり、液化二酸化炭素Cの純度が低下し易くなる。又、液化二酸化炭素Cの回収率が低い時、脱硫部10へ供給する回収後ガスG’の分配割合を増加させると、排ガスG中の二酸化炭素が増加し、液化二酸化炭素Cの回収率を高めることができる。従って、監視装置は、分析器S8から送信される信号情報に基づいて、回収二酸化炭素の純度が目標純度より低い場合には脱硫塔7に供給する回収後ガスG’の分配割合を減少させるように、回収二酸化炭素の回収率が目標回収率より低い場合には脱硫塔7に供給する回収後ガスG’の分配割合を増加させるように、流量調整弁73,74を制御する。また、監視装置は、脱硫装置2から排出される排ガスGの二酸化硫黄濃度を分析器S2によって監視するように構成することができ、脱硫装置2から排出される排ガスGの二酸化硫黄濃度が目標濃度より高い場合に、脱硫部10へ還流させる回収後ガスG’の分配割合を高める。これにより、排ガスGの二酸化炭素濃度が相対的に高くなり、二酸化硫黄濃度が相対的に低くなる。
 上述の排ガス処理システム1の構成において、脱硫装置2の洗浄部21は、燃焼系から導入する排ガスGの流通抵抗を増大させずに、石灰石-石膏法による脱硫部10から飛散する固体粒子を捕捉でき、後続の第1圧縮器41における摩耗、損傷等を好適に防止することができるので、システムの耐久性向上のために好適である。又、洗浄部21の洗浄液として石膏を除去した吸収液を利用する上で、サイクロン分離器による分級機能の利用は有利である。更に、第1圧縮器41及び第2圧縮器42は、酸化反応を進行させることによって湿式の脱硝処理の利用を可能にし、アンモニアや触媒等を使用する還元性の脱硝処理を利用する必要が無くなる。又、酸化反応を進行させる反応部40として機能するだけでなく、二酸化炭素を液化するために必要な圧力を加える手段としても作用する。つまり、二酸化炭素を液化するのに必要な圧力を脱硝処理の構成に利用している。石灰石-石膏法による脱硫処理、及び、湿式の脱硝処理は、処理費用等の面で有利な選択肢であるので、これらの処理を組み合わせて経済的な排ガス処理システムを実現する上で、後続装置への粒子飛散を防止してシステムへの圧縮器の組み込みを可能にする本発明の脱硫装置は有用である。
 排ガス処理システム1において実施される排ガスの処理方法の一実施形態について以下に記載する。
 本発明の排ガス処理方法は、石灰石-石膏法によって排ガスGから硫黄酸化物を除去する脱硫処理と、排ガスGから窒素酸化物を除去する脱硝処理と、排ガスGから二酸化炭素を回収する二酸化炭素回収処理とを有する。更に、脱硝処理と二酸化炭素回収処理との間に、乾燥処理及び水銀除去処理を行うことによって、二酸化炭素の液化において使用する熱交換器のアルミニウム製部品の水銀による損傷が防止され、高純度の液化二酸化炭素を効率良く回収できる。又、二酸化炭素回収処理によって排出される回収後ガスG’の一部を酸素源として脱硫処理に供給する酸素供給を行う。脱硫処理は、吸収液を用いて排ガスから硫黄酸化物を除去する脱硫工程と、硫黄酸化物から石膏を析出した吸収液から石膏を、分級を利用して除去する除去工程と、前記除去工程で石膏を除去した吸収液を洗浄液として用いて、前記脱硫工程を経た排ガスに含まれるカルシウム含有粒子を除去する洗浄工程とを有し、脱硫工程及び洗浄工程は、各々、脱硫塔7内の脱硫部10及び洗浄部21において行われ、除去工程は、脱硫塔7の外部の除去部20において行われる。
 吸収液A1として、吸収剤を含有する水性の分散液を用意して脱硫部10に収容する。吸収剤として、石灰石(炭酸カルシウム)、生石灰(酸化カルシウム)、消石灰(水酸化カルシウム)等のカルシウム化合物が使用可能であり、費用等の点から石灰石が好適に使用される。カルシウム化合物は、水溶性が高くないので、好ましくは粉末状に粉砕して水に混合し、微細粒子が分散する分散液状に調製して吸収液A1として使用する。ポンプ13の駆動によって吸収液A1をスプレーノズル11から散布し、排ガスGをガス導入部14から導入して気液接触させることによって脱硫工程が進行する。気液接触効率の観点から、30~120A程度の口径のスプレーノズル11を用いると、吸収液A1が好適な大きさの液滴として散布される。スプレーノズル11から散布される吸収液A1は、循環路12の冷却器15によって冷却され、液温上昇が防止される。排ガスG中の硫黄酸化物が十分に吸収液Aに吸収される滞留時間が得られるように、排ガスGの硫黄酸化物濃度に応じて排ガスGの導入速度を適宜調節する。排ガスGに含まれる硫黄酸化物は、吸収液A1に吸収されてカルシウム塩を形成する。二酸化硫黄は吸収液A1中で亜硫酸イオンとして溶解し、三酸化硫黄は硫酸カルシウム(石膏)を形成して析出するので、吸収液A1中の分散物には、石灰石及び石膏が含まれる。石膏の析出に伴って石灰石が徐々に溶解する。排ガスGに含まれる塩化水素等の酸性ハロゲン化物も吸収液A1に吸収されて溶解し、煤塵も捕捉される。
 燃焼系から供給される排ガスGの温度は、概して100~200℃程度であり、排ガスGが導入されると、脱硫部10での気液接触後の温度は50~100℃程度になる。このため、吸収液A1の液滴の水分が気化して、吸収液に含まれる固体成分が粒子(ミスト)となって飛散して排ガスGに同伴されるが、洗浄部21において、ミスト除去部材16a,16bを通過する間に、固体粒子は斜板に衝突して、ある程度除去される。更に、洗浄ノズル17から散布される洗浄液(石膏を除去した吸収液)によって十分に洗浄されて除去される。上述のような図1の排ガス処理システム1の構成においては、排ガスGの導入温度は、200℃程度まで許容される。
 脱硫部10で排ガスGから硫黄酸化物を吸収した吸収液A1において、二酸化硫黄から生じる亜硫酸カルシウムは溶解するが、少なくとも一部は、分岐管72から供給される回収後ガスG’に含まれる酸素によって酸化されて硫酸カルシウムとして沈積する。回収後ガスG’の主成分は二酸化炭素であり、酸素が消費された回収後ガスG’は、吸収液A1を浮上して、硫黄酸化物が除去された排ガスGに主として二酸化炭素を供給する。
 脱硫部10における脱硫工程を経た吸収液A1の一部は、循環路12から分岐路31を通じて酸化槽30に供給され、ここで空気等の酸素を含むガスが供給される。これにより、吸収液A1中の残留亜硫酸が硫酸に酸化されて、石膏(硫酸カルシウム)として吸収液A1から析出する。脱硫部10において回収後ガスG’による酸素の供給が不足しても、酸化槽30で十分に酸化され、排ガスG中の硫黄酸化物は、最終的に石膏として吸収液A1から析出する。酸化槽30に供給するガスは、空気等のような酸素を供給可能なものであれば良く、亜硫酸を十分に酸化可能な量を供給する。攪拌器34の攪拌速度は、吸収液中で酸化反応が均一に進行するように調整される。酸化槽30内の液面レベルは、分析器S3及び開閉弁32によって一定に維持される。
 脱硫処理の進行に従って吸収剤は消費されるので、吸収剤を高含有量で分散させた水性スラリーをタンク37から脱硫部10へ供給して吸収剤を補充し、攪拌器19によって均一に混合する。タンク37から供給する水性スラリーの濃度は、脱硫部10から回収される石膏の含水量を考慮して調整するとよい。タンク37から脱硫部10の吸収液A1への吸収剤の供給は、分析器S4による吸収液A1のpH測定値に基づいて、開閉弁38の開度調整によって制御し、吸収液A1のpHを一定範囲、好ましくはpH4~7程度に維持する。これにより、排ガスGから導入される硫黄酸化物量に対応して適切な量の吸収剤が補給され、吸収液A1への吸収剤の過剰供給が防止される。
 酸化槽30内での酸化を経た吸収液A1’は、ポンプ35の駆動によって除去部20のサイクロン分離器22及び真空ベルトフィルター23における除去工程において、濃縮分離及び濾過分離が施され、吸収液A1’から石膏が除去される。サイクロン分離器22は、吸収液A1’を、相対的に大粒の石膏を含み濃縮された第1画分と、相対的に小粒の石膏を含み希釈された第2画分とに分級する。0.1~0.5MPa程度の加圧圧力で吸収液A1’をサイクロン分離器22へ導入することで、吸収液A1’は好適に分級される。分級された吸収液A1’の第1画分は、真空ベルトフィルター23へ供給し、石膏を濾別して容器Vに収容する。一般的な真空ベルトフィルター23における帯状フィルターの目開き等を考慮すると、第1画分に含まれる石膏の粒度が50μm程度以上、好ましくは20μm程度以上となるようにサイクロン分離器22における分離を調整することによって、真空ベルトフィルター23において好適な濾過効率で石膏を分離できる。又、過度の減圧を必要とせず、概して10kPa程度で良好に濾過を行うことができる。吸収液A1’の第2画分は、サイクロン分離器22から酸化槽30へ還流して、新たに流入する吸収液A1と混合される。真空ベルトフィルター23において第1画分から石膏が除去された吸収液は、ポンプ27の駆動によって洗浄部21の洗浄ノズル17へ洗浄液として供給され、排ガスGの飛散粒子を捕捉する。
 脱硫工程を経て脱硫部10から上昇する排ガスGは、洗浄部21において、除去部20から洗浄ノズル17へ洗浄液として供給される吸収液を用いた洗浄工程が施される。これにより、ミスト除去部材16a,16bによって除去しきれない飛散粒子は排ガスGから十分に除去される。この際、排ガスGに含まれる煤塵や塩化水素も洗浄除去される。洗浄部21に導入された排ガスGの温度は、洗浄によって40~80℃程度に低下する。洗浄液は、硫黄酸化物由来成分及びカルシウムの濃度が減少しており、ミスト除去部材16a,16bの洗浄水としての使用にも適している。ミスト除去部材16a,16bの洗浄によって、石灰石及び石膏の粒子が水を吸収して落下し、排ガスGから硫黄酸化物を吸収しながら、スプレーノズル11から散布される吸収液A1と共に脱硫部10底部に滴下する。
 洗浄工程を経て脱硫塔7頂部から排出される排ガスGに極微量の飛散粒子が残留する場合、排ガスGが煤塵フィルター29を通過することによって飛散粒子が十分に除去される。煤塵フィルター29内のフィルターは、必要に応じて洗浄用のスプレーノズル29sを用いて適宜洗浄することで目詰まりが防止され、ガス流通の圧力損失が抑制される。
 脱硫処理を経た排ガスGは、脱硝処理として、反応工程、冷却工程及び脱硝工程が実施される。先ず、反応工程では、第1圧縮器41によって1.0~2.0MPa程度に圧縮され、圧縮熱によって温度が100~200℃程度、概して150℃程度に上昇する。圧力増加によって、排ガスG中で酸化反応が進行して一酸化窒素から二酸化窒素が生成し、酸素含有量は減少する。脱硫処理によって排ガスGの硫黄酸化物はほぼ除去されているが、残留する場合には硫黄酸化物にも酸化反応が進行し、二酸化硫黄から三酸化硫黄が生成する。又、水銀もHg2+に酸化されて水に溶解し易くなる。冷却工程では、圧縮された排ガスGは第1冷却器43によって冷却され、排ガスGに含まれる水蒸気が凝縮する。水冷式の冷却では、概して40℃程度に冷却される。これにより、排ガスGに含まれる二酸化窒素、硫黄酸化物及び水銀が凝縮水に溶解するので、排ガスGに含まれるこれらの量は減少する。凝縮水は、排ガスGから分離してドレインによって排出される。排ガスGは、更に、第2圧縮器42によって反応工程が繰り返される。この際、二酸化炭素の液化が可能な圧力で圧縮される。具体的には、2.0~4.0MPa程度に圧縮され、温度は100~200℃程度に再度上昇する。圧力増加によって、酸化反応が再度進行して残留する一酸化窒素から二酸化窒素が生成し、酸素含有量は更に減少する。残留する場合には硫黄酸化物にも酸化反応が進行し、二酸化硫黄から三酸化硫黄が生成する。水銀の酸化も同様に進行する。第2圧縮器42で圧縮された排ガスGは、再度、冷却工程として、第2冷却器44によって冷却され、排ガスGに含まれる水蒸気が凝縮する。水冷式の冷却では概して40℃程度に冷却される。排ガスGに含まれる二酸化窒素、硫黄酸化物及び水銀が凝縮水に溶解し、排ガスGに含まれるこれらの量は更に減少する。凝縮水は、排ガスGから分離してドレインによって排出される。第2冷却器44によって冷却された排ガスGは、更に、第3冷却器45によって冷却され、脱硝塔8での湿式処理温度に適した0~10℃程度の温度に調整される。凝縮水は、同様にドレインによって排出される。この結果、冷却器において生じる凝縮水が溶解する分の不純物(二酸化窒素、硫黄酸化物、Hg2+)が、排ガスGから除去される。
 第3冷却器45を経た排ガスGは、脱硝部50へ供給して脱硝工程を実施する。つまり、ポンプ53の駆動によってスプレーノズル51から吸収液A2を散布して、脱硝塔8底部から充填材54間を上昇する排ガスGと吸収液A2とを気液接触させる。排ガスGに含まれる二酸化窒素は吸収液A2に吸収されて硝酸塩として溶解する。排ガスGに含まれる塩化水素等の酸性ハロゲン化物や残留硫黄酸化物も吸収液A2に吸収される。吸収液A2として、窒素酸化物を吸収するための吸収剤を含有する略中性又は塩基性の水性液が使用され、使用中の吸収液A2のpHを5~9程度に調整する。吸収剤は、アルカリ金属化合物、好ましくは、水酸化ナトリウム、水酸化カリウム等のような強塩基性であるアルカリ金属水酸化物が用いられ、吸収剤を水に溶解した水溶液を調製して用いると好ましい。散布する吸収液A2は、冷却器55によって温度上昇を防止する。脱硝処理の進行に従って消費される吸収剤を補うために、タンク58から吸収剤を適宜供給する。
 脱硝工程を経た排ガスGは、乾燥装置5において乾燥処理が施される。つまり、排ガスGは、カラム61a,61bの一方に供給されて乾燥剤Dによって水分が除去され、この間に、他方のカラムにおいては二酸化炭素回収装置4から供給される再生用ガスによって乾燥剤Dの再生が行われる。カラムに収容される乾燥剤Dの吸湿能に基づいて排ガスGの処理能力を予め設定することができるので、排ガスGの供給量が処理可能な最大量に達する前に、三方切替弁62a,62bを切り換えて排ガスGを供給するカラムを変更し、同時に三方切替弁64a,64bを切り換えて乾燥剤Dの再生を行うカラムも変更する。この切換を、一定の処理時間毎に行うようにしてもよい。乾燥剤Dは、一般的に乾燥剤として使用されるものから適宜選択して使用することができ、例えば、モレキュラーシーブ、シリカゲル、アルミナ、ゼオライト等の物理的又は化学的に湿分を吸収又は吸着可能なものが挙げられる。二酸化炭素回収装置4から供給される再生用の回収後ガスG’は、酸素、窒素、アルゴンの濃度が高い、乾燥した二酸化炭素であり、再生に適した温度、好ましくは100℃程度以上に加熱されて供給され、乾燥剤Dから水分を放出させて再生する。再生から乾燥に切り換える前に、カラムの温度を乾燥処理に適した温度に冷却するために、再生用の回収後ガスG’の加熱を止めることが望ましい。
 カラム61a,61bから排出される乾燥した排ガスGは、水銀除去装置6に供給して、吸着剤による水銀の吸着除去を行う。水銀除去装置6の吸着剤としては、例えば、活性炭、ヨウ化カリウムを担持した活性炭、イオン交換樹脂等が挙げられる。水銀除去を経た排ガスGは、硫黄酸化物、窒素酸化物、水及び水銀が除去されているので、非常に高い濃度で二酸化炭素を含み、不純物として含まれる成分は、実質的に酸素、窒素及びアルゴンとなる。
 脱硝装置3、乾燥装置5及び水銀除去装置6における排ガスGの温度は、実質的に脱硝部50における温度に依存し、排ガスGの圧力は、第2圧縮器42における圧縮度に依存する。第2圧縮器42における圧縮においては、二酸化炭素の液化が可能な2.0~4.0MPa程度に加圧圧縮され、この圧力が維持された排ガスGが二酸化炭素回収装置4に供給される。この排ガスGは、二酸化炭素回収装置において、熱交換器によって沸騰線温度以下、好ましくは-20~-50℃程度に冷却され、排ガスG中の二酸化炭素が液化する。液化された二酸化炭素は、低温蒸留塔において-20~-50℃程度の温度で蒸留され、酸素、窒素、アルゴン等の不純物が液化二酸化炭素から除去される。これらの不純物の割合が増加した二酸化炭素ガスが、回収後ガスG’として低温蒸留塔から放出される。回収後ガスG’は、100℃以上、好ましくは100~200℃程度に加熱した後に、配管65からカラム61a,61bの乾燥剤Dに還流して再生用ガスとして使用する。乾燥剤Dの再生によって水蒸気を含んだ回収後ガスG’がカラム61a,61bから排出される。概して95~99%程度の純度に精製された液化二酸化炭素Cが二酸化炭素回収装置4から回収される。
 二酸化炭素回収装置4から排出される回収後ガスG’は、不純物(酸素、窒素、アルゴン)を数十%程度含む二酸化炭素であり、乾燥剤Dの再生に使用された後に、その一部を酸素源として脱硫工程を経た吸収液A1に供給する。脱硫部10の吸収液A1に供給される回収後ガスG’の割合は、流量調整弁73,74によって調節される。この調節のために、予め、液化二酸化炭素Cの目標回収率及び目標純度を設定しておき、分析器S8によって監視される液化二酸化炭素Cの純度及び回収率を、各々、目標回収率及び目標純度と比較し、回収二酸化炭素の純度が目標純度より低い時には、脱硫部10の吸収液A1に供給する回収後ガスG’の割合を減少させるように、又、回収二酸化炭素の回収率が目標回収率より低い時には、脱硫部10の吸収液A1に供給する回収後ガスG’の割合を増加させるように、流量調整弁73,74を制御する。回収二酸化炭素の純度及び回収率の何れも目標値より低い場合は、目標値の少なくとも一方の設定を下げる変更が必要である。脱硫部10へ供給する回収後ガスGの割合を増加させると、排ガスG中の二酸化炭素が増加して、液化二酸化炭素Cの回収率を高めることができ、脱硫部10へ供給する割合を減少させると、排ガスGに含まれる不純物量(窒素、アルゴン)が低くなり、液化二酸化炭素Cの純度を高め易くなる。尚、液化二酸化炭素Cの純度及び回収率のうちの一方のみに基づいて、脱硫部10に供給する回収後ガスG’の割合を調節するように変更することも可能である。
 脱硫部10に供給する回収後ガスG’の割合Xを決定する手順の一具体例を以下に例示する。
 先ず、液化二酸化炭素Cの目標純度を設定し、脱硫部10に供給する回収後ガスG’の割合Xがゼロになるように流量調整弁73のみを開放して排ガスの処理を実行し、液化二酸化炭素Cの回収率及び純度を監視する。液化二酸化炭素Cの純度が目標純度以上の値になることを確認し、目標純度に達しない場合は、目標純度以上になるように二酸化炭素回収装置4の精製精度を調整する。この時得られる回収率より高い値を目標回収率として設定し、割合Xの変化分がΔXとなるように流量調整弁74を開放して、液化二酸化炭素Cの回収率及び純度を監視する。純度が目標純度以上である限り、回収率が目標回収率に達するまで、割合XをΔXずつ増加させるように流量調整弁73,74の調節を繰り返すことができ、純度が目標純度以下となった場合は、割合Xの増加を停止する。純度が目標純度より低くなった場合は、割合Xを減少させる。このようにして、目標純度で液化二酸化炭素Cを回収する際の回収効率を上限まで高めることができる。
 また、前述した回収後ガスG’を利用して脱硫処理後の排ガスGの二酸化硫黄濃度を低減する割合Xの調節は、以下のように行う。
 分析器S2によって脱硫装置2から排出される排ガスGの二酸化硫黄濃度を監視し、排ガスGの二酸化硫黄濃度を目標二酸化硫黄濃度と比較する。脱硫装置2から排出される排ガスGの二酸化硫黄濃度が目標二酸化硫黄濃度より高い時には、脱硫部10へ還流させる回収後ガスG’の割合Xを高めることによって、排ガスGの二酸化炭素濃度が増加し、二酸化硫黄濃度が低下する。
 この割合Xの調節は、前述の液化二酸化炭素Cの純度及び回収率に基づく調節と同時並行で行うことができる。但し、回収後ガスG’の割合Xの調節によって排ガスGの二酸化硫黄濃度を減少させると、液化二酸化炭素Cの純度が低下するので、両方を満足させられない場合には、脱硫効率を高めるように脱硫装置2の処理条件を再検討する。
 このように回収後ガスG’の一部を脱硫部10に供給することによって、排ガスの処理に酸素が消費されて、二酸化炭素回収装置4へ供給される排ガスGの酸素濃度が相対的に減少し、二酸化炭素濃度が相対的に増加する。従って、不純物(窒素、アルゴン)が排ガスGにおいて過度に濃縮されない範囲で、液化二酸化炭素Cの純度及び回収率の向上が可能である。
 排ガス処理システム1において、第1冷却器43は省略することが可能であるが、図1のように圧縮する度に冷却を行って凝縮水を除去することによって、後段の圧縮器における排ガスの水蒸気量が低下して負荷が減少する。又、排ガス処理システム1の反応部40は、2つの圧縮器によって構成しているが、単一又は3つ以上の圧縮器で構成しても良く、反応部40を構成する圧縮器の数を増やすことによって、二酸化炭素の液化に要する圧力まで昇圧するための圧縮量が各圧縮器に分散して、各圧縮器にかかる負荷が減少する。反応部40を経た排ガスGの圧力が、二酸化炭素の液化が可能な圧力まで上昇しない場合には、二酸化炭素回収装置4又はその前段において排ガスGを加圧するように構成を変更する必要があり、例えば、二酸化炭素回収装置4の前段に圧縮器及び冷却器を付設する。
 又、排ガス処理システム1の脱硫装置2は、酸化槽30を省略するように変形することも可能であり、この場合、酸化槽30に供給される酸素源(空気)は、脱硫塔7の脱硫部10に貯留する吸収液A1に供給し、分岐路31を流れる吸収液A1は直接サイクロン分離器22へ供給され、サイクロン分離器22において分級された吸収液の第2画分(相対的に小粒の石膏を含む)は、脱硫部10へ還流させるとよい。
 図1に示す排ガスの排ガス処理システム1は、高温の排ガスGの導入に対応するように構成した実施形態であるが、排ガスGの温度が100℃に満たない低温である場合には、その対応能力に基づいて処理効率を向上させるような変更が可能である。そのような実施形態を図2に示す。
 図2に示す排ガス処理システム1’は、図1の排ガス処理システム1と同様の構成要素を用いて各部を構成するが、第1圧縮器41の配置を変更して第1冷却器43を省略している点において異なる。つまり、排ガス処理システム1’においては、図1の反応部40は第1反応部及び第2反応部に分割され、第1反応部を構成する第1圧縮器41’は、脱硫装置2’における脱硫部10の前段に配置され、第2反応装置は、脱硫装置2’より後段の脱硝装置3’において第2圧縮器42’のみによって構成される。従って、脱硫装置2’及び脱硝装置3’の何れにおいても、処理する前の排ガスGにおいて加圧によって酸化反応が進行する。
 詳細には、排ガスGが排ガス処理システム1’に供給されると、最初に、第1圧縮器41’において1.0~2.0MPa程度に圧縮され、圧縮熱によって100~200℃程度の範囲の温度に上昇する。圧力増加によって、排ガスG中で酸化反応が進行して、二酸化硫黄から三酸化硫黄が生成する。又、一酸化窒素から二酸化窒素が生成し、水銀もHg2+に酸化されて水に溶解し易くなり、酸素含有量は減少する。圧縮された排ガスGの温度は、図1の排ガス処理システム1に供給される排ガスGの初期温度条件に適合するので、脱硫部10及び洗浄部21によって好適に脱硫処理を実施でき、脱硫部10で吸収液A1と気液接触した後の排ガスGの温度は、図1の場合と同様に50~100℃程度になる。脱硫部10の吸収液散布は、図1における第1冷却器43の役割も果たす。吸収液A1から飛散する粒子は、洗浄部21においてミスト除去部材16a,16bを通過する間に洗浄液による洗浄によって除去されると共に、40~80℃程度に冷却される。
 脱硫部10の吸収液A1によって吸収される成分は、図1の実施形態と比べて、二酸化硫黄が減少して三酸化硫黄が増加するので、初期の石膏の析出量が増加する。従って、亜硫酸イオンの酸化に必要な酸化槽30への酸素供給量及び脱硫部10への回収後ガスG’の供給量は減少する。又、二酸化窒素及びHg2+が吸収液A1に吸収される量も増加する。従って、脱硫装置2’の洗浄部21から排出される排ガスGにおける一酸化窒素及び水銀の含有量は、図1の場合より減少する。
 洗浄部21から排出される排ガスGは、第2圧縮器42’に供給されて、図1の第2圧縮器42と同様に、二酸化炭素の液化が可能な圧力に圧縮され、温度は上昇する。圧力増加によって酸化反応が再度進行して、残留する一酸化窒素から二酸化窒素が生成し、酸素含有量は更に減少する。硫黄酸化物が残留する場合は、硫黄酸化物においても酸化反応が進行し、二酸化硫黄から三酸化硫黄が生成する。水銀の酸化も同様に進行する。第2圧縮器42で圧縮された排ガスGは、第2冷却器44において冷却され、排ガスGに含まれる水蒸気が凝縮する。排ガスGに含まれる二酸化窒素、硫黄酸化物及び水銀が凝縮水に溶解し、排ガスGに含まれるこれらの量は更に減少する。凝縮水は、排ガスGから分離してドレインによって排出される。
 第2冷却器44によって冷却された排ガスGは、この後、第3冷却器45による冷却、脱硝部50による脱硝処理、乾燥装置5による乾燥処理、水銀除去装置6による水銀の吸着除去が実施されるが、これらは、図1の排ガス処理システム1と同様である。又、排ガス処理システム1’において二酸化炭素回収装置4から排出される回収後ガスG’の一部を脱硫部10へ分配供給する構成及び供給制御の操作も、図1の排ガス処理システム1と同様であるので、これらの説明は省略する。
 図2の排ガス処理システム1’のように脱硫部10の前段に圧縮器を配置すると、加圧に伴う酸化反応によって排ガスG中の酸素が消費される量が増加する。従って、二酸化炭素回収装置4に供給される排ガスの酸素含有量は、図1の排ガス処理システム1の場合より減少する。又、酸化によって水に可溶化した成分(二酸化窒素、Hg2+)が水性液と接触する機会が増えるので、これらの除去効率の向上及び水銀吸着剤の使用寿命の点において有利である。尚、図2の排ガス処理システム1’において、脱硝装置3’の第2反応装置を複数の圧縮器を用いて構成可能であり、これは、図1の排ガス処理システム1の脱硫装置2の前段に圧縮器を追加する形態に等しい。圧縮器の数を増加する場合には、最終の圧縮器から排出される排ガスGの圧力が、二酸化炭素の液化が可能な圧力になるように各圧縮器の圧縮率を設定すればよい。
 本発明では、火力発電所や製鉄所、ボイラーなどの設備から排出される排ガスの処理において石灰石-石膏法による脱硫を適用して高純度の二酸化炭素を効率良く回収可能であり、排ガスの処理を液化二酸化炭素の提供に利用する上での経済性が向上する。二酸化炭素含有ガスの処理等に本発明を利用してその二酸化炭素放出量や環境に与える影響などを軽減するのに有用である。装置の耐久性を確保しつつ処理コストの削減が可能で、システム管理を支障なく行える排ガス処理システムを提供でき、環境保護に貢献可能である。

Claims (8)

  1.  石灰石-石膏法によって排ガスから硫黄酸化物を除去する脱硫装置であって、
     カルシウム化合物を含有する吸収液を前記排ガスと接触させて前記排ガスから硫黄酸化物を除去する脱硫部と、
     前記カルシウム化合物と前記硫黄酸化物とから生じる石膏を、分級及び濾過によって前記吸収液から除去する除去部と、
     前記除去部によって前記石膏が除去された吸収液を洗浄液として用いて、前記脱硫部における吸収液との接触を経た排ガスを洗浄して前記排ガスに含まれるカルシウム含有粒子を除去する洗浄部と
     を有し、
     前記除去部は、前記石膏を分級するサイクロン分離器と、吸収液から石膏を濾別するための濾過器とを有し、
     前記サイクロン分離器は、石膏を生じた前記吸収液を、相対的に大粒の石膏を含む第1画分と、相対的に小粒の石膏を含む第2画分とに分級し、前記濾過器は、前記第1画分から石膏を濾別して濾過された吸収液を前記洗浄部へ供給する脱硫装置。
  2.  前記洗浄部は、前記脱硫部を経た排ガスが順次通過するように配置される一対のミスト除去部材と、前記一対のミスト除去部材の間の排ガスへ前記洗浄液を供給する洗浄ノズルとを有する請求項1に記載の脱硫装置。
  3.  更に、前記脱硫部と前記除去部との間に、前記脱硫部での排ガスとの接触を経た吸収液に酸素源を供給して酸化を施す酸化槽を有し、前記酸化槽において酸化を施された吸収液は前記除去部に供給される請求項1又は2に記載の脱硫装置。
  4.  更に、前記脱硫部での排ガスとの接触を経た吸収液のpHを測定する分析器と、
     前記分析器の測定値に応じて前記脱硫部の吸収液にカルシウム化合物を補給する補給部とを有する請求項1~3の何れか一項に記載の脱硫装置。
  5.  前記濾過器は、減圧下で吸収液を濾別するベルトフィルターである請求項1~4の何れか一項に記載の脱硫装置。
  6.  前記一対のミスト除去部材は、各々、前記排ガスの通過方向に対して傾斜させて間隙を設けて並列される複数の斜板によって構成される請求項2に記載の脱硫装置。
  7.  更に、前記脱硫部と前記除去部との間に、前記脱硫部での排ガスとの接触を経た吸収液に空気を供給して酸化を施す酸化槽を有し、
     前記サイクロン分離器によって分級される前記第2画分は、前記酸化槽へ還流する請求項1~6の何れか一項に記載の脱硫装置。
  8.  請求項1~7の何れか一項に記載の脱硫装置と、
     前記脱硫装置より後段に配置されて排ガスから窒素酸化物を除去する脱硝装置と、
     前記脱硝装置より後段に配置されて排ガスから二酸化炭素を回収する二酸化炭素回収装置と、
     前記二酸化炭素回収装置から排出される回収後ガスの一部を、前記脱硫装置の前記除去部に酸素源として供給する酸素供給部と
     を有する排ガス処理システム。
PCT/JP2015/058873 2014-04-15 2015-03-24 脱硫装置及びそれを用いた排ガス処理システム WO2015159657A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2939524A CA2939524C (en) 2014-04-15 2015-03-24 Desulfurization apparatus and exhaust gas processing system using the same
JP2016513689A JP6217845B2 (ja) 2014-04-15 2015-03-24 脱硫装置及びそれを用いた排ガス処理システム
AU2015247201A AU2015247201B2 (en) 2014-04-15 2015-03-24 Desulfurization apparatus and exhaust gas processing system using the same
CN201580007748.7A CN105980036A (zh) 2014-04-15 2015-03-24 脱硫装置及使用其的废气处理系统
US15/225,059 US10603631B2 (en) 2014-04-15 2016-08-01 Desulfurization apparatus and exhaust gas processing system using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014083481 2014-04-15
JP2014-083481 2014-04-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/225,059 Continuation US10603631B2 (en) 2014-04-15 2016-08-01 Desulfurization apparatus and exhaust gas processing system using the same

Publications (1)

Publication Number Publication Date
WO2015159657A1 true WO2015159657A1 (ja) 2015-10-22

Family

ID=54323870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058873 WO2015159657A1 (ja) 2014-04-15 2015-03-24 脱硫装置及びそれを用いた排ガス処理システム

Country Status (6)

Country Link
US (1) US10603631B2 (ja)
JP (1) JP6217845B2 (ja)
CN (1) CN105980036A (ja)
AU (1) AU2015247201B2 (ja)
CA (1) CA2939524C (ja)
WO (1) WO2015159657A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105536534A (zh) * 2016-01-16 2016-05-04 江阴市尚时环境工程有限公司 烟气脱硫脱硝深度除尘系统
CN105536533A (zh) * 2016-01-16 2016-05-04 江阴市尚时环境工程有限公司 脱硫脱硝深度除尘塔的滤液循环系统
CN105536477A (zh) * 2016-01-16 2016-05-04 江阴市尚时环境工程有限公司 高效低成本烟气脱硫脱硝深度除尘系统
JP2021084086A (ja) * 2019-11-29 2021-06-03 株式会社プランテック バグフィルタ、添着活性炭素繊維ユニットを再生する方法及び排ガス処理システム
WO2023238936A1 (ja) * 2022-06-11 2023-12-14 ナノミストテクノロジーズ株式会社 排ガスの処理装置
CN117379807A (zh) * 2023-10-11 2024-01-12 湖北圣灵科技有限公司 一种戊二醛合成用吡喃生产系统

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105749731B (zh) * 2016-03-24 2019-04-30 大唐环境产业集团股份有限公司 一种方箱式脱硫塔高效气液均流装置
CN105749719B (zh) * 2016-03-24 2019-01-29 大唐环境产业集团股份有限公司 一种方箱式脱硫塔二级高效弧形除尘均流装置
CN105749732B (zh) * 2016-03-24 2019-04-30 大唐环境产业集团股份有限公司 一种方箱式脱硫塔二级气液均流装置
KR102031836B1 (ko) * 2017-12-26 2019-10-15 주식회사 포스코 황화수소를 포함하는 산성가스 정제방법 및 그 장치
CN108014615B (zh) * 2018-01-09 2020-04-07 杭州临江环保热电有限公司 一种锅炉废气处理系统
CN110124490B (zh) * 2018-02-02 2021-10-26 中冶长天国际工程有限责任公司 一种活性炭处理多污染物烟气及废水再利用的方法及其装置
CN108714358A (zh) * 2018-07-26 2018-10-30 张俊霞 一种集烟气脱硫脱硝除尘的流化床湿法分子筛装置
CN110152480B (zh) * 2019-05-31 2021-06-22 黄忠 一种提高水泥厂sncr脱硝效率的脱硝工艺
CN111530256A (zh) * 2020-05-09 2020-08-14 铭牌精工机械(山东)有限公司 一种脱硫脱硝环保设备
CN111948169B (zh) * 2020-06-12 2023-11-03 江苏奥畋工程科技有限公司 一种船舶废气在线监测分析系统
DE112020007643A5 (de) * 2020-10-02 2023-07-20 Engineering Dobersek GmbH VERFAHREN UND VORRICHTUNG ZUR RAUCHGASENTSCHWEFELUNG, INSBESONDERE ZUR ENTSCHWEFELUNG VON ABGASEN AUS GROßTECHNISCHEN PYROMETALLURGISCHEN PROZESSEN MIT HOHEN SCHWEFELDIOXID-GEHALTEN
KR102526870B1 (ko) * 2021-01-22 2023-05-03 한국기계연구원 탈황 및 탈질을 동시에 수행하는 장치 및 탈황 및 탈질을 동시에 수행하기 위한 조성물
CN113648775A (zh) * 2021-09-17 2021-11-16 华东理工大学 气体降温-洗涤装置与方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6135827A (ja) * 1984-07-27 1986-02-20 Hitachi Zosen Corp 乾式石灰法による排ガスの浄化方法
JPH0716430A (ja) * 1993-06-17 1995-01-20 Meidensha Corp メタン発酵処理システムにおける排ガス処理方法
JPH07178315A (ja) * 1993-12-24 1995-07-18 Babcock Hitachi Kk 排煙脱硫装置と方法
JPH07330397A (ja) * 1994-06-02 1995-12-19 Daiki Gomme Kogyo Kk 排煙脱硫副生石膏スラリーの脱水方法および脱水装置
JPH10216474A (ja) * 1997-02-13 1998-08-18 Babcock Hitachi Kk スラリ中の炭酸塩濃度の制御方法と装置
JPH115014A (ja) * 1997-06-16 1999-01-12 Babcock Hitachi Kk 湿式排ガス脱硫装置
JP2001025626A (ja) * 1999-07-13 2001-01-30 Babcock Hitachi Kk 排ガスの脱塵処理装置と方法
JP2011125766A (ja) * 2009-12-15 2011-06-30 Ihi Corp 排ガス処理装置
JP2012050931A (ja) * 2010-09-01 2012-03-15 Babcock Hitachi Kk 排煙処理装置及び排煙処理方法
JP2012106163A (ja) * 2010-11-16 2012-06-07 Babcock Hitachi Kk 排ガス処理方法と装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067130U (ja) * 1983-10-12 1985-05-13 石川島播磨重工業株式会社 気液接触装置
BE902935A (fr) 1984-07-27 1985-11-18 Hitachi Shipbuilding Eng Co Procede et dispositif d'epuration de gaz d'echappement.
JPS61259730A (ja) * 1985-05-13 1986-11-18 Babcock Hitachi Kk 湿式排ガス脱硫装置
JPH0663353A (ja) * 1992-08-12 1994-03-08 Babcock Hitachi Kk 湿式排煙脱硫装置および方法
JPH06114232A (ja) * 1992-10-05 1994-04-26 Chiyoda Corp 排ガスの脱硫方法
JPH079427A (ja) 1993-06-28 1995-01-13 Nippon Jitsukou Kk コンクリートの表面処理方法
JPH079427U (ja) * 1993-07-15 1995-02-10 石川島播磨重工業株式会社 吸収塔
US5486341A (en) * 1994-06-09 1996-01-23 Abb Environmental Systems, Div. Of Abb Flakt, Inc. Entrainment separator for high velocity gases
US5743929A (en) * 1995-08-23 1998-04-28 The Boc Group, Inc. Process for the production of high purity carbon dioxide
JPH09141050A (ja) 1995-11-24 1997-06-03 Chiyoda Corp 排煙脱硫プラントのガス吸収装置内部の洗浄方法および洗浄装置
JP3337382B2 (ja) * 1996-10-25 2002-10-21 三菱重工業株式会社 排煙処理方法
JPH10128055A (ja) * 1996-10-29 1998-05-19 Chiyoda Corp 排煙脱硫装置および石膏スラリーの処理方法
US6068822A (en) * 1997-03-24 2000-05-30 Mitsubishi Heavy Industries, Ltd. Desulforization method and desulfurization apparatus in geothermal power plant
JP3925244B2 (ja) 2002-03-06 2007-06-06 株式会社デンソー ドレン水改質器及びエンジン駆動式空調装置のドレン水改質器
CN1331572C (zh) * 2005-08-16 2007-08-15 孙克勤 湿法烟气脱硫系统中石膏浆脱水装置及脱水方法
WO2007106883A2 (en) * 2006-03-15 2007-09-20 Carbon Trap Technologies, L.P. Processes and systems for the sequestration of carbon dioxide utilizing effluent streams
US20080038173A1 (en) * 2006-08-11 2008-02-14 Alstom Technology Ltd, A Company Of Switzerland System and process for cleaning a flue gas stream
CN101157003B (zh) * 2007-08-02 2011-06-22 武汉凯迪电力环保有限公司 联合脱硫脱汞的湿式氨法烟气净化方法及其系统
JP5196482B2 (ja) 2007-09-28 2013-05-15 一般財団法人電力中央研究所 炭酸アルカリ併産タービン設備
JP5523807B2 (ja) 2009-08-05 2014-06-18 三菱重工業株式会社 排ガス処理装置
EP2578295B1 (en) * 2010-05-31 2020-05-27 Mitsubishi Heavy Industries Engineering, Ltd. Exhaust gas treatment system and method
WO2012107953A1 (ja) 2011-02-08 2012-08-16 株式会社Ihi 酸素燃焼装置の排ガス処理システム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6135827A (ja) * 1984-07-27 1986-02-20 Hitachi Zosen Corp 乾式石灰法による排ガスの浄化方法
JPH0716430A (ja) * 1993-06-17 1995-01-20 Meidensha Corp メタン発酵処理システムにおける排ガス処理方法
JPH07178315A (ja) * 1993-12-24 1995-07-18 Babcock Hitachi Kk 排煙脱硫装置と方法
JPH07330397A (ja) * 1994-06-02 1995-12-19 Daiki Gomme Kogyo Kk 排煙脱硫副生石膏スラリーの脱水方法および脱水装置
JPH10216474A (ja) * 1997-02-13 1998-08-18 Babcock Hitachi Kk スラリ中の炭酸塩濃度の制御方法と装置
JPH115014A (ja) * 1997-06-16 1999-01-12 Babcock Hitachi Kk 湿式排ガス脱硫装置
JP2001025626A (ja) * 1999-07-13 2001-01-30 Babcock Hitachi Kk 排ガスの脱塵処理装置と方法
JP2011125766A (ja) * 2009-12-15 2011-06-30 Ihi Corp 排ガス処理装置
JP2012050931A (ja) * 2010-09-01 2012-03-15 Babcock Hitachi Kk 排煙処理装置及び排煙処理方法
JP2012106163A (ja) * 2010-11-16 2012-06-07 Babcock Hitachi Kk 排ガス処理方法と装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105536534A (zh) * 2016-01-16 2016-05-04 江阴市尚时环境工程有限公司 烟气脱硫脱硝深度除尘系统
CN105536533A (zh) * 2016-01-16 2016-05-04 江阴市尚时环境工程有限公司 脱硫脱硝深度除尘塔的滤液循环系统
CN105536477A (zh) * 2016-01-16 2016-05-04 江阴市尚时环境工程有限公司 高效低成本烟气脱硫脱硝深度除尘系统
JP2021084086A (ja) * 2019-11-29 2021-06-03 株式会社プランテック バグフィルタ、添着活性炭素繊維ユニットを再生する方法及び排ガス処理システム
JP7007653B2 (ja) 2019-11-29 2022-01-24 株式会社プランテック バグフィルタ、添着活性炭素繊維ユニットを再生する方法及び排ガス処理システム
WO2023238936A1 (ja) * 2022-06-11 2023-12-14 ナノミストテクノロジーズ株式会社 排ガスの処理装置
CN117379807A (zh) * 2023-10-11 2024-01-12 湖北圣灵科技有限公司 一种戊二醛合成用吡喃生产系统
CN117379807B (zh) * 2023-10-11 2024-03-12 湖北圣灵科技有限公司 一种戊二醛合成用吡喃生产系统

Also Published As

Publication number Publication date
US20160339383A1 (en) 2016-11-24
CA2939524A1 (en) 2015-10-22
AU2015247201A1 (en) 2016-08-25
JP6217845B2 (ja) 2017-10-25
US10603631B2 (en) 2020-03-31
CN105980036A (zh) 2016-09-28
AU2015247201B2 (en) 2017-07-27
CA2939524C (en) 2018-01-02
JPWO2015159657A1 (ja) 2017-04-13

Similar Documents

Publication Publication Date Title
JP6217845B2 (ja) 脱硫装置及びそれを用いた排ガス処理システム
JP6070851B2 (ja) 排ガスの処理システム及び処理方法
JP6244819B2 (ja) 排ガスの処理システム及び処理方法
CN102000486B (zh) 活性碳酸钠捕集烟气中二氧化碳的方法及其设备
EP2203240B1 (en) Multi-stage co2 removal system and method for processing a flue gas stream
JP2016040025A (ja) 二酸化炭素の回収方法及び回収装置
JP2013504422A (ja) Co2を捕捉するためのシングル吸収容器
US10625206B2 (en) Apparatus and method for removing mercury from a gas
EP2829311B1 (en) An ammonia stripper for a carbon capture system for reduction of energy consumption
WO2012104692A1 (en) Apparatus and system for nox reduction in wet flue gas
CA2969190A1 (en) Flue gas treatment system and method
CN112933910B (zh) 一种基于烟气半干法的移动床耦合吸收脱硫方法
CN110026076B (zh) 一种电解铝烟气深度净化装置及方法
CN102350175A (zh) 一种脱硫溶液多级解吸系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15779316

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016513689

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2939524

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2015247201

Country of ref document: AU

Date of ref document: 20150324

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15779316

Country of ref document: EP

Kind code of ref document: A1